]> Git Repo - linux.git/blob - fs/ext4/mballoc.c
wifi: cfg80211: Annotate struct cfg80211_scan_request with __counted_by
[linux.git] / fs / ext4 / mballoc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2003-2006, Cluster File Systems, Inc, [email protected]
4  * Written by Alex Tomas <[email protected]>
5  */
6
7
8 /*
9  * mballoc.c contains the multiblocks allocation routines
10  */
11
12 #include "ext4_jbd2.h"
13 #include "mballoc.h"
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/backing-dev.h>
19 #include <trace/events/ext4.h>
20
21 /*
22  * MUSTDO:
23  *   - test ext4_ext_search_left() and ext4_ext_search_right()
24  *   - search for metadata in few groups
25  *
26  * TODO v4:
27  *   - normalization should take into account whether file is still open
28  *   - discard preallocations if no free space left (policy?)
29  *   - don't normalize tails
30  *   - quota
31  *   - reservation for superuser
32  *
33  * TODO v3:
34  *   - bitmap read-ahead (proposed by Oleg Drokin aka green)
35  *   - track min/max extents in each group for better group selection
36  *   - mb_mark_used() may allocate chunk right after splitting buddy
37  *   - tree of groups sorted by number of free blocks
38  *   - error handling
39  */
40
41 /*
42  * The allocation request involve request for multiple number of blocks
43  * near to the goal(block) value specified.
44  *
45  * During initialization phase of the allocator we decide to use the
46  * group preallocation or inode preallocation depending on the size of
47  * the file. The size of the file could be the resulting file size we
48  * would have after allocation, or the current file size, which ever
49  * is larger. If the size is less than sbi->s_mb_stream_request we
50  * select to use the group preallocation. The default value of
51  * s_mb_stream_request is 16 blocks. This can also be tuned via
52  * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
53  * terms of number of blocks.
54  *
55  * The main motivation for having small file use group preallocation is to
56  * ensure that we have small files closer together on the disk.
57  *
58  * First stage the allocator looks at the inode prealloc list,
59  * ext4_inode_info->i_prealloc_list, which contains list of prealloc
60  * spaces for this particular inode. The inode prealloc space is
61  * represented as:
62  *
63  * pa_lstart -> the logical start block for this prealloc space
64  * pa_pstart -> the physical start block for this prealloc space
65  * pa_len    -> length for this prealloc space (in clusters)
66  * pa_free   ->  free space available in this prealloc space (in clusters)
67  *
68  * The inode preallocation space is used looking at the _logical_ start
69  * block. If only the logical file block falls within the range of prealloc
70  * space we will consume the particular prealloc space. This makes sure that
71  * we have contiguous physical blocks representing the file blocks
72  *
73  * The important thing to be noted in case of inode prealloc space is that
74  * we don't modify the values associated to inode prealloc space except
75  * pa_free.
76  *
77  * If we are not able to find blocks in the inode prealloc space and if we
78  * have the group allocation flag set then we look at the locality group
79  * prealloc space. These are per CPU prealloc list represented as
80  *
81  * ext4_sb_info.s_locality_groups[smp_processor_id()]
82  *
83  * The reason for having a per cpu locality group is to reduce the contention
84  * between CPUs. It is possible to get scheduled at this point.
85  *
86  * The locality group prealloc space is used looking at whether we have
87  * enough free space (pa_free) within the prealloc space.
88  *
89  * If we can't allocate blocks via inode prealloc or/and locality group
90  * prealloc then we look at the buddy cache. The buddy cache is represented
91  * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
92  * mapped to the buddy and bitmap information regarding different
93  * groups. The buddy information is attached to buddy cache inode so that
94  * we can access them through the page cache. The information regarding
95  * each group is loaded via ext4_mb_load_buddy.  The information involve
96  * block bitmap and buddy information. The information are stored in the
97  * inode as:
98  *
99  *  {                        page                        }
100  *  [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
101  *
102  *
103  * one block each for bitmap and buddy information.  So for each group we
104  * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
105  * blocksize) blocks.  So it can have information regarding groups_per_page
106  * which is blocks_per_page/2
107  *
108  * The buddy cache inode is not stored on disk. The inode is thrown
109  * away when the filesystem is unmounted.
110  *
111  * We look for count number of blocks in the buddy cache. If we were able
112  * to locate that many free blocks we return with additional information
113  * regarding rest of the contiguous physical block available
114  *
115  * Before allocating blocks via buddy cache we normalize the request
116  * blocks. This ensure we ask for more blocks that we needed. The extra
117  * blocks that we get after allocation is added to the respective prealloc
118  * list. In case of inode preallocation we follow a list of heuristics
119  * based on file size. This can be found in ext4_mb_normalize_request. If
120  * we are doing a group prealloc we try to normalize the request to
121  * sbi->s_mb_group_prealloc.  The default value of s_mb_group_prealloc is
122  * dependent on the cluster size; for non-bigalloc file systems, it is
123  * 512 blocks. This can be tuned via
124  * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
125  * terms of number of blocks. If we have mounted the file system with -O
126  * stripe=<value> option the group prealloc request is normalized to the
127  * smallest multiple of the stripe value (sbi->s_stripe) which is
128  * greater than the default mb_group_prealloc.
129  *
130  * If "mb_optimize_scan" mount option is set, we maintain in memory group info
131  * structures in two data structures:
132  *
133  * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders)
134  *
135  *    Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks)
136  *
137  *    This is an array of lists where the index in the array represents the
138  *    largest free order in the buddy bitmap of the participating group infos of
139  *    that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total
140  *    number of buddy bitmap orders possible) number of lists. Group-infos are
141  *    placed in appropriate lists.
142  *
143  * 2) Average fragment size lists (sbi->s_mb_avg_fragment_size)
144  *
145  *    Locking: sbi->s_mb_avg_fragment_size_locks(array of rw locks)
146  *
147  *    This is an array of lists where in the i-th list there are groups with
148  *    average fragment size >= 2^i and < 2^(i+1). The average fragment size
149  *    is computed as ext4_group_info->bb_free / ext4_group_info->bb_fragments.
150  *    Note that we don't bother with a special list for completely empty groups
151  *    so we only have MB_NUM_ORDERS(sb) lists.
152  *
153  * When "mb_optimize_scan" mount option is set, mballoc consults the above data
154  * structures to decide the order in which groups are to be traversed for
155  * fulfilling an allocation request.
156  *
157  * At CR_POWER2_ALIGNED , we look for groups which have the largest_free_order
158  * >= the order of the request. We directly look at the largest free order list
159  * in the data structure (1) above where largest_free_order = order of the
160  * request. If that list is empty, we look at remaining list in the increasing
161  * order of largest_free_order. This allows us to perform CR_POWER2_ALIGNED
162  * lookup in O(1) time.
163  *
164  * At CR_GOAL_LEN_FAST, we only consider groups where
165  * average fragment size > request size. So, we lookup a group which has average
166  * fragment size just above or equal to request size using our average fragment
167  * size group lists (data structure 2) in O(1) time.
168  *
169  * At CR_BEST_AVAIL_LEN, we aim to optimize allocations which can't be satisfied
170  * in CR_GOAL_LEN_FAST. The fact that we couldn't find a group in
171  * CR_GOAL_LEN_FAST suggests that there is no BG that has avg
172  * fragment size > goal length. So before falling to the slower
173  * CR_GOAL_LEN_SLOW, in CR_BEST_AVAIL_LEN we proactively trim goal length and
174  * then use the same fragment lists as CR_GOAL_LEN_FAST to find a BG with a big
175  * enough average fragment size. This increases the chances of finding a
176  * suitable block group in O(1) time and results in faster allocation at the
177  * cost of reduced size of allocation.
178  *
179  * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in
180  * linear order which requires O(N) search time for each CR_POWER2_ALIGNED and
181  * CR_GOAL_LEN_FAST phase.
182  *
183  * The regular allocator (using the buddy cache) supports a few tunables.
184  *
185  * /sys/fs/ext4/<partition>/mb_min_to_scan
186  * /sys/fs/ext4/<partition>/mb_max_to_scan
187  * /sys/fs/ext4/<partition>/mb_order2_req
188  * /sys/fs/ext4/<partition>/mb_linear_limit
189  *
190  * The regular allocator uses buddy scan only if the request len is power of
191  * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
192  * value of s_mb_order2_reqs can be tuned via
193  * /sys/fs/ext4/<partition>/mb_order2_req.  If the request len is equal to
194  * stripe size (sbi->s_stripe), we try to search for contiguous block in
195  * stripe size. This should result in better allocation on RAID setups. If
196  * not, we search in the specific group using bitmap for best extents. The
197  * tunable min_to_scan and max_to_scan control the behaviour here.
198  * min_to_scan indicate how long the mballoc __must__ look for a best
199  * extent and max_to_scan indicates how long the mballoc __can__ look for a
200  * best extent in the found extents. Searching for the blocks starts with
201  * the group specified as the goal value in allocation context via
202  * ac_g_ex. Each group is first checked based on the criteria whether it
203  * can be used for allocation. ext4_mb_good_group explains how the groups are
204  * checked.
205  *
206  * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not
207  * get traversed linearly. That may result in subsequent allocations being not
208  * close to each other. And so, the underlying device may get filled up in a
209  * non-linear fashion. While that may not matter on non-rotational devices, for
210  * rotational devices that may result in higher seek times. "mb_linear_limit"
211  * tells mballoc how many groups mballoc should search linearly before
212  * performing consulting above data structures for more efficient lookups. For
213  * non rotational devices, this value defaults to 0 and for rotational devices
214  * this is set to MB_DEFAULT_LINEAR_LIMIT.
215  *
216  * Both the prealloc space are getting populated as above. So for the first
217  * request we will hit the buddy cache which will result in this prealloc
218  * space getting filled. The prealloc space is then later used for the
219  * subsequent request.
220  */
221
222 /*
223  * mballoc operates on the following data:
224  *  - on-disk bitmap
225  *  - in-core buddy (actually includes buddy and bitmap)
226  *  - preallocation descriptors (PAs)
227  *
228  * there are two types of preallocations:
229  *  - inode
230  *    assiged to specific inode and can be used for this inode only.
231  *    it describes part of inode's space preallocated to specific
232  *    physical blocks. any block from that preallocated can be used
233  *    independent. the descriptor just tracks number of blocks left
234  *    unused. so, before taking some block from descriptor, one must
235  *    make sure corresponded logical block isn't allocated yet. this
236  *    also means that freeing any block within descriptor's range
237  *    must discard all preallocated blocks.
238  *  - locality group
239  *    assigned to specific locality group which does not translate to
240  *    permanent set of inodes: inode can join and leave group. space
241  *    from this type of preallocation can be used for any inode. thus
242  *    it's consumed from the beginning to the end.
243  *
244  * relation between them can be expressed as:
245  *    in-core buddy = on-disk bitmap + preallocation descriptors
246  *
247  * this mean blocks mballoc considers used are:
248  *  - allocated blocks (persistent)
249  *  - preallocated blocks (non-persistent)
250  *
251  * consistency in mballoc world means that at any time a block is either
252  * free or used in ALL structures. notice: "any time" should not be read
253  * literally -- time is discrete and delimited by locks.
254  *
255  *  to keep it simple, we don't use block numbers, instead we count number of
256  *  blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
257  *
258  * all operations can be expressed as:
259  *  - init buddy:                       buddy = on-disk + PAs
260  *  - new PA:                           buddy += N; PA = N
261  *  - use inode PA:                     on-disk += N; PA -= N
262  *  - discard inode PA                  buddy -= on-disk - PA; PA = 0
263  *  - use locality group PA             on-disk += N; PA -= N
264  *  - discard locality group PA         buddy -= PA; PA = 0
265  *  note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
266  *        is used in real operation because we can't know actual used
267  *        bits from PA, only from on-disk bitmap
268  *
269  * if we follow this strict logic, then all operations above should be atomic.
270  * given some of them can block, we'd have to use something like semaphores
271  * killing performance on high-end SMP hardware. let's try to relax it using
272  * the following knowledge:
273  *  1) if buddy is referenced, it's already initialized
274  *  2) while block is used in buddy and the buddy is referenced,
275  *     nobody can re-allocate that block
276  *  3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
277  *     bit set and PA claims same block, it's OK. IOW, one can set bit in
278  *     on-disk bitmap if buddy has same bit set or/and PA covers corresponded
279  *     block
280  *
281  * so, now we're building a concurrency table:
282  *  - init buddy vs.
283  *    - new PA
284  *      blocks for PA are allocated in the buddy, buddy must be referenced
285  *      until PA is linked to allocation group to avoid concurrent buddy init
286  *    - use inode PA
287  *      we need to make sure that either on-disk bitmap or PA has uptodate data
288  *      given (3) we care that PA-=N operation doesn't interfere with init
289  *    - discard inode PA
290  *      the simplest way would be to have buddy initialized by the discard
291  *    - use locality group PA
292  *      again PA-=N must be serialized with init
293  *    - discard locality group PA
294  *      the simplest way would be to have buddy initialized by the discard
295  *  - new PA vs.
296  *    - use inode PA
297  *      i_data_sem serializes them
298  *    - discard inode PA
299  *      discard process must wait until PA isn't used by another process
300  *    - use locality group PA
301  *      some mutex should serialize them
302  *    - discard locality group PA
303  *      discard process must wait until PA isn't used by another process
304  *  - use inode PA
305  *    - use inode PA
306  *      i_data_sem or another mutex should serializes them
307  *    - discard inode PA
308  *      discard process must wait until PA isn't used by another process
309  *    - use locality group PA
310  *      nothing wrong here -- they're different PAs covering different blocks
311  *    - discard locality group PA
312  *      discard process must wait until PA isn't used by another process
313  *
314  * now we're ready to make few consequences:
315  *  - PA is referenced and while it is no discard is possible
316  *  - PA is referenced until block isn't marked in on-disk bitmap
317  *  - PA changes only after on-disk bitmap
318  *  - discard must not compete with init. either init is done before
319  *    any discard or they're serialized somehow
320  *  - buddy init as sum of on-disk bitmap and PAs is done atomically
321  *
322  * a special case when we've used PA to emptiness. no need to modify buddy
323  * in this case, but we should care about concurrent init
324  *
325  */
326
327  /*
328  * Logic in few words:
329  *
330  *  - allocation:
331  *    load group
332  *    find blocks
333  *    mark bits in on-disk bitmap
334  *    release group
335  *
336  *  - use preallocation:
337  *    find proper PA (per-inode or group)
338  *    load group
339  *    mark bits in on-disk bitmap
340  *    release group
341  *    release PA
342  *
343  *  - free:
344  *    load group
345  *    mark bits in on-disk bitmap
346  *    release group
347  *
348  *  - discard preallocations in group:
349  *    mark PAs deleted
350  *    move them onto local list
351  *    load on-disk bitmap
352  *    load group
353  *    remove PA from object (inode or locality group)
354  *    mark free blocks in-core
355  *
356  *  - discard inode's preallocations:
357  */
358
359 /*
360  * Locking rules
361  *
362  * Locks:
363  *  - bitlock on a group        (group)
364  *  - object (inode/locality)   (object)
365  *  - per-pa lock               (pa)
366  *  - cr_power2_aligned lists lock      (cr_power2_aligned)
367  *  - cr_goal_len_fast lists lock       (cr_goal_len_fast)
368  *
369  * Paths:
370  *  - new pa
371  *    object
372  *    group
373  *
374  *  - find and use pa:
375  *    pa
376  *
377  *  - release consumed pa:
378  *    pa
379  *    group
380  *    object
381  *
382  *  - generate in-core bitmap:
383  *    group
384  *        pa
385  *
386  *  - discard all for given object (inode, locality group):
387  *    object
388  *        pa
389  *    group
390  *
391  *  - discard all for given group:
392  *    group
393  *        pa
394  *    group
395  *        object
396  *
397  *  - allocation path (ext4_mb_regular_allocator)
398  *    group
399  *    cr_power2_aligned/cr_goal_len_fast
400  */
401 static struct kmem_cache *ext4_pspace_cachep;
402 static struct kmem_cache *ext4_ac_cachep;
403 static struct kmem_cache *ext4_free_data_cachep;
404
405 /* We create slab caches for groupinfo data structures based on the
406  * superblock block size.  There will be one per mounted filesystem for
407  * each unique s_blocksize_bits */
408 #define NR_GRPINFO_CACHES 8
409 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
410
411 static const char * const ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
412         "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
413         "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
414         "ext4_groupinfo_64k", "ext4_groupinfo_128k"
415 };
416
417 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
418                                         ext4_group_t group);
419 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
420                                                 ext4_group_t group);
421 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac);
422
423 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
424                                ext4_group_t group, enum criteria cr);
425
426 static int ext4_try_to_trim_range(struct super_block *sb,
427                 struct ext4_buddy *e4b, ext4_grpblk_t start,
428                 ext4_grpblk_t max, ext4_grpblk_t minblocks);
429
430 /*
431  * The algorithm using this percpu seq counter goes below:
432  * 1. We sample the percpu discard_pa_seq counter before trying for block
433  *    allocation in ext4_mb_new_blocks().
434  * 2. We increment this percpu discard_pa_seq counter when we either allocate
435  *    or free these blocks i.e. while marking those blocks as used/free in
436  *    mb_mark_used()/mb_free_blocks().
437  * 3. We also increment this percpu seq counter when we successfully identify
438  *    that the bb_prealloc_list is not empty and hence proceed for discarding
439  *    of those PAs inside ext4_mb_discard_group_preallocations().
440  *
441  * Now to make sure that the regular fast path of block allocation is not
442  * affected, as a small optimization we only sample the percpu seq counter
443  * on that cpu. Only when the block allocation fails and when freed blocks
444  * found were 0, that is when we sample percpu seq counter for all cpus using
445  * below function ext4_get_discard_pa_seq_sum(). This happens after making
446  * sure that all the PAs on grp->bb_prealloc_list got freed or if it's empty.
447  */
448 static DEFINE_PER_CPU(u64, discard_pa_seq);
449 static inline u64 ext4_get_discard_pa_seq_sum(void)
450 {
451         int __cpu;
452         u64 __seq = 0;
453
454         for_each_possible_cpu(__cpu)
455                 __seq += per_cpu(discard_pa_seq, __cpu);
456         return __seq;
457 }
458
459 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
460 {
461 #if BITS_PER_LONG == 64
462         *bit += ((unsigned long) addr & 7UL) << 3;
463         addr = (void *) ((unsigned long) addr & ~7UL);
464 #elif BITS_PER_LONG == 32
465         *bit += ((unsigned long) addr & 3UL) << 3;
466         addr = (void *) ((unsigned long) addr & ~3UL);
467 #else
468 #error "how many bits you are?!"
469 #endif
470         return addr;
471 }
472
473 static inline int mb_test_bit(int bit, void *addr)
474 {
475         /*
476          * ext4_test_bit on architecture like powerpc
477          * needs unsigned long aligned address
478          */
479         addr = mb_correct_addr_and_bit(&bit, addr);
480         return ext4_test_bit(bit, addr);
481 }
482
483 static inline void mb_set_bit(int bit, void *addr)
484 {
485         addr = mb_correct_addr_and_bit(&bit, addr);
486         ext4_set_bit(bit, addr);
487 }
488
489 static inline void mb_clear_bit(int bit, void *addr)
490 {
491         addr = mb_correct_addr_and_bit(&bit, addr);
492         ext4_clear_bit(bit, addr);
493 }
494
495 static inline int mb_test_and_clear_bit(int bit, void *addr)
496 {
497         addr = mb_correct_addr_and_bit(&bit, addr);
498         return ext4_test_and_clear_bit(bit, addr);
499 }
500
501 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
502 {
503         int fix = 0, ret, tmpmax;
504         addr = mb_correct_addr_and_bit(&fix, addr);
505         tmpmax = max + fix;
506         start += fix;
507
508         ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
509         if (ret > max)
510                 return max;
511         return ret;
512 }
513
514 static inline int mb_find_next_bit(void *addr, int max, int start)
515 {
516         int fix = 0, ret, tmpmax;
517         addr = mb_correct_addr_and_bit(&fix, addr);
518         tmpmax = max + fix;
519         start += fix;
520
521         ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
522         if (ret > max)
523                 return max;
524         return ret;
525 }
526
527 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
528 {
529         char *bb;
530
531         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
532         BUG_ON(max == NULL);
533
534         if (order > e4b->bd_blkbits + 1) {
535                 *max = 0;
536                 return NULL;
537         }
538
539         /* at order 0 we see each particular block */
540         if (order == 0) {
541                 *max = 1 << (e4b->bd_blkbits + 3);
542                 return e4b->bd_bitmap;
543         }
544
545         bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
546         *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
547
548         return bb;
549 }
550
551 #ifdef DOUBLE_CHECK
552 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
553                            int first, int count)
554 {
555         int i;
556         struct super_block *sb = e4b->bd_sb;
557
558         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
559                 return;
560         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
561         for (i = 0; i < count; i++) {
562                 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
563                         ext4_fsblk_t blocknr;
564
565                         blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
566                         blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
567                         ext4_grp_locked_error(sb, e4b->bd_group,
568                                               inode ? inode->i_ino : 0,
569                                               blocknr,
570                                               "freeing block already freed "
571                                               "(bit %u)",
572                                               first + i);
573                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
574                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
575                 }
576                 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
577         }
578 }
579
580 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
581 {
582         int i;
583
584         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
585                 return;
586         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
587         for (i = 0; i < count; i++) {
588                 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
589                 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
590         }
591 }
592
593 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
594 {
595         if (unlikely(e4b->bd_info->bb_bitmap == NULL))
596                 return;
597         if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
598                 unsigned char *b1, *b2;
599                 int i;
600                 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
601                 b2 = (unsigned char *) bitmap;
602                 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
603                         if (b1[i] != b2[i]) {
604                                 ext4_msg(e4b->bd_sb, KERN_ERR,
605                                          "corruption in group %u "
606                                          "at byte %u(%u): %x in copy != %x "
607                                          "on disk/prealloc",
608                                          e4b->bd_group, i, i * 8, b1[i], b2[i]);
609                                 BUG();
610                         }
611                 }
612         }
613 }
614
615 static void mb_group_bb_bitmap_alloc(struct super_block *sb,
616                         struct ext4_group_info *grp, ext4_group_t group)
617 {
618         struct buffer_head *bh;
619
620         grp->bb_bitmap = kmalloc(sb->s_blocksize, GFP_NOFS);
621         if (!grp->bb_bitmap)
622                 return;
623
624         bh = ext4_read_block_bitmap(sb, group);
625         if (IS_ERR_OR_NULL(bh)) {
626                 kfree(grp->bb_bitmap);
627                 grp->bb_bitmap = NULL;
628                 return;
629         }
630
631         memcpy(grp->bb_bitmap, bh->b_data, sb->s_blocksize);
632         put_bh(bh);
633 }
634
635 static void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
636 {
637         kfree(grp->bb_bitmap);
638 }
639
640 #else
641 static inline void mb_free_blocks_double(struct inode *inode,
642                                 struct ext4_buddy *e4b, int first, int count)
643 {
644         return;
645 }
646 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
647                                                 int first, int count)
648 {
649         return;
650 }
651 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
652 {
653         return;
654 }
655
656 static inline void mb_group_bb_bitmap_alloc(struct super_block *sb,
657                         struct ext4_group_info *grp, ext4_group_t group)
658 {
659         return;
660 }
661
662 static inline void mb_group_bb_bitmap_free(struct ext4_group_info *grp)
663 {
664         return;
665 }
666 #endif
667
668 #ifdef AGGRESSIVE_CHECK
669
670 #define MB_CHECK_ASSERT(assert)                                         \
671 do {                                                                    \
672         if (!(assert)) {                                                \
673                 printk(KERN_EMERG                                       \
674                         "Assertion failure in %s() at %s:%d: \"%s\"\n", \
675                         function, file, line, # assert);                \
676                 BUG();                                                  \
677         }                                                               \
678 } while (0)
679
680 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
681                                 const char *function, int line)
682 {
683         struct super_block *sb = e4b->bd_sb;
684         int order = e4b->bd_blkbits + 1;
685         int max;
686         int max2;
687         int i;
688         int j;
689         int k;
690         int count;
691         struct ext4_group_info *grp;
692         int fragments = 0;
693         int fstart;
694         struct list_head *cur;
695         void *buddy;
696         void *buddy2;
697
698         if (e4b->bd_info->bb_check_counter++ % 10)
699                 return 0;
700
701         while (order > 1) {
702                 buddy = mb_find_buddy(e4b, order, &max);
703                 MB_CHECK_ASSERT(buddy);
704                 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
705                 MB_CHECK_ASSERT(buddy2);
706                 MB_CHECK_ASSERT(buddy != buddy2);
707                 MB_CHECK_ASSERT(max * 2 == max2);
708
709                 count = 0;
710                 for (i = 0; i < max; i++) {
711
712                         if (mb_test_bit(i, buddy)) {
713                                 /* only single bit in buddy2 may be 0 */
714                                 if (!mb_test_bit(i << 1, buddy2)) {
715                                         MB_CHECK_ASSERT(
716                                                 mb_test_bit((i<<1)+1, buddy2));
717                                 }
718                                 continue;
719                         }
720
721                         /* both bits in buddy2 must be 1 */
722                         MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
723                         MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
724
725                         for (j = 0; j < (1 << order); j++) {
726                                 k = (i * (1 << order)) + j;
727                                 MB_CHECK_ASSERT(
728                                         !mb_test_bit(k, e4b->bd_bitmap));
729                         }
730                         count++;
731                 }
732                 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
733                 order--;
734         }
735
736         fstart = -1;
737         buddy = mb_find_buddy(e4b, 0, &max);
738         for (i = 0; i < max; i++) {
739                 if (!mb_test_bit(i, buddy)) {
740                         MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
741                         if (fstart == -1) {
742                                 fragments++;
743                                 fstart = i;
744                         }
745                         continue;
746                 }
747                 fstart = -1;
748                 /* check used bits only */
749                 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
750                         buddy2 = mb_find_buddy(e4b, j, &max2);
751                         k = i >> j;
752                         MB_CHECK_ASSERT(k < max2);
753                         MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
754                 }
755         }
756         MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
757         MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
758
759         grp = ext4_get_group_info(sb, e4b->bd_group);
760         if (!grp)
761                 return NULL;
762         list_for_each(cur, &grp->bb_prealloc_list) {
763                 ext4_group_t groupnr;
764                 struct ext4_prealloc_space *pa;
765                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
766                 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
767                 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
768                 for (i = 0; i < pa->pa_len; i++)
769                         MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
770         }
771         return 0;
772 }
773 #undef MB_CHECK_ASSERT
774 #define mb_check_buddy(e4b) __mb_check_buddy(e4b,       \
775                                         __FILE__, __func__, __LINE__)
776 #else
777 #define mb_check_buddy(e4b)
778 #endif
779
780 /*
781  * Divide blocks started from @first with length @len into
782  * smaller chunks with power of 2 blocks.
783  * Clear the bits in bitmap which the blocks of the chunk(s) covered,
784  * then increase bb_counters[] for corresponded chunk size.
785  */
786 static void ext4_mb_mark_free_simple(struct super_block *sb,
787                                 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
788                                         struct ext4_group_info *grp)
789 {
790         struct ext4_sb_info *sbi = EXT4_SB(sb);
791         ext4_grpblk_t min;
792         ext4_grpblk_t max;
793         ext4_grpblk_t chunk;
794         unsigned int border;
795
796         BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
797
798         border = 2 << sb->s_blocksize_bits;
799
800         while (len > 0) {
801                 /* find how many blocks can be covered since this position */
802                 max = ffs(first | border) - 1;
803
804                 /* find how many blocks of power 2 we need to mark */
805                 min = fls(len) - 1;
806
807                 if (max < min)
808                         min = max;
809                 chunk = 1 << min;
810
811                 /* mark multiblock chunks only */
812                 grp->bb_counters[min]++;
813                 if (min > 0)
814                         mb_clear_bit(first >> min,
815                                      buddy + sbi->s_mb_offsets[min]);
816
817                 len -= chunk;
818                 first += chunk;
819         }
820 }
821
822 static int mb_avg_fragment_size_order(struct super_block *sb, ext4_grpblk_t len)
823 {
824         int order;
825
826         /*
827          * We don't bother with a special lists groups with only 1 block free
828          * extents and for completely empty groups.
829          */
830         order = fls(len) - 2;
831         if (order < 0)
832                 return 0;
833         if (order == MB_NUM_ORDERS(sb))
834                 order--;
835         return order;
836 }
837
838 /* Move group to appropriate avg_fragment_size list */
839 static void
840 mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp)
841 {
842         struct ext4_sb_info *sbi = EXT4_SB(sb);
843         int new_order;
844
845         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0)
846                 return;
847
848         new_order = mb_avg_fragment_size_order(sb,
849                                         grp->bb_free / grp->bb_fragments);
850         if (new_order == grp->bb_avg_fragment_size_order)
851                 return;
852
853         if (grp->bb_avg_fragment_size_order != -1) {
854                 write_lock(&sbi->s_mb_avg_fragment_size_locks[
855                                         grp->bb_avg_fragment_size_order]);
856                 list_del(&grp->bb_avg_fragment_size_node);
857                 write_unlock(&sbi->s_mb_avg_fragment_size_locks[
858                                         grp->bb_avg_fragment_size_order]);
859         }
860         grp->bb_avg_fragment_size_order = new_order;
861         write_lock(&sbi->s_mb_avg_fragment_size_locks[
862                                         grp->bb_avg_fragment_size_order]);
863         list_add_tail(&grp->bb_avg_fragment_size_node,
864                 &sbi->s_mb_avg_fragment_size[grp->bb_avg_fragment_size_order]);
865         write_unlock(&sbi->s_mb_avg_fragment_size_locks[
866                                         grp->bb_avg_fragment_size_order]);
867 }
868
869 /*
870  * Choose next group by traversing largest_free_order lists. Updates *new_cr if
871  * cr level needs an update.
872  */
873 static void ext4_mb_choose_next_group_p2_aligned(struct ext4_allocation_context *ac,
874                         enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
875 {
876         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
877         struct ext4_group_info *iter, *grp;
878         int i;
879
880         if (ac->ac_status == AC_STATUS_FOUND)
881                 return;
882
883         if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED))
884                 atomic_inc(&sbi->s_bal_p2_aligned_bad_suggestions);
885
886         grp = NULL;
887         for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) {
888                 if (list_empty(&sbi->s_mb_largest_free_orders[i]))
889                         continue;
890                 read_lock(&sbi->s_mb_largest_free_orders_locks[i]);
891                 if (list_empty(&sbi->s_mb_largest_free_orders[i])) {
892                         read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
893                         continue;
894                 }
895                 grp = NULL;
896                 list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i],
897                                     bb_largest_free_order_node) {
898                         if (sbi->s_mb_stats)
899                                 atomic64_inc(&sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]);
900                         if (likely(ext4_mb_good_group(ac, iter->bb_group, CR_POWER2_ALIGNED))) {
901                                 grp = iter;
902                                 break;
903                         }
904                 }
905                 read_unlock(&sbi->s_mb_largest_free_orders_locks[i]);
906                 if (grp)
907                         break;
908         }
909
910         if (!grp) {
911                 /* Increment cr and search again */
912                 *new_cr = CR_GOAL_LEN_FAST;
913         } else {
914                 *group = grp->bb_group;
915                 ac->ac_flags |= EXT4_MB_CR_POWER2_ALIGNED_OPTIMIZED;
916         }
917 }
918
919 /*
920  * Find a suitable group of given order from the average fragments list.
921  */
922 static struct ext4_group_info *
923 ext4_mb_find_good_group_avg_frag_lists(struct ext4_allocation_context *ac, int order)
924 {
925         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
926         struct list_head *frag_list = &sbi->s_mb_avg_fragment_size[order];
927         rwlock_t *frag_list_lock = &sbi->s_mb_avg_fragment_size_locks[order];
928         struct ext4_group_info *grp = NULL, *iter;
929         enum criteria cr = ac->ac_criteria;
930
931         if (list_empty(frag_list))
932                 return NULL;
933         read_lock(frag_list_lock);
934         if (list_empty(frag_list)) {
935                 read_unlock(frag_list_lock);
936                 return NULL;
937         }
938         list_for_each_entry(iter, frag_list, bb_avg_fragment_size_node) {
939                 if (sbi->s_mb_stats)
940                         atomic64_inc(&sbi->s_bal_cX_groups_considered[cr]);
941                 if (likely(ext4_mb_good_group(ac, iter->bb_group, cr))) {
942                         grp = iter;
943                         break;
944                 }
945         }
946         read_unlock(frag_list_lock);
947         return grp;
948 }
949
950 /*
951  * Choose next group by traversing average fragment size list of suitable
952  * order. Updates *new_cr if cr level needs an update.
