]> Git Repo - linux.git/blob - fs/dlm/lowcomms.c
wifi: cfg80211: Annotate struct cfg80211_scan_request with __counted_by
[linux.git] / fs / dlm / lowcomms.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 **  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
6 **  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13  * lowcomms.c
14  *
15  * This is the "low-level" comms layer.
16  *
17  * It is responsible for sending/receiving messages
18  * from other nodes in the cluster.
19  *
20  * Cluster nodes are referred to by their nodeids. nodeids are
21  * simply 32 bit numbers to the locking module - if they need to
22  * be expanded for the cluster infrastructure then that is its
23  * responsibility. It is this layer's
24  * responsibility to resolve these into IP address or
25  * whatever it needs for inter-node communication.
26  *
27  * The comms level is two kernel threads that deal mainly with
28  * the receiving of messages from other nodes and passing them
29  * up to the mid-level comms layer (which understands the
30  * message format) for execution by the locking core, and
31  * a send thread which does all the setting up of connections
32  * to remote nodes and the sending of data. Threads are not allowed
33  * to send their own data because it may cause them to wait in times
34  * of high load. Also, this way, the sending thread can collect together
35  * messages bound for one node and send them in one block.
36  *
37  * lowcomms will choose to use either TCP or SCTP as its transport layer
38  * depending on the configuration variable 'protocol'. This should be set
39  * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40  * cluster-wide mechanism as it must be the same on all nodes of the cluster
41  * for the DLM to function.
42  *
43  */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include <trace/events/dlm.h>
57 #include <trace/events/sock.h>
58
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "memory.h"
63 #include "config.h"
64
65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66 #define NEEDED_RMEM (4*1024*1024)
67
68 struct connection {
69         struct socket *sock;    /* NULL if not connected */
70         uint32_t nodeid;        /* So we know who we are in the list */
71         /* this semaphore is used to allow parallel recv/send in read
72          * lock mode. When we release a sock we need to held the write lock.
73          *
74          * However this is locking code and not nice. When we remove the
75          * othercon handling we can look into other mechanism to synchronize
76          * io handling to call sock_release() at the right time.
77          */
78         struct rw_semaphore sock_lock;
79         unsigned long flags;
80 #define CF_APP_LIMITED 0
81 #define CF_RECV_PENDING 1
82 #define CF_SEND_PENDING 2
83 #define CF_RECV_INTR 3
84 #define CF_IO_STOP 4
85 #define CF_IS_OTHERCON 5
86         struct list_head writequeue;  /* List of outgoing writequeue_entries */
87         spinlock_t writequeue_lock;
88         int retries;
89         struct hlist_node list;
90         /* due some connect()/accept() races we currently have this cross over
91          * connection attempt second connection for one node.
92          *
93          * There is a solution to avoid the race by introducing a connect
94          * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
95          * connect. Otherside can connect but will only be considered that
96          * the other side wants to have a reconnect.
97          *
98          * However changing to this behaviour will break backwards compatible.
99          * In a DLM protocol major version upgrade we should remove this!
100          */
101         struct connection *othercon;
102         struct work_struct rwork; /* receive worker */
103         struct work_struct swork; /* send worker */
104         wait_queue_head_t shutdown_wait;
105         unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
106         int rx_leftover;
107         int mark;
108         int addr_count;
109         int curr_addr_index;
110         struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
111         spinlock_t addrs_lock;
112         struct rcu_head rcu;
113 };
114 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
115
116 struct listen_connection {
117         struct socket *sock;
118         struct work_struct rwork;
119 };
120
121 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
122 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
123
124 /* An entry waiting to be sent */
125 struct writequeue_entry {
126         struct list_head list;
127         struct page *page;
128         int offset;
129         int len;
130         int end;
131         int users;
132         bool dirty;
133         struct connection *con;
134         struct list_head msgs;
135         struct kref ref;
136 };
137
138 struct dlm_msg {
139         struct writequeue_entry *entry;
140         struct dlm_msg *orig_msg;
141         bool retransmit;
142         void *ppc;
143         int len;
144         int idx; /* new()/commit() idx exchange */
145
146         struct list_head list;
147         struct kref ref;
148 };
149
150 struct processqueue_entry {
151         unsigned char *buf;
152         int nodeid;
153         int buflen;
154
155         struct list_head list;
156 };
157
158 struct dlm_proto_ops {
159         bool try_new_addr;
160         const char *name;
161         int proto;
162
163         int (*connect)(struct connection *con, struct socket *sock,
164                        struct sockaddr *addr, int addr_len);
165         void (*sockopts)(struct socket *sock);
166         int (*bind)(struct socket *sock);
167         int (*listen_validate)(void);
168         void (*listen_sockopts)(struct socket *sock);
169         int (*listen_bind)(struct socket *sock);
170 };
171
172 static struct listen_sock_callbacks {
173         void (*sk_error_report)(struct sock *);
174         void (*sk_data_ready)(struct sock *);
175         void (*sk_state_change)(struct sock *);
176         void (*sk_write_space)(struct sock *);
177 } listen_sock;
178
179 static struct listen_connection listen_con;
180 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
181 static int dlm_local_count;
182
183 /* Work queues */
184 static struct workqueue_struct *io_workqueue;
185 static struct workqueue_struct *process_workqueue;
186
187 static struct hlist_head connection_hash[CONN_HASH_SIZE];
188 static DEFINE_SPINLOCK(connections_lock);
189 DEFINE_STATIC_SRCU(connections_srcu);
190
191 static const struct dlm_proto_ops *dlm_proto_ops;
192
193 #define DLM_IO_SUCCESS 0
194 #define DLM_IO_END 1
195 #define DLM_IO_EOF 2
196 #define DLM_IO_RESCHED 3
197
198 static void process_recv_sockets(struct work_struct *work);
199 static void process_send_sockets(struct work_struct *work);
200 static void process_dlm_messages(struct work_struct *work);
201
202 static DECLARE_WORK(process_work, process_dlm_messages);
203 static DEFINE_SPINLOCK(processqueue_lock);
204 static bool process_dlm_messages_pending;
205 static LIST_HEAD(processqueue);
206
207 bool dlm_lowcomms_is_running(void)
208 {
209         return !!listen_con.sock;
210 }
211
212 static void lowcomms_queue_swork(struct connection *con)
213 {
214         assert_spin_locked(&con->writequeue_lock);
215
216         if (!test_bit(CF_IO_STOP, &con->flags) &&
217             !test_bit(CF_APP_LIMITED, &con->flags) &&
218             !test_and_set_bit(CF_SEND_PENDING, &con->flags))
219                 queue_work(io_workqueue, &con->swork);
220 }
221
222 static void lowcomms_queue_rwork(struct connection *con)
223 {
224 #ifdef CONFIG_LOCKDEP
225         WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
226 #endif
227
228         if (!test_bit(CF_IO_STOP, &con->flags) &&
229             !test_and_set_bit(CF_RECV_PENDING, &con->flags))
230                 queue_work(io_workqueue, &con->rwork);
231 }
232
233 static void writequeue_entry_ctor(void *data)
234 {
235         struct writequeue_entry *entry = data;
236
237         INIT_LIST_HEAD(&entry->msgs);
238 }
239
240 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
241 {
242         return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
243                                  0, 0, writequeue_entry_ctor);
244 }
245
246 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
247 {
248         return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
249 }
250
251 /* need to held writequeue_lock */
252 static struct writequeue_entry *con_next_wq(struct connection *con)
253 {
254         struct writequeue_entry *e;
255
256         e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
257                                      list);
258         /* if len is zero nothing is to send, if there are users filling
259          * buffers we wait until the users are done so we can send more.
