2 FUSE: Filesystem in Userspace
5 This program can be distributed under the terms of the GNU GPL.
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
23 struct fuse_page_desc **desc)
27 pages = kzalloc(npages * (sizeof(struct page *) +
28 sizeof(struct fuse_page_desc)), flags);
29 *desc = (void *) (pages + npages);
34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
35 int opcode, struct fuse_open_out *outargp)
37 struct fuse_open_in inarg;
40 memset(&inarg, 0, sizeof(inarg));
41 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
42 if (!fc->atomic_o_trunc)
43 inarg.flags &= ~O_TRUNC;
47 args.in_args[0].size = sizeof(inarg);
48 args.in_args[0].value = &inarg;
50 args.out_args[0].size = sizeof(*outargp);
51 args.out_args[0].value = outargp;
53 return fuse_simple_request(fc, &args);
56 struct fuse_release_args {
57 struct fuse_args args;
58 struct fuse_release_in inarg;
62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
66 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
71 ff->release_args = kzalloc(sizeof(*ff->release_args),
73 if (!ff->release_args) {
78 INIT_LIST_HEAD(&ff->write_entry);
79 mutex_init(&ff->readdir.lock);
80 refcount_set(&ff->count, 1);
81 RB_CLEAR_NODE(&ff->polled_node);
82 init_waitqueue_head(&ff->poll_wait);
84 ff->kh = atomic64_inc_return(&fc->khctr);
89 void fuse_file_free(struct fuse_file *ff)
91 kfree(ff->release_args);
92 mutex_destroy(&ff->readdir.lock);
96 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98 refcount_inc(&ff->count);
102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
105 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113 if (refcount_dec_and_test(&ff->count)) {
114 struct fuse_args *args = &ff->release_args->args;
116 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
117 /* Do nothing when client does not implement 'open' */
118 fuse_release_end(ff->fc, args, 0);
120 fuse_simple_request(ff->fc, args);
121 fuse_release_end(ff->fc, args, 0);
123 args->end = fuse_release_end;
124 if (fuse_simple_background(ff->fc, args,
125 GFP_KERNEL | __GFP_NOFAIL))
126 fuse_release_end(ff->fc, args, -ENOTCONN);
132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
135 struct fuse_file *ff;
136 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
138 ff = fuse_file_alloc(fc);
143 /* Default for no-open */
144 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
145 if (isdir ? !fc->no_opendir : !fc->no_open) {
146 struct fuse_open_out outarg;
149 err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
152 ff->open_flags = outarg.open_flags;
154 } else if (err != -ENOSYS) {
166 ff->open_flags &= ~FOPEN_DIRECT_IO;
169 file->private_data = ff;
173 EXPORT_SYMBOL_GPL(fuse_do_open);
175 static void fuse_link_write_file(struct file *file)
177 struct inode *inode = file_inode(file);
178 struct fuse_inode *fi = get_fuse_inode(inode);
179 struct fuse_file *ff = file->private_data;
181 * file may be written through mmap, so chain it onto the
182 * inodes's write_file list
184 spin_lock(&fi->lock);
185 if (list_empty(&ff->write_entry))
186 list_add(&ff->write_entry, &fi->write_files);
187 spin_unlock(&fi->lock);
190 void fuse_finish_open(struct inode *inode, struct file *file)
192 struct fuse_file *ff = file->private_data;
193 struct fuse_conn *fc = get_fuse_conn(inode);
195 if (!(ff->open_flags & FOPEN_KEEP_CACHE))
196 invalidate_inode_pages2(inode->i_mapping);
197 if (ff->open_flags & FOPEN_STREAM)
198 stream_open(inode, file);
199 else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 nonseekable_open(inode, file);
201 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 struct fuse_inode *fi = get_fuse_inode(inode);
204 spin_lock(&fi->lock);
205 fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 i_size_write(inode, 0);
207 spin_unlock(&fi->lock);
208 fuse_invalidate_attr(inode);
209 if (fc->writeback_cache)
210 file_update_time(file);
212 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
213 fuse_link_write_file(file);
216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
218 struct fuse_conn *fc = get_fuse_conn(inode);
220 bool lock_inode = (file->f_flags & O_TRUNC) &&
221 fc->atomic_o_trunc &&
224 err = generic_file_open(inode, file);
231 err = fuse_do_open(fc, get_node_id(inode), file, isdir);
234 fuse_finish_open(inode, file);
242 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
243 int flags, int opcode)
245 struct fuse_conn *fc = ff->fc;
246 struct fuse_release_args *ra = ff->release_args;
248 /* Inode is NULL on error path of fuse_create_open() */
250 spin_lock(&fi->lock);
251 list_del(&ff->write_entry);
252 spin_unlock(&fi->lock);
254 spin_lock(&fc->lock);
255 if (!RB_EMPTY_NODE(&ff->polled_node))
256 rb_erase(&ff->polled_node, &fc->polled_files);
257 spin_unlock(&fc->lock);
259 wake_up_interruptible_all(&ff->poll_wait);
261 ra->inarg.fh = ff->fh;
262 ra->inarg.flags = flags;
263 ra->args.in_numargs = 1;
264 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
265 ra->args.in_args[0].value = &ra->inarg;
266 ra->args.opcode = opcode;
267 ra->args.nodeid = ff->nodeid;
268 ra->args.force = true;
269 ra->args.nocreds = true;
272 void fuse_release_common(struct file *file, bool isdir)
274 struct fuse_inode *fi = get_fuse_inode(file_inode(file));
275 struct fuse_file *ff = file->private_data;
276 struct fuse_release_args *ra = ff->release_args;
277 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
279 fuse_prepare_release(fi, ff, file->f_flags, opcode);
282 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
283 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
286 /* Hold inode until release is finished */
287 ra->inode = igrab(file_inode(file));
290 * Normally this will send the RELEASE request, however if
291 * some asynchronous READ or WRITE requests are outstanding,
292 * the sending will be delayed.
294 * Make the release synchronous if this is a fuseblk mount,
295 * synchronous RELEASE is allowed (and desirable) in this case
296 * because the server can be trusted not to screw up.
298 fuse_file_put(ff, ff->fc->destroy, isdir);
301 static int fuse_open(struct inode *inode, struct file *file)
303 return fuse_open_common(inode, file, false);
306 static int fuse_release(struct inode *inode, struct file *file)
308 struct fuse_conn *fc = get_fuse_conn(inode);
310 /* see fuse_vma_close() for !writeback_cache case */
311 if (fc->writeback_cache)
312 write_inode_now(inode, 1);
314 fuse_release_common(file, false);
316 /* return value is ignored by VFS */
320 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
322 WARN_ON(refcount_read(&ff->count) > 1);
323 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
325 * iput(NULL) is a no-op and since the refcount is 1 and everything's
326 * synchronous, we are fine with not doing igrab() here"
328 fuse_file_put(ff, true, false);
330 EXPORT_SYMBOL_GPL(fuse_sync_release);
333 * Scramble the ID space with XTEA, so that the value of the files_struct
334 * pointer is not exposed to userspace.
336 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
338 u32 *k = fc->scramble_key;
339 u64 v = (unsigned long) id;
345 for (i = 0; i < 32; i++) {
346 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
348 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
351 return (u64) v0 + ((u64) v1 << 32);
354 struct fuse_writepage_args {
355 struct fuse_io_args ia;
356 struct list_head writepages_entry;
357 struct list_head queue_entry;
358 struct fuse_writepage_args *next;
362 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
363 pgoff_t idx_from, pgoff_t idx_to)
365 struct fuse_writepage_args *wpa;
367 list_for_each_entry(wpa, &fi->writepages, writepages_entry) {
370 WARN_ON(get_fuse_inode(wpa->inode) != fi);
371 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
372 if (idx_from < curr_index + wpa->ia.ap.num_pages &&
373 curr_index <= idx_to) {
381 * Check if any page in a range is under writeback
383 * This is currently done by walking the list of writepage requests
384 * for the inode, which can be pretty inefficient.
386 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
389 struct fuse_inode *fi = get_fuse_inode(inode);
392 spin_lock(&fi->lock);
393 found = fuse_find_writeback(fi, idx_from, idx_to);
394 spin_unlock(&fi->lock);
399 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
401 return fuse_range_is_writeback(inode, index, index);
405 * Wait for page writeback to be completed.
407 * Since fuse doesn't rely on the VM writeback tracking, this has to
408 * use some other means.
410 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
412 struct fuse_inode *fi = get_fuse_inode(inode);
414 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
418 * Wait for all pending writepages on the inode to finish.
420 * This is currently done by blocking further writes with FUSE_NOWRITE
421 * and waiting for all sent writes to complete.
423 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
424 * could conflict with truncation.
