2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2008
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate_wait.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/sched/debug.h>
39 #include <linux/nmi.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/export.h>
43 #include <linux/completion.h>
44 #include <linux/moduleparam.h>
45 #include <linux/percpu.h>
46 #include <linux/notifier.h>
47 #include <linux/cpu.h>
48 #include <linux/mutex.h>
49 #include <linux/time.h>
50 #include <linux/kernel_stat.h>
51 #include <linux/wait.h>
52 #include <linux/kthread.h>
53 #include <uapi/linux/sched/types.h>
54 #include <linux/prefetch.h>
55 #include <linux/delay.h>
56 #include <linux/stop_machine.h>
57 #include <linux/random.h>
58 #include <linux/trace_events.h>
59 #include <linux/suspend.h>
60 #include <linux/ftrace.h>
65 #ifdef MODULE_PARAM_PREFIX
66 #undef MODULE_PARAM_PREFIX
68 #define MODULE_PARAM_PREFIX "rcutree."
70 /* Data structures. */
73 * In order to export the rcu_state name to the tracing tools, it
74 * needs to be added in the __tracepoint_string section.
75 * This requires defining a separate variable tp_<sname>_varname
76 * that points to the string being used, and this will allow
77 * the tracing userspace tools to be able to decipher the string
78 * address to the matching string.
81 # define DEFINE_RCU_TPS(sname) \
82 static char sname##_varname[] = #sname; \
83 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
84 # define RCU_STATE_NAME(sname) sname##_varname
86 # define DEFINE_RCU_TPS(sname)
87 # define RCU_STATE_NAME(sname) __stringify(sname)
90 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
91 DEFINE_RCU_TPS(sname) \
92 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
93 struct rcu_state sname##_state = { \
94 .level = { &sname##_state.node[0] }, \
95 .rda = &sname##_data, \
97 .gp_state = RCU_GP_IDLE, \
98 .gpnum = 0UL - 300UL, \
99 .completed = 0UL - 300UL, \
100 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
101 .name = RCU_STATE_NAME(sname), \
103 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
104 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
108 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
110 static struct rcu_state *const rcu_state_p;
111 LIST_HEAD(rcu_struct_flavors);
113 /* Dump rcu_node combining tree at boot to verify correct setup. */
114 static bool dump_tree;
115 module_param(dump_tree, bool, 0444);
116 /* Control rcu_node-tree auto-balancing at boot time. */
117 static bool rcu_fanout_exact;
118 module_param(rcu_fanout_exact, bool, 0444);
119 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
120 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
121 module_param(rcu_fanout_leaf, int, 0444);
122 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
123 /* Number of rcu_nodes at specified level. */
124 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
125 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
126 /* panic() on RCU Stall sysctl. */
127 int sysctl_panic_on_rcu_stall __read_mostly;
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
141 int rcu_scheduler_active __read_mostly;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
156 static int rcu_scheduler_fully_active __read_mostly;
158 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
161 static void invoke_rcu_core(void);
162 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
163 static void rcu_report_exp_rdp(struct rcu_state *rsp,
164 struct rcu_data *rdp, bool wake);
165 static void sync_sched_exp_online_cleanup(int cpu);
167 /* rcuc/rcub kthread realtime priority */
168 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
169 module_param(kthread_prio, int, 0644);
171 /* Delay in jiffies for grace-period initialization delays, debug only. */
173 static int gp_preinit_delay;
174 module_param(gp_preinit_delay, int, 0444);
175 static int gp_init_delay;
176 module_param(gp_init_delay, int, 0444);
177 static int gp_cleanup_delay;
178 module_param(gp_cleanup_delay, int, 0444);
181 * Number of grace periods between delays, normalized by the duration of
182 * the delay. The longer the delay, the more the grace periods between
183 * each delay. The reason for this normalization is that it means that,
184 * for non-zero delays, the overall slowdown of grace periods is constant
185 * regardless of the duration of the delay. This arrangement balances
186 * the need for long delays to increase some race probabilities with the
187 * need for fast grace periods to increase other race probabilities.
189 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
192 * Track the rcutorture test sequence number and the update version
193 * number within a given test. The rcutorture_testseq is incremented
194 * on every rcutorture module load and unload, so has an odd value
195 * when a test is running. The rcutorture_vernum is set to zero
196 * when rcutorture starts and is incremented on each rcutorture update.
197 * These variables enable correlating rcutorture output with the
198 * RCU tracing information.
200 unsigned long rcutorture_testseq;
201 unsigned long rcutorture_vernum;
204 * Compute the mask of online CPUs for the specified rcu_node structure.
205 * This will not be stable unless the rcu_node structure's ->lock is
206 * held, but the bit corresponding to the current CPU will be stable
209 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
211 return READ_ONCE(rnp->qsmaskinitnext);
215 * Return true if an RCU grace period is in progress. The READ_ONCE()s
216 * permit this function to be invoked without holding the root rcu_node
217 * structure's ->lock, but of course results can be subject to change.
219 static int rcu_gp_in_progress(struct rcu_state *rsp)
221 return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
225 * Note a quiescent state. Because we do not need to know
226 * how many quiescent states passed, just if there was at least
227 * one since the start of the grace period, this just sets a flag.
228 * The caller must have disabled preemption.
230 void rcu_sched_qs(void)
232 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
233 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
235 trace_rcu_grace_period(TPS("rcu_sched"),
236 __this_cpu_read(rcu_sched_data.gpnum),
238 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
239 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
241 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
242 rcu_report_exp_rdp(&rcu_sched_state,
243 this_cpu_ptr(&rcu_sched_data), true);
248 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
249 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
250 trace_rcu_grace_period(TPS("rcu_bh"),
251 __this_cpu_read(rcu_bh_data.gpnum),
253 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
259 * control. Initially this is for TLB flushing.
261 #define RCU_DYNTICK_CTRL_MASK 0x1
262 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
263 #ifndef rcu_eqs_special_exit
264 #define rcu_eqs_special_exit() do { } while (0)
267 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
268 .dynticks_nesting = 1,
269 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
270 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
274 * Record entry into an extended quiescent state. This is only to be
275 * called when not already in an extended quiescent state.
277 static void rcu_dynticks_eqs_enter(void)
279 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
283 * CPUs seeing atomic_add_return() must see prior RCU read-side
284 * critical sections, and we also must force ordering with the
287 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
288 /* Better be in an extended quiescent state! */
289 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
290 (seq & RCU_DYNTICK_CTRL_CTR));
291 /* Better not have special action (TLB flush) pending! */
292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
293 (seq & RCU_DYNTICK_CTRL_MASK));
297 * Record exit from an extended quiescent state. This is only to be
298 * called from an extended quiescent state.
300 static void rcu_dynticks_eqs_exit(void)
302 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
306 * CPUs seeing atomic_add_return() must see prior idle sojourns,
307 * and we also must force ordering with the next RCU read-side
310 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
311 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
312 !(seq & RCU_DYNTICK_CTRL_CTR));
313 if (seq & RCU_DYNTICK_CTRL_MASK) {
314 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
315 smp_mb__after_atomic(); /* _exit after clearing mask. */
316 /* Prefer duplicate flushes to losing a flush. */
317 rcu_eqs_special_exit();
322 * Reset the current CPU's ->dynticks counter to indicate that the
323 * newly onlined CPU is no longer in an extended quiescent state.
324 * This will either leave the counter unchanged, or increment it
325 * to the next non-quiescent value.
327 * The non-atomic test/increment sequence works because the upper bits
328 * of the ->dynticks counter are manipulated only by the corresponding CPU,
329 * or when the corresponding CPU is offline.
331 static void rcu_dynticks_eqs_online(void)
333 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
335 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
337 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
341 * Is the current CPU in an extended quiescent state?
343 * No ordering, as we are sampling CPU-local information.
345 bool rcu_dynticks_curr_cpu_in_eqs(void)
347 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
349 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
353 * Snapshot the ->dynticks counter with full ordering so as to allow
354 * stable comparison of this counter with past and future snapshots.
356 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
358 int snap = atomic_add_return(0, &rdtp->dynticks);
360 return snap & ~RCU_DYNTICK_CTRL_MASK;
364 * Return true if the snapshot returned from rcu_dynticks_snap()
365 * indicates that RCU is in an extended quiescent state.
367 static bool rcu_dynticks_in_eqs(int snap)
369 return !(snap & RCU_DYNTICK_CTRL_CTR);
373 * Return true if the CPU corresponding to the specified rcu_dynticks
374 * structure has spent some time in an extended quiescent state since
375 * rcu_dynticks_snap() returned the specified snapshot.
377 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
379 return snap != rcu_dynticks_snap(rdtp);
383 * Do a double-increment of the ->dynticks counter to emulate a
384 * momentary idle-CPU quiescent state.
386 static void rcu_dynticks_momentary_idle(void)
388 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
389 int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
392 /* It is illegal to call this from idle state. */
393 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
397 * Set the special (bottom) bit of the specified CPU so that it
398 * will take special action (such as flushing its TLB) on the
399 * next exit from an extended quiescent state. Returns true if
400 * the bit was successfully set, or false if the CPU was not in
401 * an extended quiescent state.
403 bool rcu_eqs_special_set(int cpu)
407 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
410 old = atomic_read(&rdtp->dynticks);
411 if (old & RCU_DYNTICK_CTRL_CTR)
413 new = old | RCU_DYNTICK_CTRL_MASK;
414 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
419 * Let the RCU core know that this CPU has gone through the scheduler,
420 * which is a quiescent state. This is called when the need for a
421 * quiescent state is urgent, so we burn an atomic operation and full
422 * memory barriers to let the RCU core know about it, regardless of what
423 * this CPU might (or might not) do in the near future.
425 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
427 * The caller must have disabled interrupts.
429 static void rcu_momentary_dyntick_idle(void)
431 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
432 rcu_dynticks_momentary_idle();
436 * Note a context switch. This is a quiescent state for RCU-sched,
437 * and requires special handling for preemptible RCU.
438 * The caller must have disabled interrupts.
440 void rcu_note_context_switch(bool preempt)
442 barrier(); /* Avoid RCU read-side critical sections leaking down. */
443 trace_rcu_utilization(TPS("Start context switch"));
445 rcu_preempt_note_context_switch(preempt);
446 /* Load rcu_urgent_qs before other flags. */
447 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
449 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
450 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
451 rcu_momentary_dyntick_idle();
452 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
454 rcu_note_voluntary_context_switch_lite(current);
456 trace_rcu_utilization(TPS("End context switch"));
457 barrier(); /* Avoid RCU read-side critical sections leaking up. */
459 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
462 * Register a quiescent state for all RCU flavors. If there is an
463 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
464 * dyntick-idle quiescent state visible to other CPUs (but only for those
465 * RCU flavors in desperate need of a quiescent state, which will normally
466 * be none of them). Either way, do a lightweight quiescent state for
469 * The barrier() calls are redundant in the common case when this is
470 * called externally, but just in case this is called from within this
474 void rcu_all_qs(void)
478 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
481 /* Load rcu_urgent_qs before other flags. */
482 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
486 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
487 barrier(); /* Avoid RCU read-side critical sections leaking down. */
488 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
489 local_irq_save(flags);
490 rcu_momentary_dyntick_idle();
491 local_irq_restore(flags);
493 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
495 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
496 barrier(); /* Avoid RCU read-side critical sections leaking up. */
499 EXPORT_SYMBOL_GPL(rcu_all_qs);
501 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
502 static long blimit = DEFAULT_RCU_BLIMIT;
503 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
504 static long qhimark = DEFAULT_RCU_QHIMARK;
505 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
506 static long qlowmark = DEFAULT_RCU_QLOMARK;
508 module_param(blimit, long, 0444);
509 module_param(qhimark, long, 0444);
510 module_param(qlowmark, long, 0444);
512 static ulong jiffies_till_first_fqs = ULONG_MAX;
513 static ulong jiffies_till_next_fqs = ULONG_MAX;
514 static bool rcu_kick_kthreads;
516 module_param(jiffies_till_first_fqs, ulong, 0644);
517 module_param(jiffies_till_next_fqs, ulong, 0644);
518 module_param(rcu_kick_kthreads, bool, 0644);
521 * How long the grace period must be before we start recruiting
522 * quiescent-state help from rcu_note_context_switch().
524 static ulong jiffies_till_sched_qs = HZ / 10;
525 module_param(jiffies_till_sched_qs, ulong, 0444);
527 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
528 static void force_quiescent_state(struct rcu_state *rsp);
529 static int rcu_pending(void);
532 * Return the number of RCU batches started thus far for debug & stats.
534 unsigned long rcu_batches_started(void)
536 return rcu_state_p->gpnum;
538 EXPORT_SYMBOL_GPL(rcu_batches_started);
541 * Return the number of RCU-sched batches started thus far for debug & stats.
543 unsigned long rcu_batches_started_sched(void)
545 return rcu_sched_state.gpnum;
547 EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
550 * Return the number of RCU BH batches started thus far for debug & stats.
552 unsigned long rcu_batches_started_bh(void)
554 return rcu_bh_state.gpnum;
556 EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
559 * Return the number of RCU batches completed thus far for debug & stats.
561 unsigned long rcu_batches_completed(void)
563 return rcu_state_p->completed;
565 EXPORT_SYMBOL_GPL(rcu_batches_completed);
568 * Return the number of RCU-sched batches completed thus far for debug & stats.