953  */
954 static void ext4_mb_choose_next_group_goal_fast(struct ext4_allocation_context *ac,
955                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
956 {
957         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
958         struct ext4_group_info *grp = NULL;
959         int i;
960
961         if (unlikely(ac->ac_flags & EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED)) {
962                 if (sbi->s_mb_stats)
963                         atomic_inc(&sbi->s_bal_goal_fast_bad_suggestions);
964         }
965
966         for (i = mb_avg_fragment_size_order(ac->ac_sb, ac->ac_g_ex.fe_len);
967              i < MB_NUM_ORDERS(ac->ac_sb); i++) {
968                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, i);
969                 if (grp)
970                         break;
971         }
972
973         if (grp) {
974                 *group = grp->bb_group;
975                 ac->ac_flags |= EXT4_MB_CR_GOAL_LEN_FAST_OPTIMIZED;
976         } else {
977                 *new_cr = CR_BEST_AVAIL_LEN;
978         }
979 }
980
981 /*
982  * We couldn't find a group in CR_GOAL_LEN_FAST so try to find the highest free fragment
983  * order we have and proactively trim the goal request length to that order to
984  * find a suitable group faster.
985  *
986  * This optimizes allocation speed at the cost of slightly reduced
987  * preallocations. However, we make sure that we don't trim the request too
988  * much and fall to CR_GOAL_LEN_SLOW in that case.
989  */
990 static void ext4_mb_choose_next_group_best_avail(struct ext4_allocation_context *ac,
991                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
992 {
993         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
994         struct ext4_group_info *grp = NULL;
995         int i, order, min_order;
996         unsigned long num_stripe_clusters = 0;
997
998         if (unlikely(ac->ac_flags & EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED)) {
999                 if (sbi->s_mb_stats)
1000                         atomic_inc(&sbi->s_bal_best_avail_bad_suggestions);
1001         }
1002
1003         /*
1004          * mb_avg_fragment_size_order() returns order in a way that makes
1005          * retrieving back the length using (1 << order) inaccurate. Hence, use
1006          * fls() instead since we need to know the actual length while modifying
1007          * goal length.
1008          */
1009         order = fls(ac->ac_g_ex.fe_len) - 1;
1010         min_order = order - sbi->s_mb_best_avail_max_trim_order;
1011         if (min_order < 0)
1012                 min_order = 0;
1013
1014         if (sbi->s_stripe > 0) {
1015                 /*
1016                  * We are assuming that stripe size is always a multiple of
1017                  * cluster ratio otherwise __ext4_fill_super exists early.
1018                  */
1019                 num_stripe_clusters = EXT4_NUM_B2C(sbi, sbi->s_stripe);
1020                 if (1 << min_order < num_stripe_clusters)
1021                         /*
1022                          * We consider 1 order less because later we round
1023                          * up the goal len to num_stripe_clusters
1024                          */
1025                         min_order = fls(num_stripe_clusters) - 1;
1026         }
1027
1028         if (1 << min_order < ac->ac_o_ex.fe_len)
1029                 min_order = fls(ac->ac_o_ex.fe_len);
1030
1031         for (i = order; i >= min_order; i--) {
1032                 int frag_order;
1033                 /*
1034                  * Scale down goal len to make sure we find something
1035                  * in the free fragments list. Basically, reduce
1036                  * preallocations.
1037                  */
1038                 ac->ac_g_ex.fe_len = 1 << i;
1039
1040                 if (num_stripe_clusters > 0) {
1041                         /*
1042                          * Try to round up the adjusted goal length to
1043                          * stripe size (in cluster units) multiple for
1044                          * efficiency.
1045                          */
1046                         ac->ac_g_ex.fe_len = roundup(ac->ac_g_ex.fe_len,
1047                                                      num_stripe_clusters);
1048                 }
1049
1050                 frag_order = mb_avg_fragment_size_order(ac->ac_sb,
1051                                                         ac->ac_g_ex.fe_len);
1052
1053                 grp = ext4_mb_find_good_group_avg_frag_lists(ac, frag_order);
1054                 if (grp)
1055                         break;
1056         }
1057
1058         if (grp) {
1059                 *group = grp->bb_group;
1060                 ac->ac_flags |= EXT4_MB_CR_BEST_AVAIL_LEN_OPTIMIZED;
1061         } else {
1062                 /* Reset goal length to original goal length before falling into CR_GOAL_LEN_SLOW */
1063                 ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
1064                 *new_cr = CR_GOAL_LEN_SLOW;
1065         }
1066 }
1067
1068 static inline int should_optimize_scan(struct ext4_allocation_context *ac)
1069 {
1070         if (unlikely(!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN)))
1071                 return 0;
1072         if (ac->ac_criteria >= CR_GOAL_LEN_SLOW)
1073                 return 0;
1074         if (!ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS))
1075                 return 0;
1076         return 1;
1077 }
1078
1079 /*
1080  * Return next linear group for allocation. If linear traversal should not be
1081  * performed, this function just returns the same group
1082  */
1083 static int
1084 next_linear_group(struct ext4_allocation_context *ac, int group, int ngroups)
1085 {
1086         if (!should_optimize_scan(ac))
1087                 goto inc_and_return;
1088
1089         if (ac->ac_groups_linear_remaining) {
1090                 ac->ac_groups_linear_remaining--;
1091                 goto inc_and_return;
1092         }
1093
1094         return group;
1095 inc_and_return:
1096         /*
1097          * Artificially restricted ngroups for non-extent
1098          * files makes group > ngroups possible on first loop.
1099          */
1100         return group + 1 >= ngroups ? 0 : group + 1;
1101 }
1102
1103 /*
1104  * ext4_mb_choose_next_group: choose next group for allocation.
1105  *
1106  * @ac        Allocation Context
1107  * @new_cr    This is an output parameter. If the there is no good group
1108  *            available at current CR level, this field is updated to indicate
1109  *            the new cr level that should be used.
1110  * @group     This is an input / output parameter. As an input it indicates the
1111  *            next group that the allocator intends to use for allocation. As
1112  *            output, this field indicates the next group that should be used as
1113  *            determined by the optimization functions.
1114  * @ngroups   Total number of groups
1115  */
1116 static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac,
1117                 enum criteria *new_cr, ext4_group_t *group, ext4_group_t ngroups)
1118 {
1119         *new_cr = ac->ac_criteria;
1120
1121         if (!should_optimize_scan(ac) || ac->ac_groups_linear_remaining) {
1122                 *group = next_linear_group(ac, *group, ngroups);
1123                 return;
1124         }
1125
1126         if (*new_cr == CR_POWER2_ALIGNED) {
1127                 ext4_mb_choose_next_group_p2_aligned(ac, new_cr, group, ngroups);
1128         } else if (*new_cr == CR_GOAL_LEN_FAST) {
1129                 ext4_mb_choose_next_group_goal_fast(ac, new_cr, group, ngroups);
1130         } else if (*new_cr == CR_BEST_AVAIL_LEN) {
1131                 ext4_mb_choose_next_group_best_avail(ac, new_cr, group, ngroups);
1132         } else {
1133                 /*
1134                  * TODO: For CR=2, we can arrange groups in an rb tree sorted by
1135                  * bb_free. But until that happens, we should never come here.
1136                  */
1137                 WARN_ON(1);
1138         }
1139 }
1140
1141 /*
1142  * Cache the order of the largest free extent we have available in this block
1143  * group.
1144  */
1145 static void
1146 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
1147 {
1148         struct ext4_sb_info *sbi = EXT4_SB(sb);
1149         int i;
1150
1151         for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--)
1152                 if (grp->bb_counters[i] > 0)
1153                         break;
1154         /* No need to move between order lists? */
1155         if (!test_opt2(sb, MB_OPTIMIZE_SCAN) ||
1156             i == grp->bb_largest_free_order) {
1157                 grp->bb_largest_free_order = i;
1158                 return;
1159         }
1160
1161         if (grp->bb_largest_free_order >= 0) {
1162                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1163                                               grp->bb_largest_free_order]);
1164                 list_del_init(&grp->bb_largest_free_order_node);
1165                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1166                                               grp->bb_largest_free_order]);
1167         }
1168         grp->bb_largest_free_order = i;
1169         if (grp->bb_largest_free_order >= 0 && grp->bb_free) {
1170                 write_lock(&sbi->s_mb_largest_free_orders_locks[
1171                                               grp->bb_largest_free_order]);
1172                 list_add_tail(&grp->bb_largest_free_order_node,
1173                       &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]);
1174                 write_unlock(&sbi->s_mb_largest_free_orders_locks[
1175                                               grp->bb_largest_free_order]);
1176         }
1177 }
1178
1179 static noinline_for_stack
1180 void ext4_mb_generate_buddy(struct super_block *sb,
1181                             void *buddy, void *bitmap, ext4_group_t group,
1182                             struct ext4_group_info *grp)
1183 {
1184         struct ext4_sb_info *sbi = EXT4_SB(sb);
1185         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
1186         ext4_grpblk_t i = 0;
1187         ext4_grpblk_t first;
1188         ext4_grpblk_t len;
1189         unsigned free = 0;
1190         unsigned fragments = 0;
1191         unsigned long long period = get_cycles();
1192
1193         /* initialize buddy from bitmap which is aggregation
1194          * of on-disk bitmap and preallocations */
1195         i = mb_find_next_zero_bit(bitmap, max, 0);
1196         grp->bb_first_free = i;
1197         while (i < max) {
1198                 fragments++;
1199                 first = i;
1200                 i = mb_find_next_bit(bitmap, max, i);
1201                 len = i - first;
1202                 free += len;
1203                 if (len > 1)
1204                         ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
1205                 else
1206                         grp->bb_counters[0]++;
1207                 if (i < max)
1208                         i = mb_find_next_zero_bit(bitmap, max, i);
1209         }
1210         grp->bb_fragments = fragments;
1211
1212         if (free != grp->bb_free) {
1213                 ext4_grp_locked_error(sb, group, 0, 0,
1214                                       "block bitmap and bg descriptor "
1215                                       "inconsistent: %u vs %u free clusters",
1216                                       free, grp->bb_free);
1217                 /*
1218                  * If we intend to continue, we consider group descriptor
1219                  * corrupt and update bb_free using bitmap value
1220                  */
1221                 grp->bb_free = free;
1222                 ext4_mark_group_bitmap_corrupted(sb, group,
1223                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1224         }
1225         mb_set_largest_free_order(sb, grp);
1226         mb_update_avg_fragment_size(sb, grp);
1227
1228         clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
1229
1230         period = get_cycles() - period;
1231         atomic_inc(&sbi->s_mb_buddies_generated);
1232         atomic64_add(period, &sbi->s_mb_generation_time);
1233 }
1234
1235 /* The buddy information is attached the buddy cache inode
1236  * for convenience. The information regarding each group
1237  * is loaded via ext4_mb_load_buddy. The information involve
1238  * block bitmap and buddy information. The information are
1239  * stored in the inode as
1240  *
1241  * {                        page                        }
1242  * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
1243  *
1244  *
1245  * one block each for bitmap and buddy information.
1246  * So for each group we take up 2 blocks. A page can
1247  * contain blocks_per_page (PAGE_SIZE / blocksize)  blocks.
1248  * So it can have information regarding groups_per_page which
1249  * is blocks_per_page/2
1250  *
1251  * Locking note:  This routine takes the block group lock of all groups
1252  * for this page; do not hold this lock when calling this routine!
1253  */
1254
1255 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
1256 {
1257         ext4_group_t ngroups;
1258         int blocksize;
1259         int blocks_per_page;
1260         int groups_per_page;
1261         int err = 0;
1262         int i;
1263         ext4_group_t first_group, group;
1264         int first_block;
1265         struct super_block *sb;
1266         struct buffer_head *bhs;
1267         struct buffer_head **bh = NULL;
1268         struct inode *inode;
1269         char *data;
1270         char *bitmap;
1271         struct ext4_group_info *grinfo;
1272
1273         inode = page->mapping->host;
1274         sb = inode->i_sb;
1275         ngroups = ext4_get_groups_count(sb);
1276         blocksize = i_blocksize(inode);
1277         blocks_per_page = PAGE_SIZE / blocksize;
1278
1279         mb_debug(sb, "init page %lu\n", page->index);
1280
1281         groups_per_page = blocks_per_page >> 1;
1282         if (groups_per_page == 0)
1283                 groups_per_page = 1;
1284
1285         /* allocate buffer_heads to read bitmaps */
1286         if (groups_per_page > 1) {
1287                 i = sizeof(struct buffer_head *) * groups_per_page;
1288                 bh = kzalloc(i, gfp);
1289                 if (bh == NULL)
1290                         return -ENOMEM;
1291         } else
1292                 bh = &bhs;
1293
1294         first_group = page->index * blocks_per_page / 2;
1295
1296         /* read all groups the page covers into the cache */
1297         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1298                 if (group >= ngroups)
1299                         break;
1300
1301                 grinfo = ext4_get_group_info(sb, group);
1302                 if (!grinfo)
1303                         continue;
1304                 /*
1305                  * If page is uptodate then we came here after online resize
1306                  * which added some new uninitialized group info structs, so
1307                  * we must skip all initialized uptodate buddies on the page,
1308                  * which may be currently in use by an allocating task.
1309                  */
1310                 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
1311                         bh[i] = NULL;
1312                         continue;
1313                 }
1314                 bh[i] = ext4_read_block_bitmap_nowait(sb, group, false);
1315                 if (IS_ERR(bh[i])) {
1316                         err = PTR_ERR(bh[i]);
1317                         bh[i] = NULL;
1318                         goto out;
1319                 }
1320                 mb_debug(sb, "read bitmap for group %u\n", group);
1321         }
1322
1323         /* wait for I/O completion */
1324         for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
1325                 int err2;
1326
1327                 if (!bh[i])
1328                         continue;
1329                 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
1330                 if (!err)
1331                         err = err2;
1332         }
1333
1334         first_block = page->index * blocks_per_page;
1335         for (i = 0; i < blocks_per_page; i++) {
1336                 group = (first_block + i) >> 1;
1337                 if (group >= ngroups)
1338                         break;
1339
1340                 if (!bh[group - first_group])
1341                         /* skip initialized uptodate buddy */
1342                         continue;
1343
1344                 if (!buffer_verified(bh[group - first_group]))
1345                         /* Skip faulty bitmaps */
1346                         continue;
1347                 err = 0;
1348
1349                 /*
1350                  * data carry information regarding this
1351                  * particular group in the format specified
1352                  * above
1353                  *
1354                  */
1355                 data = page_address(page) + (i * blocksize);
1356                 bitmap = bh[group - first_group]->b_data;
1357
1358                 /*
1359                  * We place the buddy block and bitmap block
1360                  * close together
1361                  */
1362                 if ((first_block + i) & 1) {
1363                         /* this is block of buddy */
1364                         BUG_ON(incore == NULL);
1365                         mb_debug(sb, "put buddy for group %u in page %lu/%x\n",
1366                                 group, page->index, i * blocksize);
1367                         trace_ext4_mb_buddy_bitmap_load(sb, group);
1368                         grinfo = ext4_get_group_info(sb, group);
1369                         if (!grinfo) {
1370                                 err = -EFSCORRUPTED;
1371                                 goto out;
1372                         }
1373                         grinfo->bb_fragments = 0;
1374                         memset(grinfo->bb_counters, 0,
1375                                sizeof(*grinfo->bb_counters) *
1376                                (MB_NUM_ORDERS(sb)));
1377                         /*
1378                          * incore got set to the group block bitmap below
1379                          */
1380                         ext4_lock_group(sb, group);
1381                         /* init the buddy */
1382                         memset(data, 0xff, blocksize);
1383                         ext4_mb_generate_buddy(sb, data, incore, group, grinfo);
1384                         ext4_unlock_group(sb, group);
1385                         incore = NULL;
1386                 } else {
1387                         /* this is block of bitmap */
1388                         BUG_ON(incore != NULL);
1389                         mb_debug(sb, "put bitmap for group %u in page %lu/%x\n",
1390                                 group, page->index, i * blocksize);
1391                         trace_ext4_mb_bitmap_load(sb, group);
1392
1393                         /* see comments in ext4_mb_put_pa() */
1394                         ext4_lock_group(sb, group);
1395                         memcpy(data, bitmap, blocksize);
1396
1397                         /* mark all preallocated blks used in in-core bitmap */
1398                         ext4_mb_generate_from_pa(sb, data, group);
1399                         ext4_mb_generate_from_freelist(sb, data, group);
1400                         ext4_unlock_group(sb, group);
1401
1402                         /* set incore so that the buddy information can be
1403                          * generated using this
1404                          */
1405                         incore = data;
1406                 }
1407         }
1408         SetPageUptodate(page);
1409
1410 out:
1411         if (bh) {
1412                 for (i = 0; i < groups_per_page; i++)
1413                         brelse(bh[i]);
1414                 if (bh != &bhs)
1415                         kfree(bh);
1416         }
1417         return err;
1418 }
1419
1420 /*
1421  * Lock the buddy and bitmap pages. This make sure other parallel init_group
1422  * on the same buddy page doesn't happen whild holding the buddy page lock.
1423  * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
1424  * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
1425  */
1426 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
1427                 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
1428 {
1429         struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
1430         int block, pnum, poff;
1431         int blocks_per_page;
1432         struct page *page;
1433
1434         e4b->bd_buddy_page = NULL;
1435         e4b->bd_bitmap_page = NULL;
1436
1437         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1438         /*
1439          * the buddy cache inode stores the block bitmap
1440          * and buddy information in consecutive blocks.
1441          * So for each group we need two blocks.
1442          */
1443         block = group * 2;
1444         pnum = block / blocks_per_page;
1445         poff = block % blocks_per_page;
1446         page = find_or_create_page(inode->i_mapping, pnum, gfp);
1447         if (!page)
1448                 return -ENOMEM;
1449         BUG_ON(page->mapping != inode->i_mapping);
1450         e4b->bd_bitmap_page = page;
1451         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1452
1453         if (blocks_per_page >= 2) {
1454                 /* buddy and bitmap are on the same page */
1455                 return 0;
1456         }
1457
1458         block++;
1459         pnum = block / blocks_per_page;
1460         page = find_or_create_page(inode->i_mapping, pnum, gfp);
1461         if (!page)
1462                 return -ENOMEM;
1463         BUG_ON(page->mapping != inode->i_mapping);
1464         e4b->bd_buddy_page = page;
1465         return 0;
1466 }
1467
1468 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1469 {
1470         if (e4b->bd_bitmap_page) {
1471                 unlock_page(e4b->bd_bitmap_page);
1472                 put_page(e4b->bd_bitmap_page);
1473         }
1474         if (e4b->bd_buddy_page) {
1475                 unlock_page(e4b->bd_buddy_page);
1476                 put_page(e4b->bd_buddy_page);
1477         }
1478 }
1479
1480 /*
1481  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1482  * block group lock of all groups for this page; do not hold the BG lock when
1483  * calling this routine!
1484  */
1485 static noinline_for_stack
1486 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1487 {
1488
1489         struct ext4_group_info *this_grp;
1490         struct ext4_buddy e4b;
1491         struct page *page;
1492         int ret = 0;
1493
1494         might_sleep();
1495         mb_debug(sb, "init group %u\n", group);
1496         this_grp = ext4_get_group_info(sb, group);
1497         if (!this_grp)
1498                 return -EFSCORRUPTED;
1499
1500         /*
1501          * This ensures that we don't reinit the buddy cache
1502          * page which map to the group from which we are already
1503          * allocating. If we are looking at the buddy cache we would
1504          * have taken a reference using ext4_mb_load_buddy and that
1505          * would have pinned buddy page to page cache.
1506          * The call to ext4_mb_get_buddy_page_lock will mark the
1507          * page accessed.
1508          */
1509         ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1510         if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1511                 /*
1512                  * somebody initialized the group
1513                  * return without doing anything
1514                  */
1515                 goto err;
1516         }
1517
1518         page = e4b.bd_bitmap_page;
1519         ret = ext4_mb_init_cache(page, NULL, gfp);
1520         if (ret)
1521                 goto err;
1522         if (!PageUptodate(page)) {
1523                 ret = -EIO;
1524                 goto err;
1525         }
1526
1527         if (e4b.bd_buddy_page == NULL) {
1528                 /*
1529                  * If both the bitmap and buddy are in
1530                  * the same page we don't need to force
1531                  * init the buddy
1532                  */
1533                 ret = 0;
1534                 goto err;
1535         }
1536         /* init buddy cache */
1537         page = e4b.bd_buddy_page;
1538         ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1539         if (ret)
1540                 goto err;
1541         if (!PageUptodate(page)) {
1542                 ret = -EIO;
1543                 goto err;
1544         }
1545 err:
1546         ext4_mb_put_buddy_page_lock(&e4b);
1547         return ret;
1548 }
1549
1550 /*
1551  * Locking note:  This routine calls ext4_mb_init_cache(), which takes the
1552  * block group lock of all groups for this page; do not hold the BG lock when
1553  * calling this routine!
1554  */
1555 static noinline_for_stack int
1556 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1557                        struct ext4_buddy *e4b, gfp_t gfp)
1558 {
1559         int blocks_per_page;
1560         int block;
1561         int pnum;
1562         int poff;
1563         struct page *page;
1564         int ret;
1565         struct ext4_group_info *grp;
1566         struct ext4_sb_info *sbi = EXT4_SB(sb);
1567         struct inode *inode = sbi->s_buddy_cache;
1568
1569         might_sleep();
1570         mb_debug(sb, "load group %u\n", group);
1571
1572         blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1573         grp = ext4_get_group_info(sb, group);
1574         if (!grp)
1575                 return -EFSCORRUPTED;
1576
1577         e4b->bd_blkbits = sb->s_blocksize_bits;
1578         e4b->bd_info = grp;
1579         e4b->bd_sb = sb;
1580         e4b->bd_group = group;
1581         e4b->bd_buddy_page = NULL;
1582         e4b->bd_bitmap_page = NULL;
1583
1584         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1585                 /*
1586                  * we need full data about the group
1587                  * to make a good selection
1588                  */
1589                 ret = ext4_mb_init_group(sb, group, gfp);
1590                 if (ret)
1591                         return ret;
1592         }
1593
1594         /*
1595          * the buddy cache inode stores the block bitmap
1596          * and buddy information in consecutive blocks.
1597          * So for each group we need two blocks.
1598          */
1599         block = group * 2;
1600         pnum = block / blocks_per_page;
1601         poff = block % blocks_per_page;
1602
1603         /* we could use find_or_create_page(), but it locks page
1604          * what we'd like to avoid in fast path ... */
1605         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1606         if (page == NULL || !PageUptodate(page)) {
1607                 if (page)
1608                         /*
1609                          * drop the page reference and try
1610                          * to get the page with lock. If we
1611                          * are not uptodate that implies
1612                          * somebody just created the page but
1613                          * is yet to initialize the same. So
1614                          * wait for it to initialize.
1615                          */
1616                         put_page(page);
1617                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1618                 if (page) {
1619                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1620         "ext4: bitmap's paging->mapping != inode->i_mapping\n")) {
1621                                 /* should never happen */
1622                                 unlock_page(page);
1623                                 ret = -EINVAL;
1624                                 goto err;
1625                         }
1626                         if (!PageUptodate(page)) {
1627                                 ret = ext4_mb_init_cache(page, NULL, gfp);
1628                                 if (ret) {
1629                                         unlock_page(page);
1630                                         goto err;
1631                                 }
1632                                 mb_cmp_bitmaps(e4b, page_address(page) +
1633                                                (poff * sb->s_blocksize));
1634                         }
1635                         unlock_page(page);
1636                 }
1637         }
1638         if (page == NULL) {
1639                 ret = -ENOMEM;
1640                 goto err;
1641         }
1642         if (!PageUptodate(page)) {
1643                 ret = -EIO;
1644                 goto err;
1645         }
1646
1647         /* Pages marked accessed already */
1648         e4b->bd_bitmap_page = page;
1649         e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1650
1651         block++;
1652         pnum = block / blocks_per_page;
1653         poff = block % blocks_per_page;
1654
1655         page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1656         if (page == NULL || !PageUptodate(page)) {
1657                 if (page)
1658                         put_page(page);
1659                 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1660                 if (page) {
1661                         if (WARN_RATELIMIT(page->mapping != inode->i_mapping,
1662         "ext4: buddy bitmap's page->mapping != inode->i_mapping\n")) {
1663                                 /* should never happen */
1664                                 unlock_page(page);
1665                                 ret = -EINVAL;
1666                                 goto err;
1667                         }
1668                         if (!PageUptodate(page)) {
1669                                 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1670                                                          gfp);
1671                                 if (ret) {
1672                                         unlock_page(page);
1673                                         goto err;
1674                                 }
1675                         }
1676                         unlock_page(page);
1677                 }
1678         }
1679         if (page == NULL) {
1680                 ret = -ENOMEM;
1681                 goto err;
1682         }
1683         if (!PageUptodate(page)) {
1684                 ret = -EIO;
1685                 goto err;
1686         }
1687
1688         /* Pages marked accessed already */
1689         e4b->bd_buddy_page = page;
1690         e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1691
1692         return 0;
1693
1694 err:
1695         if (page)
1696                 put_page(page);
1697         if (e4b->bd_bitmap_page)
1698                 put_page(e4b->bd_bitmap_page);
1699
1700         e4b->bd_buddy = NULL;
1701         e4b->bd_bitmap = NULL;
1702         return ret;
1703 }
1704
1705 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1706                               struct ext4_buddy *e4b)
1707 {
1708         return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1709 }
1710
1711 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1712 {
1713         if (e4b->bd_bitmap_page)
1714                 put_page(e4b->bd_bitmap_page);
1715         if (e4b->bd_buddy_page)
1716                 put_page(e4b->bd_buddy_page);
1717 }
1718
1719
1720 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1721 {
1722         int order = 1, max;
1723         void *bb;
1724
1725         BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1726         BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1727
1728         while (order <= e4b->bd_blkbits + 1) {
1729                 bb = mb_find_buddy(e4b, order, &max);
1730                 if (!mb_test_bit(block >> order, bb)) {
1731                         /* this block is part of buddy of order 'order' */
1732                         return order;
1733                 }
1734                 order++;
1735         }
1736         return 0;
1737 }
1738
1739 static void mb_clear_bits(void *bm, int cur, int len)
1740 {
1741         __u32 *addr;
1742
1743         len = cur + len;
1744         while (cur < len) {
1745                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1746                         /* fast path: clear whole word at once */
1747                         addr = bm + (cur >> 3);
1748                         *addr = 0;
1749                         cur += 32;
1750                         continue;
1751                 }
1752                 mb_clear_bit(cur, bm);
1753                 cur++;
1754         }
1755 }
1756
1757 /* clear bits in given range
1758  * will return first found zero bit if any, -1 otherwise
1759  */
1760 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1761 {
1762         __u32 *addr;
1763         int zero_bit = -1;
1764
1765         len = cur + len;
1766         while (cur < len) {
1767                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1768                         /* fast path: clear whole word at once */
1769                         addr = bm + (cur >> 3);
1770                         if (*addr != (__u32)(-1) && zero_bit == -1)
1771                                 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1772                         *addr = 0;
1773                         cur += 32;
1774                         continue;
1775                 }
1776                 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1777                         zero_bit = cur;
1778                 cur++;
1779         }
1780
1781         return zero_bit;
1782 }
1783
1784 void mb_set_bits(void *bm, int cur, int len)
1785 {
1786         __u32 *addr;
1787
1788         len = cur + len;
1789         while (cur < len) {
1790                 if ((cur & 31) == 0 && (len - cur) >= 32) {
1791                         /* fast path: set whole word at once */
1792                         addr = bm + (cur >> 3);
1793                         *addr = 0xffffffff;
1794                         cur += 32;
1795                         continue;
1796                 }
1797                 mb_set_bit(cur, bm);
1798                 cur++;
1799         }
1800 }
1801
1802 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1803 {
1804         if (mb_test_bit(*bit + side, bitmap)) {
1805                 mb_clear_bit(*bit, bitmap);
1806                 (*bit) -= side;
1807                 return 1;
1808         }
1809         else {
1810                 (*bit) += side;
1811                 mb_set_bit(*bit, bitmap);
1812                 return -1;
1813         }
1814 }
1815
1816 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1817 {
1818         int max;
1819         int order = 1;
1820         void *buddy = mb_find_buddy(e4b, order, &max);
1821
1822         while (buddy) {
1823                 void *buddy2;
1824
1825                 /* Bits in range [first; last] are known to be set since
1826                  * corresponding blocks were allocated. Bits in range
1827                  * (first; last) will stay set because they form buddies on
1828                  * upper layer. We just deal with borders if they don't
1829                  * align with upper layer and then go up.
1830                  * Releasing entire group is all about clearing
1831                  * single bit of highest order buddy.
1832                  */
1833
1834                 /* Example:
1835                  * ---------------------------------
1836                  * |   1   |   1   |   1   |   1   |
1837                  * ---------------------------------
1838                  * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1839                  * ---------------------------------
1840                  *   0   1   2   3   4   5   6   7
1841                  *      \_____________________/
1842                  *
1843                  * Neither [1] nor [6] is aligned to above layer.
1844                  * Left neighbour [0] is free, so mark it busy,
1845                  * decrease bb_counters and extend range to
1846                  * [0; 6]
1847                  * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1848                  * mark [6] free, increase bb_counters and shrink range to
1849                  * [0; 5].
1850                  * Then shift range to [0; 2], go up and do the same.
1851                  */
1852
1853
1854                 if (first & 1)
1855                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1856                 if (!(last & 1))
1857                         e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1858                 if (first > last)
1859                         break;
1860                 order++;
1861
1862                 buddy2 = mb_find_buddy(e4b, order, &max);
1863                 if (!buddy2) {
1864                         mb_clear_bits(buddy, first, last - first + 1);
1865                         e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1866                         break;
1867                 }
1868                 first >>= 1;
1869                 last >>= 1;
1870                 buddy = buddy2;
1871         }
1872 }
1873
1874 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1875                            int first, int count)
1876 {
1877         int left_is_free = 0;
1878         int right_is_free = 0;
1879         int block;
1880         int last = first + count - 1;
1881         struct super_block *sb = e4b->bd_sb;
1882
1883         if (WARN_ON(count == 0))
1884                 return;
1885         BUG_ON(last >= (sb->s_blocksize << 3));
1886         assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1887         /* Don't bother if the block group is corrupt. */
1888         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1889                 return;
1890
1891         mb_check_buddy(e4b);
1892         mb_free_blocks_double(inode, e4b, first, count);
1893
1894         this_cpu_inc(discard_pa_seq);
1895         e4b->bd_info->bb_free += count;
1896         if (first < e4b->bd_info->bb_first_free)
1897                 e4b->bd_info->bb_first_free = first;
1898
1899         /* access memory sequentially: check left neighbour,
1900          * clear range and then check right neighbour
1901          */
1902         if (first != 0)
1903                 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1904         block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1905         if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1906                 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1907
1908         if (unlikely(block != -1)) {
1909                 struct ext4_sb_info *sbi = EXT4_SB(sb);
1910                 ext4_fsblk_t blocknr;
1911
1912                 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1913                 blocknr += EXT4_C2B(sbi, block);
1914                 if (!(sbi->s_mount_state & EXT4_FC_REPLAY)) {
1915                         ext4_grp_locked_error(sb, e4b->bd_group,
1916                                               inode ? inode->i_ino : 0,
1917                                               blocknr,
1918                                               "freeing already freed block (bit %u); block bitmap corrupt.",
1919                                               block);
1920                         ext4_mark_group_bitmap_corrupted(
1921                                 sb, e4b->bd_group,
1922                                 EXT4_GROUP_INFO_BBITMAP_CORRUPT);
1923                 }
1924                 goto done;
1925         }
1926
1927         /* let's maintain fragments counter */
1928         if (left_is_free && right_is_free)
1929                 e4b->bd_info->bb_fragments--;
1930         else if (!left_is_free && !right_is_free)
1931                 e4b->bd_info->bb_fragments++;
1932
1933         /* buddy[0] == bd_bitmap is a special case, so handle
1934          * it right away and let mb_buddy_mark_free stay free of
1935          * zero order checks.
