2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
13 - kmod support by: Cyrus Durgin
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
58 static void autostart_arrays(int part);
61 /* pers_list is a list of registered personalities protected
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
73 static int remove_and_add_spares(struct mddev *mddev,
74 struct md_rdev *this);
75 static void mddev_detach(struct mddev *mddev);
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
104 static inline int speed_max(struct mddev *mddev)
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
110 static struct ctl_table_header *raid_table_header;
112 static struct ctl_table raid_table[] = {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
130 static struct ctl_table raid_dir_table[] = {
134 .mode = S_IRUGO|S_IXUGO,
140 static struct ctl_table raid_root_table[] = {
145 .child = raid_dir_table,
150 static const struct block_device_operations md_fops;
152 static int start_readonly;
155 * like bio_clone, but with a local bio set
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
163 if (!mddev || !mddev->bio_set)
164 return bio_alloc(gfp_mask, nr_iovecs);
166 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
176 if (!mddev || !mddev->bio_set)
177 return bio_clone(bio, gfp_mask);
179 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
184 * We have a system wide 'event count' that is incremented
185 * on any 'interesting' event, and readers of /proc/mdstat
186 * can use 'poll' or 'select' to find out when the event
190 * start array, stop array, error, add device, remove device,
191 * start build, activate spare
193 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
194 static atomic_t md_event_count;
195 void md_new_event(struct mddev *mddev)
197 atomic_inc(&md_event_count);
198 wake_up(&md_event_waiters);
200 EXPORT_SYMBOL_GPL(md_new_event);
202 /* Alternate version that can be called from interrupts
203 * when calling sysfs_notify isn't needed.
205 static void md_new_event_inintr(struct mddev *mddev)
207 atomic_inc(&md_event_count);
208 wake_up(&md_event_waiters);
212 * Enables to iterate over all existing md arrays
213 * all_mddevs_lock protects this list.
215 static LIST_HEAD(all_mddevs);
216 static DEFINE_SPINLOCK(all_mddevs_lock);
219 * iterates through all used mddevs in the system.
220 * We take care to grab the all_mddevs_lock whenever navigating
221 * the list, and to always hold a refcount when unlocked.
222 * Any code which breaks out of this loop while own
223 * a reference to the current mddev and must mddev_put it.
225 #define for_each_mddev(_mddev,_tmp) \
227 for (({ spin_lock(&all_mddevs_lock); \
228 _tmp = all_mddevs.next; \
230 ({ if (_tmp != &all_mddevs) \
231 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
232 spin_unlock(&all_mddevs_lock); \
233 if (_mddev) mddev_put(_mddev); \
234 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
235 _tmp != &all_mddevs;}); \
236 ({ spin_lock(&all_mddevs_lock); \
237 _tmp = _tmp->next;}) \
240 /* Rather than calling directly into the personality make_request function,
241 * IO requests come here first so that we can check if the device is
242 * being suspended pending a reconfiguration.
243 * We hold a refcount over the call to ->make_request. By the time that
244 * call has finished, the bio has been linked into some internal structure
245 * and so is visible to ->quiesce(), so we don't need the refcount any more.
247 static void md_make_request(struct request_queue *q, struct bio *bio)
249 const int rw = bio_data_dir(bio);
250 struct mddev *mddev = q->queuedata;
251 unsigned int sectors;
254 if (mddev == NULL || mddev->pers == NULL
259 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
260 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
263 smp_rmb(); /* Ensure implications of 'active' are visible */
265 if (mddev->suspended) {
268 prepare_to_wait(&mddev->sb_wait, &__wait,
269 TASK_UNINTERRUPTIBLE);
270 if (!mddev->suspended)
276 finish_wait(&mddev->sb_wait, &__wait);
278 atomic_inc(&mddev->active_io);
282 * save the sectors now since our bio can
283 * go away inside make_request
285 sectors = bio_sectors(bio);
286 mddev->pers->make_request(mddev, bio);
288 cpu = part_stat_lock();
289 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
290 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
293 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
294 wake_up(&mddev->sb_wait);
297 /* mddev_suspend makes sure no new requests are submitted
298 * to the device, and that any requests that have been submitted
299 * are completely handled.
300 * Once mddev_detach() is called and completes, the module will be
303 void mddev_suspend(struct mddev *mddev)
305 BUG_ON(mddev->suspended);
306 mddev->suspended = 1;
308 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
309 mddev->pers->quiesce(mddev, 1);
311 del_timer_sync(&mddev->safemode_timer);
313 EXPORT_SYMBOL_GPL(mddev_suspend);
315 void mddev_resume(struct mddev *mddev)
317 mddev->suspended = 0;
318 wake_up(&mddev->sb_wait);
319 mddev->pers->quiesce(mddev, 0);
321 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
322 md_wakeup_thread(mddev->thread);
323 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
325 EXPORT_SYMBOL_GPL(mddev_resume);
327 int mddev_congested(struct mddev *mddev, int bits)
329 struct md_personality *pers = mddev->pers;
333 if (mddev->suspended)
335 else if (pers && pers->congested)
336 ret = pers->congested(mddev, bits);
340 EXPORT_SYMBOL_GPL(mddev_congested);
341 static int md_congested(void *data, int bits)
343 struct mddev *mddev = data;
344 return mddev_congested(mddev, bits);
347 static int md_mergeable_bvec(struct request_queue *q,
348 struct bvec_merge_data *bvm,
349 struct bio_vec *biovec)
351 struct mddev *mddev = q->queuedata;
354 if (mddev->suspended) {
355 /* Must always allow one vec */
356 if (bvm->bi_size == 0)
357 ret = biovec->bv_len;
361 struct md_personality *pers = mddev->pers;
362 if (pers && pers->mergeable_bvec)
363 ret = pers->mergeable_bvec(mddev, bvm, biovec);
365 ret = biovec->bv_len;
371 * Generic flush handling for md
374 static void md_end_flush(struct bio *bio, int err)
376 struct md_rdev *rdev = bio->bi_private;
377 struct mddev *mddev = rdev->mddev;
379 rdev_dec_pending(rdev, mddev);
381 if (atomic_dec_and_test(&mddev->flush_pending)) {
382 /* The pre-request flush has finished */
383 queue_work(md_wq, &mddev->flush_work);
388 static void md_submit_flush_data(struct work_struct *ws);
390 static void submit_flushes(struct work_struct *ws)
392 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
393 struct md_rdev *rdev;
395 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
396 atomic_set(&mddev->flush_pending, 1);
398 rdev_for_each_rcu(rdev, mddev)
399 if (rdev->raid_disk >= 0 &&
400 !test_bit(Faulty, &rdev->flags)) {
401 /* Take two references, one is dropped
402 * when request finishes, one after
403 * we reclaim rcu_read_lock
406 atomic_inc(&rdev->nr_pending);
407 atomic_inc(&rdev->nr_pending);
409 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
410 bi->bi_end_io = md_end_flush;
411 bi->bi_private = rdev;
412 bi->bi_bdev = rdev->bdev;
413 atomic_inc(&mddev->flush_pending);
414 submit_bio(WRITE_FLUSH, bi);
416 rdev_dec_pending(rdev, mddev);
419 if (atomic_dec_and_test(&mddev->flush_pending))
420 queue_work(md_wq, &mddev->flush_work);
423 static void md_submit_flush_data(struct work_struct *ws)
425 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
426 struct bio *bio = mddev->flush_bio;
428 if (bio->bi_iter.bi_size == 0)
429 /* an empty barrier - all done */
432 bio->bi_rw &= ~REQ_FLUSH;
433 mddev->pers->make_request(mddev, bio);
436 mddev->flush_bio = NULL;
437 wake_up(&mddev->sb_wait);
440 void md_flush_request(struct mddev *mddev, struct bio *bio)
442 spin_lock_irq(&mddev->lock);
443 wait_event_lock_irq(mddev->sb_wait,
446 mddev->flush_bio = bio;
447 spin_unlock_irq(&mddev->lock);
449 INIT_WORK(&mddev->flush_work, submit_flushes);
450 queue_work(md_wq, &mddev->flush_work);
452 EXPORT_SYMBOL(md_flush_request);
454 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
456 struct mddev *mddev = cb->data;
457 md_wakeup_thread(mddev->thread);
460 EXPORT_SYMBOL(md_unplug);
462 static inline struct mddev *mddev_get(struct mddev *mddev)
464 atomic_inc(&mddev->active);
468 static void mddev_delayed_delete(struct work_struct *ws);
470 static void mddev_put(struct mddev *mddev)
472 struct bio_set *bs = NULL;
474 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
476 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
477 mddev->ctime == 0 && !mddev->hold_active) {
478 /* Array is not configured at all, and not held active,
480 list_del_init(&mddev->all_mddevs);
482 mddev->bio_set = NULL;
483 if (mddev->gendisk) {
484 /* We did a probe so need to clean up. Call
485 * queue_work inside the spinlock so that
486 * flush_workqueue() after mddev_find will
487 * succeed in waiting for the work to be done.
