1 // SPDX-License-Identifier: GPL-2.0-only
3 * AMD Cryptographic Coprocessor (CCP) driver
5 * Copyright (C) 2013,2019 Advanced Micro Devices, Inc.
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/kthread.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/spinlock.h>
17 #include <linux/spinlock_types.h>
18 #include <linux/types.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/hw_random.h>
22 #include <linux/cpu.h>
23 #include <linux/atomic.h>
25 #include <asm/cpu_device_id.h>
27 #include <linux/ccp.h>
33 /* Limit CCP use to a specifed number of queues per device */
34 static unsigned int nqueues = 0;
35 module_param(nqueues, uint, 0444);
36 MODULE_PARM_DESC(nqueues, "Number of queues per CCP (minimum 1; default: all available)");
38 /* Limit the maximum number of configured CCPs */
39 static atomic_t dev_count = ATOMIC_INIT(0);
40 static unsigned int max_devs = MAX_CCPS;
41 module_param(max_devs, uint, 0444);
42 MODULE_PARM_DESC(max_devs, "Maximum number of CCPs to enable (default: all; 0 disables all CCPs)");
44 struct ccp_tasklet_data {
45 struct completion completion;
49 /* Human-readable error strings */
50 #define CCP_MAX_ERROR_CODE 64
51 static char *ccp_error_codes[] = {
55 "ILLEGAL_FUNCTION_TYPE",
56 "ILLEGAL_FUNCTION_MODE",
57 "ILLEGAL_FUNCTION_ENCRYPT",
58 "ILLEGAL_FUNCTION_SIZE",
59 "Zlib_MISSING_INIT_EOM",
60 "ILLEGAL_FUNCTION_RSVD",
61 "ILLEGAL_BUFFER_LENGTH",
68 "Zlib_ILLEGAL_MULTI_QUEUE",
69 "Zlib_ILLEGAL_JOBID_CHANGE",
74 "IDMA1_AXI_SLAVE_FAULT",
80 "ZLIB_UNEXPECTED_EOM",
83 "ZLIB_UNDEFINED_SYMBOL",
84 "ZLIB_UNDEFINED_DISTANCE_S",
85 "ZLIB_CODE_LENGTH_SYMBOL",
86 "ZLIB _VHB_ILLEGAL_FETCH",
87 "ZLIB_UNCOMPRESSED_LEN",
89 "ZLIB_CHECKSUM_MISMATCH0",
97 void ccp_log_error(struct ccp_device *d, unsigned int e)
99 if (WARN_ON(e >= CCP_MAX_ERROR_CODE))
102 if (e < ARRAY_SIZE(ccp_error_codes))
103 dev_err(d->dev, "CCP error %d: %s\n", e, ccp_error_codes[e]);
105 dev_err(d->dev, "CCP error %d: Unknown Error\n", e);
108 /* List of CCPs, CCP count, read-write access lock, and access functions
110 * Lock structure: get ccp_unit_lock for reading whenever we need to
111 * examine the CCP list. While holding it for reading we can acquire
112 * the RR lock to update the round-robin next-CCP pointer. The unit lock
113 * must be acquired before the RR lock.
115 * If the unit-lock is acquired for writing, we have total control over
116 * the list, so there's no value in getting the RR lock.
118 static DEFINE_RWLOCK(ccp_unit_lock);
119 static LIST_HEAD(ccp_units);
121 /* Round-robin counter */
122 static DEFINE_SPINLOCK(ccp_rr_lock);
123 static struct ccp_device *ccp_rr;
126 * ccp_add_device - add a CCP device to the list
128 * @ccp: ccp_device struct pointer
130 * Put this CCP on the unit list, which makes it available
133 * Returns zero if a CCP device is present, -ENODEV otherwise.
135 void ccp_add_device(struct ccp_device *ccp)
139 write_lock_irqsave(&ccp_unit_lock, flags);
140 list_add_tail(&ccp->entry, &ccp_units);
142 /* We already have the list lock (we're first) so this
143 * pointer can't change on us. Set its initial value.
146 write_unlock_irqrestore(&ccp_unit_lock, flags);
150 * ccp_del_device - remove a CCP device from the list
152 * @ccp: ccp_device struct pointer
154 * Remove this unit from the list of devices. If the next device
155 * up for use is this one, adjust the pointer. If this is the last
156 * device, NULL the pointer.