260          */
261         if (!e || e->users || e->len == 0)
262                 return NULL;
263
264         return e;
265 }
266
267 static struct connection *__find_con(int nodeid, int r)
268 {
269         struct connection *con;
270
271         hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
272                 if (con->nodeid == nodeid)
273                         return con;
274         }
275
276         return NULL;
277 }
278
279 static void dlm_con_init(struct connection *con, int nodeid)
280 {
281         con->nodeid = nodeid;
282         init_rwsem(&con->sock_lock);
283         INIT_LIST_HEAD(&con->writequeue);
284         spin_lock_init(&con->writequeue_lock);
285         INIT_WORK(&con->swork, process_send_sockets);
286         INIT_WORK(&con->rwork, process_recv_sockets);
287         spin_lock_init(&con->addrs_lock);
288         init_waitqueue_head(&con->shutdown_wait);
289 }
290
291 /*
292  * If 'allocation' is zero then we don't attempt to create a new
293  * connection structure for this node.
294  */
295 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
296 {
297         struct connection *con, *tmp;
298         int r;
299
300         r = nodeid_hash(nodeid);
301         con = __find_con(nodeid, r);
302         if (con || !alloc)
303                 return con;
304
305         con = kzalloc(sizeof(*con), alloc);
306         if (!con)
307                 return NULL;
308
309         dlm_con_init(con, nodeid);
310
311         spin_lock(&connections_lock);
312         /* Because multiple workqueues/threads calls this function it can
313          * race on multiple cpu's. Instead of locking hot path __find_con()
314          * we just check in rare cases of recently added nodes again
315          * under protection of connections_lock. If this is the case we
316          * abort our connection creation and return the existing connection.
317          */
318         tmp = __find_con(nodeid, r);
319         if (tmp) {
320                 spin_unlock(&connections_lock);
321                 kfree(con);
322                 return tmp;
323         }
324
325         hlist_add_head_rcu(&con->list, &connection_hash[r]);
326         spin_unlock(&connections_lock);
327
328         return con;
329 }
330
331 static int addr_compare(const struct sockaddr_storage *x,
332                         const struct sockaddr_storage *y)
333 {
334         switch (x->ss_family) {
335         case AF_INET: {
336                 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
337                 struct sockaddr_in *siny = (struct sockaddr_in *)y;
338                 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
339                         return 0;
340                 if (sinx->sin_port != siny->sin_port)
341                         return 0;
342                 break;
343         }
344         case AF_INET6: {
345                 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
346                 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
347                 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
348                         return 0;
349                 if (sinx->sin6_port != siny->sin6_port)
350                         return 0;
351                 break;
352         }
353         default:
354                 return 0;
355         }
356         return 1;
357 }
358
359 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
360                           struct sockaddr *sa_out, bool try_new_addr,
361                           unsigned int *mark)
362 {
363         struct sockaddr_storage sas;
364         struct connection *con;
365         int idx;
366
367         if (!dlm_local_count)
368                 return -1;
369
370         idx = srcu_read_lock(&connections_srcu);
371         con = nodeid2con(nodeid, 0);
372         if (!con) {
373                 srcu_read_unlock(&connections_srcu, idx);
374                 return -ENOENT;
375         }
376
377         spin_lock(&con->addrs_lock);
378         if (!con->addr_count) {
379                 spin_unlock(&con->addrs_lock);
380                 srcu_read_unlock(&connections_srcu, idx);
381                 return -ENOENT;
382         }
383
384         memcpy(&sas, &con->addr[con->curr_addr_index],
385                sizeof(struct sockaddr_storage));
386
387         if (try_new_addr) {
388                 con->curr_addr_index++;
389                 if (con->curr_addr_index == con->addr_count)
390                         con->curr_addr_index = 0;
391         }
392
393         *mark = con->mark;
394         spin_unlock(&con->addrs_lock);
395
396         if (sas_out)
397                 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
398
399         if (!sa_out) {
400                 srcu_read_unlock(&connections_srcu, idx);
401                 return 0;
402         }
403
404         if (dlm_local_addr[0].ss_family == AF_INET) {
405                 struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
406                 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
407                 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
408         } else {
409                 struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
410                 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
411                 ret6->sin6_addr = in6->sin6_addr;
412         }
413
414         srcu_read_unlock(&connections_srcu, idx);
415         return 0;
416 }
417
418 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
419                           unsigned int *mark)
420 {
421         struct connection *con;
422         int i, idx, addr_i;
423
424         idx = srcu_read_lock(&connections_srcu);
425         for (i = 0; i < CONN_HASH_SIZE; i++) {
426                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
427                         WARN_ON_ONCE(!con->addr_count);
428
429                         spin_lock(&con->addrs_lock);
430                         for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
431                                 if (addr_compare(&con->addr[addr_i], addr)) {
432                                         *nodeid = con->nodeid;
433                                         *mark = con->mark;
434                                         spin_unlock(&con->addrs_lock);
435                                         srcu_read_unlock(&connections_srcu, idx);
436                                         return 0;
437                                 }
438                         }
439                         spin_unlock(&con->addrs_lock);
440                 }
441         }
442         srcu_read_unlock(&connections_srcu, idx);
443
444         return -ENOENT;
445 }
446
447 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
448                                       const struct sockaddr_storage *addr)
449 {
450         int i;
451
452         for (i = 0; i < con->addr_count; i++) {
453                 if (addr_compare(&con->addr[i], addr))
454                         return true;
455         }
456
457         return false;
458 }
459
460 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
461 {
462         struct connection *con;
463         bool ret, idx;
464
465         idx = srcu_read_lock(&connections_srcu);
466         con = nodeid2con(nodeid, GFP_NOFS);
467         if (!con) {
468                 srcu_read_unlock(&connections_srcu, idx);
469                 return -ENOMEM;
470         }
471
472         spin_lock(&con->addrs_lock);
473         if (!con->addr_count) {
474                 memcpy(&con->addr[0], addr, sizeof(*addr));
475                 con->addr_count = 1;
476                 con->mark = dlm_config.ci_mark;
477                 spin_unlock(&con->addrs_lock);
478                 srcu_read_unlock(&connections_srcu, idx);
479                 return 0;
480         }
481
482         ret = dlm_lowcomms_con_has_addr(con, addr);
483         if (ret) {
484                 spin_unlock(&con->addrs_lock);
485                 srcu_read_unlock(&connections_srcu, idx);
486                 return -EEXIST;
487         }
488
489         if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
490                 spin_unlock(&con->addrs_lock);
491                 srcu_read_unlock(&connections_srcu, idx);
492                 return -ENOSPC;
493         }
494
495         memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
496         srcu_read_unlock(&connections_srcu, idx);
497         spin_unlock(&con->addrs_lock);
498         return 0;
499 }
500
501 /* Data available on socket or listen socket received a connect */
502 static void lowcomms_data_ready(struct sock *sk)
503 {
504         struct connection *con = sock2con(sk);
505
506         trace_sk_data_ready(sk);
507
508         set_bit(CF_RECV_INTR, &con->flags);
509         lowcomms_queue_rwork(con);
510 }
511
512 static void lowcomms_write_space(struct sock *sk)
513 {
514         struct connection *con = sock2con(sk);
515
516         clear_bit(SOCK_NOSPACE, &con->sock->flags);
517
518         spin_lock_bh(&con->writequeue_lock);
519         if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
520                 con->sock->sk->sk_write_pending--;
521                 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
522         }
523
524         lowcomms_queue_swork(con);
525         spin_unlock_bh(&con->writequeue_lock);
526 }
527
528 static void lowcomms_state_change(struct sock *sk)
529 {
530         /* SCTP layer is not calling sk_data_ready when the connection
531          * is done, so we catch the signal through here.
