]> Git Repo - linux.git/blob - net/tls/tls_sw.c
ALSA: hda: Modify stream stripe mask only when needed
[linux.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <[email protected]>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <[email protected]>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <[email protected]>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <[email protected]>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
45 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
46                      unsigned int recursion_level)
47 {
48         int start = skb_headlen(skb);
49         int i, chunk = start - offset;
50         struct sk_buff *frag_iter;
51         int elt = 0;
52
53         if (unlikely(recursion_level >= 24))
54                 return -EMSGSIZE;
55
56         if (chunk > 0) {
57                 if (chunk > len)
58                         chunk = len;
59                 elt++;
60                 len -= chunk;
61                 if (len == 0)
62                         return elt;
63                 offset += chunk;
64         }
65
66         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
67                 int end;
68
69                 WARN_ON(start > offset + len);
70
71                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
72                 chunk = end - offset;
73                 if (chunk > 0) {
74                         if (chunk > len)
75                                 chunk = len;
76                         elt++;
77                         len -= chunk;
78                         if (len == 0)
79                                 return elt;
80                         offset += chunk;
81                 }
82                 start = end;
83         }
84
85         if (unlikely(skb_has_frag_list(skb))) {
86                 skb_walk_frags(skb, frag_iter) {
87                         int end, ret;
88
89                         WARN_ON(start > offset + len);
90
91                         end = start + frag_iter->len;
92                         chunk = end - offset;
93                         if (chunk > 0) {
94                                 if (chunk > len)
95                                         chunk = len;
96                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
97                                                 recursion_level + 1);
98                                 if (unlikely(ret < 0))
99                                         return ret;
100                                 elt += ret;
101                                 len -= chunk;
102                                 if (len == 0)
103                                         return elt;
104                                 offset += chunk;
105                         }
106                         start = end;
107                 }
108         }
109         BUG_ON(len);
110         return elt;
111 }
112
113 /* Return the number of scatterlist elements required to completely map the
114  * skb, or -EMSGSIZE if the recursion depth is exceeded.
115  */
116 static int skb_nsg(struct sk_buff *skb, int offset, int len)
117 {
118         return __skb_nsg(skb, offset, len, 0);
119 }
120
121 static int padding_length(struct tls_sw_context_rx *ctx,
122                           struct tls_prot_info *prot, struct sk_buff *skb)
123 {
124         struct strp_msg *rxm = strp_msg(skb);
125         int sub = 0;
126
127         /* Determine zero-padding length */
128         if (prot->version == TLS_1_3_VERSION) {
129                 char content_type = 0;
130                 int err;
131                 int back = 17;
132
133                 while (content_type == 0) {
134                         if (back > rxm->full_len - prot->prepend_size)
135                                 return -EBADMSG;
136                         err = skb_copy_bits(skb,
137                                             rxm->offset + rxm->full_len - back,
138                                             &content_type, 1);
139                         if (err)
140                                 return err;
141                         if (content_type)
142                                 break;
143                         sub++;
144                         back++;
145                 }
146                 ctx->control = content_type;
147         }
148         return sub;
149 }
150
151 static void tls_decrypt_done(struct crypto_async_request *req, int err)
152 {
153         struct aead_request *aead_req = (struct aead_request *)req;
154         struct scatterlist *sgout = aead_req->dst;
155         struct scatterlist *sgin = aead_req->src;
156         struct tls_sw_context_rx *ctx;
157         struct tls_context *tls_ctx;
158         struct tls_prot_info *prot;
159         struct scatterlist *sg;
160         struct sk_buff *skb;
161         unsigned int pages;
162         int pending;
163
164         skb = (struct sk_buff *)req->data;
165         tls_ctx = tls_get_ctx(skb->sk);
166         ctx = tls_sw_ctx_rx(tls_ctx);
167         prot = &tls_ctx->prot_info;
168
169         /* Propagate if there was an err */
170         if (err) {
171                 ctx->async_wait.err = err;
172                 tls_err_abort(skb->sk, err);
173         } else {
174                 struct strp_msg *rxm = strp_msg(skb);
175                 int pad;
176
177                 pad = padding_length(ctx, prot, skb);
178                 if (pad < 0) {
179                         ctx->async_wait.err = pad;
180                         tls_err_abort(skb->sk, pad);
181                 } else {
182                         rxm->full_len -= pad;
183                         rxm->offset += prot->prepend_size;
184                         rxm->full_len -= prot->overhead_size;
185                 }
186         }
187
188         /* After using skb->sk to propagate sk through crypto async callback
189          * we need to NULL it again.
190          */
191         skb->sk = NULL;
192
193
194         /* Free the destination pages if skb was not decrypted inplace */
195         if (sgout != sgin) {
196                 /* Skip the first S/G entry as it points to AAD */
197                 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
198                         if (!sg)
199                                 break;
200                         put_page(sg_page(sg));
201                 }
202         }
203
204         kfree(aead_req);
205
206         pending = atomic_dec_return(&ctx->decrypt_pending);
207
208         if (!pending && READ_ONCE(ctx->async_notify))
209                 complete(&ctx->async_wait.completion);
210 }
211
212 static int tls_do_decryption(struct sock *sk,
213                              struct sk_buff *skb,
214                              struct scatterlist *sgin,
215                              struct scatterlist *sgout,
216                              char *iv_recv,
217                              size_t data_len,
218                              struct aead_request *aead_req,
219                              bool async)
220 {
221         struct tls_context *tls_ctx = tls_get_ctx(sk);
222         struct tls_prot_info *prot = &tls_ctx->prot_info;
223         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
224         int ret;
225
226         aead_request_set_tfm(aead_req, ctx->aead_recv);
227         aead_request_set_ad(aead_req, prot->aad_size);
228         aead_request_set_crypt(aead_req, sgin, sgout,
229                                data_len + prot->tag_size,
230                                (u8 *)iv_recv);
231
232         if (async) {
233                 /* Using skb->sk to push sk through to crypto async callback
234                  * handler. This allows propagating errors up to the socket
235                  * if needed. It _must_ be cleared in the async handler
236                  * before consume_skb is called. We _know_ skb->sk is NULL
237                  * because it is a clone from strparser.
238                  */
239                 skb->sk = sk;
240                 aead_request_set_callback(aead_req,
241                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
242                                           tls_decrypt_done, skb);
243                 atomic_inc(&ctx->decrypt_pending);
244         } else {
245                 aead_request_set_callback(aead_req,
246                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
247                                           crypto_req_done, &ctx->async_wait);
248         }
249
250         ret = crypto_aead_decrypt(aead_req);
251         if (ret == -EINPROGRESS) {
252                 if (async)
253                         return ret;
254
255                 ret = crypto_wait_req(ret, &ctx->async_wait);
256         }
257
258         if (async)
259                 atomic_dec(&ctx->decrypt_pending);
260
261         return ret;
262 }
263
264 static void tls_trim_both_msgs(struct sock *sk, int target_size)
265 {
266         struct tls_context *tls_ctx = tls_get_ctx(sk);
267         struct tls_prot_info *prot = &tls_ctx->prot_info;
268         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
269         struct tls_rec *rec = ctx->open_rec;
270
271         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
272         if (target_size > 0)
273                 target_size += prot->overhead_size;
274         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
275 }
276
277 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
278 {
279         struct tls_context *tls_ctx = tls_get_ctx(sk);
280         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
281         struct tls_rec *rec = ctx->open_rec;
282         struct sk_msg *msg_en = &rec->msg_encrypted;
283
284         return sk_msg_alloc(sk, msg_en, len, 0);
285 }
286
287 static int tls_clone_plaintext_msg(struct sock *sk, int required)
288 {
289         struct tls_context *tls_ctx = tls_get_ctx(sk);
290         struct tls_prot_info *prot = &tls_ctx->prot_info;
291         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292         struct tls_rec *rec = ctx->open_rec;
293         struct sk_msg *msg_pl = &rec->msg_plaintext;
294         struct sk_msg *msg_en = &rec->msg_encrypted;
295         int skip, len;
296
297         /* We add page references worth len bytes from encrypted sg
298          * at the end of plaintext sg. It is guaranteed that msg_en
299          * has enough required room (ensured by caller).
300          */
301         len = required - msg_pl->sg.size;
302
303         /* Skip initial bytes in msg_en's data to be able to use
304          * same offset of both plain and encrypted data.