489 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
490 queue_work(md_misc_wq, &mddev->del_work);
494 spin_unlock(&all_mddevs_lock);
499 void mddev_init(struct mddev *mddev)
501 mutex_init(&mddev->open_mutex);
502 mutex_init(&mddev->reconfig_mutex);
503 mutex_init(&mddev->bitmap_info.mutex);
504 INIT_LIST_HEAD(&mddev->disks);
505 INIT_LIST_HEAD(&mddev->all_mddevs);
506 init_timer(&mddev->safemode_timer);
507 atomic_set(&mddev->active, 1);
508 atomic_set(&mddev->openers, 0);
509 atomic_set(&mddev->active_io, 0);
510 spin_lock_init(&mddev->lock);
511 atomic_set(&mddev->flush_pending, 0);
512 init_waitqueue_head(&mddev->sb_wait);
513 init_waitqueue_head(&mddev->recovery_wait);
514 mddev->reshape_position = MaxSector;
515 mddev->reshape_backwards = 0;
516 mddev->last_sync_action = "none";
517 mddev->resync_min = 0;
518 mddev->resync_max = MaxSector;
519 mddev->level = LEVEL_NONE;
521 EXPORT_SYMBOL_GPL(mddev_init);
523 static struct mddev *mddev_find(dev_t unit)
525 struct mddev *mddev, *new = NULL;
527 if (unit && MAJOR(unit) != MD_MAJOR)
528 unit &= ~((1<<MdpMinorShift)-1);
531 spin_lock(&all_mddevs_lock);
534 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
535 if (mddev->unit == unit) {
537 spin_unlock(&all_mddevs_lock);
543 list_add(&new->all_mddevs, &all_mddevs);
544 spin_unlock(&all_mddevs_lock);
545 new->hold_active = UNTIL_IOCTL;
549 /* find an unused unit number */
550 static int next_minor = 512;
551 int start = next_minor;
555 dev = MKDEV(MD_MAJOR, next_minor);
557 if (next_minor > MINORMASK)
559 if (next_minor == start) {
560 /* Oh dear, all in use. */
561 spin_unlock(&all_mddevs_lock);
567 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
568 if (mddev->unit == dev) {
574 new->md_minor = MINOR(dev);
575 new->hold_active = UNTIL_STOP;
576 list_add(&new->all_mddevs, &all_mddevs);
577 spin_unlock(&all_mddevs_lock);
580 spin_unlock(&all_mddevs_lock);
582 new = kzalloc(sizeof(*new), GFP_KERNEL);
587 if (MAJOR(unit) == MD_MAJOR)
588 new->md_minor = MINOR(unit);
590 new->md_minor = MINOR(unit) >> MdpMinorShift;
597 static struct attribute_group md_redundancy_group;
599 void mddev_unlock(struct mddev *mddev)
601 if (mddev->to_remove) {
602 /* These cannot be removed under reconfig_mutex as
603 * an access to the files will try to take reconfig_mutex
604 * while holding the file unremovable, which leads to
606 * So hold set sysfs_active while the remove in happeing,
607 * and anything else which might set ->to_remove or my
608 * otherwise change the sysfs namespace will fail with
609 * -EBUSY if sysfs_active is still set.
610 * We set sysfs_active under reconfig_mutex and elsewhere
611 * test it under the same mutex to ensure its correct value
614 struct attribute_group *to_remove = mddev->to_remove;
615 mddev->to_remove = NULL;
616 mddev->sysfs_active = 1;
617 mutex_unlock(&mddev->reconfig_mutex);
619 if (mddev->kobj.sd) {
620 if (to_remove != &md_redundancy_group)
621 sysfs_remove_group(&mddev->kobj, to_remove);
622 if (mddev->pers == NULL ||
623 mddev->pers->sync_request == NULL) {
624 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
625 if (mddev->sysfs_action)
626 sysfs_put(mddev->sysfs_action);
627 mddev->sysfs_action = NULL;
630 mddev->sysfs_active = 0;
632 mutex_unlock(&mddev->reconfig_mutex);
634 /* As we've dropped the mutex we need a spinlock to
635 * make sure the thread doesn't disappear
637 spin_lock(&pers_lock);
638 md_wakeup_thread(mddev->thread);
639 spin_unlock(&pers_lock);
641 EXPORT_SYMBOL_GPL(mddev_unlock);
643 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
645 struct md_rdev *rdev;
647 rdev_for_each_rcu(rdev, mddev)
648 if (rdev->desc_nr == nr)
654 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
656 struct md_rdev *rdev;
658 rdev_for_each(rdev, mddev)
659 if (rdev->bdev->bd_dev == dev)
665 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
667 struct md_rdev *rdev;
669 rdev_for_each_rcu(rdev, mddev)
670 if (rdev->bdev->bd_dev == dev)
676 static struct md_personality *find_pers(int level, char *clevel)
678 struct md_personality *pers;
679 list_for_each_entry(pers, &pers_list, list) {
680 if (level != LEVEL_NONE && pers->level == level)
682 if (strcmp(pers->name, clevel)==0)
688 /* return the offset of the super block in 512byte sectors */
689 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
691 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
692 return MD_NEW_SIZE_SECTORS(num_sectors);
695 static int alloc_disk_sb(struct md_rdev *rdev)
697 rdev->sb_page = alloc_page(GFP_KERNEL);
698 if (!rdev->sb_page) {
699 printk(KERN_ALERT "md: out of memory.\n");
706 void md_rdev_clear(struct md_rdev *rdev)
709 put_page(rdev->sb_page);
711 rdev->sb_page = NULL;
716 put_page(rdev->bb_page);
717 rdev->bb_page = NULL;
719 kfree(rdev->badblocks.page);
720 rdev->badblocks.page = NULL;
722 EXPORT_SYMBOL_GPL(md_rdev_clear);
724 static void super_written(struct bio *bio, int error)
726 struct md_rdev *rdev = bio->bi_private;
727 struct mddev *mddev = rdev->mddev;
729 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
730 printk("md: super_written gets error=%d, uptodate=%d\n",
731 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
732 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
733 md_error(mddev, rdev);
736 if (atomic_dec_and_test(&mddev->pending_writes))
737 wake_up(&mddev->sb_wait);
741 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
742 sector_t sector, int size, struct page *page)
744 /* write first size bytes of page to sector of rdev
745 * Increment mddev->pending_writes before returning
746 * and decrement it on completion, waking up sb_wait
747 * if zero is reached.
748 * If an error occurred, call md_error
750 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
752 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
753 bio->bi_iter.bi_sector = sector;
754 bio_add_page(bio, page, size, 0);
755 bio->bi_private = rdev;
756 bio->bi_end_io = super_written;
758 atomic_inc(&mddev->pending_writes);
759 submit_bio(WRITE_FLUSH_FUA, bio);
762 void md_super_wait(struct mddev *mddev)
764 /* wait for all superblock writes that were scheduled to complete */
765 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
768 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
769 struct page *page, int rw, bool metadata_op)
771 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
774 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
775 rdev->meta_bdev : rdev->bdev;
777 bio->bi_iter.bi_sector = sector + rdev->sb_start;
778 else if (rdev->mddev->reshape_position != MaxSector &&
779 (rdev->mddev->reshape_backwards ==
780 (sector >= rdev->mddev->reshape_position)))
781 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
783 bio->bi_iter.bi_sector = sector + rdev->data_offset;
784 bio_add_page(bio, page, size, 0);
785 submit_bio_wait(rw, bio);
787 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
791 EXPORT_SYMBOL_GPL(sync_page_io);
793 static int read_disk_sb(struct md_rdev *rdev, int size)
795 char b[BDEVNAME_SIZE];
800 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
806 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
807 bdevname(rdev->bdev,b));
811 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
813 return sb1->set_uuid0 == sb2->set_uuid0 &&
814 sb1->set_uuid1 == sb2->set_uuid1 &&
815 sb1->set_uuid2 == sb2->set_uuid2 &&
816 sb1->set_uuid3 == sb2->set_uuid3;
819 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
822 mdp_super_t *tmp1, *tmp2;
824 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
825 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
827 if (!tmp1 || !tmp2) {
829 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
837 * nr_disks is not constant
842 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
849 static u32 md_csum_fold(u32 csum)
851 csum = (csum & 0xffff) + (csum >> 16);
852 return (csum & 0xffff) + (csum >> 16);
855 static unsigned int calc_sb_csum(mdp_super_t *sb)
858 u32 *sb32 = (u32*)sb;
860 unsigned int disk_csum, csum;
862 disk_csum = sb->sb_csum;
865 for (i = 0; i < MD_SB_BYTES/4 ; i++)
867 csum = (newcsum & 0xffffffff) + (newcsum>>32);
870 /* This used to use csum_partial, which was wrong for several
871 * reasons including that different results are returned on
872 * different architectures. It isn't critical that we get exactly
873 * the same return value as before (we always csum_fold before
874 * testing, and that removes any differences). However as we
875 * know that csum_partial always returned a 16bit value on
876 * alphas, do a fold to maximise conformity to previous behaviour.
878 sb->sb_csum = md_csum_fold(disk_csum);
880 sb->sb_csum = disk_csum;
886 * Handle superblock details.
887 * We want to be able to handle multiple superblock formats
888 * so we have a common interface to them all, and an array of
889 * different handlers.
890 * We rely on user-space to write the initial superblock, and support
891 * reading and updating of superblocks.
892 * Interface methods are:
893 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
894 * loads and validates a superblock on dev.
895 * if refdev != NULL, compare superblocks on both devices
897 * 0 - dev has a superblock that is compatible with refdev
898 * 1 - dev has a superblock that is compatible and newer than refdev
899 * so dev should be used as the refdev in future
900 * -EINVAL superblock incompatible or invalid
901 * -othererror e.g. -EIO
903 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
904 * Verify that dev is acceptable into mddev.
905 * The first time, mddev->raid_disks will be 0, and data from
906 * dev should be merged in. Subsequent calls check that dev
907 * is new enough. Return 0 or -EINVAL
909 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
910 * Update the superblock for rdev with data in mddev
911 * This does not write to disc.
917 struct module *owner;
918 int (*load_super)(struct md_rdev *rdev,
919 struct md_rdev *refdev,
921 int (*validate_super)(struct mddev *mddev,
922 struct md_rdev *rdev);
923 void (*sync_super)(struct mddev *mddev,
924 struct md_rdev *rdev);
925 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
926 sector_t num_sectors);
927 int (*allow_new_offset)(struct md_rdev *rdev,
928 unsigned long long new_offset);
932 * Check that the given mddev has no bitmap.
934 * This function is called from the run method of all personalities that do not
935 * support bitmaps. It prints an error message and returns non-zero if mddev
936 * has a bitmap. Otherwise, it returns 0.
939 int md_check_no_bitmap(struct mddev *mddev)
941 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
943 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
944 mdname(mddev), mddev->pers->name);
947 EXPORT_SYMBOL(md_check_no_bitmap);
950 * load_super for 0.90.0
952 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
954 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
959 * Calculate the position of the superblock (512byte sectors),
960 * it's at the end of the disk.