570 unsigned long rcu_batches_completed_sched(void)
572 return rcu_sched_state.completed;
574 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
577 * Return the number of RCU BH batches completed thus far for debug & stats.
579 unsigned long rcu_batches_completed_bh(void)
581 return rcu_bh_state.completed;
583 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
586 * Return the number of RCU expedited batches completed thus far for
587 * debug & stats. Odd numbers mean that a batch is in progress, even
588 * numbers mean idle. The value returned will thus be roughly double
589 * the cumulative batches since boot.
591 unsigned long rcu_exp_batches_completed(void)
593 return rcu_state_p->expedited_sequence;
595 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
598 * Return the number of RCU-sched expedited batches completed thus far
599 * for debug & stats. Similar to rcu_exp_batches_completed().
601 unsigned long rcu_exp_batches_completed_sched(void)
603 return rcu_sched_state.expedited_sequence;
605 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
608 * Force a quiescent state.
610 void rcu_force_quiescent_state(void)
612 force_quiescent_state(rcu_state_p);
614 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
617 * Force a quiescent state for RCU BH.
619 void rcu_bh_force_quiescent_state(void)
621 force_quiescent_state(&rcu_bh_state);
623 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
626 * Force a quiescent state for RCU-sched.
628 void rcu_sched_force_quiescent_state(void)
630 force_quiescent_state(&rcu_sched_state);
632 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
635 * Show the state of the grace-period kthreads.
637 void show_rcu_gp_kthreads(void)
639 struct rcu_state *rsp;
641 for_each_rcu_flavor(rsp) {
642 pr_info("%s: wait state: %d ->state: %#lx\n",
643 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
644 /* sched_show_task(rsp->gp_kthread); */
647 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
650 * Record the number of times rcutorture tests have been initiated and
651 * terminated. This information allows the debugfs tracing stats to be
652 * correlated to the rcutorture messages, even when the rcutorture module
653 * is being repeatedly loaded and unloaded. In other words, we cannot
654 * store this state in rcutorture itself.
656 void rcutorture_record_test_transition(void)
658 rcutorture_testseq++;
659 rcutorture_vernum = 0;
661 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
664 * Send along grace-period-related data for rcutorture diagnostics.
666 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
667 unsigned long *gpnum, unsigned long *completed)
669 struct rcu_state *rsp = NULL;
678 case RCU_SCHED_FLAVOR:
679 rsp = &rcu_sched_state;
686 *flags = READ_ONCE(rsp->gp_flags);
687 *gpnum = READ_ONCE(rsp->gpnum);
688 *completed = READ_ONCE(rsp->completed);
690 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
693 * Record the number of writer passes through the current rcutorture test.
694 * This is also used to correlate debugfs tracing stats with the rcutorture
697 void rcutorture_record_progress(unsigned long vernum)
701 EXPORT_SYMBOL_GPL(rcutorture_record_progress);
704 * Return the root node of the specified rcu_state structure.
706 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
708 return &rsp->node[0];
712 * Enter an RCU extended quiescent state, which can be either the
713 * idle loop or adaptive-tickless usermode execution.
715 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
716 * the possibility of usermode upcalls having messed up our count
717 * of interrupt nesting level during the prior busy period.
719 static void rcu_eqs_enter(bool user)
721 struct rcu_state *rsp;
722 struct rcu_data *rdp;
723 struct rcu_dynticks *rdtp;
725 rdtp = this_cpu_ptr(&rcu_dynticks);
726 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
727 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
728 rdtp->dynticks_nesting == 0);
729 if (rdtp->dynticks_nesting != 1) {
730 rdtp->dynticks_nesting--;
734 lockdep_assert_irqs_disabled();
735 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
736 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
737 for_each_rcu_flavor(rsp) {
738 rdp = this_cpu_ptr(rsp->rda);
739 do_nocb_deferred_wakeup(rdp);
741 rcu_prepare_for_idle();
742 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
743 rcu_dynticks_eqs_enter();
744 rcu_dynticks_task_enter();
748 * rcu_idle_enter - inform RCU that current CPU is entering idle
750 * Enter idle mode, in other words, -leave- the mode in which RCU
751 * read-side critical sections can occur. (Though RCU read-side
752 * critical sections can occur in irq handlers in idle, a possibility
753 * handled by irq_enter() and irq_exit().)
755 * If you add or remove a call to rcu_idle_enter(), be sure to test with
756 * CONFIG_RCU_EQS_DEBUG=y.
758 void rcu_idle_enter(void)
760 lockdep_assert_irqs_disabled();
761 rcu_eqs_enter(false);
764 #ifdef CONFIG_NO_HZ_FULL
766 * rcu_user_enter - inform RCU that we are resuming userspace.
768 * Enter RCU idle mode right before resuming userspace. No use of RCU
769 * is permitted between this call and rcu_user_exit(). This way the
770 * CPU doesn't need to maintain the tick for RCU maintenance purposes
771 * when the CPU runs in userspace.
773 * If you add or remove a call to rcu_user_enter(), be sure to test with
774 * CONFIG_RCU_EQS_DEBUG=y.
776 void rcu_user_enter(void)
778 lockdep_assert_irqs_disabled();
781 #endif /* CONFIG_NO_HZ_FULL */
784 * rcu_nmi_exit - inform RCU of exit from NMI context
786 * If we are returning from the outermost NMI handler that interrupted an
787 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
788 * to let the RCU grace-period handling know that the CPU is back to
791 * If you add or remove a call to rcu_nmi_exit(), be sure to test
792 * with CONFIG_RCU_EQS_DEBUG=y.
794 void rcu_nmi_exit(void)
796 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
799 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
800 * (We are exiting an NMI handler, so RCU better be paying attention
803 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
804 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
807 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
808 * leave it in non-RCU-idle state.
810 if (rdtp->dynticks_nmi_nesting != 1) {
811 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
812 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
813 rdtp->dynticks_nmi_nesting - 2);
817 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
818 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
819 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
820 rcu_dynticks_eqs_enter();
824 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
826 * Exit from an interrupt handler, which might possibly result in entering
827 * idle mode, in other words, leaving the mode in which read-side critical
828 * sections can occur. The caller must have disabled interrupts.
830 * This code assumes that the idle loop never does anything that might
831 * result in unbalanced calls to irq_enter() and irq_exit(). If your
832 * architecture's idle loop violates this assumption, RCU will give you what
833 * you deserve, good and hard. But very infrequently and irreproducibly.
835 * Use things like work queues to work around this limitation.
837 * You have been warned.
839 * If you add or remove a call to rcu_irq_exit(), be sure to test with
840 * CONFIG_RCU_EQS_DEBUG=y.
842 void rcu_irq_exit(void)
844 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
846 lockdep_assert_irqs_disabled();
847 if (rdtp->dynticks_nmi_nesting == 1)
848 rcu_prepare_for_idle();
850 if (rdtp->dynticks_nmi_nesting == 0)
851 rcu_dynticks_task_enter();
855 * Wrapper for rcu_irq_exit() where interrupts are enabled.
857 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
858 * with CONFIG_RCU_EQS_DEBUG=y.
860 void rcu_irq_exit_irqson(void)
864 local_irq_save(flags);
866 local_irq_restore(flags);
870 * Exit an RCU extended quiescent state, which can be either the
871 * idle loop or adaptive-tickless usermode execution.
873 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
874 * allow for the possibility of usermode upcalls messing up our count of
875 * interrupt nesting level during the busy period that is just now starting.
877 static void rcu_eqs_exit(bool user)
879 struct rcu_dynticks *rdtp;
882 lockdep_assert_irqs_disabled();
883 rdtp = this_cpu_ptr(&rcu_dynticks);
884 oldval = rdtp->dynticks_nesting;
885 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
887 rdtp->dynticks_nesting++;
890 rcu_dynticks_task_exit();
891 rcu_dynticks_eqs_exit();
892 rcu_cleanup_after_idle();
893 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
894 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
895 WRITE_ONCE(rdtp->dynticks_nesting, 1);
896 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
900 * rcu_idle_exit - inform RCU that current CPU is leaving idle
902 * Exit idle mode, in other words, -enter- the mode in which RCU
903 * read-side critical sections can occur.
905 * If you add or remove a call to rcu_idle_exit(), be sure to test with
906 * CONFIG_RCU_EQS_DEBUG=y.
908 void rcu_idle_exit(void)
912 local_irq_save(flags);
914 local_irq_restore(flags);
917 #ifdef CONFIG_NO_HZ_FULL
919 * rcu_user_exit - inform RCU that we are exiting userspace.
921 * Exit RCU idle mode while entering the kernel because it can
922 * run a RCU read side critical section anytime.
924 * If you add or remove a call to rcu_user_exit(), be sure to test with
925 * CONFIG_RCU_EQS_DEBUG=y.
927 void rcu_user_exit(void)
931 #endif /* CONFIG_NO_HZ_FULL */
934 * rcu_nmi_enter - inform RCU of entry to NMI context
936 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
937 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
938 * that the CPU is active. This implementation permits nested NMIs, as
939 * long as the nesting level does not overflow an int. (You will probably
940 * run out of stack space first.)
942 * If you add or remove a call to rcu_nmi_enter(), be sure to test
943 * with CONFIG_RCU_EQS_DEBUG=y.
945 void rcu_nmi_enter(void)
947 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
950 /* Complain about underflow. */
951 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
954 * If idle from RCU viewpoint, atomically increment ->dynticks
955 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
956 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
957 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
958 * to be in the outermost NMI handler that interrupted an RCU-idle
959 * period (observation due to Andy Lutomirski).
961 if (rcu_dynticks_curr_cpu_in_eqs()) {
962 rcu_dynticks_eqs_exit();
965 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
966 rdtp->dynticks_nmi_nesting,
967 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
968 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
969 rdtp->dynticks_nmi_nesting + incby);
974 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
976 * Enter an interrupt handler, which might possibly result in exiting
977 * idle mode, in other words, entering the mode in which read-side critical
978 * sections can occur. The caller must have disabled interrupts.
980 * Note that the Linux kernel is fully capable of entering an interrupt
981 * handler that it never exits, for example when doing upcalls to user mode!
982 * This code assumes that the idle loop never does upcalls to user mode.
983 * If your architecture's idle loop does do upcalls to user mode (or does
984 * anything else that results in unbalanced calls to the irq_enter() and
985 * irq_exit() functions), RCU will give you what you deserve, good and hard.
986 * But very infrequently and irreproducibly.
988 * Use things like work queues to work around this limitation.
990 * You have been warned.
992 * If you add or remove a call to rcu_irq_enter(), be sure to test with
993 * CONFIG_RCU_EQS_DEBUG=y.
995 void rcu_irq_enter(void)
997 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
999 lockdep_assert_irqs_disabled();
1000 if (rdtp->dynticks_nmi_nesting == 0)
1001 rcu_dynticks_task_exit();
1003 if (rdtp->dynticks_nmi_nesting == 1)
1004 rcu_cleanup_after_idle();
1008 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1010 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1011 * with CONFIG_RCU_EQS_DEBUG=y.
1013 void rcu_irq_enter_irqson(void)
1015 unsigned long flags;
1017 local_irq_save(flags);
1019 local_irq_restore(flags);
1023 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1025 * Return true if RCU is watching the running CPU, which means that this
1026 * CPU can safely enter RCU read-side critical sections. In other words,
1027 * if the current CPU is in its idle loop and is neither in an interrupt
1028 * or NMI handler, return true.
1030 bool notrace rcu_is_watching(void)
1034 preempt_disable_notrace();
1035 ret = !rcu_dynticks_curr_cpu_in_eqs();
1036 preempt_enable_notrace();
1039 EXPORT_SYMBOL_GPL(rcu_is_watching);
1042 * If a holdout task is actually running, request an urgent quiescent
1043 * state from its CPU. This is unsynchronized, so migrations can cause
1044 * the request to go to the wrong CPU. Which is OK, all that will happen
1045 * is that the CPU's next context switch will be a bit slower and next
1046 * time around this task will generate another request.
1048 void rcu_request_urgent_qs_task(struct task_struct *t)
1055 return; /* This task is not running on that CPU. */
1056 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1059 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1062 * Is the current CPU online? Disable preemption to avoid false positives
1063 * that could otherwise happen due to the current CPU number being sampled,
1064 * this task being preempted, its old CPU being taken offline, resuming
1065 * on some other CPU, then determining that its old CPU is now offline.
1066 * It is OK to use RCU on an offline processor during initial boot, hence
1067 * the check for rcu_scheduler_fully_active. Note also that it is OK
1068 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1069 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
1070 * offline to continue to use RCU for one jiffy after marking itself
1071 * offline in the cpu_online_mask. This leniency is necessary given the
1072 * non-atomic nature of the online and offline processing, for example,
1073 * the fact that a CPU enters the scheduler after completing the teardown
1076 * This is also why RCU internally marks CPUs online during in the
1077 * preparation phase and offline after the CPU has been taken down.
1079 * Disable checking if in an NMI handler because we cannot safely report
1080 * errors from NMI handlers anyway.
1082 bool rcu_lockdep_current_cpu_online(void)
1084 struct rcu_data *rdp;
1085 struct rcu_node *rnp;
1091 rdp = this_cpu_ptr(&rcu_sched_data);
1093 ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1094 !rcu_scheduler_fully_active;
1098 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1100 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1103 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1105 * If the current CPU is idle or running at a first-level (not nested)
1106 * interrupt from idle, return true. The caller must have at least
1107 * disabled preemption.