426 static void fuse_sync_writes(struct inode *inode)
428 fuse_set_nowrite(inode);
429 fuse_release_nowrite(inode);
432 static int fuse_flush(struct file *file, fl_owner_t id)
434 struct inode *inode = file_inode(file);
435 struct fuse_conn *fc = get_fuse_conn(inode);
436 struct fuse_file *ff = file->private_data;
437 struct fuse_flush_in inarg;
441 if (is_bad_inode(inode))
447 err = write_inode_now(inode, 1);
452 fuse_sync_writes(inode);
455 err = filemap_check_errors(file->f_mapping);
459 memset(&inarg, 0, sizeof(inarg));
461 inarg.lock_owner = fuse_lock_owner_id(fc, id);
462 args.opcode = FUSE_FLUSH;
463 args.nodeid = get_node_id(inode);
465 args.in_args[0].size = sizeof(inarg);
466 args.in_args[0].value = &inarg;
469 err = fuse_simple_request(fc, &args);
470 if (err == -ENOSYS) {
477 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
478 int datasync, int opcode)
480 struct inode *inode = file->f_mapping->host;
481 struct fuse_conn *fc = get_fuse_conn(inode);
482 struct fuse_file *ff = file->private_data;
484 struct fuse_fsync_in inarg;
486 memset(&inarg, 0, sizeof(inarg));
488 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
489 args.opcode = opcode;
490 args.nodeid = get_node_id(inode);
492 args.in_args[0].size = sizeof(inarg);
493 args.in_args[0].value = &inarg;
494 return fuse_simple_request(fc, &args);
497 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
500 struct inode *inode = file->f_mapping->host;
501 struct fuse_conn *fc = get_fuse_conn(inode);
504 if (is_bad_inode(inode))
510 * Start writeback against all dirty pages of the inode, then
511 * wait for all outstanding writes, before sending the FSYNC
514 err = file_write_and_wait_range(file, start, end);
518 fuse_sync_writes(inode);
521 * Due to implementation of fuse writeback
522 * file_write_and_wait_range() does not catch errors.
523 * We have to do this directly after fuse_sync_writes()
525 err = file_check_and_advance_wb_err(file);
529 err = sync_inode_metadata(inode, 1);
536 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
537 if (err == -ENOSYS) {
547 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
548 size_t count, int opcode)
550 struct fuse_file *ff = file->private_data;
551 struct fuse_args *args = &ia->ap.args;
553 ia->read.in.fh = ff->fh;
554 ia->read.in.offset = pos;
555 ia->read.in.size = count;
556 ia->read.in.flags = file->f_flags;
557 args->opcode = opcode;
558 args->nodeid = ff->nodeid;
559 args->in_numargs = 1;
560 args->in_args[0].size = sizeof(ia->read.in);
561 args->in_args[0].value = &ia->read.in;
562 args->out_argvar = true;
563 args->out_numargs = 1;
564 args->out_args[0].size = count;
567 static void fuse_release_user_pages(struct fuse_args_pages *ap,
572 for (i = 0; i < ap->num_pages; i++) {
574 set_page_dirty_lock(ap->pages[i]);
575 put_page(ap->pages[i]);
579 static void fuse_io_release(struct kref *kref)
581 kfree(container_of(kref, struct fuse_io_priv, refcnt));
584 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
589 if (io->bytes >= 0 && io->write)
592 return io->bytes < 0 ? io->size : io->bytes;
596 * In case of short read, the caller sets 'pos' to the position of
597 * actual end of fuse request in IO request. Otherwise, if bytes_requested
598 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
601 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
602 * both submitted asynchronously. The first of them was ACKed by userspace as
603 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
604 * second request was ACKed as short, e.g. only 1K was read, resulting in
607 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
608 * will be equal to the length of the longest contiguous fragment of
609 * transferred data starting from the beginning of IO request.
611 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
615 spin_lock(&io->lock);
617 io->err = io->err ? : err;
618 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
622 if (!left && io->blocking)
624 spin_unlock(&io->lock);
626 if (!left && !io->blocking) {
627 ssize_t res = fuse_get_res_by_io(io);
630 struct inode *inode = file_inode(io->iocb->ki_filp);
631 struct fuse_conn *fc = get_fuse_conn(inode);
632 struct fuse_inode *fi = get_fuse_inode(inode);
634 spin_lock(&fi->lock);
635 fi->attr_version = atomic64_inc_return(&fc->attr_version);
636 spin_unlock(&fi->lock);
639 io->iocb->ki_complete(io->iocb, res, 0);
642 kref_put(&io->refcnt, fuse_io_release);
645 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
648 struct fuse_io_args *ia;
650 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
653 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
663 static void fuse_io_free(struct fuse_io_args *ia)
669 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
672 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
673 struct fuse_io_priv *io = ia->io;
676 fuse_release_user_pages(&ia->ap, io->should_dirty);
680 } else if (io->write) {
681 if (ia->write.out.size > ia->write.in.size) {
683 } else if (ia->write.in.size != ia->write.out.size) {
684 pos = ia->write.in.offset - io->offset +
688 u32 outsize = args->out_args[0].size;
690 if (ia->read.in.size != outsize)
691 pos = ia->read.in.offset - io->offset + outsize;
694 fuse_aio_complete(io, err, pos);
698 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
699 struct fuse_io_args *ia, size_t num_bytes)
702 struct fuse_io_priv *io = ia->io;
704 spin_lock(&io->lock);
705 kref_get(&io->refcnt);
706 io->size += num_bytes;
708 spin_unlock(&io->lock);
710 ia->ap.args.end = fuse_aio_complete_req;
711 err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
713 return err ?: num_bytes;
716 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
719 struct file *file = ia->io->iocb->ki_filp;
720 struct fuse_file *ff = file->private_data;
721 struct fuse_conn *fc = ff->fc;
723 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
725 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
726 ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
730 return fuse_async_req_send(fc, ia, count);
732 return fuse_simple_request(fc, &ia->ap.args);
735 static void fuse_read_update_size(struct inode *inode, loff_t size,
738 struct fuse_conn *fc = get_fuse_conn(inode);
739 struct fuse_inode *fi = get_fuse_inode(inode);
741 spin_lock(&fi->lock);
742 if (attr_ver == fi->attr_version && size < inode->i_size &&
743 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
744 fi->attr_version = atomic64_inc_return(&fc->attr_version);
745 i_size_write(inode, size);
747 spin_unlock(&fi->lock);
750 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
751 struct fuse_args_pages *ap)
753 struct fuse_conn *fc = get_fuse_conn(inode);
755 if (fc->writeback_cache) {
757 * A hole in a file. Some data after the hole are in page cache,
758 * but have not reached the client fs yet. So, the hole is not
762 int start_idx = num_read >> PAGE_SHIFT;
763 size_t off = num_read & (PAGE_SIZE - 1);
765 for (i = start_idx; i < ap->num_pages; i++) {
766 zero_user_segment(ap->pages[i], off, PAGE_SIZE);
770 loff_t pos = page_offset(ap->pages[0]) + num_read;
771 fuse_read_update_size(inode, pos, attr_ver);
775 static int fuse_do_readpage(struct file *file, struct page *page)
777 struct inode *inode = page->mapping->host;
778 struct fuse_conn *fc = get_fuse_conn(inode);
779 loff_t pos = page_offset(page);
780 struct fuse_page_desc desc = { .length = PAGE_SIZE };
781 struct fuse_io_args ia = {
782 .ap.args.page_zeroing = true,
783 .ap.args.out_pages = true,
792 * Page writeback can extend beyond the lifetime of the
793 * page-cache page, so make sure we read a properly synced
796 fuse_wait_on_page_writeback(inode, page->index);
798 attr_ver = fuse_get_attr_version(fc);
800 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
801 res = fuse_simple_request(fc, &ia.ap.args);
805 * Short read means EOF. If file size is larger, truncate it
807 if (res < desc.length)
808 fuse_short_read(inode, attr_ver, res, &ia.ap);
810 SetPageUptodate(page);
815 static int fuse_readpage(struct file *file, struct page *page)
817 struct inode *inode = page->mapping->host;
821 if (is_bad_inode(inode))
824 err = fuse_do_readpage(file, page);
825 fuse_invalidate_atime(inode);
831 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
835 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
836 struct fuse_args_pages *ap = &ia->ap;
837 size_t count = ia->read.in.size;
838 size_t num_read = args->out_args[0].size;
839 struct address_space *mapping = NULL;
841 for (i = 0; mapping == NULL && i < ap->num_pages; i++)
842 mapping = ap->pages[i]->mapping;
845 struct inode *inode = mapping->host;
848 * Short read means EOF. If file size is larger, truncate it
850 if (!err && num_read < count)
851 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
853 fuse_invalidate_atime(inode);
856 for (i = 0; i < ap->num_pages; i++) {
857 struct page *page = ap->pages[i];
860 SetPageUptodate(page);
867 fuse_file_put(ia->ff, false, false);
872 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
874 struct fuse_file *ff = file->private_data;
875 struct fuse_conn *fc = ff->fc;
876 struct fuse_args_pages *ap = &ia->ap;
877 loff_t pos = page_offset(ap->pages[0]);
878 size_t count = ap->num_pages << PAGE_SHIFT;
881 ap->args.out_pages = true;
882 ap->args.page_zeroing = true;
883 ap->args.page_replace = true;
884 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
885 ia->read.attr_ver = fuse_get_attr_version(fc);
886 if (fc->async_read) {
887 ia->ff = fuse_file_get(ff);
888 ap->args.end = fuse_readpages_end;
889 err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
893 err = fuse_simple_request(fc, &ap->args);
895 fuse_readpages_end(fc, &ap->args, err);
898 struct fuse_fill_data {
899 struct fuse_io_args *ia;
902 unsigned int nr_pages;
903 unsigned int max_pages;
906 static int fuse_readpages_fill(void *_data, struct page *page)
908 struct fuse_fill_data *data = _data;
909 struct fuse_io_args *ia = data->ia;
910 struct fuse_args_pages *ap = &ia->ap;
911 struct inode *inode = data->inode;
912 struct fuse_conn *fc = get_fuse_conn(inode);
914 fuse_wait_on_page_writeback(inode, page->index);
917 (ap->num_pages == fc->max_pages ||
918 (ap->num_pages + 1) * PAGE_SIZE > fc->max_read ||
919 ap->pages[ap->num_pages - 1]->index + 1 != page->index)) {
920 data->max_pages = min_t(unsigned int, data->nr_pages,
922 fuse_send_readpages(ia, data->file);
923 data->ia = ia = fuse_io_alloc(NULL, data->max_pages);
931 if (WARN_ON(ap->num_pages >= data->max_pages)) {
938 ap->pages[ap->num_pages] = page;
939 ap->descs[ap->num_pages].length = PAGE_SIZE;
945 static int fuse_readpages(struct file *file, struct address_space *mapping,
946 struct list_head *pages, unsigned nr_pages)
948 struct inode *inode = mapping->host;
949 struct fuse_conn *fc = get_fuse_conn(inode);
950 struct fuse_fill_data data;
954 if (is_bad_inode(inode))
959 data.nr_pages = nr_pages;
960 data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages);
962 data.ia = fuse_io_alloc(NULL, data.max_pages);
967 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
969 if (data.ia->ap.num_pages)
970 fuse_send_readpages(data.ia, file);
972 fuse_io_free(data.ia);
978 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
980 struct inode *inode = iocb->ki_filp->f_mapping->host;
981 struct fuse_conn *fc = get_fuse_conn(inode);
984 * In auto invalidate mode, always update attributes on read.