1936          * Check if neighbours are to be coaleasced,
1937          * adjust bitmap bb_counters and borders appropriately.
1938          */
1939         if (first & 1) {
1940                 first += !left_is_free;
1941                 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1942         }
1943         if (!(last & 1)) {
1944                 last -= !right_is_free;
1945                 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1946         }
1947
1948         if (first <= last)
1949                 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1950
1951 done:
1952         mb_set_largest_free_order(sb, e4b->bd_info);
1953         mb_update_avg_fragment_size(sb, e4b->bd_info);
1954         mb_check_buddy(e4b);
1955 }
1956
1957 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1958                                 int needed, struct ext4_free_extent *ex)
1959 {
1960         int next = block;
1961         int max, order;
1962         void *buddy;
1963
1964         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1965         BUG_ON(ex == NULL);
1966
1967         buddy = mb_find_buddy(e4b, 0, &max);
1968         BUG_ON(buddy == NULL);
1969         BUG_ON(block >= max);
1970         if (mb_test_bit(block, buddy)) {
1971                 ex->fe_len = 0;
1972                 ex->fe_start = 0;
1973                 ex->fe_group = 0;
1974                 return 0;
1975         }
1976
1977         /* find actual order */
1978         order = mb_find_order_for_block(e4b, block);
1979         block = block >> order;
1980
1981         ex->fe_len = 1 << order;
1982         ex->fe_start = block << order;
1983         ex->fe_group = e4b->bd_group;
1984
1985         /* calc difference from given start */
1986         next = next - ex->fe_start;
1987         ex->fe_len -= next;
1988         ex->fe_start += next;
1989
1990         while (needed > ex->fe_len &&
1991                mb_find_buddy(e4b, order, &max)) {
1992
1993                 if (block + 1 >= max)
1994                         break;
1995
1996                 next = (block + 1) * (1 << order);
1997                 if (mb_test_bit(next, e4b->bd_bitmap))
1998                         break;
1999
2000                 order = mb_find_order_for_block(e4b, next);
2001
2002                 block = next >> order;
2003                 ex->fe_len += 1 << order;
2004         }
2005
2006         if (ex->fe_start + ex->fe_len > EXT4_CLUSTERS_PER_GROUP(e4b->bd_sb)) {
2007                 /* Should never happen! (but apparently sometimes does?!?) */
2008                 WARN_ON(1);
2009                 ext4_grp_locked_error(e4b->bd_sb, e4b->bd_group, 0, 0,
2010                         "corruption or bug in mb_find_extent "
2011                         "block=%d, order=%d needed=%d ex=%u/%d/%d@%u",
2012                         block, order, needed, ex->fe_group, ex->fe_start,
2013                         ex->fe_len, ex->fe_logical);
2014                 ex->fe_len = 0;
2015                 ex->fe_start = 0;
2016                 ex->fe_group = 0;
2017         }
2018         return ex->fe_len;
2019 }
2020
2021 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
2022 {
2023         int ord;
2024         int mlen = 0;
2025         int max = 0;
2026         int cur;
2027         int start = ex->fe_start;
2028         int len = ex->fe_len;
2029         unsigned ret = 0;
2030         int len0 = len;
2031         void *buddy;
2032         bool split = false;
2033
2034         BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
2035         BUG_ON(e4b->bd_group != ex->fe_group);
2036         assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
2037         mb_check_buddy(e4b);
2038         mb_mark_used_double(e4b, start, len);
2039
2040         this_cpu_inc(discard_pa_seq);
2041         e4b->bd_info->bb_free -= len;
2042         if (e4b->bd_info->bb_first_free == start)
2043                 e4b->bd_info->bb_first_free += len;
2044
2045         /* let's maintain fragments counter */
2046         if (start != 0)
2047                 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
2048         if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
2049                 max = !mb_test_bit(start + len, e4b->bd_bitmap);
2050         if (mlen && max)
2051                 e4b->bd_info->bb_fragments++;
2052         else if (!mlen && !max)
2053                 e4b->bd_info->bb_fragments--;
2054
2055         /* let's maintain buddy itself */
2056         while (len) {
2057                 if (!split)
2058                         ord = mb_find_order_for_block(e4b, start);
2059
2060                 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
2061                         /* the whole chunk may be allocated at once! */
2062                         mlen = 1 << ord;
2063                         if (!split)
2064                                 buddy = mb_find_buddy(e4b, ord, &max);
2065                         else
2066                                 split = false;
2067                         BUG_ON((start >> ord) >= max);
2068                         mb_set_bit(start >> ord, buddy);
2069                         e4b->bd_info->bb_counters[ord]--;
2070                         start += mlen;
2071                         len -= mlen;
2072                         BUG_ON(len < 0);
2073                         continue;
2074                 }
2075
2076                 /* store for history */
2077                 if (ret == 0)
2078                         ret = len | (ord << 16);
2079
2080                 /* we have to split large buddy */
2081                 BUG_ON(ord <= 0);
2082                 buddy = mb_find_buddy(e4b, ord, &max);
2083                 mb_set_bit(start >> ord, buddy);
2084                 e4b->bd_info->bb_counters[ord]--;
2085
2086                 ord--;
2087                 cur = (start >> ord) & ~1U;
2088                 buddy = mb_find_buddy(e4b, ord, &max);
2089                 mb_clear_bit(cur, buddy);
2090                 mb_clear_bit(cur + 1, buddy);
2091                 e4b->bd_info->bb_counters[ord]++;
2092                 e4b->bd_info->bb_counters[ord]++;
2093                 split = true;
2094         }
2095         mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
2096
2097         mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info);
2098         mb_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
2099         mb_check_buddy(e4b);
2100
2101         return ret;
2102 }
2103
2104 /*
2105  * Must be called under group lock!
2106  */
2107 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
2108                                         struct ext4_buddy *e4b)
2109 {
2110         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2111         int ret;
2112
2113         BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
2114         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2115
2116         ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
2117         ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
2118         ret = mb_mark_used(e4b, &ac->ac_b_ex);
2119
2120         /* preallocation can change ac_b_ex, thus we store actually
2121          * allocated blocks for history */
2122         ac->ac_f_ex = ac->ac_b_ex;
2123
2124         ac->ac_status = AC_STATUS_FOUND;
2125         ac->ac_tail = ret & 0xffff;
2126         ac->ac_buddy = ret >> 16;
2127
2128         /*
2129          * take the page reference. We want the page to be pinned
2130          * so that we don't get a ext4_mb_init_cache_call for this
2131          * group until we update the bitmap. That would mean we
2132          * double allocate blocks. The reference is dropped
2133          * in ext4_mb_release_context
2134          */
2135         ac->ac_bitmap_page = e4b->bd_bitmap_page;
2136         get_page(ac->ac_bitmap_page);
2137         ac->ac_buddy_page = e4b->bd_buddy_page;
2138         get_page(ac->ac_buddy_page);
2139         /* store last allocated for subsequent stream allocation */
2140         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2141                 spin_lock(&sbi->s_md_lock);
2142                 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
2143                 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
2144                 spin_unlock(&sbi->s_md_lock);
2145         }
2146         /*
2147          * As we've just preallocated more space than
2148          * user requested originally, we store allocated
2149          * space in a special descriptor.
2150          */
2151         if (ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
2152                 ext4_mb_new_preallocation(ac);
2153
2154 }
2155
2156 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
2157                                         struct ext4_buddy *e4b,
2158                                         int finish_group)
2159 {
2160         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2161         struct ext4_free_extent *bex = &ac->ac_b_ex;
2162         struct ext4_free_extent *gex = &ac->ac_g_ex;
2163
2164         if (ac->ac_status == AC_STATUS_FOUND)
2165                 return;
2166         /*
2167          * We don't want to scan for a whole year
2168          */
2169         if (ac->ac_found > sbi->s_mb_max_to_scan &&
2170                         !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2171                 ac->ac_status = AC_STATUS_BREAK;
2172                 return;
2173         }
2174
2175         /*
2176          * Haven't found good chunk so far, let's continue
2177          */
2178         if (bex->fe_len < gex->fe_len)
2179                 return;
2180
2181         if (finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
2182                 ext4_mb_use_best_found(ac, e4b);
2183 }
2184
2185 /*
2186  * The routine checks whether found extent is good enough. If it is,
2187  * then the extent gets marked used and flag is set to the context
2188  * to stop scanning. Otherwise, the extent is compared with the
2189  * previous found extent and if new one is better, then it's stored
2190  * in the context. Later, the best found extent will be used, if
2191  * mballoc can't find good enough extent.
2192  *
2193  * The algorithm used is roughly as follows:
2194  *
2195  * * If free extent found is exactly as big as goal, then
2196  *   stop the scan and use it immediately
2197  *
2198  * * If free extent found is smaller than goal, then keep retrying
2199  *   upto a max of sbi->s_mb_max_to_scan times (default 200). After
2200  *   that stop scanning and use whatever we have.
2201  *
2202  * * If free extent found is bigger than goal, then keep retrying
2203  *   upto a max of sbi->s_mb_min_to_scan times (default 10) before
2204  *   stopping the scan and using the extent.
2205  *
2206  *
2207  * FIXME: real allocation policy is to be designed yet!
2208  */
2209 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
2210                                         struct ext4_free_extent *ex,
2211                                         struct ext4_buddy *e4b)
2212 {
2213         struct ext4_free_extent *bex = &ac->ac_b_ex;
2214         struct ext4_free_extent *gex = &ac->ac_g_ex;
2215
2216         BUG_ON(ex->fe_len <= 0);
2217         BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2218         BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
2219         BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
2220
2221         ac->ac_found++;
2222         ac->ac_cX_found[ac->ac_criteria]++;
2223
2224         /*
2225          * The special case - take what you catch first
2226          */
2227         if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2228                 *bex = *ex;
2229                 ext4_mb_use_best_found(ac, e4b);
2230                 return;
2231         }
2232
2233         /*
2234          * Let's check whether the chuck is good enough
2235          */
2236         if (ex->fe_len == gex->fe_len) {
2237                 *bex = *ex;
2238                 ext4_mb_use_best_found(ac, e4b);
2239                 return;
2240         }
2241
2242         /*
2243          * If this is first found extent, just store it in the context
2244          */
2245         if (bex->fe_len == 0) {
2246                 *bex = *ex;
2247                 return;
2248         }
2249
2250         /*
2251          * If new found extent is better, store it in the context
2252          */
2253         if (bex->fe_len < gex->fe_len) {
2254                 /* if the request isn't satisfied, any found extent
2255                  * larger than previous best one is better */
2256                 if (ex->fe_len > bex->fe_len)
2257                         *bex = *ex;
2258         } else if (ex->fe_len > gex->fe_len) {
2259                 /* if the request is satisfied, then we try to find
2260                  * an extent that still satisfy the request, but is
2261                  * smaller than previous one */
2262                 if (ex->fe_len < bex->fe_len)
2263                         *bex = *ex;
2264         }
2265
2266         ext4_mb_check_limits(ac, e4b, 0);
2267 }
2268
2269 static noinline_for_stack
2270 void ext4_mb_try_best_found(struct ext4_allocation_context *ac,
2271                                         struct ext4_buddy *e4b)
2272 {
2273         struct ext4_free_extent ex = ac->ac_b_ex;
2274         ext4_group_t group = ex.fe_group;
2275         int max;
2276         int err;
2277
2278         BUG_ON(ex.fe_len <= 0);
2279         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2280         if (err)
2281                 return;
2282
2283         ext4_lock_group(ac->ac_sb, group);
2284         max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
2285
2286         if (max > 0) {
2287                 ac->ac_b_ex = ex;
2288                 ext4_mb_use_best_found(ac, e4b);
2289         }
2290
2291         ext4_unlock_group(ac->ac_sb, group);
2292         ext4_mb_unload_buddy(e4b);
2293 }
2294
2295 static noinline_for_stack
2296 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
2297                                 struct ext4_buddy *e4b)
2298 {
2299         ext4_group_t group = ac->ac_g_ex.fe_group;
2300         int max;
2301         int err;
2302         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2303         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2304         struct ext4_free_extent ex;
2305
2306         if (!grp)
2307                 return -EFSCORRUPTED;
2308         if (!(ac->ac_flags & (EXT4_MB_HINT_TRY_GOAL | EXT4_MB_HINT_GOAL_ONLY)))
2309                 return 0;
2310         if (grp->bb_free == 0)
2311                 return 0;
2312
2313         err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
2314         if (err)
2315                 return err;
2316
2317         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
2318                 ext4_mb_unload_buddy(e4b);
2319                 return 0;
2320         }
2321
2322         ext4_lock_group(ac->ac_sb, group);
2323         max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
2324                              ac->ac_g_ex.fe_len, &ex);
2325         ex.fe_logical = 0xDEADFA11; /* debug value */
2326
2327         if (max >= ac->ac_g_ex.fe_len &&
2328             ac->ac_g_ex.fe_len == EXT4_B2C(sbi, sbi->s_stripe)) {
2329                 ext4_fsblk_t start;
2330
2331                 start = ext4_grp_offs_to_block(ac->ac_sb, &ex);
2332                 /* use do_div to get remainder (would be 64-bit modulo) */
2333                 if (do_div(start, sbi->s_stripe) == 0) {
2334                         ac->ac_found++;
2335                         ac->ac_b_ex = ex;
2336                         ext4_mb_use_best_found(ac, e4b);
2337                 }
2338         } else if (max >= ac->ac_g_ex.fe_len) {
2339                 BUG_ON(ex.fe_len <= 0);
2340                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2341                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2342                 ac->ac_found++;
2343                 ac->ac_b_ex = ex;
2344                 ext4_mb_use_best_found(ac, e4b);
2345         } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
2346                 /* Sometimes, caller may want to merge even small
2347                  * number of blocks to an existing extent */
2348                 BUG_ON(ex.fe_len <= 0);
2349                 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
2350                 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
2351                 ac->ac_found++;
2352                 ac->ac_b_ex = ex;
2353                 ext4_mb_use_best_found(ac, e4b);
2354         }
2355         ext4_unlock_group(ac->ac_sb, group);
2356         ext4_mb_unload_buddy(e4b);
2357
2358         return 0;
2359 }
2360
2361 /*
2362  * The routine scans buddy structures (not bitmap!) from given order
2363  * to max order and tries to find big enough chunk to satisfy the req
2364  */
2365 static noinline_for_stack
2366 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
2367                                         struct ext4_buddy *e4b)
2368 {
2369         struct super_block *sb = ac->ac_sb;
2370         struct ext4_group_info *grp = e4b->bd_info;
2371         void *buddy;
2372         int i;
2373         int k;
2374         int max;
2375
2376         BUG_ON(ac->ac_2order <= 0);
2377         for (i = ac->ac_2order; i < MB_NUM_ORDERS(sb); i++) {
2378                 if (grp->bb_counters[i] == 0)
2379                         continue;
2380
2381                 buddy = mb_find_buddy(e4b, i, &max);
2382                 if (WARN_RATELIMIT(buddy == NULL,
2383                          "ext4: mb_simple_scan_group: mb_find_buddy failed, (%d)\n", i))
2384                         continue;
2385
2386                 k = mb_find_next_zero_bit(buddy, max, 0);
2387                 if (k >= max) {
2388                         ext4_grp_locked_error(ac->ac_sb, e4b->bd_group, 0, 0,
2389                                 "%d free clusters of order %d. But found 0",
2390                                 grp->bb_counters[i], i);
2391                         ext4_mark_group_bitmap_corrupted(ac->ac_sb,
2392                                          e4b->bd_group,
2393                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2394                         break;
2395                 }
2396                 ac->ac_found++;
2397                 ac->ac_cX_found[ac->ac_criteria]++;
2398
2399                 ac->ac_b_ex.fe_len = 1 << i;
2400                 ac->ac_b_ex.fe_start = k << i;
2401                 ac->ac_b_ex.fe_group = e4b->bd_group;
2402
2403                 ext4_mb_use_best_found(ac, e4b);
2404
2405                 BUG_ON(ac->ac_f_ex.fe_len != ac->ac_g_ex.fe_len);
2406
2407                 if (EXT4_SB(sb)->s_mb_stats)
2408                         atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
2409
2410                 break;
2411         }
2412 }
2413
2414 /*
2415  * The routine scans the group and measures all found extents.
2416  * In order to optimize scanning, caller must pass number of
2417  * free blocks in the group, so the routine can know upper limit.
2418  */
2419 static noinline_for_stack
2420 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
2421                                         struct ext4_buddy *e4b)
2422 {
2423         struct super_block *sb = ac->ac_sb;
2424         void *bitmap = e4b->bd_bitmap;
2425         struct ext4_free_extent ex;
2426         int i, j, freelen;
2427         int free;
2428
2429         free = e4b->bd_info->bb_free;
2430         if (WARN_ON(free <= 0))
2431                 return;
2432
2433         i = e4b->bd_info->bb_first_free;
2434
2435         while (free && ac->ac_status == AC_STATUS_CONTINUE) {
2436                 i = mb_find_next_zero_bit(bitmap,
2437                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2438                 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
2439                         /*
2440                          * IF we have corrupt bitmap, we won't find any
2441                          * free blocks even though group info says we
2442                          * have free blocks
2443                          */
2444                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2445                                         "%d free clusters as per "
2446                                         "group info. But bitmap says 0",
2447                                         free);
2448                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2449                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2450                         break;
2451                 }
2452
2453                 if (ac->ac_criteria < CR_FAST) {
2454                         /*
2455                          * In CR_GOAL_LEN_FAST and CR_BEST_AVAIL_LEN, we are
2456                          * sure that this group will have a large enough
2457                          * continuous free extent, so skip over the smaller free
2458                          * extents
2459                          */
2460                         j = mb_find_next_bit(bitmap,
2461                                                 EXT4_CLUSTERS_PER_GROUP(sb), i);
2462                         freelen = j - i;
2463
2464                         if (freelen < ac->ac_g_ex.fe_len) {
2465                                 i = j;
2466                                 free -= freelen;
2467                                 continue;
2468                         }
2469                 }
2470
2471                 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
2472                 if (WARN_ON(ex.fe_len <= 0))
2473                         break;
2474                 if (free < ex.fe_len) {
2475                         ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
2476                                         "%d free clusters as per "
2477                                         "group info. But got %d blocks",
2478                                         free, ex.fe_len);
2479                         ext4_mark_group_bitmap_corrupted(sb, e4b->bd_group,
2480                                         EXT4_GROUP_INFO_BBITMAP_CORRUPT);
2481                         /*
2482                          * The number of free blocks differs. This mostly
2483                          * indicate that the bitmap is corrupt. So exit
2484                          * without claiming the space.
2485                          */
2486                         break;
2487                 }
2488                 ex.fe_logical = 0xDEADC0DE; /* debug value */
2489                 ext4_mb_measure_extent(ac, &ex, e4b);
2490
2491                 i += ex.fe_len;
2492                 free -= ex.fe_len;
2493         }
2494
2495         ext4_mb_check_limits(ac, e4b, 1);
2496 }
2497
2498 /*
2499  * This is a special case for storages like raid5
2500  * we try to find stripe-aligned chunks for stripe-size-multiple requests
2501  */
2502 static noinline_for_stack
2503 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
2504                                  struct ext4_buddy *e4b)
2505 {
2506         struct super_block *sb = ac->ac_sb;
2507         struct ext4_sb_info *sbi = EXT4_SB(sb);
2508         void *bitmap = e4b->bd_bitmap;
2509         struct ext4_free_extent ex;
2510         ext4_fsblk_t first_group_block;
2511         ext4_fsblk_t a;
2512         ext4_grpblk_t i, stripe;
2513         int max;
2514
2515         BUG_ON(sbi->s_stripe == 0);
2516
2517         /* find first stripe-aligned block in group */
2518         first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2519
2520         a = first_group_block + sbi->s_stripe - 1;
2521         do_div(a, sbi->s_stripe);
2522         i = (a * sbi->s_stripe) - first_group_block;
2523
2524         stripe = EXT4_B2C(sbi, sbi->s_stripe);
2525         i = EXT4_B2C(sbi, i);
2526         while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2527                 if (!mb_test_bit(i, bitmap)) {
2528                         max = mb_find_extent(e4b, i, stripe, &ex);
2529                         if (max >= stripe) {
2530                                 ac->ac_found++;
2531                                 ac->ac_cX_found[ac->ac_criteria]++;
2532                                 ex.fe_logical = 0xDEADF00D; /* debug value */
2533                                 ac->ac_b_ex = ex;
2534                                 ext4_mb_use_best_found(ac, e4b);
2535                                 break;
2536                         }
2537                 }
2538                 i += stripe;
2539         }
2540 }
2541
2542 /*
2543  * This is also called BEFORE we load the buddy bitmap.
2544  * Returns either 1 or 0 indicating that the group is either suitable
2545  * for the allocation or not.
2546  */
2547 static bool ext4_mb_good_group(struct ext4_allocation_context *ac,
2548                                 ext4_group_t group, enum criteria cr)
2549 {
2550         ext4_grpblk_t free, fragments;
2551         int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2552         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2553
2554         BUG_ON(cr < CR_POWER2_ALIGNED || cr >= EXT4_MB_NUM_CRS);
2555
2556         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp) || !grp))
2557                 return false;
2558
2559         free = grp->bb_free;
2560         if (free == 0)
2561                 return false;
2562
2563         fragments = grp->bb_fragments;
2564         if (fragments == 0)
2565                 return false;
2566
2567         switch (cr) {
2568         case CR_POWER2_ALIGNED:
2569                 BUG_ON(ac->ac_2order == 0);
2570
2571                 /* Avoid using the first bg of a flexgroup for data files */
2572                 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2573                     (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2574                     ((group % flex_size) == 0))
2575                         return false;
2576
2577                 if (free < ac->ac_g_ex.fe_len)
2578                         return false;
2579
2580                 if (ac->ac_2order >= MB_NUM_ORDERS(ac->ac_sb))
2581                         return true;
2582
2583                 if (grp->bb_largest_free_order < ac->ac_2order)
2584                         return false;
2585
2586                 return true;
2587         case CR_GOAL_LEN_FAST:
2588         case CR_BEST_AVAIL_LEN:
2589                 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2590                         return true;
2591                 break;
2592         case CR_GOAL_LEN_SLOW:
2593                 if (free >= ac->ac_g_ex.fe_len)
2594                         return true;
2595                 break;
2596         case CR_ANY_FREE:
2597                 return true;
2598         default:
2599                 BUG();
2600         }
2601
2602         return false;
2603 }
2604
2605 /*
2606  * This could return negative error code if something goes wrong
2607  * during ext4_mb_init_group(). This should not be called with
2608  * ext4_lock_group() held.
2609  *
2610  * Note: because we are conditionally operating with the group lock in
2611  * the EXT4_MB_STRICT_CHECK case, we need to fake out sparse in this
2612  * function using __acquire and __release.  This means we need to be
2613  * super careful before messing with the error path handling via "goto
2614  * out"!
2615  */
2616 static int ext4_mb_good_group_nolock(struct ext4_allocation_context *ac,
2617                                      ext4_group_t group, enum criteria cr)
2618 {
2619         struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2620         struct super_block *sb = ac->ac_sb;
2621         struct ext4_sb_info *sbi = EXT4_SB(sb);
2622         bool should_lock = ac->ac_flags & EXT4_MB_STRICT_CHECK;
2623         ext4_grpblk_t free;
2624         int ret = 0;
2625
2626         if (!grp)
2627                 return -EFSCORRUPTED;
2628         if (sbi->s_mb_stats)
2629                 atomic64_inc(&sbi->s_bal_cX_groups_considered[ac->ac_criteria]);
2630         if (should_lock) {
2631                 ext4_lock_group(sb, group);
2632                 __release(ext4_group_lock_ptr(sb, group));
2633         }
2634         free = grp->bb_free;
2635         if (free == 0)
2636                 goto out;
2637         if (cr <= CR_FAST && free < ac->ac_g_ex.fe_len)
2638                 goto out;
2639         if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2640                 goto out;
2641         if (should_lock) {
2642                 __acquire(ext4_group_lock_ptr(sb, group));
2643                 ext4_unlock_group(sb, group);
2644         }
2645
2646         /* We only do this if the grp has never been initialized */
2647         if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2648                 struct ext4_group_desc *gdp =
2649                         ext4_get_group_desc(sb, group, NULL);
2650                 int ret;
2651
2652                 /*
2653                  * cr=CR_POWER2_ALIGNED/CR_GOAL_LEN_FAST is a very optimistic
2654                  * search to find large good chunks almost for free. If buddy
2655                  * data is not ready, then this optimization makes no sense. But
2656                  * we never skip the first block group in a flex_bg, since this
2657                  * gets used for metadata block allocation, and we want to make
2658                  * sure we locate metadata blocks in the first block group in
2659                  * the flex_bg if possible.
2660                  */
2661                 if (cr < CR_FAST &&
2662                     (!sbi->s_log_groups_per_flex ||
2663                      ((group & ((1 << sbi->s_log_groups_per_flex) - 1)) != 0)) &&
2664                     !(ext4_has_group_desc_csum(sb) &&
2665                       (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))))
2666                         return 0;
2667                 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
2668                 if (ret)
2669                         return ret;
2670         }
2671
2672         if (should_lock) {
2673                 ext4_lock_group(sb, group);
2674                 __release(ext4_group_lock_ptr(sb, group));
2675         }
2676         ret = ext4_mb_good_group(ac, group, cr);
2677 out:
2678         if (should_lock) {
2679                 __acquire(ext4_group_lock_ptr(sb, group));
2680                 ext4_unlock_group(sb, group);
2681         }
2682         return ret;
2683 }
2684
2685 /*
2686  * Start prefetching @nr block bitmaps starting at @group.
2687  * Return the next group which needs to be prefetched.
2688  */
2689 ext4_group_t ext4_mb_prefetch(struct super_block *sb, ext4_group_t group,
2690                               unsigned int nr, int *cnt)
2691 {
2692         ext4_group_t ngroups = ext4_get_groups_count(sb);
2693         struct buffer_head *bh;
2694         struct blk_plug plug;
2695
2696         blk_start_plug(&plug);
2697         while (nr-- > 0) {
2698                 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group,
2699                                                                   NULL);
2700                 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
2701
2702                 /*
2703                  * Prefetch block groups with free blocks; but don't
2704                  * bother if it is marked uninitialized on disk, since
2705                  * it won't require I/O to read.  Also only try to
2706                  * prefetch once, so we avoid getblk() call, which can
2707                  * be expensive.
2708                  */
2709                 if (gdp && grp && !EXT4_MB_GRP_TEST_AND_SET_READ(grp) &&
2710                     EXT4_MB_GRP_NEED_INIT(grp) &&
2711                     ext4_free_group_clusters(sb, gdp) > 0 ) {
2712                         bh = ext4_read_block_bitmap_nowait(sb, group, true);
2713                         if (bh && !IS_ERR(bh)) {
2714                                 if (!buffer_uptodate(bh) && cnt)
2715                                         (*cnt)++;
2716                                 brelse(bh);
2717                         }
2718                 }
2719                 if (++group >= ngroups)
2720                         group = 0;
2721         }
2722         blk_finish_plug(&plug);
2723         return group;
2724 }
2725
2726 /*
2727  * Prefetching reads the block bitmap into the buffer cache; but we
2728  * need to make sure that the buddy bitmap in the page cache has been
2729  * initialized.  Note that ext4_mb_init_group() will block if the I/O
2730  * is not yet completed, or indeed if it was not initiated by
2731  * ext4_mb_prefetch did not start the I/O.
2732  *
2733  * TODO: We should actually kick off the buddy bitmap setup in a work
2734  * queue when the buffer I/O is completed, so that we don't block
2735  * waiting for the block allocation bitmap read to finish when
2736  * ext4_mb_prefetch_fini is called from ext4_mb_regular_allocator().
2737  */
2738 void ext4_mb_prefetch_fini(struct super_block *sb, ext4_group_t group,
2739                            unsigned int nr)
2740 {
2741         struct ext4_group_desc *gdp;
2742         struct ext4_group_info *grp;
2743
2744         while (nr-- > 0) {
2745                 if (!group)
2746                         group = ext4_get_groups_count(sb);
2747                 group--;
2748                 gdp = ext4_get_group_desc(sb, group, NULL);
2749                 grp = ext4_get_group_info(sb, group);
2750
2751                 if (grp && gdp && EXT4_MB_GRP_NEED_INIT(grp) &&
2752                     ext4_free_group_clusters(sb, gdp) > 0) {
2753                         if (ext4_mb_init_group(sb, group, GFP_NOFS))
2754                                 break;
2755                 }
2756         }
2757 }
2758
2759 static noinline_for_stack int
2760 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2761 {
2762         ext4_group_t prefetch_grp = 0, ngroups, group, i;
2763         enum criteria new_cr, cr = CR_GOAL_LEN_FAST;
2764         int err = 0, first_err = 0;
2765         unsigned int nr = 0, prefetch_ios = 0;
2766         struct ext4_sb_info *sbi;
2767         struct super_block *sb;
2768         struct ext4_buddy e4b;
2769         int lost;
2770
2771         sb = ac->ac_sb;
2772         sbi = EXT4_SB(sb);
2773         ngroups = ext4_get_groups_count(sb);
2774         /* non-extent files are limited to low blocks/groups */
2775         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2776                 ngroups = sbi->s_blockfile_groups;
2777
2778         BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2779
2780         /* first, try the goal */
2781         err = ext4_mb_find_by_goal(ac, &e4b);
2782         if (err || ac->ac_status == AC_STATUS_FOUND)
2783                 goto out;
2784
2785         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2786                 goto out;
2787
2788         /*
2789          * ac->ac_2order is set only if the fe_len is a power of 2
2790          * if ac->ac_2order is set we also set criteria to 0 so that we
2791          * try exact allocation using buddy.
2792          */
2793         i = fls(ac->ac_g_ex.fe_len);
2794         ac->ac_2order = 0;
2795         /*
2796          * We search using buddy data only if the order of the request
2797          * is greater than equal to the sbi_s_mb_order2_reqs
2798          * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2799          * We also support searching for power-of-two requests only for
2800          * requests upto maximum buddy size we have constructed.
2801          */
2802         if (i >= sbi->s_mb_order2_reqs && i <= MB_NUM_ORDERS(sb)) {
2803                 /*
2804                  * This should tell if fe_len is exactly power of 2
2805                  */
2806                 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2807                         ac->ac_2order = array_index_nospec(i - 1,
2808                                                            MB_NUM_ORDERS(sb));
2809         }
2810
2811         /* if stream allocation is enabled, use global goal */
2812         if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2813                 /* TBD: may be hot point */
2814                 spin_lock(&sbi->s_md_lock);
2815                 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2816                 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2817                 spin_unlock(&sbi->s_md_lock);
2818         }
2819
2820         /*
2821          * Let's just scan groups to find more-less suitable blocks We
2822          * start with CR_GOAL_LEN_FAST, unless it is power of 2
2823          * aligned, in which case let's do that faster approach first.