1109 static int rcu_is_cpu_rrupt_from_idle(void)
1111 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1112 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
1116 * We are reporting a quiescent state on behalf of some other CPU, so
1117 * it is our responsibility to check for and handle potential overflow
1118 * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1119 * After all, the CPU might be in deep idle state, and thus executing no
1122 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1124 raw_lockdep_assert_held_rcu_node(rnp);
1125 if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
1126 WRITE_ONCE(rdp->gpwrap, true);
1127 if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
1128 rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
1132 * Snapshot the specified CPU's dynticks counter so that we can later
1133 * credit them with an implicit quiescent state. Return 1 if this CPU
1134 * is in dynticks idle mode, which is an extended quiescent state.
1136 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1138 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1139 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1140 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1141 rcu_gpnum_ovf(rdp->mynode, rdp);
1148 * Handler for the irq_work request posted when a grace period has
1149 * gone on for too long, but not yet long enough for an RCU CPU
1150 * stall warning. Set state appropriately, but just complain if
1151 * there is unexpected state on entry.
1153 static void rcu_iw_handler(struct irq_work *iwp)
1155 struct rcu_data *rdp;
1156 struct rcu_node *rnp;
1158 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1160 raw_spin_lock_rcu_node(rnp);
1161 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1162 rdp->rcu_iw_gpnum = rnp->gpnum;
1163 rdp->rcu_iw_pending = false;
1165 raw_spin_unlock_rcu_node(rnp);
1169 * Return true if the specified CPU has passed through a quiescent
1170 * state by virtue of being in or having passed through an dynticks
1171 * idle state since the last call to dyntick_save_progress_counter()
1172 * for this same CPU, or by virtue of having been offline.
1174 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1179 struct rcu_node *rnp = rdp->mynode;
1182 * If the CPU passed through or entered a dynticks idle phase with
1183 * no active irq/NMI handlers, then we can safely pretend that the CPU
1184 * already acknowledged the request to pass through a quiescent
1185 * state. Either way, that CPU cannot possibly be in an RCU
1186 * read-side critical section that started before the beginning
1187 * of the current RCU grace period.
1189 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1190 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1191 rdp->dynticks_fqs++;
1192 rcu_gpnum_ovf(rnp, rdp);
1197 * Has this CPU encountered a cond_resched() since the beginning
1198 * of the grace period? For this to be the case, the CPU has to
1199 * have noticed the current grace period. This might not be the
1200 * case for nohz_full CPUs looping in the kernel.
1202 jtsq = jiffies_till_sched_qs;
1203 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1204 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1205 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1206 READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1207 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1208 rcu_gpnum_ovf(rnp, rdp);
1210 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
1211 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1212 smp_store_release(ruqp, true);
1215 /* Check for the CPU being offline. */
1216 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1217 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1219 rcu_gpnum_ovf(rnp, rdp);
1224 * A CPU running for an extended time within the kernel can
1225 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1226 * even context-switching back and forth between a pair of
1227 * in-kernel CPU-bound tasks cannot advance grace periods.
1228 * So if the grace period is old enough, make the CPU pay attention.
1229 * Note that the unsynchronized assignments to the per-CPU
1230 * rcu_need_heavy_qs variable are safe. Yes, setting of
1231 * bits can be lost, but they will be set again on the next
1232 * force-quiescent-state pass. So lost bit sets do not result
1233 * in incorrect behavior, merely in a grace period lasting
1234 * a few jiffies longer than it might otherwise. Because
1235 * there are at most four threads involved, and because the
1236 * updates are only once every few jiffies, the probability of
1237 * lossage (and thus of slight grace-period extension) is
1240 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1241 if (!READ_ONCE(*rnhqp) &&
1242 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1243 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1244 WRITE_ONCE(*rnhqp, true);
1245 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1246 smp_store_release(ruqp, true);
1247 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
1251 * If more than halfway to RCU CPU stall-warning time, do a
1252 * resched_cpu() to try to loosen things up a bit. Also check to
1253 * see if the CPU is getting hammered with interrupts, but only
1254 * once per grace period, just to keep the IPIs down to a dull roar.
1256 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
1257 resched_cpu(rdp->cpu);
1258 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1259 !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
1260 (rnp->ffmask & rdp->grpmask)) {
1261 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1262 rdp->rcu_iw_pending = true;
1263 rdp->rcu_iw_gpnum = rnp->gpnum;
1264 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1271 static void record_gp_stall_check_time(struct rcu_state *rsp)
1273 unsigned long j = jiffies;
1277 smp_wmb(); /* Record start time before stall time. */
1278 j1 = rcu_jiffies_till_stall_check();
1279 WRITE_ONCE(rsp->jiffies_stall, j + j1);
1280 rsp->jiffies_resched = j + j1 / 2;
1281 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1285 * Convert a ->gp_state value to a character string.
1287 static const char *gp_state_getname(short gs)
1289 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1291 return gp_state_names[gs];
1295 * Complain about starvation of grace-period kthread.
1297 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1303 gpa = READ_ONCE(rsp->gp_activity);
1304 if (j - gpa > 2 * HZ) {
1305 pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1307 rsp->gpnum, rsp->completed,
1309 gp_state_getname(rsp->gp_state), rsp->gp_state,
1310 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1311 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1312 if (rsp->gp_kthread) {
1313 pr_err("RCU grace-period kthread stack dump:\n");
1314 sched_show_task(rsp->gp_kthread);
1315 wake_up_process(rsp->gp_kthread);
1321 * Dump stacks of all tasks running on stalled CPUs. First try using
1322 * NMIs, but fall back to manual remote stack tracing on architectures
1323 * that don't support NMI-based stack dumps. The NMI-triggered stack
1324 * traces are more accurate because they are printed by the target CPU.
1326 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1329 unsigned long flags;
1330 struct rcu_node *rnp;
1332 rcu_for_each_leaf_node(rsp, rnp) {
1333 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1334 for_each_leaf_node_possible_cpu(rnp, cpu)
1335 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1336 if (!trigger_single_cpu_backtrace(cpu))
1338 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1343 * If too much time has passed in the current grace period, and if
1344 * so configured, go kick the relevant kthreads.
1346 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1350 if (!rcu_kick_kthreads)
1352 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1353 if (time_after(jiffies, j) && rsp->gp_kthread &&
1354 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1355 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1356 rcu_ftrace_dump(DUMP_ALL);
1357 wake_up_process(rsp->gp_kthread);
1358 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1362 static inline void panic_on_rcu_stall(void)
1364 if (sysctl_panic_on_rcu_stall)
1365 panic("RCU Stall\n");
1368 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1372 unsigned long flags;
1376 struct rcu_node *rnp = rcu_get_root(rsp);
1379 /* Kick and suppress, if so configured. */
1380 rcu_stall_kick_kthreads(rsp);
1381 if (rcu_cpu_stall_suppress)
1384 /* Only let one CPU complain about others per time interval. */
1386 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1387 delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1388 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1389 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1392 WRITE_ONCE(rsp->jiffies_stall,
1393 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1394 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1397 * OK, time to rat on our buddy...
1398 * See Documentation/RCU/stallwarn.txt for info on how to debug
1399 * RCU CPU stall warnings.
1401 pr_err("INFO: %s detected stalls on CPUs/tasks:",
1403 print_cpu_stall_info_begin();
1404 rcu_for_each_leaf_node(rsp, rnp) {
1405 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1406 ndetected += rcu_print_task_stall(rnp);
1407 if (rnp->qsmask != 0) {
1408 for_each_leaf_node_possible_cpu(rnp, cpu)
1409 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1410 print_cpu_stall_info(rsp, cpu);
1414 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1417 print_cpu_stall_info_end();
1418 for_each_possible_cpu(cpu)
1419 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1421 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1422 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1423 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1425 rcu_dump_cpu_stacks(rsp);
1427 /* Complain about tasks blocking the grace period. */
1428 rcu_print_detail_task_stall(rsp);
1430 if (READ_ONCE(rsp->gpnum) != gpnum ||
1431 READ_ONCE(rsp->completed) == gpnum) {
1432 pr_err("INFO: Stall ended before state dump start\n");
1435 gpa = READ_ONCE(rsp->gp_activity);
1436 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1437 rsp->name, j - gpa, j, gpa,
1438 jiffies_till_next_fqs,
1439 rcu_get_root(rsp)->qsmask);
1440 /* In this case, the current CPU might be at fault. */
1441 sched_show_task(current);
1445 rcu_check_gp_kthread_starvation(rsp);
1447 panic_on_rcu_stall();
1449 force_quiescent_state(rsp); /* Kick them all. */
1452 static void print_cpu_stall(struct rcu_state *rsp)
1455 unsigned long flags;
1456 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1457 struct rcu_node *rnp = rcu_get_root(rsp);
1460 /* Kick and suppress, if so configured. */
1461 rcu_stall_kick_kthreads(rsp);
1462 if (rcu_cpu_stall_suppress)
1466 * OK, time to rat on ourselves...
1467 * See Documentation/RCU/stallwarn.txt for info on how to debug
1468 * RCU CPU stall warnings.
1470 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1471 print_cpu_stall_info_begin();
1472 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1473 print_cpu_stall_info(rsp, smp_processor_id());
1474 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1475 print_cpu_stall_info_end();
1476 for_each_possible_cpu(cpu)
1477 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1479 pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1480 jiffies - rsp->gp_start,
1481 (long)rsp->gpnum, (long)rsp->completed, totqlen);
1483 rcu_check_gp_kthread_starvation(rsp);
1485 rcu_dump_cpu_stacks(rsp);
1487 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1488 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1489 WRITE_ONCE(rsp->jiffies_stall,
1490 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1491 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1493 panic_on_rcu_stall();
1496 * Attempt to revive the RCU machinery by forcing a context switch.
1498 * A context switch would normally allow the RCU state machine to make
1499 * progress and it could be we're stuck in kernel space without context
1500 * switches for an entirely unreasonable amount of time.
1502 resched_cpu(smp_processor_id());
1505 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1507 unsigned long completed;
1508 unsigned long gpnum;
1512 struct rcu_node *rnp;
1514 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1515 !rcu_gp_in_progress(rsp))
1517 rcu_stall_kick_kthreads(rsp);
1521 * Lots of memory barriers to reject false positives.
1523 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1524 * then rsp->gp_start, and finally rsp->completed. These values
1525 * are updated in the opposite order with memory barriers (or
1526 * equivalent) during grace-period initialization and cleanup.
1527 * Now, a false positive can occur if we get an new value of
1528 * rsp->gp_start and a old value of rsp->jiffies_stall. But given
1529 * the memory barriers, the only way that this can happen is if one
1530 * grace period ends and another starts between these two fetches.
1531 * Detect this by comparing rsp->completed with the previous fetch
1534 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1535 * and rsp->gp_start suffice to forestall false positives.
1537 gpnum = READ_ONCE(rsp->gpnum);
1538 smp_rmb(); /* Pick up ->gpnum first... */
1539 js = READ_ONCE(rsp->jiffies_stall);
1540 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1541 gps = READ_ONCE(rsp->gp_start);
1542 smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1543 completed = READ_ONCE(rsp->completed);
1544 if (ULONG_CMP_GE(completed, gpnum) ||
1545 ULONG_CMP_LT(j, js) ||
1546 ULONG_CMP_GE(gps, js))
1547 return; /* No stall or GP completed since entering function. */
1549 if (rcu_gp_in_progress(rsp) &&
1550 (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1552 /* We haven't checked in, so go dump stack. */
1553 print_cpu_stall(rsp);
1555 } else if (rcu_gp_in_progress(rsp) &&
1556 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1558 /* They had a few time units to dump stack, so complain. */
1559 print_other_cpu_stall(rsp, gpnum);
1564 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1566 * Set the stall-warning timeout way off into the future, thus preventing
1567 * any RCU CPU stall-warning messages from appearing in the current set of
1568 * RCU grace periods.
1570 * The caller must disable hard irqs.
1572 void rcu_cpu_stall_reset(void)
1574 struct rcu_state *rsp;
1576 for_each_rcu_flavor(rsp)
1577 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1581 * Determine the value that ->completed will have at the end of the
1582 * next subsequent grace period. This is used to tag callbacks so that
1583 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1584 * been dyntick-idle for an extended period with callbacks under the
1585 * influence of RCU_FAST_NO_HZ.
1587 * The caller must hold rnp->lock with interrupts disabled.
1589 static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1590 struct rcu_node *rnp)
1592 raw_lockdep_assert_held_rcu_node(rnp);
1595 * If RCU is idle, we just wait for the next grace period.
1596 * But we can only be sure that RCU is idle if we are looking
1597 * at the root rcu_node structure -- otherwise, a new grace
1598 * period might have started, but just not yet gotten around
1599 * to initializing the current non-root rcu_node structure.
1601 if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1602 return rnp->completed + 1;
1605 * If the current rcu_node structure believes that RCU is
1606 * idle, and if the rcu_state structure does not yet reflect
1607 * the start of a new grace period, then the next grace period
1608 * will suffice. The memory barrier is needed to accurately
1609 * sample the rsp->gpnum, and pairs with the second lock
1610 * acquisition in rcu_gp_init(), which is augmented with
1611 * smp_mb__after_unlock_lock() for this purpose.
1613 if (rnp->gpnum == rnp->completed) {
1614 smp_mb(); /* See above block comment. */
1615 if (READ_ONCE(rsp->gpnum) == rnp->completed)
1616 return rnp->completed + 1;
1620 * Otherwise, wait for a possible partial grace period and
1621 * then the subsequent full grace period.