305          */
306         skip = prot->prepend_size + msg_pl->sg.size;
307
308         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
309 }
310
311 static struct tls_rec *tls_get_rec(struct sock *sk)
312 {
313         struct tls_context *tls_ctx = tls_get_ctx(sk);
314         struct tls_prot_info *prot = &tls_ctx->prot_info;
315         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
316         struct sk_msg *msg_pl, *msg_en;
317         struct tls_rec *rec;
318         int mem_size;
319
320         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
321
322         rec = kzalloc(mem_size, sk->sk_allocation);
323         if (!rec)
324                 return NULL;
325
326         msg_pl = &rec->msg_plaintext;
327         msg_en = &rec->msg_encrypted;
328
329         sk_msg_init(msg_pl);
330         sk_msg_init(msg_en);
331
332         sg_init_table(rec->sg_aead_in, 2);
333         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
334         sg_unmark_end(&rec->sg_aead_in[1]);
335
336         sg_init_table(rec->sg_aead_out, 2);
337         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
338         sg_unmark_end(&rec->sg_aead_out[1]);
339
340         return rec;
341 }
342
343 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
344 {
345         sk_msg_free(sk, &rec->msg_encrypted);
346         sk_msg_free(sk, &rec->msg_plaintext);
347         kfree(rec);
348 }
349
350 static void tls_free_open_rec(struct sock *sk)
351 {
352         struct tls_context *tls_ctx = tls_get_ctx(sk);
353         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
354         struct tls_rec *rec = ctx->open_rec;
355
356         if (rec) {
357                 tls_free_rec(sk, rec);
358                 ctx->open_rec = NULL;
359         }
360 }
361
362 int tls_tx_records(struct sock *sk, int flags)
363 {
364         struct tls_context *tls_ctx = tls_get_ctx(sk);
365         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
366         struct tls_rec *rec, *tmp;
367         struct sk_msg *msg_en;
368         int tx_flags, rc = 0;
369
370         if (tls_is_partially_sent_record(tls_ctx)) {
371                 rec = list_first_entry(&ctx->tx_list,
372                                        struct tls_rec, list);
373
374                 if (flags == -1)
375                         tx_flags = rec->tx_flags;
376                 else
377                         tx_flags = flags;
378
379                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
380                 if (rc)
381                         goto tx_err;
382
383                 /* Full record has been transmitted.
384                  * Remove the head of tx_list
385                  */
386                 list_del(&rec->list);
387                 sk_msg_free(sk, &rec->msg_plaintext);
388                 kfree(rec);
389         }
390
391         /* Tx all ready records */
392         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
393                 if (READ_ONCE(rec->tx_ready)) {
394                         if (flags == -1)
395                                 tx_flags = rec->tx_flags;
396                         else
397                                 tx_flags = flags;
398
399                         msg_en = &rec->msg_encrypted;
400                         rc = tls_push_sg(sk, tls_ctx,
401                                          &msg_en->sg.data[msg_en->sg.curr],
402                                          0, tx_flags);
403                         if (rc)
404                                 goto tx_err;
405
406                         list_del(&rec->list);
407                         sk_msg_free(sk, &rec->msg_plaintext);
408                         kfree(rec);
409                 } else {
410                         break;
411                 }
412         }
413
414 tx_err:
415         if (rc < 0 && rc != -EAGAIN)
416                 tls_err_abort(sk, EBADMSG);
417
418         return rc;
419 }
420
421 static void tls_encrypt_done(struct crypto_async_request *req, int err)
422 {
423         struct aead_request *aead_req = (struct aead_request *)req;
424         struct sock *sk = req->data;
425         struct tls_context *tls_ctx = tls_get_ctx(sk);
426         struct tls_prot_info *prot = &tls_ctx->prot_info;
427         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
428         struct scatterlist *sge;
429         struct sk_msg *msg_en;
430         struct tls_rec *rec;
431         bool ready = false;
432         int pending;
433
434         rec = container_of(aead_req, struct tls_rec, aead_req);
435         msg_en = &rec->msg_encrypted;
436
437         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
438         sge->offset -= prot->prepend_size;
439         sge->length += prot->prepend_size;
440
441         /* Check if error is previously set on socket */
442         if (err || sk->sk_err) {
443                 rec = NULL;
444
445                 /* If err is already set on socket, return the same code */
446                 if (sk->sk_err) {
447                         ctx->async_wait.err = sk->sk_err;
448                 } else {
449                         ctx->async_wait.err = err;
450                         tls_err_abort(sk, err);
451                 }
452         }
453
454         if (rec) {
455                 struct tls_rec *first_rec;
456
457                 /* Mark the record as ready for transmission */
458                 smp_store_mb(rec->tx_ready, true);
459
460                 /* If received record is at head of tx_list, schedule tx */
461                 first_rec = list_first_entry(&ctx->tx_list,
462                                              struct tls_rec, list);
463                 if (rec == first_rec)
464                         ready = true;
465         }
466
467         pending = atomic_dec_return(&ctx->encrypt_pending);
468
469         if (!pending && READ_ONCE(ctx->async_notify))
470                 complete(&ctx->async_wait.completion);
471
472         if (!ready)
473                 return;
474
475         /* Schedule the transmission */
476         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
477                 schedule_delayed_work(&ctx->tx_work.work, 1);
478 }
479
480 static int tls_do_encryption(struct sock *sk,
481                              struct tls_context *tls_ctx,
482                              struct tls_sw_context_tx *ctx,
483                              struct aead_request *aead_req,
484                              size_t data_len, u32 start)
485 {
486         struct tls_prot_info *prot = &tls_ctx->prot_info;
487         struct tls_rec *rec = ctx->open_rec;
488         struct sk_msg *msg_en = &rec->msg_encrypted;
489         struct scatterlist *sge = sk_msg_elem(msg_en, start);
490         int rc, iv_offset = 0;
491
492         /* For CCM based ciphers, first byte of IV is a constant */
493         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
494                 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
495                 iv_offset = 1;
496         }
497
498         memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
499                prot->iv_size + prot->salt_size);
500
501         xor_iv_with_seq(prot->version, rec->iv_data, tls_ctx->tx.rec_seq);
502
503         sge->offset += prot->prepend_size;
504         sge->length -= prot->prepend_size;
505
506         msg_en->sg.curr = start;
507
508         aead_request_set_tfm(aead_req, ctx->aead_send);
509         aead_request_set_ad(aead_req, prot->aad_size);
510         aead_request_set_crypt(aead_req, rec->sg_aead_in,
511                                rec->sg_aead_out,
512                                data_len, rec->iv_data);
513
514         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
515                                   tls_encrypt_done, sk);
516
517         /* Add the record in tx_list */
518         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
519         atomic_inc(&ctx->encrypt_pending);
520
521         rc = crypto_aead_encrypt(aead_req);
522         if (!rc || rc != -EINPROGRESS) {
523                 atomic_dec(&ctx->encrypt_pending);
524                 sge->offset -= prot->prepend_size;
525                 sge->length += prot->prepend_size;
526         }
527
528         if (!rc) {
529                 WRITE_ONCE(rec->tx_ready, true);
530         } else if (rc != -EINPROGRESS) {
531                 list_del(&rec->list);
532                 return rc;
533         }
534
535         /* Unhook the record from context if encryption is not failure */
536         ctx->open_rec = NULL;
537         tls_advance_record_sn(sk, prot, &tls_ctx->tx);
538         return rc;
539 }
540
541 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
542                                  struct tls_rec **to, struct sk_msg *msg_opl,
543                                  struct sk_msg *msg_oen, u32 split_point,
544                                  u32 tx_overhead_size, u32 *orig_end)
545 {
546         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
547         struct scatterlist *sge, *osge, *nsge;
548         u32 orig_size = msg_opl->sg.size;
549         struct scatterlist tmp = { };
550         struct sk_msg *msg_npl;
551         struct tls_rec *new;
552         int ret;
553
554         new = tls_get_rec(sk);
555         if (!new)
556                 return -ENOMEM;
557         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
558                            tx_overhead_size, 0);
559         if (ret < 0) {
560                 tls_free_rec(sk, new);
561                 return ret;
562         }
563
564         *orig_end = msg_opl->sg.end;
565         i = msg_opl->sg.start;
566         sge = sk_msg_elem(msg_opl, i);
567         while (apply && sge->length) {
568                 if (sge->length > apply) {
569                         u32 len = sge->length - apply;
570
571                         get_page(sg_page(sge));
572                         sg_set_page(&tmp, sg_page(sge), len,
573                                     sge->offset + apply);
574                         sge->length = apply;
575                         bytes += apply;
576                         apply = 0;
577                 } else {
578                         apply -= sge->length;
579                         bytes += sge->length;
580                 }
581
582                 sk_msg_iter_var_next(i);
583                 if (i == msg_opl->sg.end)
584                         break;
585                 sge = sk_msg_elem(msg_opl, i);
586         }
587
588         msg_opl->sg.end = i;
589         msg_opl->sg.curr = i;
590         msg_opl->sg.copybreak = 0;
591         msg_opl->apply_bytes = 0;
592         msg_opl->sg.size = bytes;
593
594         msg_npl = &new->msg_plaintext;
595         msg_npl->apply_bytes = apply;
596         msg_npl->sg.size = orig_size - bytes;
597
598         j = msg_npl->sg.start;
599         nsge = sk_msg_elem(msg_npl, j);
600         if (tmp.length) {
601                 memcpy(nsge, &tmp, sizeof(*nsge));
602                 sk_msg_iter_var_next(j);
603                 nsge = sk_msg_elem(msg_npl, j);
604         }
605
606         osge = sk_msg_elem(msg_opl, i);
607         while (osge->length) {
608                 memcpy(nsge, osge, sizeof(*nsge));
609                 sg_unmark_end(nsge);
610                 sk_msg_iter_var_next(i);
611                 sk_msg_iter_var_next(j);
612                 if (i == *orig_end)
613                         break;
614                 osge = sk_msg_elem(msg_opl, i);
615                 nsge = sk_msg_elem(msg_npl, j);
616         }
617
618         msg_npl->sg.end = j;
619         msg_npl->sg.curr = j;
620         msg_npl->sg.copybreak = 0;
621
622         *to = new;
623         return 0;
624 }
625
626 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
627                                   struct tls_rec *from, u32 orig_end)
628 {
629         struct sk_msg *msg_npl = &from->msg_plaintext;
630         struct sk_msg *msg_opl = &to->msg_plaintext;
631         struct scatterlist *osge, *nsge;
632         u32 i, j;
633
634         i = msg_opl->sg.end;
635         sk_msg_iter_var_prev(i);
636         j = msg_npl->sg.start;
637
638         osge = sk_msg_elem(msg_opl, i);
639         nsge = sk_msg_elem(msg_npl, j);
640
641         if (sg_page(osge) == sg_page(nsge) &&
642             osge->offset + osge->length == nsge->offset) {