2824          */
2825         if (ac->ac_2order)
2826                 cr = CR_POWER2_ALIGNED;
2827 repeat:
2828         for (; cr < EXT4_MB_NUM_CRS && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2829                 ac->ac_criteria = cr;
2830                 /*
2831                  * searching for the right group start
2832                  * from the goal value specified
2833                  */
2834                 group = ac->ac_g_ex.fe_group;
2835                 ac->ac_groups_linear_remaining = sbi->s_mb_max_linear_groups;
2836                 prefetch_grp = group;
2837
2838                 for (i = 0, new_cr = cr; i < ngroups; i++,
2839                      ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups)) {
2840                         int ret = 0;
2841
2842                         cond_resched();
2843                         if (new_cr != cr) {
2844                                 cr = new_cr;
2845                                 goto repeat;
2846                         }
2847
2848                         /*
2849                          * Batch reads of the block allocation bitmaps
2850                          * to get multiple READs in flight; limit
2851                          * prefetching at cr=0/1, otherwise mballoc can
2852                          * spend a lot of time loading imperfect groups
2853                          */
2854                         if ((prefetch_grp == group) &&
2855                             (cr >= CR_FAST ||
2856                              prefetch_ios < sbi->s_mb_prefetch_limit)) {
2857                                 nr = sbi->s_mb_prefetch;
2858                                 if (ext4_has_feature_flex_bg(sb)) {
2859                                         nr = 1 << sbi->s_log_groups_per_flex;
2860                                         nr -= group & (nr - 1);
2861                                         nr = min(nr, sbi->s_mb_prefetch);
2862                                 }
2863                                 prefetch_grp = ext4_mb_prefetch(sb, group,
2864                                                         nr, &prefetch_ios);
2865                         }
2866
2867                         /* This now checks without needing the buddy page */
2868                         ret = ext4_mb_good_group_nolock(ac, group, cr);
2869                         if (ret <= 0) {
2870                                 if (!first_err)
2871                                         first_err = ret;
2872                                 continue;
2873                         }
2874
2875                         err = ext4_mb_load_buddy(sb, group, &e4b);
2876                         if (err)
2877                                 goto out;
2878
2879                         ext4_lock_group(sb, group);
2880
2881                         /*
2882                          * We need to check again after locking the
2883                          * block group
2884                          */
2885                         ret = ext4_mb_good_group(ac, group, cr);
2886                         if (ret == 0) {
2887                                 ext4_unlock_group(sb, group);
2888                                 ext4_mb_unload_buddy(&e4b);
2889                                 continue;
2890                         }
2891
2892                         ac->ac_groups_scanned++;
2893                         if (cr == CR_POWER2_ALIGNED)
2894                                 ext4_mb_simple_scan_group(ac, &e4b);
2895                         else if ((cr == CR_GOAL_LEN_FAST ||
2896                                  cr == CR_BEST_AVAIL_LEN) &&
2897                                  sbi->s_stripe &&
2898                                  !(ac->ac_g_ex.fe_len %
2899                                  EXT4_B2C(sbi, sbi->s_stripe)))
2900                                 ext4_mb_scan_aligned(ac, &e4b);
2901                         else
2902                                 ext4_mb_complex_scan_group(ac, &e4b);
2903
2904                         ext4_unlock_group(sb, group);
2905                         ext4_mb_unload_buddy(&e4b);
2906
2907                         if (ac->ac_status != AC_STATUS_CONTINUE)
2908                                 break;
2909                 }
2910                 /* Processed all groups and haven't found blocks */
2911                 if (sbi->s_mb_stats && i == ngroups)
2912                         atomic64_inc(&sbi->s_bal_cX_failed[cr]);
2913
2914                 if (i == ngroups && ac->ac_criteria == CR_BEST_AVAIL_LEN)
2915                         /* Reset goal length to original goal length before
2916                          * falling into CR_GOAL_LEN_SLOW */
2917                         ac->ac_g_ex.fe_len = ac->ac_orig_goal_len;
2918         }
2919
2920         if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2921             !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2922                 /*
2923                  * We've been searching too long. Let's try to allocate
2924                  * the best chunk we've found so far
2925                  */
2926                 ext4_mb_try_best_found(ac, &e4b);
2927                 if (ac->ac_status != AC_STATUS_FOUND) {
2928                         /*
2929                          * Someone more lucky has already allocated it.
2930                          * The only thing we can do is just take first
2931                          * found block(s)
2932                          */
2933                         lost = atomic_inc_return(&sbi->s_mb_lost_chunks);
2934                         mb_debug(sb, "lost chunk, group: %u, start: %d, len: %d, lost: %d\n",
2935                                  ac->ac_b_ex.fe_group, ac->ac_b_ex.fe_start,
2936                                  ac->ac_b_ex.fe_len, lost);
2937
2938                         ac->ac_b_ex.fe_group = 0;
2939                         ac->ac_b_ex.fe_start = 0;
2940                         ac->ac_b_ex.fe_len = 0;
2941                         ac->ac_status = AC_STATUS_CONTINUE;
2942                         ac->ac_flags |= EXT4_MB_HINT_FIRST;
2943                         cr = CR_ANY_FREE;
2944                         goto repeat;
2945                 }
2946         }
2947
2948         if (sbi->s_mb_stats && ac->ac_status == AC_STATUS_FOUND)
2949                 atomic64_inc(&sbi->s_bal_cX_hits[ac->ac_criteria]);
2950 out:
2951         if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2952                 err = first_err;
2953
2954         mb_debug(sb, "Best len %d, origin len %d, ac_status %u, ac_flags 0x%x, cr %d ret %d\n",
2955                  ac->ac_b_ex.fe_len, ac->ac_o_ex.fe_len, ac->ac_status,
2956                  ac->ac_flags, cr, err);
2957
2958         if (nr)
2959                 ext4_mb_prefetch_fini(sb, prefetch_grp, nr);
2960
2961         return err;
2962 }
2963
2964 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2965 {
2966         struct super_block *sb = pde_data(file_inode(seq->file));
2967         ext4_group_t group;
2968
2969         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2970                 return NULL;
2971         group = *pos + 1;
2972         return (void *) ((unsigned long) group);
2973 }
2974
2975 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2976 {
2977         struct super_block *sb = pde_data(file_inode(seq->file));
2978         ext4_group_t group;
2979
2980         ++*pos;
2981         if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2982                 return NULL;
2983         group = *pos + 1;
2984         return (void *) ((unsigned long) group);
2985 }
2986
2987 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2988 {
2989         struct super_block *sb = pde_data(file_inode(seq->file));
2990         ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2991         int i;
2992         int err, buddy_loaded = 0;
2993         struct ext4_buddy e4b;
2994         struct ext4_group_info *grinfo;
2995         unsigned char blocksize_bits = min_t(unsigned char,
2996                                              sb->s_blocksize_bits,
2997                                              EXT4_MAX_BLOCK_LOG_SIZE);
2998         struct sg {
2999                 struct ext4_group_info info;
3000                 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
3001         } sg;
3002
3003         group--;
3004         if (group == 0)
3005                 seq_puts(seq, "#group: free  frags first ["
3006                               " 2^0   2^1   2^2   2^3   2^4   2^5   2^6  "
3007                               " 2^7   2^8   2^9   2^10  2^11  2^12  2^13  ]\n");
3008
3009         i = (blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
3010                 sizeof(struct ext4_group_info);
3011
3012         grinfo = ext4_get_group_info(sb, group);
3013         if (!grinfo)
3014                 return 0;
3015         /* Load the group info in memory only if not already loaded. */
3016         if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
3017                 err = ext4_mb_load_buddy(sb, group, &e4b);
3018                 if (err) {
3019                         seq_printf(seq, "#%-5u: I/O error\n", group);
3020                         return 0;
3021                 }
3022                 buddy_loaded = 1;
3023         }
3024
3025         memcpy(&sg, grinfo, i);
3026
3027         if (buddy_loaded)
3028                 ext4_mb_unload_buddy(&e4b);
3029
3030         seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
3031                         sg.info.bb_fragments, sg.info.bb_first_free);
3032         for (i = 0; i <= 13; i++)
3033                 seq_printf(seq, " %-5u", i <= blocksize_bits + 1 ?
3034                                 sg.info.bb_counters[i] : 0);
3035         seq_puts(seq, " ]\n");
3036
3037         return 0;
3038 }
3039
3040 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
3041 {
3042 }
3043
3044 const struct seq_operations ext4_mb_seq_groups_ops = {
3045         .start  = ext4_mb_seq_groups_start,
3046         .next   = ext4_mb_seq_groups_next,
3047         .stop   = ext4_mb_seq_groups_stop,
3048         .show   = ext4_mb_seq_groups_show,
3049 };
3050
3051 int ext4_seq_mb_stats_show(struct seq_file *seq, void *offset)
3052 {
3053         struct super_block *sb = seq->private;
3054         struct ext4_sb_info *sbi = EXT4_SB(sb);
3055
3056         seq_puts(seq, "mballoc:\n");
3057         if (!sbi->s_mb_stats) {
3058                 seq_puts(seq, "\tmb stats collection turned off.\n");
3059                 seq_puts(
3060                         seq,
3061                         "\tTo enable, please write \"1\" to sysfs file mb_stats.\n");
3062                 return 0;
3063         }
3064         seq_printf(seq, "\treqs: %u\n", atomic_read(&sbi->s_bal_reqs));
3065         seq_printf(seq, "\tsuccess: %u\n", atomic_read(&sbi->s_bal_success));
3066
3067         seq_printf(seq, "\tgroups_scanned: %u\n",
3068                    atomic_read(&sbi->s_bal_groups_scanned));
3069
3070         /* CR_POWER2_ALIGNED stats */
3071         seq_puts(seq, "\tcr_p2_aligned_stats:\n");
3072         seq_printf(seq, "\t\thits: %llu\n",
3073                    atomic64_read(&sbi->s_bal_cX_hits[CR_POWER2_ALIGNED]));
3074         seq_printf(
3075                 seq, "\t\tgroups_considered: %llu\n",
3076                 atomic64_read(
3077                         &sbi->s_bal_cX_groups_considered[CR_POWER2_ALIGNED]));
3078         seq_printf(seq, "\t\textents_scanned: %u\n",
3079                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_POWER2_ALIGNED]));
3080         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3081                    atomic64_read(&sbi->s_bal_cX_failed[CR_POWER2_ALIGNED]));
3082         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3083                    atomic_read(&sbi->s_bal_p2_aligned_bad_suggestions));
3084
3085         /* CR_GOAL_LEN_FAST stats */
3086         seq_puts(seq, "\tcr_goal_fast_stats:\n");
3087         seq_printf(seq, "\t\thits: %llu\n",
3088                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_FAST]));
3089         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3090                    atomic64_read(
3091                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_FAST]));
3092         seq_printf(seq, "\t\textents_scanned: %u\n",
3093                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_FAST]));
3094         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3095                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_FAST]));
3096         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3097                    atomic_read(&sbi->s_bal_goal_fast_bad_suggestions));
3098
3099         /* CR_BEST_AVAIL_LEN stats */
3100         seq_puts(seq, "\tcr_best_avail_stats:\n");
3101         seq_printf(seq, "\t\thits: %llu\n",
3102                    atomic64_read(&sbi->s_bal_cX_hits[CR_BEST_AVAIL_LEN]));
3103         seq_printf(
3104                 seq, "\t\tgroups_considered: %llu\n",
3105                 atomic64_read(
3106                         &sbi->s_bal_cX_groups_considered[CR_BEST_AVAIL_LEN]));
3107         seq_printf(seq, "\t\textents_scanned: %u\n",
3108                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_BEST_AVAIL_LEN]));
3109         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3110                    atomic64_read(&sbi->s_bal_cX_failed[CR_BEST_AVAIL_LEN]));
3111         seq_printf(seq, "\t\tbad_suggestions: %u\n",
3112                    atomic_read(&sbi->s_bal_best_avail_bad_suggestions));
3113
3114         /* CR_GOAL_LEN_SLOW stats */
3115         seq_puts(seq, "\tcr_goal_slow_stats:\n");
3116         seq_printf(seq, "\t\thits: %llu\n",
3117                    atomic64_read(&sbi->s_bal_cX_hits[CR_GOAL_LEN_SLOW]));
3118         seq_printf(seq, "\t\tgroups_considered: %llu\n",
3119                    atomic64_read(
3120                            &sbi->s_bal_cX_groups_considered[CR_GOAL_LEN_SLOW]));
3121         seq_printf(seq, "\t\textents_scanned: %u\n",
3122                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_GOAL_LEN_SLOW]));
3123         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3124                    atomic64_read(&sbi->s_bal_cX_failed[CR_GOAL_LEN_SLOW]));
3125
3126         /* CR_ANY_FREE stats */
3127         seq_puts(seq, "\tcr_any_free_stats:\n");
3128         seq_printf(seq, "\t\thits: %llu\n",
3129                    atomic64_read(&sbi->s_bal_cX_hits[CR_ANY_FREE]));
3130         seq_printf(
3131                 seq, "\t\tgroups_considered: %llu\n",
3132                 atomic64_read(&sbi->s_bal_cX_groups_considered[CR_ANY_FREE]));
3133         seq_printf(seq, "\t\textents_scanned: %u\n",
3134                    atomic_read(&sbi->s_bal_cX_ex_scanned[CR_ANY_FREE]));
3135         seq_printf(seq, "\t\tuseless_loops: %llu\n",
3136                    atomic64_read(&sbi->s_bal_cX_failed[CR_ANY_FREE]));
3137
3138         /* Aggregates */
3139         seq_printf(seq, "\textents_scanned: %u\n",
3140                    atomic_read(&sbi->s_bal_ex_scanned));
3141         seq_printf(seq, "\t\tgoal_hits: %u\n", atomic_read(&sbi->s_bal_goals));
3142         seq_printf(seq, "\t\tlen_goal_hits: %u\n",
3143                    atomic_read(&sbi->s_bal_len_goals));
3144         seq_printf(seq, "\t\t2^n_hits: %u\n", atomic_read(&sbi->s_bal_2orders));
3145         seq_printf(seq, "\t\tbreaks: %u\n", atomic_read(&sbi->s_bal_breaks));
3146         seq_printf(seq, "\t\tlost: %u\n", atomic_read(&sbi->s_mb_lost_chunks));
3147         seq_printf(seq, "\tbuddies_generated: %u/%u\n",
3148                    atomic_read(&sbi->s_mb_buddies_generated),
3149                    ext4_get_groups_count(sb));
3150         seq_printf(seq, "\tbuddies_time_used: %llu\n",
3151                    atomic64_read(&sbi->s_mb_generation_time));
3152         seq_printf(seq, "\tpreallocated: %u\n",
3153                    atomic_read(&sbi->s_mb_preallocated));
3154         seq_printf(seq, "\tdiscarded: %u\n", atomic_read(&sbi->s_mb_discarded));
3155         return 0;
3156 }
3157
3158 static void *ext4_mb_seq_structs_summary_start(struct seq_file *seq, loff_t *pos)
3159 __acquires(&EXT4_SB(sb)->s_mb_rb_lock)
3160 {
3161         struct super_block *sb = pde_data(file_inode(seq->file));
3162         unsigned long position;
3163
3164         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3165                 return NULL;
3166         position = *pos + 1;
3167         return (void *) ((unsigned long) position);
3168 }
3169
3170 static void *ext4_mb_seq_structs_summary_next(struct seq_file *seq, void *v, loff_t *pos)
3171 {
3172         struct super_block *sb = pde_data(file_inode(seq->file));
3173         unsigned long position;
3174
3175         ++*pos;
3176         if (*pos < 0 || *pos >= 2*MB_NUM_ORDERS(sb))
3177                 return NULL;
3178         position = *pos + 1;
3179         return (void *) ((unsigned long) position);
3180 }
3181
3182 static int ext4_mb_seq_structs_summary_show(struct seq_file *seq, void *v)
3183 {
3184         struct super_block *sb = pde_data(file_inode(seq->file));
3185         struct ext4_sb_info *sbi = EXT4_SB(sb);
3186         unsigned long position = ((unsigned long) v);
3187         struct ext4_group_info *grp;
3188         unsigned int count;
3189
3190         position--;
3191         if (position >= MB_NUM_ORDERS(sb)) {
3192                 position -= MB_NUM_ORDERS(sb);
3193                 if (position == 0)
3194                         seq_puts(seq, "avg_fragment_size_lists:\n");
3195
3196                 count = 0;
3197                 read_lock(&sbi->s_mb_avg_fragment_size_locks[position]);
3198                 list_for_each_entry(grp, &sbi->s_mb_avg_fragment_size[position],
3199                                     bb_avg_fragment_size_node)
3200                         count++;
3201                 read_unlock(&sbi->s_mb_avg_fragment_size_locks[position]);
3202                 seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3203                                         (unsigned int)position, count);
3204                 return 0;
3205         }
3206
3207         if (position == 0) {
3208                 seq_printf(seq, "optimize_scan: %d\n",
3209                            test_opt2(sb, MB_OPTIMIZE_SCAN) ? 1 : 0);
3210                 seq_puts(seq, "max_free_order_lists:\n");
3211         }
3212         count = 0;
3213         read_lock(&sbi->s_mb_largest_free_orders_locks[position]);
3214         list_for_each_entry(grp, &sbi->s_mb_largest_free_orders[position],
3215                             bb_largest_free_order_node)
3216                 count++;
3217         read_unlock(&sbi->s_mb_largest_free_orders_locks[position]);
3218         seq_printf(seq, "\tlist_order_%u_groups: %u\n",
3219                    (unsigned int)position, count);
3220
3221         return 0;
3222 }
3223
3224 static void ext4_mb_seq_structs_summary_stop(struct seq_file *seq, void *v)
3225 {
3226 }
3227
3228 const struct seq_operations ext4_mb_seq_structs_summary_ops = {
3229         .start  = ext4_mb_seq_structs_summary_start,
3230         .next   = ext4_mb_seq_structs_summary_next,
3231         .stop   = ext4_mb_seq_structs_summary_stop,
3232         .show   = ext4_mb_seq_structs_summary_show,
3233 };
3234
3235 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
3236 {
3237         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3238         struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
3239
3240         BUG_ON(!cachep);
3241         return cachep;
3242 }
3243
3244 /*
3245  * Allocate the top-level s_group_info array for the specified number
3246  * of groups
3247  */
3248 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
3249 {
3250         struct ext4_sb_info *sbi = EXT4_SB(sb);
3251         unsigned size;
3252         struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
3253
3254         size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
3255                 EXT4_DESC_PER_BLOCK_BITS(sb);
3256         if (size <= sbi->s_group_info_size)
3257                 return 0;
3258
3259         size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
3260         new_groupinfo = kvzalloc(size, GFP_KERNEL);
3261         if (!new_groupinfo) {
3262                 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
3263                 return -ENOMEM;
3264         }
3265         rcu_read_lock();
3266         old_groupinfo = rcu_dereference(sbi->s_group_info);
3267         if (old_groupinfo)
3268                 memcpy(new_groupinfo, old_groupinfo,
3269                        sbi->s_group_info_size * sizeof(*sbi->s_group_info));
3270         rcu_read_unlock();
3271         rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
3272         sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
3273         if (old_groupinfo)
3274                 ext4_kvfree_array_rcu(old_groupinfo);
3275         ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
3276                    sbi->s_group_info_size);
3277         return 0;
3278 }
3279
3280 /* Create and initialize ext4_group_info data for the given group. */
3281 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
3282                           struct ext4_group_desc *desc)
3283 {
3284         int i;
3285         int metalen = 0;
3286         int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
3287         struct ext4_sb_info *sbi = EXT4_SB(sb);
3288         struct ext4_group_info **meta_group_info;
3289         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3290
3291         /*
3292          * First check if this group is the first of a reserved block.
3293          * If it's true, we have to allocate a new table of pointers
3294          * to ext4_group_info structures
3295          */
3296         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3297                 metalen = sizeof(*meta_group_info) <<
3298                         EXT4_DESC_PER_BLOCK_BITS(sb);
3299                 meta_group_info = kmalloc(metalen, GFP_NOFS);
3300                 if (meta_group_info == NULL) {
3301                         ext4_msg(sb, KERN_ERR, "can't allocate mem "
3302                                  "for a buddy group");
3303                         return -ENOMEM;
3304                 }
3305                 rcu_read_lock();
3306                 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
3307                 rcu_read_unlock();
3308         }
3309
3310         meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
3311         i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
3312
3313         meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
3314         if (meta_group_info[i] == NULL) {
3315                 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
3316                 goto exit_group_info;
3317         }
3318         set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
3319                 &(meta_group_info[i]->bb_state));
3320
3321         /*
3322          * initialize bb_free to be able to skip
3323          * empty groups without initialization
3324          */
3325         if (ext4_has_group_desc_csum(sb) &&
3326             (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
3327                 meta_group_info[i]->bb_free =
3328                         ext4_free_clusters_after_init(sb, group, desc);
3329         } else {
3330                 meta_group_info[i]->bb_free =
3331                         ext4_free_group_clusters(sb, desc);
3332         }
3333
3334         INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
3335         init_rwsem(&meta_group_info[i]->alloc_sem);
3336         meta_group_info[i]->bb_free_root = RB_ROOT;
3337         INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node);
3338         INIT_LIST_HEAD(&meta_group_info[i]->bb_avg_fragment_size_node);
3339         meta_group_info[i]->bb_largest_free_order = -1;  /* uninit */
3340         meta_group_info[i]->bb_avg_fragment_size_order = -1;  /* uninit */
3341         meta_group_info[i]->bb_group = group;
3342
3343         mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group);
3344         return 0;
3345
3346 exit_group_info:
3347         /* If a meta_group_info table has been allocated, release it now */
3348         if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
3349                 struct ext4_group_info ***group_info;
3350
3351                 rcu_read_lock();
3352                 group_info = rcu_dereference(sbi->s_group_info);
3353                 kfree(group_info[idx]);
3354                 group_info[idx] = NULL;
3355                 rcu_read_unlock();
3356         }
3357         return -ENOMEM;
3358 } /* ext4_mb_add_groupinfo */
3359
3360 static int ext4_mb_init_backend(struct super_block *sb)
3361 {
3362         ext4_group_t ngroups = ext4_get_groups_count(sb);
3363         ext4_group_t i;
3364         struct ext4_sb_info *sbi = EXT4_SB(sb);
3365         int err;
3366         struct ext4_group_desc *desc;
3367         struct ext4_group_info ***group_info;
3368         struct kmem_cache *cachep;
3369
3370         err = ext4_mb_alloc_groupinfo(sb, ngroups);
3371         if (err)
3372                 return err;
3373
3374         sbi->s_buddy_cache = new_inode(sb);
3375         if (sbi->s_buddy_cache == NULL) {
3376                 ext4_msg(sb, KERN_ERR, "can't get new inode");
3377                 goto err_freesgi;
3378         }
3379         /* To avoid potentially colliding with an valid on-disk inode number,
3380          * use EXT4_BAD_INO for the buddy cache inode number.  This inode is
3381          * not in the inode hash, so it should never be found by iget(), but
3382          * this will avoid confusion if it ever shows up during debugging. */
3383         sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
3384         EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
3385         for (i = 0; i < ngroups; i++) {
3386                 cond_resched();
3387                 desc = ext4_get_group_desc(sb, i, NULL);
3388                 if (desc == NULL) {
3389                         ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
3390                         goto err_freebuddy;
3391                 }
3392                 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
3393                         goto err_freebuddy;
3394         }
3395
3396         if (ext4_has_feature_flex_bg(sb)) {
3397                 /* a single flex group is supposed to be read by a single IO.
3398                  * 2 ^ s_log_groups_per_flex != UINT_MAX as s_mb_prefetch is
3399                  * unsigned integer, so the maximum shift is 32.
3400                  */
3401                 if (sbi->s_es->s_log_groups_per_flex >= 32) {
3402                         ext4_msg(sb, KERN_ERR, "too many log groups per flexible block group");
3403                         goto err_freebuddy;
3404                 }
3405                 sbi->s_mb_prefetch = min_t(uint, 1 << sbi->s_es->s_log_groups_per_flex,
3406                         BLK_MAX_SEGMENT_SIZE >> (sb->s_blocksize_bits - 9));
3407                 sbi->s_mb_prefetch *= 8; /* 8 prefetch IOs in flight at most */
3408         } else {
3409                 sbi->s_mb_prefetch = 32;
3410         }
3411         if (sbi->s_mb_prefetch > ext4_get_groups_count(sb))
3412                 sbi->s_mb_prefetch = ext4_get_groups_count(sb);
3413         /* now many real IOs to prefetch within a single allocation at cr=0
3414          * given cr=0 is an CPU-related optimization we shouldn't try to
3415          * load too many groups, at some point we should start to use what
3416          * we've got in memory.
3417          * with an average random access time 5ms, it'd take a second to get
3418          * 200 groups (* N with flex_bg), so let's make this limit 4
3419          */
3420         sbi->s_mb_prefetch_limit = sbi->s_mb_prefetch * 4;
3421         if (sbi->s_mb_prefetch_limit > ext4_get_groups_count(sb))
3422                 sbi->s_mb_prefetch_limit = ext4_get_groups_count(sb);
3423
3424         return 0;
3425
3426 err_freebuddy:
3427         cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3428         while (i-- > 0) {
3429                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3430
3431                 if (grp)
3432                         kmem_cache_free(cachep, grp);
3433         }
3434         i = sbi->s_group_info_size;
3435         rcu_read_lock();
3436         group_info = rcu_dereference(sbi->s_group_info);
3437         while (i-- > 0)
3438                 kfree(group_info[i]);
3439         rcu_read_unlock();
3440         iput(sbi->s_buddy_cache);
3441 err_freesgi:
3442         rcu_read_lock();
3443         kvfree(rcu_dereference(sbi->s_group_info));
3444         rcu_read_unlock();
3445         return -ENOMEM;
3446 }
3447
3448 static void ext4_groupinfo_destroy_slabs(void)
3449 {
3450         int i;
3451
3452         for (i = 0; i < NR_GRPINFO_CACHES; i++) {
3453                 kmem_cache_destroy(ext4_groupinfo_caches[i]);
3454                 ext4_groupinfo_caches[i] = NULL;
3455         }
3456 }
3457
3458 static int ext4_groupinfo_create_slab(size_t size)
3459 {
3460         static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
3461         int slab_size;
3462         int blocksize_bits = order_base_2(size);
3463         int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
3464         struct kmem_cache *cachep;
3465
3466         if (cache_index >= NR_GRPINFO_CACHES)
3467                 return -EINVAL;
3468
3469         if (unlikely(cache_index < 0))
3470                 cache_index = 0;
3471
3472         mutex_lock(&ext4_grpinfo_slab_create_mutex);
3473         if (ext4_groupinfo_caches[cache_index]) {
3474                 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3475                 return 0;       /* Already created */
3476         }
3477
3478         slab_size = offsetof(struct ext4_group_info,
3479                                 bb_counters[blocksize_bits + 2]);
3480
3481         cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
3482                                         slab_size, 0, SLAB_RECLAIM_ACCOUNT,
3483                                         NULL);
3484
3485         ext4_groupinfo_caches[cache_index] = cachep;
3486
3487         mutex_unlock(&ext4_grpinfo_slab_create_mutex);
3488         if (!cachep) {
3489                 printk(KERN_EMERG
3490                        "EXT4-fs: no memory for groupinfo slab cache\n");
3491                 return -ENOMEM;
3492         }
3493
3494         return 0;
3495 }
3496
3497 static void ext4_discard_work(struct work_struct *work)
3498 {
3499         struct ext4_sb_info *sbi = container_of(work,
3500                         struct ext4_sb_info, s_discard_work);
3501         struct super_block *sb = sbi->s_sb;
3502         struct ext4_free_data *fd, *nfd;
3503         struct ext4_buddy e4b;
3504         struct list_head discard_list;
3505         ext4_group_t grp, load_grp;
3506         int err = 0;
3507
3508         INIT_LIST_HEAD(&discard_list);
3509         spin_lock(&sbi->s_md_lock);
3510         list_splice_init(&sbi->s_discard_list, &discard_list);
3511         spin_unlock(&sbi->s_md_lock);
3512
3513         load_grp = UINT_MAX;
3514         list_for_each_entry_safe(fd, nfd, &discard_list, efd_list) {
3515                 /*
3516                  * If filesystem is umounting or no memory or suffering
3517                  * from no space, give up the discard
3518                  */
3519                 if ((sb->s_flags & SB_ACTIVE) && !err &&
3520                     !atomic_read(&sbi->s_retry_alloc_pending)) {
3521                         grp = fd->efd_group;
3522                         if (grp != load_grp) {
3523                                 if (load_grp != UINT_MAX)
3524                                         ext4_mb_unload_buddy(&e4b);
3525
3526                                 err = ext4_mb_load_buddy(sb, grp, &e4b);
3527                                 if (err) {
3528                                         kmem_cache_free(ext4_free_data_cachep, fd);
3529                                         load_grp = UINT_MAX;
3530                                         continue;
3531                                 } else {
3532                                         load_grp = grp;
3533                                 }
3534                         }
3535
3536                         ext4_lock_group(sb, grp);
3537                         ext4_try_to_trim_range(sb, &e4b, fd->efd_start_cluster,
3538                                                 fd->efd_start_cluster + fd->efd_count - 1, 1);
3539                         ext4_unlock_group(sb, grp);
3540                 }
3541                 kmem_cache_free(ext4_free_data_cachep, fd);
3542         }
3543
3544         if (load_grp != UINT_MAX)
3545                 ext4_mb_unload_buddy(&e4b);
3546 }
3547
3548 int ext4_mb_init(struct super_block *sb)
3549 {
3550         struct ext4_sb_info *sbi = EXT4_SB(sb);
3551         unsigned i, j;
3552         unsigned offset, offset_incr;
3553         unsigned max;
3554         int ret;
3555
3556         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_offsets);
3557
3558         sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
3559         if (sbi->s_mb_offsets == NULL) {
3560                 ret = -ENOMEM;
3561                 goto out;
3562         }
3563
3564         i = MB_NUM_ORDERS(sb) * sizeof(*sbi->s_mb_maxs);
3565         sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
3566         if (sbi->s_mb_maxs == NULL) {
3567                 ret = -ENOMEM;
3568                 goto out;
3569         }
3570
3571         ret = ext4_groupinfo_create_slab(sb->s_blocksize);
3572         if (ret < 0)
3573                 goto out;
3574
3575         /* order 0 is regular bitmap */
3576         sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
3577         sbi->s_mb_offsets[0] = 0;
3578
3579         i = 1;
3580         offset = 0;
3581         offset_incr = 1 << (sb->s_blocksize_bits - 1);
3582         max = sb->s_blocksize << 2;
3583         do {
3584                 sbi->s_mb_offsets[i] = offset;
3585                 sbi->s_mb_maxs[i] = max;
3586                 offset += offset_incr;
3587                 offset_incr = offset_incr >> 1;
3588                 max = max >> 1;
3589                 i++;
3590         } while (i < MB_NUM_ORDERS(sb));
3591
3592         sbi->s_mb_avg_fragment_size =
3593                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3594                         GFP_KERNEL);
3595         if (!sbi->s_mb_avg_fragment_size) {
3596                 ret = -ENOMEM;
3597                 goto out;
3598         }
3599         sbi->s_mb_avg_fragment_size_locks =
3600                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3601                         GFP_KERNEL);
3602         if (!sbi->s_mb_avg_fragment_size_locks) {
3603                 ret = -ENOMEM;
3604                 goto out;
3605         }
3606         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3607                 INIT_LIST_HEAD(&sbi->s_mb_avg_fragment_size[i]);
3608                 rwlock_init(&sbi->s_mb_avg_fragment_size_locks[i]);
3609         }
3610         sbi->s_mb_largest_free_orders =
3611                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head),
3612                         GFP_KERNEL);
3613         if (!sbi->s_mb_largest_free_orders) {
3614                 ret = -ENOMEM;
3615                 goto out;
3616         }
3617         sbi->s_mb_largest_free_orders_locks =
3618                 kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t),
3619                         GFP_KERNEL);
3620         if (!sbi->s_mb_largest_free_orders_locks) {
3621                 ret = -ENOMEM;
3622                 goto out;
3623         }
3624         for (i = 0; i < MB_NUM_ORDERS(sb); i++) {
3625                 INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]);
3626                 rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]);
3627         }
3628
3629         spin_lock_init(&sbi->s_md_lock);
3630         sbi->s_mb_free_pending = 0;
3631         INIT_LIST_HEAD(&sbi->s_freed_data_list);
3632         INIT_LIST_HEAD(&sbi->s_discard_list);
3633         INIT_WORK(&sbi->s_discard_work, ext4_discard_work);
3634         atomic_set(&sbi->s_retry_alloc_pending, 0);
3635
3636         sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
3637         sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
3638         sbi->s_mb_stats = MB_DEFAULT_STATS;
3639         sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
3640         sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
3641         sbi->s_mb_best_avail_max_trim_order = MB_DEFAULT_BEST_AVAIL_TRIM_ORDER;
3642
3643         /*
3644          * The default group preallocation is 512, which for 4k block
3645          * sizes translates to 2 megabytes.  However for bigalloc file
3646          * systems, this is probably too big (i.e, if the cluster size
3647          * is 1 megabyte, then group preallocation size becomes half a
3648          * gigabyte!).  As a default, we will keep a two megabyte
3649          * group pralloc size for cluster sizes up to 64k, and after
3650          * that, we will force a minimum group preallocation size of
3651          * 32 clusters.  This translates to 8 megs when the cluster
3652          * size is 256k, and 32 megs when the cluster size is 1 meg,
3653          * which seems reasonable as a default.
