2 * mm/rmap.c - physical to virtual reverse mappings
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
29 * mm->page_table_lock or pte_lock
30 * pgdat->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * i_pages lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * i_pages lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/huge_mm.h>
65 #include <linux/backing-dev.h>
66 #include <linux/page_idle.h>
67 #include <linux/memremap.h>
68 #include <linux/userfaultfd_k.h>
70 #include <asm/tlbflush.h>
72 #include <trace/events/tlb.h>
76 static struct kmem_cache *anon_vma_cachep;
77 static struct kmem_cache *anon_vma_chain_cachep;
79 static inline struct anon_vma *anon_vma_alloc(void)
81 struct anon_vma *anon_vma;
83 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
85 atomic_set(&anon_vma->refcount, 1);
86 anon_vma->degree = 1; /* Reference for first vma */
87 anon_vma->parent = anon_vma;
89 * Initialise the anon_vma root to point to itself. If called
90 * from fork, the root will be reset to the parents anon_vma.
92 anon_vma->root = anon_vma;
98 static inline void anon_vma_free(struct anon_vma *anon_vma)
100 VM_BUG_ON(atomic_read(&anon_vma->refcount));
103 * Synchronize against page_lock_anon_vma_read() such that
104 * we can safely hold the lock without the anon_vma getting
107 * Relies on the full mb implied by the atomic_dec_and_test() from
108 * put_anon_vma() against the acquire barrier implied by
109 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
111 * page_lock_anon_vma_read() VS put_anon_vma()
112 * down_read_trylock() atomic_dec_and_test()
114 * atomic_read() rwsem_is_locked()
116 * LOCK should suffice since the actual taking of the lock must
117 * happen _before_ what follows.
120 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
121 anon_vma_lock_write(anon_vma);
122 anon_vma_unlock_write(anon_vma);
125 kmem_cache_free(anon_vma_cachep, anon_vma);
128 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
130 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
133 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
135 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
138 static void anon_vma_chain_link(struct vm_area_struct *vma,
139 struct anon_vma_chain *avc,
140 struct anon_vma *anon_vma)
143 avc->anon_vma = anon_vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
145 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
149 * __anon_vma_prepare - attach an anon_vma to a memory region
150 * @vma: the memory region in question
152 * This makes sure the memory mapping described by 'vma' has
153 * an 'anon_vma' attached to it, so that we can associate the
154 * anonymous pages mapped into it with that anon_vma.
156 * The common case will be that we already have one, which
157 * is handled inline by anon_vma_prepare(). But if
158 * not we either need to find an adjacent mapping that we
159 * can re-use the anon_vma from (very common when the only
160 * reason for splitting a vma has been mprotect()), or we
161 * allocate a new one.
163 * Anon-vma allocations are very subtle, because we may have
164 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
165 * and that may actually touch the spinlock even in the newly
166 * allocated vma (it depends on RCU to make sure that the
167 * anon_vma isn't actually destroyed).
169 * As a result, we need to do proper anon_vma locking even
170 * for the new allocation. At the same time, we do not want
171 * to do any locking for the common case of already having
174 * This must be called with the mmap_sem held for reading.
176 int __anon_vma_prepare(struct vm_area_struct *vma)
178 struct mm_struct *mm = vma->vm_mm;
179 struct anon_vma *anon_vma, *allocated;
180 struct anon_vma_chain *avc;
184 avc = anon_vma_chain_alloc(GFP_KERNEL);
188 anon_vma = find_mergeable_anon_vma(vma);
191 anon_vma = anon_vma_alloc();
192 if (unlikely(!anon_vma))
193 goto out_enomem_free_avc;
194 allocated = anon_vma;
197 anon_vma_lock_write(anon_vma);
198 /* page_table_lock to protect against threads */
199 spin_lock(&mm->page_table_lock);
200 if (likely(!vma->anon_vma)) {
201 vma->anon_vma = anon_vma;
202 anon_vma_chain_link(vma, avc, anon_vma);
203 /* vma reference or self-parent link for new root */
208 spin_unlock(&mm->page_table_lock);
209 anon_vma_unlock_write(anon_vma);
211 if (unlikely(allocated))
212 put_anon_vma(allocated);
214 anon_vma_chain_free(avc);
219 anon_vma_chain_free(avc);
225 * This is a useful helper function for locking the anon_vma root as
226 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
229 * Such anon_vma's should have the same root, so you'd expect to see
230 * just a single mutex_lock for the whole traversal.
232 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
234 struct anon_vma *new_root = anon_vma->root;
235 if (new_root != root) {
236 if (WARN_ON_ONCE(root))
237 up_write(&root->rwsem);
239 down_write(&root->rwsem);
244 static inline void unlock_anon_vma_root(struct anon_vma *root)
247 up_write(&root->rwsem);
251 * Attach the anon_vmas from src to dst.
252 * Returns 0 on success, -ENOMEM on failure.
254 * If dst->anon_vma is NULL this function tries to find and reuse existing
255 * anon_vma which has no vmas and only one child anon_vma. This prevents
256 * degradation of anon_vma hierarchy to endless linear chain in case of
257 * constantly forking task. On the other hand, an anon_vma with more than one
258 * child isn't reused even if there was no alive vma, thus rmap walker has a
259 * good chance of avoiding scanning the whole hierarchy when it searches where
262 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
264 struct anon_vma_chain *avc, *pavc;
265 struct anon_vma *root = NULL;
267 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
268 struct anon_vma *anon_vma;
270 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
271 if (unlikely(!avc)) {
272 unlock_anon_vma_root(root);
274 avc = anon_vma_chain_alloc(GFP_KERNEL);
278 anon_vma = pavc->anon_vma;
279 root = lock_anon_vma_root(root, anon_vma);
280 anon_vma_chain_link(dst, avc, anon_vma);
283 * Reuse existing anon_vma if its degree lower than two,
284 * that means it has no vma and only one anon_vma child.