1623 return rnp->completed + 2;
1626 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1627 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1628 unsigned long c, const char *s)
1630 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1631 rnp->completed, c, rnp->level,
1632 rnp->grplo, rnp->grphi, s);
1636 * Start the specified grace period, as needed to handle newly arrived
1637 * callbacks. The required future grace periods are recorded in each
1638 * rcu_node structure's ->need_future_gp[] field. Returns true if there
1639 * is reason to awaken the grace-period kthread.
1641 * The caller must hold the specified rcu_node structure's ->lock, which
1642 * is why the caller is responsible for waking the grace-period kthread.
1644 static bool rcu_start_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1648 struct rcu_state *rsp = rdp->rsp;
1649 struct rcu_node *rnp_root;
1652 * Use funnel locking to either acquire the root rcu_node
1653 * structure's lock or bail out if the need for this grace period
1654 * has already been recorded -- or has already started. If there
1655 * is already a grace period in progress in a non-leaf node, no
1656 * recording is needed because the end of the grace period will
1657 * scan the leaf rcu_node structures. Note that rnp->lock must
1660 raw_lockdep_assert_held_rcu_node(rnp);
1661 trace_rcu_this_gp(rnp, rdp, c, TPS("Startleaf"));
1662 for (rnp_root = rnp; 1; rnp_root = rnp_root->parent) {
1663 if (rnp_root != rnp)
1664 raw_spin_lock_rcu_node(rnp_root);
1665 WARN_ON_ONCE(ULONG_CMP_LT(rnp_root->gpnum +
1666 need_future_gp_mask(), c));
1667 if (need_future_gp_element(rnp_root, c) ||
1668 ULONG_CMP_GE(rnp_root->gpnum, c) ||
1670 rnp_root->gpnum != rnp_root->completed)) {
1671 trace_rcu_this_gp(rnp_root, rdp, c, TPS("Prestarted"));
1674 need_future_gp_element(rnp_root, c) = true;
1675 if (rnp_root != rnp && rnp_root->parent != NULL)
1676 raw_spin_unlock_rcu_node(rnp_root);
1677 if (!rnp_root->parent)
1678 break; /* At root, and perhaps also leaf. */
1681 /* If GP already in progress, just leave, otherwise start one. */
1682 if (rnp_root->gpnum != rnp_root->completed) {
1683 trace_rcu_this_gp(rnp_root, rdp, c, TPS("Startedleafroot"));
1686 trace_rcu_this_gp(rnp_root, rdp, c, TPS("Startedroot"));
1687 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT);
1688 if (!rsp->gp_kthread) {
1689 trace_rcu_this_gp(rnp_root, rdp, c, TPS("NoGPkthread"));
1692 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum), TPS("newreq"));
1693 ret = true; /* Caller must wake GP kthread. */
1695 if (rnp != rnp_root)
1696 raw_spin_unlock_rcu_node(rnp_root);
1701 * Clean up any old requests for the just-ended grace period. Also return
1702 * whether any additional grace periods have been requested.
1704 static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1706 unsigned long c = rnp->completed;
1708 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1710 need_future_gp_element(rnp, c) = false;
1711 needmore = need_any_future_gp(rnp);
1712 trace_rcu_this_gp(rnp, rdp, c,
1713 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1718 * Awaken the grace-period kthread for the specified flavor of RCU.
1719 * Don't do a self-awaken, and don't bother awakening when there is
1720 * nothing for the grace-period kthread to do (as in several CPUs
1721 * raced to awaken, and we lost), and finally don't try to awaken
1722 * a kthread that has not yet been created.
1724 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1726 if (current == rsp->gp_kthread ||
1727 !READ_ONCE(rsp->gp_flags) ||
1730 swake_up(&rsp->gp_wq);
1734 * If there is room, assign a ->completed number to any callbacks on
1735 * this CPU that have not already been assigned. Also accelerate any
1736 * callbacks that were previously assigned a ->completed number that has
1737 * since proven to be too conservative, which can happen if callbacks get
1738 * assigned a ->completed number while RCU is idle, but with reference to
1739 * a non-root rcu_node structure. This function is idempotent, so it does
1740 * not hurt to call it repeatedly. Returns an flag saying that we should
1741 * awaken the RCU grace-period kthread.
1743 * The caller must hold rnp->lock with interrupts disabled.
1745 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1746 struct rcu_data *rdp)
1751 raw_lockdep_assert_held_rcu_node(rnp);
1753 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1754 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1758 * Callbacks are often registered with incomplete grace-period
1759 * information. Something about the fact that getting exact
1760 * information requires acquiring a global lock... RCU therefore
1761 * makes a conservative estimate of the grace period number at which
1762 * a given callback will become ready to invoke. The following
1763 * code checks this estimate and improves it when possible, thus
1764 * accelerating callback invocation to an earlier grace-period
1767 c = rcu_cbs_completed(rsp, rnp);
1768 if (rcu_segcblist_accelerate(&rdp->cblist, c))
1769 ret = rcu_start_this_gp(rnp, rdp, c);
1771 /* Trace depending on how much we were able to accelerate. */
1772 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1773 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1775 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1780 * Move any callbacks whose grace period has completed to the
1781 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1782 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1783 * sublist. This function is idempotent, so it does not hurt to
1784 * invoke it repeatedly. As long as it is not invoked -too- often...
1785 * Returns true if the RCU grace-period kthread needs to be awakened.
1787 * The caller must hold rnp->lock with interrupts disabled.
1789 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1790 struct rcu_data *rdp)
1792 raw_lockdep_assert_held_rcu_node(rnp);
1794 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1795 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1799 * Find all callbacks whose ->completed numbers indicate that they
1800 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1802 rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1804 /* Classify any remaining callbacks. */
1805 return rcu_accelerate_cbs(rsp, rnp, rdp);
1809 * Update CPU-local rcu_data state to record the beginnings and ends of
1810 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1811 * structure corresponding to the current CPU, and must have irqs disabled.
1812 * Returns true if the grace-period kthread needs to be awakened.
1814 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1815 struct rcu_data *rdp)
1820 raw_lockdep_assert_held_rcu_node(rnp);
1822 /* Handle the ends of any preceding grace periods first. */
1823 if (rdp->completed == rnp->completed &&
1824 !unlikely(READ_ONCE(rdp->gpwrap))) {
1826 /* No grace period end, so just accelerate recent callbacks. */
1827 ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1831 /* Advance callbacks. */
1832 ret = rcu_advance_cbs(rsp, rnp, rdp);
1834 /* Remember that we saw this grace-period completion. */
1835 rdp->completed = rnp->completed;
1836 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1839 if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
1841 * If the current grace period is waiting for this CPU,
1842 * set up to detect a quiescent state, otherwise don't
1843 * go looking for one.
1845 rdp->gpnum = rnp->gpnum;
1846 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1847 need_gp = !!(rnp->qsmask & rdp->grpmask);
1848 rdp->cpu_no_qs.b.norm = need_gp;
1849 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1850 rdp->core_needs_qs = need_gp;
1851 zero_cpu_stall_ticks(rdp);
1852 WRITE_ONCE(rdp->gpwrap, false);
1853 rcu_gpnum_ovf(rnp, rdp);
1858 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1860 unsigned long flags;
1862 struct rcu_node *rnp;
1864 local_irq_save(flags);
1866 if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1867 rdp->completed == READ_ONCE(rnp->completed) &&
1868 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1869 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1870 local_irq_restore(flags);
1873 needwake = __note_gp_changes(rsp, rnp, rdp);
1874 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1876 rcu_gp_kthread_wake(rsp);
1879 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1882 !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1883 schedule_timeout_uninterruptible(delay);
1887 * Initialize a new grace period. Return false if no grace period required.
1889 static bool rcu_gp_init(struct rcu_state *rsp)
1891 unsigned long oldmask;
1892 struct rcu_data *rdp;
1893 struct rcu_node *rnp = rcu_get_root(rsp);
1895 WRITE_ONCE(rsp->gp_activity, jiffies);
1896 raw_spin_lock_irq_rcu_node(rnp);
1897 if (!READ_ONCE(rsp->gp_flags)) {
1898 /* Spurious wakeup, tell caller to go back to sleep. */
1899 raw_spin_unlock_irq_rcu_node(rnp);
1902 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1904 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1906 * Grace period already in progress, don't start another.
1907 * Not supposed to be able to happen.
1909 raw_spin_unlock_irq_rcu_node(rnp);
1913 /* Advance to a new grace period and initialize state. */
1914 record_gp_stall_check_time(rsp);
1915 /* Record GP times before starting GP, hence smp_store_release(). */
1916 smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1917 trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1918 raw_spin_unlock_irq_rcu_node(rnp);
1921 * Apply per-leaf buffered online and offline operations to the
1922 * rcu_node tree. Note that this new grace period need not wait
1923 * for subsequent online CPUs, and that quiescent-state forcing
1924 * will handle subsequent offline CPUs.
1926 rcu_for_each_leaf_node(rsp, rnp) {
1927 rcu_gp_slow(rsp, gp_preinit_delay);
1928 raw_spin_lock_irq_rcu_node(rnp);
1929 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1930 !rnp->wait_blkd_tasks) {
1931 /* Nothing to do on this leaf rcu_node structure. */
1932 raw_spin_unlock_irq_rcu_node(rnp);
1936 /* Record old state, apply changes to ->qsmaskinit field. */
1937 oldmask = rnp->qsmaskinit;
1938 rnp->qsmaskinit = rnp->qsmaskinitnext;
1940 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1941 if (!oldmask != !rnp->qsmaskinit) {
1942 if (!oldmask) /* First online CPU for this rcu_node. */
1943 rcu_init_new_rnp(rnp);
1944 else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
1945 rnp->wait_blkd_tasks = true;
1946 else /* Last offline CPU and can propagate. */
1947 rcu_cleanup_dead_rnp(rnp);
1951 * If all waited-on tasks from prior grace period are
1952 * done, and if all this rcu_node structure's CPUs are
1953 * still offline, propagate up the rcu_node tree and
1954 * clear ->wait_blkd_tasks. Otherwise, if one of this
1955 * rcu_node structure's CPUs has since come back online,
1956 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
1957 * checks for this, so just call it unconditionally).
1959 if (rnp->wait_blkd_tasks &&
1960 (!rcu_preempt_has_tasks(rnp) ||
1962 rnp->wait_blkd_tasks = false;
1963 rcu_cleanup_dead_rnp(rnp);
1966 raw_spin_unlock_irq_rcu_node(rnp);
1970 * Set the quiescent-state-needed bits in all the rcu_node
1971 * structures for all currently online CPUs in breadth-first order,
1972 * starting from the root rcu_node structure, relying on the layout
1973 * of the tree within the rsp->node[] array. Note that other CPUs
1974 * will access only the leaves of the hierarchy, thus seeing that no
1975 * grace period is in progress, at least until the corresponding
1976 * leaf node has been initialized.
1978 * The grace period cannot complete until the initialization
1979 * process finishes, because this kthread handles both.
1981 rcu_for_each_node_breadth_first(rsp, rnp) {
1982 rcu_gp_slow(rsp, gp_init_delay);
1983 raw_spin_lock_irq_rcu_node(rnp);
1984 rdp = this_cpu_ptr(rsp->rda);
1985 rcu_preempt_check_blocked_tasks(rnp);
1986 rnp->qsmask = rnp->qsmaskinit;
1987 WRITE_ONCE(rnp->gpnum, rsp->gpnum);
1988 if (WARN_ON_ONCE(rnp->completed != rsp->completed))
1989 WRITE_ONCE(rnp->completed, rsp->completed);
1990 if (rnp == rdp->mynode)
1991 (void)__note_gp_changes(rsp, rnp, rdp);
1992 rcu_preempt_boost_start_gp(rnp);
1993 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1994 rnp->level, rnp->grplo,
1995 rnp->grphi, rnp->qsmask);
1996 raw_spin_unlock_irq_rcu_node(rnp);
1997 cond_resched_tasks_rcu_qs();
1998 WRITE_ONCE(rsp->gp_activity, jiffies);
2005 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2008 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2010 struct rcu_node *rnp = rcu_get_root(rsp);
2012 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2013 *gfp = READ_ONCE(rsp->gp_flags);
2014 if (*gfp & RCU_GP_FLAG_FQS)
2017 /* The current grace period has completed. */
2018 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2025 * Do one round of quiescent-state forcing.
2027 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2029 struct rcu_node *rnp = rcu_get_root(rsp);
2031 WRITE_ONCE(rsp->gp_activity, jiffies);
2034 /* Collect dyntick-idle snapshots. */
2035 force_qs_rnp(rsp, dyntick_save_progress_counter);
2037 /* Handle dyntick-idle and offline CPUs. */
2038 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2040 /* Clear flag to prevent immediate re-entry. */
2041 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2042 raw_spin_lock_irq_rcu_node(rnp);
2043 WRITE_ONCE(rsp->gp_flags,
2044 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2045 raw_spin_unlock_irq_rcu_node(rnp);
2050 * Clean up after the old grace period.
