2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
6 * Copyright 2012 Google, Inc.
13 #include "writeback.h"
15 #include <linux/cgroup.h>
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include "blk-cgroup.h"
21 #include <trace/events/bcache.h>
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
26 struct kmem_cache *bch_search_cache;
28 static void bch_data_insert_start(struct closure *);
30 /* Cgroup interface */
32 #ifdef CONFIG_CGROUP_BCACHE
33 static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
35 static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
37 struct cgroup_subsys_state *css;
39 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40 ? container_of(css, struct bch_cgroup, css)
41 : &bcache_default_cgroup;
44 struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
46 struct cgroup_subsys_state *css = bio->bi_css
47 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48 : task_subsys_state(current, bcache_subsys_id);
51 ? container_of(css, struct bch_cgroup, css)
52 : &bcache_default_cgroup;
55 static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
57 char __user *buf, size_t nbytes, loff_t *ppos)
60 int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61 cgroup_to_bcache(cgrp)->cache_mode + 1);
66 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
69 static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
72 int v = bch_read_string_list(buf, bch_cache_modes);
76 cgroup_to_bcache(cgrp)->cache_mode = v - 1;
80 static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
82 return cgroup_to_bcache(cgrp)->verify;
85 static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
87 cgroup_to_bcache(cgrp)->verify = val;
91 static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
93 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94 return atomic_read(&bcachecg->stats.cache_hits);
97 static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
99 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100 return atomic_read(&bcachecg->stats.cache_misses);
103 static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
106 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107 return atomic_read(&bcachecg->stats.cache_bypass_hits);
110 static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
113 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114 return atomic_read(&bcachecg->stats.cache_bypass_misses);
117 static struct cftype bch_files[] = {
119 .name = "cache_mode",
120 .read = cache_mode_read,
121 .write_string = cache_mode_write,
125 .read_u64 = bch_verify_read,
126 .write_u64 = bch_verify_write,
129 .name = "cache_hits",
130 .read_u64 = bch_cache_hits_read,
133 .name = "cache_misses",
134 .read_u64 = bch_cache_misses_read,
137 .name = "cache_bypass_hits",
138 .read_u64 = bch_cache_bypass_hits_read,
141 .name = "cache_bypass_misses",
142 .read_u64 = bch_cache_bypass_misses_read,
147 static void init_bch_cgroup(struct bch_cgroup *cg)
152 static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
154 struct bch_cgroup *cg;
156 cg = kzalloc(sizeof(*cg), GFP_KERNEL);
158 return ERR_PTR(-ENOMEM);
163 static void bcachecg_destroy(struct cgroup *cgroup)
165 struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166 free_css_id(&bcache_subsys, &cg->css);
170 struct cgroup_subsys bcache_subsys = {
171 .create = bcachecg_create,
172 .destroy = bcachecg_destroy,
173 .subsys_id = bcache_subsys_id,
175 .module = THIS_MODULE,
177 EXPORT_SYMBOL_GPL(bcache_subsys);
180 static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
182 #ifdef CONFIG_CGROUP_BCACHE
183 int r = bch_bio_to_cgroup(bio)->cache_mode;
187 return BDEV_CACHE_MODE(&dc->sb);
190 static bool verify(struct cached_dev *dc, struct bio *bio)
192 #ifdef CONFIG_CGROUP_BCACHE
193 if (bch_bio_to_cgroup(bio)->verify)
199 static void bio_csum(struct bio *bio, struct bkey *k)
202 struct bvec_iter iter;
205 bio_for_each_segment(bv, bio, iter) {
206 void *d = kmap(bv.bv_page) + bv.bv_offset;
207 csum = bch_crc64_update(csum, d, bv.bv_len);
211 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
214 /* Insert data into cache */
216 static void bch_data_insert_keys(struct closure *cl)
218 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
219 atomic_t *journal_ref = NULL;
220 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
224 * If we're looping, might already be waiting on
225 * another journal write - can't wait on more than one journal write at
228 * XXX: this looks wrong
231 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
232 closure_sync(&s->cl);
236 journal_ref = bch_journal(op->c, &op->insert_keys,
237 op->flush_journal ? cl : NULL);
239 ret = bch_btree_insert(op->c, &op->insert_keys,
240 journal_ref, replace_key);
242 op->replace_collision = true;
245 op->insert_data_done = true;
249 atomic_dec_bug(journal_ref);
251 if (!op->insert_data_done)
252 continue_at(cl, bch_data_insert_start, bcache_wq);
254 bch_keylist_free(&op->insert_keys);
258 static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
261 size_t oldsize = bch_keylist_nkeys(l);
262 size_t newsize = oldsize + u64s;
265 * The journalling code doesn't handle the case where the keys to insert
266 * is bigger than an empty write: If we just return -ENOMEM here,
267 * bio_insert() and bio_invalidate() will insert the keys created so far
268 * and finish the rest when the keylist is empty.