962 * It also happens to be a multiple of 4Kb.
964 rdev->sb_start = calc_dev_sboffset(rdev);
966 ret = read_disk_sb(rdev, MD_SB_BYTES);
971 bdevname(rdev->bdev, b);
972 sb = page_address(rdev->sb_page);
974 if (sb->md_magic != MD_SB_MAGIC) {
975 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
980 if (sb->major_version != 0 ||
981 sb->minor_version < 90 ||
982 sb->minor_version > 91) {
983 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
984 sb->major_version, sb->minor_version,
989 if (sb->raid_disks <= 0)
992 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
993 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
998 rdev->preferred_minor = sb->md_minor;
999 rdev->data_offset = 0;
1000 rdev->new_data_offset = 0;
1001 rdev->sb_size = MD_SB_BYTES;
1002 rdev->badblocks.shift = -1;
1004 if (sb->level == LEVEL_MULTIPATH)
1007 rdev->desc_nr = sb->this_disk.number;
1013 mdp_super_t *refsb = page_address(refdev->sb_page);
1014 if (!uuid_equal(refsb, sb)) {
1015 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1016 b, bdevname(refdev->bdev,b2));
1019 if (!sb_equal(refsb, sb)) {
1020 printk(KERN_WARNING "md: %s has same UUID"
1021 " but different superblock to %s\n",
1022 b, bdevname(refdev->bdev, b2));
1026 ev2 = md_event(refsb);
1032 rdev->sectors = rdev->sb_start;
1033 /* Limit to 4TB as metadata cannot record more than that.
1034 * (not needed for Linear and RAID0 as metadata doesn't
1037 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1038 rdev->sectors = (2ULL << 32) - 2;
1040 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1041 /* "this cannot possibly happen" ... */
1049 * validate_super for 0.90.0
1051 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1054 mdp_super_t *sb = page_address(rdev->sb_page);
1055 __u64 ev1 = md_event(sb);
1057 rdev->raid_disk = -1;
1058 clear_bit(Faulty, &rdev->flags);
1059 clear_bit(In_sync, &rdev->flags);
1060 clear_bit(Bitmap_sync, &rdev->flags);
1061 clear_bit(WriteMostly, &rdev->flags);
1063 if (mddev->raid_disks == 0) {
1064 mddev->major_version = 0;
1065 mddev->minor_version = sb->minor_version;
1066 mddev->patch_version = sb->patch_version;
1067 mddev->external = 0;
1068 mddev->chunk_sectors = sb->chunk_size >> 9;
1069 mddev->ctime = sb->ctime;
1070 mddev->utime = sb->utime;
1071 mddev->level = sb->level;
1072 mddev->clevel[0] = 0;
1073 mddev->layout = sb->layout;
1074 mddev->raid_disks = sb->raid_disks;
1075 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1076 mddev->events = ev1;
1077 mddev->bitmap_info.offset = 0;
1078 mddev->bitmap_info.space = 0;
1079 /* bitmap can use 60 K after the 4K superblocks */
1080 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1081 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1082 mddev->reshape_backwards = 0;
1084 if (mddev->minor_version >= 91) {
1085 mddev->reshape_position = sb->reshape_position;
1086 mddev->delta_disks = sb->delta_disks;
1087 mddev->new_level = sb->new_level;
1088 mddev->new_layout = sb->new_layout;
1089 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1090 if (mddev->delta_disks < 0)
1091 mddev->reshape_backwards = 1;
1093 mddev->reshape_position = MaxSector;
1094 mddev->delta_disks = 0;
1095 mddev->new_level = mddev->level;
1096 mddev->new_layout = mddev->layout;
1097 mddev->new_chunk_sectors = mddev->chunk_sectors;
1100 if (sb->state & (1<<MD_SB_CLEAN))
1101 mddev->recovery_cp = MaxSector;
1103 if (sb->events_hi == sb->cp_events_hi &&
1104 sb->events_lo == sb->cp_events_lo) {
1105 mddev->recovery_cp = sb->recovery_cp;
1107 mddev->recovery_cp = 0;
1110 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1111 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1112 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1113 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1115 mddev->max_disks = MD_SB_DISKS;
1117 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1118 mddev->bitmap_info.file == NULL) {
1119 mddev->bitmap_info.offset =
1120 mddev->bitmap_info.default_offset;
1121 mddev->bitmap_info.space =
1122 mddev->bitmap_info.default_space;
1125 } else if (mddev->pers == NULL) {
1126 /* Insist on good event counter while assembling, except
1127 * for spares (which don't need an event count) */
1129 if (sb->disks[rdev->desc_nr].state & (
1130 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1131 if (ev1 < mddev->events)
1133 } else if (mddev->bitmap) {
1134 /* if adding to array with a bitmap, then we can accept an
1135 * older device ... but not too old.
1137 if (ev1 < mddev->bitmap->events_cleared)
1139 if (ev1 < mddev->events)
1140 set_bit(Bitmap_sync, &rdev->flags);
1142 if (ev1 < mddev->events)
1143 /* just a hot-add of a new device, leave raid_disk at -1 */
1147 if (mddev->level != LEVEL_MULTIPATH) {
1148 desc = sb->disks + rdev->desc_nr;
1150 if (desc->state & (1<<MD_DISK_FAULTY))
1151 set_bit(Faulty, &rdev->flags);
1152 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1153 desc->raid_disk < mddev->raid_disks */) {
1154 set_bit(In_sync, &rdev->flags);
1155 rdev->raid_disk = desc->raid_disk;
1156 rdev->saved_raid_disk = desc->raid_disk;
1157 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1158 /* active but not in sync implies recovery up to
1159 * reshape position. We don't know exactly where
1160 * that is, so set to zero for now */
1161 if (mddev->minor_version >= 91) {
1162 rdev->recovery_offset = 0;
1163 rdev->raid_disk = desc->raid_disk;
1166 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1167 set_bit(WriteMostly, &rdev->flags);
1168 } else /* MULTIPATH are always insync */
1169 set_bit(In_sync, &rdev->flags);
1174 * sync_super for 0.90.0
1176 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1179 struct md_rdev *rdev2;
1180 int next_spare = mddev->raid_disks;
1182 /* make rdev->sb match mddev data..
1185 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1186 * 3/ any empty disks < next_spare become removed
1188 * disks[0] gets initialised to REMOVED because
1189 * we cannot be sure from other fields if it has
1190 * been initialised or not.
1193 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1195 rdev->sb_size = MD_SB_BYTES;
1197 sb = page_address(rdev->sb_page);
1199 memset(sb, 0, sizeof(*sb));
1201 sb->md_magic = MD_SB_MAGIC;
1202 sb->major_version = mddev->major_version;
1203 sb->patch_version = mddev->patch_version;
1204 sb->gvalid_words = 0; /* ignored */
1205 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1206 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1207 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1208 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1210 sb->ctime = mddev->ctime;
1211 sb->level = mddev->level;
1212 sb->size = mddev->dev_sectors / 2;
1213 sb->raid_disks = mddev->raid_disks;
1214 sb->md_minor = mddev->md_minor;
1215 sb->not_persistent = 0;
1216 sb->utime = mddev->utime;
1218 sb->events_hi = (mddev->events>>32);
1219 sb->events_lo = (u32)mddev->events;
1221 if (mddev->reshape_position == MaxSector)
1222 sb->minor_version = 90;
1224 sb->minor_version = 91;
1225 sb->reshape_position = mddev->reshape_position;
1226 sb->new_level = mddev->new_level;
1227 sb->delta_disks = mddev->delta_disks;
1228 sb->new_layout = mddev->new_layout;
1229 sb->new_chunk = mddev->new_chunk_sectors << 9;
1231 mddev->minor_version = sb->minor_version;
1234 sb->recovery_cp = mddev->recovery_cp;
1235 sb->cp_events_hi = (mddev->events>>32);
1236 sb->cp_events_lo = (u32)mddev->events;
1237 if (mddev->recovery_cp == MaxSector)
1238 sb->state = (1<< MD_SB_CLEAN);
1240 sb->recovery_cp = 0;
1242 sb->layout = mddev->layout;
1243 sb->chunk_size = mddev->chunk_sectors << 9;
1245 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1246 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1248 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1249 rdev_for_each(rdev2, mddev) {
1252 int is_active = test_bit(In_sync, &rdev2->flags);
1254 if (rdev2->raid_disk >= 0 &&
1255 sb->minor_version >= 91)
1256 /* we have nowhere to store the recovery_offset,
1257 * but if it is not below the reshape_position,
1258 * we can piggy-back on that.
1261 if (rdev2->raid_disk < 0 ||
1262 test_bit(Faulty, &rdev2->flags))
1265 desc_nr = rdev2->raid_disk;
1267 desc_nr = next_spare++;
1268 rdev2->desc_nr = desc_nr;
1269 d = &sb->disks[rdev2->desc_nr];
1271 d->number = rdev2->desc_nr;
1272 d->major = MAJOR(rdev2->bdev->bd_dev);
1273 d->minor = MINOR(rdev2->bdev->bd_dev);
1275 d->raid_disk = rdev2->raid_disk;
1277 d->raid_disk = rdev2->desc_nr; /* compatibility */
1278 if (test_bit(Faulty, &rdev2->flags))
1279 d->state = (1<<MD_DISK_FAULTY);
1280 else if (is_active) {
1281 d->state = (1<<MD_DISK_ACTIVE);
1282 if (test_bit(In_sync, &rdev2->flags))
1283 d->state |= (1<<MD_DISK_SYNC);
1291 if (test_bit(WriteMostly, &rdev2->flags))
1292 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1294 /* now set the "removed" and "faulty" bits on any missing devices */
1295 for (i=0 ; i < mddev->raid_disks ; i++) {
1296 mdp_disk_t *d = &sb->disks[i];
1297 if (d->state == 0 && d->number == 0) {
1300 d->state = (1<<MD_DISK_REMOVED);
1301 d->state |= (1<<MD_DISK_FAULTY);
1305 sb->nr_disks = nr_disks;
1306 sb->active_disks = active;
1307 sb->working_disks = working;
1308 sb->failed_disks = failed;
1309 sb->spare_disks = spare;
1311 sb->this_disk = sb->disks[rdev->desc_nr];
1312 sb->sb_csum = calc_sb_csum(sb);
1316 * rdev_size_change for 0.90.0
1318 static unsigned long long
1319 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1321 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1322 return 0; /* component must fit device */
1323 if (rdev->mddev->bitmap_info.offset)
1324 return 0; /* can't move bitmap */
1325 rdev->sb_start = calc_dev_sboffset(rdev);
1326 if (!num_sectors || num_sectors > rdev->sb_start)
1327 num_sectors = rdev->sb_start;
1328 /* Limit to 4TB as metadata cannot record more than that.