643                 osge->length += nsge->length;
644                 put_page(sg_page(nsge));
645         }
646
647         msg_opl->sg.end = orig_end;
648         msg_opl->sg.curr = orig_end;
649         msg_opl->sg.copybreak = 0;
650         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
651         msg_opl->sg.size += msg_npl->sg.size;
652
653         sk_msg_free(sk, &to->msg_encrypted);
654         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
655
656         kfree(from);
657 }
658
659 static int tls_push_record(struct sock *sk, int flags,
660                            unsigned char record_type)
661 {
662         struct tls_context *tls_ctx = tls_get_ctx(sk);
663         struct tls_prot_info *prot = &tls_ctx->prot_info;
664         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
665         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
666         u32 i, split_point, uninitialized_var(orig_end);
667         struct sk_msg *msg_pl, *msg_en;
668         struct aead_request *req;
669         bool split;
670         int rc;
671
672         if (!rec)
673                 return 0;
674
675         msg_pl = &rec->msg_plaintext;
676         msg_en = &rec->msg_encrypted;
677
678         split_point = msg_pl->apply_bytes;
679         split = split_point && split_point < msg_pl->sg.size;
680         if (split) {
681                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
682                                            split_point, prot->overhead_size,
683                                            &orig_end);
684                 if (rc < 0)
685                         return rc;
686                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
687                             prot->overhead_size);
688         }
689
690         rec->tx_flags = flags;
691         req = &rec->aead_req;
692
693         i = msg_pl->sg.end;
694         sk_msg_iter_var_prev(i);
695
696         rec->content_type = record_type;
697         if (prot->version == TLS_1_3_VERSION) {
698                 /* Add content type to end of message.  No padding added */
699                 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
700                 sg_mark_end(&rec->sg_content_type);
701                 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
702                          &rec->sg_content_type);
703         } else {
704                 sg_mark_end(sk_msg_elem(msg_pl, i));
705         }
706
707         i = msg_pl->sg.start;
708         sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
709                  &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
710
711         i = msg_en->sg.end;
712         sk_msg_iter_var_prev(i);
713         sg_mark_end(sk_msg_elem(msg_en, i));
714
715         i = msg_en->sg.start;
716         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
717
718         tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
719                      tls_ctx->tx.rec_seq, prot->rec_seq_size,
720                      record_type, prot->version);
721
722         tls_fill_prepend(tls_ctx,
723                          page_address(sg_page(&msg_en->sg.data[i])) +
724                          msg_en->sg.data[i].offset,
725                          msg_pl->sg.size + prot->tail_size,
726                          record_type, prot->version);
727
728         tls_ctx->pending_open_record_frags = false;
729
730         rc = tls_do_encryption(sk, tls_ctx, ctx, req,
731                                msg_pl->sg.size + prot->tail_size, i);
732         if (rc < 0) {
733                 if (rc != -EINPROGRESS) {
734                         tls_err_abort(sk, EBADMSG);
735                         if (split) {
736                                 tls_ctx->pending_open_record_frags = true;
737                                 tls_merge_open_record(sk, rec, tmp, orig_end);
738                         }
739                 }
740                 ctx->async_capable = 1;
741                 return rc;
742         } else if (split) {
743                 msg_pl = &tmp->msg_plaintext;
744                 msg_en = &tmp->msg_encrypted;
745                 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
746                 tls_ctx->pending_open_record_frags = true;
747                 ctx->open_rec = tmp;
748         }
749
750         return tls_tx_records(sk, flags);
751 }
752
753 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
754                                bool full_record, u8 record_type,
755                                size_t *copied, int flags)
756 {
757         struct tls_context *tls_ctx = tls_get_ctx(sk);
758         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
759         struct sk_msg msg_redir = { };
760         struct sk_psock *psock;
761         struct sock *sk_redir;
762         struct tls_rec *rec;
763         bool enospc, policy;
764         int err = 0, send;
765         u32 delta = 0;
766
767         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
768         psock = sk_psock_get(sk);
769         if (!psock || !policy)
770                 return tls_push_record(sk, flags, record_type);
771 more_data:
772         enospc = sk_msg_full(msg);
773         if (psock->eval == __SK_NONE) {
774                 delta = msg->sg.size;
775                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
776                 if (delta < msg->sg.size)
777                         delta -= msg->sg.size;
778                 else
779                         delta = 0;
780         }
781         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
782             !enospc && !full_record) {
783                 err = -ENOSPC;
784                 goto out_err;
785         }
786         msg->cork_bytes = 0;
787         send = msg->sg.size;
788         if (msg->apply_bytes && msg->apply_bytes < send)
789                 send = msg->apply_bytes;
790
791         switch (psock->eval) {
792         case __SK_PASS:
793                 err = tls_push_record(sk, flags, record_type);
794                 if (err < 0) {
795                         *copied -= sk_msg_free(sk, msg);
796                         tls_free_open_rec(sk);
797                         goto out_err;
798                 }
799                 break;
800         case __SK_REDIRECT:
801                 sk_redir = psock->sk_redir;
802                 memcpy(&msg_redir, msg, sizeof(*msg));
803                 if (msg->apply_bytes < send)
804                         msg->apply_bytes = 0;
805                 else
806                         msg->apply_bytes -= send;
807                 sk_msg_return_zero(sk, msg, send);
808                 msg->sg.size -= send;
809                 release_sock(sk);
810                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
811                 lock_sock(sk);
812                 if (err < 0) {
813                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
814                         msg->sg.size = 0;
815                 }
816                 if (msg->sg.size == 0)
817                         tls_free_open_rec(sk);
818                 break;
819         case __SK_DROP:
820         default:
821                 sk_msg_free_partial(sk, msg, send);
822                 if (msg->apply_bytes < send)
823                         msg->apply_bytes = 0;
824                 else
825                         msg->apply_bytes -= send;
826                 if (msg->sg.size == 0)
827                         tls_free_open_rec(sk);
828                 *copied -= (send + delta);
829                 err = -EACCES;
830         }
831
832         if (likely(!err)) {
833                 bool reset_eval = !ctx->open_rec;
834
835                 rec = ctx->open_rec;
836                 if (rec) {
837                         msg = &rec->msg_plaintext;
838                         if (!msg->apply_bytes)
839                                 reset_eval = true;
840                 }
841                 if (reset_eval) {
842                         psock->eval = __SK_NONE;
843                         if (psock->sk_redir) {
844                                 sock_put(psock->sk_redir);
845                                 psock->sk_redir = NULL;
846                         }
847                 }
848                 if (rec)
849                         goto more_data;
850         }
851  out_err:
852         sk_psock_put(sk, psock);
853         return err;
854 }
855
856 static int tls_sw_push_pending_record(struct sock *sk, int flags)
857 {
858         struct tls_context *tls_ctx = tls_get_ctx(sk);
859         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
860         struct tls_rec *rec = ctx->open_rec;
861         struct sk_msg *msg_pl;
862         size_t copied;
863
864         if (!rec)
865                 return 0;
866
867         msg_pl = &rec->msg_plaintext;
868         copied = msg_pl->sg.size;
869         if (!copied)
870                 return 0;
871
872         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
873                                    &copied, flags);
874 }
875
876 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
877 {
878         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
879         struct tls_context *tls_ctx = tls_get_ctx(sk);
880         struct tls_prot_info *prot = &tls_ctx->prot_info;
881         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
882         bool async_capable = ctx->async_capable;
883         unsigned char record_type = TLS_RECORD_TYPE_DATA;
884         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
885         bool eor = !(msg->msg_flags & MSG_MORE);
886         size_t try_to_copy, copied = 0;
887         struct sk_msg *msg_pl, *msg_en;
888         struct tls_rec *rec;
889         int required_size;
890         int num_async = 0;
891         bool full_record;
892         int record_room;
893         int num_zc = 0;
894         int orig_size;
895         int ret = 0;
896
897         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
898                 return -ENOTSUPP;
899
900         mutex_lock(&tls_ctx->tx_lock);
901         lock_sock(sk);
902
903         if (unlikely(msg->msg_controllen)) {
904                 ret = tls_proccess_cmsg(sk, msg, &record_type);
905                 if (ret) {
906                         if (ret == -EINPROGRESS)
907                                 num_async++;
908                         else if (ret != -EAGAIN)
909                                 goto send_end;
910                 }
911         }
912
913         while (msg_data_left(msg)) {
914                 if (sk->sk_err) {
915                         ret = -sk->sk_err;
916                         goto send_end;
917                 }
918
919                 if (ctx->open_rec)
920                         rec = ctx->open_rec;
921                 else
922                         rec = ctx->open_rec = tls_get_rec(sk);
923                 if (!rec) {
924                         ret = -ENOMEM;
925                         goto send_end;
926                 }
927
928                 msg_pl = &rec->msg_plaintext;
929                 msg_en = &rec->msg_encrypted;
930
931                 orig_size = msg_pl->sg.size;
932                 full_record = false;
933                 try_to_copy = msg_data_left(msg);
934                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
935                 if (try_to_copy >= record_room) {
936                         try_to_copy = record_room;
937                         full_record = true;
938                 }
939
940                 required_size = msg_pl->sg.size + try_to_copy +
941                                 prot->overhead_size;
942
943                 if (!sk_stream_memory_free(sk))
944                         goto wait_for_sndbuf;
945
946 alloc_encrypted:
947                 ret = tls_alloc_encrypted_msg(sk, required_size);
948                 if (ret) {
949                         if (ret != -ENOSPC)
950                                 goto wait_for_memory;
951
952                         /* Adjust try_to_copy according to the amount that was
953                          * actually allocated. The difference is due
954                          * to max sg elements limit
955                          */
956                         try_to_copy -= required_size - msg_en->sg.size;
957                         full_record = true;