270 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
273 return __bch_keylist_realloc(l, u64s);
276 static void bch_data_invalidate(struct closure *cl)
278 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
279 struct bio *bio = op->bio;
281 pr_debug("invalidating %i sectors from %llu",
282 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
284 while (bio_sectors(bio)) {
285 unsigned sectors = min(bio_sectors(bio),
286 1U << (KEY_SIZE_BITS - 1));
288 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
291 bio->bi_iter.bi_sector += sectors;
292 bio->bi_iter.bi_size -= sectors << 9;
294 bch_keylist_add(&op->insert_keys,
295 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
298 op->insert_data_done = true;
301 continue_at(cl, bch_data_insert_keys, bcache_wq);
304 static void bch_data_insert_error(struct closure *cl)
306 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
309 * Our data write just errored, which means we've got a bunch of keys to
310 * insert that point to data that wasn't succesfully written.
312 * We don't have to insert those keys but we still have to invalidate
313 * that region of the cache - so, if we just strip off all the pointers
314 * from the keys we'll accomplish just that.
317 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
319 while (src != op->insert_keys.top) {
320 struct bkey *n = bkey_next(src);
322 SET_KEY_PTRS(src, 0);
323 memmove(dst, src, bkey_bytes(src));
325 dst = bkey_next(dst);
329 op->insert_keys.top = dst;
331 bch_data_insert_keys(cl);
334 static void bch_data_insert_endio(struct bio *bio, int error)
336 struct closure *cl = bio->bi_private;
337 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
340 /* TODO: We could try to recover from this. */
343 else if (!op->replace)
344 set_closure_fn(cl, bch_data_insert_error, bcache_wq);
346 set_closure_fn(cl, NULL, NULL);
349 bch_bbio_endio(op->c, bio, error, "writing data to cache");
352 static void bch_data_insert_start(struct closure *cl)
354 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
355 struct bio *bio = op->bio, *n;
357 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
358 set_gc_sectors(op->c);
363 return bch_data_invalidate(cl);
366 * Journal writes are marked REQ_FLUSH; if the original write was a
367 * flush, it'll wait on the journal write.
369 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
374 struct bio_set *split = op->c->bio_split;
376 /* 1 for the device pointer and 1 for the chksum */
377 if (bch_keylist_realloc(&op->insert_keys,
378 3 + (op->csum ? 1 : 0),
380 continue_at(cl, bch_data_insert_keys, bcache_wq);
382 k = op->insert_keys.top;
384 SET_KEY_INODE(k, op->inode);
385 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
387 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
388 op->write_point, op->write_prio,
392 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
394 n->bi_end_io = bch_data_insert_endio;
398 SET_KEY_DIRTY(k, true);
400 for (i = 0; i < KEY_PTRS(k); i++)
401 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
405 SET_KEY_CSUM(k, op->csum);
409 trace_bcache_cache_insert(k);
410 bch_keylist_push(&op->insert_keys);
412 n->bi_rw |= REQ_WRITE;
413 bch_submit_bbio(n, op->c, k, 0);
416 op->insert_data_done = true;
417 continue_at(cl, bch_data_insert_keys, bcache_wq);
419 /* bch_alloc_sectors() blocks if s->writeback = true */
420 BUG_ON(op->writeback);
423 * But if it's not a writeback write we'd rather just bail out if
424 * there aren't any buckets ready to write to - it might take awhile and
425 * we might be starving btree writes for gc or something.