286 * Do not chose parent anon_vma, otherwise first child
287 * will always reuse it. Root anon_vma is never reused:
288 * it has self-parent reference and at least one child.
290 if (!dst->anon_vma && anon_vma != src->anon_vma &&
291 anon_vma->degree < 2)
292 dst->anon_vma = anon_vma;
295 dst->anon_vma->degree++;
296 unlock_anon_vma_root(root);
301 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
302 * decremented in unlink_anon_vmas().
303 * We can safely do this because callers of anon_vma_clone() don't care
304 * about dst->anon_vma if anon_vma_clone() failed.
306 dst->anon_vma = NULL;
307 unlink_anon_vmas(dst);
312 * Attach vma to its own anon_vma, as well as to the anon_vmas that
313 * the corresponding VMA in the parent process is attached to.
314 * Returns 0 on success, non-zero on failure.
316 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
318 struct anon_vma_chain *avc;
319 struct anon_vma *anon_vma;
322 /* Don't bother if the parent process has no anon_vma here. */
326 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
327 vma->anon_vma = NULL;
330 * First, attach the new VMA to the parent VMA's anon_vmas,
331 * so rmap can find non-COWed pages in child processes.
333 error = anon_vma_clone(vma, pvma);
337 /* An existing anon_vma has been reused, all done then. */
341 /* Then add our own anon_vma. */
342 anon_vma = anon_vma_alloc();
345 avc = anon_vma_chain_alloc(GFP_KERNEL);
347 goto out_error_free_anon_vma;
350 * The root anon_vma's spinlock is the lock actually used when we
351 * lock any of the anon_vmas in this anon_vma tree.
353 anon_vma->root = pvma->anon_vma->root;
354 anon_vma->parent = pvma->anon_vma;
356 * With refcounts, an anon_vma can stay around longer than the
357 * process it belongs to. The root anon_vma needs to be pinned until
358 * this anon_vma is freed, because the lock lives in the root.
360 get_anon_vma(anon_vma->root);
361 /* Mark this anon_vma as the one where our new (COWed) pages go. */
362 vma->anon_vma = anon_vma;
363 anon_vma_lock_write(anon_vma);
364 anon_vma_chain_link(vma, avc, anon_vma);
365 anon_vma->parent->degree++;
366 anon_vma_unlock_write(anon_vma);
370 out_error_free_anon_vma:
371 put_anon_vma(anon_vma);
373 unlink_anon_vmas(vma);
377 void unlink_anon_vmas(struct vm_area_struct *vma)
379 struct anon_vma_chain *avc, *next;
380 struct anon_vma *root = NULL;
383 * Unlink each anon_vma chained to the VMA. This list is ordered
384 * from newest to oldest, ensuring the root anon_vma gets freed last.
386 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
387 struct anon_vma *anon_vma = avc->anon_vma;
389 root = lock_anon_vma_root(root, anon_vma);
390 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
393 * Leave empty anon_vmas on the list - we'll need
394 * to free them outside the lock.
396 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
397 anon_vma->parent->degree--;
401 list_del(&avc->same_vma);
402 anon_vma_chain_free(avc);
405 vma->anon_vma->degree--;
406 unlock_anon_vma_root(root);
409 * Iterate the list once more, it now only contains empty and unlinked
410 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
411 * needing to write-acquire the anon_vma->root->rwsem.
413 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
414 struct anon_vma *anon_vma = avc->anon_vma;
416 VM_WARN_ON(anon_vma->degree);
417 put_anon_vma(anon_vma);
419 list_del(&avc->same_vma);
420 anon_vma_chain_free(avc);
424 static void anon_vma_ctor(void *data)
426 struct anon_vma *anon_vma = data;
428 init_rwsem(&anon_vma->rwsem);
429 atomic_set(&anon_vma->refcount, 0);
430 anon_vma->rb_root = RB_ROOT_CACHED;
433 void __init anon_vma_init(void)
435 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
436 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
438 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
439 SLAB_PANIC|SLAB_ACCOUNT);
443 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
445 * Since there is no serialization what so ever against page_remove_rmap()
446 * the best this function can do is return a locked anon_vma that might
447 * have been relevant to this page.
449 * The page might have been remapped to a different anon_vma or the anon_vma
450 * returned may already be freed (and even reused).
452 * In case it was remapped to a different anon_vma, the new anon_vma will be a
453 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
454 * ensure that any anon_vma obtained from the page will still be valid for as
455 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
457 * All users of this function must be very careful when walking the anon_vma
458 * chain and verify that the page in question is indeed mapped in it
459 * [ something equivalent to page_mapped_in_vma() ].
461 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
462 * that the anon_vma pointer from page->mapping is valid if there is a
463 * mapcount, we can dereference the anon_vma after observing those.
465 struct anon_vma *page_get_anon_vma(struct page *page)
467 struct anon_vma *anon_vma = NULL;
468 unsigned long anon_mapping;
471 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
472 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
474 if (!page_mapped(page))
477 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
478 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
484 * If this page is still mapped, then its anon_vma cannot have been
485 * freed. But if it has been unmapped, we have no security against the
486 * anon_vma structure being freed and reused (for another anon_vma:
487 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
488 * above cannot corrupt).
490 if (!page_mapped(page)) {
492 put_anon_vma(anon_vma);
502 * Similar to page_get_anon_vma() except it locks the anon_vma.
504 * Its a little more complex as it tries to keep the fast path to a single
505 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
506 * reference like with page_get_anon_vma() and then block on the mutex.