958                 }
959
960                 if (!is_kvec && (full_record || eor) && !async_capable) {
961                         u32 first = msg_pl->sg.end;
962
963                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
964                                                         msg_pl, try_to_copy);
965                         if (ret)
966                                 goto fallback_to_reg_send;
967
968                         rec->inplace_crypto = 0;
969
970                         num_zc++;
971                         copied += try_to_copy;
972
973                         sk_msg_sg_copy_set(msg_pl, first);
974                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
975                                                   record_type, &copied,
976                                                   msg->msg_flags);
977                         if (ret) {
978                                 if (ret == -EINPROGRESS)
979                                         num_async++;
980                                 else if (ret == -ENOMEM)
981                                         goto wait_for_memory;
982                                 else if (ret == -ENOSPC)
983                                         goto rollback_iter;
984                                 else if (ret != -EAGAIN)
985                                         goto send_end;
986                         }
987                         continue;
988 rollback_iter:
989                         copied -= try_to_copy;
990                         sk_msg_sg_copy_clear(msg_pl, first);
991                         iov_iter_revert(&msg->msg_iter,
992                                         msg_pl->sg.size - orig_size);
993 fallback_to_reg_send:
994                         sk_msg_trim(sk, msg_pl, orig_size);
995                 }
996
997                 required_size = msg_pl->sg.size + try_to_copy;
998
999                 ret = tls_clone_plaintext_msg(sk, required_size);
1000                 if (ret) {
1001                         if (ret != -ENOSPC)
1002                                 goto send_end;
1003
1004                         /* Adjust try_to_copy according to the amount that was
1005                          * actually allocated. The difference is due
1006                          * to max sg elements limit
1007                          */
1008                         try_to_copy -= required_size - msg_pl->sg.size;
1009                         full_record = true;
1010                         sk_msg_trim(sk, msg_en,
1011                                     msg_pl->sg.size + prot->overhead_size);
1012                 }
1013
1014                 if (try_to_copy) {
1015                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1016                                                        msg_pl, try_to_copy);
1017                         if (ret < 0)
1018                                 goto trim_sgl;
1019                 }
1020
1021                 /* Open records defined only if successfully copied, otherwise
1022                  * we would trim the sg but not reset the open record frags.
1023                  */
1024                 tls_ctx->pending_open_record_frags = true;
1025                 copied += try_to_copy;
1026                 if (full_record || eor) {
1027                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1028                                                   record_type, &copied,
1029                                                   msg->msg_flags);
1030                         if (ret) {
1031                                 if (ret == -EINPROGRESS)
1032                                         num_async++;
1033                                 else if (ret == -ENOMEM)
1034                                         goto wait_for_memory;
1035                                 else if (ret != -EAGAIN) {
1036                                         if (ret == -ENOSPC)
1037                                                 ret = 0;
1038                                         goto send_end;
1039                                 }
1040                         }
1041                 }
1042
1043                 continue;
1044
1045 wait_for_sndbuf:
1046                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1047 wait_for_memory:
1048                 ret = sk_stream_wait_memory(sk, &timeo);
1049                 if (ret) {
1050 trim_sgl:
1051                         tls_trim_both_msgs(sk, orig_size);
1052                         goto send_end;
1053                 }
1054
1055                 if (msg_en->sg.size < required_size)
1056                         goto alloc_encrypted;
1057         }
1058
1059         if (!num_async) {
1060                 goto send_end;
1061         } else if (num_zc) {
1062                 /* Wait for pending encryptions to get completed */
1063                 smp_store_mb(ctx->async_notify, true);
1064
1065                 if (atomic_read(&ctx->encrypt_pending))
1066                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1067                 else
1068                         reinit_completion(&ctx->async_wait.completion);
1069
1070                 WRITE_ONCE(ctx->async_notify, false);
1071
1072                 if (ctx->async_wait.err) {
1073                         ret = ctx->async_wait.err;
1074                         copied = 0;
1075                 }
1076         }
1077
1078         /* Transmit if any encryptions have completed */
1079         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1080                 cancel_delayed_work(&ctx->tx_work.work);
1081                 tls_tx_records(sk, msg->msg_flags);
1082         }
1083
1084 send_end:
1085         ret = sk_stream_error(sk, msg->msg_flags, ret);
1086
1087         release_sock(sk);
1088         mutex_unlock(&tls_ctx->tx_lock);
1089         return copied ? copied : ret;
1090 }
1091
1092 static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1093                               int offset, size_t size, int flags)
1094 {
1095         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1096         struct tls_context *tls_ctx = tls_get_ctx(sk);
1097         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1098         struct tls_prot_info *prot = &tls_ctx->prot_info;
1099         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1100         struct sk_msg *msg_pl;
1101         struct tls_rec *rec;
1102         int num_async = 0;
1103         size_t copied = 0;
1104         bool full_record;
1105         int record_room;
1106         int ret = 0;
1107         bool eor;
1108
1109         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1110         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1111
1112         /* Call the sk_stream functions to manage the sndbuf mem. */
1113         while (size > 0) {
1114                 size_t copy, required_size;
1115
1116                 if (sk->sk_err) {
1117                         ret = -sk->sk_err;
1118                         goto sendpage_end;
1119                 }
1120
1121                 if (ctx->open_rec)
1122                         rec = ctx->open_rec;
1123                 else
1124                         rec = ctx->open_rec = tls_get_rec(sk);
1125                 if (!rec) {
1126                         ret = -ENOMEM;
1127                         goto sendpage_end;
1128                 }
1129
1130                 msg_pl = &rec->msg_plaintext;
1131
1132                 full_record = false;
1133                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1134                 copy = size;
1135                 if (copy >= record_room) {
1136                         copy = record_room;
1137                         full_record = true;
1138                 }
1139
1140                 required_size = msg_pl->sg.size + copy + prot->overhead_size;
1141
1142                 if (!sk_stream_memory_free(sk))
1143                         goto wait_for_sndbuf;
1144 alloc_payload:
1145                 ret = tls_alloc_encrypted_msg(sk, required_size);
1146                 if (ret) {
1147                         if (ret != -ENOSPC)
1148                                 goto wait_for_memory;
1149
1150                         /* Adjust copy according to the amount that was
1151                          * actually allocated. The difference is due
1152                          * to max sg elements limit
1153                          */
1154                         copy -= required_size - msg_pl->sg.size;
1155                         full_record = true;
1156                 }
1157
1158                 sk_msg_page_add(msg_pl, page, copy, offset);
1159                 sk_mem_charge(sk, copy);
1160
1161                 offset += copy;
1162                 size -= copy;
1163                 copied += copy;
1164
1165                 tls_ctx->pending_open_record_frags = true;
1166                 if (full_record || eor || sk_msg_full(msg_pl)) {
1167                         rec->inplace_crypto = 0;
1168                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1169                                                   record_type, &copied, flags);
1170                         if (ret) {
1171                                 if (ret == -EINPROGRESS)
1172                                         num_async++;
1173                                 else if (ret == -ENOMEM)
1174                                         goto wait_for_memory;
1175                                 else if (ret != -EAGAIN) {
1176                                         if (ret == -ENOSPC)
1177                                                 ret = 0;
1178                                         goto sendpage_end;
1179                                 }
1180                         }
1181                 }
1182                 continue;
1183 wait_for_sndbuf:
1184                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1185 wait_for_memory:
1186                 ret = sk_stream_wait_memory(sk, &timeo);
1187                 if (ret) {
1188                         tls_trim_both_msgs(sk, msg_pl->sg.size);
1189                         goto sendpage_end;
1190                 }
1191
1192                 goto alloc_payload;
1193         }
1194
1195         if (num_async) {
1196                 /* Transmit if any encryptions have completed */
1197                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1198                         cancel_delayed_work(&ctx->tx_work.work);
1199                         tls_tx_records(sk, flags);
1200                 }
1201         }
1202 sendpage_end:
1203         ret = sk_stream_error(sk, flags, ret);
1204         return copied ? copied : ret;
1205 }
1206
1207 int tls_sw_sendpage(struct sock *sk, struct page *page,
1208                     int offset, size_t size, int flags)
1209 {
1210         struct tls_context *tls_ctx = tls_get_ctx(sk);
1211         int ret;
1212
1213         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1214                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1215                 return -ENOTSUPP;
1216
1217         mutex_lock(&tls_ctx->tx_lock);
1218         lock_sock(sk);
1219         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1220         release_sock(sk);
1221         mutex_unlock(&tls_ctx->tx_lock);
1222         return ret;
1223 }
1224
1225 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1226                                      int flags, long timeo, int *err)
1227 {
1228         struct tls_context *tls_ctx = tls_get_ctx(sk);
1229         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1230         struct sk_buff *skb;
1231         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1232
1233         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1234                 if (sk->sk_err) {
1235                         *err = sock_error(sk);
1236                         return NULL;
1237                 }
1238
1239                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1240                         return NULL;
1241
1242                 if (sock_flag(sk, SOCK_DONE))
1243                         return NULL;
1244
1245                 if ((flags & MSG_DONTWAIT) || !timeo) {
1246                         *err = -EAGAIN;
1247                         return NULL;
1248                 }
1249