2052 static void rcu_gp_cleanup(struct rcu_state *rsp)
2054 unsigned long gp_duration;
2055 bool needgp = false;
2056 struct rcu_data *rdp;
2057 struct rcu_node *rnp = rcu_get_root(rsp);
2058 struct swait_queue_head *sq;
2060 WRITE_ONCE(rsp->gp_activity, jiffies);
2061 raw_spin_lock_irq_rcu_node(rnp);
2062 gp_duration = jiffies - rsp->gp_start;
2063 if (gp_duration > rsp->gp_max)
2064 rsp->gp_max = gp_duration;
2067 * We know the grace period is complete, but to everyone else
2068 * it appears to still be ongoing. But it is also the case
2069 * that to everyone else it looks like there is nothing that
2070 * they can do to advance the grace period. It is therefore
2071 * safe for us to drop the lock in order to mark the grace
2072 * period as completed in all of the rcu_node structures.
2074 raw_spin_unlock_irq_rcu_node(rnp);
2077 * Propagate new ->completed value to rcu_node structures so
2078 * that other CPUs don't have to wait until the start of the next
2079 * grace period to process their callbacks. This also avoids
2080 * some nasty RCU grace-period initialization races by forcing
2081 * the end of the current grace period to be completely recorded in
2082 * all of the rcu_node structures before the beginning of the next
2083 * grace period is recorded in any of the rcu_node structures.
2085 rcu_for_each_node_breadth_first(rsp, rnp) {
2086 raw_spin_lock_irq_rcu_node(rnp);
2087 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
2088 WARN_ON_ONCE(rnp->qsmask);
2089 WRITE_ONCE(rnp->completed, rsp->gpnum);
2090 rdp = this_cpu_ptr(rsp->rda);
2091 if (rnp == rdp->mynode)
2092 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2093 /* smp_mb() provided by prior unlock-lock pair. */
2094 needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp;
2095 sq = rcu_nocb_gp_get(rnp);
2096 raw_spin_unlock_irq_rcu_node(rnp);
2097 rcu_nocb_gp_cleanup(sq);
2098 cond_resched_tasks_rcu_qs();
2099 WRITE_ONCE(rsp->gp_activity, jiffies);
2100 rcu_gp_slow(rsp, gp_cleanup_delay);
2102 rnp = rcu_get_root(rsp);
2103 raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2105 /* Declare grace period done. */
2106 WRITE_ONCE(rsp->completed, rsp->gpnum);
2107 trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2108 rsp->gp_state = RCU_GP_IDLE;
2109 /* Check for GP requests since above loop. */
2110 rdp = this_cpu_ptr(rsp->rda);
2111 if (need_any_future_gp(rnp)) {
2112 trace_rcu_this_gp(rnp, rdp, rsp->completed - 1,
2113 TPS("CleanupMore"));
2116 /* Advance CBs to reduce false positives below. */
2117 if (!rcu_accelerate_cbs(rsp, rnp, rdp) && needgp) {
2118 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2119 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2122 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT);
2123 raw_spin_unlock_irq_rcu_node(rnp);
2127 * Body of kthread that handles grace periods.
2129 static int __noreturn rcu_gp_kthread(void *arg)
2135 struct rcu_state *rsp = arg;
2136 struct rcu_node *rnp = rcu_get_root(rsp);
2138 rcu_bind_gp_kthread();
2141 /* Handle grace-period start. */
2143 trace_rcu_grace_period(rsp->name,
2144 READ_ONCE(rsp->gpnum),
2146 rsp->gp_state = RCU_GP_WAIT_GPS;
2147 swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2149 rsp->gp_state = RCU_GP_DONE_GPS;
2150 /* Locking provides needed memory barrier. */
2151 if (rcu_gp_init(rsp))
2153 cond_resched_tasks_rcu_qs();
2154 WRITE_ONCE(rsp->gp_activity, jiffies);
2155 WARN_ON(signal_pending(current));
2156 trace_rcu_grace_period(rsp->name,
2157 READ_ONCE(rsp->gpnum),
2161 /* Handle quiescent-state forcing. */
2162 first_gp_fqs = true;
2163 j = jiffies_till_first_fqs;
2166 jiffies_till_first_fqs = HZ;
2171 rsp->jiffies_force_qs = jiffies + j;
2172 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2175 trace_rcu_grace_period(rsp->name,
2176 READ_ONCE(rsp->gpnum),
2178 rsp->gp_state = RCU_GP_WAIT_FQS;
2179 ret = swait_event_idle_timeout(rsp->gp_wq,
2180 rcu_gp_fqs_check_wake(rsp, &gf), j);
2181 rsp->gp_state = RCU_GP_DOING_FQS;
2182 /* Locking provides needed memory barriers. */
2183 /* If grace period done, leave loop. */
2184 if (!READ_ONCE(rnp->qsmask) &&
2185 !rcu_preempt_blocked_readers_cgp(rnp))
2187 /* If time for quiescent-state forcing, do it. */
2188 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2189 (gf & RCU_GP_FLAG_FQS)) {
2190 trace_rcu_grace_period(rsp->name,
2191 READ_ONCE(rsp->gpnum),
2193 rcu_gp_fqs(rsp, first_gp_fqs);
2194 first_gp_fqs = false;
2195 trace_rcu_grace_period(rsp->name,
2196 READ_ONCE(rsp->gpnum),
2198 cond_resched_tasks_rcu_qs();
2199 WRITE_ONCE(rsp->gp_activity, jiffies);
2200 ret = 0; /* Force full wait till next FQS. */
2201 j = jiffies_till_next_fqs;
2204 jiffies_till_next_fqs = HZ;
2207 jiffies_till_next_fqs = 1;
2210 /* Deal with stray signal. */
2211 cond_resched_tasks_rcu_qs();
2212 WRITE_ONCE(rsp->gp_activity, jiffies);
2213 WARN_ON(signal_pending(current));
2214 trace_rcu_grace_period(rsp->name,
2215 READ_ONCE(rsp->gpnum),
2217 ret = 1; /* Keep old FQS timing. */
2219 if (time_after(jiffies, rsp->jiffies_force_qs))
2222 j = rsp->jiffies_force_qs - j;
2226 /* Handle grace-period end. */
2227 rsp->gp_state = RCU_GP_CLEANUP;
2228 rcu_gp_cleanup(rsp);
2229 rsp->gp_state = RCU_GP_CLEANED;
2234 * Report a full set of quiescent states to the specified rcu_state data
2235 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2236 * kthread if another grace period is required. Whether we wake
2237 * the grace-period kthread or it awakens itself for the next round
2238 * of quiescent-state forcing, that kthread will clean up after the
2239 * just-completed grace period. Note that the caller must hold rnp->lock,
2240 * which is released before return.
2242 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2243 __releases(rcu_get_root(rsp)->lock)
2245 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
2246 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2247 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2248 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2249 rcu_gp_kthread_wake(rsp);
2253 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2254 * Allows quiescent states for a group of CPUs to be reported at one go
2255 * to the specified rcu_node structure, though all the CPUs in the group
2256 * must be represented by the same rcu_node structure (which need not be a
2257 * leaf rcu_node structure, though it often will be). The gps parameter
2258 * is the grace-period snapshot, which means that the quiescent states
2259 * are valid only if rnp->gpnum is equal to gps. That structure's lock
2260 * must be held upon entry, and it is released before return.
2263 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2264 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2265 __releases(rnp->lock)
2267 unsigned long oldmask = 0;
2268 struct rcu_node *rnp_c;
2270 raw_lockdep_assert_held_rcu_node(rnp);
2272 /* Walk up the rcu_node hierarchy. */
2274 if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2277 * Our bit has already been cleared, or the
2278 * relevant grace period is already over, so done.
2280 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2283 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2284 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2285 rcu_preempt_blocked_readers_cgp(rnp));
2286 rnp->qsmask &= ~mask;
2287 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2288 mask, rnp->qsmask, rnp->level,
2289 rnp->grplo, rnp->grphi,
2291 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2293 /* Other bits still set at this level, so done. */
2294 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2297 mask = rnp->grpmask;
2298 if (rnp->parent == NULL) {
2300 /* No more levels. Exit loop holding root lock. */
2304 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2307 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2308 oldmask = rnp_c->qsmask;
2312 * Get here if we are the last CPU to pass through a quiescent
2313 * state for this grace period. Invoke rcu_report_qs_rsp()
2314 * to clean up and start the next grace period if one is needed.
2316 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2320 * Record a quiescent state for all tasks that were previously queued
2321 * on the specified rcu_node structure and that were blocking the current
2322 * RCU grace period. The caller must hold the specified rnp->lock with
2323 * irqs disabled, and this lock is released upon return, but irqs remain
2326 static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2327 struct rcu_node *rnp, unsigned long flags)
2328 __releases(rnp->lock)
2332 struct rcu_node *rnp_p;
2334 raw_lockdep_assert_held_rcu_node(rnp);
2335 if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2336 rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2337 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2338 return; /* Still need more quiescent states! */
2341 rnp_p = rnp->parent;
2342 if (rnp_p == NULL) {
2344 * Only one rcu_node structure in the tree, so don't
2345 * try to report up to its nonexistent parent!
2347 rcu_report_qs_rsp(rsp, flags);
2351 /* Report up the rest of the hierarchy, tracking current ->gpnum. */
2353 mask = rnp->grpmask;
2354 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2355 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2356 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2360 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2361 * structure. This must be called from the specified CPU.
2364 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2366 unsigned long flags;
2369 struct rcu_node *rnp;
2372 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2373 if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2374 rnp->completed == rnp->gpnum || rdp->gpwrap) {
2377 * The grace period in which this quiescent state was
2378 * recorded has ended, so don't report it upwards.
2379 * We will instead need a new quiescent state that lies
2380 * within the current grace period.
2382 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2383 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2384 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2387 mask = rdp->grpmask;
2388 if ((rnp->qsmask & mask) == 0) {
2389 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2391 rdp->core_needs_qs = false;
2394 * This GP can't end until cpu checks in, so all of our
2395 * callbacks can be processed during the next GP.
2397 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2399 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2400 /* ^^^ Released rnp->lock */
2402 rcu_gp_kthread_wake(rsp);
2407 * Check to see if there is a new grace period of which this CPU
2408 * is not yet aware, and if so, set up local rcu_data state for it.
2409 * Otherwise, see if this CPU has just passed through its first
2410 * quiescent state for this grace period, and record that fact if so.
2413 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2415 /* Check for grace-period ends and beginnings. */
2416 note_gp_changes(rsp, rdp);
2419 * Does this CPU still need to do its part for current grace period?
2420 * If no, return and let the other CPUs do their part as well.
2422 if (!rdp->core_needs_qs)
2426 * Was there a quiescent state since the beginning of the grace
2427 * period? If no, then exit and wait for the next call.
2429 if (rdp->cpu_no_qs.b.norm)
2433 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2436 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2440 * Trace the fact that this CPU is going offline.
2442 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2444 RCU_TRACE(unsigned long mask;)
2445 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2446 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2448 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2451 RCU_TRACE(mask = rdp->grpmask;)
2452 trace_rcu_grace_period(rsp->name,
2453 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2458 * All CPUs for the specified rcu_node structure have gone offline,
2459 * and all tasks that were preempted within an RCU read-side critical
2460 * section while running on one of those CPUs have since exited their RCU
2461 * read-side critical section. Some other CPU is reporting this fact with
2462 * the specified rcu_node structure's ->lock held and interrupts disabled.
2463 * This function therefore goes up the tree of rcu_node structures,
2464 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2465 * the leaf rcu_node structure's ->qsmaskinit field has already been
2468 * This function does check that the specified rcu_node structure has
2469 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2470 * prematurely. That said, invoking it after the fact will cost you
2471 * a needless lock acquisition. So once it has done its work, don't
2474 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2477 struct rcu_node *rnp = rnp_leaf;
2479 raw_lockdep_assert_held_rcu_node(rnp);
2480 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2481 rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2484 mask = rnp->grpmask;
2488 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2489 rnp->qsmaskinit &= ~mask;
2490 rnp->qsmask &= ~mask;
2491 if (rnp->qsmaskinit) {
2492 raw_spin_unlock_rcu_node(rnp);
2493 /* irqs remain disabled. */
2496 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2501 * The CPU has been completely removed, and some other CPU is reporting
2502 * this fact from process context. Do the remainder of the cleanup.
2503 * There can only be one CPU hotplug operation at a time, so no need for
2506 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2508 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2509 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2511 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2514 /* Adjust any no-longer-needed kthreads. */
2515 rcu_boost_kthread_setaffinity(rnp, -1);
2519 * Invoke any RCU callbacks that have made it to the end of their grace
2520 * period. Thottle as specified by rdp->blimit.
2522 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2524 unsigned long flags;
2525 struct rcu_head *rhp;
2526 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2529 /* If no callbacks are ready, just return. */
2530 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2531 trace_rcu_batch_start(rsp->name,
2532 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2533 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2534 trace_rcu_batch_end(rsp->name, 0,
2535 !rcu_segcblist_empty(&rdp->cblist),
2536 need_resched(), is_idle_task(current),
2537 rcu_is_callbacks_kthread());
2542 * Extract the list of ready callbacks, disabling to prevent
2543 * races with call_rcu() from interrupt handlers. Leave the
2544 * callback counts, as rcu_barrier() needs to be conservative.
2546 local_irq_save(flags);
2547 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2549 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2550 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2551 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2552 local_irq_restore(flags);
2554 /* Invoke callbacks. */
2555 rhp = rcu_cblist_dequeue(&rcl);
2556 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2557 debug_rcu_head_unqueue(rhp);
2558 if (__rcu_reclaim(rsp->name, rhp))
2559 rcu_cblist_dequeued_lazy(&rcl);
2561 * Stop only if limit reached and CPU has something to do.