985 * Otherwise, only update if we attempt to read past EOF (to ensure
986 * i_size is up to date).
988 if (fc->auto_inval_data ||
989 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
991 err = fuse_update_attributes(inode, iocb->ki_filp);
996 return generic_file_read_iter(iocb, to);
999 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1000 loff_t pos, size_t count)
1002 struct fuse_args *args = &ia->ap.args;
1004 ia->write.in.fh = ff->fh;
1005 ia->write.in.offset = pos;
1006 ia->write.in.size = count;
1007 args->opcode = FUSE_WRITE;
1008 args->nodeid = ff->nodeid;
1009 args->in_numargs = 2;
1010 if (ff->fc->minor < 9)
1011 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1013 args->in_args[0].size = sizeof(ia->write.in);
1014 args->in_args[0].value = &ia->write.in;
1015 args->in_args[1].size = count;
1016 args->out_numargs = 1;
1017 args->out_args[0].size = sizeof(ia->write.out);
1018 args->out_args[0].value = &ia->write.out;
1021 static unsigned int fuse_write_flags(struct kiocb *iocb)
1023 unsigned int flags = iocb->ki_filp->f_flags;
1025 if (iocb->ki_flags & IOCB_DSYNC)
1027 if (iocb->ki_flags & IOCB_SYNC)
1033 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1034 size_t count, fl_owner_t owner)
1036 struct kiocb *iocb = ia->io->iocb;
1037 struct file *file = iocb->ki_filp;
1038 struct fuse_file *ff = file->private_data;
1039 struct fuse_conn *fc = ff->fc;
1040 struct fuse_write_in *inarg = &ia->write.in;
1043 fuse_write_args_fill(ia, ff, pos, count);
1044 inarg->flags = fuse_write_flags(iocb);
1045 if (owner != NULL) {
1046 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1047 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1051 return fuse_async_req_send(fc, ia, count);
1053 err = fuse_simple_request(fc, &ia->ap.args);
1054 if (!err && ia->write.out.size > count)
1057 return err ?: ia->write.out.size;
1060 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1062 struct fuse_conn *fc = get_fuse_conn(inode);
1063 struct fuse_inode *fi = get_fuse_inode(inode);
1066 spin_lock(&fi->lock);
1067 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1068 if (pos > inode->i_size) {
1069 i_size_write(inode, pos);
1072 spin_unlock(&fi->lock);
1077 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1078 struct kiocb *iocb, struct inode *inode,
1079 loff_t pos, size_t count)
1081 struct fuse_args_pages *ap = &ia->ap;
1082 struct file *file = iocb->ki_filp;
1083 struct fuse_file *ff = file->private_data;
1084 struct fuse_conn *fc = ff->fc;
1085 unsigned int offset, i;
1088 for (i = 0; i < ap->num_pages; i++)
1089 fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1091 fuse_write_args_fill(ia, ff, pos, count);
1092 ia->write.in.flags = fuse_write_flags(iocb);
1094 err = fuse_simple_request(fc, &ap->args);
1096 offset = ap->descs[0].offset;
1097 count = ia->write.out.size;
1098 for (i = 0; i < ap->num_pages; i++) {
1099 struct page *page = ap->pages[i];
1101 if (!err && !offset && count >= PAGE_SIZE)
1102 SetPageUptodate(page);
1104 if (count > PAGE_SIZE - offset)
1105 count -= PAGE_SIZE - offset;
1117 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1118 struct address_space *mapping,
1119 struct iov_iter *ii, loff_t pos,
1120 unsigned int max_pages)
1122 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1123 unsigned offset = pos & (PAGE_SIZE - 1);
1127 ap->args.in_pages = true;
1128 ap->descs[0].offset = offset;
1133 pgoff_t index = pos >> PAGE_SHIFT;
1134 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1135 iov_iter_count(ii));
1137 bytes = min_t(size_t, bytes, fc->max_write - count);
1141 if (iov_iter_fault_in_readable(ii, bytes))
1145 page = grab_cache_page_write_begin(mapping, index, 0);
1149 if (mapping_writably_mapped(mapping))
1150 flush_dcache_page(page);
1152 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1153 flush_dcache_page(page);
1155 iov_iter_advance(ii, tmp);
1159 bytes = min(bytes, iov_iter_single_seg_count(ii));
1164 ap->pages[ap->num_pages] = page;
1165 ap->descs[ap->num_pages].length = tmp;
1171 if (offset == PAGE_SIZE)
1174 if (!fc->big_writes)
1176 } while (iov_iter_count(ii) && count < fc->max_write &&
1177 ap->num_pages < max_pages && offset == 0);
1179 return count > 0 ? count : err;
1182 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1183 unsigned int max_pages)
1185 return min_t(unsigned int,
1186 ((pos + len - 1) >> PAGE_SHIFT) -
1187 (pos >> PAGE_SHIFT) + 1,
1191 static ssize_t fuse_perform_write(struct kiocb *iocb,
1192 struct address_space *mapping,
1193 struct iov_iter *ii, loff_t pos)
1195 struct inode *inode = mapping->host;
1196 struct fuse_conn *fc = get_fuse_conn(inode);
1197 struct fuse_inode *fi = get_fuse_inode(inode);
1201 if (inode->i_size < pos + iov_iter_count(ii))
1202 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1206 struct fuse_io_args ia = {};
1207 struct fuse_args_pages *ap = &ia.ap;
1208 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1211 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1217 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1221 err = fuse_send_write_pages(&ia, iocb, inode,
1224 size_t num_written = ia.write.out.size;
1229 /* break out of the loop on short write */
1230 if (num_written != count)
1235 } while (!err && iov_iter_count(ii));
1238 fuse_write_update_size(inode, pos);
1240 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1241 fuse_invalidate_attr(inode);
1243 return res > 0 ? res : err;
1246 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1248 struct file *file = iocb->ki_filp;
1249 struct address_space *mapping = file->f_mapping;
1250 ssize_t written = 0;
1251 ssize_t written_buffered = 0;
1252 struct inode *inode = mapping->host;
1256 if (get_fuse_conn(inode)->writeback_cache) {
1257 /* Update size (EOF optimization) and mode (SUID clearing) */
1258 err = fuse_update_attributes(mapping->host, file);
1262 return generic_file_write_iter(iocb, from);
1267 /* We can write back this queue in page reclaim */
1268 current->backing_dev_info = inode_to_bdi(inode);
1270 err = generic_write_checks(iocb, from);
1274 err = file_remove_privs(file);
1278 err = file_update_time(file);
1282 if (iocb->ki_flags & IOCB_DIRECT) {
1283 loff_t pos = iocb->ki_pos;
1284 written = generic_file_direct_write(iocb, from);
1285 if (written < 0 || !iov_iter_count(from))
1290 written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1291 if (written_buffered < 0) {
1292 err = written_buffered;
1295 endbyte = pos + written_buffered - 1;
1297 err = filemap_write_and_wait_range(file->f_mapping, pos,
1302 invalidate_mapping_pages(file->f_mapping,
1304 endbyte >> PAGE_SHIFT);
1306 written += written_buffered;
1307 iocb->ki_pos = pos + written_buffered;
1309 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1311 iocb->ki_pos += written;
1314 current->backing_dev_info = NULL;
1315 inode_unlock(inode);
1317 written = generic_write_sync(iocb, written);
1319 return written ? written : err;
1322 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1324 unsigned int nr_pages)
1328 for (i = index; i < index + nr_pages; i++)
1329 descs[i].length = PAGE_SIZE - descs[i].offset;
1332 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1334 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1337 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1340 return min(iov_iter_single_seg_count(ii), max_size);
1343 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1344 size_t *nbytesp, int write,
1345 unsigned int max_pages)
1347 size_t nbytes = 0; /* # bytes already packed in req */
1350 /* Special case for kernel I/O: can copy directly into the buffer */
1351 if (iov_iter_is_kvec(ii)) {
1352 unsigned long user_addr = fuse_get_user_addr(ii);
1353 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1356 ap->args.in_args[1].value = (void *) user_addr;
1358 ap->args.out_args[0].value = (void *) user_addr;
1360 iov_iter_advance(ii, frag_size);
1361 *nbytesp = frag_size;
1365 while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1368 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1370 max_pages - ap->num_pages,