3654          */
3655         sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
3656                                        sbi->s_cluster_bits, 32);
3657         /*
3658          * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
3659          * to the lowest multiple of s_stripe which is bigger than
3660          * the s_mb_group_prealloc as determined above. We want
3661          * the preallocation size to be an exact multiple of the
3662          * RAID stripe size so that preallocations don't fragment
3663          * the stripes.
3664          */
3665         if (sbi->s_stripe > 1) {
3666                 sbi->s_mb_group_prealloc = roundup(
3667                         sbi->s_mb_group_prealloc, EXT4_B2C(sbi, sbi->s_stripe));
3668         }
3669
3670         sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
3671         if (sbi->s_locality_groups == NULL) {
3672                 ret = -ENOMEM;
3673                 goto out;
3674         }
3675         for_each_possible_cpu(i) {
3676                 struct ext4_locality_group *lg;
3677                 lg = per_cpu_ptr(sbi->s_locality_groups, i);
3678                 mutex_init(&lg->lg_mutex);
3679                 for (j = 0; j < PREALLOC_TB_SIZE; j++)
3680                         INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
3681                 spin_lock_init(&lg->lg_prealloc_lock);
3682         }
3683
3684         if (bdev_nonrot(sb->s_bdev))
3685                 sbi->s_mb_max_linear_groups = 0;
3686         else
3687                 sbi->s_mb_max_linear_groups = MB_DEFAULT_LINEAR_LIMIT;
3688         /* init file for buddy data */
3689         ret = ext4_mb_init_backend(sb);
3690         if (ret != 0)
3691                 goto out_free_locality_groups;
3692
3693         return 0;
3694
3695 out_free_locality_groups:
3696         free_percpu(sbi->s_locality_groups);
3697         sbi->s_locality_groups = NULL;
3698 out:
3699         kfree(sbi->s_mb_avg_fragment_size);
3700         kfree(sbi->s_mb_avg_fragment_size_locks);
3701         kfree(sbi->s_mb_largest_free_orders);
3702         kfree(sbi->s_mb_largest_free_orders_locks);
3703         kfree(sbi->s_mb_offsets);
3704         sbi->s_mb_offsets = NULL;
3705         kfree(sbi->s_mb_maxs);
3706         sbi->s_mb_maxs = NULL;
3707         return ret;
3708 }
3709
3710 /* need to called with the ext4 group lock held */
3711 static int ext4_mb_cleanup_pa(struct ext4_group_info *grp)
3712 {
3713         struct ext4_prealloc_space *pa;
3714         struct list_head *cur, *tmp;
3715         int count = 0;
3716
3717         list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
3718                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3719                 list_del(&pa->pa_group_list);
3720                 count++;
3721                 kmem_cache_free(ext4_pspace_cachep, pa);
3722         }
3723         return count;
3724 }
3725
3726 int ext4_mb_release(struct super_block *sb)
3727 {
3728         ext4_group_t ngroups = ext4_get_groups_count(sb);
3729         ext4_group_t i;
3730         int num_meta_group_infos;
3731         struct ext4_group_info *grinfo, ***group_info;
3732         struct ext4_sb_info *sbi = EXT4_SB(sb);
3733         struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
3734         int count;
3735
3736         if (test_opt(sb, DISCARD)) {
3737                 /*
3738                  * wait the discard work to drain all of ext4_free_data
3739                  */
3740                 flush_work(&sbi->s_discard_work);
3741                 WARN_ON_ONCE(!list_empty(&sbi->s_discard_list));
3742         }
3743
3744         if (sbi->s_group_info) {
3745                 for (i = 0; i < ngroups; i++) {
3746                         cond_resched();
3747                         grinfo = ext4_get_group_info(sb, i);
3748                         if (!grinfo)
3749                                 continue;
3750                         mb_group_bb_bitmap_free(grinfo);
3751                         ext4_lock_group(sb, i);
3752                         count = ext4_mb_cleanup_pa(grinfo);
3753                         if (count)
3754                                 mb_debug(sb, "mballoc: %d PAs left\n",
3755                                          count);
3756                         ext4_unlock_group(sb, i);
3757                         kmem_cache_free(cachep, grinfo);
3758                 }
3759                 num_meta_group_infos = (ngroups +
3760                                 EXT4_DESC_PER_BLOCK(sb) - 1) >>
3761                         EXT4_DESC_PER_BLOCK_BITS(sb);
3762                 rcu_read_lock();
3763                 group_info = rcu_dereference(sbi->s_group_info);
3764                 for (i = 0; i < num_meta_group_infos; i++)
3765                         kfree(group_info[i]);
3766                 kvfree(group_info);
3767                 rcu_read_unlock();
3768         }
3769         kfree(sbi->s_mb_avg_fragment_size);
3770         kfree(sbi->s_mb_avg_fragment_size_locks);
3771         kfree(sbi->s_mb_largest_free_orders);
3772         kfree(sbi->s_mb_largest_free_orders_locks);
3773         kfree(sbi->s_mb_offsets);
3774         kfree(sbi->s_mb_maxs);
3775         iput(sbi->s_buddy_cache);
3776         if (sbi->s_mb_stats) {
3777                 ext4_msg(sb, KERN_INFO,
3778                        "mballoc: %u blocks %u reqs (%u success)",
3779                                 atomic_read(&sbi->s_bal_allocated),
3780                                 atomic_read(&sbi->s_bal_reqs),
3781                                 atomic_read(&sbi->s_bal_success));
3782                 ext4_msg(sb, KERN_INFO,
3783                       "mballoc: %u extents scanned, %u groups scanned, %u goal hits, "
3784                                 "%u 2^N hits, %u breaks, %u lost",
3785                                 atomic_read(&sbi->s_bal_ex_scanned),
3786                                 atomic_read(&sbi->s_bal_groups_scanned),
3787                                 atomic_read(&sbi->s_bal_goals),
3788                                 atomic_read(&sbi->s_bal_2orders),
3789                                 atomic_read(&sbi->s_bal_breaks),
3790                                 atomic_read(&sbi->s_mb_lost_chunks));
3791                 ext4_msg(sb, KERN_INFO,
3792                        "mballoc: %u generated and it took %llu",
3793                                 atomic_read(&sbi->s_mb_buddies_generated),
3794                                 atomic64_read(&sbi->s_mb_generation_time));
3795                 ext4_msg(sb, KERN_INFO,
3796                        "mballoc: %u preallocated, %u discarded",
3797                                 atomic_read(&sbi->s_mb_preallocated),
3798                                 atomic_read(&sbi->s_mb_discarded));
3799         }
3800
3801         free_percpu(sbi->s_locality_groups);
3802
3803         return 0;
3804 }
3805
3806 static inline int ext4_issue_discard(struct super_block *sb,
3807                 ext4_group_t block_group, ext4_grpblk_t cluster, int count,
3808                 struct bio **biop)
3809 {
3810         ext4_fsblk_t discard_block;
3811
3812         discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
3813                          ext4_group_first_block_no(sb, block_group));
3814         count = EXT4_C2B(EXT4_SB(sb), count);
3815         trace_ext4_discard_blocks(sb,
3816                         (unsigned long long) discard_block, count);
3817         if (biop) {
3818                 return __blkdev_issue_discard(sb->s_bdev,
3819                         (sector_t)discard_block << (sb->s_blocksize_bits - 9),
3820                         (sector_t)count << (sb->s_blocksize_bits - 9),
3821                         GFP_NOFS, biop);
3822         } else
3823                 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
3824 }
3825
3826 static void ext4_free_data_in_buddy(struct super_block *sb,
3827                                     struct ext4_free_data *entry)
3828 {
3829         struct ext4_buddy e4b;
3830         struct ext4_group_info *db;
3831         int err, count = 0;
3832
3833         mb_debug(sb, "gonna free %u blocks in group %u (0x%p):",
3834                  entry->efd_count, entry->efd_group, entry);
3835
3836         err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
3837         /* we expect to find existing buddy because it's pinned */
3838         BUG_ON(err != 0);
3839
3840         spin_lock(&EXT4_SB(sb)->s_md_lock);
3841         EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
3842         spin_unlock(&EXT4_SB(sb)->s_md_lock);
3843
3844         db = e4b.bd_info;
3845         /* there are blocks to put in buddy to make them really free */
3846         count += entry->efd_count;
3847         ext4_lock_group(sb, entry->efd_group);
3848         /* Take it out of per group rb tree */
3849         rb_erase(&entry->efd_node, &(db->bb_free_root));
3850         mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
3851
3852         /*
3853          * Clear the trimmed flag for the group so that the next
3854          * ext4_trim_fs can trim it.
3855          * If the volume is mounted with -o discard, online discard
3856          * is supported and the free blocks will be trimmed online.
3857          */
3858         if (!test_opt(sb, DISCARD))
3859                 EXT4_MB_GRP_CLEAR_TRIMMED(db);
3860
3861         if (!db->bb_free_root.rb_node) {
3862                 /* No more items in the per group rb tree
3863                  * balance refcounts from ext4_mb_free_metadata()
3864                  */
3865                 put_page(e4b.bd_buddy_page);
3866                 put_page(e4b.bd_bitmap_page);
3867         }
3868         ext4_unlock_group(sb, entry->efd_group);
3869         ext4_mb_unload_buddy(&e4b);
3870
3871         mb_debug(sb, "freed %d blocks in 1 structures\n", count);
3872 }
3873
3874 /*
3875  * This function is called by the jbd2 layer once the commit has finished,
3876  * so we know we can free the blocks that were released with that commit.
3877  */
3878 void ext4_process_freed_data(struct super_block *sb, tid_t commit_tid)
3879 {
3880         struct ext4_sb_info *sbi = EXT4_SB(sb);
3881         struct ext4_free_data *entry, *tmp;
3882         struct list_head freed_data_list;
3883         struct list_head *cut_pos = NULL;
3884         bool wake;
3885
3886         INIT_LIST_HEAD(&freed_data_list);
3887
3888         spin_lock(&sbi->s_md_lock);
3889         list_for_each_entry(entry, &sbi->s_freed_data_list, efd_list) {
3890                 if (entry->efd_tid != commit_tid)
3891                         break;
3892                 cut_pos = &entry->efd_list;
3893         }
3894         if (cut_pos)
3895                 list_cut_position(&freed_data_list, &sbi->s_freed_data_list,
3896                                   cut_pos);
3897         spin_unlock(&sbi->s_md_lock);
3898
3899         list_for_each_entry(entry, &freed_data_list, efd_list)
3900                 ext4_free_data_in_buddy(sb, entry);
3901
3902         if (test_opt(sb, DISCARD)) {
3903                 spin_lock(&sbi->s_md_lock);
3904                 wake = list_empty(&sbi->s_discard_list);
3905                 list_splice_tail(&freed_data_list, &sbi->s_discard_list);
3906                 spin_unlock(&sbi->s_md_lock);
3907                 if (wake)
3908                         queue_work(system_unbound_wq, &sbi->s_discard_work);
3909         } else {
3910                 list_for_each_entry_safe(entry, tmp, &freed_data_list, efd_list)
3911                         kmem_cache_free(ext4_free_data_cachep, entry);
3912         }
3913 }
3914
3915 int __init ext4_init_mballoc(void)
3916 {
3917         ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
3918                                         SLAB_RECLAIM_ACCOUNT);
3919         if (ext4_pspace_cachep == NULL)
3920                 goto out;
3921
3922         ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
3923                                     SLAB_RECLAIM_ACCOUNT);
3924         if (ext4_ac_cachep == NULL)
3925                 goto out_pa_free;
3926
3927         ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
3928                                            SLAB_RECLAIM_ACCOUNT);
3929         if (ext4_free_data_cachep == NULL)
3930                 goto out_ac_free;
3931
3932         return 0;
3933
3934 out_ac_free:
3935         kmem_cache_destroy(ext4_ac_cachep);
3936 out_pa_free:
3937         kmem_cache_destroy(ext4_pspace_cachep);
3938 out:
3939         return -ENOMEM;
3940 }
3941
3942 void ext4_exit_mballoc(void)
3943 {
3944         /*
3945          * Wait for completion of call_rcu()'s on ext4_pspace_cachep
3946          * before destroying the slab cache.
3947          */
3948         rcu_barrier();
3949         kmem_cache_destroy(ext4_pspace_cachep);
3950         kmem_cache_destroy(ext4_ac_cachep);
3951         kmem_cache_destroy(ext4_free_data_cachep);
3952         ext4_groupinfo_destroy_slabs();
3953 }
3954
3955
3956 /*
3957  * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
3958  * Returns 0 if success or error code
3959  */
3960 static noinline_for_stack int
3961 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
3962                                 handle_t *handle, unsigned int reserv_clstrs)
3963 {
3964         struct buffer_head *bitmap_bh = NULL;
3965         struct ext4_group_desc *gdp;
3966         struct buffer_head *gdp_bh;
3967         struct ext4_sb_info *sbi;
3968         struct super_block *sb;
3969         ext4_fsblk_t block;
3970         int err, len;
3971
3972         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3973         BUG_ON(ac->ac_b_ex.fe_len <= 0);
3974
3975         sb = ac->ac_sb;
3976         sbi = EXT4_SB(sb);
3977
3978         bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
3979         if (IS_ERR(bitmap_bh)) {
3980                 return PTR_ERR(bitmap_bh);
3981         }
3982
3983         BUFFER_TRACE(bitmap_bh, "getting write access");
3984         err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
3985                                             EXT4_JTR_NONE);
3986         if (err)
3987                 goto out_err;
3988
3989         err = -EIO;
3990         gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
3991         if (!gdp)
3992                 goto out_err;
3993
3994         ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
3995                         ext4_free_group_clusters(sb, gdp));
3996
3997         BUFFER_TRACE(gdp_bh, "get_write_access");
3998         err = ext4_journal_get_write_access(handle, sb, gdp_bh, EXT4_JTR_NONE);
3999         if (err)
4000                 goto out_err;
4001
4002         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4003
4004         len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4005         if (!ext4_inode_block_valid(ac->ac_inode, block, len)) {
4006                 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
4007                            "fs metadata", block, block+len);
4008                 /* File system mounted not to panic on error
4009                  * Fix the bitmap and return EFSCORRUPTED
4010                  * We leak some of the blocks here.
4011                  */
4012                 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4013                 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4014                               ac->ac_b_ex.fe_len);
4015                 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4016                 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4017                 if (!err)
4018                         err = -EFSCORRUPTED;
4019                 goto out_err;
4020         }
4021
4022         ext4_lock_group(sb, ac->ac_b_ex.fe_group);
4023 #ifdef AGGRESSIVE_CHECK
4024         {
4025                 int i;
4026                 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
4027                         BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
4028                                                 bitmap_bh->b_data));
4029                 }
4030         }
4031 #endif
4032         mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
4033                       ac->ac_b_ex.fe_len);
4034         if (ext4_has_group_desc_csum(sb) &&
4035             (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4036                 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4037                 ext4_free_group_clusters_set(sb, gdp,
4038                                              ext4_free_clusters_after_init(sb,
4039                                                 ac->ac_b_ex.fe_group, gdp));
4040         }
4041         len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
4042         ext4_free_group_clusters_set(sb, gdp, len);
4043         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4044         ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
4045
4046         ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
4047         percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
4048         /*
4049          * Now reduce the dirty block count also. Should not go negative
4050          */
4051         if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
4052                 /* release all the reserved blocks if non delalloc */
4053                 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4054                                    reserv_clstrs);
4055
4056         if (sbi->s_log_groups_per_flex) {
4057                 ext4_group_t flex_group = ext4_flex_group(sbi,
4058                                                           ac->ac_b_ex.fe_group);
4059                 atomic64_sub(ac->ac_b_ex.fe_len,
4060                              &sbi_array_rcu_deref(sbi, s_flex_groups,
4061                                                   flex_group)->free_clusters);
4062         }
4063
4064         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4065         if (err)
4066                 goto out_err;
4067         err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
4068
4069 out_err:
4070         brelse(bitmap_bh);
4071         return err;
4072 }
4073
4074 /*
4075  * Idempotent helper for Ext4 fast commit replay path to set the state of
4076  * blocks in bitmaps and update counters.
4077  */
4078 void ext4_mb_mark_bb(struct super_block *sb, ext4_fsblk_t block,
4079                         int len, int state)
4080 {
4081         struct buffer_head *bitmap_bh = NULL;
4082         struct ext4_group_desc *gdp;
4083         struct buffer_head *gdp_bh;
4084         struct ext4_sb_info *sbi = EXT4_SB(sb);
4085         ext4_group_t group;
4086         ext4_grpblk_t blkoff;
4087         int i, err;
4088         int already;
4089         unsigned int clen, clen_changed, thisgrp_len;
4090
4091         while (len > 0) {
4092                 ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
4093
4094                 /*
4095                  * Check to see if we are freeing blocks across a group
4096                  * boundary.
4097                  * In case of flex_bg, this can happen that (block, len) may
4098                  * span across more than one group. In that case we need to
4099                  * get the corresponding group metadata to work with.
4100                  * For this we have goto again loop.
4101                  */
4102                 thisgrp_len = min_t(unsigned int, (unsigned int)len,
4103                         EXT4_BLOCKS_PER_GROUP(sb) - EXT4_C2B(sbi, blkoff));
4104                 clen = EXT4_NUM_B2C(sbi, thisgrp_len);
4105
4106                 if (!ext4_sb_block_valid(sb, NULL, block, thisgrp_len)) {
4107                         ext4_error(sb, "Marking blocks in system zone - "
4108                                    "Block = %llu, len = %u",
4109                                    block, thisgrp_len);
4110                         bitmap_bh = NULL;
4111                         break;
4112                 }
4113
4114                 bitmap_bh = ext4_read_block_bitmap(sb, group);
4115                 if (IS_ERR(bitmap_bh)) {
4116                         err = PTR_ERR(bitmap_bh);
4117                         bitmap_bh = NULL;
4118                         break;
4119                 }
4120
4121                 err = -EIO;
4122                 gdp = ext4_get_group_desc(sb, group, &gdp_bh);
4123                 if (!gdp)
4124                         break;
4125
4126                 ext4_lock_group(sb, group);
4127                 already = 0;
4128                 for (i = 0; i < clen; i++)
4129                         if (!mb_test_bit(blkoff + i, bitmap_bh->b_data) ==
4130                                          !state)
4131                                 already++;
4132
4133                 clen_changed = clen - already;
4134                 if (state)
4135                         mb_set_bits(bitmap_bh->b_data, blkoff, clen);
4136                 else
4137                         mb_clear_bits(bitmap_bh->b_data, blkoff, clen);
4138                 if (ext4_has_group_desc_csum(sb) &&
4139                     (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
4140                         gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
4141                         ext4_free_group_clusters_set(sb, gdp,
4142                              ext4_free_clusters_after_init(sb, group, gdp));
4143                 }
4144                 if (state)
4145                         clen = ext4_free_group_clusters(sb, gdp) - clen_changed;
4146                 else
4147                         clen = ext4_free_group_clusters(sb, gdp) + clen_changed;
4148
4149                 ext4_free_group_clusters_set(sb, gdp, clen);
4150                 ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
4151                 ext4_group_desc_csum_set(sb, group, gdp);
4152
4153                 ext4_unlock_group(sb, group);
4154
4155                 if (sbi->s_log_groups_per_flex) {
4156                         ext4_group_t flex_group = ext4_flex_group(sbi, group);
4157                         struct flex_groups *fg = sbi_array_rcu_deref(sbi,
4158                                                    s_flex_groups, flex_group);
4159
4160                         if (state)
4161                                 atomic64_sub(clen_changed, &fg->free_clusters);
4162                         else
4163                                 atomic64_add(clen_changed, &fg->free_clusters);
4164
4165                 }
4166
4167                 err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
4168                 if (err)
4169                         break;
4170                 sync_dirty_buffer(bitmap_bh);
4171                 err = ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
4172                 sync_dirty_buffer(gdp_bh);
4173                 if (err)
4174                         break;
4175
4176                 block += thisgrp_len;
4177                 len -= thisgrp_len;
4178                 brelse(bitmap_bh);
4179                 BUG_ON(len < 0);
4180         }
4181
4182         if (err)
4183                 brelse(bitmap_bh);
4184 }
4185
4186 /*
4187  * here we normalize request for locality group
4188  * Group request are normalized to s_mb_group_prealloc, which goes to
4189  * s_strip if we set the same via mount option.
4190  * s_mb_group_prealloc can be configured via
4191  * /sys/fs/ext4/<partition>/mb_group_prealloc
4192  *
4193  * XXX: should we try to preallocate more than the group has now?
4194  */
4195 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
4196 {
4197         struct super_block *sb = ac->ac_sb;
4198         struct ext4_locality_group *lg = ac->ac_lg;
4199
4200         BUG_ON(lg == NULL);
4201         ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
4202         mb_debug(sb, "goal %u blocks for locality group\n", ac->ac_g_ex.fe_len);
4203 }
4204
4205 /*
4206  * This function returns the next element to look at during inode
4207  * PA rbtree walk. We assume that we have held the inode PA rbtree lock
4208  * (ei->i_prealloc_lock)
4209  *
4210  * new_start    The start of the range we want to compare
4211  * cur_start    The existing start that we are comparing against
4212  * node The node of the rb_tree
4213  */
4214 static inline struct rb_node*
4215 ext4_mb_pa_rb_next_iter(ext4_lblk_t new_start, ext4_lblk_t cur_start, struct rb_node *node)
4216 {
4217         if (new_start < cur_start)
4218                 return node->rb_left;
4219         else
4220                 return node->rb_right;
4221 }
4222
4223 static inline void
4224 ext4_mb_pa_assert_overlap(struct ext4_allocation_context *ac,
4225                           ext4_lblk_t start, ext4_lblk_t end)
4226 {
4227         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4228         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4229         struct ext4_prealloc_space *tmp_pa;
4230         ext4_lblk_t tmp_pa_start, tmp_pa_end;
4231         struct rb_node *iter;
4232
4233         read_lock(&ei->i_prealloc_lock);
4234         for (iter = ei->i_prealloc_node.rb_node; iter;
4235              iter = ext4_mb_pa_rb_next_iter(start, tmp_pa_start, iter)) {
4236                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4237                                   pa_node.inode_node);
4238                 tmp_pa_start = tmp_pa->pa_lstart;
4239                 tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4240
4241                 spin_lock(&tmp_pa->pa_lock);
4242                 if (tmp_pa->pa_deleted == 0)
4243                         BUG_ON(!(start >= tmp_pa_end || end <= tmp_pa_start));
4244                 spin_unlock(&tmp_pa->pa_lock);
4245         }
4246         read_unlock(&ei->i_prealloc_lock);
4247 }
4248
4249 /*
4250  * Given an allocation context "ac" and a range "start", "end", check
4251  * and adjust boundaries if the range overlaps with any of the existing
4252  * preallocatoins stored in the corresponding inode of the allocation context.
4253  *
4254  * Parameters:
4255  *      ac                      allocation context
4256  *      start                   start of the new range
4257  *      end                     end of the new range
4258  */
4259 static inline void
4260 ext4_mb_pa_adjust_overlap(struct ext4_allocation_context *ac,
4261                           ext4_lblk_t *start, ext4_lblk_t *end)
4262 {
4263         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4264         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4265         struct ext4_prealloc_space *tmp_pa = NULL, *left_pa = NULL, *right_pa = NULL;
4266         struct rb_node *iter;
4267         ext4_lblk_t new_start, new_end;
4268         ext4_lblk_t tmp_pa_start, tmp_pa_end, left_pa_end = -1, right_pa_start = -1;
4269
4270         new_start = *start;
4271         new_end = *end;
4272
4273         /*
4274          * Adjust the normalized range so that it doesn't overlap with any
4275          * existing preallocated blocks(PAs). Make sure to hold the rbtree lock
4276          * so it doesn't change underneath us.
4277          */
4278         read_lock(&ei->i_prealloc_lock);
4279
4280         /* Step 1: find any one immediate neighboring PA of the normalized range */
4281         for (iter = ei->i_prealloc_node.rb_node; iter;
4282              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4283                                             tmp_pa_start, iter)) {
4284                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4285                                   pa_node.inode_node);
4286                 tmp_pa_start = tmp_pa->pa_lstart;
4287                 tmp_pa_end = tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4288
4289                 /* PA must not overlap original request */
4290                 spin_lock(&tmp_pa->pa_lock);
4291                 if (tmp_pa->pa_deleted == 0)
4292                         BUG_ON(!(ac->ac_o_ex.fe_logical >= tmp_pa_end ||
4293                                  ac->ac_o_ex.fe_logical < tmp_pa_start));
4294                 spin_unlock(&tmp_pa->pa_lock);
4295         }
4296
4297         /*
4298          * Step 2: check if the found PA is left or right neighbor and
4299          * get the other neighbor
4300          */
4301         if (tmp_pa) {
4302                 if (tmp_pa->pa_lstart < ac->ac_o_ex.fe_logical) {
4303                         struct rb_node *tmp;
4304
4305                         left_pa = tmp_pa;
4306                         tmp = rb_next(&left_pa->pa_node.inode_node);
4307                         if (tmp) {
4308                                 right_pa = rb_entry(tmp,
4309                                                     struct ext4_prealloc_space,
4310                                                     pa_node.inode_node);
4311                         }
4312                 } else {
4313                         struct rb_node *tmp;
4314
4315                         right_pa = tmp_pa;
4316                         tmp = rb_prev(&right_pa->pa_node.inode_node);
4317                         if (tmp) {
4318                                 left_pa = rb_entry(tmp,
4319                                                    struct ext4_prealloc_space,
4320                                                    pa_node.inode_node);
4321                         }
4322                 }
4323         }
4324
4325         /* Step 3: get the non deleted neighbors */
4326         if (left_pa) {
4327                 for (iter = &left_pa->pa_node.inode_node;;
4328                      iter = rb_prev(iter)) {
4329                         if (!iter) {
4330                                 left_pa = NULL;
4331                                 break;
4332                         }
4333
4334                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4335                                           pa_node.inode_node);
4336                         left_pa = tmp_pa;
4337                         spin_lock(&tmp_pa->pa_lock);
4338                         if (tmp_pa->pa_deleted == 0) {
4339                                 spin_unlock(&tmp_pa->pa_lock);
4340                                 break;
4341                         }
4342                         spin_unlock(&tmp_pa->pa_lock);
4343                 }
4344         }
4345
4346         if (right_pa) {
4347                 for (iter = &right_pa->pa_node.inode_node;;
4348                      iter = rb_next(iter)) {
4349                         if (!iter) {
4350                                 right_pa = NULL;
4351                                 break;
4352                         }
4353
4354                         tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4355                                           pa_node.inode_node);
4356                         right_pa = tmp_pa;
4357                         spin_lock(&tmp_pa->pa_lock);
4358                         if (tmp_pa->pa_deleted == 0) {
4359                                 spin_unlock(&tmp_pa->pa_lock);
4360                                 break;
4361                         }
4362                         spin_unlock(&tmp_pa->pa_lock);
4363                 }
4364         }
4365
4366         if (left_pa) {
4367                 left_pa_end =
4368                         left_pa->pa_lstart + EXT4_C2B(sbi, left_pa->pa_len);
4369                 BUG_ON(left_pa_end > ac->ac_o_ex.fe_logical);
4370         }
4371
4372         if (right_pa) {
4373                 right_pa_start = right_pa->pa_lstart;
4374                 BUG_ON(right_pa_start <= ac->ac_o_ex.fe_logical);
4375         }
4376
4377         /* Step 4: trim our normalized range to not overlap with the neighbors */
4378         if (left_pa) {
4379                 if (left_pa_end > new_start)
4380                         new_start = left_pa_end;
4381         }
4382
4383         if (right_pa) {
4384                 if (right_pa_start < new_end)
4385                         new_end = right_pa_start;
4386         }
4387         read_unlock(&ei->i_prealloc_lock);
4388
4389         /* XXX: extra loop to check we really don't overlap preallocations */
4390         ext4_mb_pa_assert_overlap(ac, new_start, new_end);
4391
4392         *start = new_start;
4393         *end = new_end;
4394 }
4395
4396 /*
4397  * Normalization means making request better in terms of
4398  * size and alignment
4399  */
4400 static noinline_for_stack void
4401 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
4402                                 struct ext4_allocation_request *ar)
4403 {
4404         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4405         struct ext4_super_block *es = sbi->s_es;
4406         int bsbits, max;
4407         ext4_lblk_t end;
4408         loff_t size, start_off;
4409         loff_t orig_size __maybe_unused;
4410         ext4_lblk_t start;
4411
4412         /* do normalize only data requests, metadata requests
4413            do not need preallocation */
4414         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4415                 return;
4416
4417         /* sometime caller may want exact blocks */
4418         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4419                 return;
4420
4421         /* caller may indicate that preallocation isn't
4422          * required (it's a tail, for example) */
4423         if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
4424                 return;
4425
4426         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
4427                 ext4_mb_normalize_group_request(ac);
4428                 return ;
4429         }
4430
4431         bsbits = ac->ac_sb->s_blocksize_bits;
4432
4433         /* first, let's learn actual file size
4434          * given current request is allocated */
4435         size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4436         size = size << bsbits;
4437         if (size < i_size_read(ac->ac_inode))
4438                 size = i_size_read(ac->ac_inode);
4439         orig_size = size;
4440
4441         /* max size of free chunks */
4442         max = 2 << bsbits;
4443
4444 #define NRL_CHECK_SIZE(req, size, max, chunk_size)      \
4445                 (req <= (size) || max <= (chunk_size))
4446
4447         /* first, try to predict filesize */
4448         /* XXX: should this table be tunable? */
4449         start_off = 0;
4450         if (size <= 16 * 1024) {
4451                 size = 16 * 1024;
4452         } else if (size <= 32 * 1024) {
4453                 size = 32 * 1024;
4454         } else if (size <= 64 * 1024) {
4455                 size = 64 * 1024;
4456         } else if (size <= 128 * 1024) {
4457                 size = 128 * 1024;
4458         } else if (size <= 256 * 1024) {
4459                 size = 256 * 1024;
4460         } else if (size <= 512 * 1024) {
4461                 size = 512 * 1024;
4462         } else if (size <= 1024 * 1024) {
4463                 size = 1024 * 1024;
4464         } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
4465                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4466                                                 (21 - bsbits)) << 21;
4467                 size = 2 * 1024 * 1024;
4468         } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
4469                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4470                                                         (22 - bsbits)) << 22;
4471                 size = 4 * 1024 * 1024;
4472         } else if (NRL_CHECK_SIZE(EXT4_C2B(sbi, ac->ac_o_ex.fe_len),
4473                                         (8<<20)>>bsbits, max, 8 * 1024)) {
4474                 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
4475                                                         (23 - bsbits)) << 23;
4476                 size = 8 * 1024 * 1024;
4477         } else {
4478                 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
4479                 size      = (loff_t) EXT4_C2B(sbi,
4480                                               ac->ac_o_ex.fe_len) << bsbits;
4481         }
4482         size = size >> bsbits;
4483         start = start_off >> bsbits;
4484
4485         /*
4486          * For tiny groups (smaller than 8MB) the chosen allocation
4487          * alignment may be larger than group size. Make sure the
4488          * alignment does not move allocation to a different group which
4489          * makes mballoc fail assertions later.
4490          */
4491         start = max(start, rounddown(ac->ac_o_ex.fe_logical,
4492                         (ext4_lblk_t)EXT4_BLOCKS_PER_GROUP(ac->ac_sb)));
4493
4494         /* don't cover already allocated blocks in selected range */
4495         if (ar->pleft && start <= ar->lleft) {
4496                 size -= ar->lleft + 1 - start;
4497                 start = ar->lleft + 1;
4498         }
4499         if (ar->pright && start + size - 1 >= ar->lright)
4500                 size -= start + size - ar->lright;
4501
4502         /*
4503          * Trim allocation request for filesystems with artificially small
4504          * groups.