532          */
533         if (sk->sk_shutdown == RCV_SHUTDOWN)
534                 lowcomms_data_ready(sk);
535 }
536
537 static void lowcomms_listen_data_ready(struct sock *sk)
538 {
539         trace_sk_data_ready(sk);
540
541         queue_work(io_workqueue, &listen_con.rwork);
542 }
543
544 int dlm_lowcomms_connect_node(int nodeid)
545 {
546         struct connection *con;
547         int idx;
548
549         idx = srcu_read_lock(&connections_srcu);
550         con = nodeid2con(nodeid, 0);
551         if (WARN_ON_ONCE(!con)) {
552                 srcu_read_unlock(&connections_srcu, idx);
553                 return -ENOENT;
554         }
555
556         down_read(&con->sock_lock);
557         if (!con->sock) {
558                 spin_lock_bh(&con->writequeue_lock);
559                 lowcomms_queue_swork(con);
560                 spin_unlock_bh(&con->writequeue_lock);
561         }
562         up_read(&con->sock_lock);
563         srcu_read_unlock(&connections_srcu, idx);
564
565         cond_resched();
566         return 0;
567 }
568
569 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
570 {
571         struct connection *con;
572         int idx;
573
574         idx = srcu_read_lock(&connections_srcu);
575         con = nodeid2con(nodeid, 0);
576         if (!con) {
577                 srcu_read_unlock(&connections_srcu, idx);
578                 return -ENOENT;
579         }
580
581         spin_lock(&con->addrs_lock);
582         con->mark = mark;
583         spin_unlock(&con->addrs_lock);
584         srcu_read_unlock(&connections_srcu, idx);
585         return 0;
586 }
587
588 static void lowcomms_error_report(struct sock *sk)
589 {
590         struct connection *con = sock2con(sk);
591         struct inet_sock *inet;
592
593         inet = inet_sk(sk);
594         switch (sk->sk_family) {
595         case AF_INET:
596                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
597                                    "sending to node %d at %pI4, dport %d, "
598                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
599                                    con->nodeid, &inet->inet_daddr,
600                                    ntohs(inet->inet_dport), sk->sk_err,
601                                    READ_ONCE(sk->sk_err_soft));
602                 break;
603 #if IS_ENABLED(CONFIG_IPV6)
604         case AF_INET6:
605                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
606                                    "sending to node %d at %pI6c, "
607                                    "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
608                                    con->nodeid, &sk->sk_v6_daddr,
609                                    ntohs(inet->inet_dport), sk->sk_err,
610                                    READ_ONCE(sk->sk_err_soft));
611                 break;
612 #endif
613         default:
614                 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
615                                    "invalid socket family %d set, "
616                                    "sk_err=%d/%d\n", dlm_our_nodeid(),
617                                    sk->sk_family, sk->sk_err,
618                                    READ_ONCE(sk->sk_err_soft));
619                 break;
620         }
621
622         dlm_midcomms_unack_msg_resend(con->nodeid);
623
624         listen_sock.sk_error_report(sk);
625 }
626
627 static void restore_callbacks(struct sock *sk)
628 {
629 #ifdef CONFIG_LOCKDEP
630         WARN_ON_ONCE(!lockdep_sock_is_held(sk));
631 #endif
632
633         sk->sk_user_data = NULL;
634         sk->sk_data_ready = listen_sock.sk_data_ready;
635         sk->sk_state_change = listen_sock.sk_state_change;
636         sk->sk_write_space = listen_sock.sk_write_space;
637         sk->sk_error_report = listen_sock.sk_error_report;
638 }
639
640 /* Make a socket active */
641 static void add_sock(struct socket *sock, struct connection *con)
642 {
643         struct sock *sk = sock->sk;
644
645         lock_sock(sk);
646         con->sock = sock;
647
648         sk->sk_user_data = con;
649         sk->sk_data_ready = lowcomms_data_ready;
650         sk->sk_write_space = lowcomms_write_space;
651         if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
652                 sk->sk_state_change = lowcomms_state_change;
653         sk->sk_allocation = GFP_NOFS;
654         sk->sk_use_task_frag = false;
655         sk->sk_error_report = lowcomms_error_report;
656         release_sock(sk);
657 }
658
659 /* Add the port number to an IPv6 or 4 sockaddr and return the address
660    length */
661 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
662                           int *addr_len)
663 {
664         saddr->ss_family =  dlm_local_addr[0].ss_family;
665         if (saddr->ss_family == AF_INET) {
666                 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
667                 in4_addr->sin_port = cpu_to_be16(port);
668                 *addr_len = sizeof(struct sockaddr_in);
669                 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
670         } else {
671                 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
672                 in6_addr->sin6_port = cpu_to_be16(port);
673                 *addr_len = sizeof(struct sockaddr_in6);
674         }
675         memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
676 }
677
678 static void dlm_page_release(struct kref *kref)
679 {
680         struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
681                                                   ref);
682
683         __free_page(e->page);
684         dlm_free_writequeue(e);
685 }
686
687 static void dlm_msg_release(struct kref *kref)
688 {
689         struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
690
691         kref_put(&msg->entry->ref, dlm_page_release);
692         dlm_free_msg(msg);
693 }
694
695 static void free_entry(struct writequeue_entry *e)
696 {
697         struct dlm_msg *msg, *tmp;
698
699         list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
700                 if (msg->orig_msg) {
701                         msg->orig_msg->retransmit = false;
702                         kref_put(&msg->orig_msg->ref, dlm_msg_release);
703                 }
704
705                 list_del(&msg->list);
706                 kref_put(&msg->ref, dlm_msg_release);
707         }
708
709         list_del(&e->list);
710         kref_put(&e->ref, dlm_page_release);
711 }
712
713 static void dlm_close_sock(struct socket **sock)
714 {
715         lock_sock((*sock)->sk);
716         restore_callbacks((*sock)->sk);
717         release_sock((*sock)->sk);
718
719         sock_release(*sock);
720         *sock = NULL;
721 }
722
723 static void allow_connection_io(struct connection *con)
724 {
725         if (con->othercon)
726                 clear_bit(CF_IO_STOP, &con->othercon->flags);
727         clear_bit(CF_IO_STOP, &con->flags);
728 }
729
730 static void stop_connection_io(struct connection *con)
731 {
732         if (con->othercon)
733                 stop_connection_io(con->othercon);
734
735         spin_lock_bh(&con->writequeue_lock);
736         set_bit(CF_IO_STOP, &con->flags);
737         spin_unlock_bh(&con->writequeue_lock);
738
739         down_write(&con->sock_lock);
740         if (con->sock) {
741                 lock_sock(con->sock->sk);
742                 restore_callbacks(con->sock->sk);
743                 release_sock(con->sock->sk);
744         }
745         up_write(&con->sock_lock);
746
747         cancel_work_sync(&con->swork);
748         cancel_work_sync(&con->rwork);
749 }
750
751 /* Close a remote connection and tidy up */
752 static void close_connection(struct connection *con, bool and_other)
753 {
754         struct writequeue_entry *e;
755
756         if (con->othercon && and_other)
757                 close_connection(con->othercon, false);
758
759         down_write(&con->sock_lock);
760         if (!con->sock) {
761                 up_write(&con->sock_lock);
762                 return;
763         }
764
765         dlm_close_sock(&con->sock);
766
767         /* if we send a writequeue entry only a half way, we drop the
768          * whole entry because reconnection and that we not start of the
769          * middle of a msg which will confuse the other end.
770          *
771          * we can always drop messages because retransmits, but what we
772          * cannot allow is to transmit half messages which may be processed
773          * at the other side.