158 void ccp_del_device(struct ccp_device *ccp)
162 write_lock_irqsave(&ccp_unit_lock, flags);
164 /* ccp_unit_lock is read/write; any read access
165 * will be suspended while we make changes to the
166 * list and RR pointer.
168 if (list_is_last(&ccp_rr->entry, &ccp_units))
169 ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
172 ccp_rr = list_next_entry(ccp_rr, entry);
174 list_del(&ccp->entry);
175 if (list_empty(&ccp_units))
177 write_unlock_irqrestore(&ccp_unit_lock, flags);
182 int ccp_register_rng(struct ccp_device *ccp)
186 dev_dbg(ccp->dev, "Registering RNG...\n");
187 /* Register an RNG */
188 ccp->hwrng.name = ccp->rngname;
189 ccp->hwrng.read = ccp_trng_read;
190 ret = hwrng_register(&ccp->hwrng);
192 dev_err(ccp->dev, "error registering hwrng (%d)\n", ret);
197 void ccp_unregister_rng(struct ccp_device *ccp)
200 hwrng_unregister(&ccp->hwrng);
203 static struct ccp_device *ccp_get_device(void)
206 struct ccp_device *dp = NULL;
208 /* We round-robin through the unit list.
209 * The (ccp_rr) pointer refers to the next unit to use.
211 read_lock_irqsave(&ccp_unit_lock, flags);
212 if (!list_empty(&ccp_units)) {
213 spin_lock(&ccp_rr_lock);
215 if (list_is_last(&ccp_rr->entry, &ccp_units))
216 ccp_rr = list_first_entry(&ccp_units, struct ccp_device,
219 ccp_rr = list_next_entry(ccp_rr, entry);
220 spin_unlock(&ccp_rr_lock);
222 read_unlock_irqrestore(&ccp_unit_lock, flags);
228 * ccp_present - check if a CCP device is present
230 * Returns zero if a CCP device is present, -ENODEV otherwise.
232 int ccp_present(void)
237 read_lock_irqsave(&ccp_unit_lock, flags);
238 ret = list_empty(&ccp_units);
239 read_unlock_irqrestore(&ccp_unit_lock, flags);
241 return ret ? -ENODEV : 0;
243 EXPORT_SYMBOL_GPL(ccp_present);
246 * ccp_version - get the version of the CCP device
248 * Returns the version from the first unit on the list;
249 * otherwise a zero if no CCP device is present
251 unsigned int ccp_version(void)
253 struct ccp_device *dp;
257 read_lock_irqsave(&ccp_unit_lock, flags);
258 if (!list_empty(&ccp_units)) {
259 dp = list_first_entry(&ccp_units, struct ccp_device, entry);
260 ret = dp->vdata->version;
262 read_unlock_irqrestore(&ccp_unit_lock, flags);
266 EXPORT_SYMBOL_GPL(ccp_version);
269 * ccp_enqueue_cmd - queue an operation for processing by the CCP
271 * @cmd: ccp_cmd struct to be processed
273 * Queue a cmd to be processed by the CCP. If queueing the cmd
274 * would exceed the defined length of the cmd queue the cmd will
275 * only be queued if the CCP_CMD_MAY_BACKLOG flag is set and will
276 * result in a return code of -EBUSY.
278 * The callback routine specified in the ccp_cmd struct will be
279 * called to notify the caller of completion (if the cmd was not
280 * backlogged) or advancement out of the backlog. If the cmd has
281 * advanced out of the backlog the "err" value of the callback
282 * will be -EINPROGRESS. Any other "err" value during callback is
283 * the result of the operation.