4505          */
4506         if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
4507                 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
4508
4509         end = start + size;
4510
4511         ext4_mb_pa_adjust_overlap(ac, &start, &end);
4512
4513         size = end - start;
4514
4515         /*
4516          * In this function "start" and "size" are normalized for better
4517          * alignment and length such that we could preallocate more blocks.
4518          * This normalization is done such that original request of
4519          * ac->ac_o_ex.fe_logical & fe_len should always lie within "start" and
4520          * "size" boundaries.
4521          * (Note fe_len can be relaxed since FS block allocation API does not
4522          * provide gurantee on number of contiguous blocks allocation since that
4523          * depends upon free space left, etc).
4524          * In case of inode pa, later we use the allocated blocks
4525          * [pa_pstart + fe_logical - pa_lstart, fe_len/size] from the preallocated
4526          * range of goal/best blocks [start, size] to put it at the
4527          * ac_o_ex.fe_logical extent of this inode.
4528          * (See ext4_mb_use_inode_pa() for more details)
4529          */
4530         if (start + size <= ac->ac_o_ex.fe_logical ||
4531                         start > ac->ac_o_ex.fe_logical) {
4532                 ext4_msg(ac->ac_sb, KERN_ERR,
4533                          "start %lu, size %lu, fe_logical %lu",
4534                          (unsigned long) start, (unsigned long) size,
4535                          (unsigned long) ac->ac_o_ex.fe_logical);
4536                 BUG();
4537         }
4538         BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
4539
4540         /* now prepare goal request */
4541
4542         /* XXX: is it better to align blocks WRT to logical
4543          * placement or satisfy big request as is */
4544         ac->ac_g_ex.fe_logical = start;
4545         ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
4546         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
4547
4548         /* define goal start in order to merge */
4549         if (ar->pright && (ar->lright == (start + size)) &&
4550             ar->pright >= size &&
4551             ar->pright - size >= le32_to_cpu(es->s_first_data_block)) {
4552                 /* merge to the right */
4553                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
4554                                                 &ac->ac_g_ex.fe_group,
4555                                                 &ac->ac_g_ex.fe_start);
4556                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4557         }
4558         if (ar->pleft && (ar->lleft + 1 == start) &&
4559             ar->pleft + 1 < ext4_blocks_count(es)) {
4560                 /* merge to the left */
4561                 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
4562                                                 &ac->ac_g_ex.fe_group,
4563                                                 &ac->ac_g_ex.fe_start);
4564                 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
4565         }
4566
4567         mb_debug(ac->ac_sb, "goal: %lld(was %lld) blocks at %u\n", size,
4568                  orig_size, start);
4569 }
4570
4571 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
4572 {
4573         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4574
4575         if (sbi->s_mb_stats && ac->ac_g_ex.fe_len >= 1) {
4576                 atomic_inc(&sbi->s_bal_reqs);
4577                 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
4578                 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
4579                         atomic_inc(&sbi->s_bal_success);
4580
4581                 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
4582                 for (int i=0; i<EXT4_MB_NUM_CRS; i++) {
4583                         atomic_add(ac->ac_cX_found[i], &sbi->s_bal_cX_ex_scanned[i]);
4584                 }
4585
4586                 atomic_add(ac->ac_groups_scanned, &sbi->s_bal_groups_scanned);
4587                 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
4588                                 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
4589                         atomic_inc(&sbi->s_bal_goals);
4590                 /* did we allocate as much as normalizer originally wanted? */
4591                 if (ac->ac_f_ex.fe_len == ac->ac_orig_goal_len)
4592                         atomic_inc(&sbi->s_bal_len_goals);
4593
4594                 if (ac->ac_found > sbi->s_mb_max_to_scan)
4595                         atomic_inc(&sbi->s_bal_breaks);
4596         }
4597
4598         if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
4599                 trace_ext4_mballoc_alloc(ac);
4600         else
4601                 trace_ext4_mballoc_prealloc(ac);
4602 }
4603
4604 /*
4605  * Called on failure; free up any blocks from the inode PA for this
4606  * context.  We don't need this for MB_GROUP_PA because we only change
4607  * pa_free in ext4_mb_release_context(), but on failure, we've already
4608  * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
4609  */
4610 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
4611 {
4612         struct ext4_prealloc_space *pa = ac->ac_pa;
4613         struct ext4_buddy e4b;
4614         int err;
4615
4616         if (pa == NULL) {
4617                 if (ac->ac_f_ex.fe_len == 0)
4618                         return;
4619                 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
4620                 if (WARN_RATELIMIT(err,
4621                                    "ext4: mb_load_buddy failed (%d)", err))
4622                         /*
4623                          * This should never happen since we pin the
4624                          * pages in the ext4_allocation_context so
4625                          * ext4_mb_load_buddy() should never fail.
4626                          */
4627                         return;
4628                 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4629                 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
4630                                ac->ac_f_ex.fe_len);
4631                 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
4632                 ext4_mb_unload_buddy(&e4b);
4633                 return;
4634         }
4635         if (pa->pa_type == MB_INODE_PA) {
4636                 spin_lock(&pa->pa_lock);
4637                 pa->pa_free += ac->ac_b_ex.fe_len;
4638                 spin_unlock(&pa->pa_lock);
4639         }
4640 }
4641
4642 /*
4643  * use blocks preallocated to inode
4644  */
4645 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
4646                                 struct ext4_prealloc_space *pa)
4647 {
4648         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4649         ext4_fsblk_t start;
4650         ext4_fsblk_t end;
4651         int len;
4652
4653         /* found preallocated blocks, use them */
4654         start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
4655         end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
4656                   start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
4657         len = EXT4_NUM_B2C(sbi, end - start);
4658         ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
4659                                         &ac->ac_b_ex.fe_start);
4660         ac->ac_b_ex.fe_len = len;
4661         ac->ac_status = AC_STATUS_FOUND;
4662         ac->ac_pa = pa;
4663
4664         BUG_ON(start < pa->pa_pstart);
4665         BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
4666         BUG_ON(pa->pa_free < len);
4667         BUG_ON(ac->ac_b_ex.fe_len <= 0);
4668         pa->pa_free -= len;
4669
4670         mb_debug(ac->ac_sb, "use %llu/%d from inode pa %p\n", start, len, pa);
4671 }
4672
4673 /*
4674  * use blocks preallocated to locality group
4675  */
4676 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
4677                                 struct ext4_prealloc_space *pa)
4678 {
4679         unsigned int len = ac->ac_o_ex.fe_len;
4680
4681         ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
4682                                         &ac->ac_b_ex.fe_group,
4683                                         &ac->ac_b_ex.fe_start);
4684         ac->ac_b_ex.fe_len = len;
4685         ac->ac_status = AC_STATUS_FOUND;
4686         ac->ac_pa = pa;
4687
4688         /* we don't correct pa_pstart or pa_len here to avoid
4689          * possible race when the group is being loaded concurrently
4690          * instead we correct pa later, after blocks are marked
4691          * in on-disk bitmap -- see ext4_mb_release_context()
4692          * Other CPUs are prevented from allocating from this pa by lg_mutex
4693          */
4694         mb_debug(ac->ac_sb, "use %u/%u from group pa %p\n",
4695                  pa->pa_lstart, len, pa);
4696 }
4697
4698 /*
4699  * Return the prealloc space that have minimal distance
4700  * from the goal block. @cpa is the prealloc
4701  * space that is having currently known minimal distance
4702  * from the goal block.
4703  */
4704 static struct ext4_prealloc_space *
4705 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
4706                         struct ext4_prealloc_space *pa,
4707                         struct ext4_prealloc_space *cpa)
4708 {
4709         ext4_fsblk_t cur_distance, new_distance;
4710
4711         if (cpa == NULL) {
4712                 atomic_inc(&pa->pa_count);
4713                 return pa;
4714         }
4715         cur_distance = abs(goal_block - cpa->pa_pstart);
4716         new_distance = abs(goal_block - pa->pa_pstart);
4717
4718         if (cur_distance <= new_distance)
4719                 return cpa;
4720
4721         /* drop the previous reference */
4722         atomic_dec(&cpa->pa_count);
4723         atomic_inc(&pa->pa_count);
4724         return pa;
4725 }
4726
4727 /*
4728  * check if found pa meets EXT4_MB_HINT_GOAL_ONLY
4729  */
4730 static bool
4731 ext4_mb_pa_goal_check(struct ext4_allocation_context *ac,
4732                       struct ext4_prealloc_space *pa)
4733 {
4734         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4735         ext4_fsblk_t start;
4736
4737         if (likely(!(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY)))
4738                 return true;
4739
4740         /*
4741          * If EXT4_MB_HINT_GOAL_ONLY is set, ac_g_ex will not be adjusted
4742          * in ext4_mb_normalize_request and will keep same with ac_o_ex
4743          * from ext4_mb_initialize_context. Choose ac_g_ex here to keep
4744          * consistent with ext4_mb_find_by_goal.
4745          */
4746         start = pa->pa_pstart +
4747                 (ac->ac_g_ex.fe_logical - pa->pa_lstart);
4748         if (ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex) != start)
4749                 return false;
4750
4751         if (ac->ac_g_ex.fe_len > pa->pa_len -
4752             EXT4_B2C(sbi, ac->ac_g_ex.fe_logical - pa->pa_lstart))
4753                 return false;
4754
4755         return true;
4756 }
4757
4758 /*
4759  * search goal blocks in preallocated space
4760  */
4761 static noinline_for_stack bool
4762 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
4763 {
4764         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4765         int order, i;
4766         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
4767         struct ext4_locality_group *lg;
4768         struct ext4_prealloc_space *tmp_pa = NULL, *cpa = NULL;
4769         loff_t tmp_pa_end;
4770         struct rb_node *iter;
4771         ext4_fsblk_t goal_block;
4772
4773         /* only data can be preallocated */
4774         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4775                 return false;
4776
4777         /*
4778          * first, try per-file preallocation by searching the inode pa rbtree.
4779          *
4780          * Here, we can't do a direct traversal of the tree because
4781          * ext4_mb_discard_group_preallocation() can paralelly mark the pa
4782          * deleted and that can cause direct traversal to skip some entries.
4783          */
4784         read_lock(&ei->i_prealloc_lock);
4785
4786         if (RB_EMPTY_ROOT(&ei->i_prealloc_node)) {
4787                 goto try_group_pa;
4788         }
4789
4790         /*
4791          * Step 1: Find a pa with logical start immediately adjacent to the
4792          * original logical start. This could be on the left or right.
4793          *
4794          * (tmp_pa->pa_lstart never changes so we can skip locking for it).
4795          */
4796         for (iter = ei->i_prealloc_node.rb_node; iter;
4797              iter = ext4_mb_pa_rb_next_iter(ac->ac_o_ex.fe_logical,
4798                                             tmp_pa->pa_lstart, iter)) {
4799                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4800                                   pa_node.inode_node);
4801         }
4802
4803         /*
4804          * Step 2: The adjacent pa might be to the right of logical start, find
4805          * the left adjacent pa. After this step we'd have a valid tmp_pa whose
4806          * logical start is towards the left of original request's logical start
4807          */
4808         if (tmp_pa->pa_lstart > ac->ac_o_ex.fe_logical) {
4809                 struct rb_node *tmp;
4810                 tmp = rb_prev(&tmp_pa->pa_node.inode_node);
4811
4812                 if (tmp) {
4813                         tmp_pa = rb_entry(tmp, struct ext4_prealloc_space,
4814                                             pa_node.inode_node);
4815                 } else {
4816                         /*
4817                          * If there is no adjacent pa to the left then finding
4818                          * an overlapping pa is not possible hence stop searching
4819                          * inode pa tree
4820                          */
4821                         goto try_group_pa;
4822                 }
4823         }
4824
4825         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4826
4827         /*
4828          * Step 3: If the left adjacent pa is deleted, keep moving left to find
4829          * the first non deleted adjacent pa. After this step we should have a
4830          * valid tmp_pa which is guaranteed to be non deleted.
4831          */
4832         for (iter = &tmp_pa->pa_node.inode_node;; iter = rb_prev(iter)) {
4833                 if (!iter) {
4834                         /*
4835                          * no non deleted left adjacent pa, so stop searching
4836                          * inode pa tree
4837                          */
4838                         goto try_group_pa;
4839                 }
4840                 tmp_pa = rb_entry(iter, struct ext4_prealloc_space,
4841                                   pa_node.inode_node);
4842                 spin_lock(&tmp_pa->pa_lock);
4843                 if (tmp_pa->pa_deleted == 0) {
4844                         /*
4845                          * We will keep holding the pa_lock from
4846                          * this point on because we don't want group discard
4847                          * to delete this pa underneath us. Since group
4848                          * discard is anyways an ENOSPC operation it
4849                          * should be okay for it to wait a few more cycles.
4850                          */
4851                         break;
4852                 } else {
4853                         spin_unlock(&tmp_pa->pa_lock);
4854                 }
4855         }
4856
4857         BUG_ON(!(tmp_pa && tmp_pa->pa_lstart <= ac->ac_o_ex.fe_logical));
4858         BUG_ON(tmp_pa->pa_deleted == 1);
4859
4860         /*
4861          * Step 4: We now have the non deleted left adjacent pa. Only this
4862          * pa can possibly satisfy the request hence check if it overlaps
4863          * original logical start and stop searching if it doesn't.
4864          */
4865         tmp_pa_end = (loff_t)tmp_pa->pa_lstart + EXT4_C2B(sbi, tmp_pa->pa_len);
4866
4867         if (ac->ac_o_ex.fe_logical >= tmp_pa_end) {
4868                 spin_unlock(&tmp_pa->pa_lock);
4869                 goto try_group_pa;
4870         }
4871
4872         /* non-extent files can't have physical blocks past 2^32 */
4873         if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
4874             (tmp_pa->pa_pstart + EXT4_C2B(sbi, tmp_pa->pa_len) >
4875              EXT4_MAX_BLOCK_FILE_PHYS)) {
4876                 /*
4877                  * Since PAs don't overlap, we won't find any other PA to
4878                  * satisfy this.
4879                  */
4880                 spin_unlock(&tmp_pa->pa_lock);
4881                 goto try_group_pa;
4882         }
4883
4884         if (tmp_pa->pa_free && likely(ext4_mb_pa_goal_check(ac, tmp_pa))) {
4885                 atomic_inc(&tmp_pa->pa_count);
4886                 ext4_mb_use_inode_pa(ac, tmp_pa);
4887                 spin_unlock(&tmp_pa->pa_lock);
4888                 read_unlock(&ei->i_prealloc_lock);
4889                 return true;
4890         } else {
4891                 /*
4892                  * We found a valid overlapping pa but couldn't use it because
4893                  * it had no free blocks. This should ideally never happen
4894                  * because:
4895                  *
4896                  * 1. When a new inode pa is added to rbtree it must have
4897                  *    pa_free > 0 since otherwise we won't actually need
4898                  *    preallocation.
4899                  *
4900                  * 2. An inode pa that is in the rbtree can only have it's
4901                  *    pa_free become zero when another thread calls:
4902                  *      ext4_mb_new_blocks
4903                  *       ext4_mb_use_preallocated
4904                  *        ext4_mb_use_inode_pa
4905                  *
4906                  * 3. Further, after the above calls make pa_free == 0, we will
4907                  *    immediately remove it from the rbtree in:
4908                  *      ext4_mb_new_blocks
4909                  *       ext4_mb_release_context
4910                  *        ext4_mb_put_pa
4911                  *
4912                  * 4. Since the pa_free becoming 0 and pa_free getting removed
4913                  * from tree both happen in ext4_mb_new_blocks, which is always
4914                  * called with i_data_sem held for data allocations, we can be
4915                  * sure that another process will never see a pa in rbtree with
4916                  * pa_free == 0.
4917                  */
4918                 WARN_ON_ONCE(tmp_pa->pa_free == 0);
4919         }
4920         spin_unlock(&tmp_pa->pa_lock);
4921 try_group_pa:
4922         read_unlock(&ei->i_prealloc_lock);
4923
4924         /* can we use group allocation? */
4925         if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
4926                 return false;
4927
4928         /* inode may have no locality group for some reason */
4929         lg = ac->ac_lg;
4930         if (lg == NULL)
4931                 return false;
4932         order  = fls(ac->ac_o_ex.fe_len) - 1;
4933         if (order > PREALLOC_TB_SIZE - 1)
4934                 /* The max size of hash table is PREALLOC_TB_SIZE */
4935                 order = PREALLOC_TB_SIZE - 1;
4936
4937         goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
4938         /*
4939          * search for the prealloc space that is having
4940          * minimal distance from the goal block.
4941          */
4942         for (i = order; i < PREALLOC_TB_SIZE; i++) {
4943                 rcu_read_lock();
4944                 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[i],
4945                                         pa_node.lg_list) {
4946                         spin_lock(&tmp_pa->pa_lock);
4947                         if (tmp_pa->pa_deleted == 0 &&
4948                                         tmp_pa->pa_free >= ac->ac_o_ex.fe_len) {
4949
4950                                 cpa = ext4_mb_check_group_pa(goal_block,
4951                                                                 tmp_pa, cpa);
4952                         }
4953                         spin_unlock(&tmp_pa->pa_lock);
4954                 }
4955                 rcu_read_unlock();
4956         }
4957         if (cpa) {
4958                 ext4_mb_use_group_pa(ac, cpa);
4959                 return true;
4960         }
4961         return false;
4962 }
4963
4964 /*
4965  * the function goes through all block freed in the group
4966  * but not yet committed and marks them used in in-core bitmap.
4967  * buddy must be generated from this bitmap
4968  * Need to be called with the ext4 group lock held
4969  */
4970 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
4971                                                 ext4_group_t group)
4972 {
4973         struct rb_node *n;
4974         struct ext4_group_info *grp;
4975         struct ext4_free_data *entry;
4976
4977         grp = ext4_get_group_info(sb, group);
4978         if (!grp)
4979                 return;
4980         n = rb_first(&(grp->bb_free_root));
4981
4982         while (n) {
4983                 entry = rb_entry(n, struct ext4_free_data, efd_node);
4984                 mb_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
4985                 n = rb_next(n);
4986         }
4987         return;
4988 }
4989
4990 /*
4991  * the function goes through all preallocation in this group and marks them
4992  * used in in-core bitmap. buddy must be generated from this bitmap
4993  * Need to be called with ext4 group lock held
4994  */
4995 static noinline_for_stack
4996 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
4997                                         ext4_group_t group)
4998 {
4999         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5000         struct ext4_prealloc_space *pa;
5001         struct list_head *cur;
5002         ext4_group_t groupnr;
5003         ext4_grpblk_t start;
5004         int preallocated = 0;
5005         int len;
5006
5007         if (!grp)
5008                 return;
5009
5010         /* all form of preallocation discards first load group,
5011          * so the only competing code is preallocation use.
5012          * we don't need any locking here
5013          * notice we do NOT ignore preallocations with pa_deleted
5014          * otherwise we could leave used blocks available for
5015          * allocation in buddy when concurrent ext4_mb_put_pa()
5016          * is dropping preallocation
5017          */
5018         list_for_each(cur, &grp->bb_prealloc_list) {
5019                 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
5020                 spin_lock(&pa->pa_lock);
5021                 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5022                                              &groupnr, &start);
5023                 len = pa->pa_len;
5024                 spin_unlock(&pa->pa_lock);
5025                 if (unlikely(len == 0))
5026                         continue;
5027                 BUG_ON(groupnr != group);
5028                 mb_set_bits(bitmap, start, len);
5029                 preallocated += len;
5030         }
5031         mb_debug(sb, "preallocated %d for group %u\n", preallocated, group);
5032 }
5033
5034 static void ext4_mb_mark_pa_deleted(struct super_block *sb,
5035                                     struct ext4_prealloc_space *pa)
5036 {
5037         struct ext4_inode_info *ei;
5038
5039         if (pa->pa_deleted) {
5040                 ext4_warning(sb, "deleted pa, type:%d, pblk:%llu, lblk:%u, len:%d\n",
5041                              pa->pa_type, pa->pa_pstart, pa->pa_lstart,
5042                              pa->pa_len);
5043                 return;
5044         }
5045
5046         pa->pa_deleted = 1;
5047
5048         if (pa->pa_type == MB_INODE_PA) {
5049                 ei = EXT4_I(pa->pa_inode);
5050                 atomic_dec(&ei->i_prealloc_active);
5051         }
5052 }
5053
5054 static inline void ext4_mb_pa_free(struct ext4_prealloc_space *pa)
5055 {
5056         BUG_ON(!pa);
5057         BUG_ON(atomic_read(&pa->pa_count));
5058         BUG_ON(pa->pa_deleted == 0);
5059         kmem_cache_free(ext4_pspace_cachep, pa);
5060 }
5061
5062 static void ext4_mb_pa_callback(struct rcu_head *head)
5063 {
5064         struct ext4_prealloc_space *pa;
5065
5066         pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
5067         ext4_mb_pa_free(pa);
5068 }
5069
5070 /*
5071  * drops a reference to preallocated space descriptor
5072  * if this was the last reference and the space is consumed
5073  */
5074 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
5075                         struct super_block *sb, struct ext4_prealloc_space *pa)
5076 {
5077         ext4_group_t grp;
5078         ext4_fsblk_t grp_blk;
5079         struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
5080
5081         /* in this short window concurrent discard can set pa_deleted */
5082         spin_lock(&pa->pa_lock);
5083         if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
5084                 spin_unlock(&pa->pa_lock);
5085                 return;
5086         }
5087
5088         if (pa->pa_deleted == 1) {
5089                 spin_unlock(&pa->pa_lock);
5090                 return;
5091         }
5092
5093         ext4_mb_mark_pa_deleted(sb, pa);
5094         spin_unlock(&pa->pa_lock);
5095
5096         grp_blk = pa->pa_pstart;
5097         /*
5098          * If doing group-based preallocation, pa_pstart may be in the
5099          * next group when pa is used up
5100          */
5101         if (pa->pa_type == MB_GROUP_PA)
5102                 grp_blk--;
5103
5104         grp = ext4_get_group_number(sb, grp_blk);
5105
5106         /*
5107          * possible race:
5108          *
5109          *  P1 (buddy init)                     P2 (regular allocation)
5110          *                                      find block B in PA
5111          *  copy on-disk bitmap to buddy
5112          *                                      mark B in on-disk bitmap
5113          *                                      drop PA from group
5114          *  mark all PAs in buddy
5115          *
5116          * thus, P1 initializes buddy with B available. to prevent this
5117          * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
5118          * against that pair
5119          */
5120         ext4_lock_group(sb, grp);
5121         list_del(&pa->pa_group_list);
5122         ext4_unlock_group(sb, grp);
5123
5124         if (pa->pa_type == MB_INODE_PA) {
5125                 write_lock(pa->pa_node_lock.inode_lock);
5126                 rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5127                 write_unlock(pa->pa_node_lock.inode_lock);
5128                 ext4_mb_pa_free(pa);
5129         } else {
5130                 spin_lock(pa->pa_node_lock.lg_lock);
5131                 list_del_rcu(&pa->pa_node.lg_list);
5132                 spin_unlock(pa->pa_node_lock.lg_lock);
5133                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5134         }
5135 }
5136
5137 static void ext4_mb_pa_rb_insert(struct rb_root *root, struct rb_node *new)
5138 {
5139         struct rb_node **iter = &root->rb_node, *parent = NULL;
5140         struct ext4_prealloc_space *iter_pa, *new_pa;
5141         ext4_lblk_t iter_start, new_start;
5142
5143         while (*iter) {
5144                 iter_pa = rb_entry(*iter, struct ext4_prealloc_space,
5145                                    pa_node.inode_node);
5146                 new_pa = rb_entry(new, struct ext4_prealloc_space,
5147                                    pa_node.inode_node);
5148                 iter_start = iter_pa->pa_lstart;
5149                 new_start = new_pa->pa_lstart;
5150
5151                 parent = *iter;
5152                 if (new_start < iter_start)
5153                         iter = &((*iter)->rb_left);
5154                 else
5155                         iter = &((*iter)->rb_right);
5156         }
5157
5158         rb_link_node(new, parent, iter);
5159         rb_insert_color(new, root);
5160 }
5161
5162 /*
5163  * creates new preallocated space for given inode
5164  */
5165 static noinline_for_stack void
5166 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
5167 {
5168         struct super_block *sb = ac->ac_sb;
5169         struct ext4_sb_info *sbi = EXT4_SB(sb);
5170         struct ext4_prealloc_space *pa;
5171         struct ext4_group_info *grp;
5172         struct ext4_inode_info *ei;
5173
5174         /* preallocate only when found space is larger then requested */
5175         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5176         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5177         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5178         BUG_ON(ac->ac_pa == NULL);
5179
5180         pa = ac->ac_pa;
5181
5182         if (ac->ac_b_ex.fe_len < ac->ac_orig_goal_len) {
5183                 int new_bex_start;
5184                 int new_bex_end;
5185
5186                 /* we can't allocate as much as normalizer wants.
5187                  * so, found space must get proper lstart
5188                  * to cover original request */
5189                 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
5190                 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
5191
5192                 /*
5193                  * Use the below logic for adjusting best extent as it keeps
5194                  * fragmentation in check while ensuring logical range of best
5195                  * extent doesn't overflow out of goal extent:
5196                  *
5197                  * 1. Check if best ex can be kept at end of goal (before
5198                  *    cr_best_avail trimmed it) and still cover original start
5199                  * 2. Else, check if best ex can be kept at start of goal and
5200                  *    still cover original start
5201                  * 3. Else, keep the best ex at start of original request.
5202                  */
5203                 new_bex_end = ac->ac_g_ex.fe_logical +
5204                         EXT4_C2B(sbi, ac->ac_orig_goal_len);
5205                 new_bex_start = new_bex_end - EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5206                 if (ac->ac_o_ex.fe_logical >= new_bex_start)
5207                         goto adjust_bex;
5208
5209                 new_bex_start = ac->ac_g_ex.fe_logical;
5210                 new_bex_end =
5211                         new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5212                 if (ac->ac_o_ex.fe_logical < new_bex_end)
5213                         goto adjust_bex;
5214
5215                 new_bex_start = ac->ac_o_ex.fe_logical;
5216                 new_bex_end =
5217                         new_bex_start + EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
5218
5219 adjust_bex:
5220                 ac->ac_b_ex.fe_logical = new_bex_start;
5221
5222                 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
5223                 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
5224                 BUG_ON(new_bex_end > (ac->ac_g_ex.fe_logical +
5225                                       EXT4_C2B(sbi, ac->ac_orig_goal_len)));
5226         }
5227
5228         pa->pa_lstart = ac->ac_b_ex.fe_logical;
5229         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5230         pa->pa_len = ac->ac_b_ex.fe_len;
5231         pa->pa_free = pa->pa_len;
5232         spin_lock_init(&pa->pa_lock);
5233         INIT_LIST_HEAD(&pa->pa_group_list);
5234         pa->pa_deleted = 0;
5235         pa->pa_type = MB_INODE_PA;
5236
5237         mb_debug(sb, "new inode pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5238                  pa->pa_len, pa->pa_lstart);
5239         trace_ext4_mb_new_inode_pa(ac, pa);
5240
5241         atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
5242         ext4_mb_use_inode_pa(ac, pa);
5243
5244         ei = EXT4_I(ac->ac_inode);
5245         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5246         if (!grp)
5247                 return;
5248
5249         pa->pa_node_lock.inode_lock = &ei->i_prealloc_lock;
5250         pa->pa_inode = ac->ac_inode;
5251
5252         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5253
5254         write_lock(pa->pa_node_lock.inode_lock);
5255         ext4_mb_pa_rb_insert(&ei->i_prealloc_node, &pa->pa_node.inode_node);
5256         write_unlock(pa->pa_node_lock.inode_lock);
5257         atomic_inc(&ei->i_prealloc_active);
5258 }
5259
5260 /*
5261  * creates new preallocated space for locality group inodes belongs to
5262  */
5263 static noinline_for_stack void
5264 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
5265 {
5266         struct super_block *sb = ac->ac_sb;
5267         struct ext4_locality_group *lg;
5268         struct ext4_prealloc_space *pa;
5269         struct ext4_group_info *grp;
5270
5271         /* preallocate only when found space is larger then requested */
5272         BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
5273         BUG_ON(ac->ac_status != AC_STATUS_FOUND);
5274         BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
5275         BUG_ON(ac->ac_pa == NULL);
5276
5277         pa = ac->ac_pa;
5278
5279         pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
5280         pa->pa_lstart = pa->pa_pstart;
5281         pa->pa_len = ac->ac_b_ex.fe_len;
5282         pa->pa_free = pa->pa_len;
5283         spin_lock_init(&pa->pa_lock);
5284         INIT_LIST_HEAD(&pa->pa_node.lg_list);
5285         INIT_LIST_HEAD(&pa->pa_group_list);
5286         pa->pa_deleted = 0;
5287         pa->pa_type = MB_GROUP_PA;
5288
5289         mb_debug(sb, "new group pa %p: %llu/%d for %u\n", pa, pa->pa_pstart,
5290                  pa->pa_len, pa->pa_lstart);
5291         trace_ext4_mb_new_group_pa(ac, pa);
5292
5293         ext4_mb_use_group_pa(ac, pa);
5294         atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
5295
5296         grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
5297         if (!grp)
5298                 return;
5299         lg = ac->ac_lg;
5300         BUG_ON(lg == NULL);
5301
5302         pa->pa_node_lock.lg_lock = &lg->lg_prealloc_lock;
5303         pa->pa_inode = NULL;
5304
5305         list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
5306
5307         /*
5308          * We will later add the new pa to the right bucket
5309          * after updating the pa_free in ext4_mb_release_context
5310          */
5311 }
5312
5313 static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
5314 {
5315         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
5316                 ext4_mb_new_group_pa(ac);
5317         else
5318                 ext4_mb_new_inode_pa(ac);
5319 }
5320
5321 /*
5322  * finds all unused blocks in on-disk bitmap, frees them in
5323  * in-core bitmap and buddy.
5324  * @pa must be unlinked from inode and group lists, so that
5325  * nobody else can find/use it.
5326  * the caller MUST hold group/inode locks.
5327  * TODO: optimize the case when there are no in-core structures yet
5328  */
5329 static noinline_for_stack int
5330 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
5331                         struct ext4_prealloc_space *pa)
5332 {
5333         struct super_block *sb = e4b->bd_sb;
5334         struct ext4_sb_info *sbi = EXT4_SB(sb);
5335         unsigned int end;
5336         unsigned int next;
5337         ext4_group_t group;
5338         ext4_grpblk_t bit;
5339         unsigned long long grp_blk_start;
5340         int free = 0;
5341
5342         BUG_ON(pa->pa_deleted == 0);
5343         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5344         grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
5345         BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
5346         end = bit + pa->pa_len;
5347
5348         while (bit < end) {
5349                 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
5350                 if (bit >= end)
5351                         break;
5352                 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
5353                 mb_debug(sb, "free preallocated %u/%u in group %u\n",
5354                          (unsigned) ext4_group_first_block_no(sb, group) + bit,
5355                          (unsigned) next - bit, (unsigned) group);
5356                 free += next - bit;
5357
5358                 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
5359                 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
5360                                                     EXT4_C2B(sbi, bit)),
5361                                                next - bit);
5362                 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
5363                 bit = next + 1;
5364         }
5365         if (free != pa->pa_free) {
5366                 ext4_msg(e4b->bd_sb, KERN_CRIT,
5367                          "pa %p: logic %lu, phys. %lu, len %d",
5368                          pa, (unsigned long) pa->pa_lstart,
5369                          (unsigned long) pa->pa_pstart,
5370                          pa->pa_len);
5371                 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
5372                                         free, pa->pa_free);
5373                 /*
5374                  * pa is already deleted so we use the value obtained
5375                  * from the bitmap and continue.