430 * Writethrough write: We can't complete the write until we've
431 * updated the index. But we don't want to delay the write while
432 * we wait for buckets to be freed up, so just invalidate the
436 return bch_data_invalidate(cl);
439 * From a cache miss, we can just insert the keys for the data
440 * we have written or bail out if we didn't do anything.
442 op->insert_data_done = true;
445 if (!bch_keylist_empty(&op->insert_keys))
446 continue_at(cl, bch_data_insert_keys, bcache_wq);
453 * bch_data_insert - stick some data in the cache
455 * This is the starting point for any data to end up in a cache device; it could
456 * be from a normal write, or a writeback write, or a write to a flash only
457 * volume - it's also used by the moving garbage collector to compact data in
458 * mostly empty buckets.
460 * It first writes the data to the cache, creating a list of keys to be inserted
461 * (if the data had to be fragmented there will be multiple keys); after the
462 * data is written it calls bch_journal, and after the keys have been added to
463 * the next journal write they're inserted into the btree.
465 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
466 * and op->inode is used for the key inode.
468 * If s->bypass is true, instead of inserting the data it invalidates the
469 * region of the cache represented by s->cache_bio and op->inode.
471 void bch_data_insert(struct closure *cl)
473 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
475 trace_bcache_write(op->bio, op->writeback, op->bypass);
477 bch_keylist_init(&op->insert_keys);
479 bch_data_insert_start(cl);
484 unsigned bch_get_congested(struct cache_set *c)
489 if (!c->congested_read_threshold_us &&
490 !c->congested_write_threshold_us)
493 i = (local_clock_us() - c->congested_last_us) / 1024;
497 i += atomic_read(&c->congested);
504 i = fract_exp_two(i, 6);
506 rand = get_random_int();
507 i -= bitmap_weight(&rand, BITS_PER_LONG);
509 return i > 0 ? i : 1;
512 static void add_sequential(struct task_struct *t)
514 ewma_add(t->sequential_io_avg,
515 t->sequential_io, 8, 0);
517 t->sequential_io = 0;
520 static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
522 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
525 static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
527 struct cache_set *c = dc->disk.c;
528 unsigned mode = cache_mode(dc, bio);
529 unsigned sectors, congested = bch_get_congested(c);
530 struct task_struct *task = current;
533 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
534 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
535 (bio->bi_rw & REQ_DISCARD))
538 if (mode == CACHE_MODE_NONE ||
539 (mode == CACHE_MODE_WRITEAROUND &&
540 (bio->bi_rw & REQ_WRITE)))
543 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
544 bio_sectors(bio) & (c->sb.block_size - 1)) {
545 pr_debug("skipping unaligned io");
549 if (bypass_torture_test(dc)) {
550 if ((get_random_int() & 3) == 3)
556 if (!congested && !dc->sequential_cutoff)
560 mode == CACHE_MODE_WRITEBACK &&
561 (bio->bi_rw & REQ_WRITE) &&
562 (bio->bi_rw & REQ_SYNC))
565 spin_lock(&dc->io_lock);
567 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
568 if (i->last == bio->bi_iter.bi_sector &&
569 time_before(jiffies, i->jiffies))
572 i = list_first_entry(&dc->io_lru, struct io, lru);
574 add_sequential(task);
577 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
578 i->sequential += bio->bi_iter.bi_size;
580 i->last = bio_end_sector(bio);
581 i->jiffies = jiffies + msecs_to_jiffies(5000);
582 task->sequential_io = i->sequential;
585 hlist_add_head(&i->hash, iohash(dc, i->last));
586 list_move_tail(&i->lru, &dc->io_lru);
588 spin_unlock(&dc->io_lock);
590 sectors = max(task->sequential_io,
591 task->sequential_io_avg) >> 9;
593 if (dc->sequential_cutoff &&
594 sectors >= dc->sequential_cutoff >> 9) {
595 trace_bcache_bypass_sequential(bio);
599 if (congested && sectors >= congested) {
600 trace_bcache_bypass_congested(bio);
605 bch_rescale_priorities(c, bio_sectors(bio));
608 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
615 /* Stack frame for bio_complete */
619 struct bio *orig_bio;
620 struct bio *cache_miss;
621 struct bcache_device *d;
623 unsigned insert_bio_sectors;
624 unsigned recoverable:1;
626 unsigned read_dirty_data:1;
628 unsigned long start_time;
631 struct data_insert_op iop;
634 static void bch_cache_read_endio(struct bio *bio, int error)
636 struct bbio *b = container_of(bio, struct bbio, bio);
637 struct closure *cl = bio->bi_private;
638 struct search *s = container_of(cl, struct search, cl);
641 * If the bucket was reused while our bio was in flight, we might have
642 * read the wrong data. Set s->error but not error so it doesn't get
643 * counted against the cache device, but we'll still reread the data
644 * from the backing device.