508 struct anon_vma *page_lock_anon_vma_read(struct page *page)
510 struct anon_vma *anon_vma = NULL;
511 struct anon_vma *root_anon_vma;
512 unsigned long anon_mapping;
515 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
516 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
518 if (!page_mapped(page))
521 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
522 root_anon_vma = READ_ONCE(anon_vma->root);
523 if (down_read_trylock(&root_anon_vma->rwsem)) {
525 * If the page is still mapped, then this anon_vma is still
526 * its anon_vma, and holding the mutex ensures that it will
527 * not go away, see anon_vma_free().
529 if (!page_mapped(page)) {
530 up_read(&root_anon_vma->rwsem);
536 /* trylock failed, we got to sleep */
537 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
542 if (!page_mapped(page)) {
544 put_anon_vma(anon_vma);
548 /* we pinned the anon_vma, its safe to sleep */
550 anon_vma_lock_read(anon_vma);
552 if (atomic_dec_and_test(&anon_vma->refcount)) {
554 * Oops, we held the last refcount, release the lock
555 * and bail -- can't simply use put_anon_vma() because
556 * we'll deadlock on the anon_vma_lock_write() recursion.
558 anon_vma_unlock_read(anon_vma);
559 __put_anon_vma(anon_vma);
570 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
572 anon_vma_unlock_read(anon_vma);
575 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
577 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
578 * important if a PTE was dirty when it was unmapped that it's flushed
579 * before any IO is initiated on the page to prevent lost writes. Similarly,
580 * it must be flushed before freeing to prevent data leakage.
582 void try_to_unmap_flush(void)
584 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
586 if (!tlb_ubc->flush_required)
589 arch_tlbbatch_flush(&tlb_ubc->arch);
590 tlb_ubc->flush_required = false;
591 tlb_ubc->writable = false;
594 /* Flush iff there are potentially writable TLB entries that can race with IO */
595 void try_to_unmap_flush_dirty(void)
597 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
599 if (tlb_ubc->writable)
600 try_to_unmap_flush();
603 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
605 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
607 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
608 tlb_ubc->flush_required = true;
611 * Ensure compiler does not re-order the setting of tlb_flush_batched
612 * before the PTE is cleared.
615 mm->tlb_flush_batched = true;
618 * If the PTE was dirty then it's best to assume it's writable. The
619 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
620 * before the page is queued for IO.
623 tlb_ubc->writable = true;
627 * Returns true if the TLB flush should be deferred to the end of a batch of
628 * unmap operations to reduce IPIs.
630 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
632 bool should_defer = false;
634 if (!(flags & TTU_BATCH_FLUSH))
637 /* If remote CPUs need to be flushed then defer batch the flush */
638 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
646 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
647 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
648 * operation such as mprotect or munmap to race between reclaim unmapping
649 * the page and flushing the page. If this race occurs, it potentially allows
650 * access to data via a stale TLB entry. Tracking all mm's that have TLB
651 * batching in flight would be expensive during reclaim so instead track
652 * whether TLB batching occurred in the past and if so then do a flush here
653 * if required. This will cost one additional flush per reclaim cycle paid
654 * by the first operation at risk such as mprotect and mumap.
656 * This must be called under the PTL so that an access to tlb_flush_batched
657 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
660 void flush_tlb_batched_pending(struct mm_struct *mm)
662 if (mm->tlb_flush_batched) {
666 * Do not allow the compiler to re-order the clearing of
667 * tlb_flush_batched before the tlb is flushed.
670 mm->tlb_flush_batched = false;
674 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
678 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
682 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
685 * At what user virtual address is page expected in vma?
686 * Caller should check the page is actually part of the vma.
688 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
690 unsigned long address;
691 if (PageAnon(page)) {
692 struct anon_vma *page__anon_vma = page_anon_vma(page);
694 * Note: swapoff's unuse_vma() is more efficient with this
695 * check, and needs it to match anon_vma when KSM is active.
697 if (!vma->anon_vma || !page__anon_vma ||
698 vma->anon_vma->root != page__anon_vma->root)
700 } else if (page->mapping) {
701 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
705 address = __vma_address(page, vma);
706 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
711 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
719 pgd = pgd_offset(mm, address);
720 if (!pgd_present(*pgd))
723 p4d = p4d_offset(pgd, address);
724 if (!p4d_present(*p4d))
727 pud = pud_offset(p4d, address);
728 if (!pud_present(*pud))
731 pmd = pmd_offset(pud, address);
733 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
734 * without holding anon_vma lock for write. So when looking for a
735 * genuine pmde (in which to find pte), test present and !THP together.
739 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
745 struct page_referenced_arg {
748 unsigned long vm_flags;
749 struct mem_cgroup *memcg;
752 * arg: page_referenced_arg will be passed
754 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
755 unsigned long address, void *arg)
757 struct page_referenced_arg *pra = arg;
758 struct page_vma_mapped_walk pvmw = {
765 while (page_vma_mapped_walk(&pvmw)) {
766 address = pvmw.address;
768 if (vma->vm_flags & VM_LOCKED) {
769 page_vma_mapped_walk_done(&pvmw);
770 pra->vm_flags |= VM_LOCKED;
771 return false; /* To break the loop */
775 if (ptep_clear_flush_young_notify(vma, address,
778 * Don't treat a reference through
779 * a sequentially read mapping as such.
780 * If the page has been used in another mapping,
781 * we will catch it; if this other mapping is
782 * already gone, the unmap path will have set
783 * PG_referenced or activated the page.