1329 * 4TB == 2^32 KB, or 2*2^32 sectors.
1331 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1332 num_sectors = (2ULL << 32) - 2;
1333 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1335 md_super_wait(rdev->mddev);
1340 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1342 /* non-zero offset changes not possible with v0.90 */
1343 return new_offset == 0;
1347 * version 1 superblock
1350 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1354 unsigned long long newcsum;
1355 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1356 __le32 *isuper = (__le32*)sb;
1358 disk_csum = sb->sb_csum;
1361 for (; size >= 4; size -= 4)
1362 newcsum += le32_to_cpu(*isuper++);
1365 newcsum += le16_to_cpu(*(__le16*) isuper);
1367 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1368 sb->sb_csum = disk_csum;
1369 return cpu_to_le32(csum);
1372 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1374 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1376 struct mdp_superblock_1 *sb;
1380 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1384 * Calculate the position of the superblock in 512byte sectors.
1385 * It is always aligned to a 4K boundary and
1386 * depeding on minor_version, it can be:
1387 * 0: At least 8K, but less than 12K, from end of device
1388 * 1: At start of device
1389 * 2: 4K from start of device.
1391 switch(minor_version) {
1393 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1395 sb_start &= ~(sector_t)(4*2-1);
1406 rdev->sb_start = sb_start;
1408 /* superblock is rarely larger than 1K, but it can be larger,
1409 * and it is safe to read 4k, so we do that
1411 ret = read_disk_sb(rdev, 4096);
1412 if (ret) return ret;
1414 sb = page_address(rdev->sb_page);
1416 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1417 sb->major_version != cpu_to_le32(1) ||
1418 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1419 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1420 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1423 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1424 printk("md: invalid superblock checksum on %s\n",
1425 bdevname(rdev->bdev,b));
1428 if (le64_to_cpu(sb->data_size) < 10) {
1429 printk("md: data_size too small on %s\n",
1430 bdevname(rdev->bdev,b));
1435 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1436 /* Some padding is non-zero, might be a new feature */
1439 rdev->preferred_minor = 0xffff;
1440 rdev->data_offset = le64_to_cpu(sb->data_offset);
1441 rdev->new_data_offset = rdev->data_offset;
1442 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1443 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1444 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1445 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1447 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1448 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1449 if (rdev->sb_size & bmask)
1450 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1453 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1456 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1459 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1462 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1464 if (!rdev->bb_page) {
1465 rdev->bb_page = alloc_page(GFP_KERNEL);
1469 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1470 rdev->badblocks.count == 0) {
1471 /* need to load the bad block list.
1472 * Currently we limit it to one page.
1478 int sectors = le16_to_cpu(sb->bblog_size);
1479 if (sectors > (PAGE_SIZE / 512))
1481 offset = le32_to_cpu(sb->bblog_offset);
1484 bb_sector = (long long)offset;
1485 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1486 rdev->bb_page, READ, true))
1488 bbp = (u64 *)page_address(rdev->bb_page);
1489 rdev->badblocks.shift = sb->bblog_shift;
1490 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1491 u64 bb = le64_to_cpu(*bbp);
1492 int count = bb & (0x3ff);
1493 u64 sector = bb >> 10;
1494 sector <<= sb->bblog_shift;
1495 count <<= sb->bblog_shift;
1498 if (md_set_badblocks(&rdev->badblocks,
1499 sector, count, 1) == 0)
1502 } else if (sb->bblog_offset != 0)
1503 rdev->badblocks.shift = 0;
1509 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1511 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1512 sb->level != refsb->level ||
1513 sb->layout != refsb->layout ||
1514 sb->chunksize != refsb->chunksize) {
1515 printk(KERN_WARNING "md: %s has strangely different"
1516 " superblock to %s\n",
1517 bdevname(rdev->bdev,b),
1518 bdevname(refdev->bdev,b2));
1521 ev1 = le64_to_cpu(sb->events);
1522 ev2 = le64_to_cpu(refsb->events);
1529 if (minor_version) {
1530 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1531 sectors -= rdev->data_offset;
1533 sectors = rdev->sb_start;
1534 if (sectors < le64_to_cpu(sb->data_size))
1536 rdev->sectors = le64_to_cpu(sb->data_size);
1540 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1542 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1543 __u64 ev1 = le64_to_cpu(sb->events);
1545 rdev->raid_disk = -1;
1546 clear_bit(Faulty, &rdev->flags);
1547 clear_bit(In_sync, &rdev->flags);
1548 clear_bit(Bitmap_sync, &rdev->flags);
1549 clear_bit(WriteMostly, &rdev->flags);
1551 if (mddev->raid_disks == 0) {
1552 mddev->major_version = 1;
1553 mddev->patch_version = 0;
1554 mddev->external = 0;
1555 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1556 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1557 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1558 mddev->level = le32_to_cpu(sb->level);
1559 mddev->clevel[0] = 0;
1560 mddev->layout = le32_to_cpu(sb->layout);
1561 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1562 mddev->dev_sectors = le64_to_cpu(sb->size);
1563 mddev->events = ev1;
1564 mddev->bitmap_info.offset = 0;
1565 mddev->bitmap_info.space = 0;
1566 /* Default location for bitmap is 1K after superblock
1567 * using 3K - total of 4K
1569 mddev->bitmap_info.default_offset = 1024 >> 9;
1570 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1571 mddev->reshape_backwards = 0;
1573 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1574 memcpy(mddev->uuid, sb->set_uuid, 16);
1576 mddev->max_disks = (4096-256)/2;
1578 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1579 mddev->bitmap_info.file == NULL) {
1580 mddev->bitmap_info.offset =
1581 (__s32)le32_to_cpu(sb->bitmap_offset);
1582 /* Metadata doesn't record how much space is available.
1583 * For 1.0, we assume we can use up to the superblock
1584 * if before, else to 4K beyond superblock.
1585 * For others, assume no change is possible.
1587 if (mddev->minor_version > 0)
1588 mddev->bitmap_info.space = 0;
1589 else if (mddev->bitmap_info.offset > 0)
1590 mddev->bitmap_info.space =
1591 8 - mddev->bitmap_info.offset;
1593 mddev->bitmap_info.space =
1594 -mddev->bitmap_info.offset;
1597 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1598 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1599 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1600 mddev->new_level = le32_to_cpu(sb->new_level);
1601 mddev->new_layout = le32_to_cpu(sb->new_layout);
1602 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1603 if (mddev->delta_disks < 0 ||
1604 (mddev->delta_disks == 0 &&
1605 (le32_to_cpu(sb->feature_map)
1606 & MD_FEATURE_RESHAPE_BACKWARDS)))
1607 mddev->reshape_backwards = 1;
1609 mddev->reshape_position = MaxSector;
1610 mddev->delta_disks = 0;
1611 mddev->new_level = mddev->level;
1612 mddev->new_layout = mddev->layout;
1613 mddev->new_chunk_sectors = mddev->chunk_sectors;
1616 } else if (mddev->pers == NULL) {
1617 /* Insist of good event counter while assembling, except for
1618 * spares (which don't need an event count) */
1620 if (rdev->desc_nr >= 0 &&
1621 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1622 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1623 if (ev1 < mddev->events)
1625 } else if (mddev->bitmap) {
1626 /* If adding to array with a bitmap, then we can accept an
1627 * older device, but not too old.