2562 * Note: The rcl structure counts down from zero.
2564 if (-rcl.len >= bl &&
2566 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2570 local_irq_save(flags);
2572 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2573 is_idle_task(current), rcu_is_callbacks_kthread());
2575 /* Update counts and requeue any remaining callbacks. */
2576 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2577 smp_mb(); /* List handling before counting for rcu_barrier(). */
2578 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2580 /* Reinstate batch limit if we have worked down the excess. */
2581 count = rcu_segcblist_n_cbs(&rdp->cblist);
2582 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2583 rdp->blimit = blimit;
2585 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2586 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2587 rdp->qlen_last_fqs_check = 0;
2588 rdp->n_force_qs_snap = rsp->n_force_qs;
2589 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2590 rdp->qlen_last_fqs_check = count;
2593 * The following usually indicates a double call_rcu(). To track
2594 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2596 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2598 local_irq_restore(flags);
2600 /* Re-invoke RCU core processing if there are callbacks remaining. */
2601 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2606 * Check to see if this CPU is in a non-context-switch quiescent state
2607 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2608 * Also schedule RCU core processing.
2610 * This function must be called from hardirq context. It is normally
2611 * invoked from the scheduling-clock interrupt.
2613 void rcu_check_callbacks(int user)
2615 trace_rcu_utilization(TPS("Start scheduler-tick"));
2616 increment_cpu_stall_ticks();
2617 if (user || rcu_is_cpu_rrupt_from_idle()) {
2620 * Get here if this CPU took its interrupt from user
2621 * mode or from the idle loop, and if this is not a
2622 * nested interrupt. In this case, the CPU is in
2623 * a quiescent state, so note it.
2625 * No memory barrier is required here because both
2626 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2627 * variables that other CPUs neither access nor modify,
2628 * at least not while the corresponding CPU is online.
2634 } else if (!in_softirq()) {
2637 * Get here if this CPU did not take its interrupt from
2638 * softirq, in other words, if it is not interrupting
2639 * a rcu_bh read-side critical section. This is an _bh
2640 * critical section, so note it.
2645 rcu_preempt_check_callbacks();
2649 rcu_note_voluntary_context_switch(current);
2650 trace_rcu_utilization(TPS("End scheduler-tick"));
2654 * Scan the leaf rcu_node structures, processing dyntick state for any that
2655 * have not yet encountered a quiescent state, using the function specified.
2656 * Also initiate boosting for any threads blocked on the root rcu_node.
2658 * The caller must have suppressed start of new grace periods.
2660 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2663 unsigned long flags;
2665 struct rcu_node *rnp;
2667 rcu_for_each_leaf_node(rsp, rnp) {
2668 cond_resched_tasks_rcu_qs();
2670 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2671 if (rnp->qsmask == 0) {
2672 if (rcu_state_p == &rcu_sched_state ||
2673 rsp != rcu_state_p ||
2674 rcu_preempt_blocked_readers_cgp(rnp)) {
2676 * No point in scanning bits because they
2677 * are all zero. But we might need to
2678 * priority-boost blocked readers.
2680 rcu_initiate_boost(rnp, flags);
2681 /* rcu_initiate_boost() releases rnp->lock */
2685 (rnp->parent->qsmask & rnp->grpmask)) {
2687 * Race between grace-period
2688 * initialization and task exiting RCU
2689 * read-side critical section: Report.
2691 rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2692 /* rcu_report_unblock_qs_rnp() rlses ->lock */
2696 for_each_leaf_node_possible_cpu(rnp, cpu) {
2697 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2698 if ((rnp->qsmask & bit) != 0) {
2699 if (f(per_cpu_ptr(rsp->rda, cpu)))
2704 /* Idle/offline CPUs, report (releases rnp->lock. */
2705 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2707 /* Nothing to do here, so just drop the lock. */
2708 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2714 * Force quiescent states on reluctant CPUs, and also detect which
2715 * CPUs are in dyntick-idle mode.
2717 static void force_quiescent_state(struct rcu_state *rsp)
2719 unsigned long flags;
2721 struct rcu_node *rnp;
2722 struct rcu_node *rnp_old = NULL;
2724 /* Funnel through hierarchy to reduce memory contention. */
2725 rnp = __this_cpu_read(rsp->rda->mynode);
2726 for (; rnp != NULL; rnp = rnp->parent) {
2727 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2728 !raw_spin_trylock(&rnp->fqslock);
2729 if (rnp_old != NULL)
2730 raw_spin_unlock(&rnp_old->fqslock);
2735 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2737 /* Reached the root of the rcu_node tree, acquire lock. */
2738 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2739 raw_spin_unlock(&rnp_old->fqslock);
2740 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2741 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2742 return; /* Someone beat us to it. */
2744 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2745 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2746 rcu_gp_kthread_wake(rsp);
2750 * This does the RCU core processing work for the specified rcu_state
2751 * and rcu_data structures. This may be called only from the CPU to
2752 * whom the rdp belongs.
2755 __rcu_process_callbacks(struct rcu_state *rsp)
2757 unsigned long flags;
2759 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2760 struct rcu_node *rnp;
2762 WARN_ON_ONCE(!rdp->beenonline);
2764 /* Update RCU state based on any recent quiescent states. */
2765 rcu_check_quiescent_state(rsp, rdp);
2767 /* No grace period and unregistered callbacks? */
2768 if (!rcu_gp_in_progress(rsp) &&
2769 rcu_segcblist_is_enabled(&rdp->cblist)) {
2770 local_irq_save(flags);
2771 if (rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL)) {
2772 local_irq_restore(flags);
2775 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
2776 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2777 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2779 rcu_gp_kthread_wake(rsp);
2783 /* If there are callbacks ready, invoke them. */
2784 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2785 invoke_rcu_callbacks(rsp, rdp);
2787 /* Do any needed deferred wakeups of rcuo kthreads. */
2788 do_nocb_deferred_wakeup(rdp);
2792 * Do RCU core processing for the current CPU.
2794 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2796 struct rcu_state *rsp;
2798 if (cpu_is_offline(smp_processor_id()))
2800 trace_rcu_utilization(TPS("Start RCU core"));
2801 for_each_rcu_flavor(rsp)
2802 __rcu_process_callbacks(rsp);
2803 trace_rcu_utilization(TPS("End RCU core"));
2807 * Schedule RCU callback invocation. If the specified type of RCU
2808 * does not support RCU priority boosting, just do a direct call,
2809 * otherwise wake up the per-CPU kernel kthread. Note that because we
2810 * are running on the current CPU with softirqs disabled, the
2811 * rcu_cpu_kthread_task cannot disappear out from under us.
2813 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2815 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2817 if (likely(!rsp->boost)) {
2818 rcu_do_batch(rsp, rdp);
2821 invoke_rcu_callbacks_kthread();
2824 static void invoke_rcu_core(void)
2826 if (cpu_online(smp_processor_id()))
2827 raise_softirq(RCU_SOFTIRQ);
2831 * Handle any core-RCU processing required by a call_rcu() invocation.
2833 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2834 struct rcu_head *head, unsigned long flags)
2839 * If called from an extended quiescent state, invoke the RCU
2840 * core in order to force a re-evaluation of RCU's idleness.
2842 if (!rcu_is_watching())
2845 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2846 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2850 * Force the grace period if too many callbacks or too long waiting.
2851 * Enforce hysteresis, and don't invoke force_quiescent_state()
2852 * if some other CPU has recently done so. Also, don't bother
2853 * invoking force_quiescent_state() if the newly enqueued callback
2854 * is the only one waiting for a grace period to complete.
2856 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2857 rdp->qlen_last_fqs_check + qhimark)) {
2859 /* Are we ignoring a completed grace period? */
2860 note_gp_changes(rsp, rdp);
2862 /* Start a new grace period if one not already started. */
2863 if (!rcu_gp_in_progress(rsp)) {
2864 struct rcu_node *rnp = rdp->mynode;
2866 raw_spin_lock_rcu_node(rnp);
2867 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2868 raw_spin_unlock_rcu_node(rnp);
2870 rcu_gp_kthread_wake(rsp);
2872 /* Give the grace period a kick. */
2873 rdp->blimit = LONG_MAX;
2874 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2875 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2876 force_quiescent_state(rsp);
2877 rdp->n_force_qs_snap = rsp->n_force_qs;
2878 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2884 * RCU callback function to leak a callback.
2886 static void rcu_leak_callback(struct rcu_head *rhp)
2891 * Helper function for call_rcu() and friends. The cpu argument will
2892 * normally be -1, indicating "currently running CPU". It may specify
2893 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2894 * is expected to specify a CPU.
2897 __call_rcu(struct rcu_head *head, rcu_callback_t func,
2898 struct rcu_state *rsp, int cpu, bool lazy)
2900 unsigned long flags;
2901 struct rcu_data *rdp;
2903 /* Misaligned rcu_head! */
2904 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2906 if (debug_rcu_head_queue(head)) {
2908 * Probable double call_rcu(), so leak the callback.
2909 * Use rcu:rcu_callback trace event to find the previous
2910 * time callback was passed to __call_rcu().
2912 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2914 WRITE_ONCE(head->func, rcu_leak_callback);
2919 local_irq_save(flags);
2920 rdp = this_cpu_ptr(rsp->rda);
2922 /* Add the callback to our list. */
2923 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2927 rdp = per_cpu_ptr(rsp->rda, cpu);
2928 if (likely(rdp->mynode)) {
2929 /* Post-boot, so this should be for a no-CBs CPU. */
2930 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2931 WARN_ON_ONCE(offline);
2932 /* Offline CPU, _call_rcu() illegal, leak callback. */
2933 local_irq_restore(flags);
2937 * Very early boot, before rcu_init(). Initialize if needed
2938 * and then drop through to queue the callback.
2941 WARN_ON_ONCE(!rcu_is_watching());
2942 if (rcu_segcblist_empty(&rdp->cblist))
2943 rcu_segcblist_init(&rdp->cblist);
2945 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
2947 rcu_idle_count_callbacks_posted();
2949 if (__is_kfree_rcu_offset((unsigned long)func))
2950 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2951 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2952 rcu_segcblist_n_cbs(&rdp->cblist));
2954 trace_rcu_callback(rsp->name, head,
2955 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2956 rcu_segcblist_n_cbs(&rdp->cblist));
2958 /* Go handle any RCU core processing required. */
2959 __call_rcu_core(rsp, rdp, head, flags);
2960 local_irq_restore(flags);
2964 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
2965 * @head: structure to be used for queueing the RCU updates.
2966 * @func: actual callback function to be invoked after the grace period
2968 * The callback function will be invoked some time after a full grace
2969 * period elapses, in other words after all currently executing RCU
2970 * read-side critical sections have completed. call_rcu_sched() assumes
2971 * that the read-side critical sections end on enabling of preemption
2972 * or on voluntary preemption.
2973 * RCU read-side critical sections are delimited by:
2975 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
2976 * - anything that disables preemption.
2978 * These may be nested.
2980 * See the description of call_rcu() for more detailed information on
2981 * memory ordering guarantees.
2983 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
2985 __call_rcu(head, func, &rcu_sched_state, -1, 0);
2987 EXPORT_SYMBOL_GPL(call_rcu_sched);
2990 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
2991 * @head: structure to be used for queueing the RCU updates.
2992 * @func: actual callback function to be invoked after the grace period
2994 * The callback function will be invoked some time after a full grace
2995 * period elapses, in other words after all currently executing RCU
2996 * read-side critical sections have completed. call_rcu_bh() assumes
2997 * that the read-side critical sections end on completion of a softirq
2998 * handler. This means that read-side critical sections in process
2999 * context must not be interrupted by softirqs. This interface is to be
3000 * used when most of the read-side critical sections are in softirq context.
3001 * RCU read-side critical sections are delimited by:
3003 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3004 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3006 * These may be nested.
3008 * See the description of call_rcu() for more detailed information on
3009 * memory ordering guarantees.
3011 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3013 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3015 EXPORT_SYMBOL_GPL(call_rcu_bh);
3018 * Queue an RCU callback for lazy invocation after a grace period.
3019 * This will likely be later named something like "call_rcu_lazy()",
3020 * but this change will require some way of tagging the lazy RCU
3021 * callbacks in the list of pending callbacks. Until then, this
3022 * function may only be called from __kfree_rcu().
3024 void kfree_call_rcu(struct rcu_head *head,
3025 rcu_callback_t func)
3027 __call_rcu(head, func, rcu_state_p, -1, 1);
3029 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3032 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3033 * any blocking grace-period wait automatically implies a grace period
3034 * if there is only one CPU online at any point time during execution
3035 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3036 * occasionally incorrectly indicate that there are multiple CPUs online
3037 * when there was in fact only one the whole time, as this just adds
3038 * some overhead: RCU still operates correctly.
3040 static inline int rcu_blocking_is_gp(void)
3044 might_sleep(); /* Check for RCU read-side critical section. */
3046 ret = num_online_cpus() <= 1;
3052 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3054 * Control will return to the caller some time after a full rcu-sched
3055 * grace period has elapsed, in other words after all currently executing
3056 * rcu-sched read-side critical sections have completed. These read-side
3057 * critical sections are delimited by rcu_read_lock_sched() and
3058 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3059 * local_irq_disable(), and so on may be used in place of
3060 * rcu_read_lock_sched().