1375 iov_iter_advance(ii, ret);
1379 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1381 ap->descs[ap->num_pages].offset = start;
1382 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1384 ap->num_pages += npages;
1385 ap->descs[ap->num_pages - 1].length -=
1386 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1390 ap->args.in_pages = 1;
1392 ap->args.out_pages = 1;
1396 return ret < 0 ? ret : 0;
1399 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1400 loff_t *ppos, int flags)
1402 int write = flags & FUSE_DIO_WRITE;
1403 int cuse = flags & FUSE_DIO_CUSE;
1404 struct file *file = io->iocb->ki_filp;
1405 struct inode *inode = file->f_mapping->host;
1406 struct fuse_file *ff = file->private_data;
1407 struct fuse_conn *fc = ff->fc;
1408 size_t nmax = write ? fc->max_write : fc->max_read;
1410 size_t count = iov_iter_count(iter);
1411 pgoff_t idx_from = pos >> PAGE_SHIFT;
1412 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1415 struct fuse_io_args *ia;
1416 unsigned int max_pages;
1418 max_pages = iov_iter_npages(iter, fc->max_pages);
1419 ia = fuse_io_alloc(io, max_pages);
1424 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1427 fuse_sync_writes(inode);
1429 inode_unlock(inode);
1432 io->should_dirty = !write && iter_is_iovec(iter);
1435 fl_owner_t owner = current->files;
1436 size_t nbytes = min(count, nmax);
1438 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1444 if (!capable(CAP_FSETID))
1445 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1447 nres = fuse_send_write(ia, pos, nbytes, owner);
1449 nres = fuse_send_read(ia, pos, nbytes, owner);
1452 if (!io->async || nres < 0) {
1453 fuse_release_user_pages(&ia->ap, io->should_dirty);
1461 WARN_ON(nres > nbytes);
1469 max_pages = iov_iter_npages(iter, fc->max_pages);
1470 ia = fuse_io_alloc(io, max_pages);
1480 return res > 0 ? res : err;
1482 EXPORT_SYMBOL_GPL(fuse_direct_io);
1484 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1485 struct iov_iter *iter,
1489 struct inode *inode = file_inode(io->iocb->ki_filp);
1491 res = fuse_direct_io(io, iter, ppos, 0);
1493 fuse_invalidate_atime(inode);
1498 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1500 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1504 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1505 res = fuse_direct_IO(iocb, to);
1507 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1509 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1515 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1517 struct inode *inode = file_inode(iocb->ki_filp);
1518 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1521 /* Don't allow parallel writes to the same file */
1523 res = generic_write_checks(iocb, from);
1525 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1526 res = fuse_direct_IO(iocb, from);
1528 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1532 fuse_invalidate_attr(inode);
1534 fuse_write_update_size(inode, iocb->ki_pos);
1535 inode_unlock(inode);
1540 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1542 struct file *file = iocb->ki_filp;
1543 struct fuse_file *ff = file->private_data;
1545 if (is_bad_inode(file_inode(file)))
1548 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1549 return fuse_cache_read_iter(iocb, to);
1551 return fuse_direct_read_iter(iocb, to);
1554 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1556 struct file *file = iocb->ki_filp;
1557 struct fuse_file *ff = file->private_data;
1559 if (is_bad_inode(file_inode(file)))
1562 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1563 return fuse_cache_write_iter(iocb, from);
1565 return fuse_direct_write_iter(iocb, from);
1568 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1570 struct fuse_args_pages *ap = &wpa->ia.ap;
1573 for (i = 0; i < ap->num_pages; i++)
1574 __free_page(ap->pages[i]);
1577 fuse_file_put(wpa->ia.ff, false, false);
1583 static void fuse_writepage_finish(struct fuse_conn *fc,
1584 struct fuse_writepage_args *wpa)
1586 struct fuse_args_pages *ap = &wpa->ia.ap;
1587 struct inode *inode = wpa->inode;
1588 struct fuse_inode *fi = get_fuse_inode(inode);
1589 struct backing_dev_info *bdi = inode_to_bdi(inode);
1592 list_del(&wpa->writepages_entry);
1593 for (i = 0; i < ap->num_pages; i++) {
1594 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1595 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1596 wb_writeout_inc(&bdi->wb);
1598 wake_up(&fi->page_waitq);
1601 /* Called under fi->lock, may release and reacquire it */
1602 static void fuse_send_writepage(struct fuse_conn *fc,
1603 struct fuse_writepage_args *wpa, loff_t size)
1604 __releases(fi->lock)
1605 __acquires(fi->lock)
1607 struct fuse_writepage_args *aux, *next;
1608 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1609 struct fuse_write_in *inarg = &wpa->ia.write.in;
1610 struct fuse_args *args = &wpa->ia.ap.args;
1611 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1615 if (inarg->offset + data_size <= size) {
1616 inarg->size = data_size;
1617 } else if (inarg->offset < size) {
1618 inarg->size = size - inarg->offset;
1620 /* Got truncated off completely */
1624 args->in_args[1].size = inarg->size;
1626 args->nocreds = true;
1628 err = fuse_simple_background(fc, args, GFP_ATOMIC);
1629 if (err == -ENOMEM) {
1630 spin_unlock(&fi->lock);
1631 err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1632 spin_lock(&fi->lock);
1635 /* Fails on broken connection only */
1643 fuse_writepage_finish(fc, wpa);
1644 spin_unlock(&fi->lock);
1646 /* After fuse_writepage_finish() aux request list is private */
1647 for (aux = wpa->next; aux; aux = next) {
1650 fuse_writepage_free(aux);
1653 fuse_writepage_free(wpa);
1654 spin_lock(&fi->lock);
1658 * If fi->writectr is positive (no truncate or fsync going on) send
1659 * all queued writepage requests.
1661 * Called with fi->lock
1663 void fuse_flush_writepages(struct inode *inode)
1664 __releases(fi->lock)
1665 __acquires(fi->lock)
1667 struct fuse_conn *fc = get_fuse_conn(inode);
1668 struct fuse_inode *fi = get_fuse_inode(inode);
1669 loff_t crop = i_size_read(inode);
1670 struct fuse_writepage_args *wpa;
1672 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1673 wpa = list_entry(fi->queued_writes.next,
1674 struct fuse_writepage_args, queue_entry);
1675 list_del_init(&wpa->queue_entry);
1676 fuse_send_writepage(fc, wpa, crop);
1680 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1683 struct fuse_writepage_args *wpa =
1684 container_of(args, typeof(*wpa), ia.ap.args);
1685 struct inode *inode = wpa->inode;
1686 struct fuse_inode *fi = get_fuse_inode(inode);
1688 mapping_set_error(inode->i_mapping, error);
1689 spin_lock(&fi->lock);
1691 struct fuse_conn *fc = get_fuse_conn(inode);
1692 struct fuse_write_in *inarg = &wpa->ia.write.in;
1693 struct fuse_writepage_args *next = wpa->next;
1695 wpa->next = next->next;
1697 next->ia.ff = fuse_file_get(wpa->ia.ff);
1698 list_add(&next->writepages_entry, &fi->writepages);
1701 * Skip fuse_flush_writepages() to make it easy to crop requests
1702 * based on primary request size.
1704 * 1st case (trivial): there are no concurrent activities using
1705 * fuse_set/release_nowrite. Then we're on safe side because
1706 * fuse_flush_writepages() would call fuse_send_writepage()
1709 * 2nd case: someone called fuse_set_nowrite and it is waiting
1710 * now for completion of all in-flight requests. This happens
1711 * rarely and no more than once per page, so this should be
1714 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1715 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1716 * that fuse_set_nowrite returned implies that all in-flight
1717 * requests were completed along with all of their secondary
1718 * requests. Further primary requests are blocked by negative
1719 * writectr. Hence there cannot be any in-flight requests and
1720 * no invocations of fuse_writepage_end() while we're in
1721 * fuse_set_nowrite..fuse_release_nowrite section.