785 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
788 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
789 if (pmdp_clear_flush_young_notify(vma, address,
793 /* unexpected pmd-mapped page? */
801 clear_page_idle(page);
802 if (test_and_clear_page_young(page))
807 pra->vm_flags |= vma->vm_flags;
811 return false; /* To break the loop */
816 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
818 struct page_referenced_arg *pra = arg;
819 struct mem_cgroup *memcg = pra->memcg;
821 if (!mm_match_cgroup(vma->vm_mm, memcg))
828 * page_referenced - test if the page was referenced
829 * @page: the page to test
830 * @is_locked: caller holds lock on the page
831 * @memcg: target memory cgroup
832 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
834 * Quick test_and_clear_referenced for all mappings to a page,
835 * returns the number of ptes which referenced the page.
837 int page_referenced(struct page *page,
839 struct mem_cgroup *memcg,
840 unsigned long *vm_flags)
843 struct page_referenced_arg pra = {
844 .mapcount = total_mapcount(page),
847 struct rmap_walk_control rwc = {
848 .rmap_one = page_referenced_one,
850 .anon_lock = page_lock_anon_vma_read,
857 if (!page_rmapping(page))
860 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
861 we_locked = trylock_page(page);
867 * If we are reclaiming on behalf of a cgroup, skip
868 * counting on behalf of references from different
872 rwc.invalid_vma = invalid_page_referenced_vma;
875 rmap_walk(page, &rwc);
876 *vm_flags = pra.vm_flags;
881 return pra.referenced;
884 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
885 unsigned long address, void *arg)
887 struct page_vma_mapped_walk pvmw = {
893 struct mmu_notifier_range range;
897 * We have to assume the worse case ie pmd for invalidation. Note that
898 * the page can not be free from this function.
900 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
901 0, vma, vma->vm_mm, address,
902 min(vma->vm_end, address + page_size(page)));
903 mmu_notifier_invalidate_range_start(&range);
905 while (page_vma_mapped_walk(&pvmw)) {
908 address = pvmw.address;
911 pte_t *pte = pvmw.pte;
913 if (!pte_dirty(*pte) && !pte_write(*pte))
916 flush_cache_page(vma, address, pte_pfn(*pte));
917 entry = ptep_clear_flush(vma, address, pte);
918 entry = pte_wrprotect(entry);
919 entry = pte_mkclean(entry);
920 set_pte_at(vma->vm_mm, address, pte, entry);
923 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
924 pmd_t *pmd = pvmw.pmd;
927 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
930 flush_cache_page(vma, address, page_to_pfn(page));
931 entry = pmdp_invalidate(vma, address, pmd);
932 entry = pmd_wrprotect(entry);
933 entry = pmd_mkclean(entry);
934 set_pmd_at(vma->vm_mm, address, pmd, entry);
937 /* unexpected pmd-mapped page? */
943 * No need to call mmu_notifier_invalidate_range() as we are
944 * downgrading page table protection not changing it to point
947 * See Documentation/vm/mmu_notifier.rst
953 mmu_notifier_invalidate_range_end(&range);
958 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
960 if (vma->vm_flags & VM_SHARED)
966 int page_mkclean(struct page *page)
969 struct address_space *mapping;
970 struct rmap_walk_control rwc = {
971 .arg = (void *)&cleaned,
972 .rmap_one = page_mkclean_one,
973 .invalid_vma = invalid_mkclean_vma,
976 BUG_ON(!PageLocked(page));
978 if (!page_mapped(page))
981 mapping = page_mapping(page);
985 rmap_walk(page, &rwc);
989 EXPORT_SYMBOL_GPL(page_mkclean);
992 * page_move_anon_rmap - move a page to our anon_vma
993 * @page: the page to move to our anon_vma
994 * @vma: the vma the page belongs to
996 * When a page belongs exclusively to one process after a COW event,
997 * that page can be moved into the anon_vma that belongs to just that
998 * process, so the rmap code will not search the parent or sibling
1001 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1003 struct anon_vma *anon_vma = vma->anon_vma;
1005 page = compound_head(page);
1007 VM_BUG_ON_PAGE(!PageLocked(page), page);
1008 VM_BUG_ON_VMA(!anon_vma, vma);
1010 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1012 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1013 * simultaneously, so a concurrent reader (eg page_referenced()'s
1014 * PageAnon()) will not see one without the other.
1016 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1020 * __page_set_anon_rmap - set up new anonymous rmap
1021 * @page: Page or Hugepage to add to rmap
1022 * @vma: VM area to add page to.
1023 * @address: User virtual address of the mapping
1024 * @exclusive: the page is exclusively owned by the current process
1026 static void __page_set_anon_rmap(struct page *page,
1027 struct vm_area_struct *vma, unsigned long address, int exclusive)
1029 struct anon_vma *anon_vma = vma->anon_vma;
1037 * If the page isn't exclusively mapped into this vma,
1038 * we must use the _oldest_ possible anon_vma for the
1042 anon_vma = anon_vma->root;
1044 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1045 page->mapping = (struct address_space *) anon_vma;
1046 page->index = linear_page_index(vma, address);
1050 * __page_check_anon_rmap - sanity check anonymous rmap addition
1051 * @page: the page to add the mapping to
1052 * @vma: the vm area in which the mapping is added
1053 * @address: the user virtual address mapped
1055 static void __page_check_anon_rmap(struct page *page,
1056 struct vm_area_struct *vma, unsigned long address)
1058 #ifdef CONFIG_DEBUG_VM
1060 * The page's anon-rmap details (mapping and index) are guaranteed to
1061 * be set up correctly at this point.
1063 * We have exclusion against page_add_anon_rmap because the caller
1064 * always holds the page locked, except if called from page_dup_rmap,
1065 * in which case the page is already known to be setup.