1250                 add_wait_queue(sk_sleep(sk), &wait);
1251                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1252                 sk_wait_event(sk, &timeo,
1253                               ctx->recv_pkt != skb ||
1254                               !sk_psock_queue_empty(psock),
1255                               &wait);
1256                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1257                 remove_wait_queue(sk_sleep(sk), &wait);
1258
1259                 /* Handle signals */
1260                 if (signal_pending(current)) {
1261                         *err = sock_intr_errno(timeo);
1262                         return NULL;
1263                 }
1264         }
1265
1266         return skb;
1267 }
1268
1269 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1270                                int length, int *pages_used,
1271                                unsigned int *size_used,
1272                                struct scatterlist *to,
1273                                int to_max_pages)
1274 {
1275         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1276         struct page *pages[MAX_SKB_FRAGS];
1277         unsigned int size = *size_used;
1278         ssize_t copied, use;
1279         size_t offset;
1280
1281         while (length > 0) {
1282                 i = 0;
1283                 maxpages = to_max_pages - num_elem;
1284                 if (maxpages == 0) {
1285                         rc = -EFAULT;
1286                         goto out;
1287                 }
1288                 copied = iov_iter_get_pages(from, pages,
1289                                             length,
1290                                             maxpages, &offset);
1291                 if (copied <= 0) {
1292                         rc = -EFAULT;
1293                         goto out;
1294                 }
1295
1296                 iov_iter_advance(from, copied);
1297
1298                 length -= copied;
1299                 size += copied;
1300                 while (copied) {
1301                         use = min_t(int, copied, PAGE_SIZE - offset);
1302
1303                         sg_set_page(&to[num_elem],
1304                                     pages[i], use, offset);
1305                         sg_unmark_end(&to[num_elem]);
1306                         /* We do not uncharge memory from this API */
1307
1308                         offset = 0;
1309                         copied -= use;
1310
1311                         i++;
1312                         num_elem++;
1313                 }
1314         }
1315         /* Mark the end in the last sg entry if newly added */
1316         if (num_elem > *pages_used)
1317                 sg_mark_end(&to[num_elem - 1]);
1318 out:
1319         if (rc)
1320                 iov_iter_revert(from, size - *size_used);
1321         *size_used = size;
1322         *pages_used = num_elem;
1323
1324         return rc;
1325 }
1326
1327 /* This function decrypts the input skb into either out_iov or in out_sg
1328  * or in skb buffers itself. The input parameter 'zc' indicates if
1329  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1330  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1331  * NULL, then the decryption happens inside skb buffers itself, i.e.
1332  * zero-copy gets disabled and 'zc' is updated.
1333  */
1334
1335 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1336                             struct iov_iter *out_iov,
1337                             struct scatterlist *out_sg,
1338                             int *chunk, bool *zc, bool async)
1339 {
1340         struct tls_context *tls_ctx = tls_get_ctx(sk);
1341         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1342         struct tls_prot_info *prot = &tls_ctx->prot_info;
1343         struct strp_msg *rxm = strp_msg(skb);
1344         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1345         struct aead_request *aead_req;
1346         struct sk_buff *unused;
1347         u8 *aad, *iv, *mem = NULL;
1348         struct scatterlist *sgin = NULL;
1349         struct scatterlist *sgout = NULL;
1350         const int data_len = rxm->full_len - prot->overhead_size +
1351                              prot->tail_size;
1352         int iv_offset = 0;
1353
1354         if (*zc && (out_iov || out_sg)) {
1355                 if (out_iov)
1356                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1357                 else
1358                         n_sgout = sg_nents(out_sg);
1359                 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1360                                  rxm->full_len - prot->prepend_size);
1361         } else {
1362                 n_sgout = 0;
1363                 *zc = false;
1364                 n_sgin = skb_cow_data(skb, 0, &unused);
1365         }
1366
1367         if (n_sgin < 1)
1368                 return -EBADMSG;
1369
1370         /* Increment to accommodate AAD */
1371         n_sgin = n_sgin + 1;
1372
1373         nsg = n_sgin + n_sgout;
1374
1375         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1376         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1377         mem_size = mem_size + prot->aad_size;
1378         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1379
1380         /* Allocate a single block of memory which contains
1381          * aead_req || sgin[] || sgout[] || aad || iv.
1382          * This order achieves correct alignment for aead_req, sgin, sgout.
1383          */
1384         mem = kmalloc(mem_size, sk->sk_allocation);
1385         if (!mem)
1386                 return -ENOMEM;
1387
1388         /* Segment the allocated memory */
1389         aead_req = (struct aead_request *)mem;
1390         sgin = (struct scatterlist *)(mem + aead_size);
1391         sgout = sgin + n_sgin;
1392         aad = (u8 *)(sgout + n_sgout);
1393         iv = aad + prot->aad_size;
1394
1395         /* For CCM based ciphers, first byte of nonce+iv is always '2' */
1396         if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1397                 iv[0] = 2;
1398                 iv_offset = 1;
1399         }
1400
1401         /* Prepare IV */
1402         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1403                             iv + iv_offset + prot->salt_size,
1404                             prot->iv_size);
1405         if (err < 0) {
1406                 kfree(mem);
1407                 return err;
1408         }
1409         if (prot->version == TLS_1_3_VERSION)
1410                 memcpy(iv + iv_offset, tls_ctx->rx.iv,
1411                        crypto_aead_ivsize(ctx->aead_recv));
1412         else
1413                 memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1414
1415         xor_iv_with_seq(prot->version, iv, tls_ctx->rx.rec_seq);
1416
1417         /* Prepare AAD */
1418         tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1419                      prot->tail_size,
1420                      tls_ctx->rx.rec_seq, prot->rec_seq_size,
1421                      ctx->control, prot->version);
1422
1423         /* Prepare sgin */
1424         sg_init_table(sgin, n_sgin);
1425         sg_set_buf(&sgin[0], aad, prot->aad_size);
1426         err = skb_to_sgvec(skb, &sgin[1],
1427                            rxm->offset + prot->prepend_size,
1428                            rxm->full_len - prot->prepend_size);
1429         if (err < 0) {
1430                 kfree(mem);
1431                 return err;
1432         }
1433
1434         if (n_sgout) {
1435                 if (out_iov) {
1436                         sg_init_table(sgout, n_sgout);
1437                         sg_set_buf(&sgout[0], aad, prot->aad_size);
1438
1439                         *chunk = 0;
1440                         err = tls_setup_from_iter(sk, out_iov, data_len,
1441                                                   &pages, chunk, &sgout[1],
1442                                                   (n_sgout - 1));
1443                         if (err < 0)
1444                                 goto fallback_to_reg_recv;
1445                 } else if (out_sg) {
1446                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1447                 } else {
1448                         goto fallback_to_reg_recv;
1449                 }
1450         } else {
1451 fallback_to_reg_recv:
1452                 sgout = sgin;
1453                 pages = 0;
1454                 *chunk = data_len;
1455                 *zc = false;
1456         }
1457
1458         /* Prepare and submit AEAD request */
1459         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1460                                 data_len, aead_req, async);
1461         if (err == -EINPROGRESS)
1462                 return err;
1463
1464         /* Release the pages in case iov was mapped to pages */
1465         for (; pages > 0; pages--)
1466                 put_page(sg_page(&sgout[pages]));
1467
1468         kfree(mem);
1469         return err;
1470 }
1471
1472 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1473                               struct iov_iter *dest, int *chunk, bool *zc,
1474                               bool async)
1475 {
1476         struct tls_context *tls_ctx = tls_get_ctx(sk);
1477         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1478         struct tls_prot_info *prot = &tls_ctx->prot_info;
1479         struct strp_msg *rxm = strp_msg(skb);
1480         int pad, err = 0;
1481
1482         if (!ctx->decrypted) {
1483                 if (tls_ctx->rx_conf == TLS_HW) {
1484                         err = tls_device_decrypted(sk, skb);
1485                         if (err < 0)
1486                                 return err;
1487                 }
1488
1489                 /* Still not decrypted after tls_device */
1490                 if (!ctx->decrypted) {
1491                         err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1492                                                async);
1493                         if (err < 0) {
1494                                 if (err == -EINPROGRESS)
1495                                         tls_advance_record_sn(sk, prot,
1496                                                               &tls_ctx->rx);
1497
1498                                 return err;
1499                         }
1500                 } else {
1501                         *zc = false;
1502                 }
1503
1504                 pad = padding_length(ctx, prot, skb);
1505                 if (pad < 0)
1506                         return pad;
1507
1508                 rxm->full_len -= pad;
1509                 rxm->offset += prot->prepend_size;
1510                 rxm->full_len -= prot->overhead_size;
1511                 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1512                 ctx->decrypted = true;
1513                 ctx->saved_data_ready(sk);
1514         } else {
1515                 *zc = false;
1516         }
1517
1518         return err;
1519 }
1520
1521 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1522                 struct scatterlist *sgout)
1523 {
1524         bool zc = true;
1525         int chunk;
1526
1527         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1528 }
1529
1530 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1531                                unsigned int len)
1532 {
1533         struct tls_context *tls_ctx = tls_get_ctx(sk);
1534         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1535
1536         if (skb) {
1537                 struct strp_msg *rxm = strp_msg(skb);
1538
1539                 if (len < rxm->full_len) {
1540                         rxm->offset += len;
1541                         rxm->full_len -= len;
1542                         return false;
1543                 }
1544                 consume_skb(skb);
1545         }
1546
1547         /* Finished with message */
1548         ctx->recv_pkt = NULL;
1549         __strp_unpause(&ctx->strp);
1550
1551         return true;
1552 }
1553
1554 /* This function traverses the rx_list in tls receive context to copies the
1555  * decrypted records into the buffer provided by caller zero copy is not
1556  * true. Further, the records are removed from the rx_list if it is not a peek
1557  * case and the record has been consumed completely.