3062 * This means that all preempt_disable code sequences, including NMI and
3063 * non-threaded hardware-interrupt handlers, in progress on entry will
3064 * have completed before this primitive returns. However, this does not
3065 * guarantee that softirq handlers will have completed, since in some
3066 * kernels, these handlers can run in process context, and can block.
3068 * Note that this guarantee implies further memory-ordering guarantees.
3069 * On systems with more than one CPU, when synchronize_sched() returns,
3070 * each CPU is guaranteed to have executed a full memory barrier since the
3071 * end of its last RCU-sched read-side critical section whose beginning
3072 * preceded the call to synchronize_sched(). In addition, each CPU having
3073 * an RCU read-side critical section that extends beyond the return from
3074 * synchronize_sched() is guaranteed to have executed a full memory barrier
3075 * after the beginning of synchronize_sched() and before the beginning of
3076 * that RCU read-side critical section. Note that these guarantees include
3077 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3078 * that are executing in the kernel.
3080 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3081 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3082 * to have executed a full memory barrier during the execution of
3083 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3084 * again only if the system has more than one CPU).
3086 void synchronize_sched(void)
3088 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3089 lock_is_held(&rcu_lock_map) ||
3090 lock_is_held(&rcu_sched_lock_map),
3091 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3092 if (rcu_blocking_is_gp())
3094 if (rcu_gp_is_expedited())
3095 synchronize_sched_expedited();
3097 wait_rcu_gp(call_rcu_sched);
3099 EXPORT_SYMBOL_GPL(synchronize_sched);
3102 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3104 * Control will return to the caller some time after a full rcu_bh grace
3105 * period has elapsed, in other words after all currently executing rcu_bh
3106 * read-side critical sections have completed. RCU read-side critical
3107 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3108 * and may be nested.
3110 * See the description of synchronize_sched() for more detailed information
3111 * on memory ordering guarantees.
3113 void synchronize_rcu_bh(void)
3115 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3116 lock_is_held(&rcu_lock_map) ||
3117 lock_is_held(&rcu_sched_lock_map),
3118 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3119 if (rcu_blocking_is_gp())
3121 if (rcu_gp_is_expedited())
3122 synchronize_rcu_bh_expedited();
3124 wait_rcu_gp(call_rcu_bh);
3126 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3129 * get_state_synchronize_rcu - Snapshot current RCU state
3131 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3132 * to determine whether or not a full grace period has elapsed in the
3135 unsigned long get_state_synchronize_rcu(void)
3138 * Any prior manipulation of RCU-protected data must happen
3139 * before the load from ->gpnum.
3144 * Make sure this load happens before the purportedly
3145 * time-consuming work between get_state_synchronize_rcu()
3146 * and cond_synchronize_rcu().
3148 return smp_load_acquire(&rcu_state_p->gpnum);
3150 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3153 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3155 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3157 * If a full RCU grace period has elapsed since the earlier call to
3158 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3159 * synchronize_rcu() to wait for a full grace period.
3161 * Yes, this function does not take counter wrap into account. But
3162 * counter wrap is harmless. If the counter wraps, we have waited for
3163 * more than 2 billion grace periods (and way more on a 64-bit system!),
3164 * so waiting for one additional grace period should be just fine.
3166 void cond_synchronize_rcu(unsigned long oldstate)
3168 unsigned long newstate;
3171 * Ensure that this load happens before any RCU-destructive
3172 * actions the caller might carry out after we return.
3174 newstate = smp_load_acquire(&rcu_state_p->completed);
3175 if (ULONG_CMP_GE(oldstate, newstate))
3178 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3181 * get_state_synchronize_sched - Snapshot current RCU-sched state
3183 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3184 * to determine whether or not a full grace period has elapsed in the
3187 unsigned long get_state_synchronize_sched(void)
3190 * Any prior manipulation of RCU-protected data must happen
3191 * before the load from ->gpnum.
3196 * Make sure this load happens before the purportedly
3197 * time-consuming work between get_state_synchronize_sched()
3198 * and cond_synchronize_sched().
3200 return smp_load_acquire(&rcu_sched_state.gpnum);
3202 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3205 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3207 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3209 * If a full RCU-sched grace period has elapsed since the earlier call to
3210 * get_state_synchronize_sched(), just return. Otherwise, invoke
3211 * synchronize_sched() to wait for a full grace period.
3213 * Yes, this function does not take counter wrap into account. But
3214 * counter wrap is harmless. If the counter wraps, we have waited for
3215 * more than 2 billion grace periods (and way more on a 64-bit system!),
3216 * so waiting for one additional grace period should be just fine.
3218 void cond_synchronize_sched(unsigned long oldstate)
3220 unsigned long newstate;
3223 * Ensure that this load happens before any RCU-destructive
3224 * actions the caller might carry out after we return.
3226 newstate = smp_load_acquire(&rcu_sched_state.completed);
3227 if (ULONG_CMP_GE(oldstate, newstate))
3228 synchronize_sched();
3230 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3233 * Check to see if there is any immediate RCU-related work to be done
3234 * by the current CPU, for the specified type of RCU, returning 1 if so.
3235 * The checks are in order of increasing expense: checks that can be
3236 * carried out against CPU-local state are performed first. However,
3237 * we must check for CPU stalls first, else we might not get a chance.
3239 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3241 struct rcu_node *rnp = rdp->mynode;
3243 /* Check for CPU stalls, if enabled. */
3244 check_cpu_stall(rsp, rdp);
3246 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3247 if (rcu_nohz_full_cpu(rsp))
3250 /* Is the RCU core waiting for a quiescent state from this CPU? */
3251 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
3254 /* Does this CPU have callbacks ready to invoke? */
3255 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3258 /* Has RCU gone idle with this CPU needing another grace period? */
3259 if (!rcu_gp_in_progress(rsp) &&
3260 rcu_segcblist_is_enabled(&rdp->cblist) &&
3261 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3264 /* Has another RCU grace period completed? */
3265 if (READ_ONCE(rnp->completed) != rdp->completed) /* outside lock */
3268 /* Has a new RCU grace period started? */
3269 if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3270 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3273 /* Does this CPU need a deferred NOCB wakeup? */
3274 if (rcu_nocb_need_deferred_wakeup(rdp))
3282 * Check to see if there is any immediate RCU-related work to be done
3283 * by the current CPU, returning 1 if so. This function is part of the
3284 * RCU implementation; it is -not- an exported member of the RCU API.
3286 static int rcu_pending(void)
3288 struct rcu_state *rsp;
3290 for_each_rcu_flavor(rsp)
3291 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3297 * Return true if the specified CPU has any callback. If all_lazy is
3298 * non-NULL, store an indication of whether all callbacks are lazy.
3299 * (If there are no callbacks, all of them are deemed to be lazy.)
3301 static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3305 struct rcu_data *rdp;
3306 struct rcu_state *rsp;
3308 for_each_rcu_flavor(rsp) {
3309 rdp = this_cpu_ptr(rsp->rda);
3310 if (rcu_segcblist_empty(&rdp->cblist))
3313 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3324 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3325 * the compiler is expected to optimize this away.
3327 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3328 int cpu, unsigned long done)
3330 trace_rcu_barrier(rsp->name, s, cpu,
3331 atomic_read(&rsp->barrier_cpu_count), done);
3335 * RCU callback function for _rcu_barrier(). If we are last, wake
3336 * up the task executing _rcu_barrier().
3338 static void rcu_barrier_callback(struct rcu_head *rhp)
3340 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3341 struct rcu_state *rsp = rdp->rsp;
3343 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3344 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3345 rsp->barrier_sequence);
3346 complete(&rsp->barrier_completion);
3348 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3353 * Called with preemption disabled, and from cross-cpu IRQ context.
3355 static void rcu_barrier_func(void *type)
3357 struct rcu_state *rsp = type;
3358 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3360 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3361 rdp->barrier_head.func = rcu_barrier_callback;
3362 debug_rcu_head_queue(&rdp->barrier_head);
3363 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3364 atomic_inc(&rsp->barrier_cpu_count);
3366 debug_rcu_head_unqueue(&rdp->barrier_head);
3367 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3368 rsp->barrier_sequence);
3373 * Orchestrate the specified type of RCU barrier, waiting for all
3374 * RCU callbacks of the specified type to complete.
3376 static void _rcu_barrier(struct rcu_state *rsp)
3379 struct rcu_data *rdp;
3380 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3382 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3384 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3385 mutex_lock(&rsp->barrier_mutex);
3387 /* Did someone else do our work for us? */
3388 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3389 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3390 rsp->barrier_sequence);
3391 smp_mb(); /* caller's subsequent code after above check. */
3392 mutex_unlock(&rsp->barrier_mutex);
3396 /* Mark the start of the barrier operation. */
3397 rcu_seq_start(&rsp->barrier_sequence);
3398 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3401 * Initialize the count to one rather than to zero in order to
3402 * avoid a too-soon return to zero in case of a short grace period
3403 * (or preemption of this task). Exclude CPU-hotplug operations
3404 * to ensure that no offline CPU has callbacks queued.
3406 init_completion(&rsp->barrier_completion);
3407 atomic_set(&rsp->barrier_cpu_count, 1);
3411 * Force each CPU with callbacks to register a new callback.
3412 * When that callback is invoked, we will know that all of the
3413 * corresponding CPU's preceding callbacks have been invoked.
3415 for_each_possible_cpu(cpu) {
3416 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3418 rdp = per_cpu_ptr(rsp->rda, cpu);
3419 if (rcu_is_nocb_cpu(cpu)) {
3420 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3421 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3422 rsp->barrier_sequence);
3424 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3425 rsp->barrier_sequence);
3426 smp_mb__before_atomic();
3427 atomic_inc(&rsp->barrier_cpu_count);
3428 __call_rcu(&rdp->barrier_head,
3429 rcu_barrier_callback, rsp, cpu, 0);
3431 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3432 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3433 rsp->barrier_sequence);
3434 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3436 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3437 rsp->barrier_sequence);
3443 * Now that we have an rcu_barrier_callback() callback on each
3444 * CPU, and thus each counted, remove the initial count.
3446 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3447 complete(&rsp->barrier_completion);
3449 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3450 wait_for_completion(&rsp->barrier_completion);
3452 /* Mark the end of the barrier operation. */
3453 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3454 rcu_seq_end(&rsp->barrier_sequence);
3456 /* Other rcu_barrier() invocations can now safely proceed. */
3457 mutex_unlock(&rsp->barrier_mutex);
3461 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3463 void rcu_barrier_bh(void)
3465 _rcu_barrier(&rcu_bh_state);
3467 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3470 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3472 void rcu_barrier_sched(void)
3474 _rcu_barrier(&rcu_sched_state);
3476 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3479 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3480 * first CPU in a given leaf rcu_node structure coming online. The caller
3481 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3484 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3487 struct rcu_node *rnp = rnp_leaf;
3489 raw_lockdep_assert_held_rcu_node(rnp);
3491 mask = rnp->grpmask;
3495 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3496 rnp->qsmaskinit |= mask;
3497 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3502 * Do boot-time initialization of a CPU's per-CPU RCU data.
3505 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3507 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3509 /* Set up local state, ensuring consistent view of global state. */
3510 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3511 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3512 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
3513 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3516 rcu_boot_init_nocb_percpu_data(rdp);
3520 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3521 * offline event can be happening at a given time. Note also that we
3522 * can accept some slop in the rsp->completed access due to the fact
3523 * that this CPU cannot possibly have any RCU callbacks in flight yet.
3526 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3528 unsigned long flags;
3529 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3530 struct rcu_node *rnp = rcu_get_root(rsp);
3532 /* Set up local state, ensuring consistent view of global state. */
3533 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3534 rdp->qlen_last_fqs_check = 0;
3535 rdp->n_force_qs_snap = rsp->n_force_qs;
3536 rdp->blimit = blimit;
3537 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3538 !init_nocb_callback_list(rdp))
3539 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3540 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */
3541 rcu_dynticks_eqs_online();
3542 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3545 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3546 * propagation up the rcu_node tree will happen at the beginning
3547 * of the next grace period.
3550 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3551 rdp->beenonline = true; /* We have now been online. */
3552 rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3553 rdp->completed = rnp->completed;
3554 rdp->cpu_no_qs.b.norm = true;
3555 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3556 rdp->core_needs_qs = false;
3557 rdp->rcu_iw_pending = false;
3558 rdp->rcu_iw_gpnum = rnp->gpnum - 1;
3559 trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3560 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3564 * Invoked early in the CPU-online process, when pretty much all
3565 * services are available. The incoming CPU is not present.
3567 int rcutree_prepare_cpu(unsigned int cpu)
3569 struct rcu_state *rsp;
3571 for_each_rcu_flavor(rsp)
3572 rcu_init_percpu_data(cpu, rsp);
3574 rcu_prepare_kthreads(cpu);
3575 rcu_spawn_all_nocb_kthreads(cpu);
3581 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3583 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3585 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3587 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3591 * Near the end of the CPU-online process. Pretty much all services
3592 * enabled, and the CPU is now very much alive.
3594 int rcutree_online_cpu(unsigned int cpu)
3596 unsigned long flags;
3597 struct rcu_data *rdp;
3598 struct rcu_node *rnp;
3599 struct rcu_state *rsp;
3601 for_each_rcu_flavor(rsp) {
3602 rdp = per_cpu_ptr(rsp->rda, cpu);
3604 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3605 rnp->ffmask |= rdp->grpmask;
3606 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3608 if (IS_ENABLED(CONFIG_TREE_SRCU))
3609 srcu_online_cpu(cpu);
3610 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3611 return 0; /* Too early in boot for scheduler work. */
3612 sync_sched_exp_online_cleanup(cpu);
3613 rcutree_affinity_setting(cpu, -1);
3618 * Near the beginning of the process. The CPU is still very much alive
3619 * with pretty much all services enabled.