1723 fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1726 fuse_writepage_finish(fc, wpa);
1727 spin_unlock(&fi->lock);
1728 fuse_writepage_free(wpa);
1731 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1732 struct fuse_inode *fi)
1734 struct fuse_file *ff = NULL;
1736 spin_lock(&fi->lock);
1737 if (!list_empty(&fi->write_files)) {
1738 ff = list_entry(fi->write_files.next, struct fuse_file,
1742 spin_unlock(&fi->lock);
1747 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1748 struct fuse_inode *fi)
1750 struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1755 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1757 struct fuse_conn *fc = get_fuse_conn(inode);
1758 struct fuse_inode *fi = get_fuse_inode(inode);
1759 struct fuse_file *ff;
1762 ff = __fuse_write_file_get(fc, fi);
1763 err = fuse_flush_times(inode, ff);
1765 fuse_file_put(ff, false, false);
1770 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1772 struct fuse_writepage_args *wpa;
1773 struct fuse_args_pages *ap;
1775 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1779 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1789 static int fuse_writepage_locked(struct page *page)
1791 struct address_space *mapping = page->mapping;
1792 struct inode *inode = mapping->host;
1793 struct fuse_conn *fc = get_fuse_conn(inode);
1794 struct fuse_inode *fi = get_fuse_inode(inode);
1795 struct fuse_writepage_args *wpa;
1796 struct fuse_args_pages *ap;
1797 struct page *tmp_page;
1798 int error = -ENOMEM;
1800 set_page_writeback(page);
1802 wpa = fuse_writepage_args_alloc();
1807 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1812 wpa->ia.ff = fuse_write_file_get(fc, fi);
1816 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1818 copy_highpage(tmp_page, page);
1819 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1821 ap->args.in_pages = true;
1823 ap->pages[0] = tmp_page;
1824 ap->descs[0].offset = 0;
1825 ap->descs[0].length = PAGE_SIZE;
1826 ap->args.end = fuse_writepage_end;
1829 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1830 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1832 spin_lock(&fi->lock);
1833 list_add(&wpa->writepages_entry, &fi->writepages);
1834 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1835 fuse_flush_writepages(inode);
1836 spin_unlock(&fi->lock);
1838 end_page_writeback(page);
1843 __free_page(tmp_page);
1847 mapping_set_error(page->mapping, error);
1848 end_page_writeback(page);
1852 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1856 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1858 * ->writepages() should be called for sync() and friends. We
1859 * should only get here on direct reclaim and then we are
1860 * allowed to skip a page which is already in flight
1862 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1864 redirty_page_for_writepage(wbc, page);
1869 err = fuse_writepage_locked(page);
1875 struct fuse_fill_wb_data {
1876 struct fuse_writepage_args *wpa;
1877 struct fuse_file *ff;
1878 struct inode *inode;
1879 struct page **orig_pages;
1880 unsigned int max_pages;
1883 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1885 struct fuse_args_pages *ap = &data->wpa->ia.ap;
1886 struct fuse_conn *fc = get_fuse_conn(data->inode);
1887 struct page **pages;
1888 struct fuse_page_desc *descs;
1889 unsigned int npages = min_t(unsigned int,
1890 max_t(unsigned int, data->max_pages * 2,
1891 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1893 WARN_ON(npages <= data->max_pages);
1895 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1899 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1900 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1904 data->max_pages = npages;
1909 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1911 struct fuse_writepage_args *wpa = data->wpa;
1912 struct inode *inode = data->inode;
1913 struct fuse_inode *fi = get_fuse_inode(inode);
1914 int num_pages = wpa->ia.ap.num_pages;
1917 wpa->ia.ff = fuse_file_get(data->ff);
1918 spin_lock(&fi->lock);
1919 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1920 fuse_flush_writepages(inode);
1921 spin_unlock(&fi->lock);
1923 for (i = 0; i < num_pages; i++)
1924 end_page_writeback(data->orig_pages[i]);
1928 * First recheck under fi->lock if the offending offset is still under
1929 * writeback. If yes, then iterate auxiliary write requests, to see if there's
1930 * one already added for a page at this offset. If there's none, then insert
1931 * this new request onto the auxiliary list, otherwise reuse the existing one by
1932 * copying the new page contents over to the old temporary page.
1934 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1937 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1938 struct fuse_writepage_args *tmp;
1939 struct fuse_writepage_args *old_wpa;
1940 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1942 WARN_ON(new_ap->num_pages != 0);
1944 spin_lock(&fi->lock);
1945 list_del(&new_wpa->writepages_entry);
1946 old_wpa = fuse_find_writeback(fi, page->index, page->index);
1948 list_add(&new_wpa->writepages_entry, &fi->writepages);
1949 spin_unlock(&fi->lock);
1953 new_ap->num_pages = 1;
1954 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
1957 WARN_ON(tmp->inode != new_wpa->inode);
1958 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
1959 if (curr_index == page->index) {
1960 WARN_ON(tmp->ia.ap.num_pages != 1);
1961 swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
1967 new_wpa->next = old_wpa->next;
1968 old_wpa->next = new_wpa;
1971 spin_unlock(&fi->lock);
1974 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
1976 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1977 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
1978 wb_writeout_inc(&bdi->wb);
1979 fuse_writepage_free(new_wpa);
1985 static int fuse_writepages_fill(struct page *page,
1986 struct writeback_control *wbc, void *_data)
1988 struct fuse_fill_wb_data *data = _data;
1989 struct fuse_writepage_args *wpa = data->wpa;
1990 struct fuse_args_pages *ap = &wpa->ia.ap;
1991 struct inode *inode = data->inode;
1992 struct fuse_inode *fi = get_fuse_inode(inode);
1993 struct fuse_conn *fc = get_fuse_conn(inode);
1994 struct page *tmp_page;
2000 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
2006 * Being under writeback is unlikely but possible. For example direct
2007 * read to an mmaped fuse file will set the page dirty twice; once when
2008 * the pages are faulted with get_user_pages(), and then after the read
2011 is_writeback = fuse_page_is_writeback(inode, page->index);
2013 if (wpa && ap->num_pages &&
2014 (is_writeback || ap->num_pages == fc->max_pages ||
2015 (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
2016 data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
2017 fuse_writepages_send(data);
2019 } else if (wpa && ap->num_pages == data->max_pages) {
2020 if (!fuse_pages_realloc(data)) {
2021 fuse_writepages_send(data);
2027 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2032 * The page must not be redirtied until the writeout is completed
2033 * (i.e. userspace has sent a reply to the write request). Otherwise
2034 * there could be more than one temporary page instance for each real
2037 * This is ensured by holding the page lock in page_mkwrite() while
2038 * checking fuse_page_is_writeback(). We already hold the page lock
2039 * since clear_page_dirty_for_io() and keep it held until we add the
2040 * request to the fi->writepages list and increment ap->num_pages.
2041 * After this fuse_page_is_writeback() will indicate that the page is
2042 * under writeback, so we can release the page lock.
2044 if (data->wpa == NULL) {
2045 struct fuse_inode *fi = get_fuse_inode(inode);
2048 wpa = fuse_writepage_args_alloc();
2050 __free_page(tmp_page);
2053 data->max_pages = 1;
2056 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2057 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2059 ap->args.in_pages = true;
2060 ap->args.end = fuse_writepage_end;
2064 spin_lock(&fi->lock);
2065 list_add(&wpa->writepages_entry, &fi->writepages);
2066 spin_unlock(&fi->lock);
2070 set_page_writeback(page);
2072 copy_highpage(tmp_page, page);
2073 ap->pages[ap->num_pages] = tmp_page;
2074 ap->descs[ap->num_pages].offset = 0;
2075 ap->descs[ap->num_pages].length = PAGE_SIZE;
2077 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2078 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2081 if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2082 end_page_writeback(page);
2086 data->orig_pages[ap->num_pages] = page;
2089 * Protected by fi->lock against concurrent access by
2090 * fuse_page_is_writeback().
2092 spin_lock(&fi->lock);
2094 spin_unlock(&fi->lock);
2102 static int fuse_writepages(struct address_space *mapping,
2103 struct writeback_control *wbc)
2105 struct inode *inode = mapping->host;
2106 struct fuse_conn *fc = get_fuse_conn(inode);
2107 struct fuse_fill_wb_data data;
2111 if (is_bad_inode(inode))
2119 data.orig_pages = kcalloc(fc->max_pages,
2120 sizeof(struct page *),
2122 if (!data.orig_pages)
2125 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2127 /* Ignore errors if we can write at least one page */
2128 WARN_ON(!data.wpa->ia.ap.num_pages);
2129 fuse_writepages_send(&data);
2133 fuse_file_put(data.ff, false, false);
2135 kfree(data.orig_pages);
2141 * It's worthy to make sure that space is reserved on disk for the write,
2142 * but how to implement it without killing performance need more thinking.