648 s->iop.error = error;
649 else if (!KEY_DIRTY(&b->key) &&
650 ptr_stale(s->iop.c, &b->key, 0)) {
651 atomic_long_inc(&s->iop.c->cache_read_races);
652 s->iop.error = -EINTR;
655 bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
659 * Read from a single key, handling the initial cache miss if the key starts in
660 * the middle of the bio
662 static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
664 struct search *s = container_of(op, struct search, op);
665 struct bio *n, *bio = &s->bio.bio;
666 struct bkey *bio_key;
669 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
672 if (KEY_INODE(k) != s->iop.inode ||
673 KEY_START(k) > bio->bi_iter.bi_sector) {
674 unsigned bio_sectors = bio_sectors(bio);
675 unsigned sectors = KEY_INODE(k) == s->iop.inode
676 ? min_t(uint64_t, INT_MAX,
677 KEY_START(k) - bio->bi_iter.bi_sector)
680 int ret = s->d->cache_miss(b, s, bio, sectors);
681 if (ret != MAP_CONTINUE)
684 /* if this was a complete miss we shouldn't get here */
685 BUG_ON(bio_sectors <= sectors);
691 /* XXX: figure out best pointer - for multiple cache devices */
694 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
697 s->read_dirty_data = true;
699 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
700 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
701 GFP_NOIO, s->d->bio_split);
703 bio_key = &container_of(n, struct bbio, bio)->key;
704 bch_bkey_copy_single_ptr(bio_key, k, ptr);
706 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
707 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
709 n->bi_end_io = bch_cache_read_endio;
710 n->bi_private = &s->cl;
713 * The bucket we're reading from might be reused while our bio
714 * is in flight, and we could then end up reading the wrong
717 * We guard against this by checking (in cache_read_endio()) if
718 * the pointer is stale again; if so, we treat it as an error
719 * and reread from the backing device (but we don't pass that
720 * error up anywhere).
723 __bch_submit_bbio(n, b->c);
724 return n == bio ? MAP_DONE : MAP_CONTINUE;
727 static void cache_lookup(struct closure *cl)
729 struct search *s = container_of(cl, struct search, iop.cl);
730 struct bio *bio = &s->bio.bio;
733 bch_btree_op_init(&s->op, -1);
735 ret = bch_btree_map_keys(&s->op, s->iop.c,
736 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
737 cache_lookup_fn, MAP_END_KEY);
739 continue_at(cl, cache_lookup, bcache_wq);
744 /* Common code for the make_request functions */
746 static void request_endio(struct bio *bio, int error)
748 struct closure *cl = bio->bi_private;
751 struct search *s = container_of(cl, struct search, cl);
752 s->iop.error = error;
753 /* Only cache read errors are recoverable */
754 s->recoverable = false;
761 static void bio_complete(struct search *s)
764 int cpu, rw = bio_data_dir(s->orig_bio);
765 unsigned long duration = jiffies - s->start_time;
767 cpu = part_stat_lock();
768 part_round_stats(cpu, &s->d->disk->part0);
769 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
772 trace_bcache_request_end(s->d, s->orig_bio);
773 bio_endio(s->orig_bio, s->iop.error);
778 static void do_bio_hook(struct search *s, struct bio *orig_bio)
780 struct bio *bio = &s->bio.bio;
783 __bio_clone_fast(bio, orig_bio);
784 bio->bi_end_io = request_endio;
785 bio->bi_private = &s->cl;
787 atomic_set(&bio->bi_cnt, 3);
790 static void search_free(struct closure *cl)
792 struct search *s = container_of(cl, struct search, cl);
798 closure_debug_destroy(cl);
799 mempool_free(s, s->d->c->search);
802 static inline struct search *search_alloc(struct bio *bio,
803 struct bcache_device *d)
807 s = mempool_alloc(d->c->search, GFP_NOIO);
809 closure_init(&s->cl, NULL);
813 s->cache_miss = NULL;
816 s->write = (bio->bi_rw & REQ_WRITE) != 0;
817 s->read_dirty_data = 0;
818 s->start_time = jiffies;
822 s->iop.inode = d->id;
823 s->iop.write_point = hash_long((unsigned long) current, 16);