1558  */
1559 static int process_rx_list(struct tls_sw_context_rx *ctx,
1560                            struct msghdr *msg,
1561                            u8 *control,
1562                            bool *cmsg,
1563                            size_t skip,
1564                            size_t len,
1565                            bool zc,
1566                            bool is_peek)
1567 {
1568         struct sk_buff *skb = skb_peek(&ctx->rx_list);
1569         u8 ctrl = *control;
1570         u8 msgc = *cmsg;
1571         struct tls_msg *tlm;
1572         ssize_t copied = 0;
1573
1574         /* Set the record type in 'control' if caller didn't pass it */
1575         if (!ctrl && skb) {
1576                 tlm = tls_msg(skb);
1577                 ctrl = tlm->control;
1578         }
1579
1580         while (skip && skb) {
1581                 struct strp_msg *rxm = strp_msg(skb);
1582                 tlm = tls_msg(skb);
1583
1584                 /* Cannot process a record of different type */
1585                 if (ctrl != tlm->control)
1586                         return 0;
1587
1588                 if (skip < rxm->full_len)
1589                         break;
1590
1591                 skip = skip - rxm->full_len;
1592                 skb = skb_peek_next(skb, &ctx->rx_list);
1593         }
1594
1595         while (len && skb) {
1596                 struct sk_buff *next_skb;
1597                 struct strp_msg *rxm = strp_msg(skb);
1598                 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1599
1600                 tlm = tls_msg(skb);
1601
1602                 /* Cannot process a record of different type */
1603                 if (ctrl != tlm->control)
1604                         return 0;
1605
1606                 /* Set record type if not already done. For a non-data record,
1607                  * do not proceed if record type could not be copied.
1608                  */
1609                 if (!msgc) {
1610                         int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1611                                             sizeof(ctrl), &ctrl);
1612                         msgc = true;
1613                         if (ctrl != TLS_RECORD_TYPE_DATA) {
1614                                 if (cerr || msg->msg_flags & MSG_CTRUNC)
1615                                         return -EIO;
1616
1617                                 *cmsg = msgc;
1618                         }
1619                 }
1620
1621                 if (!zc || (rxm->full_len - skip) > len) {
1622                         int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1623                                                     msg, chunk);
1624                         if (err < 0)
1625                                 return err;
1626                 }
1627
1628                 len = len - chunk;
1629                 copied = copied + chunk;
1630
1631                 /* Consume the data from record if it is non-peek case*/
1632                 if (!is_peek) {
1633                         rxm->offset = rxm->offset + chunk;
1634                         rxm->full_len = rxm->full_len - chunk;
1635
1636                         /* Return if there is unconsumed data in the record */
1637                         if (rxm->full_len - skip)
1638                                 break;
1639                 }
1640
1641                 /* The remaining skip-bytes must lie in 1st record in rx_list.
1642                  * So from the 2nd record, 'skip' should be 0.
1643                  */
1644                 skip = 0;
1645
1646                 if (msg)
1647                         msg->msg_flags |= MSG_EOR;
1648
1649                 next_skb = skb_peek_next(skb, &ctx->rx_list);
1650
1651                 if (!is_peek) {
1652                         skb_unlink(skb, &ctx->rx_list);
1653                         consume_skb(skb);
1654                 }
1655
1656                 skb = next_skb;
1657         }
1658
1659         *control = ctrl;
1660         return copied;
1661 }
1662
1663 int tls_sw_recvmsg(struct sock *sk,
1664                    struct msghdr *msg,
1665                    size_t len,
1666                    int nonblock,
1667                    int flags,
1668                    int *addr_len)
1669 {
1670         struct tls_context *tls_ctx = tls_get_ctx(sk);
1671         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1672         struct tls_prot_info *prot = &tls_ctx->prot_info;
1673         struct sk_psock *psock;
1674         unsigned char control = 0;
1675         ssize_t decrypted = 0;
1676         struct strp_msg *rxm;
1677         struct tls_msg *tlm;
1678         struct sk_buff *skb;
1679         ssize_t copied = 0;
1680         bool cmsg = false;
1681         int target, err = 0;
1682         long timeo;
1683         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1684         bool is_peek = flags & MSG_PEEK;
1685         int num_async = 0;
1686
1687         flags |= nonblock;
1688
1689         if (unlikely(flags & MSG_ERRQUEUE))
1690                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1691
1692         psock = sk_psock_get(sk);
1693         lock_sock(sk);
1694
1695         /* Process pending decrypted records. It must be non-zero-copy */
1696         err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1697                               is_peek);
1698         if (err < 0) {
1699                 tls_err_abort(sk, err);
1700                 goto end;
1701         } else {
1702                 copied = err;
1703         }
1704
1705         if (len <= copied)
1706                 goto recv_end;
1707
1708         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1709         len = len - copied;
1710         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1711
1712         while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1713                 bool retain_skb = false;
1714                 bool zc = false;
1715                 int to_decrypt;
1716                 int chunk = 0;
1717                 bool async_capable;
1718                 bool async = false;
1719
1720                 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1721                 if (!skb) {
1722                         if (psock) {
1723                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1724                                                             msg, len, flags);
1725
1726                                 if (ret > 0) {
1727                                         decrypted += ret;
1728                                         len -= ret;
1729                                         continue;
1730                                 }
1731                         }
1732                         goto recv_end;
1733                 } else {
1734                         tlm = tls_msg(skb);
1735                         if (prot->version == TLS_1_3_VERSION)
1736                                 tlm->control = 0;
1737                         else
1738                                 tlm->control = ctx->control;
1739                 }
1740
1741                 rxm = strp_msg(skb);
1742
1743                 to_decrypt = rxm->full_len - prot->overhead_size;
1744
1745                 if (to_decrypt <= len && !is_kvec && !is_peek &&
1746                     ctx->control == TLS_RECORD_TYPE_DATA &&
1747                     prot->version != TLS_1_3_VERSION)
1748                         zc = true;
1749
1750                 /* Do not use async mode if record is non-data */
1751                 if (ctx->control == TLS_RECORD_TYPE_DATA)
1752                         async_capable = ctx->async_capable;
1753                 else
1754                         async_capable = false;
1755
1756                 err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1757                                          &chunk, &zc, async_capable);
1758                 if (err < 0 && err != -EINPROGRESS) {
1759                         tls_err_abort(sk, EBADMSG);
1760                         goto recv_end;
1761                 }
1762
1763                 if (err == -EINPROGRESS) {
1764                         async = true;
1765                         num_async++;
1766                 } else if (prot->version == TLS_1_3_VERSION) {
1767                         tlm->control = ctx->control;
1768                 }
1769
1770                 /* If the type of records being processed is not known yet,
1771                  * set it to record type just dequeued. If it is already known,
1772                  * but does not match the record type just dequeued, go to end.
1773                  * We always get record type here since for tls1.2, record type
1774                  * is known just after record is dequeued from stream parser.
1775                  * For tls1.3, we disable async.