774          *
775          * our policy is to start on a clean state when disconnects, we don't
776          * know what's send/received on transport layer in this case.
777          */
778         spin_lock_bh(&con->writequeue_lock);
779         if (!list_empty(&con->writequeue)) {
780                 e = list_first_entry(&con->writequeue, struct writequeue_entry,
781                                      list);
782                 if (e->dirty)
783                         free_entry(e);
784         }
785         spin_unlock_bh(&con->writequeue_lock);
786
787         con->rx_leftover = 0;
788         con->retries = 0;
789         clear_bit(CF_APP_LIMITED, &con->flags);
790         clear_bit(CF_RECV_PENDING, &con->flags);
791         clear_bit(CF_SEND_PENDING, &con->flags);
792         up_write(&con->sock_lock);
793 }
794
795 static void shutdown_connection(struct connection *con, bool and_other)
796 {
797         int ret;
798
799         if (con->othercon && and_other)
800                 shutdown_connection(con->othercon, false);
801
802         flush_workqueue(io_workqueue);
803         down_read(&con->sock_lock);
804         /* nothing to shutdown */
805         if (!con->sock) {
806                 up_read(&con->sock_lock);
807                 return;
808         }
809
810         ret = kernel_sock_shutdown(con->sock, SHUT_WR);
811         up_read(&con->sock_lock);
812         if (ret) {
813                 log_print("Connection %p failed to shutdown: %d will force close",
814                           con, ret);
815                 goto force_close;
816         } else {
817                 ret = wait_event_timeout(con->shutdown_wait, !con->sock,
818                                          DLM_SHUTDOWN_WAIT_TIMEOUT);
819                 if (ret == 0) {
820                         log_print("Connection %p shutdown timed out, will force close",
821                                   con);
822                         goto force_close;
823                 }
824         }
825
826         return;
827
828 force_close:
829         close_connection(con, false);
830 }
831
832 static struct processqueue_entry *new_processqueue_entry(int nodeid,
833                                                          int buflen)
834 {
835         struct processqueue_entry *pentry;
836
837         pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
838         if (!pentry)
839                 return NULL;
840
841         pentry->buf = kmalloc(buflen, GFP_NOFS);
842         if (!pentry->buf) {
843                 kfree(pentry);
844                 return NULL;
845         }
846
847         pentry->nodeid = nodeid;
848         return pentry;
849 }
850
851 static void free_processqueue_entry(struct processqueue_entry *pentry)
852 {
853         kfree(pentry->buf);
854         kfree(pentry);
855 }
856
857 struct dlm_processed_nodes {
858         int nodeid;
859
860         struct list_head list;
861 };
862
863 static void process_dlm_messages(struct work_struct *work)
864 {
865         struct processqueue_entry *pentry;
866         LIST_HEAD(processed_nodes);
867
868         spin_lock(&processqueue_lock);
869         pentry = list_first_entry_or_null(&processqueue,
870                                           struct processqueue_entry, list);
871         if (WARN_ON_ONCE(!pentry)) {
872                 process_dlm_messages_pending = false;
873                 spin_unlock(&processqueue_lock);
874                 return;
875         }
876
877         list_del(&pentry->list);
878         spin_unlock(&processqueue_lock);
879
880         for (;;) {
881                 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
882                                             pentry->buflen);
883                 free_processqueue_entry(pentry);
884
885                 spin_lock(&processqueue_lock);
886                 pentry = list_first_entry_or_null(&processqueue,
887                                                   struct processqueue_entry, list);
888                 if (!pentry) {
889                         process_dlm_messages_pending = false;
890                         spin_unlock(&processqueue_lock);
891                         break;
892                 }
893
894                 list_del(&pentry->list);
895                 spin_unlock(&processqueue_lock);
896         }
897 }
898
899 /* Data received from remote end */
900 static int receive_from_sock(struct connection *con, int buflen)
901 {
902         struct processqueue_entry *pentry;
903         int ret, buflen_real;
904         struct msghdr msg;
905         struct kvec iov;
906
907         pentry = new_processqueue_entry(con->nodeid, buflen);
908         if (!pentry)
909                 return DLM_IO_RESCHED;
910
911         memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
912
913         /* calculate new buffer parameter regarding last receive and
914          * possible leftover bytes
915          */
916         iov.iov_base = pentry->buf + con->rx_leftover;
917         iov.iov_len = buflen - con->rx_leftover;
918
919         memset(&msg, 0, sizeof(msg));
920         msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
921         clear_bit(CF_RECV_INTR, &con->flags);
922 again:
923         ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
924                              msg.msg_flags);
925         trace_dlm_recv(con->nodeid, ret);
926         if (ret == -EAGAIN) {
927                 lock_sock(con->sock->sk);
928                 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
929                         release_sock(con->sock->sk);
930                         goto again;
931                 }
932
933                 clear_bit(CF_RECV_PENDING, &con->flags);
934                 release_sock(con->sock->sk);
935                 free_processqueue_entry(pentry);
936                 return DLM_IO_END;
937         } else if (ret == 0) {
938                 /* close will clear CF_RECV_PENDING */
939                 free_processqueue_entry(pentry);
940                 return DLM_IO_EOF;
941         } else if (ret < 0) {
942                 free_processqueue_entry(pentry);
943                 return ret;
944         }
945
946         /* new buflen according readed bytes and leftover from last receive */
947         buflen_real = ret + con->rx_leftover;
948         ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
949                                            buflen_real);
950         if (ret < 0) {
951                 free_processqueue_entry(pentry);
952                 return ret;
953         }
954
955         pentry->buflen = ret;
956
957         /* calculate leftover bytes from process and put it into begin of
958          * the receive buffer, so next receive we have the full message
959          * at the start address of the receive buffer.
960          */
961         con->rx_leftover = buflen_real - ret;
962         memmove(con->rx_leftover_buf, pentry->buf + ret,
963                 con->rx_leftover);
964
965         spin_lock(&processqueue_lock);
966         list_add_tail(&pentry->list, &processqueue);
967         if (!process_dlm_messages_pending) {
968                 process_dlm_messages_pending = true;
969                 queue_work(process_workqueue, &process_work);
970         }
971         spin_unlock(&processqueue_lock);
972
973         return DLM_IO_SUCCESS;
974 }
975
976 /* Listening socket is busy, accept a connection */
977 static int accept_from_sock(void)
978 {
979         struct sockaddr_storage peeraddr;
980         int len, idx, result, nodeid;
981         struct connection *newcon;
982         struct socket *newsock;
983         unsigned int mark;
984
985         result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
986         if (result == -EAGAIN)
987                 return DLM_IO_END;
988         else if (result < 0)
989                 goto accept_err;
990
991         /* Get the connected socket's peer */
992         memset(&peeraddr, 0, sizeof(peeraddr));
993         len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
994         if (len < 0) {
995                 result = -ECONNABORTED;
996                 goto accept_err;
997         }
998
999         /* Get the new node's NODEID */
1000         make_sockaddr(&peeraddr, 0, &len);
1001         if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1002                 switch (peeraddr.ss_family) {
1003                 case AF_INET: {
1004                         struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1005
1006                         log_print("connect from non cluster IPv4 node %pI4",
1007                                   &sin->sin_addr);
1008                         break;
1009                 }
1010 #if IS_ENABLED(CONFIG_IPV6)
1011                 case AF_INET6: {
1012                         struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1013
1014                         log_print("connect from non cluster IPv6 node %pI6c",
1015                                   &sin6->sin6_addr);
1016                         break;
1017                 }
1018 #endif
1019                 default:
1020                         log_print("invalid family from non cluster node");
1021                         break;
1022                 }
1023
1024                 sock_release(newsock);
1025                 return -1;
1026         }
1027
1028         log_print("got connection from %d", nodeid);
1029
1030         /*  Check to see if we already have a connection to this node. This
1031          *  could happen if the two nodes initiate a connection at roughly
1032          *  the same time and the connections cross on the wire.