824 s->iop.write_prio = 0;
827 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
834 static void cached_dev_bio_complete(struct closure *cl)
836 struct search *s = container_of(cl, struct search, cl);
837 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
845 static void cached_dev_cache_miss_done(struct closure *cl)
847 struct search *s = container_of(cl, struct search, cl);
849 if (s->iop.replace_collision)
850 bch_mark_cache_miss_collision(s->iop.c, s->d);
856 bio_for_each_segment_all(bv, s->iop.bio, i)
857 __free_page(bv->bv_page);
860 cached_dev_bio_complete(cl);
863 static void cached_dev_read_error(struct closure *cl)
865 struct search *s = container_of(cl, struct search, cl);
866 struct bio *bio = &s->bio.bio;
868 if (s->recoverable) {
869 /* Retry from the backing device: */
870 trace_bcache_read_retry(s->orig_bio);
873 do_bio_hook(s, s->orig_bio);
875 /* XXX: invalidate cache */
877 closure_bio_submit(bio, cl, s->d);
880 continue_at(cl, cached_dev_cache_miss_done, NULL);
883 static void cached_dev_read_done(struct closure *cl)
885 struct search *s = container_of(cl, struct search, cl);
886 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
889 * We had a cache miss; cache_bio now contains data ready to be inserted
892 * First, we copy the data we just read from cache_bio's bounce buffers
893 * to the buffers the original bio pointed to:
897 bio_reset(s->iop.bio);
898 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
899 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
900 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
901 bch_bio_map(s->iop.bio, NULL);
903 bio_copy_data(s->cache_miss, s->iop.bio);
905 bio_put(s->cache_miss);
906 s->cache_miss = NULL;
909 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
910 bch_data_verify(dc, s->orig_bio);
915 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
916 BUG_ON(!s->iop.replace);
917 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
920 continue_at(cl, cached_dev_cache_miss_done, NULL);
923 static void cached_dev_read_done_bh(struct closure *cl)
925 struct search *s = container_of(cl, struct search, cl);
926 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
928 bch_mark_cache_accounting(s->iop.c, s->d,
929 !s->cache_miss, s->iop.bypass);
930 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
933 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
934 else if (s->iop.bio || verify(dc, &s->bio.bio))
935 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
937 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
940 static int cached_dev_cache_miss(struct btree *b, struct search *s,
941 struct bio *bio, unsigned sectors)
943 int ret = MAP_CONTINUE;
945 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
946 struct bio *miss, *cache_bio;
948 if (s->cache_miss || s->iop.bypass) {
949 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
950 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
954 if (!(bio->bi_rw & REQ_RAHEAD) &&
955 !(bio->bi_rw & REQ_META) &&
956 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
957 reada = min_t(sector_t, dc->readahead >> 9,
958 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
960 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
962 s->iop.replace_key = KEY(s->iop.inode,
963 bio->bi_iter.bi_sector + s->insert_bio_sectors,
964 s->insert_bio_sectors);
966 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
970 s->iop.replace = true;
972 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
974 /* btree_search_recurse()'s btree iterator is no good anymore */
975 ret = miss == bio ? MAP_DONE : -EINTR;
977 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
978 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
983 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
984 cache_bio->bi_bdev = miss->bi_bdev;
985 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
987 cache_bio->bi_end_io = request_endio;