285 * The cmd has been successfully queued if:
286 * the return code is -EINPROGRESS or
287 * the return code is -EBUSY and CCP_CMD_MAY_BACKLOG flag is set
289 int ccp_enqueue_cmd(struct ccp_cmd *cmd)
291 struct ccp_device *ccp;
296 /* Some commands might need to be sent to a specific device */
297 ccp = cmd->ccp ? cmd->ccp : ccp_get_device();
302 /* Caller must supply a callback routine */
308 spin_lock_irqsave(&ccp->cmd_lock, flags);
310 i = ccp->cmd_q_count;
312 if (ccp->cmd_count >= MAX_CMD_QLEN) {
313 if (cmd->flags & CCP_CMD_MAY_BACKLOG) {
315 list_add_tail(&cmd->entry, &ccp->backlog);
322 list_add_tail(&cmd->entry, &ccp->cmd);
324 /* Find an idle queue */
325 if (!ccp->suspending) {
326 for (i = 0; i < ccp->cmd_q_count; i++) {
327 if (ccp->cmd_q[i].active)
335 spin_unlock_irqrestore(&ccp->cmd_lock, flags);
337 /* If we found an idle queue, wake it up */
338 if (i < ccp->cmd_q_count)
339 wake_up_process(ccp->cmd_q[i].kthread);
343 EXPORT_SYMBOL_GPL(ccp_enqueue_cmd);
345 static void ccp_do_cmd_backlog(struct work_struct *work)
347 struct ccp_cmd *cmd = container_of(work, struct ccp_cmd, work);
348 struct ccp_device *ccp = cmd->ccp;
352 cmd->callback(cmd->data, -EINPROGRESS);
354 spin_lock_irqsave(&ccp->cmd_lock, flags);
357 list_add_tail(&cmd->entry, &ccp->cmd);
359 /* Find an idle queue */
360 for (i = 0; i < ccp->cmd_q_count; i++) {
361 if (ccp->cmd_q[i].active)
367 spin_unlock_irqrestore(&ccp->cmd_lock, flags);
369 /* If we found an idle queue, wake it up */
370 if (i < ccp->cmd_q_count)
371 wake_up_process(ccp->cmd_q[i].kthread);
374 static struct ccp_cmd *ccp_dequeue_cmd(struct ccp_cmd_queue *cmd_q)
376 struct ccp_device *ccp = cmd_q->ccp;
377 struct ccp_cmd *cmd = NULL;
378 struct ccp_cmd *backlog = NULL;
381 spin_lock_irqsave(&ccp->cmd_lock, flags);
385 if (ccp->suspending) {
386 cmd_q->suspended = 1;
388 spin_unlock_irqrestore(&ccp->cmd_lock, flags);
389 wake_up_interruptible(&ccp->suspend_queue);
394 if (ccp->cmd_count) {
397 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
398 list_del(&cmd->entry);
403 if (!list_empty(&ccp->backlog)) {
404 backlog = list_first_entry(&ccp->backlog, struct ccp_cmd,
406 list_del(&backlog->entry);
409 spin_unlock_irqrestore(&ccp->cmd_lock, flags);
412 INIT_WORK(&backlog->work, ccp_do_cmd_backlog);
413 schedule_work(&backlog->work);
419 static void ccp_do_cmd_complete(unsigned long data)
421 struct ccp_tasklet_data *tdata = (struct ccp_tasklet_data *)data;
422 struct ccp_cmd *cmd = tdata->cmd;
424 cmd->callback(cmd->data, cmd->ret);
426 complete(&tdata->completion);
430 * ccp_cmd_queue_thread - create a kernel thread to manage a CCP queue
432 * @data: thread-specific data
434 int ccp_cmd_queue_thread(void *data)
436 struct ccp_cmd_queue *cmd_q = (struct ccp_cmd_queue *)data;
438 struct ccp_tasklet_data tdata;
439 struct tasklet_struct tasklet;
441 tasklet_init(&tasklet, ccp_do_cmd_complete, (unsigned long)&tdata);
443 set_current_state(TASK_INTERRUPTIBLE);
444 while (!kthread_should_stop()) {
447 set_current_state(TASK_INTERRUPTIBLE);
449 cmd = ccp_dequeue_cmd(cmd_q);
453 __set_current_state(TASK_RUNNING);
455 /* Execute the command */
456 cmd->ret = ccp_run_cmd(cmd_q, cmd);
458 /* Schedule the completion callback */
460 init_completion(&tdata.completion);
461 tasklet_schedule(&tasklet);
462 wait_for_completion(&tdata.completion);
465 __set_current_state(TASK_RUNNING);
471 * ccp_alloc_struct - allocate and initialize the ccp_device struct
473 * @dev: device struct of the CCP
475 struct ccp_device *ccp_alloc_struct(struct sp_device *sp)
477 struct device *dev = sp->dev;
478 struct ccp_device *ccp;
480 ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL);
485 ccp->axcache = sp->axcache;
487 INIT_LIST_HEAD(&ccp->cmd);
488 INIT_LIST_HEAD(&ccp->backlog);
490 spin_lock_init(&ccp->cmd_lock);
491 mutex_init(&ccp->req_mutex);
492 mutex_init(&ccp->sb_mutex);
493 ccp->sb_count = KSB_COUNT;
496 /* Initialize the wait queues */
497 init_waitqueue_head(&ccp->sb_queue);
498 init_waitqueue_head(&ccp->suspend_queue);
500 snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", sp->ord);
501 snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", sp->ord);
506 int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait)
508 struct ccp_device *ccp = container_of(rng, struct ccp_device, hwrng);
510 int len = min_t(int, sizeof(trng_value), max);
512 /* Locking is provided by the caller so we can update device
513 * hwrng-related fields safely
515 trng_value = ioread32(ccp->io_regs + TRNG_OUT_REG);
517 /* Zero is returned if not data is available or if a
518 * bad-entropy error is present. Assume an error if
519 * we exceed TRNG_RETRIES reads of zero.