1033          *  In this case we store the incoming one in "othercon"
1034          */
1035         idx = srcu_read_lock(&connections_srcu);
1036         newcon = nodeid2con(nodeid, 0);
1037         if (WARN_ON_ONCE(!newcon)) {
1038                 srcu_read_unlock(&connections_srcu, idx);
1039                 result = -ENOENT;
1040                 goto accept_err;
1041         }
1042
1043         sock_set_mark(newsock->sk, mark);
1044
1045         down_write(&newcon->sock_lock);
1046         if (newcon->sock) {
1047                 struct connection *othercon = newcon->othercon;
1048
1049                 if (!othercon) {
1050                         othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1051                         if (!othercon) {
1052                                 log_print("failed to allocate incoming socket");
1053                                 up_write(&newcon->sock_lock);
1054                                 srcu_read_unlock(&connections_srcu, idx);
1055                                 result = -ENOMEM;
1056                                 goto accept_err;
1057                         }
1058
1059                         dlm_con_init(othercon, nodeid);
1060                         lockdep_set_subclass(&othercon->sock_lock, 1);
1061                         newcon->othercon = othercon;
1062                         set_bit(CF_IS_OTHERCON, &othercon->flags);
1063                 } else {
1064                         /* close other sock con if we have something new */
1065                         close_connection(othercon, false);
1066                 }
1067
1068                 down_write(&othercon->sock_lock);
1069                 add_sock(newsock, othercon);
1070
1071                 /* check if we receved something while adding */
1072                 lock_sock(othercon->sock->sk);
1073                 lowcomms_queue_rwork(othercon);
1074                 release_sock(othercon->sock->sk);
1075                 up_write(&othercon->sock_lock);
1076         }
1077         else {
1078                 /* accept copies the sk after we've saved the callbacks, so we
1079                    don't want to save them a second time or comm errors will
1080                    result in calling sk_error_report recursively. */
1081                 add_sock(newsock, newcon);
1082
1083                 /* check if we receved something while adding */
1084                 lock_sock(newcon->sock->sk);
1085                 lowcomms_queue_rwork(newcon);
1086                 release_sock(newcon->sock->sk);
1087         }
1088         up_write(&newcon->sock_lock);
1089         srcu_read_unlock(&connections_srcu, idx);
1090
1091         return DLM_IO_SUCCESS;
1092
1093 accept_err:
1094         if (newsock)
1095                 sock_release(newsock);
1096
1097         return result;
1098 }
1099
1100 /*
1101  * writequeue_entry_complete - try to delete and free write queue entry
1102  * @e: write queue entry to try to delete
1103  * @completed: bytes completed
1104  *
1105  * writequeue_lock must be held.
1106  */
1107 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1108 {
1109         e->offset += completed;
1110         e->len -= completed;
1111         /* signal that page was half way transmitted */
1112         e->dirty = true;
1113
1114         if (e->len == 0 && e->users == 0)
1115                 free_entry(e);
1116 }
1117
1118 /*
1119  * sctp_bind_addrs - bind a SCTP socket to all our addresses
1120  */
1121 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1122 {
1123         struct sockaddr_storage localaddr;
1124         struct sockaddr *addr = (struct sockaddr *)&localaddr;
1125         int i, addr_len, result = 0;
1126
1127         for (i = 0; i < dlm_local_count; i++) {
1128                 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1129                 make_sockaddr(&localaddr, port, &addr_len);
1130
1131                 if (!i)
1132                         result = kernel_bind(sock, addr, addr_len);
1133                 else
1134                         result = sock_bind_add(sock->sk, addr, addr_len);
1135
1136                 if (result < 0) {
1137                         log_print("Can't bind to %d addr number %d, %d.\n",
1138                                   port, i + 1, result);
1139                         break;
1140                 }
1141         }
1142         return result;
1143 }
1144
1145 /* Get local addresses */
1146 static void init_local(void)
1147 {
1148         struct sockaddr_storage sas;
1149         int i;
1150
1151         dlm_local_count = 0;
1152         for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1153                 if (dlm_our_addr(&sas, i))
1154                         break;
1155
1156                 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1157         }
1158 }
1159
1160 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1161 {
1162         struct writequeue_entry *entry;
1163
1164         entry = dlm_allocate_writequeue();
1165         if (!entry)
1166                 return NULL;
1167
1168         entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1169         if (!entry->page) {
1170                 dlm_free_writequeue(entry);
1171                 return NULL;
1172         }
1173
1174         entry->offset = 0;
1175         entry->len = 0;
1176         entry->end = 0;
1177         entry->dirty = false;
1178         entry->con = con;
1179         entry->users = 1;
1180         kref_init(&entry->ref);
1181         return entry;
1182 }
1183
1184 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1185                                              char **ppc, void (*cb)(void *data),
1186                                              void *data)
1187 {
1188         struct writequeue_entry *e;
1189
1190         spin_lock_bh(&con->writequeue_lock);
1191         if (!list_empty(&con->writequeue)) {
1192                 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1193                 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1194                         kref_get(&e->ref);
1195
1196                         *ppc = page_address(e->page) + e->end;
1197                         if (cb)
1198                                 cb(data);
1199
1200                         e->end += len;
1201                         e->users++;
1202                         goto out;
1203                 }
1204         }
1205
1206         e = new_writequeue_entry(con);
1207         if (!e)
1208                 goto out;
1209
1210         kref_get(&e->ref);
1211         *ppc = page_address(e->page);
1212         e->end += len;
1213         if (cb)
1214                 cb(data);
1215
1216         list_add_tail(&e->list, &con->writequeue);
1217
1218 out:
1219         spin_unlock_bh(&con->writequeue_lock);
1220         return e;
1221 };
1222
1223 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1224                                                 gfp_t allocation, char **ppc,
1225                                                 void (*cb)(void *data),
1226                                                 void *data)
1227 {
1228         struct writequeue_entry *e;
1229         struct dlm_msg *msg;
1230
1231         msg = dlm_allocate_msg(allocation);
1232         if (!msg)
1233                 return NULL;
1234
1235         kref_init(&msg->ref);
1236
1237         e = new_wq_entry(con, len, ppc, cb, data);
1238         if (!e) {
1239                 dlm_free_msg(msg);
1240                 return NULL;
1241         }
1242
1243         msg->retransmit = false;
1244         msg->orig_msg = NULL;
1245         msg->ppc = *ppc;
1246         msg->len = len;
1247         msg->entry = e;
1248
1249         return msg;
1250 }
1251
1252 /* avoid false positive for nodes_srcu, unlock happens in
1253  * dlm_lowcomms_commit_msg which is a must call if success
1254  */
1255 #ifndef __CHECKER__
1256 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1257                                      char **ppc, void (*cb)(void *data),
1258                                      void *data)
1259 {
1260         struct connection *con;
1261         struct dlm_msg *msg;
1262         int idx;
1263
1264         if (len > DLM_MAX_SOCKET_BUFSIZE ||
1265             len < sizeof(struct dlm_header)) {
1266                 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1267                 log_print("failed to allocate a buffer of size %d", len);
1268                 WARN_ON_ONCE(1);
1269                 return NULL;
1270         }
1271
1272         idx = srcu_read_lock(&connections_srcu);
1273         con = nodeid2con(nodeid, 0);
1274         if (WARN_ON_ONCE(!con)) {
1275                 srcu_read_unlock(&connections_srcu, idx);
1276                 return NULL;
1277         }
1278
1279         msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1280         if (!msg) {
1281                 srcu_read_unlock(&connections_srcu, idx);
1282                 return NULL;
1283         }
1284
1285         /* for dlm_lowcomms_commit_msg() */
1286         kref_get(&msg->ref);
1287         /* we assume if successful commit must called */
1288         msg->idx = idx;
1289         return msg;
1290 }
1291 #endif
1292