5376                  */
5377         }
5378         atomic_add(free, &sbi->s_mb_discarded);
5379
5380         return 0;
5381 }
5382
5383 static noinline_for_stack int
5384 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
5385                                 struct ext4_prealloc_space *pa)
5386 {
5387         struct super_block *sb = e4b->bd_sb;
5388         ext4_group_t group;
5389         ext4_grpblk_t bit;
5390
5391         trace_ext4_mb_release_group_pa(sb, pa);
5392         BUG_ON(pa->pa_deleted == 0);
5393         ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
5394         if (unlikely(group != e4b->bd_group && pa->pa_len != 0)) {
5395                 ext4_warning(sb, "bad group: expected %u, group %u, pa_start %llu",
5396                              e4b->bd_group, group, pa->pa_pstart);
5397                 return 0;
5398         }
5399         mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
5400         atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
5401         trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
5402
5403         return 0;
5404 }
5405
5406 /*
5407  * releases all preallocations in given group
5408  *
5409  * first, we need to decide discard policy:
5410  * - when do we discard
5411  *   1) ENOSPC
5412  * - how many do we discard
5413  *   1) how many requested
5414  */
5415 static noinline_for_stack int
5416 ext4_mb_discard_group_preallocations(struct super_block *sb,
5417                                      ext4_group_t group, int *busy)
5418 {
5419         struct ext4_group_info *grp = ext4_get_group_info(sb, group);
5420         struct buffer_head *bitmap_bh = NULL;
5421         struct ext4_prealloc_space *pa, *tmp;
5422         struct list_head list;
5423         struct ext4_buddy e4b;
5424         struct ext4_inode_info *ei;
5425         int err;
5426         int free = 0;
5427
5428         if (!grp)
5429                 return 0;
5430         mb_debug(sb, "discard preallocation for group %u\n", group);
5431         if (list_empty(&grp->bb_prealloc_list))
5432                 goto out_dbg;
5433
5434         bitmap_bh = ext4_read_block_bitmap(sb, group);
5435         if (IS_ERR(bitmap_bh)) {
5436                 err = PTR_ERR(bitmap_bh);
5437                 ext4_error_err(sb, -err,
5438                                "Error %d reading block bitmap for %u",
5439                                err, group);
5440                 goto out_dbg;
5441         }
5442
5443         err = ext4_mb_load_buddy(sb, group, &e4b);
5444         if (err) {
5445                 ext4_warning(sb, "Error %d loading buddy information for %u",
5446                              err, group);
5447                 put_bh(bitmap_bh);
5448                 goto out_dbg;
5449         }
5450
5451         INIT_LIST_HEAD(&list);
5452         ext4_lock_group(sb, group);
5453         list_for_each_entry_safe(pa, tmp,
5454                                 &grp->bb_prealloc_list, pa_group_list) {
5455                 spin_lock(&pa->pa_lock);
5456                 if (atomic_read(&pa->pa_count)) {
5457                         spin_unlock(&pa->pa_lock);
5458                         *busy = 1;
5459                         continue;
5460                 }
5461                 if (pa->pa_deleted) {
5462                         spin_unlock(&pa->pa_lock);
5463                         continue;
5464                 }
5465
5466                 /* seems this one can be freed ... */
5467                 ext4_mb_mark_pa_deleted(sb, pa);
5468
5469                 if (!free)
5470                         this_cpu_inc(discard_pa_seq);
5471
5472                 /* we can trust pa_free ... */
5473                 free += pa->pa_free;
5474
5475                 spin_unlock(&pa->pa_lock);
5476
5477                 list_del(&pa->pa_group_list);
5478                 list_add(&pa->u.pa_tmp_list, &list);
5479         }
5480
5481         /* now free all selected PAs */
5482         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5483
5484                 /* remove from object (inode or locality group) */
5485                 if (pa->pa_type == MB_GROUP_PA) {
5486                         spin_lock(pa->pa_node_lock.lg_lock);
5487                         list_del_rcu(&pa->pa_node.lg_list);
5488                         spin_unlock(pa->pa_node_lock.lg_lock);
5489                 } else {
5490                         write_lock(pa->pa_node_lock.inode_lock);
5491                         ei = EXT4_I(pa->pa_inode);
5492                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5493                         write_unlock(pa->pa_node_lock.inode_lock);
5494                 }
5495
5496                 list_del(&pa->u.pa_tmp_list);
5497
5498                 if (pa->pa_type == MB_GROUP_PA) {
5499                         ext4_mb_release_group_pa(&e4b, pa);
5500                         call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5501                 } else {
5502                         ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5503                         ext4_mb_pa_free(pa);
5504                 }
5505         }
5506
5507         ext4_unlock_group(sb, group);
5508         ext4_mb_unload_buddy(&e4b);
5509         put_bh(bitmap_bh);
5510 out_dbg:
5511         mb_debug(sb, "discarded (%d) blocks preallocated for group %u bb_free (%d)\n",
5512                  free, group, grp->bb_free);
5513         return free;
5514 }
5515
5516 /*
5517  * releases all non-used preallocated blocks for given inode
5518  *
5519  * It's important to discard preallocations under i_data_sem
5520  * We don't want another block to be served from the prealloc
5521  * space when we are discarding the inode prealloc space.
5522  *
5523  * FIXME!! Make sure it is valid at all the call sites
5524  */
5525 void ext4_discard_preallocations(struct inode *inode, unsigned int needed)
5526 {
5527         struct ext4_inode_info *ei = EXT4_I(inode);
5528         struct super_block *sb = inode->i_sb;
5529         struct buffer_head *bitmap_bh = NULL;
5530         struct ext4_prealloc_space *pa, *tmp;
5531         ext4_group_t group = 0;
5532         struct list_head list;
5533         struct ext4_buddy e4b;
5534         struct rb_node *iter;
5535         int err;
5536
5537         if (!S_ISREG(inode->i_mode)) {
5538                 return;
5539         }
5540
5541         if (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY)
5542                 return;
5543
5544         mb_debug(sb, "discard preallocation for inode %lu\n",
5545                  inode->i_ino);
5546         trace_ext4_discard_preallocations(inode,
5547                         atomic_read(&ei->i_prealloc_active), needed);
5548
5549         INIT_LIST_HEAD(&list);
5550
5551         if (needed == 0)
5552                 needed = UINT_MAX;
5553
5554 repeat:
5555         /* first, collect all pa's in the inode */
5556         write_lock(&ei->i_prealloc_lock);
5557         for (iter = rb_first(&ei->i_prealloc_node); iter && needed;
5558              iter = rb_next(iter)) {
5559                 pa = rb_entry(iter, struct ext4_prealloc_space,
5560                               pa_node.inode_node);
5561                 BUG_ON(pa->pa_node_lock.inode_lock != &ei->i_prealloc_lock);
5562
5563                 spin_lock(&pa->pa_lock);
5564                 if (atomic_read(&pa->pa_count)) {
5565                         /* this shouldn't happen often - nobody should
5566                          * use preallocation while we're discarding it */
5567                         spin_unlock(&pa->pa_lock);
5568                         write_unlock(&ei->i_prealloc_lock);
5569                         ext4_msg(sb, KERN_ERR,
5570                                  "uh-oh! used pa while discarding");
5571                         WARN_ON(1);
5572                         schedule_timeout_uninterruptible(HZ);
5573                         goto repeat;
5574
5575                 }
5576                 if (pa->pa_deleted == 0) {
5577                         ext4_mb_mark_pa_deleted(sb, pa);
5578                         spin_unlock(&pa->pa_lock);
5579                         rb_erase(&pa->pa_node.inode_node, &ei->i_prealloc_node);
5580                         list_add(&pa->u.pa_tmp_list, &list);
5581                         needed--;
5582                         continue;
5583                 }
5584
5585                 /* someone is deleting pa right now */
5586                 spin_unlock(&pa->pa_lock);
5587                 write_unlock(&ei->i_prealloc_lock);
5588
5589                 /* we have to wait here because pa_deleted
5590                  * doesn't mean pa is already unlinked from
5591                  * the list. as we might be called from
5592                  * ->clear_inode() the inode will get freed
5593                  * and concurrent thread which is unlinking
5594                  * pa from inode's list may access already
5595                  * freed memory, bad-bad-bad */
5596
5597                 /* XXX: if this happens too often, we can
5598                  * add a flag to force wait only in case
5599                  * of ->clear_inode(), but not in case of
5600                  * regular truncate */
5601                 schedule_timeout_uninterruptible(HZ);
5602                 goto repeat;
5603         }
5604         write_unlock(&ei->i_prealloc_lock);
5605
5606         list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
5607                 BUG_ON(pa->pa_type != MB_INODE_PA);
5608                 group = ext4_get_group_number(sb, pa->pa_pstart);
5609
5610                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5611                                              GFP_NOFS|__GFP_NOFAIL);
5612                 if (err) {
5613                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5614                                        err, group);
5615                         continue;
5616                 }
5617
5618                 bitmap_bh = ext4_read_block_bitmap(sb, group);
5619                 if (IS_ERR(bitmap_bh)) {
5620                         err = PTR_ERR(bitmap_bh);
5621                         ext4_error_err(sb, -err, "Error %d reading block bitmap for %u",
5622                                        err, group);
5623                         ext4_mb_unload_buddy(&e4b);
5624                         continue;
5625                 }
5626
5627                 ext4_lock_group(sb, group);
5628                 list_del(&pa->pa_group_list);
5629                 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
5630                 ext4_unlock_group(sb, group);
5631
5632                 ext4_mb_unload_buddy(&e4b);
5633                 put_bh(bitmap_bh);
5634
5635                 list_del(&pa->u.pa_tmp_list);
5636                 ext4_mb_pa_free(pa);
5637         }
5638 }
5639
5640 static int ext4_mb_pa_alloc(struct ext4_allocation_context *ac)
5641 {
5642         struct ext4_prealloc_space *pa;
5643
5644         BUG_ON(ext4_pspace_cachep == NULL);
5645         pa = kmem_cache_zalloc(ext4_pspace_cachep, GFP_NOFS);
5646         if (!pa)
5647                 return -ENOMEM;
5648         atomic_set(&pa->pa_count, 1);
5649         ac->ac_pa = pa;
5650         return 0;
5651 }
5652
5653 static void ext4_mb_pa_put_free(struct ext4_allocation_context *ac)
5654 {
5655         struct ext4_prealloc_space *pa = ac->ac_pa;
5656
5657         BUG_ON(!pa);
5658         ac->ac_pa = NULL;
5659         WARN_ON(!atomic_dec_and_test(&pa->pa_count));
5660         /*
5661          * current function is only called due to an error or due to
5662          * len of found blocks < len of requested blocks hence the PA has not
5663          * been added to grp->bb_prealloc_list. So we don't need to lock it
5664          */
5665         pa->pa_deleted = 1;
5666         ext4_mb_pa_free(pa);
5667 }
5668
5669 #ifdef CONFIG_EXT4_DEBUG
5670 static inline void ext4_mb_show_pa(struct super_block *sb)
5671 {
5672         ext4_group_t i, ngroups;
5673
5674         if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5675                 return;
5676
5677         ngroups = ext4_get_groups_count(sb);
5678         mb_debug(sb, "groups: ");
5679         for (i = 0; i < ngroups; i++) {
5680                 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
5681                 struct ext4_prealloc_space *pa;
5682                 ext4_grpblk_t start;
5683                 struct list_head *cur;
5684
5685                 if (!grp)
5686                         continue;
5687                 ext4_lock_group(sb, i);
5688                 list_for_each(cur, &grp->bb_prealloc_list) {
5689                         pa = list_entry(cur, struct ext4_prealloc_space,
5690                                         pa_group_list);
5691                         spin_lock(&pa->pa_lock);
5692                         ext4_get_group_no_and_offset(sb, pa->pa_pstart,
5693                                                      NULL, &start);
5694                         spin_unlock(&pa->pa_lock);
5695                         mb_debug(sb, "PA:%u:%d:%d\n", i, start,
5696                                  pa->pa_len);
5697                 }
5698                 ext4_unlock_group(sb, i);
5699                 mb_debug(sb, "%u: %d/%d\n", i, grp->bb_free,
5700                          grp->bb_fragments);
5701         }
5702 }
5703
5704 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5705 {
5706         struct super_block *sb = ac->ac_sb;
5707
5708         if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5709                 return;
5710
5711         mb_debug(sb, "Can't allocate:"
5712                         " Allocation context details:");
5713         mb_debug(sb, "status %u flags 0x%x",
5714                         ac->ac_status, ac->ac_flags);
5715         mb_debug(sb, "orig %lu/%lu/%lu@%lu, "
5716                         "goal %lu/%lu/%lu@%lu, "
5717                         "best %lu/%lu/%lu@%lu cr %d",
5718                         (unsigned long)ac->ac_o_ex.fe_group,
5719                         (unsigned long)ac->ac_o_ex.fe_start,
5720                         (unsigned long)ac->ac_o_ex.fe_len,
5721                         (unsigned long)ac->ac_o_ex.fe_logical,
5722                         (unsigned long)ac->ac_g_ex.fe_group,
5723                         (unsigned long)ac->ac_g_ex.fe_start,
5724                         (unsigned long)ac->ac_g_ex.fe_len,
5725                         (unsigned long)ac->ac_g_ex.fe_logical,
5726                         (unsigned long)ac->ac_b_ex.fe_group,
5727                         (unsigned long)ac->ac_b_ex.fe_start,
5728                         (unsigned long)ac->ac_b_ex.fe_len,
5729                         (unsigned long)ac->ac_b_ex.fe_logical,
5730                         (int)ac->ac_criteria);
5731         mb_debug(sb, "%u found", ac->ac_found);
5732         mb_debug(sb, "used pa: %s, ", ac->ac_pa ? "yes" : "no");
5733         if (ac->ac_pa)
5734                 mb_debug(sb, "pa_type %s\n", ac->ac_pa->pa_type == MB_GROUP_PA ?
5735                          "group pa" : "inode pa");
5736         ext4_mb_show_pa(sb);
5737 }
5738 #else
5739 static inline void ext4_mb_show_pa(struct super_block *sb)
5740 {
5741         return;
5742 }
5743 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
5744 {
5745         ext4_mb_show_pa(ac->ac_sb);
5746         return;
5747 }
5748 #endif
5749
5750 /*
5751  * We use locality group preallocation for small size file. The size of the
5752  * file is determined by the current size or the resulting size after
5753  * allocation which ever is larger
5754  *
5755  * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
5756  */
5757 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
5758 {
5759         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
5760         int bsbits = ac->ac_sb->s_blocksize_bits;
5761         loff_t size, isize;
5762         bool inode_pa_eligible, group_pa_eligible;
5763
5764         if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
5765                 return;
5766
5767         if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
5768                 return;
5769
5770         group_pa_eligible = sbi->s_mb_group_prealloc > 0;
5771         inode_pa_eligible = true;
5772         size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
5773         isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
5774                 >> bsbits;
5775
5776         /* No point in using inode preallocation for closed files */
5777         if ((size == isize) && !ext4_fs_is_busy(sbi) &&
5778             !inode_is_open_for_write(ac->ac_inode))
5779                 inode_pa_eligible = false;
5780
5781         size = max(size, isize);
5782         /* Don't use group allocation for large files */
5783         if (size > sbi->s_mb_stream_request)
5784                 group_pa_eligible = false;
5785
5786         if (!group_pa_eligible) {
5787                 if (inode_pa_eligible)
5788                         ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
5789                 else
5790                         ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
5791                 return;
5792         }
5793
5794         BUG_ON(ac->ac_lg != NULL);
5795         /*
5796          * locality group prealloc space are per cpu. The reason for having
5797          * per cpu locality group is to reduce the contention between block
5798          * request from multiple CPUs.
5799          */
5800         ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
5801
5802         /* we're going to use group allocation */
5803         ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
5804
5805         /* serialize all allocations in the group */
5806         mutex_lock(&ac->ac_lg->lg_mutex);
5807 }
5808
5809 static noinline_for_stack void
5810 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
5811                                 struct ext4_allocation_request *ar)
5812 {
5813         struct super_block *sb = ar->inode->i_sb;
5814         struct ext4_sb_info *sbi = EXT4_SB(sb);
5815         struct ext4_super_block *es = sbi->s_es;
5816         ext4_group_t group;
5817         unsigned int len;
5818         ext4_fsblk_t goal;
5819         ext4_grpblk_t block;
5820
5821         /* we can't allocate > group size */
5822         len = ar->len;
5823
5824         /* just a dirty hack to filter too big requests  */
5825         if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
5826                 len = EXT4_CLUSTERS_PER_GROUP(sb);
5827
5828         /* start searching from the goal */
5829         goal = ar->goal;
5830         if (goal < le32_to_cpu(es->s_first_data_block) ||
5831                         goal >= ext4_blocks_count(es))
5832                 goal = le32_to_cpu(es->s_first_data_block);
5833         ext4_get_group_no_and_offset(sb, goal, &group, &block);
5834
5835         /* set up allocation goals */
5836         ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
5837         ac->ac_status = AC_STATUS_CONTINUE;
5838         ac->ac_sb = sb;
5839         ac->ac_inode = ar->inode;
5840         ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
5841         ac->ac_o_ex.fe_group = group;
5842         ac->ac_o_ex.fe_start = block;
5843         ac->ac_o_ex.fe_len = len;
5844         ac->ac_g_ex = ac->ac_o_ex;
5845         ac->ac_orig_goal_len = ac->ac_g_ex.fe_len;
5846         ac->ac_flags = ar->flags;
5847
5848         /* we have to define context: we'll work with a file or
5849          * locality group. this is a policy, actually */
5850         ext4_mb_group_or_file(ac);
5851
5852         mb_debug(sb, "init ac: %u blocks @ %u, goal %u, flags 0x%x, 2^%d, "
5853                         "left: %u/%u, right %u/%u to %swritable\n",
5854                         (unsigned) ar->len, (unsigned) ar->logical,
5855                         (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
5856                         (unsigned) ar->lleft, (unsigned) ar->pleft,
5857                         (unsigned) ar->lright, (unsigned) ar->pright,
5858                         inode_is_open_for_write(ar->inode) ? "" : "non-");
5859 }
5860
5861 static noinline_for_stack void
5862 ext4_mb_discard_lg_preallocations(struct super_block *sb,
5863                                         struct ext4_locality_group *lg,
5864                                         int order, int total_entries)
5865 {
5866         ext4_group_t group = 0;
5867         struct ext4_buddy e4b;
5868         struct list_head discard_list;
5869         struct ext4_prealloc_space *pa, *tmp;
5870
5871         mb_debug(sb, "discard locality group preallocation\n");
5872
5873         INIT_LIST_HEAD(&discard_list);
5874
5875         spin_lock(&lg->lg_prealloc_lock);
5876         list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
5877                                 pa_node.lg_list,
5878                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5879                 spin_lock(&pa->pa_lock);
5880                 if (atomic_read(&pa->pa_count)) {
5881                         /*
5882                          * This is the pa that we just used
5883                          * for block allocation. So don't
5884                          * free that
5885                          */
5886                         spin_unlock(&pa->pa_lock);
5887                         continue;
5888                 }
5889                 if (pa->pa_deleted) {
5890                         spin_unlock(&pa->pa_lock);
5891                         continue;
5892                 }
5893                 /* only lg prealloc space */
5894                 BUG_ON(pa->pa_type != MB_GROUP_PA);
5895
5896                 /* seems this one can be freed ... */
5897                 ext4_mb_mark_pa_deleted(sb, pa);
5898                 spin_unlock(&pa->pa_lock);
5899
5900                 list_del_rcu(&pa->pa_node.lg_list);
5901                 list_add(&pa->u.pa_tmp_list, &discard_list);
5902
5903                 total_entries--;
5904                 if (total_entries <= 5) {
5905                         /*
5906                          * we want to keep only 5 entries
5907                          * allowing it to grow to 8. This
5908                          * mak sure we don't call discard
5909                          * soon for this list.
5910                          */
5911                         break;
5912                 }
5913         }
5914         spin_unlock(&lg->lg_prealloc_lock);
5915
5916         list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
5917                 int err;
5918
5919                 group = ext4_get_group_number(sb, pa->pa_pstart);
5920                 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
5921                                              GFP_NOFS|__GFP_NOFAIL);
5922                 if (err) {
5923                         ext4_error_err(sb, -err, "Error %d loading buddy information for %u",
5924                                        err, group);
5925                         continue;
5926                 }
5927                 ext4_lock_group(sb, group);
5928                 list_del(&pa->pa_group_list);
5929                 ext4_mb_release_group_pa(&e4b, pa);
5930                 ext4_unlock_group(sb, group);
5931
5932                 ext4_mb_unload_buddy(&e4b);
5933                 list_del(&pa->u.pa_tmp_list);
5934                 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
5935         }
5936 }
5937
5938 /*
5939  * We have incremented pa_count. So it cannot be freed at this
5940  * point. Also we hold lg_mutex. So no parallel allocation is
5941  * possible from this lg. That means pa_free cannot be updated.
5942  *
5943  * A parallel ext4_mb_discard_group_preallocations is possible.
5944  * which can cause the lg_prealloc_list to be updated.
5945  */
5946
5947 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
5948 {
5949         int order, added = 0, lg_prealloc_count = 1;
5950         struct super_block *sb = ac->ac_sb;
5951         struct ext4_locality_group *lg = ac->ac_lg;
5952         struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
5953
5954         order = fls(pa->pa_free) - 1;
5955         if (order > PREALLOC_TB_SIZE - 1)
5956                 /* The max size of hash table is PREALLOC_TB_SIZE */
5957                 order = PREALLOC_TB_SIZE - 1;
5958         /* Add the prealloc space to lg */
5959         spin_lock(&lg->lg_prealloc_lock);
5960         list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
5961                                 pa_node.lg_list,
5962                                 lockdep_is_held(&lg->lg_prealloc_lock)) {
5963                 spin_lock(&tmp_pa->pa_lock);
5964                 if (tmp_pa->pa_deleted) {
5965                         spin_unlock(&tmp_pa->pa_lock);
5966                         continue;
5967                 }
5968                 if (!added && pa->pa_free < tmp_pa->pa_free) {
5969                         /* Add to the tail of the previous entry */
5970                         list_add_tail_rcu(&pa->pa_node.lg_list,
5971                                                 &tmp_pa->pa_node.lg_list);
5972                         added = 1;
5973                         /*
5974                          * we want to count the total
5975                          * number of entries in the list
5976                          */
5977                 }
5978                 spin_unlock(&tmp_pa->pa_lock);
5979                 lg_prealloc_count++;
5980         }
5981         if (!added)
5982                 list_add_tail_rcu(&pa->pa_node.lg_list,
5983                                         &lg->lg_prealloc_list[order]);
5984         spin_unlock(&lg->lg_prealloc_lock);
5985
5986         /* Now trim the list to be not more than 8 elements */
5987         if (lg_prealloc_count > 8) {
5988                 ext4_mb_discard_lg_preallocations(sb, lg,
5989                                                   order, lg_prealloc_count);
5990                 return;
5991         }
5992         return ;
5993 }
5994
5995 /*
5996  * release all resource we used in allocation
5997  */
5998 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
5999 {
6000         struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
6001         struct ext4_prealloc_space *pa = ac->ac_pa;
6002         if (pa) {
6003                 if (pa->pa_type == MB_GROUP_PA) {
6004                         /* see comment in ext4_mb_use_group_pa() */
6005                         spin_lock(&pa->pa_lock);
6006                         pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
6007                         pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
6008                         pa->pa_free -= ac->ac_b_ex.fe_len;
6009                         pa->pa_len -= ac->ac_b_ex.fe_len;
6010                         spin_unlock(&pa->pa_lock);
6011
6012                         /*
6013                          * We want to add the pa to the right bucket.
6014                          * Remove it from the list and while adding
6015                          * make sure the list to which we are adding
6016                          * doesn't grow big.
6017                          */
6018                         if (likely(pa->pa_free)) {
6019                                 spin_lock(pa->pa_node_lock.lg_lock);
6020                                 list_del_rcu(&pa->pa_node.lg_list);
6021                                 spin_unlock(pa->pa_node_lock.lg_lock);
6022                                 ext4_mb_add_n_trim(ac);
6023                         }
6024                 }
6025
6026                 ext4_mb_put_pa(ac, ac->ac_sb, pa);
6027         }
6028         if (ac->ac_bitmap_page)
6029                 put_page(ac->ac_bitmap_page);
6030         if (ac->ac_buddy_page)
6031                 put_page(ac->ac_buddy_page);
6032         if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
6033                 mutex_unlock(&ac->ac_lg->lg_mutex);
6034         ext4_mb_collect_stats(ac);
6035         return 0;
6036 }
6037
6038 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
6039 {
6040         ext4_group_t i, ngroups = ext4_get_groups_count(sb);
6041         int ret;
6042         int freed = 0, busy = 0;
6043         int retry = 0;
6044
6045         trace_ext4_mb_discard_preallocations(sb, needed);
6046
6047         if (needed == 0)
6048                 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
6049  repeat:
6050         for (i = 0; i < ngroups && needed > 0; i++) {
6051                 ret = ext4_mb_discard_group_preallocations(sb, i, &busy);
6052                 freed += ret;
6053                 needed -= ret;
6054                 cond_resched();
6055         }
6056
6057         if (needed > 0 && busy && ++retry < 3) {
6058                 busy = 0;
6059                 goto repeat;
6060         }
6061
6062         return freed;
6063 }
6064
6065 static bool ext4_mb_discard_preallocations_should_retry(struct super_block *sb,
6066                         struct ext4_allocation_context *ac, u64 *seq)
6067 {
6068         int freed;
6069         u64 seq_retry = 0;
6070         bool ret = false;
6071
6072         freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
6073         if (freed) {
6074                 ret = true;
6075                 goto out_dbg;
6076         }
6077         seq_retry = ext4_get_discard_pa_seq_sum();
6078         if (!(ac->ac_flags & EXT4_MB_STRICT_CHECK) || seq_retry != *seq) {
6079                 ac->ac_flags |= EXT4_MB_STRICT_CHECK;
6080                 *seq = seq_retry;
6081                 ret = true;
6082         }
6083
6084 out_dbg:
6085         mb_debug(sb, "freed %d, retry ? %s\n", freed, ret ? "yes" : "no");
6086         return ret;
6087 }
6088
6089 /*
6090  * Simple allocator for Ext4 fast commit replay path. It searches for blocks
6091  * linearly starting at the goal block and also excludes the blocks which
6092  * are going to be in use after fast commit replay.
6093  */
6094 static ext4_fsblk_t
6095 ext4_mb_new_blocks_simple(struct ext4_allocation_request *ar, int *errp)
6096 {
6097         struct buffer_head *bitmap_bh;
6098         struct super_block *sb = ar->inode->i_sb;
6099         struct ext4_sb_info *sbi = EXT4_SB(sb);
6100         ext4_group_t group, nr;
6101         ext4_grpblk_t blkoff;
6102         ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
6103         ext4_grpblk_t i = 0;
6104         ext4_fsblk_t goal, block;
6105         struct ext4_super_block *es = EXT4_SB(sb)->s_es;
6106
6107         goal = ar->goal;
6108         if (goal < le32_to_cpu(es->s_first_data_block) ||
6109                         goal >= ext4_blocks_count(es))
6110                 goal = le32_to_cpu(es->s_first_data_block);
6111
6112         ar->len = 0;
6113         ext4_get_group_no_and_offset(sb, goal, &group, &blkoff);
6114         for (nr = ext4_get_groups_count(sb); nr > 0; nr--) {
6115                 bitmap_bh = ext4_read_block_bitmap(sb, group);
6116                 if (IS_ERR(bitmap_bh)) {
6117                         *errp = PTR_ERR(bitmap_bh);
6118                         pr_warn("Failed to read block bitmap\n");
6119                         return 0;
6120                 }
6121
6122                 while (1) {
6123                         i = mb_find_next_zero_bit(bitmap_bh->b_data, max,
6124                                                 blkoff);
6125                         if (i >= max)
6126                                 break;
6127                         if (ext4_fc_replay_check_excluded(sb,
6128                                 ext4_group_first_block_no(sb, group) +
6129                                 EXT4_C2B(sbi, i))) {
6130                                 blkoff = i + 1;
6131                         } else
6132                                 break;
6133                 }
6134                 brelse(bitmap_bh);
6135                 if (i < max)
6136                         break;
6137
6138                 if (++group >= ext4_get_groups_count(sb))
6139                         group = 0;
6140
6141                 blkoff = 0;
6142         }
6143
6144         if (i >= max) {
6145                 *errp = -ENOSPC;
6146                 return 0;
6147         }
6148
6149         block = ext4_group_first_block_no(sb, group) + EXT4_C2B(sbi, i);
6150         ext4_mb_mark_bb(sb, block, 1, 1);
6151         ar->len = 1;
6152
6153         return block;
6154 }
6155
6156 /*
6157  * Main entry point into mballoc to allocate blocks
6158  * it tries to use preallocation first, then falls back
6159  * to usual allocation
6160  */
6161 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
6162                                 struct ext4_allocation_request *ar, int *errp)
6163 {
6164         struct ext4_allocation_context *ac = NULL;
6165         struct ext4_sb_info *sbi;
6166         struct super_block *sb;
6167         ext4_fsblk_t block = 0;
6168         unsigned int inquota = 0;
6169         unsigned int reserv_clstrs = 0;
6170         int retries = 0;
6171         u64 seq;
6172
6173         might_sleep();
6174         sb = ar->inode->i_sb;
6175         sbi = EXT4_SB(sb);
6176
6177         trace_ext4_request_blocks(ar);
6178         if (sbi->s_mount_state & EXT4_FC_REPLAY)
6179                 return ext4_mb_new_blocks_simple(ar, errp);
6180
6181         /* Allow to use superuser reservation for quota file */
6182         if (ext4_is_quota_file(ar->inode))
6183                 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
6184
6185         if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
6186                 /* Without delayed allocation we need to verify
6187                  * there is enough free blocks to do block allocation
6188                  * and verify allocation doesn't exceed the quota limits.
6189                  */
6190                 while (ar->len &&
6191                         ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
6192
6193                         /* let others to free the space */
6194                         cond_resched();
6195                         ar->len = ar->len >> 1;
6196                 }
6197                 if (!ar->len) {
6198                         ext4_mb_show_pa(sb);
6199                         *errp = -ENOSPC;
6200                         return 0;
6201                 }
6202                 reserv_clstrs = ar->len;
6203                 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
6204                         dquot_alloc_block_nofail(ar->inode,
6205                                                  EXT4_C2B(sbi, ar->len));
6206                 } else {
6207                         while (ar->len &&
6208                                 dquot_alloc_block(ar->inode,
6209                                                   EXT4_C2B(sbi, ar->len))) {
6210
6211                                 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
6212                                 ar->len--;
6213                         }
6214                 }
6215                 inquota = ar->len;
6216                 if (ar->len == 0) {
6217                         *errp = -EDQUOT;
6218                         goto out;
6219                 }
6220         }
6221
6222         ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
6223         if (!ac) {
6224                 ar->len = 0;
6225                 *errp = -ENOMEM;
6226                 goto out;
6227         }
6228
6229         ext4_mb_initialize_context(ac, ar);
6230
6231         ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
6232         seq = this_cpu_read(discard_pa_seq);
6233         if (!ext4_mb_use_preallocated(ac)) {
6234                 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
6235                 ext4_mb_normalize_request(ac, ar);
6236
6237                 *errp = ext4_mb_pa_alloc(ac);
6238                 if (*errp)
6239                         goto errout;
6240 repeat:
6241                 /* allocate space in core */
6242                 *errp = ext4_mb_regular_allocator(ac);
6243                 /*
6244                  * pa allocated above is added to grp->bb_prealloc_list only
6245                  * when we were able to allocate some block i.e. when
6246                  * ac->ac_status == AC_STATUS_FOUND.
6247                  * And error from above mean ac->ac_status != AC_STATUS_FOUND
6248                  * So we have to free this pa here itself.
6249                  */
6250                 if (*errp) {
6251                         ext4_mb_pa_put_free(ac);
6252                         ext4_discard_allocated_blocks(ac);
6253                         goto errout;
6254                 }
6255                 if (ac->ac_status == AC_STATUS_FOUND &&
6256                         ac->ac_o_ex.fe_len >= ac->ac_f_ex.fe_len)
6257                         ext4_mb_pa_put_free(ac);
6258         }
6259         if (likely(ac->ac_status == AC_STATUS_FOUND)) {
6260                 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
6261                 if (*errp) {
6262                         ext4_discard_allocated_blocks(ac);
6263                         goto errout;
6264                 } else {
6265                         block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
6266                         ar->len = ac->ac_b_ex.fe_len;
6267                 }
6268         } else {
6269                 if (++retries < 3 &&
6270                     ext4_mb_discard_preallocations_should_retry(sb, ac, &seq))
6271                         goto repeat;
6272                 /*
6273                  * If block allocation fails then the pa allocated above
6274                  * needs to be freed here itself.