2144 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2145 loff_t pos, unsigned len, unsigned flags,
2146 struct page **pagep, void **fsdata)
2148 pgoff_t index = pos >> PAGE_SHIFT;
2149 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2154 WARN_ON(!fc->writeback_cache);
2156 page = grab_cache_page_write_begin(mapping, index, flags);
2160 fuse_wait_on_page_writeback(mapping->host, page->index);
2162 if (PageUptodate(page) || len == PAGE_SIZE)
2165 * Check if the start this page comes after the end of file, in which
2166 * case the readpage can be optimized away.
2168 fsize = i_size_read(mapping->host);
2169 if (fsize <= (pos & PAGE_MASK)) {
2170 size_t off = pos & ~PAGE_MASK;
2172 zero_user_segment(page, 0, off);
2175 err = fuse_do_readpage(file, page);
2189 static int fuse_write_end(struct file *file, struct address_space *mapping,
2190 loff_t pos, unsigned len, unsigned copied,
2191 struct page *page, void *fsdata)
2193 struct inode *inode = page->mapping->host;
2195 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2199 if (!PageUptodate(page)) {
2200 /* Zero any unwritten bytes at the end of the page */
2201 size_t endoff = (pos + copied) & ~PAGE_MASK;
2203 zero_user_segment(page, endoff, PAGE_SIZE);
2204 SetPageUptodate(page);
2207 fuse_write_update_size(inode, pos + copied);
2208 set_page_dirty(page);
2217 static int fuse_launder_page(struct page *page)
2220 if (clear_page_dirty_for_io(page)) {
2221 struct inode *inode = page->mapping->host;
2222 err = fuse_writepage_locked(page);
2224 fuse_wait_on_page_writeback(inode, page->index);
2230 * Write back dirty pages now, because there may not be any suitable
2233 static void fuse_vma_close(struct vm_area_struct *vma)
2235 filemap_write_and_wait(vma->vm_file->f_mapping);
2239 * Wait for writeback against this page to complete before allowing it
2240 * to be marked dirty again, and hence written back again, possibly
2241 * before the previous writepage completed.
2243 * Block here, instead of in ->writepage(), so that the userspace fs
2244 * can only block processes actually operating on the filesystem.
2246 * Otherwise unprivileged userspace fs would be able to block
2251 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2253 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2255 struct page *page = vmf->page;
2256 struct inode *inode = file_inode(vmf->vma->vm_file);
2258 file_update_time(vmf->vma->vm_file);
2260 if (page->mapping != inode->i_mapping) {
2262 return VM_FAULT_NOPAGE;
2265 fuse_wait_on_page_writeback(inode, page->index);
2266 return VM_FAULT_LOCKED;
2269 static const struct vm_operations_struct fuse_file_vm_ops = {
2270 .close = fuse_vma_close,
2271 .fault = filemap_fault,
2272 .map_pages = filemap_map_pages,
2273 .page_mkwrite = fuse_page_mkwrite,
2276 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2278 struct fuse_file *ff = file->private_data;
2280 if (ff->open_flags & FOPEN_DIRECT_IO) {
2281 /* Can't provide the coherency needed for MAP_SHARED */
2282 if (vma->vm_flags & VM_MAYSHARE)
2285 invalidate_inode_pages2(file->f_mapping);
2287 return generic_file_mmap(file, vma);
2290 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2291 fuse_link_write_file(file);
2293 file_accessed(file);
2294 vma->vm_ops = &fuse_file_vm_ops;
2298 static int convert_fuse_file_lock(struct fuse_conn *fc,
2299 const struct fuse_file_lock *ffl,
2300 struct file_lock *fl)
2302 switch (ffl->type) {
2308 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2309 ffl->end < ffl->start)
2312 fl->fl_start = ffl->start;
2313 fl->fl_end = ffl->end;
2316 * Convert pid into init's pid namespace. The locks API will
2317 * translate it into the caller's pid namespace.
2320 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2327 fl->fl_type = ffl->type;
2331 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2332 const struct file_lock *fl, int opcode, pid_t pid,
2333 int flock, struct fuse_lk_in *inarg)
2335 struct inode *inode = file_inode(file);
2336 struct fuse_conn *fc = get_fuse_conn(inode);
2337 struct fuse_file *ff = file->private_data;
2339 memset(inarg, 0, sizeof(*inarg));
2341 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2342 inarg->lk.start = fl->fl_start;
2343 inarg->lk.end = fl->fl_end;
2344 inarg->lk.type = fl->fl_type;
2345 inarg->lk.pid = pid;
2347 inarg->lk_flags |= FUSE_LK_FLOCK;
2348 args->opcode = opcode;
2349 args->nodeid = get_node_id(inode);
2350 args->in_numargs = 1;
2351 args->in_args[0].size = sizeof(*inarg);
2352 args->in_args[0].value = inarg;
2355 static int fuse_getlk(struct file *file, struct file_lock *fl)
2357 struct inode *inode = file_inode(file);
2358 struct fuse_conn *fc = get_fuse_conn(inode);
2360 struct fuse_lk_in inarg;
2361 struct fuse_lk_out outarg;
2364 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2365 args.out_numargs = 1;
2366 args.out_args[0].size = sizeof(outarg);
2367 args.out_args[0].value = &outarg;
2368 err = fuse_simple_request(fc, &args);
2370 err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2375 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2377 struct inode *inode = file_inode(file);
2378 struct fuse_conn *fc = get_fuse_conn(inode);
2380 struct fuse_lk_in inarg;
2381 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2382 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2383 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2386 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2387 /* NLM needs asynchronous locks, which we don't support yet */
2391 /* Unlock on close is handled by the flush method */
2392 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2395 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2396 err = fuse_simple_request(fc, &args);
2398 /* locking is restartable */
2405 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2407 struct inode *inode = file_inode(file);
2408 struct fuse_conn *fc = get_fuse_conn(inode);
2411 if (cmd == F_CANCELLK) {
2413 } else if (cmd == F_GETLK) {
2415 posix_test_lock(file, fl);
2418 err = fuse_getlk(file, fl);
2421 err = posix_lock_file(file, fl, NULL);
2423 err = fuse_setlk(file, fl, 0);
2428 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2430 struct inode *inode = file_inode(file);
2431 struct fuse_conn *fc = get_fuse_conn(inode);
2435 err = locks_lock_file_wait(file, fl);
2437 struct fuse_file *ff = file->private_data;
2439 /* emulate flock with POSIX locks */
2441 err = fuse_setlk(file, fl, 1);
2447 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2449 struct inode *inode = mapping->host;
2450 struct fuse_conn *fc = get_fuse_conn(inode);
2452 struct fuse_bmap_in inarg;
2453 struct fuse_bmap_out outarg;
2456 if (!inode->i_sb->s_bdev || fc->no_bmap)
2459 memset(&inarg, 0, sizeof(inarg));
2460 inarg.block = block;
2461 inarg.blocksize = inode->i_sb->s_blocksize;
2462 args.opcode = FUSE_BMAP;
2463 args.nodeid = get_node_id(inode);
2464 args.in_numargs = 1;
2465 args.in_args[0].size = sizeof(inarg);
2466 args.in_args[0].value = &inarg;
2467 args.out_numargs = 1;
2468 args.out_args[0].size = sizeof(outarg);
2469 args.out_args[0].value = &outarg;
2470 err = fuse_simple_request(fc, &args);
2474 return err ? 0 : outarg.block;
2477 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2479 struct inode *inode = file->f_mapping->host;
2480 struct fuse_conn *fc = get_fuse_conn(inode);
2481 struct fuse_file *ff = file->private_data;
2483 struct fuse_lseek_in inarg = {
2488 struct fuse_lseek_out outarg;
2494 args.opcode = FUSE_LSEEK;
2495 args.nodeid = ff->nodeid;
2496 args.in_numargs = 1;
2497 args.in_args[0].size = sizeof(inarg);
2498 args.in_args[0].value = &inarg;
2499 args.out_numargs = 1;
2500 args.out_args[0].size = sizeof(outarg);
2501 args.out_args[0].value = &outarg;
2502 err = fuse_simple_request(fc, &args);
2504 if (err == -ENOSYS) {
2511 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2514 err = fuse_update_attributes(inode, file);
2516 return generic_file_llseek(file, offset, whence);
2521 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2524 struct inode *inode = file_inode(file);
2529 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2530 retval = generic_file_llseek(file, offset, whence);
2534 retval = fuse_update_attributes(inode, file);
2536 retval = generic_file_llseek(file, offset, whence);
2537 inode_unlock(inode);
2542 retval = fuse_lseek(file, offset, whence);
2543 inode_unlock(inode);
2553 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2554 * ABI was defined to be 'struct iovec' which is different on 32bit
2555 * and 64bit. Fortunately we can determine which structure the server
2556 * used from the size of the reply.