1293 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1294 {
1295         struct writequeue_entry *e = msg->entry;
1296         struct connection *con = e->con;
1297         int users;
1298
1299         spin_lock_bh(&con->writequeue_lock);
1300         kref_get(&msg->ref);
1301         list_add(&msg->list, &e->msgs);
1302
1303         users = --e->users;
1304         if (users)
1305                 goto out;
1306
1307         e->len = DLM_WQ_LENGTH_BYTES(e);
1308
1309         lowcomms_queue_swork(con);
1310
1311 out:
1312         spin_unlock_bh(&con->writequeue_lock);
1313         return;
1314 }
1315
1316 /* avoid false positive for nodes_srcu, lock was happen in
1317  * dlm_lowcomms_new_msg
1318  */
1319 #ifndef __CHECKER__
1320 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1321 {
1322         _dlm_lowcomms_commit_msg(msg);
1323         srcu_read_unlock(&connections_srcu, msg->idx);
1324         /* because dlm_lowcomms_new_msg() */
1325         kref_put(&msg->ref, dlm_msg_release);
1326 }
1327 #endif
1328
1329 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1330 {
1331         kref_put(&msg->ref, dlm_msg_release);
1332 }
1333
1334 /* does not held connections_srcu, usage lowcomms_error_report only */
1335 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1336 {
1337         struct dlm_msg *msg_resend;
1338         char *ppc;
1339
1340         if (msg->retransmit)
1341                 return 1;
1342
1343         msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1344                                               GFP_ATOMIC, &ppc, NULL, NULL);
1345         if (!msg_resend)
1346                 return -ENOMEM;
1347
1348         msg->retransmit = true;
1349         kref_get(&msg->ref);
1350         msg_resend->orig_msg = msg;
1351
1352         memcpy(ppc, msg->ppc, msg->len);
1353         _dlm_lowcomms_commit_msg(msg_resend);
1354         dlm_lowcomms_put_msg(msg_resend);
1355
1356         return 0;
1357 }
1358
1359 /* Send a message */
1360 static int send_to_sock(struct connection *con)
1361 {
1362         struct writequeue_entry *e;
1363         struct bio_vec bvec;
1364         struct msghdr msg = {
1365                 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1366         };
1367         int len, offset, ret;
1368
1369         spin_lock_bh(&con->writequeue_lock);
1370         e = con_next_wq(con);
1371         if (!e) {
1372                 clear_bit(CF_SEND_PENDING, &con->flags);
1373                 spin_unlock_bh(&con->writequeue_lock);
1374                 return DLM_IO_END;
1375         }
1376
1377         len = e->len;
1378         offset = e->offset;
1379         WARN_ON_ONCE(len == 0 && e->users == 0);
1380         spin_unlock_bh(&con->writequeue_lock);
1381
1382         bvec_set_page(&bvec, e->page, len, offset);
1383         iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1384         ret = sock_sendmsg(con->sock, &msg);
1385         trace_dlm_send(con->nodeid, ret);
1386         if (ret == -EAGAIN || ret == 0) {
1387                 lock_sock(con->sock->sk);
1388                 spin_lock_bh(&con->writequeue_lock);
1389                 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1390                     !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1391                         /* Notify TCP that we're limited by the
1392                          * application window size.
1393                          */
1394                         set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1395                         con->sock->sk->sk_write_pending++;
1396
1397                         clear_bit(CF_SEND_PENDING, &con->flags);
1398                         spin_unlock_bh(&con->writequeue_lock);
1399                         release_sock(con->sock->sk);
1400
1401                         /* wait for write_space() event */
1402                         return DLM_IO_END;
1403                 }
1404                 spin_unlock_bh(&con->writequeue_lock);
1405                 release_sock(con->sock->sk);
1406
1407                 return DLM_IO_RESCHED;
1408         } else if (ret < 0) {
1409                 return ret;
1410         }
1411
1412         spin_lock_bh(&con->writequeue_lock);
1413         writequeue_entry_complete(e, ret);
1414         spin_unlock_bh(&con->writequeue_lock);
1415
1416         return DLM_IO_SUCCESS;
1417 }
1418
1419 static void clean_one_writequeue(struct connection *con)
1420 {
1421         struct writequeue_entry *e, *safe;
1422
1423         spin_lock_bh(&con->writequeue_lock);
1424         list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1425                 free_entry(e);
1426         }
1427         spin_unlock_bh(&con->writequeue_lock);
1428 }
1429
1430 static void connection_release(struct rcu_head *rcu)
1431 {
1432         struct connection *con = container_of(rcu, struct connection, rcu);
1433
1434         WARN_ON_ONCE(!list_empty(&con->writequeue));
1435         WARN_ON_ONCE(con->sock);
1436         kfree(con);
1437 }
1438
1439 /* Called from recovery when it knows that a node has
1440    left the cluster */
1441 int dlm_lowcomms_close(int nodeid)
1442 {
1443         struct connection *con;
1444         int idx;
1445
1446         log_print("closing connection to node %d", nodeid);
1447
1448         idx = srcu_read_lock(&connections_srcu);
1449         con = nodeid2con(nodeid, 0);
1450         if (WARN_ON_ONCE(!con)) {
1451                 srcu_read_unlock(&connections_srcu, idx);
1452                 return -ENOENT;
1453         }
1454
1455         stop_connection_io(con);
1456         log_print("io handling for node: %d stopped", nodeid);
1457         close_connection(con, true);
1458
1459         spin_lock(&connections_lock);
1460         hlist_del_rcu(&con->list);
1461         spin_unlock(&connections_lock);
1462
1463         clean_one_writequeue(con);
1464         call_srcu(&connections_srcu, &con->rcu, connection_release);
1465         if (con->othercon) {
1466                 clean_one_writequeue(con->othercon);
1467                 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1468         }
1469         srcu_read_unlock(&connections_srcu, idx);
1470
1471         /* for debugging we print when we are done to compare with other
1472          * messages in between. This function need to be correctly synchronized
1473          * with io handling
1474          */
1475         log_print("closing connection to node %d done", nodeid);
1476
1477         return 0;
1478 }
1479
1480 /* Receive worker function */
1481 static void process_recv_sockets(struct work_struct *work)
1482 {
1483         struct connection *con = container_of(work, struct connection, rwork);
1484         int ret, buflen;
1485
1486         down_read(&con->sock_lock);
1487         if (!con->sock) {
1488                 up_read(&con->sock_lock);
1489                 return;
1490         }
1491
1492         buflen = READ_ONCE(dlm_config.ci_buffer_size);
1493         do {
1494                 ret = receive_from_sock(con, buflen);
1495         } while (ret == DLM_IO_SUCCESS);
1496         up_read(&con->sock_lock);
1497
1498         switch (ret) {
1499         case DLM_IO_END:
1500                 /* CF_RECV_PENDING cleared */
1501                 break;
1502         case DLM_IO_EOF:
1503                 close_connection(con, false);
1504                 wake_up(&con->shutdown_wait);
1505                 /* CF_RECV_PENDING cleared */
1506                 break;
1507         case DLM_IO_RESCHED:
1508                 cond_resched();
1509                 queue_work(io_workqueue, &con->rwork);
1510                 /* CF_RECV_PENDING not cleared */
1511                 break;
1512         default:
1513                 if (ret < 0) {
1514                         if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1515                                 close_connection(con, false);
1516                         } else {
1517                                 spin_lock_bh(&con->writequeue_lock);
1518                                 lowcomms_queue_swork(con);
1519                                 spin_unlock_bh(&con->writequeue_lock);
1520                         }
1521
1522                         /* CF_RECV_PENDING cleared for othercon
1523                          * we trigger send queue if not already done
1524                          * and process_send_sockets will handle it
1525                          */
1526                         break;
1527                 }
1528
1529                 WARN_ON_ONCE(1);
1530                 break;
1531         }
1532 }
1533
1534 static void process_listen_recv_socket(struct work_struct *work)
1535 {
1536         int ret;
1537
1538         if (WARN_ON_ONCE(!listen_con.sock))
1539                 return;
1540
1541         do {
1542                 ret = accept_from_sock();
1543         } while (ret == DLM_IO_SUCCESS);
1544
1545         if (ret < 0)
1546                 log_print("critical error accepting connection: %d", ret);
1547 }
1548
1549 static int dlm_connect(struct connection *con)
1550 {
1551         struct sockaddr_storage addr;
1552         int result, addr_len;
1553         struct socket *sock;
1554         unsigned int mark;
1555