1629 if (ev1 < mddev->bitmap->events_cleared)
1631 if (ev1 < mddev->events)
1632 set_bit(Bitmap_sync, &rdev->flags);
1634 if (ev1 < mddev->events)
1635 /* just a hot-add of a new device, leave raid_disk at -1 */
1638 if (mddev->level != LEVEL_MULTIPATH) {
1640 if (rdev->desc_nr < 0 ||
1641 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1645 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1647 case 0xffff: /* spare */
1649 case 0xfffe: /* faulty */
1650 set_bit(Faulty, &rdev->flags);
1653 rdev->saved_raid_disk = role;
1654 if ((le32_to_cpu(sb->feature_map) &
1655 MD_FEATURE_RECOVERY_OFFSET)) {
1656 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1657 if (!(le32_to_cpu(sb->feature_map) &
1658 MD_FEATURE_RECOVERY_BITMAP))
1659 rdev->saved_raid_disk = -1;
1661 set_bit(In_sync, &rdev->flags);
1662 rdev->raid_disk = role;
1665 if (sb->devflags & WriteMostly1)
1666 set_bit(WriteMostly, &rdev->flags);
1667 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1668 set_bit(Replacement, &rdev->flags);
1669 } else /* MULTIPATH are always insync */
1670 set_bit(In_sync, &rdev->flags);
1675 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1677 struct mdp_superblock_1 *sb;
1678 struct md_rdev *rdev2;
1680 /* make rdev->sb match mddev and rdev data. */
1682 sb = page_address(rdev->sb_page);
1684 sb->feature_map = 0;
1686 sb->recovery_offset = cpu_to_le64(0);
1687 memset(sb->pad3, 0, sizeof(sb->pad3));
1689 sb->utime = cpu_to_le64((__u64)mddev->utime);
1690 sb->events = cpu_to_le64(mddev->events);
1692 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1694 sb->resync_offset = cpu_to_le64(0);
1696 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1698 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1699 sb->size = cpu_to_le64(mddev->dev_sectors);
1700 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1701 sb->level = cpu_to_le32(mddev->level);
1702 sb->layout = cpu_to_le32(mddev->layout);
1704 if (test_bit(WriteMostly, &rdev->flags))
1705 sb->devflags |= WriteMostly1;
1707 sb->devflags &= ~WriteMostly1;
1708 sb->data_offset = cpu_to_le64(rdev->data_offset);
1709 sb->data_size = cpu_to_le64(rdev->sectors);
1711 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1712 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1713 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1716 if (rdev->raid_disk >= 0 &&
1717 !test_bit(In_sync, &rdev->flags)) {
1719 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1720 sb->recovery_offset =
1721 cpu_to_le64(rdev->recovery_offset);
1722 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1724 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1726 if (test_bit(Replacement, &rdev->flags))
1728 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1730 if (mddev->reshape_position != MaxSector) {
1731 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1732 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1733 sb->new_layout = cpu_to_le32(mddev->new_layout);
1734 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1735 sb->new_level = cpu_to_le32(mddev->new_level);
1736 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1737 if (mddev->delta_disks == 0 &&
1738 mddev->reshape_backwards)
1740 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1741 if (rdev->new_data_offset != rdev->data_offset) {
1743 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1744 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1745 - rdev->data_offset));
1749 if (rdev->badblocks.count == 0)
1750 /* Nothing to do for bad blocks*/ ;
1751 else if (sb->bblog_offset == 0)
1752 /* Cannot record bad blocks on this device */
1753 md_error(mddev, rdev);
1755 struct badblocks *bb = &rdev->badblocks;
1756 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1758 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1763 seq = read_seqbegin(&bb->lock);
1765 memset(bbp, 0xff, PAGE_SIZE);
1767 for (i = 0 ; i < bb->count ; i++) {
1768 u64 internal_bb = p[i];
1769 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1770 | BB_LEN(internal_bb));
1771 bbp[i] = cpu_to_le64(store_bb);
1774 if (read_seqretry(&bb->lock, seq))
1777 bb->sector = (rdev->sb_start +
1778 (int)le32_to_cpu(sb->bblog_offset));
1779 bb->size = le16_to_cpu(sb->bblog_size);
1784 rdev_for_each(rdev2, mddev)
1785 if (rdev2->desc_nr+1 > max_dev)
1786 max_dev = rdev2->desc_nr+1;
1788 if (max_dev > le32_to_cpu(sb->max_dev)) {
1790 sb->max_dev = cpu_to_le32(max_dev);
1791 rdev->sb_size = max_dev * 2 + 256;
1792 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1793 if (rdev->sb_size & bmask)
1794 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1796 max_dev = le32_to_cpu(sb->max_dev);
1798 for (i=0; i<max_dev;i++)
1799 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1801 rdev_for_each(rdev2, mddev) {
1803 if (test_bit(Faulty, &rdev2->flags))
1804 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1805 else if (test_bit(In_sync, &rdev2->flags))
1806 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1807 else if (rdev2->raid_disk >= 0)
1808 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1810 sb->dev_roles[i] = cpu_to_le16(0xffff);
1813 sb->sb_csum = calc_sb_1_csum(sb);
1816 static unsigned long long
1817 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1819 struct mdp_superblock_1 *sb;
1820 sector_t max_sectors;
1821 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1822 return 0; /* component must fit device */
1823 if (rdev->data_offset != rdev->new_data_offset)
1824 return 0; /* too confusing */
1825 if (rdev->sb_start < rdev->data_offset) {
1826 /* minor versions 1 and 2; superblock before data */
1827 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1828 max_sectors -= rdev->data_offset;
1829 if (!num_sectors || num_sectors > max_sectors)
1830 num_sectors = max_sectors;
1831 } else if (rdev->mddev->bitmap_info.offset) {
1832 /* minor version 0 with bitmap we can't move */
1835 /* minor version 0; superblock after data */
1837 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1838 sb_start &= ~(sector_t)(4*2 - 1);
1839 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1840 if (!num_sectors || num_sectors > max_sectors)
1841 num_sectors = max_sectors;
1842 rdev->sb_start = sb_start;
1844 sb = page_address(rdev->sb_page);
1845 sb->data_size = cpu_to_le64(num_sectors);
1846 sb->super_offset = rdev->sb_start;
1847 sb->sb_csum = calc_sb_1_csum(sb);
1848 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1850 md_super_wait(rdev->mddev);
1856 super_1_allow_new_offset(struct md_rdev *rdev,
1857 unsigned long long new_offset)
1859 /* All necessary checks on new >= old have been done */
1860 struct bitmap *bitmap;
1861 if (new_offset >= rdev->data_offset)
1864 /* with 1.0 metadata, there is no metadata to tread on
1865 * so we can always move back */
1866 if (rdev->mddev->minor_version == 0)
1869 /* otherwise we must be sure not to step on
1870 * any metadata, so stay:
1871 * 36K beyond start of superblock
1872 * beyond end of badblocks
1873 * beyond write-intent bitmap
1875 if (rdev->sb_start + (32+4)*2 > new_offset)
1877 bitmap = rdev->mddev->bitmap;
1878 if (bitmap && !rdev->mddev->bitmap_info.file &&
1879 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1880 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1882 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1888 static struct super_type super_types[] = {
1891 .owner = THIS_MODULE,
1892 .load_super = super_90_load,
1893 .validate_super = super_90_validate,
1894 .sync_super = super_90_sync,
1895 .rdev_size_change = super_90_rdev_size_change,
1896 .allow_new_offset = super_90_allow_new_offset,
1900 .owner = THIS_MODULE,
1901 .load_super = super_1_load,
1902 .validate_super = super_1_validate,
1903 .sync_super = super_1_sync,
1904 .rdev_size_change = super_1_rdev_size_change,
1905 .allow_new_offset = super_1_allow_new_offset,
1909 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1911 if (mddev->sync_super) {
1912 mddev->sync_super(mddev, rdev);
1916 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1918 super_types[mddev->major_version].sync_super(mddev, rdev);
1921 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1923 struct md_rdev *rdev, *rdev2;
1926 rdev_for_each_rcu(rdev, mddev1)
1927 rdev_for_each_rcu(rdev2, mddev2)
1928 if (rdev->bdev->bd_contains ==
1929 rdev2->bdev->bd_contains) {
1937 static LIST_HEAD(pending_raid_disks);
1940 * Try to register data integrity profile for an mddev
1942 * This is called when an array is started and after a disk has been kicked
1943 * from the array. It only succeeds if all working and active component devices
1944 * are integrity capable with matching profiles.
1946 int md_integrity_register(struct mddev *mddev)
1948 struct md_rdev *rdev, *reference = NULL;
1950 if (list_empty(&mddev->disks))
1951 return 0; /* nothing to do */
1952 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1953 return 0; /* shouldn't register, or already is */
1954 rdev_for_each(rdev, mddev) {
1955 /* skip spares and non-functional disks */
1956 if (test_bit(Faulty, &rdev->flags))
1958 if (rdev->raid_disk < 0)
1961 /* Use the first rdev as the reference */
1965 /* does this rdev's profile match the reference profile? */
1966 if (blk_integrity_compare(reference->bdev->bd_disk,
1967 rdev->bdev->bd_disk) < 0)
1970 if (!reference || !bdev_get_integrity(reference->bdev))
1973 * All component devices are integrity capable and have matching
1974 * profiles, register the common profile for the md device.
1976 if (blk_integrity_register(mddev->gendisk,
1977 bdev_get_integrity(reference->bdev)) != 0) {
1978 printk(KERN_ERR "md: failed to register integrity for %s\n",
1982 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1983 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1984 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1990 EXPORT_SYMBOL(md_integrity_register);
1992 /* Disable data integrity if non-capable/non-matching disk is being added */
1993 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1995 struct blk_integrity *bi_rdev;
1996 struct blk_integrity *bi_mddev;
1998 if (!mddev->gendisk)
2001 bi_rdev = bdev_get_integrity(rdev->bdev);
2002 bi_mddev = blk_get_integrity(mddev->gendisk);
2004 if (!bi_mddev) /* nothing to do */
2006 if (rdev->raid_disk < 0) /* skip spares */
2008 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2009 rdev->bdev->bd_disk) >= 0)
2011 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2012 blk_integrity_unregister(mddev->gendisk);
2014 EXPORT_SYMBOL(md_integrity_add_rdev);
2016 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2018 char b[BDEVNAME_SIZE];
2023 /* prevent duplicates */
2024 if (find_rdev(mddev, rdev->bdev->bd_dev))
2027 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2028 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2029 rdev->sectors < mddev->dev_sectors)) {
2031 /* Cannot change size, so fail
2032 * If mddev->level <= 0, then we don't care
2033 * about aligning sizes (e.g. linear)
2035 if (mddev->level > 0)
2038 mddev->dev_sectors = rdev->sectors;
2041 /* Verify rdev->desc_nr is unique.
2042 * If it is -1, assign a free number, else
2043 * check number is not in use
2046 if (rdev->desc_nr < 0) {
2049 choice = mddev->raid_disks;
2050 while (find_rdev_nr_rcu(mddev, choice))
2052 rdev->desc_nr = choice;
2054 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2060 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2061 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2062 mdname(mddev), mddev->max_disks);
2065 bdevname(rdev->bdev,b);
2066 while ( (s=strchr(b, '/')) != NULL)
2069 rdev->mddev = mddev;
2070 printk(KERN_INFO "md: bind<%s>\n", b);
2072 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2075 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2076 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2077 /* failure here is OK */;
2078 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2080 list_add_rcu(&rdev->same_set, &mddev->disks);
2081 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2083 /* May as well allow recovery to be retried once */
2084 mddev->recovery_disabled++;
2089 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2094 static void md_delayed_delete(struct work_struct *ws)
2096 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2097 kobject_del(&rdev->kobj);
2098 kobject_put(&rdev->kobj);
2101 static void unbind_rdev_from_array(struct md_rdev *rdev)
2103 char b[BDEVNAME_SIZE];
2105 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2106 list_del_rcu(&rdev->same_set);
2107 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2109 sysfs_remove_link(&rdev->kobj, "block");
2110 sysfs_put(rdev->sysfs_state);
2111 rdev->sysfs_state = NULL;
2112 rdev->badblocks.count = 0;
2113 /* We need to delay this, otherwise we can deadlock when
2114 * writing to 'remove' to "dev/state". We also need
2115 * to delay it due to rcu usage.