1067 * We have exclusion against page_add_new_anon_rmap because those pages
1068 * are initially only visible via the pagetables, and the pte is locked
1069 * over the call to page_add_new_anon_rmap.
1071 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1072 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1077 * page_add_anon_rmap - add pte mapping to an anonymous page
1078 * @page: the page to add the mapping to
1079 * @vma: the vm area in which the mapping is added
1080 * @address: the user virtual address mapped
1081 * @compound: charge the page as compound or small page
1083 * The caller needs to hold the pte lock, and the page must be locked in
1084 * the anon_vma case: to serialize mapping,index checking after setting,
1085 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1086 * (but PageKsm is never downgraded to PageAnon).
1088 void page_add_anon_rmap(struct page *page,
1089 struct vm_area_struct *vma, unsigned long address, bool compound)
1091 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1095 * Special version of the above for do_swap_page, which often runs
1096 * into pages that are exclusively owned by the current process.
1097 * Everybody else should continue to use page_add_anon_rmap above.
1099 void do_page_add_anon_rmap(struct page *page,
1100 struct vm_area_struct *vma, unsigned long address, int flags)
1102 bool compound = flags & RMAP_COMPOUND;
1107 VM_BUG_ON_PAGE(!PageLocked(page), page);
1108 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1109 mapcount = compound_mapcount_ptr(page);
1110 first = atomic_inc_and_test(mapcount);
1112 first = atomic_inc_and_test(&page->_mapcount);
1116 int nr = compound ? hpage_nr_pages(page) : 1;
1118 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1119 * these counters are not modified in interrupt context, and
1120 * pte lock(a spinlock) is held, which implies preemption
1124 __inc_node_page_state(page, NR_ANON_THPS);
1125 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1127 if (unlikely(PageKsm(page)))
1130 VM_BUG_ON_PAGE(!PageLocked(page), page);
1132 /* address might be in next vma when migration races vma_adjust */
1134 __page_set_anon_rmap(page, vma, address,
1135 flags & RMAP_EXCLUSIVE);
1137 __page_check_anon_rmap(page, vma, address);
1141 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1142 * @page: the page to add the mapping to
1143 * @vma: the vm area in which the mapping is added
1144 * @address: the user virtual address mapped
1145 * @compound: charge the page as compound or small page
1147 * Same as page_add_anon_rmap but must only be called on *new* pages.
1148 * This means the inc-and-test can be bypassed.
1149 * Page does not have to be locked.
1151 void page_add_new_anon_rmap(struct page *page,
1152 struct vm_area_struct *vma, unsigned long address, bool compound)
1154 int nr = compound ? hpage_nr_pages(page) : 1;
1156 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1157 __SetPageSwapBacked(page);
1159 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1160 /* increment count (starts at -1) */
1161 atomic_set(compound_mapcount_ptr(page), 0);
1162 __inc_node_page_state(page, NR_ANON_THPS);
1164 /* Anon THP always mapped first with PMD */
1165 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1166 /* increment count (starts at -1) */
1167 atomic_set(&page->_mapcount, 0);
1169 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1170 __page_set_anon_rmap(page, vma, address, 1);
1174 * page_add_file_rmap - add pte mapping to a file page
1175 * @page: the page to add the mapping to
1176 * @compound: charge the page as compound or small page
1178 * The caller needs to hold the pte lock.
1180 void page_add_file_rmap(struct page *page, bool compound)
1184 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1185 lock_page_memcg(page);
1186 if (compound && PageTransHuge(page)) {
1187 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1188 if (atomic_inc_and_test(&page[i]._mapcount))
1191 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1193 if (PageSwapBacked(page))
1194 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1196 __inc_node_page_state(page, NR_FILE_PMDMAPPED);
1198 if (PageTransCompound(page) && page_mapping(page)) {
1199 VM_WARN_ON_ONCE(!PageLocked(page));
1201 SetPageDoubleMap(compound_head(page));
1202 if (PageMlocked(page))
1203 clear_page_mlock(compound_head(page));
1205 if (!atomic_inc_and_test(&page->_mapcount))
1208 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1210 unlock_page_memcg(page);
1213 static void page_remove_file_rmap(struct page *page, bool compound)
1217 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1218 lock_page_memcg(page);
1220 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1221 if (unlikely(PageHuge(page))) {
1222 /* hugetlb pages are always mapped with pmds */
1223 atomic_dec(compound_mapcount_ptr(page));
1227 /* page still mapped by someone else? */
1228 if (compound && PageTransHuge(page)) {
1229 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1230 if (atomic_add_negative(-1, &page[i]._mapcount))
1233 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1235 if (PageSwapBacked(page))
1236 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1238 __dec_node_page_state(page, NR_FILE_PMDMAPPED);
1240 if (!atomic_add_negative(-1, &page->_mapcount))
1245 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1246 * these counters are not modified in interrupt context, and
1247 * pte lock(a spinlock) is held, which implies preemption disabled.
1249 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1251 if (unlikely(PageMlocked(page)))
1252 clear_page_mlock(page);
1254 unlock_page_memcg(page);
1257 static void page_remove_anon_compound_rmap(struct page *page)
1261 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1264 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1265 if (unlikely(PageHuge(page)))
1268 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1271 __dec_node_page_state(page, NR_ANON_THPS);
1273 if (TestClearPageDoubleMap(page)) {
1275 * Subpages can be mapped with PTEs too. Check how many of
1276 * themi are still mapped.
1278 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1279 if (atomic_add_negative(-1, &page[i]._mapcount))
1286 if (unlikely(PageMlocked(page)))
1287 clear_page_mlock(page);
1290 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1291 deferred_split_huge_page(page);
1296 * page_remove_rmap - take down pte mapping from a page
1297 * @page: page to remove mapping from
1298 * @compound: uncharge the page as compound or small page
1300 * The caller needs to hold the pte lock.