2558 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2559 size_t transferred, unsigned count,
2562 #ifdef CONFIG_COMPAT
2563 if (count * sizeof(struct compat_iovec) == transferred) {
2564 struct compat_iovec *ciov = src;
2568 * With this interface a 32bit server cannot support
2569 * non-compat (i.e. ones coming from 64bit apps) ioctl
2575 for (i = 0; i < count; i++) {
2576 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2577 dst[i].iov_len = ciov[i].iov_len;
2583 if (count * sizeof(struct iovec) != transferred)
2586 memcpy(dst, src, transferred);
2590 /* Make sure iov_length() won't overflow */
2591 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2595 u32 max = fc->max_pages << PAGE_SHIFT;
2597 for (n = 0; n < count; n++, iov++) {
2598 if (iov->iov_len > (size_t) max)
2600 max -= iov->iov_len;
2605 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2606 void *src, size_t transferred, unsigned count,
2610 struct fuse_ioctl_iovec *fiov = src;
2612 if (fc->minor < 16) {
2613 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2617 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2620 for (i = 0; i < count; i++) {
2621 /* Did the server supply an inappropriate value? */
2622 if (fiov[i].base != (unsigned long) fiov[i].base ||
2623 fiov[i].len != (unsigned long) fiov[i].len)
2626 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2627 dst[i].iov_len = (size_t) fiov[i].len;
2629 #ifdef CONFIG_COMPAT
2631 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2632 (compat_size_t) dst[i].iov_len != fiov[i].len))
2642 * For ioctls, there is no generic way to determine how much memory
2643 * needs to be read and/or written. Furthermore, ioctls are allowed
2644 * to dereference the passed pointer, so the parameter requires deep
2645 * copying but FUSE has no idea whatsoever about what to copy in or
2648 * This is solved by allowing FUSE server to retry ioctl with
2649 * necessary in/out iovecs. Let's assume the ioctl implementation
2650 * needs to read in the following structure.
2657 * On the first callout to FUSE server, inarg->in_size and
2658 * inarg->out_size will be NULL; then, the server completes the ioctl
2659 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2660 * the actual iov array to
2662 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2664 * which tells FUSE to copy in the requested area and retry the ioctl.
2665 * On the second round, the server has access to the structure and
2666 * from that it can tell what to look for next, so on the invocation,
2667 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2669 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2670 * { .iov_base = a.buf, .iov_len = a.buflen } }
2672 * FUSE will copy both struct a and the pointed buffer from the
2673 * process doing the ioctl and retry ioctl with both struct a and the
2676 * This time, FUSE server has everything it needs and completes ioctl
2677 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2679 * Copying data out works the same way.
2681 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2682 * automatically initializes in and out iovs by decoding @cmd with
2683 * _IOC_* macros and the server is not allowed to request RETRY. This
2684 * limits ioctl data transfers to well-formed ioctls and is the forced
2685 * behavior for all FUSE servers.
2687 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2690 struct fuse_file *ff = file->private_data;
2691 struct fuse_conn *fc = ff->fc;
2692 struct fuse_ioctl_in inarg = {
2698 struct fuse_ioctl_out outarg;
2699 struct iovec *iov_page = NULL;
2700 struct iovec *in_iov = NULL, *out_iov = NULL;
2701 unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2702 size_t in_size, out_size, c;
2703 ssize_t transferred;
2706 struct fuse_args_pages ap = {};
2708 #if BITS_PER_LONG == 32
2709 inarg.flags |= FUSE_IOCTL_32BIT;
2711 if (flags & FUSE_IOCTL_COMPAT) {
2712 inarg.flags |= FUSE_IOCTL_32BIT;
2713 #ifdef CONFIG_X86_X32
2714 if (in_x32_syscall())
2715 inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2720 /* assume all the iovs returned by client always fits in a page */
2721 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2724 ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2725 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2726 if (!ap.pages || !iov_page)
2729 fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2732 * If restricted, initialize IO parameters as encoded in @cmd.
2733 * RETRY from server is not allowed.
2735 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2736 struct iovec *iov = iov_page;
2738 iov->iov_base = (void __user *)arg;
2739 iov->iov_len = _IOC_SIZE(cmd);
2741 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2746 if (_IOC_DIR(cmd) & _IOC_READ) {
2753 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2754 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2757 * Out data can be used either for actual out data or iovs,
2758 * make sure there always is at least one page.
2760 out_size = max_t(size_t, out_size, PAGE_SIZE);
2761 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2763 /* make sure there are enough buffer pages and init request with them */
2765 if (max_pages > fc->max_pages)
2767 while (ap.num_pages < max_pages) {
2768 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2769 if (!ap.pages[ap.num_pages])
2775 /* okay, let's send it to the client */
2776 ap.args.opcode = FUSE_IOCTL;
2777 ap.args.nodeid = ff->nodeid;
2778 ap.args.in_numargs = 1;
2779 ap.args.in_args[0].size = sizeof(inarg);
2780 ap.args.in_args[0].value = &inarg;
2782 ap.args.in_numargs++;
2783 ap.args.in_args[1].size = in_size;
2784 ap.args.in_pages = true;
2787 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2788 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2789 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2790 if (c != PAGE_SIZE && iov_iter_count(&ii))
2795 ap.args.out_numargs = 2;
2796 ap.args.out_args[0].size = sizeof(outarg);
2797 ap.args.out_args[0].value = &outarg;
2798 ap.args.out_args[1].size = out_size;
2799 ap.args.out_pages = true;
2800 ap.args.out_argvar = true;
2802 transferred = fuse_simple_request(fc, &ap.args);
2804 if (transferred < 0)
2807 /* did it ask for retry? */
2808 if (outarg.flags & FUSE_IOCTL_RETRY) {
2811 /* no retry if in restricted mode */
2813 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2816 in_iovs = outarg.in_iovs;
2817 out_iovs = outarg.out_iovs;
2820 * Make sure things are in boundary, separate checks
2821 * are to protect against overflow.
2824 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2825 out_iovs > FUSE_IOCTL_MAX_IOV ||
2826 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2829 vaddr = kmap_atomic(ap.pages[0]);
2830 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2831 transferred, in_iovs + out_iovs,
2832 (flags & FUSE_IOCTL_COMPAT) != 0);
2833 kunmap_atomic(vaddr);
2838 out_iov = in_iov + in_iovs;
2840 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2844 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2852 if (transferred > inarg.out_size)
2856 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2857 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2858 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2859 if (c != PAGE_SIZE && iov_iter_count(&ii))
2864 free_page((unsigned long) iov_page);
2865 while (ap.num_pages)
2866 __free_page(ap.pages[--ap.num_pages]);
2869 return err ? err : outarg.result;
2871 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2873 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2874 unsigned long arg, unsigned int flags)
2876 struct inode *inode = file_inode(file);
2877 struct fuse_conn *fc = get_fuse_conn(inode);
2879 if (!fuse_allow_current_process(fc))
2882 if (is_bad_inode(inode))
2885 return fuse_do_ioctl(file, cmd, arg, flags);
2888 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2891 return fuse_ioctl_common(file, cmd, arg, 0);
2894 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2897 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2901 * All files which have been polled are linked to RB tree
2902 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2903 * find the matching one.
2905 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2906 struct rb_node **parent_out)
2908 struct rb_node **link = &fc->polled_files.rb_node;
2909 struct rb_node *last = NULL;
2912 struct fuse_file *ff;
2915 ff = rb_entry(last, struct fuse_file, polled_node);
2918 link = &last->rb_left;
2919 else if (kh > ff->kh)
2920 link = &last->rb_right;
2931 * The file is about to be polled. Make sure it's on the polled_files
2932 * RB tree. Note that files once added to the polled_files tree are
2933 * not removed before the file is released. This is because a file
2934 * polled once is likely to be polled again.
2936 static void fuse_register_polled_file(struct fuse_conn *fc,
2937 struct fuse_file *ff)
2939 spin_lock(&fc->lock);
2940 if (RB_EMPTY_NODE(&ff->polled_node)) {
2941 struct rb_node **link, *uninitialized_var(parent);
2943 link = fuse_find_polled_node(fc, ff->kh, &parent);
2945 rb_link_node(&ff->polled_node, parent, link);
2946 rb_insert_color(&ff->polled_node, &fc->polled_files);
2948 spin_unlock(&fc->lock);
2951 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2953 struct fuse_file *ff = file->private_data;
2954 struct fuse_conn *fc = ff->fc;
2955 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2956 struct fuse_poll_out outarg;
2961 return DEFAULT_POLLMASK;
2963 poll_wait(file, &ff->poll_wait, wait);
2964 inarg.events = mangle_poll(poll_requested_events(wait));
2967 * Ask for notification iff there's someone waiting for it.
2968 * The client may ignore the flag and always notify.
2970 if (waitqueue_active(&ff->poll_wait)) {
2971 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2972 fuse_register_polled_file(fc, ff);
2975 args.opcode = FUSE_POLL;
2976 args.nodeid = ff->nodeid;
2977 args.in_numargs = 1;
2978 args.in_args[0].size = sizeof(inarg);
2979 args.in_args[0].value = &inarg;
2980 args.out_numargs = 1;
2981 args.out_args[0].size = sizeof(outarg);
2982 args.out_args[0].value = &outarg;
2983 err = fuse_simple_request(fc, &args);
2986 return demangle_poll(outarg.revents);
2987 if (err == -ENOSYS) {
2989 return DEFAULT_POLLMASK;
2993 EXPORT_SYMBOL_GPL(fuse_file_poll);
2996 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2997 * wakes up the poll waiters.