1556         memset(&addr, 0, sizeof(addr));
1557         result = nodeid_to_addr(con->nodeid, &addr, NULL,
1558                                 dlm_proto_ops->try_new_addr, &mark);
1559         if (result < 0) {
1560                 log_print("no address for nodeid %d", con->nodeid);
1561                 return result;
1562         }
1563
1564         /* Create a socket to communicate with */
1565         result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1566                                   SOCK_STREAM, dlm_proto_ops->proto, &sock);
1567         if (result < 0)
1568                 return result;
1569
1570         sock_set_mark(sock->sk, mark);
1571         dlm_proto_ops->sockopts(sock);
1572
1573         result = dlm_proto_ops->bind(sock);
1574         if (result < 0) {
1575                 sock_release(sock);
1576                 return result;
1577         }
1578
1579         add_sock(sock, con);
1580
1581         log_print_ratelimited("connecting to %d", con->nodeid);
1582         make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1583         result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1584                                         addr_len);
1585         switch (result) {
1586         case -EINPROGRESS:
1587                 /* not an error */
1588                 fallthrough;
1589         case 0:
1590                 break;
1591         default:
1592                 if (result < 0)
1593                         dlm_close_sock(&con->sock);
1594
1595                 break;
1596         }
1597
1598         return result;
1599 }
1600
1601 /* Send worker function */
1602 static void process_send_sockets(struct work_struct *work)
1603 {
1604         struct connection *con = container_of(work, struct connection, swork);
1605         int ret;
1606
1607         WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1608
1609         down_read(&con->sock_lock);
1610         if (!con->sock) {
1611                 up_read(&con->sock_lock);
1612                 down_write(&con->sock_lock);
1613                 if (!con->sock) {
1614                         ret = dlm_connect(con);
1615                         switch (ret) {
1616                         case 0:
1617                                 break;
1618                         case -EINPROGRESS:
1619                                 /* avoid spamming resched on connection
1620                                  * we might can switch to a state_change
1621                                  * event based mechanism if established
1622                                  */
1623                                 msleep(100);
1624                                 break;
1625                         default:
1626                                 /* CF_SEND_PENDING not cleared */
1627                                 up_write(&con->sock_lock);
1628                                 log_print("connect to node %d try %d error %d",
1629                                           con->nodeid, con->retries++, ret);
1630                                 msleep(1000);
1631                                 /* For now we try forever to reconnect. In
1632                                  * future we should send a event to cluster
1633                                  * manager to fence itself after certain amount
1634                                  * of retries.
1635                                  */
1636                                 queue_work(io_workqueue, &con->swork);
1637                                 return;
1638                         }
1639                 }
1640                 downgrade_write(&con->sock_lock);
1641         }
1642
1643         do {
1644                 ret = send_to_sock(con);
1645         } while (ret == DLM_IO_SUCCESS);
1646         up_read(&con->sock_lock);
1647
1648         switch (ret) {
1649         case DLM_IO_END:
1650                 /* CF_SEND_PENDING cleared */
1651                 break;
1652         case DLM_IO_RESCHED:
1653                 /* CF_SEND_PENDING not cleared */
1654                 cond_resched();
1655                 queue_work(io_workqueue, &con->swork);
1656                 break;
1657         default:
1658                 if (ret < 0) {
1659                         close_connection(con, false);
1660
1661                         /* CF_SEND_PENDING cleared */
1662                         spin_lock_bh(&con->writequeue_lock);
1663                         lowcomms_queue_swork(con);
1664                         spin_unlock_bh(&con->writequeue_lock);
1665                         break;
1666                 }
1667
1668                 WARN_ON_ONCE(1);
1669                 break;
1670         }
1671 }
1672
1673 static void work_stop(void)
1674 {
1675         if (io_workqueue) {
1676                 destroy_workqueue(io_workqueue);
1677                 io_workqueue = NULL;
1678         }
1679
1680         if (process_workqueue) {
1681                 destroy_workqueue(process_workqueue);
1682                 process_workqueue = NULL;
1683         }
1684 }
1685
1686 static int work_start(void)
1687 {
1688         io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1689                                        WQ_UNBOUND, 0);
1690         if (!io_workqueue) {
1691                 log_print("can't start dlm_io");
1692                 return -ENOMEM;
1693         }
1694
1695         /* ordered dlm message process queue,
1696          * should be converted to a tasklet
1697          */
1698         process_workqueue = alloc_ordered_workqueue("dlm_process",
1699                                                     WQ_HIGHPRI | WQ_MEM_RECLAIM);
1700         if (!process_workqueue) {
1701                 log_print("can't start dlm_process");
1702                 destroy_workqueue(io_workqueue);
1703                 io_workqueue = NULL;
1704                 return -ENOMEM;
1705         }
1706
1707         return 0;
1708 }
1709
1710 void dlm_lowcomms_shutdown(void)
1711 {
1712         struct connection *con;
1713         int i, idx;
1714
1715         /* stop lowcomms_listen_data_ready calls */
1716         lock_sock(listen_con.sock->sk);
1717         listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1718         release_sock(listen_con.sock->sk);
1719
1720         cancel_work_sync(&listen_con.rwork);
1721         dlm_close_sock(&listen_con.sock);
1722
1723         idx = srcu_read_lock(&connections_srcu);
1724         for (i = 0; i < CONN_HASH_SIZE; i++) {
1725                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1726                         shutdown_connection(con, true);
1727                         stop_connection_io(con);
1728                         flush_workqueue(process_workqueue);
1729                         close_connection(con, true);
1730
1731                         clean_one_writequeue(con);
1732                         if (con->othercon)
1733                                 clean_one_writequeue(con->othercon);
1734                         allow_connection_io(con);
1735                 }
1736         }
1737         srcu_read_unlock(&connections_srcu, idx);
1738 }
1739
1740 void dlm_lowcomms_stop(void)
1741 {
1742         work_stop();
1743         dlm_proto_ops = NULL;
1744 }
1745
1746 static int dlm_listen_for_all(void)
1747 {
1748         struct socket *sock;
1749         int result;
1750
1751         log_print("Using %s for communications",
1752                   dlm_proto_ops->name);
1753
1754         result = dlm_proto_ops->listen_validate();
1755         if (result < 0)
1756                 return result;
1757
1758         result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1759                                   SOCK_STREAM, dlm_proto_ops->proto, &sock);
1760         if (result < 0) {
1761                 log_print("Can't create comms socket: %d", result);
1762                 return result;
1763         }
1764
1765         sock_set_mark(sock->sk, dlm_config.ci_mark);
1766         dlm_proto_ops->listen_sockopts(sock);
1767
1768         result = dlm_proto_ops->listen_bind(sock);
1769         if (result < 0)
1770                 goto out;
1771
1772         lock_sock(sock->sk);
1773         listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1774         listen_sock.sk_write_space = sock->sk->sk_write_space;
1775         listen_sock.sk_error_report = sock->sk->sk_error_report;
1776         listen_sock.sk_state_change = sock->sk->sk_state_change;
1777
1778         listen_con.sock = sock;
1779
1780         sock->sk->sk_allocation = GFP_NOFS;
1781         sock->sk->sk_use_task_frag = false;
1782         sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1783         release_sock(sock->sk);
1784
1785         result = sock->ops->listen(sock, 128);
1786         if (result < 0) {
1787                 dlm_close_sock(&listen_con.sock);
1788                 return result;
1789         }
1790
1791         return 0;
1792
1793 out:
1794         sock_release(sock);
1795         return result;
1796 }
1797
1798 static int dlm_tcp_bind(struct socket *sock)
1799 {
1800         struct sockaddr_storage src_addr;
1801         int result, addr_len;
1802
1803         /* Bind to our cluster-known address connecting to avoid
1804          * routing problems.