988 cache_bio->bi_private = &s->cl;
990 bch_bio_map(cache_bio, NULL);
991 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
995 bch_mark_cache_readahead(s->iop.c, s->d);
997 s->cache_miss = miss;
998 s->iop.bio = cache_bio;
1000 closure_bio_submit(cache_bio, &s->cl, s->d);
1006 miss->bi_end_io = request_endio;
1007 miss->bi_private = &s->cl;
1008 closure_bio_submit(miss, &s->cl, s->d);
1012 static void cached_dev_read(struct cached_dev *dc, struct search *s)
1014 struct closure *cl = &s->cl;
1016 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1017 continue_at(cl, cached_dev_read_done_bh, NULL);
1020 /* Process writes */
1022 static void cached_dev_write_complete(struct closure *cl)
1024 struct search *s = container_of(cl, struct search, cl);
1025 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
1027 up_read_non_owner(&dc->writeback_lock);
1028 cached_dev_bio_complete(cl);
1031 static void cached_dev_write(struct cached_dev *dc, struct search *s)
1033 struct closure *cl = &s->cl;
1034 struct bio *bio = &s->bio.bio;
1035 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
1036 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
1038 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
1040 down_read_non_owner(&dc->writeback_lock);
1041 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1043 * We overlap with some dirty data undergoing background
1044 * writeback, force this write to writeback
1046 s->iop.bypass = false;
1047 s->iop.writeback = true;
1051 * Discards aren't _required_ to do anything, so skipping if
1052 * check_overlapping returned true is ok
1054 * But check_overlapping drops dirty keys for which io hasn't started,
1055 * so we still want to call it.
1057 if (bio->bi_rw & REQ_DISCARD)
1058 s->iop.bypass = true;
1060 if (should_writeback(dc, s->orig_bio,
1061 cache_mode(dc, bio),
1063 s->iop.bypass = false;
1064 s->iop.writeback = true;
1067 if (s->iop.bypass) {
1068 s->iop.bio = s->orig_bio;
1069 bio_get(s->iop.bio);
1071 if (!(bio->bi_rw & REQ_DISCARD) ||
1072 blk_queue_discard(bdev_get_queue(dc->bdev)))
1073 closure_bio_submit(bio, cl, s->d);
1074 } else if (s->iop.writeback) {
1075 bch_writeback_add(dc);
1078 if (bio->bi_rw & REQ_FLUSH) {
1079 /* Also need to send a flush to the backing device */
1080 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
1081 dc->disk.bio_split);
1083 flush->bi_rw = WRITE_FLUSH;
1084 flush->bi_bdev = bio->bi_bdev;
1085 flush->bi_end_io = request_endio;
1086 flush->bi_private = cl;
1088 closure_bio_submit(flush, cl, s->d);
1091 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
1093 closure_bio_submit(bio, cl, s->d);
1096 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1097 continue_at(cl, cached_dev_write_complete, NULL);
1100 static void cached_dev_nodata(struct closure *cl)
1102 struct search *s = container_of(cl, struct search, cl);
1103 struct bio *bio = &s->bio.bio;
1105 if (s->iop.flush_journal)
1106 bch_journal_meta(s->iop.c, cl);
1108 /* If it's a flush, we send the flush to the backing device too */
1109 closure_bio_submit(bio, cl, s->d);
1111 continue_at(cl, cached_dev_bio_complete, NULL);
1114 /* Cached devices - read & write stuff */
1116 static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1119 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1120 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1121 int cpu, rw = bio_data_dir(bio);
1123 cpu = part_stat_lock();
1124 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1125 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1128 bio->bi_bdev = dc->bdev;
1129 bio->bi_iter.bi_sector += dc->sb.data_offset;
1131 if (cached_dev_get(dc)) {
1132 s = search_alloc(bio, d);
1133 trace_bcache_request_start(s->d, bio);
1135 if (!bio->bi_iter.bi_size) {
1137 * can't call bch_journal_meta from under
1138 * generic_make_request
1140 continue_at_nobarrier(&s->cl,