2118 INIT_WORK(&rdev->del_work, md_delayed_delete);
2119 kobject_get(&rdev->kobj);
2120 queue_work(md_misc_wq, &rdev->del_work);
2124 * prevent the device from being mounted, repartitioned or
2125 * otherwise reused by a RAID array (or any other kernel
2126 * subsystem), by bd_claiming the device.
2128 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2131 struct block_device *bdev;
2132 char b[BDEVNAME_SIZE];
2134 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2135 shared ? (struct md_rdev *)lock_rdev : rdev);
2137 printk(KERN_ERR "md: could not open %s.\n",
2138 __bdevname(dev, b));
2139 return PTR_ERR(bdev);
2145 static void unlock_rdev(struct md_rdev *rdev)
2147 struct block_device *bdev = rdev->bdev;
2149 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2152 void md_autodetect_dev(dev_t dev);
2154 static void export_rdev(struct md_rdev *rdev)
2156 char b[BDEVNAME_SIZE];
2158 printk(KERN_INFO "md: export_rdev(%s)\n",
2159 bdevname(rdev->bdev,b));
2160 md_rdev_clear(rdev);
2162 if (test_bit(AutoDetected, &rdev->flags))
2163 md_autodetect_dev(rdev->bdev->bd_dev);
2166 kobject_put(&rdev->kobj);
2169 static void kick_rdev_from_array(struct md_rdev *rdev)
2171 unbind_rdev_from_array(rdev);
2175 static void export_array(struct mddev *mddev)
2177 struct md_rdev *rdev;
2179 while (!list_empty(&mddev->disks)) {
2180 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2182 kick_rdev_from_array(rdev);
2184 mddev->raid_disks = 0;
2185 mddev->major_version = 0;
2188 static void sync_sbs(struct mddev *mddev, int nospares)
2190 /* Update each superblock (in-memory image), but
2191 * if we are allowed to, skip spares which already
2192 * have the right event counter, or have one earlier
2193 * (which would mean they aren't being marked as dirty
2194 * with the rest of the array)
2196 struct md_rdev *rdev;
2197 rdev_for_each(rdev, mddev) {
2198 if (rdev->sb_events == mddev->events ||
2200 rdev->raid_disk < 0 &&
2201 rdev->sb_events+1 == mddev->events)) {
2202 /* Don't update this superblock */
2203 rdev->sb_loaded = 2;
2205 sync_super(mddev, rdev);
2206 rdev->sb_loaded = 1;
2211 static void md_update_sb(struct mddev *mddev, int force_change)
2213 struct md_rdev *rdev;
2216 int any_badblocks_changed = 0;
2220 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2224 /* First make sure individual recovery_offsets are correct */
2225 rdev_for_each(rdev, mddev) {
2226 if (rdev->raid_disk >= 0 &&
2227 mddev->delta_disks >= 0 &&
2228 !test_bit(In_sync, &rdev->flags) &&
2229 mddev->curr_resync_completed > rdev->recovery_offset)
2230 rdev->recovery_offset = mddev->curr_resync_completed;
2233 if (!mddev->persistent) {
2234 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2235 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2236 if (!mddev->external) {
2237 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2238 rdev_for_each(rdev, mddev) {
2239 if (rdev->badblocks.changed) {
2240 rdev->badblocks.changed = 0;
2241 md_ack_all_badblocks(&rdev->badblocks);
2242 md_error(mddev, rdev);
2244 clear_bit(Blocked, &rdev->flags);
2245 clear_bit(BlockedBadBlocks, &rdev->flags);
2246 wake_up(&rdev->blocked_wait);
2249 wake_up(&mddev->sb_wait);
2253 spin_lock(&mddev->lock);
2255 mddev->utime = get_seconds();
2257 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2259 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2260 /* just a clean<-> dirty transition, possibly leave spares alone,
2261 * though if events isn't the right even/odd, we will have to do
2267 if (mddev->degraded)
2268 /* If the array is degraded, then skipping spares is both
2269 * dangerous and fairly pointless.
2270 * Dangerous because a device that was removed from the array
2271 * might have a event_count that still looks up-to-date,
2272 * so it can be re-added without a resync.
2273 * Pointless because if there are any spares to skip,
2274 * then a recovery will happen and soon that array won't
2275 * be degraded any more and the spare can go back to sleep then.
2279 sync_req = mddev->in_sync;
2281 /* If this is just a dirty<->clean transition, and the array is clean
2282 * and 'events' is odd, we can roll back to the previous clean state */
2284 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2285 && mddev->can_decrease_events
2286 && mddev->events != 1) {
2288 mddev->can_decrease_events = 0;
2290 /* otherwise we have to go forward and ... */
2292 mddev->can_decrease_events = nospares;
2296 * This 64-bit counter should never wrap.
2297 * Either we are in around ~1 trillion A.C., assuming
2298 * 1 reboot per second, or we have a bug...
2300 WARN_ON(mddev->events == 0);
2302 rdev_for_each(rdev, mddev) {
2303 if (rdev->badblocks.changed)
2304 any_badblocks_changed++;
2305 if (test_bit(Faulty, &rdev->flags))
2306 set_bit(FaultRecorded, &rdev->flags);
2309 sync_sbs(mddev, nospares);
2310 spin_unlock(&mddev->lock);
2312 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2313 mdname(mddev), mddev->in_sync);
2315 bitmap_update_sb(mddev->bitmap);
2316 rdev_for_each(rdev, mddev) {
2317 char b[BDEVNAME_SIZE];
2319 if (rdev->sb_loaded != 1)
2320 continue; /* no noise on spare devices */
2322 if (!test_bit(Faulty, &rdev->flags)) {
2323 md_super_write(mddev,rdev,
2324 rdev->sb_start, rdev->sb_size,
2326 pr_debug("md: (write) %s's sb offset: %llu\n",
2327 bdevname(rdev->bdev, b),
2328 (unsigned long long)rdev->sb_start);
2329 rdev->sb_events = mddev->events;
2330 if (rdev->badblocks.size) {
2331 md_super_write(mddev, rdev,
2332 rdev->badblocks.sector,
2333 rdev->badblocks.size << 9,
2335 rdev->badblocks.size = 0;
2339 pr_debug("md: %s (skipping faulty)\n",
2340 bdevname(rdev->bdev, b));
2342 if (mddev->level == LEVEL_MULTIPATH)
2343 /* only need to write one superblock... */
2346 md_super_wait(mddev);
2347 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2349 spin_lock(&mddev->lock);
2350 if (mddev->in_sync != sync_req ||
2351 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2352 /* have to write it out again */
2353 spin_unlock(&mddev->lock);
2356 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2357 spin_unlock(&mddev->lock);
2358 wake_up(&mddev->sb_wait);
2359 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2360 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2362 rdev_for_each(rdev, mddev) {
2363 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2364 clear_bit(Blocked, &rdev->flags);
2366 if (any_badblocks_changed)
2367 md_ack_all_badblocks(&rdev->badblocks);
2368 clear_bit(BlockedBadBlocks, &rdev->flags);
2369 wake_up(&rdev->blocked_wait);
2373 /* words written to sysfs files may, or may not, be \n terminated.
2374 * We want to accept with case. For this we use cmd_match.
2376 static int cmd_match(const char *cmd, const char *str)
2378 /* See if cmd, written into a sysfs file, matches
2379 * str. They must either be the same, or cmd can
2380 * have a trailing newline
2382 while (*cmd && *str && *cmd == *str) {
2393 struct rdev_sysfs_entry {
2394 struct attribute attr;
2395 ssize_t (*show)(struct md_rdev *, char *);
2396 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2400 state_show(struct md_rdev *rdev, char *page)
2404 unsigned long flags = ACCESS_ONCE(rdev->flags);
2406 if (test_bit(Faulty, &flags) ||
2407 rdev->badblocks.unacked_exist) {
2408 len+= sprintf(page+len, "%sfaulty",sep);
2411 if (test_bit(In_sync, &flags)) {
2412 len += sprintf(page+len, "%sin_sync",sep);
2415 if (test_bit(WriteMostly, &flags)) {
2416 len += sprintf(page+len, "%swrite_mostly",sep);
2419 if (test_bit(Blocked, &flags) ||
2420 (rdev->badblocks.unacked_exist
2421 && !test_bit(Faulty, &flags))) {
2422 len += sprintf(page+len, "%sblocked", sep);
2425 if (!test_bit(Faulty, &flags) &&
2426 !test_bit(In_sync, &flags)) {
2427 len += sprintf(page+len, "%sspare", sep);
2430 if (test_bit(WriteErrorSeen, &flags)) {
2431 len += sprintf(page+len, "%swrite_error", sep);
2434 if (test_bit(WantReplacement, &flags)) {
2435 len += sprintf(page+len, "%swant_replacement", sep);
2438 if (test_bit(Replacement, &flags)) {
2439 len += sprintf(page+len, "%sreplacement", sep);
2443 return len+sprintf(page+len, "\n");
2447 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2450 * faulty - simulates an error
2451 * remove - disconnects the device
2452 * writemostly - sets write_mostly
2453 * -writemostly - clears write_mostly
2454 * blocked - sets the Blocked flags
2455 * -blocked - clears the Blocked and possibly simulates an error
2456 * insync - sets Insync providing device isn't active
2457 * -insync - clear Insync for a device with a slot assigned,
2458 * so that it gets rebuilt based on bitmap
2459 * write_error - sets WriteErrorSeen
2460 * -write_error - clears WriteErrorSeen
2463 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2464 md_error(rdev->mddev, rdev);
2465 if (test_bit(Faulty, &rdev->flags))
2469 } else if (cmd_match(buf, "remove")) {
2470 if (rdev->raid_disk >= 0)
2473 struct mddev *mddev = rdev->mddev;
2474 kick_rdev_from_array(rdev);
2476 md_update_sb(mddev, 1);
2477 md_new_event(mddev);
2480 } else if (cmd_match(buf, "writemostly")) {
2481 set_bit(WriteMostly, &rdev->flags);
2483 } else if (cmd_match(buf, "-writemostly")) {
2484 clear_bit(WriteMostly, &rdev->flags);
2486 } else if (cmd_match(buf, "blocked")) {
2487 set_bit(Blocked, &rdev->flags);
2489 } else if (cmd_match(buf, "-blocked")) {
2490 if (!test_bit(Faulty, &rdev->flags) &&
2491 rdev->badblocks.unacked_exist) {
2492 /* metadata handler doesn't understand badblocks,
2493 * so we need to fail the device
2495 md_error(rdev->mddev, rdev);
2497 clear_bit(Blocked, &rdev->flags);
2498 clear_bit(BlockedBadBlocks, &rdev->flags);
2499 wake_up(&rdev->blocked_wait);
2500 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2501 md_wakeup_thread(rdev->mddev->thread);
2504 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2505 set_bit(In_sync, &rdev->flags);
2507 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2508 if (rdev->mddev->pers == NULL) {
2509 clear_bit(In_sync, &rdev->flags);
2510 rdev->saved_raid_disk = rdev->raid_disk;
2511 rdev->raid_disk = -1;
2514 } else if (cmd_match(buf, "write_error")) {
2515 set_bit(WriteErrorSeen, &rdev->flags);
2517 } else if (cmd_match(buf, "-write_error")) {
2518 clear_bit(WriteErrorSeen, &rdev->flags);
2520 } else if (cmd_match(buf, "want_replacement")) {
2521 /* Any non-spare device that is not a replacement can
2522 * become want_replacement at any time, but we then need to
2523 * check if recovery is needed.