1776                  */
1777
1778                 if (!control)
1779                         control = tlm->control;
1780                 else if (control != tlm->control)
1781                         goto recv_end;
1782
1783                 if (!cmsg) {
1784                         int cerr;
1785
1786                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1787                                         sizeof(control), &control);
1788                         cmsg = true;
1789                         if (control != TLS_RECORD_TYPE_DATA) {
1790                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1791                                         err = -EIO;
1792                                         goto recv_end;
1793                                 }
1794                         }
1795                 }
1796
1797                 if (async)
1798                         goto pick_next_record;
1799
1800                 if (!zc) {
1801                         if (rxm->full_len > len) {
1802                                 retain_skb = true;
1803                                 chunk = len;
1804                         } else {
1805                                 chunk = rxm->full_len;
1806                         }
1807
1808                         err = skb_copy_datagram_msg(skb, rxm->offset,
1809                                                     msg, chunk);
1810                         if (err < 0)
1811                                 goto recv_end;
1812
1813                         if (!is_peek) {
1814                                 rxm->offset = rxm->offset + chunk;
1815                                 rxm->full_len = rxm->full_len - chunk;
1816                         }
1817                 }
1818
1819 pick_next_record:
1820                 if (chunk > len)
1821                         chunk = len;
1822
1823                 decrypted += chunk;
1824                 len -= chunk;
1825
1826                 /* For async or peek case, queue the current skb */
1827                 if (async || is_peek || retain_skb) {
1828                         skb_queue_tail(&ctx->rx_list, skb);
1829                         skb = NULL;
1830                 }
1831
1832                 if (tls_sw_advance_skb(sk, skb, chunk)) {
1833                         /* Return full control message to
1834                          * userspace before trying to parse
1835                          * another message type
1836                          */
1837                         msg->msg_flags |= MSG_EOR;
1838                         if (ctx->control != TLS_RECORD_TYPE_DATA)
1839                                 goto recv_end;
1840                 } else {
1841                         break;
1842                 }
1843         }
1844
1845 recv_end:
1846         if (num_async) {
1847                 /* Wait for all previously submitted records to be decrypted */
1848                 smp_store_mb(ctx->async_notify, true);
1849                 if (atomic_read(&ctx->decrypt_pending)) {
1850                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1851                         if (err) {
1852                                 /* one of async decrypt failed */
1853                                 tls_err_abort(sk, err);
1854                                 copied = 0;
1855                                 decrypted = 0;
1856                                 goto end;
1857                         }
1858                 } else {
1859                         reinit_completion(&ctx->async_wait.completion);
1860                 }
1861                 WRITE_ONCE(ctx->async_notify, false);
1862
1863                 /* Drain records from the rx_list & copy if required */
1864                 if (is_peek || is_kvec)
1865                         err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1866                                               decrypted, false, is_peek);
1867                 else
1868                         err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1869                                               decrypted, true, is_peek);
1870                 if (err < 0) {
1871                         tls_err_abort(sk, err);
1872                         copied = 0;
1873                         goto end;
1874                 }
1875         }
1876
1877         copied += decrypted;
1878
1879 end:
1880         release_sock(sk);
1881         if (psock)
1882                 sk_psock_put(sk, psock);
1883         return copied ? : err;
1884 }
1885
1886 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1887                            struct pipe_inode_info *pipe,
1888                            size_t len, unsigned int flags)
1889 {
1890         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1891         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1892         struct strp_msg *rxm = NULL;
1893         struct sock *sk = sock->sk;
1894         struct sk_buff *skb;
1895         ssize_t copied = 0;
1896         int err = 0;
1897         long timeo;
1898         int chunk;
1899         bool zc = false;
1900
1901         lock_sock(sk);
1902
1903         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1904
1905         skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1906         if (!skb)
1907                 goto splice_read_end;
1908
1909         if (!ctx->decrypted) {
1910                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
1911
1912                 /* splice does not support reading control messages */
1913                 if (ctx->control != TLS_RECORD_TYPE_DATA) {
1914                         err = -ENOTSUPP;
1915                         goto splice_read_end;
1916                 }
1917
1918                 if (err < 0) {
1919                         tls_err_abort(sk, EBADMSG);
1920                         goto splice_read_end;
1921                 }
1922                 ctx->decrypted = true;
1923         }
1924         rxm = strp_msg(skb);
1925
1926         chunk = min_t(unsigned int, rxm->full_len, len);
1927         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1928         if (copied < 0)
1929                 goto splice_read_end;
1930
1931         if (likely(!(flags & MSG_PEEK)))
1932                 tls_sw_advance_skb(sk, skb, copied);
1933
1934 splice_read_end:
1935         release_sock(sk);
1936         return copied ? : err;
1937 }
1938
1939 bool tls_sw_stream_read(const struct sock *sk)
1940 {
1941         struct tls_context *tls_ctx = tls_get_ctx(sk);
1942         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1943         bool ingress_empty = true;
1944         struct sk_psock *psock;
1945
1946         rcu_read_lock();
1947         psock = sk_psock(sk);
1948         if (psock)
1949                 ingress_empty = list_empty(&psock->ingress_msg);
1950         rcu_read_unlock();
1951
1952         return !ingress_empty || ctx->recv_pkt ||
1953                 !skb_queue_empty(&ctx->rx_list);
1954 }
1955
1956 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1957 {
1958         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1959         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1960         struct tls_prot_info *prot = &tls_ctx->prot_info;
1961         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1962         struct strp_msg *rxm = strp_msg(skb);
1963         size_t cipher_overhead;
1964         size_t data_len = 0;
1965         int ret;
1966
1967         /* Verify that we have a full TLS header, or wait for more data */
1968         if (rxm->offset + prot->prepend_size > skb->len)
1969                 return 0;
1970
1971         /* Sanity-check size of on-stack buffer. */
1972         if (WARN_ON(prot->prepend_size > sizeof(header))) {
1973                 ret = -EINVAL;
1974                 goto read_failure;
1975         }
1976
1977         /* Linearize header to local buffer */
1978         ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
1979
1980         if (ret < 0)
1981                 goto read_failure;
1982
1983         ctx->control = header[0];
1984
1985         data_len = ((header[4] & 0xFF) | (header[3] << 8));
1986
1987         cipher_overhead = prot->tag_size;
1988         if (prot->version != TLS_1_3_VERSION)
1989                 cipher_overhead += prot->iv_size;
1990
1991         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
1992             prot->tail_size) {
1993                 ret = -EMSGSIZE;
1994                 goto read_failure;
1995         }
1996         if (data_len < cipher_overhead) {
1997                 ret = -EBADMSG;
1998                 goto read_failure;
1999         }
2000
2001         /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2002         if (header[1] != TLS_1_2_VERSION_MINOR ||
2003             header[2] != TLS_1_2_VERSION_MAJOR) {
2004                 ret = -EINVAL;
2005                 goto read_failure;
2006         }
2007
2008         tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2009                                      TCP_SKB_CB(skb)->seq + rxm->offset);
2010         return data_len + TLS_HEADER_SIZE;
2011
2012 read_failure:
2013         tls_err_abort(strp->sk, ret);
2014
2015         return ret;
2016 }
2017
2018 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2019 {
2020         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2021         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2022
2023         ctx->decrypted = false;
2024
2025         ctx->recv_pkt = skb;
2026         strp_pause(strp);
2027
2028         ctx->saved_data_ready(strp->sk);
2029 }
2030
2031 static void tls_data_ready(struct sock *sk)
2032 {
2033         struct tls_context *tls_ctx = tls_get_ctx(sk);
2034         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2035         struct sk_psock *psock;
2036
2037         strp_data_ready(&ctx->strp);
2038
2039         psock = sk_psock_get(sk);
2040         if (psock && !list_empty(&psock->ingress_msg)) {
2041                 ctx->saved_data_ready(sk);
2042                 sk_psock_put(sk, psock);
2043         }
2044 }
2045
2046 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2047 {
2048         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2049
2050         set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2051         set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2052         cancel_delayed_work_sync(&ctx->tx_work.work);
2053 }
2054
2055 void tls_sw_release_resources_tx(struct sock *sk)
2056 {
2057         struct tls_context *tls_ctx = tls_get_ctx(sk);
2058         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2059         struct tls_rec *rec, *tmp;
2060
2061         /* Wait for any pending async encryptions to complete */
2062         smp_store_mb(ctx->async_notify, true);
2063         if (atomic_read(&ctx->encrypt_pending))
2064                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2065
2066         tls_tx_records(sk, -1);
2067
2068         /* Free up un-sent records in tx_list. First, free
2069          * the partially sent record if any at head of tx_list.
2070          */
2071         if (tls_free_partial_record(sk, tls_ctx)) {
2072                 rec = list_first_entry(&ctx->tx_list,
2073                                        struct tls_rec, list);
2074                 list_del(&rec->list);
2075                 sk_msg_free(sk, &rec->msg_plaintext);
2076                 kfree(rec);
2077         }
2078
2079         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2080                 list_del(&rec->list);
2081                 sk_msg_free(sk, &rec->msg_encrypted);
2082                 sk_msg_free(sk, &rec->msg_plaintext);
2083                 kfree(rec);
2084         }
2085
2086         crypto_free_aead(ctx->aead_send);
2087         tls_free_open_rec(sk);
2088 }
2089
2090 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2091 {
2092         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2093
2094         kfree(ctx);
2095 }
2096
2097 void tls_sw_release_resources_rx(struct sock *sk)
2098 {
2099         struct tls_context *tls_ctx = tls_get_ctx(sk);
2100         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2101
2102         kfree(tls_ctx->rx.rec_seq);
2103         kfree(tls_ctx->rx.iv);
2104
2105         if (ctx->aead_recv) {
2106                 kfree_skb(ctx->recv_pkt);
2107                 ctx->recv_pkt = NULL;
2108                 skb_queue_purge(&ctx->rx_list);
2109                 crypto_free_aead(ctx->aead_recv);
2110                 strp_stop(&ctx->strp);
2111                 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2112                  * we still want to strp_stop(), but sk->sk_data_ready was
2113                  * never swapped.