1144 s->iop.bypass = check_should_bypass(dc, bio);
1147 cached_dev_write(dc, s);
1149 cached_dev_read(dc, s);
1152 if ((bio->bi_rw & REQ_DISCARD) &&
1153 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1156 bch_generic_make_request(bio, &d->bio_split_hook);
1160 static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1161 unsigned int cmd, unsigned long arg)
1163 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1164 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1167 static int cached_dev_congested(void *data, int bits)
1169 struct bcache_device *d = data;
1170 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1171 struct request_queue *q = bdev_get_queue(dc->bdev);
1174 if (bdi_congested(&q->backing_dev_info, bits))
1177 if (cached_dev_get(dc)) {
1181 for_each_cache(ca, d->c, i) {
1182 q = bdev_get_queue(ca->bdev);
1183 ret |= bdi_congested(&q->backing_dev_info, bits);
1192 void bch_cached_dev_request_init(struct cached_dev *dc)
1194 struct gendisk *g = dc->disk.disk;
1196 g->queue->make_request_fn = cached_dev_make_request;
1197 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1198 dc->disk.cache_miss = cached_dev_cache_miss;
1199 dc->disk.ioctl = cached_dev_ioctl;
1202 /* Flash backed devices */
1204 static int flash_dev_cache_miss(struct btree *b, struct search *s,
1205 struct bio *bio, unsigned sectors)
1208 struct bvec_iter iter;
1212 bio_for_each_segment(bv, bio, iter) {
1213 unsigned j = min(bv.bv_len >> 9, sectors);
1215 void *p = kmap(bv.bv_page);
1216 memset(p + bv.bv_offset, 0, j << 9);
1222 bio_advance(bio, min(sectors << 9, bio->bi_iter.bi_size));
1224 if (!bio->bi_iter.bi_size)
1227 return MAP_CONTINUE;
1230 static void flash_dev_nodata(struct closure *cl)
1232 struct search *s = container_of(cl, struct search, cl);
1234 if (s->iop.flush_journal)
1235 bch_journal_meta(s->iop.c, cl);
1237 continue_at(cl, search_free, NULL);
1240 static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1244 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1245 int cpu, rw = bio_data_dir(bio);
1247 cpu = part_stat_lock();
1248 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1249 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1252 s = search_alloc(bio, d);
1256 trace_bcache_request_start(s->d, bio);
1258 if (!bio->bi_iter.bi_size) {
1260 * can't call bch_journal_meta from under
1261 * generic_make_request
1263 continue_at_nobarrier(&s->cl,
1267 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1268 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1269 &KEY(d->id, bio_end_sector(bio), 0));
1271 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
1272 s->iop.writeback = true;
1275 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1277 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1280 continue_at(cl, search_free, NULL);
1283 static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1284 unsigned int cmd, unsigned long arg)
1289 static int flash_dev_congested(void *data, int bits)
1291 struct bcache_device *d = data;
1292 struct request_queue *q;
1297 for_each_cache(ca, d->c, i) {
1298 q = bdev_get_queue(ca->bdev);
1299 ret |= bdi_congested(&q->backing_dev_info, bits);
1305 void bch_flash_dev_request_init(struct bcache_device *d)
1307 struct gendisk *g = d->disk;
1309 g->queue->make_request_fn = flash_dev_make_request;
1310 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1311 d->cache_miss = flash_dev_cache_miss;
1312 d->ioctl = flash_dev_ioctl;
1315 void bch_request_exit(void)
1317 #ifdef CONFIG_CGROUP_BCACHE
1318 cgroup_unload_subsys(&bcache_subsys);
1320 if (bch_search_cache)
1321 kmem_cache_destroy(bch_search_cache);
1324 int __init bch_request_init(void)
1326 bch_search_cache = KMEM_CACHE(search, 0);
1327 if (!bch_search_cache)
1330 #ifdef CONFIG_CGROUP_BCACHE
1331 cgroup_load_subsys(&bcache_subsys);
1332 init_bch_cgroup(&bcache_default_cgroup);
1334 cgroup_add_cftypes(&bcache_subsys, bch_files);