2525 if (rdev->raid_disk >= 0 &&
2526 !test_bit(Replacement, &rdev->flags))
2527 set_bit(WantReplacement, &rdev->flags);
2528 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2529 md_wakeup_thread(rdev->mddev->thread);
2531 } else if (cmd_match(buf, "-want_replacement")) {
2532 /* Clearing 'want_replacement' is always allowed.
2533 * Once replacements starts it is too late though.
2536 clear_bit(WantReplacement, &rdev->flags);
2537 } else if (cmd_match(buf, "replacement")) {
2538 /* Can only set a device as a replacement when array has not
2539 * yet been started. Once running, replacement is automatic
2540 * from spares, or by assigning 'slot'.
2542 if (rdev->mddev->pers)
2545 set_bit(Replacement, &rdev->flags);
2548 } else if (cmd_match(buf, "-replacement")) {
2549 /* Similarly, can only clear Replacement before start */
2550 if (rdev->mddev->pers)
2553 clear_bit(Replacement, &rdev->flags);
2558 sysfs_notify_dirent_safe(rdev->sysfs_state);
2559 return err ? err : len;
2561 static struct rdev_sysfs_entry rdev_state =
2562 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2565 errors_show(struct md_rdev *rdev, char *page)
2567 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2571 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2574 unsigned long n = simple_strtoul(buf, &e, 10);
2575 if (*buf && (*e == 0 || *e == '\n')) {
2576 atomic_set(&rdev->corrected_errors, n);
2581 static struct rdev_sysfs_entry rdev_errors =
2582 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2585 slot_show(struct md_rdev *rdev, char *page)
2587 if (rdev->raid_disk < 0)
2588 return sprintf(page, "none\n");
2590 return sprintf(page, "%d\n", rdev->raid_disk);
2594 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2598 int slot = simple_strtoul(buf, &e, 10);
2599 if (strncmp(buf, "none", 4)==0)
2601 else if (e==buf || (*e && *e!= '\n'))
2603 if (rdev->mddev->pers && slot == -1) {
2604 /* Setting 'slot' on an active array requires also
2605 * updating the 'rd%d' link, and communicating
2606 * with the personality with ->hot_*_disk.
2607 * For now we only support removing
2608 * failed/spare devices. This normally happens automatically,
2609 * but not when the metadata is externally managed.
2611 if (rdev->raid_disk == -1)
2613 /* personality does all needed checks */
2614 if (rdev->mddev->pers->hot_remove_disk == NULL)
2616 clear_bit(Blocked, &rdev->flags);
2617 remove_and_add_spares(rdev->mddev, rdev);
2618 if (rdev->raid_disk >= 0)
2620 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2621 md_wakeup_thread(rdev->mddev->thread);
2622 } else if (rdev->mddev->pers) {
2623 /* Activating a spare .. or possibly reactivating
2624 * if we ever get bitmaps working here.
2627 if (rdev->raid_disk != -1)
2630 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2633 if (rdev->mddev->pers->hot_add_disk == NULL)
2636 if (slot >= rdev->mddev->raid_disks &&
2637 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2640 rdev->raid_disk = slot;
2641 if (test_bit(In_sync, &rdev->flags))
2642 rdev->saved_raid_disk = slot;
2644 rdev->saved_raid_disk = -1;
2645 clear_bit(In_sync, &rdev->flags);
2646 clear_bit(Bitmap_sync, &rdev->flags);
2647 err = rdev->mddev->pers->
2648 hot_add_disk(rdev->mddev, rdev);
2650 rdev->raid_disk = -1;
2653 sysfs_notify_dirent_safe(rdev->sysfs_state);
2654 if (sysfs_link_rdev(rdev->mddev, rdev))
2655 /* failure here is OK */;
2656 /* don't wakeup anyone, leave that to userspace. */
2658 if (slot >= rdev->mddev->raid_disks &&
2659 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2661 rdev->raid_disk = slot;
2662 /* assume it is working */
2663 clear_bit(Faulty, &rdev->flags);
2664 clear_bit(WriteMostly, &rdev->flags);
2665 set_bit(In_sync, &rdev->flags);
2666 sysfs_notify_dirent_safe(rdev->sysfs_state);
2671 static struct rdev_sysfs_entry rdev_slot =
2672 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2675 offset_show(struct md_rdev *rdev, char *page)
2677 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2681 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2683 unsigned long long offset;
2684 if (kstrtoull(buf, 10, &offset) < 0)
2686 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2688 if (rdev->sectors && rdev->mddev->external)
2689 /* Must set offset before size, so overlap checks
2692 rdev->data_offset = offset;
2693 rdev->new_data_offset = offset;
2697 static struct rdev_sysfs_entry rdev_offset =
2698 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2700 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2702 return sprintf(page, "%llu\n",
2703 (unsigned long long)rdev->new_data_offset);
2706 static ssize_t new_offset_store(struct md_rdev *rdev,
2707 const char *buf, size_t len)
2709 unsigned long long new_offset;
2710 struct mddev *mddev = rdev->mddev;
2712 if (kstrtoull(buf, 10, &new_offset) < 0)
2715 if (mddev->sync_thread ||
2716 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2718 if (new_offset == rdev->data_offset)
2719 /* reset is always permitted */
2721 else if (new_offset > rdev->data_offset) {
2722 /* must not push array size beyond rdev_sectors */
2723 if (new_offset - rdev->data_offset
2724 + mddev->dev_sectors > rdev->sectors)
2727 /* Metadata worries about other space details. */
2729 /* decreasing the offset is inconsistent with a backwards
2732 if (new_offset < rdev->data_offset &&
2733 mddev->reshape_backwards)
2735 /* Increasing offset is inconsistent with forwards
2736 * reshape. reshape_direction should be set to
2737 * 'backwards' first.
2739 if (new_offset > rdev->data_offset &&
2740 !mddev->reshape_backwards)
2743 if (mddev->pers && mddev->persistent &&
2744 !super_types[mddev->major_version]
2745 .allow_new_offset(rdev, new_offset))
2747 rdev->new_data_offset = new_offset;
2748 if (new_offset > rdev->data_offset)
2749 mddev->reshape_backwards = 1;
2750 else if (new_offset < rdev->data_offset)
2751 mddev->reshape_backwards = 0;
2755 static struct rdev_sysfs_entry rdev_new_offset =
2756 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2759 rdev_size_show(struct md_rdev *rdev, char *page)
2761 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2764 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2766 /* check if two start/length pairs overlap */
2774 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2776 unsigned long long blocks;
2779 if (kstrtoull(buf, 10, &blocks) < 0)
2782 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2783 return -EINVAL; /* sector conversion overflow */
2786 if (new != blocks * 2)
2787 return -EINVAL; /* unsigned long long to sector_t overflow */
2794 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2796 struct mddev *my_mddev = rdev->mddev;
2797 sector_t oldsectors = rdev->sectors;
2800 if (strict_blocks_to_sectors(buf, §ors) < 0)
2802 if (rdev->data_offset != rdev->new_data_offset)
2803 return -EINVAL; /* too confusing */
2804 if (my_mddev->pers && rdev->raid_disk >= 0) {
2805 if (my_mddev->persistent) {
2806 sectors = super_types[my_mddev->major_version].
2807 rdev_size_change(rdev, sectors);
2810 } else if (!sectors)
2811 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2813 if (!my_mddev->pers->resize)
2814 /* Cannot change size for RAID0 or Linear etc */
2817 if (sectors < my_mddev->dev_sectors)
2818 return -EINVAL; /* component must fit device */
2820 rdev->sectors = sectors;
2821 if (sectors > oldsectors && my_mddev->external) {
2822 /* Need to check that all other rdevs with the same
2823 * ->bdev do not overlap. 'rcu' is sufficient to walk
2824 * the rdev lists safely.
2825 * This check does not provide a hard guarantee, it
2826 * just helps avoid dangerous mistakes.