2114                  */
2115                 if (ctx->saved_data_ready) {
2116                         write_lock_bh(&sk->sk_callback_lock);
2117                         sk->sk_data_ready = ctx->saved_data_ready;
2118                         write_unlock_bh(&sk->sk_callback_lock);
2119                 }
2120         }
2121 }
2122
2123 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2124 {
2125         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2126
2127         strp_done(&ctx->strp);
2128 }
2129
2130 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2131 {
2132         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2133
2134         kfree(ctx);
2135 }
2136
2137 void tls_sw_free_resources_rx(struct sock *sk)
2138 {
2139         struct tls_context *tls_ctx = tls_get_ctx(sk);
2140
2141         tls_sw_release_resources_rx(sk);
2142         tls_sw_free_ctx_rx(tls_ctx);
2143 }
2144
2145 /* The work handler to transmitt the encrypted records in tx_list */
2146 static void tx_work_handler(struct work_struct *work)
2147 {
2148         struct delayed_work *delayed_work = to_delayed_work(work);
2149         struct tx_work *tx_work = container_of(delayed_work,
2150                                                struct tx_work, work);
2151         struct sock *sk = tx_work->sk;
2152         struct tls_context *tls_ctx = tls_get_ctx(sk);
2153         struct tls_sw_context_tx *ctx;
2154
2155         if (unlikely(!tls_ctx))
2156                 return;
2157
2158         ctx = tls_sw_ctx_tx(tls_ctx);
2159         if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2160                 return;
2161
2162         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2163                 return;
2164         mutex_lock(&tls_ctx->tx_lock);
2165         lock_sock(sk);
2166         tls_tx_records(sk, -1);
2167         release_sock(sk);
2168         mutex_unlock(&tls_ctx->tx_lock);
2169 }
2170
2171 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2172 {
2173         struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2174
2175         /* Schedule the transmission if tx list is ready */
2176         if (is_tx_ready(tx_ctx) &&
2177             !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2178                 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2179 }
2180
2181 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2182 {
2183         struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2184
2185         write_lock_bh(&sk->sk_callback_lock);
2186         rx_ctx->saved_data_ready = sk->sk_data_ready;
2187         sk->sk_data_ready = tls_data_ready;
2188         write_unlock_bh(&sk->sk_callback_lock);
2189
2190         strp_check_rcv(&rx_ctx->strp);
2191 }
2192
2193 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2194 {
2195         struct tls_context *tls_ctx = tls_get_ctx(sk);
2196         struct tls_prot_info *prot = &tls_ctx->prot_info;
2197         struct tls_crypto_info *crypto_info;
2198         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2199         struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2200         struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2201         struct tls_sw_context_tx *sw_ctx_tx = NULL;
2202         struct tls_sw_context_rx *sw_ctx_rx = NULL;
2203         struct cipher_context *cctx;
2204         struct crypto_aead **aead;
2205         struct strp_callbacks cb;
2206         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2207         struct crypto_tfm *tfm;
2208         char *iv, *rec_seq, *key, *salt, *cipher_name;
2209         size_t keysize;
2210         int rc = 0;
2211
2212         if (!ctx) {
2213                 rc = -EINVAL;
2214                 goto out;
2215         }
2216
2217         if (tx) {
2218                 if (!ctx->priv_ctx_tx) {
2219                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2220                         if (!sw_ctx_tx) {
2221                                 rc = -ENOMEM;
2222                                 goto out;
2223                         }
2224                         ctx->priv_ctx_tx = sw_ctx_tx;
2225                 } else {
2226                         sw_ctx_tx =
2227                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2228                 }
2229         } else {
2230                 if (!ctx->priv_ctx_rx) {
2231                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2232                         if (!sw_ctx_rx) {
2233                                 rc = -ENOMEM;
2234                                 goto out;
2235                         }
2236                         ctx->priv_ctx_rx = sw_ctx_rx;
2237                 } else {
2238                         sw_ctx_rx =
2239                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2240                 }
2241         }
2242
2243         if (tx) {
2244                 crypto_init_wait(&sw_ctx_tx->async_wait);
2245                 crypto_info = &ctx->crypto_send.info;
2246                 cctx = &ctx->tx;
2247                 aead = &sw_ctx_tx->aead_send;
2248                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2249                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2250                 sw_ctx_tx->tx_work.sk = sk;
2251         } else {
2252                 crypto_init_wait(&sw_ctx_rx->async_wait);
2253                 crypto_info = &ctx->crypto_recv.info;
2254                 cctx = &ctx->rx;
2255                 skb_queue_head_init(&sw_ctx_rx->rx_list);
2256                 aead = &sw_ctx_rx->aead_recv;
2257         }
2258
2259         switch (crypto_info->cipher_type) {
2260         case TLS_CIPHER_AES_GCM_128: {
2261                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2262                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2263                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2264                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2265                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2266                 rec_seq =
2267                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2268                 gcm_128_info =
2269                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2270                 keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2271                 key = gcm_128_info->key;
2272                 salt = gcm_128_info->salt;
2273                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2274                 cipher_name = "gcm(aes)";
2275                 break;
2276         }
2277         case TLS_CIPHER_AES_GCM_256: {
2278                 nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2279                 tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2280                 iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2281                 iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2282                 rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2283                 rec_seq =
2284                  ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2285                 gcm_256_info =
2286                         (struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2287                 keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2288                 key = gcm_256_info->key;
2289                 salt = gcm_256_info->salt;
2290                 salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2291                 cipher_name = "gcm(aes)";
2292                 break;
2293         }
2294         case TLS_CIPHER_AES_CCM_128: {
2295                 nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2296                 tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2297                 iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2298                 iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2299                 rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2300                 rec_seq =
2301                 ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2302                 ccm_128_info =
2303                 (struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2304                 keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2305                 key = ccm_128_info->key;
2306                 salt = ccm_128_info->salt;
2307                 salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2308                 cipher_name = "ccm(aes)";
2309                 break;
2310         }
2311         default:
2312                 rc = -EINVAL;
2313                 goto free_priv;
2314         }
2315
2316         /* Sanity-check the sizes for stack allocations. */
2317         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2318             rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2319                 rc = -EINVAL;
2320                 goto free_priv;
2321         }
2322
2323         if (crypto_info->version == TLS_1_3_VERSION) {
2324                 nonce_size = 0;
2325                 prot->aad_size = TLS_HEADER_SIZE;
2326                 prot->tail_size = 1;
2327         } else {
2328                 prot->aad_size = TLS_AAD_SPACE_SIZE;
2329                 prot->tail_size = 0;
2330         }
2331
2332         prot->version = crypto_info->version;
2333         prot->cipher_type = crypto_info->cipher_type;
2334         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2335         prot->tag_size = tag_size;
2336         prot->overhead_size = prot->prepend_size +
2337                               prot->tag_size + prot->tail_size;
2338         prot->iv_size = iv_size;
2339         prot->salt_size = salt_size;
2340         cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2341         if (!cctx->iv) {
2342                 rc = -ENOMEM;
2343                 goto free_priv;
2344         }
2345         /* Note: 128 & 256 bit salt are the same size */
2346         prot->rec_seq_size = rec_seq_size;
2347         memcpy(cctx->iv, salt, salt_size);
2348         memcpy(cctx->iv + salt_size, iv, iv_size);
2349         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2350         if (!cctx->rec_seq) {
2351                 rc = -ENOMEM;
2352                 goto free_iv;
2353         }
2354
2355         if (!*aead) {
2356                 *aead = crypto_alloc_aead(cipher_name, 0, 0);
2357                 if (IS_ERR(*aead)) {
2358                         rc = PTR_ERR(*aead);
2359                         *aead = NULL;
2360                         goto free_rec_seq;
2361                 }
2362         }
2363
2364         ctx->push_pending_record = tls_sw_push_pending_record;
2365
2366         rc = crypto_aead_setkey(*aead, key, keysize);
2367
2368         if (rc)
2369                 goto free_aead;
2370
2371         rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2372         if (rc)
2373                 goto free_aead;
2374
2375         if (sw_ctx_rx) {
2376                 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2377
2378                 if (crypto_info->version == TLS_1_3_VERSION)
2379                         sw_ctx_rx->async_capable = false;
2380                 else
2381                         sw_ctx_rx->async_capable =
2382                                 tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
2383
2384                 /* Set up strparser */
2385                 memset(&cb, 0, sizeof(cb));
2386                 cb.rcv_msg = tls_queue;
2387                 cb.parse_msg = tls_read_size;
2388
2389                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2390         }
2391
2392         goto out;
2393
2394 free_aead:
2395         crypto_free_aead(*aead);
2396         *aead = NULL;
2397 free_rec_seq:
2398         kfree(cctx->rec_seq);
2399         cctx->rec_seq = NULL;
2400 free_iv:
2401         kfree(cctx->iv);
2402         cctx->iv = NULL;
2403 free_priv:
2404         if (tx) {
2405                 kfree(ctx->priv_ctx_tx);
2406                 ctx->priv_ctx_tx = NULL;
2407         } else {
2408                 kfree(ctx->priv_ctx_rx);
2409                 ctx->priv_ctx_rx = NULL;
2410         }
2411 out:
2412         return rc;
2413 }
This page took 0.175462 seconds and 4 git commands to generate.