6275                  */
6276                 ext4_mb_pa_put_free(ac);
6277                 *errp = -ENOSPC;
6278         }
6279
6280         if (*errp) {
6281 errout:
6282                 ac->ac_b_ex.fe_len = 0;
6283                 ar->len = 0;
6284                 ext4_mb_show_ac(ac);
6285         }
6286         ext4_mb_release_context(ac);
6287         kmem_cache_free(ext4_ac_cachep, ac);
6288 out:
6289         if (inquota && ar->len < inquota)
6290                 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
6291         if (!ar->len) {
6292                 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
6293                         /* release all the reserved blocks if non delalloc */
6294                         percpu_counter_sub(&sbi->s_dirtyclusters_counter,
6295                                                 reserv_clstrs);
6296         }
6297
6298         trace_ext4_allocate_blocks(ar, (unsigned long long)block);
6299
6300         return block;
6301 }
6302
6303 /*
6304  * We can merge two free data extents only if the physical blocks
6305  * are contiguous, AND the extents were freed by the same transaction,
6306  * AND the blocks are associated with the same group.
6307  */
6308 static void ext4_try_merge_freed_extent(struct ext4_sb_info *sbi,
6309                                         struct ext4_free_data *entry,
6310                                         struct ext4_free_data *new_entry,
6311                                         struct rb_root *entry_rb_root)
6312 {
6313         if ((entry->efd_tid != new_entry->efd_tid) ||
6314             (entry->efd_group != new_entry->efd_group))
6315                 return;
6316         if (entry->efd_start_cluster + entry->efd_count ==
6317             new_entry->efd_start_cluster) {
6318                 new_entry->efd_start_cluster = entry->efd_start_cluster;
6319                 new_entry->efd_count += entry->efd_count;
6320         } else if (new_entry->efd_start_cluster + new_entry->efd_count ==
6321                    entry->efd_start_cluster) {
6322                 new_entry->efd_count += entry->efd_count;
6323         } else
6324                 return;
6325         spin_lock(&sbi->s_md_lock);
6326         list_del(&entry->efd_list);
6327         spin_unlock(&sbi->s_md_lock);
6328         rb_erase(&entry->efd_node, entry_rb_root);
6329         kmem_cache_free(ext4_free_data_cachep, entry);
6330 }
6331
6332 static noinline_for_stack void
6333 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
6334                       struct ext4_free_data *new_entry)
6335 {
6336         ext4_group_t group = e4b->bd_group;
6337         ext4_grpblk_t cluster;
6338         ext4_grpblk_t clusters = new_entry->efd_count;
6339         struct ext4_free_data *entry;
6340         struct ext4_group_info *db = e4b->bd_info;
6341         struct super_block *sb = e4b->bd_sb;
6342         struct ext4_sb_info *sbi = EXT4_SB(sb);
6343         struct rb_node **n = &db->bb_free_root.rb_node, *node;
6344         struct rb_node *parent = NULL, *new_node;
6345
6346         BUG_ON(!ext4_handle_valid(handle));
6347         BUG_ON(e4b->bd_bitmap_page == NULL);
6348         BUG_ON(e4b->bd_buddy_page == NULL);
6349
6350         new_node = &new_entry->efd_node;
6351         cluster = new_entry->efd_start_cluster;
6352
6353         if (!*n) {
6354                 /* first free block exent. We need to
6355                    protect buddy cache from being freed,
6356                  * otherwise we'll refresh it from
6357                  * on-disk bitmap and lose not-yet-available
6358                  * blocks */
6359                 get_page(e4b->bd_buddy_page);
6360                 get_page(e4b->bd_bitmap_page);
6361         }
6362         while (*n) {
6363                 parent = *n;
6364                 entry = rb_entry(parent, struct ext4_free_data, efd_node);
6365                 if (cluster < entry->efd_start_cluster)
6366                         n = &(*n)->rb_left;
6367                 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
6368                         n = &(*n)->rb_right;
6369                 else {
6370                         ext4_grp_locked_error(sb, group, 0,
6371                                 ext4_group_first_block_no(sb, group) +
6372                                 EXT4_C2B(sbi, cluster),
6373                                 "Block already on to-be-freed list");
6374                         kmem_cache_free(ext4_free_data_cachep, new_entry);
6375                         return;
6376                 }
6377         }
6378
6379         rb_link_node(new_node, parent, n);
6380         rb_insert_color(new_node, &db->bb_free_root);
6381
6382         /* Now try to see the extent can be merged to left and right */
6383         node = rb_prev(new_node);
6384         if (node) {
6385                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6386                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6387                                             &(db->bb_free_root));
6388         }
6389
6390         node = rb_next(new_node);
6391         if (node) {
6392                 entry = rb_entry(node, struct ext4_free_data, efd_node);
6393                 ext4_try_merge_freed_extent(sbi, entry, new_entry,
6394                                             &(db->bb_free_root));
6395         }
6396
6397         spin_lock(&sbi->s_md_lock);
6398         list_add_tail(&new_entry->efd_list, &sbi->s_freed_data_list);
6399         sbi->s_mb_free_pending += clusters;
6400         spin_unlock(&sbi->s_md_lock);
6401 }
6402
6403 static void ext4_free_blocks_simple(struct inode *inode, ext4_fsblk_t block,
6404                                         unsigned long count)
6405 {
6406         struct buffer_head *bitmap_bh;
6407         struct super_block *sb = inode->i_sb;
6408         struct ext4_group_desc *gdp;
6409         struct buffer_head *gdp_bh;
6410         ext4_group_t group;
6411         ext4_grpblk_t blkoff;
6412         int already_freed = 0, err, i;
6413
6414         ext4_get_group_no_and_offset(sb, block, &group, &blkoff);
6415         bitmap_bh = ext4_read_block_bitmap(sb, group);
6416         if (IS_ERR(bitmap_bh)) {
6417                 pr_warn("Failed to read block bitmap\n");
6418                 return;
6419         }
6420         gdp = ext4_get_group_desc(sb, group, &gdp_bh);
6421         if (!gdp)
6422                 goto err_out;
6423
6424         for (i = 0; i < count; i++) {
6425                 if (!mb_test_bit(blkoff + i, bitmap_bh->b_data))
6426                         already_freed++;
6427         }
6428         mb_clear_bits(bitmap_bh->b_data, blkoff, count);
6429         err = ext4_handle_dirty_metadata(NULL, NULL, bitmap_bh);
6430         if (err)
6431                 goto err_out;
6432         ext4_free_group_clusters_set(
6433                 sb, gdp, ext4_free_group_clusters(sb, gdp) +
6434                 count - already_freed);
6435         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6436         ext4_group_desc_csum_set(sb, group, gdp);
6437         ext4_handle_dirty_metadata(NULL, NULL, gdp_bh);
6438         sync_dirty_buffer(bitmap_bh);
6439         sync_dirty_buffer(gdp_bh);
6440
6441 err_out:
6442         brelse(bitmap_bh);
6443 }
6444
6445 /**
6446  * ext4_mb_clear_bb() -- helper function for freeing blocks.
6447  *                      Used by ext4_free_blocks()
6448  * @handle:             handle for this transaction
6449  * @inode:              inode
6450  * @block:              starting physical block to be freed
6451  * @count:              number of blocks to be freed
6452  * @flags:              flags used by ext4_free_blocks
6453  */
6454 static void ext4_mb_clear_bb(handle_t *handle, struct inode *inode,
6455                                ext4_fsblk_t block, unsigned long count,
6456                                int flags)
6457 {
6458         struct buffer_head *bitmap_bh = NULL;
6459         struct super_block *sb = inode->i_sb;
6460         struct ext4_group_desc *gdp;
6461         struct ext4_group_info *grp;
6462         unsigned int overflow;
6463         ext4_grpblk_t bit;
6464         struct buffer_head *gd_bh;
6465         ext4_group_t block_group;
6466         struct ext4_sb_info *sbi;
6467         struct ext4_buddy e4b;
6468         unsigned int count_clusters;
6469         int err = 0;
6470         int ret;
6471
6472         sbi = EXT4_SB(sb);
6473
6474         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6475             !ext4_inode_block_valid(inode, block, count)) {
6476                 ext4_error(sb, "Freeing blocks in system zone - "
6477                            "Block = %llu, count = %lu", block, count);
6478                 /* err = 0. ext4_std_error should be a no op */
6479                 goto error_return;
6480         }
6481         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6482
6483 do_more:
6484         overflow = 0;
6485         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6486
6487         grp = ext4_get_group_info(sb, block_group);
6488         if (unlikely(!grp || EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
6489                 return;
6490
6491         /*
6492          * Check to see if we are freeing blocks across a group
6493          * boundary.
6494          */
6495         if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
6496                 overflow = EXT4_C2B(sbi, bit) + count -
6497                         EXT4_BLOCKS_PER_GROUP(sb);
6498                 count -= overflow;
6499                 /* The range changed so it's no longer validated */
6500                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6501         }
6502         count_clusters = EXT4_NUM_B2C(sbi, count);
6503         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6504         if (IS_ERR(bitmap_bh)) {
6505                 err = PTR_ERR(bitmap_bh);
6506                 bitmap_bh = NULL;
6507                 goto error_return;
6508         }
6509         gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
6510         if (!gdp) {
6511                 err = -EIO;
6512                 goto error_return;
6513         }
6514
6515         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6516             !ext4_inode_block_valid(inode, block, count)) {
6517                 ext4_error(sb, "Freeing blocks in system zone - "
6518                            "Block = %llu, count = %lu", block, count);
6519                 /* err = 0. ext4_std_error should be a no op */
6520                 goto error_return;
6521         }
6522
6523         BUFFER_TRACE(bitmap_bh, "getting write access");
6524         err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6525                                             EXT4_JTR_NONE);
6526         if (err)
6527                 goto error_return;
6528
6529         /*
6530          * We are about to modify some metadata.  Call the journal APIs
6531          * to unshare ->b_data if a currently-committing transaction is
6532          * using it
6533          */
6534         BUFFER_TRACE(gd_bh, "get_write_access");
6535         err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6536         if (err)
6537                 goto error_return;
6538 #ifdef AGGRESSIVE_CHECK
6539         {
6540                 int i;
6541                 for (i = 0; i < count_clusters; i++)
6542                         BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
6543         }
6544 #endif
6545         trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
6546
6547         /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
6548         err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
6549                                      GFP_NOFS|__GFP_NOFAIL);
6550         if (err)
6551                 goto error_return;
6552
6553         /*
6554          * We need to make sure we don't reuse the freed block until after the
6555          * transaction is committed. We make an exception if the inode is to be
6556          * written in writeback mode since writeback mode has weak data
6557          * consistency guarantees.
6558          */
6559         if (ext4_handle_valid(handle) &&
6560             ((flags & EXT4_FREE_BLOCKS_METADATA) ||
6561              !ext4_should_writeback_data(inode))) {
6562                 struct ext4_free_data *new_entry;
6563                 /*
6564                  * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
6565                  * to fail.
6566                  */
6567                 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
6568                                 GFP_NOFS|__GFP_NOFAIL);
6569                 new_entry->efd_start_cluster = bit;
6570                 new_entry->efd_group = block_group;
6571                 new_entry->efd_count = count_clusters;
6572                 new_entry->efd_tid = handle->h_transaction->t_tid;
6573
6574                 ext4_lock_group(sb, block_group);
6575                 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6576                 ext4_mb_free_metadata(handle, &e4b, new_entry);
6577         } else {
6578                 /* need to update group_info->bb_free and bitmap
6579                  * with group lock held. generate_buddy look at
6580                  * them with group lock_held
6581                  */
6582                 if (test_opt(sb, DISCARD)) {
6583                         err = ext4_issue_discard(sb, block_group, bit,
6584                                                  count_clusters, NULL);
6585                         if (err && err != -EOPNOTSUPP)
6586                                 ext4_msg(sb, KERN_WARNING, "discard request in"
6587                                          " group:%u block:%d count:%lu failed"
6588                                          " with %d", block_group, bit, count,
6589                                          err);
6590                 } else
6591                         EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
6592
6593                 ext4_lock_group(sb, block_group);
6594                 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
6595                 mb_free_blocks(inode, &e4b, bit, count_clusters);
6596         }
6597
6598         ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
6599         ext4_free_group_clusters_set(sb, gdp, ret);
6600         ext4_block_bitmap_csum_set(sb, gdp, bitmap_bh);
6601         ext4_group_desc_csum_set(sb, block_group, gdp);
6602         ext4_unlock_group(sb, block_group);
6603
6604         if (sbi->s_log_groups_per_flex) {
6605                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6606                 atomic64_add(count_clusters,
6607                              &sbi_array_rcu_deref(sbi, s_flex_groups,
6608                                                   flex_group)->free_clusters);
6609         }
6610
6611         /*
6612          * on a bigalloc file system, defer the s_freeclusters_counter
6613          * update to the caller (ext4_remove_space and friends) so they
6614          * can determine if a cluster freed here should be rereserved
6615          */
6616         if (!(flags & EXT4_FREE_BLOCKS_RERESERVE_CLUSTER)) {
6617                 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
6618                         dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
6619                 percpu_counter_add(&sbi->s_freeclusters_counter,
6620                                    count_clusters);
6621         }
6622
6623         ext4_mb_unload_buddy(&e4b);
6624
6625         /* We dirtied the bitmap block */
6626         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6627         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6628
6629         /* And the group descriptor block */
6630         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6631         ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6632         if (!err)
6633                 err = ret;
6634
6635         if (overflow && !err) {
6636                 block += count;
6637                 count = overflow;
6638                 put_bh(bitmap_bh);
6639                 /* The range changed so it's no longer validated */
6640                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6641                 goto do_more;
6642         }
6643 error_return:
6644         brelse(bitmap_bh);
6645         ext4_std_error(sb, err);
6646         return;
6647 }
6648
6649 /**
6650  * ext4_free_blocks() -- Free given blocks and update quota
6651  * @handle:             handle for this transaction
6652  * @inode:              inode
6653  * @bh:                 optional buffer of the block to be freed
6654  * @block:              starting physical block to be freed
6655  * @count:              number of blocks to be freed
6656  * @flags:              flags used by ext4_free_blocks
6657  */
6658 void ext4_free_blocks(handle_t *handle, struct inode *inode,
6659                       struct buffer_head *bh, ext4_fsblk_t block,
6660                       unsigned long count, int flags)
6661 {
6662         struct super_block *sb = inode->i_sb;
6663         unsigned int overflow;
6664         struct ext4_sb_info *sbi;
6665
6666         sbi = EXT4_SB(sb);
6667
6668         if (bh) {
6669                 if (block)
6670                         BUG_ON(block != bh->b_blocknr);
6671                 else
6672                         block = bh->b_blocknr;
6673         }
6674
6675         if (sbi->s_mount_state & EXT4_FC_REPLAY) {
6676                 ext4_free_blocks_simple(inode, block, EXT4_NUM_B2C(sbi, count));
6677                 return;
6678         }
6679
6680         might_sleep();
6681
6682         if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
6683             !ext4_inode_block_valid(inode, block, count)) {
6684                 ext4_error(sb, "Freeing blocks not in datazone - "
6685                            "block = %llu, count = %lu", block, count);
6686                 return;
6687         }
6688         flags |= EXT4_FREE_BLOCKS_VALIDATED;
6689
6690         ext4_debug("freeing block %llu\n", block);
6691         trace_ext4_free_blocks(inode, block, count, flags);
6692
6693         if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6694                 BUG_ON(count > 1);
6695
6696                 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
6697                             inode, bh, block);
6698         }
6699
6700         /*
6701          * If the extent to be freed does not begin on a cluster
6702          * boundary, we need to deal with partial clusters at the
6703          * beginning and end of the extent.  Normally we will free
6704          * blocks at the beginning or the end unless we are explicitly
6705          * requested to avoid doing so.
6706          */
6707         overflow = EXT4_PBLK_COFF(sbi, block);
6708         if (overflow) {
6709                 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
6710                         overflow = sbi->s_cluster_ratio - overflow;
6711                         block += overflow;
6712                         if (count > overflow)
6713                                 count -= overflow;
6714                         else
6715                                 return;
6716                 } else {
6717                         block -= overflow;
6718                         count += overflow;
6719                 }
6720                 /* The range changed so it's no longer validated */
6721                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6722         }
6723         overflow = EXT4_LBLK_COFF(sbi, count);
6724         if (overflow) {
6725                 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
6726                         if (count > overflow)
6727                                 count -= overflow;
6728                         else
6729                                 return;
6730                 } else
6731                         count += sbi->s_cluster_ratio - overflow;
6732                 /* The range changed so it's no longer validated */
6733                 flags &= ~EXT4_FREE_BLOCKS_VALIDATED;
6734         }
6735
6736         if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
6737                 int i;
6738                 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
6739
6740                 for (i = 0; i < count; i++) {
6741                         cond_resched();
6742                         if (is_metadata)
6743                                 bh = sb_find_get_block(inode->i_sb, block + i);
6744                         ext4_forget(handle, is_metadata, inode, bh, block + i);
6745                 }
6746         }
6747
6748         ext4_mb_clear_bb(handle, inode, block, count, flags);
6749         return;
6750 }
6751
6752 /**
6753  * ext4_group_add_blocks() -- Add given blocks to an existing group
6754  * @handle:                     handle to this transaction
6755  * @sb:                         super block
6756  * @block:                      start physical block to add to the block group
6757  * @count:                      number of blocks to free
6758  *
6759  * This marks the blocks as free in the bitmap and buddy.
6760  */
6761 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
6762                          ext4_fsblk_t block, unsigned long count)
6763 {
6764         struct buffer_head *bitmap_bh = NULL;
6765         struct buffer_head *gd_bh;
6766         ext4_group_t block_group;
6767         ext4_grpblk_t bit;
6768         unsigned int i;
6769         struct ext4_group_desc *desc;
6770         struct ext4_sb_info *sbi = EXT4_SB(sb);
6771         struct ext4_buddy e4b;
6772         int err = 0, ret, free_clusters_count;
6773         ext4_grpblk_t clusters_freed;
6774         ext4_fsblk_t first_cluster = EXT4_B2C(sbi, block);
6775         ext4_fsblk_t last_cluster = EXT4_B2C(sbi, block + count - 1);
6776         unsigned long cluster_count = last_cluster - first_cluster + 1;
6777
6778         ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
6779
6780         if (count == 0)
6781                 return 0;
6782
6783         ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
6784         /*
6785          * Check to see if we are freeing blocks across a group
6786          * boundary.
6787          */
6788         if (bit + cluster_count > EXT4_CLUSTERS_PER_GROUP(sb)) {
6789                 ext4_warning(sb, "too many blocks added to group %u",
6790                              block_group);
6791                 err = -EINVAL;
6792                 goto error_return;
6793         }
6794
6795         bitmap_bh = ext4_read_block_bitmap(sb, block_group);
6796         if (IS_ERR(bitmap_bh)) {
6797                 err = PTR_ERR(bitmap_bh);
6798                 bitmap_bh = NULL;
6799                 goto error_return;
6800         }
6801
6802         desc = ext4_get_group_desc(sb, block_group, &gd_bh);
6803         if (!desc) {
6804                 err = -EIO;
6805                 goto error_return;
6806         }
6807
6808         if (!ext4_sb_block_valid(sb, NULL, block, count)) {
6809                 ext4_error(sb, "Adding blocks in system zones - "
6810                            "Block = %llu, count = %lu",
6811                            block, count);
6812                 err = -EINVAL;
6813                 goto error_return;
6814         }
6815
6816         BUFFER_TRACE(bitmap_bh, "getting write access");
6817         err = ext4_journal_get_write_access(handle, sb, bitmap_bh,
6818                                             EXT4_JTR_NONE);
6819         if (err)
6820                 goto error_return;
6821
6822         /*
6823          * We are about to modify some metadata.  Call the journal APIs
6824          * to unshare ->b_data if a currently-committing transaction is
6825          * using it
6826          */
6827         BUFFER_TRACE(gd_bh, "get_write_access");
6828         err = ext4_journal_get_write_access(handle, sb, gd_bh, EXT4_JTR_NONE);
6829         if (err)
6830                 goto error_return;
6831
6832         for (i = 0, clusters_freed = 0; i < cluster_count; i++) {
6833                 BUFFER_TRACE(bitmap_bh, "clear bit");
6834                 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
6835                         ext4_error(sb, "bit already cleared for block %llu",
6836                                    (ext4_fsblk_t)(block + i));
6837                         BUFFER_TRACE(bitmap_bh, "bit already cleared");
6838                 } else {
6839                         clusters_freed++;
6840                 }
6841         }
6842
6843         err = ext4_mb_load_buddy(sb, block_group, &e4b);
6844         if (err)
6845                 goto error_return;
6846
6847         /*
6848          * need to update group_info->bb_free and bitmap
6849          * with group lock held. generate_buddy look at
6850          * them with group lock_held
6851          */
6852         ext4_lock_group(sb, block_group);
6853         mb_clear_bits(bitmap_bh->b_data, bit, cluster_count);
6854         mb_free_blocks(NULL, &e4b, bit, cluster_count);
6855         free_clusters_count = clusters_freed +
6856                 ext4_free_group_clusters(sb, desc);
6857         ext4_free_group_clusters_set(sb, desc, free_clusters_count);
6858         ext4_block_bitmap_csum_set(sb, desc, bitmap_bh);
6859         ext4_group_desc_csum_set(sb, block_group, desc);
6860         ext4_unlock_group(sb, block_group);
6861         percpu_counter_add(&sbi->s_freeclusters_counter,
6862                            clusters_freed);
6863
6864         if (sbi->s_log_groups_per_flex) {
6865                 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
6866                 atomic64_add(clusters_freed,
6867                              &sbi_array_rcu_deref(sbi, s_flex_groups,
6868                                                   flex_group)->free_clusters);
6869         }
6870
6871         ext4_mb_unload_buddy(&e4b);
6872
6873         /* We dirtied the bitmap block */
6874         BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
6875         err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
6876
6877         /* And the group descriptor block */
6878         BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
6879         ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
6880         if (!err)
6881                 err = ret;
6882
6883 error_return:
6884         brelse(bitmap_bh);
6885         ext4_std_error(sb, err);
6886         return err;
6887 }
6888
6889 /**
6890  * ext4_trim_extent -- function to TRIM one single free extent in the group
6891  * @sb:         super block for the file system
6892  * @start:      starting block of the free extent in the alloc. group
6893  * @count:      number of blocks to TRIM
6894  * @e4b:        ext4 buddy for the group
6895  *
6896  * Trim "count" blocks starting at "start" in the "group". To assure that no
6897  * one will allocate those blocks, mark it as used in buddy bitmap. This must
6898  * be called with under the group lock.
6899  */
6900 static int ext4_trim_extent(struct super_block *sb,
6901                 int start, int count, struct ext4_buddy *e4b)
6902 __releases(bitlock)
6903 __acquires(bitlock)
6904 {
6905         struct ext4_free_extent ex;
6906         ext4_group_t group = e4b->bd_group;
6907         int ret = 0;
6908
6909         trace_ext4_trim_extent(sb, group, start, count);
6910
6911         assert_spin_locked(ext4_group_lock_ptr(sb, group));
6912
6913         ex.fe_start = start;
6914         ex.fe_group = group;
6915         ex.fe_len = count;
6916
6917         /*
6918          * Mark blocks used, so no one can reuse them while
6919          * being trimmed.
6920          */
6921         mb_mark_used(e4b, &ex);
6922         ext4_unlock_group(sb, group);
6923         ret = ext4_issue_discard(sb, group, start, count, NULL);
6924         ext4_lock_group(sb, group);
6925         mb_free_blocks(NULL, e4b, start, ex.fe_len);
6926         return ret;
6927 }
6928
6929 static int ext4_try_to_trim_range(struct super_block *sb,
6930                 struct ext4_buddy *e4b, ext4_grpblk_t start,
6931                 ext4_grpblk_t max, ext4_grpblk_t minblocks)
6932 __acquires(ext4_group_lock_ptr(sb, e4b->bd_group))
6933 __releases(ext4_group_lock_ptr(sb, e4b->bd_group))
6934 {
6935         ext4_grpblk_t next, count, free_count;
6936         void *bitmap;
6937
6938         bitmap = e4b->bd_bitmap;
6939         start = (e4b->bd_info->bb_first_free > start) ?
6940                 e4b->bd_info->bb_first_free : start;
6941         count = 0;
6942         free_count = 0;
6943
6944         while (start <= max) {
6945                 start = mb_find_next_zero_bit(bitmap, max + 1, start);
6946                 if (start > max)
6947                         break;
6948                 next = mb_find_next_bit(bitmap, max + 1, start);
6949
6950                 if ((next - start) >= minblocks) {
6951                         int ret = ext4_trim_extent(sb, start, next - start, e4b);
6952
6953                         if (ret && ret != -EOPNOTSUPP)
6954                                 break;
6955                         count += next - start;
6956                 }
6957                 free_count += next - start;
6958                 start = next + 1;
6959
6960                 if (fatal_signal_pending(current)) {
6961                         count = -ERESTARTSYS;
6962                         break;
6963                 }
6964
6965                 if (need_resched()) {
6966                         ext4_unlock_group(sb, e4b->bd_group);
6967                         cond_resched();
6968                         ext4_lock_group(sb, e4b->bd_group);
6969                 }
6970
6971                 if ((e4b->bd_info->bb_free - free_count) < minblocks)
6972                         break;
6973         }
6974
6975         return count;
6976 }
6977
6978 /**
6979  * ext4_trim_all_free -- function to trim all free space in alloc. group
6980  * @sb:                 super block for file system
6981  * @group:              group to be trimmed
6982  * @start:              first group block to examine
6983  * @max:                last group block to examine
6984  * @minblocks:          minimum extent block count
6985  * @set_trimmed:        set the trimmed flag if at least one block is trimmed
6986  *
6987  * ext4_trim_all_free walks through group's block bitmap searching for free
6988  * extents. When the free extent is found, mark it as used in group buddy
6989  * bitmap. Then issue a TRIM command on this extent and free the extent in
6990  * the group buddy bitmap.
6991  */
6992 static ext4_grpblk_t
6993 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
6994                    ext4_grpblk_t start, ext4_grpblk_t max,
6995                    ext4_grpblk_t minblocks, bool set_trimmed)
6996 {
6997         struct ext4_buddy e4b;
6998         int ret;
6999
7000         trace_ext4_trim_all_free(sb, group, start, max);
7001
7002         ret = ext4_mb_load_buddy(sb, group, &e4b);
7003         if (ret) {
7004                 ext4_warning(sb, "Error %d loading buddy information for %u",
7005                              ret, group);
7006                 return ret;
7007         }
7008
7009         ext4_lock_group(sb, group);
7010
7011         if (!EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) ||
7012             minblocks < EXT4_SB(sb)->s_last_trim_minblks) {
7013                 ret = ext4_try_to_trim_range(sb, &e4b, start, max, minblocks);
7014                 if (ret >= 0 && set_trimmed)
7015                         EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
7016         } else {
7017                 ret = 0;
7018         }
7019
7020         ext4_unlock_group(sb, group);
7021         ext4_mb_unload_buddy(&e4b);
7022
7023         ext4_debug("trimmed %d blocks in the group %d\n",
7024                 ret, group);
7025
7026         return ret;
7027 }
7028
7029 /**
7030  * ext4_trim_fs() -- trim ioctl handle function
7031  * @sb:                 superblock for filesystem
7032  * @range:              fstrim_range structure
7033  *
7034  * start:       First Byte to trim
7035  * len:         number of Bytes to trim from start
7036  * minlen:      minimum extent length in Bytes
7037  * ext4_trim_fs goes through all allocation groups containing Bytes from
7038  * start to start+len. For each such a group ext4_trim_all_free function
7039  * is invoked to trim all free space.
7040  */
7041 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
7042 {
7043         unsigned int discard_granularity = bdev_discard_granularity(sb->s_bdev);
7044         struct ext4_group_info *grp;
7045         ext4_group_t group, first_group, last_group;
7046         ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
7047         uint64_t start, end, minlen, trimmed = 0;
7048         ext4_fsblk_t first_data_blk =
7049                         le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
7050         ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
7051         bool whole_group, eof = false;
7052         int ret = 0;
7053
7054         start = range->start >> sb->s_blocksize_bits;
7055         end = start + (range->len >> sb->s_blocksize_bits) - 1;
7056         minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7057                               range->minlen >> sb->s_blocksize_bits);
7058
7059         if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
7060             start >= max_blks ||
7061             range->len < sb->s_blocksize)
7062                 return -EINVAL;
7063         /* No point to try to trim less than discard granularity */
7064         if (range->minlen < discard_granularity) {
7065                 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
7066                                 discard_granularity >> sb->s_blocksize_bits);
7067                 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb))
7068                         goto out;
7069         }
7070         if (end >= max_blks - 1) {
7071                 end = max_blks - 1;
7072                 eof = true;
7073         }
7074         if (end <= first_data_blk)
7075                 goto out;
7076         if (start < first_data_blk)
7077                 start = first_data_blk;
7078
7079         /* Determine first and last group to examine based on start and end */
7080         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
7081                                      &first_group, &first_cluster);
7082         ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
7083                                      &last_group, &last_cluster);
7084
7085         /* end now represents the last cluster to discard in this group */
7086         end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7087         whole_group = true;
7088
7089         for (group = first_group; group <= last_group; group++) {
7090                 grp = ext4_get_group_info(sb, group);
7091                 if (!grp)
7092                         continue;
7093                 /* We only do this if the grp has never been initialized */
7094                 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
7095                         ret = ext4_mb_init_group(sb, group, GFP_NOFS);
7096                         if (ret)
7097                                 break;
7098                 }
7099
7100                 /*
7101                  * For all the groups except the last one, last cluster will
7102                  * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
7103                  * change it for the last group, note that last_cluster is
7104                  * already computed earlier by ext4_get_group_no_and_offset()
7105                  */
7106                 if (group == last_group) {
7107                         end = last_cluster;
7108                         whole_group = eof ? true : end == EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7109                 }
7110                 if (grp->bb_free >= minlen) {
7111                         cnt = ext4_trim_all_free(sb, group, first_cluster,
7112                                                  end, minlen, whole_group);
7113                         if (cnt < 0) {
7114                                 ret = cnt;
7115                                 break;
7116                         }
7117                         trimmed += cnt;
7118                 }
7119
7120                 /*
7121                  * For every group except the first one, we are sure
7122                  * that the first cluster to discard will be cluster #0.
7123                  */
7124                 first_cluster = 0;
7125         }
7126
7127         if (!ret)
7128                 EXT4_SB(sb)->s_last_trim_minblks = minlen;
7129
7130 out:
7131         range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
7132         return ret;
7133 }
7134
7135 /* Iterate all the free extents in the group. */
7136 int
7137 ext4_mballoc_query_range(
7138         struct super_block              *sb,
7139         ext4_group_t                    group,
7140         ext4_grpblk_t                   start,
7141         ext4_grpblk_t                   end,
7142         ext4_mballoc_query_range_fn     formatter,
7143         void                            *priv)
7144 {
7145         void                            *bitmap;
7146         ext4_grpblk_t                   next;
7147         struct ext4_buddy               e4b;
7148         int                             error;
7149
7150         error = ext4_mb_load_buddy(sb, group, &e4b);
7151         if (error)
7152                 return error;
7153         bitmap = e4b.bd_bitmap;
7154
7155         ext4_lock_group(sb, group);
7156
7157         start = (e4b.bd_info->bb_first_free > start) ?
7158                 e4b.bd_info->bb_first_free : start;
7159         if (end >= EXT4_CLUSTERS_PER_GROUP(sb))
7160                 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
7161
7162         while (start <= end) {
7163                 start = mb_find_next_zero_bit(bitmap, end + 1, start);
7164                 if (start > end)
7165                         break;
7166                 next = mb_find_next_bit(bitmap, end + 1, start);
7167
7168                 ext4_unlock_group(sb, group);
7169                 error = formatter(sb, group, start, next - start, priv);
7170                 if (error)
7171                         goto out_unload;
7172                 ext4_lock_group(sb, group);
7173
7174                 start = next + 1;
7175         }
7176
7177         ext4_unlock_group(sb, group);
7178 out_unload:
7179         ext4_mb_unload_buddy(&e4b);
7180
7181         return error;
7182 }
This page took 0.504762 seconds and 4 git commands to generate.