1302 void page_remove_rmap(struct page *page, bool compound)
1304 if (!PageAnon(page))
1305 return page_remove_file_rmap(page, compound);
1308 return page_remove_anon_compound_rmap(page);
1310 /* page still mapped by someone else? */
1311 if (!atomic_add_negative(-1, &page->_mapcount))
1315 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1316 * these counters are not modified in interrupt context, and
1317 * pte lock(a spinlock) is held, which implies preemption disabled.
1319 __dec_node_page_state(page, NR_ANON_MAPPED);
1321 if (unlikely(PageMlocked(page)))
1322 clear_page_mlock(page);
1324 if (PageTransCompound(page))
1325 deferred_split_huge_page(compound_head(page));
1328 * It would be tidy to reset the PageAnon mapping here,
1329 * but that might overwrite a racing page_add_anon_rmap
1330 * which increments mapcount after us but sets mapping
1331 * before us: so leave the reset to free_unref_page,
1332 * and remember that it's only reliable while mapped.
1333 * Leaving it set also helps swapoff to reinstate ptes
1334 * faster for those pages still in swapcache.
1339 * @arg: enum ttu_flags will be passed to this argument
1341 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1342 unsigned long address, void *arg)
1344 struct mm_struct *mm = vma->vm_mm;
1345 struct page_vma_mapped_walk pvmw = {
1351 struct page *subpage;
1353 struct mmu_notifier_range range;
1354 enum ttu_flags flags = (enum ttu_flags)arg;
1356 /* munlock has nothing to gain from examining un-locked vmas */
1357 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1360 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1361 is_zone_device_page(page) && !is_device_private_page(page))
1364 if (flags & TTU_SPLIT_HUGE_PMD) {
1365 split_huge_pmd_address(vma, address,
1366 flags & TTU_SPLIT_FREEZE, page);
1370 * For THP, we have to assume the worse case ie pmd for invalidation.
1371 * For hugetlb, it could be much worse if we need to do pud
1372 * invalidation in the case of pmd sharing.
1374 * Note that the page can not be free in this function as call of
1375 * try_to_unmap() must hold a reference on the page.
1377 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1379 min(vma->vm_end, address + page_size(page)));
1380 if (PageHuge(page)) {
1382 * If sharing is possible, start and end will be adjusted
1385 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1388 mmu_notifier_invalidate_range_start(&range);
1390 while (page_vma_mapped_walk(&pvmw)) {
1391 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1392 /* PMD-mapped THP migration entry */
1393 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1394 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1396 set_pmd_migration_entry(&pvmw, page);
1402 * If the page is mlock()d, we cannot swap it out.
1403 * If it's recently referenced (perhaps page_referenced
1404 * skipped over this mm) then we should reactivate it.
1406 if (!(flags & TTU_IGNORE_MLOCK)) {
1407 if (vma->vm_flags & VM_LOCKED) {
1408 /* PTE-mapped THP are never mlocked */
1409 if (!PageTransCompound(page)) {
1411 * Holding pte lock, we do *not* need
1414 mlock_vma_page(page);
1417 page_vma_mapped_walk_done(&pvmw);
1420 if (flags & TTU_MUNLOCK)
1424 /* Unexpected PMD-mapped THP? */
1425 VM_BUG_ON_PAGE(!pvmw.pte, page);
1427 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1428 address = pvmw.address;
1430 if (PageHuge(page)) {
1431 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1433 * huge_pmd_unshare unmapped an entire PMD
1434 * page. There is no way of knowing exactly
1435 * which PMDs may be cached for this mm, so
1436 * we must flush them all. start/end were
1437 * already adjusted above to cover this range.
1439 flush_cache_range(vma, range.start, range.end);
1440 flush_tlb_range(vma, range.start, range.end);
1441 mmu_notifier_invalidate_range(mm, range.start,
1445 * The ref count of the PMD page was dropped
1446 * which is part of the way map counting
1447 * is done for shared PMDs. Return 'true'
1448 * here. When there is no other sharing,
1449 * huge_pmd_unshare returns false and we will
1450 * unmap the actual page and drop map count
1453 page_vma_mapped_walk_done(&pvmw);
1458 if (IS_ENABLED(CONFIG_MIGRATION) &&
1459 (flags & TTU_MIGRATION) &&
1460 is_zone_device_page(page)) {
1464 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1467 * Store the pfn of the page in a special migration
1468 * pte. do_swap_page() will wait until the migration
1469 * pte is removed and then restart fault handling.
1471 entry = make_migration_entry(page, 0);
1472 swp_pte = swp_entry_to_pte(entry);
1473 if (pte_soft_dirty(pteval))
1474 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1475 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1477 * No need to invalidate here it will synchronize on
1478 * against the special swap migration pte.
1480 * The assignment to subpage above was computed from a
1481 * swap PTE which results in an invalid pointer.
1482 * Since only PAGE_SIZE pages can currently be
1483 * migrated, just set it to page. This will need to be
1484 * changed when hugepage migrations to device private
1485 * memory are supported.
1491 if (!(flags & TTU_IGNORE_ACCESS)) {
1492 if (ptep_clear_flush_young_notify(vma, address,
1495 page_vma_mapped_walk_done(&pvmw);
1500 /* Nuke the page table entry. */
1501 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1502 if (should_defer_flush(mm, flags)) {
1504 * We clear the PTE but do not flush so potentially
1505 * a remote CPU could still be writing to the page.
1506 * If the entry was previously clean then the
1507 * architecture must guarantee that a clear->dirty
1508 * transition on a cached TLB entry is written through
1509 * and traps if the PTE is unmapped.