521 if (ccp->hwrng_retries++ > TRNG_RETRIES)
527 /* Reset the counter and save the rng value */
528 ccp->hwrng_retries = 0;
529 memcpy(data, &trng_value, len);
535 bool ccp_queues_suspended(struct ccp_device *ccp)
537 unsigned int suspended = 0;
541 spin_lock_irqsave(&ccp->cmd_lock, flags);
543 for (i = 0; i < ccp->cmd_q_count; i++)
544 if (ccp->cmd_q[i].suspended)
547 spin_unlock_irqrestore(&ccp->cmd_lock, flags);
549 return ccp->cmd_q_count == suspended;
552 int ccp_dev_suspend(struct sp_device *sp, pm_message_t state)
554 struct ccp_device *ccp = sp->ccp_data;
558 /* If there's no device there's nothing to do */
562 spin_lock_irqsave(&ccp->cmd_lock, flags);
566 /* Wake all the queue kthreads to prepare for suspend */
567 for (i = 0; i < ccp->cmd_q_count; i++)
568 wake_up_process(ccp->cmd_q[i].kthread);
570 spin_unlock_irqrestore(&ccp->cmd_lock, flags);
572 /* Wait for all queue kthreads to say they're done */
573 while (!ccp_queues_suspended(ccp))
574 wait_event_interruptible(ccp->suspend_queue,
575 ccp_queues_suspended(ccp));
580 int ccp_dev_resume(struct sp_device *sp)
582 struct ccp_device *ccp = sp->ccp_data;
586 /* If there's no device there's nothing to do */
590 spin_lock_irqsave(&ccp->cmd_lock, flags);
594 /* Wake up all the kthreads */
595 for (i = 0; i < ccp->cmd_q_count; i++) {
596 ccp->cmd_q[i].suspended = 0;
597 wake_up_process(ccp->cmd_q[i].kthread);
600 spin_unlock_irqrestore(&ccp->cmd_lock, flags);
606 int ccp_dev_init(struct sp_device *sp)
608 struct device *dev = sp->dev;
609 struct ccp_device *ccp;
613 * Check how many we have so far, and stop after reaching
616 if (atomic_inc_return(&dev_count) > max_devs)
617 return 0; /* don't fail the load */
620 ccp = ccp_alloc_struct(sp);
625 if (!nqueues || (nqueues > MAX_HW_QUEUES))
626 ccp->max_q_count = MAX_HW_QUEUES;
628 ccp->max_q_count = nqueues;
630 ccp->vdata = (struct ccp_vdata *)sp->dev_vdata->ccp_vdata;
631 if (!ccp->vdata || !ccp->vdata->version) {
633 dev_err(dev, "missing driver data\n");
637 ccp->use_tasklet = sp->use_tasklet;
639 ccp->io_regs = sp->io_map + ccp->vdata->offset;
640 if (ccp->vdata->setup)
641 ccp->vdata->setup(ccp);
643 ret = ccp->vdata->perform->init(ccp);
645 /* A positive number means that the device cannot be initialized,
646 * but no additional message is required.
651 /* An unexpected problem occurred, and should be reported in the log */
655 dev_notice(dev, "ccp enabled\n");
660 dev_notice(dev, "ccp initialization failed\n");
668 void ccp_dev_destroy(struct sp_device *sp)
670 struct ccp_device *ccp = sp->ccp_data;
675 ccp->vdata->perform->destroy(ccp);