2999 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3000 struct fuse_notify_poll_wakeup_out *outarg)
3002 u64 kh = outarg->kh;
3003 struct rb_node **link;
3005 spin_lock(&fc->lock);
3007 link = fuse_find_polled_node(fc, kh, NULL);
3009 struct fuse_file *ff;
3011 ff = rb_entry(*link, struct fuse_file, polled_node);
3012 wake_up_interruptible_sync(&ff->poll_wait);
3015 spin_unlock(&fc->lock);
3019 static void fuse_do_truncate(struct file *file)
3021 struct inode *inode = file->f_mapping->host;
3024 attr.ia_valid = ATTR_SIZE;
3025 attr.ia_size = i_size_read(inode);
3027 attr.ia_file = file;
3028 attr.ia_valid |= ATTR_FILE;
3030 fuse_do_setattr(file_dentry(file), &attr, file);
3033 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3035 return round_up(off, fc->max_pages << PAGE_SHIFT);
3039 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3041 DECLARE_COMPLETION_ONSTACK(wait);
3043 struct file *file = iocb->ki_filp;
3044 struct fuse_file *ff = file->private_data;
3045 bool async_dio = ff->fc->async_dio;
3047 struct inode *inode;
3049 size_t count = iov_iter_count(iter);
3050 loff_t offset = iocb->ki_pos;
3051 struct fuse_io_priv *io;
3054 inode = file->f_mapping->host;
3055 i_size = i_size_read(inode);
3057 if ((iov_iter_rw(iter) == READ) && (offset > i_size))
3060 /* optimization for short read */
3061 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
3062 if (offset >= i_size)
3064 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3065 count = iov_iter_count(iter);
3068 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3071 spin_lock_init(&io->lock);
3072 kref_init(&io->refcnt);
3076 io->offset = offset;
3077 io->write = (iov_iter_rw(iter) == WRITE);
3080 * By default, we want to optimize all I/Os with async request
3081 * submission to the client filesystem if supported.
3083 io->async = async_dio;
3085 io->blocking = is_sync_kiocb(iocb);
3088 * We cannot asynchronously extend the size of a file.
3089 * In such case the aio will behave exactly like sync io.
3091 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
3092 io->blocking = true;
3094 if (io->async && io->blocking) {
3096 * Additional reference to keep io around after
3097 * calling fuse_aio_complete()
3099 kref_get(&io->refcnt);
3103 if (iov_iter_rw(iter) == WRITE) {
3104 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3105 fuse_invalidate_attr(inode);
3107 ret = __fuse_direct_read(io, iter, &pos);
3111 bool blocking = io->blocking;
3113 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3115 /* we have a non-extending, async request, so return */
3117 return -EIOCBQUEUED;
3119 wait_for_completion(&wait);
3120 ret = fuse_get_res_by_io(io);
3123 kref_put(&io->refcnt, fuse_io_release);
3125 if (iov_iter_rw(iter) == WRITE) {
3127 fuse_write_update_size(inode, pos);
3128 else if (ret < 0 && offset + count > i_size)
3129 fuse_do_truncate(file);
3135 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3137 int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3140 fuse_sync_writes(inode);
3145 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3148 struct fuse_file *ff = file->private_data;
3149 struct inode *inode = file_inode(file);
3150 struct fuse_inode *fi = get_fuse_inode(inode);
3151 struct fuse_conn *fc = ff->fc;
3153 struct fuse_fallocate_in inarg = {
3160 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3161 (mode & FALLOC_FL_PUNCH_HOLE);
3163 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3166 if (fc->no_fallocate)
3171 if (mode & FALLOC_FL_PUNCH_HOLE) {
3172 loff_t endbyte = offset + length - 1;
3174 err = fuse_writeback_range(inode, offset, endbyte);
3180 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3181 offset + length > i_size_read(inode)) {
3182 err = inode_newsize_ok(inode, offset + length);
3187 if (!(mode & FALLOC_FL_KEEP_SIZE))
3188 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3190 args.opcode = FUSE_FALLOCATE;
3191 args.nodeid = ff->nodeid;
3192 args.in_numargs = 1;
3193 args.in_args[0].size = sizeof(inarg);
3194 args.in_args[0].value = &inarg;
3195 err = fuse_simple_request(fc, &args);
3196 if (err == -ENOSYS) {
3197 fc->no_fallocate = 1;
3203 /* we could have extended the file */
3204 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3205 bool changed = fuse_write_update_size(inode, offset + length);
3207 if (changed && fc->writeback_cache)
3208 file_update_time(file);
3211 if (mode & FALLOC_FL_PUNCH_HOLE)
3212 truncate_pagecache_range(inode, offset, offset + length - 1);
3214 fuse_invalidate_attr(inode);
3217 if (!(mode & FALLOC_FL_KEEP_SIZE))
3218 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3221 inode_unlock(inode);
3226 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3227 struct file *file_out, loff_t pos_out,
3228 size_t len, unsigned int flags)
3230 struct fuse_file *ff_in = file_in->private_data;
3231 struct fuse_file *ff_out = file_out->private_data;
3232 struct inode *inode_in = file_inode(file_in);
3233 struct inode *inode_out = file_inode(file_out);
3234 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3235 struct fuse_conn *fc = ff_in->fc;
3237 struct fuse_copy_file_range_in inarg = {
3240 .nodeid_out = ff_out->nodeid,
3241 .fh_out = ff_out->fh,
3246 struct fuse_write_out outarg;
3248 /* mark unstable when write-back is not used, and file_out gets
3250 bool is_unstable = (!fc->writeback_cache) &&
3251 ((pos_out + len) > inode_out->i_size);
3253 if (fc->no_copy_file_range)
3256 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3259 if (fc->writeback_cache) {
3260 inode_lock(inode_in);
3261 err = fuse_writeback_range(inode_in, pos_in, pos_in + len);
3262 inode_unlock(inode_in);
3267 inode_lock(inode_out);
3269 err = file_modified(file_out);
3273 if (fc->writeback_cache) {
3274 err = fuse_writeback_range(inode_out, pos_out, pos_out + len);
3280 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3282 args.opcode = FUSE_COPY_FILE_RANGE;
3283 args.nodeid = ff_in->nodeid;
3284 args.in_numargs = 1;
3285 args.in_args[0].size = sizeof(inarg);
3286 args.in_args[0].value = &inarg;
3287 args.out_numargs = 1;
3288 args.out_args[0].size = sizeof(outarg);
3289 args.out_args[0].value = &outarg;
3290 err = fuse_simple_request(fc, &args);
3291 if (err == -ENOSYS) {
3292 fc->no_copy_file_range = 1;
3298 if (fc->writeback_cache) {
3299 fuse_write_update_size(inode_out, pos_out + outarg.size);
3300 file_update_time(file_out);
3303 fuse_invalidate_attr(inode_out);
3308 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3310 inode_unlock(inode_out);
3311 file_accessed(file_in);
3316 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3317 struct file *dst_file, loff_t dst_off,
3318 size_t len, unsigned int flags)
3322 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3325 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3326 ret = generic_copy_file_range(src_file, src_off, dst_file,
3327 dst_off, len, flags);
3331 static const struct file_operations fuse_file_operations = {
3332 .llseek = fuse_file_llseek,
3333 .read_iter = fuse_file_read_iter,
3334 .write_iter = fuse_file_write_iter,
3335 .mmap = fuse_file_mmap,
3337 .flush = fuse_flush,
3338 .release = fuse_release,
3339 .fsync = fuse_fsync,
3340 .lock = fuse_file_lock,
3341 .flock = fuse_file_flock,
3342 .splice_read = generic_file_splice_read,
3343 .splice_write = iter_file_splice_write,
3344 .unlocked_ioctl = fuse_file_ioctl,
3345 .compat_ioctl = fuse_file_compat_ioctl,
3346 .poll = fuse_file_poll,
3347 .fallocate = fuse_file_fallocate,
3348 .copy_file_range = fuse_copy_file_range,
3351 static const struct address_space_operations fuse_file_aops = {
3352 .readpage = fuse_readpage,
3353 .writepage = fuse_writepage,
3354 .writepages = fuse_writepages,
3355 .launder_page = fuse_launder_page,
3356 .readpages = fuse_readpages,
3357 .set_page_dirty = __set_page_dirty_nobuffers,
3359 .direct_IO = fuse_direct_IO,
3360 .write_begin = fuse_write_begin,
3361 .write_end = fuse_write_end,
3364 void fuse_init_file_inode(struct inode *inode)
3366 struct fuse_inode *fi = get_fuse_inode(inode);
3368 inode->i_fop = &fuse_file_operations;
3369 inode->i_data.a_ops = &fuse_file_aops;
3371 INIT_LIST_HEAD(&fi->write_files);
3372 INIT_LIST_HEAD(&fi->queued_writes);
3374 init_waitqueue_head(&fi->page_waitq);
3375 INIT_LIST_HEAD(&fi->writepages);