1511 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1513 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1515 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1518 /* Move the dirty bit to the page. Now the pte is gone. */
1519 if (pte_dirty(pteval))
1520 set_page_dirty(page);
1522 /* Update high watermark before we lower rss */
1523 update_hiwater_rss(mm);
1525 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1526 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1527 if (PageHuge(page)) {
1528 hugetlb_count_sub(compound_nr(page), mm);
1529 set_huge_swap_pte_at(mm, address,
1531 vma_mmu_pagesize(vma));
1533 dec_mm_counter(mm, mm_counter(page));
1534 set_pte_at(mm, address, pvmw.pte, pteval);
1537 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1539 * The guest indicated that the page content is of no
1540 * interest anymore. Simply discard the pte, vmscan
1541 * will take care of the rest.
1542 * A future reference will then fault in a new zero
1543 * page. When userfaultfd is active, we must not drop
1544 * this page though, as its main user (postcopy
1545 * migration) will not expect userfaults on already
1548 dec_mm_counter(mm, mm_counter(page));
1549 /* We have to invalidate as we cleared the pte */
1550 mmu_notifier_invalidate_range(mm, address,
1551 address + PAGE_SIZE);
1552 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1553 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1557 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1558 set_pte_at(mm, address, pvmw.pte, pteval);
1560 page_vma_mapped_walk_done(&pvmw);
1565 * Store the pfn of the page in a special migration
1566 * pte. do_swap_page() will wait until the migration
1567 * pte is removed and then restart fault handling.
1569 entry = make_migration_entry(subpage,
1571 swp_pte = swp_entry_to_pte(entry);
1572 if (pte_soft_dirty(pteval))
1573 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1574 set_pte_at(mm, address, pvmw.pte, swp_pte);
1576 * No need to invalidate here it will synchronize on
1577 * against the special swap migration pte.
1579 } else if (PageAnon(page)) {
1580 swp_entry_t entry = { .val = page_private(subpage) };
1583 * Store the swap location in the pte.
1584 * See handle_pte_fault() ...
1586 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1589 /* We have to invalidate as we cleared the pte */
1590 mmu_notifier_invalidate_range(mm, address,
1591 address + PAGE_SIZE);
1592 page_vma_mapped_walk_done(&pvmw);
1596 /* MADV_FREE page check */
1597 if (!PageSwapBacked(page)) {
1598 if (!PageDirty(page)) {
1599 /* Invalidate as we cleared the pte */
1600 mmu_notifier_invalidate_range(mm,
1601 address, address + PAGE_SIZE);
1602 dec_mm_counter(mm, MM_ANONPAGES);
1607 * If the page was redirtied, it cannot be
1608 * discarded. Remap the page to page table.
1610 set_pte_at(mm, address, pvmw.pte, pteval);
1611 SetPageSwapBacked(page);
1613 page_vma_mapped_walk_done(&pvmw);
1617 if (swap_duplicate(entry) < 0) {
1618 set_pte_at(mm, address, pvmw.pte, pteval);
1620 page_vma_mapped_walk_done(&pvmw);
1623 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1624 set_pte_at(mm, address, pvmw.pte, pteval);
1626 page_vma_mapped_walk_done(&pvmw);
1629 if (list_empty(&mm->mmlist)) {
1630 spin_lock(&mmlist_lock);
1631 if (list_empty(&mm->mmlist))
1632 list_add(&mm->mmlist, &init_mm.mmlist);
1633 spin_unlock(&mmlist_lock);
1635 dec_mm_counter(mm, MM_ANONPAGES);
1636 inc_mm_counter(mm, MM_SWAPENTS);
1637 swp_pte = swp_entry_to_pte(entry);
1638 if (pte_soft_dirty(pteval))
1639 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1640 set_pte_at(mm, address, pvmw.pte, swp_pte);
1641 /* Invalidate as we cleared the pte */
1642 mmu_notifier_invalidate_range(mm, address,
1643 address + PAGE_SIZE);
1646 * This is a locked file-backed page, thus it cannot
1647 * be removed from the page cache and replaced by a new
1648 * page before mmu_notifier_invalidate_range_end, so no
1649 * concurrent thread might update its page table to
1650 * point at new page while a device still is using this
1653 * See Documentation/vm/mmu_notifier.rst
1655 dec_mm_counter(mm, mm_counter_file(page));
1659 * No need to call mmu_notifier_invalidate_range() it has be
1660 * done above for all cases requiring it to happen under page
1661 * table lock before mmu_notifier_invalidate_range_end()
1663 * See Documentation/vm/mmu_notifier.rst
1665 page_remove_rmap(subpage, PageHuge(page));
1669 mmu_notifier_invalidate_range_end(&range);
1674 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1676 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1681 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1682 VM_STACK_INCOMPLETE_SETUP)
1688 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1690 return is_vma_temporary_stack(vma);
1693 static int page_mapcount_is_zero(struct page *page)
1695 return !total_mapcount(page);
1699 * try_to_unmap - try to remove all page table mappings to a page
1700 * @page: the page to get unmapped
1701 * @flags: action and flags
1703 * Tries to remove all the page table entries which are mapping this
1704 * page, used in the pageout path. Caller must hold the page lock.
1706 * If unmap is successful, return true. Otherwise, false.
1708 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1710 struct rmap_walk_control rwc = {
1711 .rmap_one = try_to_unmap_one,
1712 .arg = (void *)flags,
1713 .done = page_mapcount_is_zero,
1714 .anon_lock = page_lock_anon_vma_read,
1718 * During exec, a temporary VMA is setup and later moved.