3621 int rcutree_offline_cpu(unsigned int cpu)
3623 unsigned long flags;
3624 struct rcu_data *rdp;
3625 struct rcu_node *rnp;
3626 struct rcu_state *rsp;
3628 for_each_rcu_flavor(rsp) {
3629 rdp = per_cpu_ptr(rsp->rda, cpu);
3631 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3632 rnp->ffmask &= ~rdp->grpmask;
3633 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3636 rcutree_affinity_setting(cpu, cpu);
3637 if (IS_ENABLED(CONFIG_TREE_SRCU))
3638 srcu_offline_cpu(cpu);
3643 * Near the end of the offline process. We do only tracing here.
3645 int rcutree_dying_cpu(unsigned int cpu)
3647 struct rcu_state *rsp;
3649 for_each_rcu_flavor(rsp)
3650 rcu_cleanup_dying_cpu(rsp);
3655 * The outgoing CPU is gone and we are running elsewhere.
3657 int rcutree_dead_cpu(unsigned int cpu)
3659 struct rcu_state *rsp;
3661 for_each_rcu_flavor(rsp) {
3662 rcu_cleanup_dead_cpu(cpu, rsp);
3663 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3668 static DEFINE_PER_CPU(int, rcu_cpu_started);
3671 * Mark the specified CPU as being online so that subsequent grace periods
3672 * (both expedited and normal) will wait on it. Note that this means that
3673 * incoming CPUs are not allowed to use RCU read-side critical sections
3674 * until this function is called. Failing to observe this restriction
3675 * will result in lockdep splats.
3677 * Note that this function is special in that it is invoked directly
3678 * from the incoming CPU rather than from the cpuhp_step mechanism.
3679 * This is because this function must be invoked at a precise location.
3681 void rcu_cpu_starting(unsigned int cpu)
3683 unsigned long flags;
3686 unsigned long oldmask;
3687 struct rcu_data *rdp;
3688 struct rcu_node *rnp;
3689 struct rcu_state *rsp;
3691 if (per_cpu(rcu_cpu_started, cpu))
3694 per_cpu(rcu_cpu_started, cpu) = 1;
3696 for_each_rcu_flavor(rsp) {
3697 rdp = per_cpu_ptr(rsp->rda, cpu);
3699 mask = rdp->grpmask;
3700 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3701 rnp->qsmaskinitnext |= mask;
3702 oldmask = rnp->expmaskinitnext;
3703 rnp->expmaskinitnext |= mask;
3704 oldmask ^= rnp->expmaskinitnext;
3705 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3706 /* Allow lockless access for expedited grace periods. */
3707 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3708 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3710 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3713 #ifdef CONFIG_HOTPLUG_CPU
3715 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3716 * function. We now remove it from the rcu_node tree's ->qsmaskinit
3719 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3721 unsigned long flags;
3723 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3724 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3726 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3727 mask = rdp->grpmask;
3728 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3729 rnp->qsmaskinitnext &= ~mask;
3730 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3734 * The outgoing function has no further need of RCU, so remove it from
3735 * the list of CPUs that RCU must track.
3737 * Note that this function is special in that it is invoked directly
3738 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3739 * This is because this function must be invoked at a precise location.
3741 void rcu_report_dead(unsigned int cpu)
3743 struct rcu_state *rsp;
3745 /* QS for any half-done expedited RCU-sched GP. */
3747 rcu_report_exp_rdp(&rcu_sched_state,
3748 this_cpu_ptr(rcu_sched_state.rda), true);
3750 for_each_rcu_flavor(rsp)
3751 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3753 per_cpu(rcu_cpu_started, cpu) = 0;
3756 /* Migrate the dead CPU's callbacks to the current CPU. */
3757 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3759 unsigned long flags;
3760 struct rcu_data *my_rdp;
3761 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3762 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3765 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3766 return; /* No callbacks to migrate. */
3768 local_irq_save(flags);
3769 my_rdp = this_cpu_ptr(rsp->rda);
3770 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3771 local_irq_restore(flags);
3774 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3775 /* Leverage recent GPs and set GP for new callbacks. */
3776 needwake = rcu_advance_cbs(rsp, rnp_root, rdp) ||
3777 rcu_advance_cbs(rsp, rnp_root, my_rdp);
3778 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3779 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3780 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3781 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3783 rcu_gp_kthread_wake(rsp);
3784 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3785 !rcu_segcblist_empty(&rdp->cblist),
3786 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3787 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3788 rcu_segcblist_first_cb(&rdp->cblist));
3792 * The outgoing CPU has just passed through the dying-idle state,
3793 * and we are being invoked from the CPU that was IPIed to continue the
3794 * offline operation. We need to migrate the outgoing CPU's callbacks.
3796 void rcutree_migrate_callbacks(int cpu)
3798 struct rcu_state *rsp;
3800 for_each_rcu_flavor(rsp)
3801 rcu_migrate_callbacks(cpu, rsp);
3806 * On non-huge systems, use expedited RCU grace periods to make suspend
3807 * and hibernation run faster.
3809 static int rcu_pm_notify(struct notifier_block *self,
3810 unsigned long action, void *hcpu)
3813 case PM_HIBERNATION_PREPARE:
3814 case PM_SUSPEND_PREPARE:
3815 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3818 case PM_POST_HIBERNATION:
3819 case PM_POST_SUSPEND:
3820 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3821 rcu_unexpedite_gp();
3830 * Spawn the kthreads that handle each RCU flavor's grace periods.
3832 static int __init rcu_spawn_gp_kthread(void)
3834 unsigned long flags;
3835 int kthread_prio_in = kthread_prio;
3836 struct rcu_node *rnp;
3837 struct rcu_state *rsp;
3838 struct sched_param sp;
3839 struct task_struct *t;
3841 /* Force priority into range. */
3842 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3844 else if (kthread_prio < 0)
3846 else if (kthread_prio > 99)
3848 if (kthread_prio != kthread_prio_in)
3849 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3850 kthread_prio, kthread_prio_in);
3852 rcu_scheduler_fully_active = 1;
3853 for_each_rcu_flavor(rsp) {
3854 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3856 rnp = rcu_get_root(rsp);
3857 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3858 rsp->gp_kthread = t;
3860 sp.sched_priority = kthread_prio;
3861 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3863 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3866 rcu_spawn_nocb_kthreads();
3867 rcu_spawn_boost_kthreads();
3870 early_initcall(rcu_spawn_gp_kthread);
3873 * This function is invoked towards the end of the scheduler's
3874 * initialization process. Before this is called, the idle task might
3875 * contain synchronous grace-period primitives (during which time, this idle
3876 * task is booting the system, and such primitives are no-ops). After this
3877 * function is called, any synchronous grace-period primitives are run as
3878 * expedited, with the requesting task driving the grace period forward.
3879 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3880 * runtime RCU functionality.
3882 void rcu_scheduler_starting(void)
3884 WARN_ON(num_online_cpus() != 1);
3885 WARN_ON(nr_context_switches() > 0);
3886 rcu_test_sync_prims();
3887 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3888 rcu_test_sync_prims();
3892 * Helper function for rcu_init() that initializes one rcu_state structure.
3894 static void __init rcu_init_one(struct rcu_state *rsp)
3896 static const char * const buf[] = RCU_NODE_NAME_INIT;
3897 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3898 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3899 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3901 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3905 struct rcu_node *rnp;
3907 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3909 /* Silence gcc 4.8 false positive about array index out of range. */
3910 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3911 panic("rcu_init_one: rcu_num_lvls out of range");
3913 /* Initialize the level-tracking arrays. */
3915 for (i = 1; i < rcu_num_lvls; i++)
3916 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
3917 rcu_init_levelspread(levelspread, num_rcu_lvl);
3919 /* Initialize the elements themselves, starting from the leaves. */
3921 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3922 cpustride *= levelspread[i];
3923 rnp = rsp->level[i];
3924 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3925 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3926 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3927 &rcu_node_class[i], buf[i]);
3928 raw_spin_lock_init(&rnp->fqslock);
3929 lockdep_set_class_and_name(&rnp->fqslock,
3930 &rcu_fqs_class[i], fqs[i]);
3931 rnp->gpnum = rsp->gpnum;
3932 rnp->completed = rsp->completed;
3934 rnp->qsmaskinit = 0;
3935 rnp->grplo = j * cpustride;
3936 rnp->grphi = (j + 1) * cpustride - 1;
3937 if (rnp->grphi >= nr_cpu_ids)
3938 rnp->grphi = nr_cpu_ids - 1;
3944 rnp->grpnum = j % levelspread[i - 1];
3945 rnp->grpmask = 1UL << rnp->grpnum;
3946 rnp->parent = rsp->level[i - 1] +
3947 j / levelspread[i - 1];
3950 INIT_LIST_HEAD(&rnp->blkd_tasks);
3951 rcu_init_one_nocb(rnp);
3952 init_waitqueue_head(&rnp->exp_wq[0]);
3953 init_waitqueue_head(&rnp->exp_wq[1]);
3954 init_waitqueue_head(&rnp->exp_wq[2]);
3955 init_waitqueue_head(&rnp->exp_wq[3]);
3956 spin_lock_init(&rnp->exp_lock);
3960 init_swait_queue_head(&rsp->gp_wq);
3961 init_swait_queue_head(&rsp->expedited_wq);
3962 rnp = rcu_first_leaf_node(rsp);
3963 for_each_possible_cpu(i) {
3964 while (i > rnp->grphi)
3966 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3967 rcu_boot_init_percpu_data(i, rsp);
3969 list_add(&rsp->flavors, &rcu_struct_flavors);
3973 * Compute the rcu_node tree geometry from kernel parameters. This cannot
3974 * replace the definitions in tree.h because those are needed to size
3975 * the ->node array in the rcu_state structure.
3977 static void __init rcu_init_geometry(void)
3981 int rcu_capacity[RCU_NUM_LVLS];
3984 * Initialize any unspecified boot parameters.
3985 * The default values of jiffies_till_first_fqs and
3986 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3987 * value, which is a function of HZ, then adding one for each
3988 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3990 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3991 if (jiffies_till_first_fqs == ULONG_MAX)
3992 jiffies_till_first_fqs = d;
3993 if (jiffies_till_next_fqs == ULONG_MAX)
3994 jiffies_till_next_fqs = d;
3996 /* If the compile-time values are accurate, just leave. */
3997 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
3998 nr_cpu_ids == NR_CPUS)
4000 pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4001 rcu_fanout_leaf, nr_cpu_ids);
4004 * The boot-time rcu_fanout_leaf parameter must be at least two
4005 * and cannot exceed the number of bits in the rcu_node masks.
4006 * Complain and fall back to the compile-time values if this
4007 * limit is exceeded.
4009 if (rcu_fanout_leaf < 2 ||
4010 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4011 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4017 * Compute number of nodes that can be handled an rcu_node tree
4018 * with the given number of levels.
4020 rcu_capacity[0] = rcu_fanout_leaf;
4021 for (i = 1; i < RCU_NUM_LVLS; i++)
4022 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4025 * The tree must be able to accommodate the configured number of CPUs.
4026 * If this limit is exceeded, fall back to the compile-time values.
4028 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4029 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4034 /* Calculate the number of levels in the tree. */
4035 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4037 rcu_num_lvls = i + 1;
4039 /* Calculate the number of rcu_nodes at each level of the tree. */
4040 for (i = 0; i < rcu_num_lvls; i++) {
4041 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4042 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4045 /* Calculate the total number of rcu_node structures. */
4047 for (i = 0; i < rcu_num_lvls; i++)
4048 rcu_num_nodes += num_rcu_lvl[i];
4052 * Dump out the structure of the rcu_node combining tree associated
4053 * with the rcu_state structure referenced by rsp.
4055 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4058 struct rcu_node *rnp;
4060 pr_info("rcu_node tree layout dump\n");
4062 rcu_for_each_node_breadth_first(rsp, rnp) {
4063 if (rnp->level != level) {
4068 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4073 struct workqueue_struct *rcu_gp_wq;
4074 struct workqueue_struct *rcu_par_gp_wq;
4076 void __init rcu_init(void)
4080 rcu_early_boot_tests();
4082 rcu_bootup_announce();
4083 rcu_init_geometry();
4084 rcu_init_one(&rcu_bh_state);
4085 rcu_init_one(&rcu_sched_state);
4087 rcu_dump_rcu_node_tree(&rcu_sched_state);
4088 __rcu_init_preempt();
4089 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4092 * We don't need protection against CPU-hotplug here because
4093 * this is called early in boot, before either interrupts
4094 * or the scheduler are operational.
4096 pm_notifier(rcu_pm_notify, 0);
4097 for_each_online_cpu(cpu) {
4098 rcutree_prepare_cpu(cpu);
4099 rcu_cpu_starting(cpu);
4100 rcutree_online_cpu(cpu);
4103 /* Create workqueue for expedited GPs and for Tree SRCU. */
4104 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4105 WARN_ON(!rcu_gp_wq);
4106 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4107 WARN_ON(!rcu_par_gp_wq);
4110 #include "tree_exp.h"
4111 #include "tree_plugin.h"