1805          */
1806         memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1807         make_sockaddr(&src_addr, 0, &addr_len);
1808
1809         result = sock->ops->bind(sock, (struct sockaddr *)&src_addr,
1810                                  addr_len);
1811         if (result < 0) {
1812                 /* This *may* not indicate a critical error */
1813                 log_print("could not bind for connect: %d", result);
1814         }
1815
1816         return 0;
1817 }
1818
1819 static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1820                            struct sockaddr *addr, int addr_len)
1821 {
1822         return sock->ops->connect(sock, addr, addr_len, O_NONBLOCK);
1823 }
1824
1825 static int dlm_tcp_listen_validate(void)
1826 {
1827         /* We don't support multi-homed hosts */
1828         if (dlm_local_count > 1) {
1829                 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1830                 return -EINVAL;
1831         }
1832
1833         return 0;
1834 }
1835
1836 static void dlm_tcp_sockopts(struct socket *sock)
1837 {
1838         /* Turn off Nagle's algorithm */
1839         tcp_sock_set_nodelay(sock->sk);
1840 }
1841
1842 static void dlm_tcp_listen_sockopts(struct socket *sock)
1843 {
1844         dlm_tcp_sockopts(sock);
1845         sock_set_reuseaddr(sock->sk);
1846 }
1847
1848 static int dlm_tcp_listen_bind(struct socket *sock)
1849 {
1850         int addr_len;
1851
1852         /* Bind to our port */
1853         make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1854         return sock->ops->bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1855                                addr_len);
1856 }
1857
1858 static const struct dlm_proto_ops dlm_tcp_ops = {
1859         .name = "TCP",
1860         .proto = IPPROTO_TCP,
1861         .connect = dlm_tcp_connect,
1862         .sockopts = dlm_tcp_sockopts,
1863         .bind = dlm_tcp_bind,
1864         .listen_validate = dlm_tcp_listen_validate,
1865         .listen_sockopts = dlm_tcp_listen_sockopts,
1866         .listen_bind = dlm_tcp_listen_bind,
1867 };
1868
1869 static int dlm_sctp_bind(struct socket *sock)
1870 {
1871         return sctp_bind_addrs(sock, 0);
1872 }
1873
1874 static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1875                             struct sockaddr *addr, int addr_len)
1876 {
1877         int ret;
1878
1879         /*
1880          * Make sock->ops->connect() function return in specified time,
1881          * since O_NONBLOCK argument in connect() function does not work here,
1882          * then, we should restore the default value of this attribute.
1883          */
1884         sock_set_sndtimeo(sock->sk, 5);
1885         ret = sock->ops->connect(sock, addr, addr_len, 0);
1886         sock_set_sndtimeo(sock->sk, 0);
1887         return ret;
1888 }
1889
1890 static int dlm_sctp_listen_validate(void)
1891 {
1892         if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1893                 log_print("SCTP is not enabled by this kernel");
1894                 return -EOPNOTSUPP;
1895         }
1896
1897         request_module("sctp");
1898         return 0;
1899 }
1900
1901 static int dlm_sctp_bind_listen(struct socket *sock)
1902 {
1903         return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1904 }
1905
1906 static void dlm_sctp_sockopts(struct socket *sock)
1907 {
1908         /* Turn off Nagle's algorithm */
1909         sctp_sock_set_nodelay(sock->sk);
1910         sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1911 }
1912
1913 static const struct dlm_proto_ops dlm_sctp_ops = {
1914         .name = "SCTP",
1915         .proto = IPPROTO_SCTP,
1916         .try_new_addr = true,
1917         .connect = dlm_sctp_connect,
1918         .sockopts = dlm_sctp_sockopts,
1919         .bind = dlm_sctp_bind,
1920         .listen_validate = dlm_sctp_listen_validate,
1921         .listen_sockopts = dlm_sctp_sockopts,
1922         .listen_bind = dlm_sctp_bind_listen,
1923 };
1924
1925 int dlm_lowcomms_start(void)
1926 {
1927         int error;
1928
1929         init_local();
1930         if (!dlm_local_count) {
1931                 error = -ENOTCONN;
1932                 log_print("no local IP address has been set");
1933                 goto fail;
1934         }
1935
1936         error = work_start();
1937         if (error)
1938                 goto fail;
1939
1940         /* Start listening */
1941         switch (dlm_config.ci_protocol) {
1942         case DLM_PROTO_TCP:
1943                 dlm_proto_ops = &dlm_tcp_ops;
1944                 break;
1945         case DLM_PROTO_SCTP:
1946                 dlm_proto_ops = &dlm_sctp_ops;
1947                 break;
1948         default:
1949                 log_print("Invalid protocol identifier %d set",
1950                           dlm_config.ci_protocol);
1951                 error = -EINVAL;
1952                 goto fail_proto_ops;
1953         }
1954
1955         error = dlm_listen_for_all();
1956         if (error)
1957                 goto fail_listen;
1958
1959         return 0;
1960
1961 fail_listen:
1962         dlm_proto_ops = NULL;
1963 fail_proto_ops:
1964         work_stop();
1965 fail:
1966         return error;
1967 }
1968
1969 void dlm_lowcomms_init(void)
1970 {
1971         int i;
1972
1973         for (i = 0; i < CONN_HASH_SIZE; i++)
1974                 INIT_HLIST_HEAD(&connection_hash[i]);
1975
1976         INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1977 }
1978
1979 void dlm_lowcomms_exit(void)
1980 {
1981         struct connection *con;
1982         int i, idx;
1983
1984         idx = srcu_read_lock(&connections_srcu);
1985         for (i = 0; i < CONN_HASH_SIZE; i++) {
1986                 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1987                         spin_lock(&connections_lock);
1988                         hlist_del_rcu(&con->list);
1989                         spin_unlock(&connections_lock);
1990
1991                         if (con->othercon)
1992                                 call_srcu(&connections_srcu, &con->othercon->rcu,
1993                                           connection_release);
1994                         call_srcu(&connections_srcu, &con->rcu, connection_release);
1995                 }
1996         }
1997         srcu_read_unlock(&connections_srcu, idx);
1998 }
This page took 0.141027 seconds and 4 git commands to generate.