1719 * The VMA is moved under the anon_vma lock but not the
1720 * page tables leading to a race where migration cannot
1721 * find the migration ptes. Rather than increasing the
1722 * locking requirements of exec(), migration skips
1723 * temporary VMAs until after exec() completes.
1725 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1726 && !PageKsm(page) && PageAnon(page))
1727 rwc.invalid_vma = invalid_migration_vma;
1729 if (flags & TTU_RMAP_LOCKED)
1730 rmap_walk_locked(page, &rwc);
1732 rmap_walk(page, &rwc);
1734 return !page_mapcount(page) ? true : false;
1737 static int page_not_mapped(struct page *page)
1739 return !page_mapped(page);
1743 * try_to_munlock - try to munlock a page
1744 * @page: the page to be munlocked
1746 * Called from munlock code. Checks all of the VMAs mapping the page
1747 * to make sure nobody else has this page mlocked. The page will be
1748 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1751 void try_to_munlock(struct page *page)
1753 struct rmap_walk_control rwc = {
1754 .rmap_one = try_to_unmap_one,
1755 .arg = (void *)TTU_MUNLOCK,
1756 .done = page_not_mapped,
1757 .anon_lock = page_lock_anon_vma_read,
1761 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1762 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1764 rmap_walk(page, &rwc);
1767 void __put_anon_vma(struct anon_vma *anon_vma)
1769 struct anon_vma *root = anon_vma->root;
1771 anon_vma_free(anon_vma);
1772 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1773 anon_vma_free(root);
1776 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1777 struct rmap_walk_control *rwc)
1779 struct anon_vma *anon_vma;
1782 return rwc->anon_lock(page);
1785 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1786 * because that depends on page_mapped(); but not all its usages
1787 * are holding mmap_sem. Users without mmap_sem are required to
1788 * take a reference count to prevent the anon_vma disappearing
1790 anon_vma = page_anon_vma(page);
1794 anon_vma_lock_read(anon_vma);
1799 * rmap_walk_anon - do something to anonymous page using the object-based
1801 * @page: the page to be handled
1802 * @rwc: control variable according to each walk type
1804 * Find all the mappings of a page using the mapping pointer and the vma chains
1805 * contained in the anon_vma struct it points to.
1807 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1808 * where the page was found will be held for write. So, we won't recheck
1809 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1812 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1815 struct anon_vma *anon_vma;
1816 pgoff_t pgoff_start, pgoff_end;
1817 struct anon_vma_chain *avc;
1820 anon_vma = page_anon_vma(page);
1821 /* anon_vma disappear under us? */
1822 VM_BUG_ON_PAGE(!anon_vma, page);
1824 anon_vma = rmap_walk_anon_lock(page, rwc);
1829 pgoff_start = page_to_pgoff(page);
1830 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1831 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1832 pgoff_start, pgoff_end) {
1833 struct vm_area_struct *vma = avc->vma;
1834 unsigned long address = vma_address(page, vma);
1838 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1841 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1843 if (rwc->done && rwc->done(page))
1848 anon_vma_unlock_read(anon_vma);
1852 * rmap_walk_file - do something to file page using the object-based rmap method
1853 * @page: the page to be handled
1854 * @rwc: control variable according to each walk type
1856 * Find all the mappings of a page using the mapping pointer and the vma chains
1857 * contained in the address_space struct it points to.
1859 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1860 * where the page was found will be held for write. So, we won't recheck
1861 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1864 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1867 struct address_space *mapping = page_mapping(page);
1868 pgoff_t pgoff_start, pgoff_end;
1869 struct vm_area_struct *vma;
1872 * The page lock not only makes sure that page->mapping cannot
1873 * suddenly be NULLified by truncation, it makes sure that the
1874 * structure at mapping cannot be freed and reused yet,
1875 * so we can safely take mapping->i_mmap_rwsem.
1877 VM_BUG_ON_PAGE(!PageLocked(page), page);
1882 pgoff_start = page_to_pgoff(page);
1883 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1885 i_mmap_lock_read(mapping);
1886 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1887 pgoff_start, pgoff_end) {
1888 unsigned long address = vma_address(page, vma);
1892 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1895 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1897 if (rwc->done && rwc->done(page))
1903 i_mmap_unlock_read(mapping);
1906 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1908 if (unlikely(PageKsm(page)))
1909 rmap_walk_ksm(page, rwc);
1910 else if (PageAnon(page))
1911 rmap_walk_anon(page, rwc, false);
1913 rmap_walk_file(page, rwc, false);
1916 /* Like rmap_walk, but caller holds relevant rmap lock */
1917 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1919 /* no ksm support for now */
1920 VM_BUG_ON_PAGE(PageKsm(page), page);
1922 rmap_walk_anon(page, rwc, true);
1924 rmap_walk_file(page, rwc, true);
1927 #ifdef CONFIG_HUGETLB_PAGE
1929 * The following two functions are for anonymous (private mapped) hugepages.
1930 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1931 * and no lru code, because we handle hugepages differently from common pages.
1933 void hugepage_add_anon_rmap(struct page *page,
1934 struct vm_area_struct *vma, unsigned long address)
1936 struct anon_vma *anon_vma = vma->anon_vma;
1939 BUG_ON(!PageLocked(page));
1941 /* address might be in next vma when migration races vma_adjust */
1942 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1944 __page_set_anon_rmap(page, vma, address, 0);
1947 void hugepage_add_new_anon_rmap(struct page *page,
1948 struct vm_area_struct *vma, unsigned long address)
1950 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1951 atomic_set(compound_mapcount_ptr(page), 0);
1952 __page_set_anon_rmap(page, vma, address, 1);
1954 #endif /* CONFIG_HUGETLB_PAGE */