2828 struct mddev *mddev;
2830 struct list_head *tmp;
2833 for_each_mddev(mddev, tmp) {
2834 struct md_rdev *rdev2;
2836 rdev_for_each(rdev2, mddev)
2837 if (rdev->bdev == rdev2->bdev &&
2839 overlaps(rdev->data_offset, rdev->sectors,
2852 /* Someone else could have slipped in a size
2853 * change here, but doing so is just silly.
2854 * We put oldsectors back because we *know* it is
2855 * safe, and trust userspace not to race with
2858 rdev->sectors = oldsectors;
2865 static struct rdev_sysfs_entry rdev_size =
2866 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2868 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2870 unsigned long long recovery_start = rdev->recovery_offset;
2872 if (test_bit(In_sync, &rdev->flags) ||
2873 recovery_start == MaxSector)
2874 return sprintf(page, "none\n");
2876 return sprintf(page, "%llu\n", recovery_start);
2879 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2881 unsigned long long recovery_start;
2883 if (cmd_match(buf, "none"))
2884 recovery_start = MaxSector;
2885 else if (kstrtoull(buf, 10, &recovery_start))
2888 if (rdev->mddev->pers &&
2889 rdev->raid_disk >= 0)
2892 rdev->recovery_offset = recovery_start;
2893 if (recovery_start == MaxSector)
2894 set_bit(In_sync, &rdev->flags);
2896 clear_bit(In_sync, &rdev->flags);
2900 static struct rdev_sysfs_entry rdev_recovery_start =
2901 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2904 badblocks_show(struct badblocks *bb, char *page, int unack);
2906 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2908 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2910 return badblocks_show(&rdev->badblocks, page, 0);
2912 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2914 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2915 /* Maybe that ack was all we needed */
2916 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2917 wake_up(&rdev->blocked_wait);
2920 static struct rdev_sysfs_entry rdev_bad_blocks =
2921 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2923 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2925 return badblocks_show(&rdev->badblocks, page, 1);
2927 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2929 return badblocks_store(&rdev->badblocks, page, len, 1);
2931 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2932 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2934 static struct attribute *rdev_default_attrs[] = {
2939 &rdev_new_offset.attr,
2941 &rdev_recovery_start.attr,
2942 &rdev_bad_blocks.attr,
2943 &rdev_unack_bad_blocks.attr,
2947 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2949 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2950 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2956 return entry->show(rdev, page);
2960 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2961 const char *page, size_t length)
2963 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2964 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2966 struct mddev *mddev = rdev->mddev;
2970 if (!capable(CAP_SYS_ADMIN))
2972 rv = mddev ? mddev_lock(mddev): -EBUSY;
2974 if (rdev->mddev == NULL)
2977 rv = entry->store(rdev, page, length);
2978 mddev_unlock(mddev);
2983 static void rdev_free(struct kobject *ko)
2985 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2988 static const struct sysfs_ops rdev_sysfs_ops = {
2989 .show = rdev_attr_show,
2990 .store = rdev_attr_store,
2992 static struct kobj_type rdev_ktype = {
2993 .release = rdev_free,
2994 .sysfs_ops = &rdev_sysfs_ops,
2995 .default_attrs = rdev_default_attrs,
2998 int md_rdev_init(struct md_rdev *rdev)
3001 rdev->saved_raid_disk = -1;
3002 rdev->raid_disk = -1;
3004 rdev->data_offset = 0;
3005 rdev->new_data_offset = 0;
3006 rdev->sb_events = 0;
3007 rdev->last_read_error.tv_sec = 0;
3008 rdev->last_read_error.tv_nsec = 0;
3009 rdev->sb_loaded = 0;
3010 rdev->bb_page = NULL;
3011 atomic_set(&rdev->nr_pending, 0);
3012 atomic_set(&rdev->read_errors, 0);
3013 atomic_set(&rdev->corrected_errors, 0);
3015 INIT_LIST_HEAD(&rdev->same_set);
3016 init_waitqueue_head(&rdev->blocked_wait);
3018 /* Add space to store bad block list.
3019 * This reserves the space even on arrays where it cannot
3020 * be used - I wonder if that matters
3022 rdev->badblocks.count = 0;
3023 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3024 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3025 seqlock_init(&rdev->badblocks.lock);
3026 if (rdev->badblocks.page == NULL)
3031 EXPORT_SYMBOL_GPL(md_rdev_init);
3033 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3035 * mark the device faulty if:
3037 * - the device is nonexistent (zero size)
3038 * - the device has no valid superblock
3040 * a faulty rdev _never_ has rdev->sb set.
3042 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3044 char b[BDEVNAME_SIZE];
3046 struct md_rdev *rdev;
3049 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3051 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3052 return ERR_PTR(-ENOMEM);
3055 err = md_rdev_init(rdev);
3058 err = alloc_disk_sb(rdev);
3062 err = lock_rdev(rdev, newdev, super_format == -2);
3066 kobject_init(&rdev->kobj, &rdev_ktype);
3068 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3071 "md: %s has zero or unknown size, marking faulty!\n",
3072 bdevname(rdev->bdev,b));
3077 if (super_format >= 0) {
3078 err = super_types[super_format].
3079 load_super(rdev, NULL, super_minor);
3080 if (err == -EINVAL) {
3082 "md: %s does not have a valid v%d.%d "
3083 "superblock, not importing!\n",
3084 bdevname(rdev->bdev,b),
3085 super_format, super_minor);
3090 "md: could not read %s's sb, not importing!\n",
3091 bdevname(rdev->bdev,b));
3101 md_rdev_clear(rdev);
3103 return ERR_PTR(err);
3107 * Check a full RAID array for plausibility
3110 static void analyze_sbs(struct mddev *mddev)
3113 struct md_rdev *rdev, *freshest, *tmp;
3114 char b[BDEVNAME_SIZE];
3117 rdev_for_each_safe(rdev, tmp, mddev)
3118 switch (super_types[mddev->major_version].
3119 load_super(rdev, freshest, mddev->minor_version)) {
3127 "md: fatal superblock inconsistency in %s"
3128 " -- removing from array\n",
3129 bdevname(rdev->bdev,b));
3130 kick_rdev_from_array(rdev);
3133 super_types[mddev->major_version].
3134 validate_super(mddev, freshest);
3137 rdev_for_each_safe(rdev, tmp, mddev) {
3138 if (mddev->max_disks &&
3139 (rdev->desc_nr >= mddev->max_disks ||
3140 i > mddev->max_disks)) {
3142 "md: %s: %s: only %d devices permitted\n",
3143 mdname(mddev), bdevname(rdev->bdev, b),
3145 kick_rdev_from_array(rdev);
3148 if (rdev != freshest)
3149 if (super_types[mddev->major_version].
3150 validate_super(mddev, rdev)) {
3151 printk(KERN_WARNING "md: kicking non-fresh %s"
3153 bdevname(rdev->bdev,b));
3154 kick_rdev_from_array(rdev);
3157 if (mddev->level == LEVEL_MULTIPATH) {
3158 rdev->desc_nr = i++;
3159 rdev->raid_disk = rdev->desc_nr;
3160 set_bit(In_sync, &rdev->flags);
3161 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3162 rdev->raid_disk = -1;
3163 clear_bit(In_sync, &rdev->flags);
3168 /* Read a fixed-point number.
3169 * Numbers in sysfs attributes should be in "standard" units where
3170 * possible, so time should be in seconds.
3171 * However we internally use a a much smaller unit such as
3172 * milliseconds or jiffies.
3173 * This function takes a decimal number with a possible fractional
3174 * component, and produces an integer which is the result of
3175 * multiplying that number by 10^'scale'.
3176 * all without any floating-point arithmetic.
3178 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3180 unsigned long result = 0;
3182 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3185 else if (decimals < scale) {
3188 result = result * 10 + value;
3200 while (decimals < scale) {
3208 static void md_safemode_timeout(unsigned long data);
3211 safe_delay_show(struct mddev *mddev, char *page)
3213 int msec = (mddev->safemode_delay*1000)/HZ;
3214 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3217 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3221 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3224 mddev->safemode_delay = 0;
3226 unsigned long old_delay = mddev->safemode_delay;
3227 unsigned long new_delay = (msec*HZ)/1000;
3231 mddev->safemode_delay = new_delay;
3232 if (new_delay < old_delay || old_delay == 0)
3233 mod_timer(&mddev->safemode_timer, jiffies+1);
3237 static struct md_sysfs_entry md_safe_delay =
3238 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3241 level_show(struct mddev *mddev, char *page)
3243 struct md_personality *p;
3245 spin_lock(&mddev->lock);
3248 ret = sprintf(page, "%s\n", p->name);
3249 else if (mddev->clevel[0])
3250 ret = sprintf(page, "%s\n", mddev->clevel);
3251 else if (mddev->level != LEVEL_NONE)
3252 ret = sprintf(page, "%d\n", mddev->level);
3255 spin_unlock(&mddev->lock);
3260 level_store(struct mddev *mddev, const char *buf, size_t len)
3265 struct md_personality *pers, *oldpers;
3267 void *priv, *oldpriv;
3268 struct md_rdev *rdev;
3270 if (slen == 0 || slen >= sizeof(clevel))
3273 rv = mddev_lock(mddev);
3277 if (mddev->pers == NULL) {
3278 strncpy(mddev->clevel, buf, slen);
3279 if (mddev->clevel[slen-1] == '\n')
3281 mddev->clevel[slen] = 0;
3282 mddev->level = LEVEL_NONE;
3290 /* request to change the personality. Need to ensure:
3291 * - array is not engaged in resync/recovery/reshape
3292 * - old personality can be suspended
3293 * - new personality will access other array.
3297 if (mddev->sync_thread ||
3298 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3299 mddev->reshape_position != MaxSector ||
3300 mddev->sysfs_active)
3304 if (!mddev->pers->quiesce) {
3305 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3306 mdname(mddev), mddev->pers->name);
3310 /* Now find the new personality */
3311 strncpy(clevel, buf, slen);
3312 if (clevel[slen-1] == '\n')
3315 if (kstrtol(clevel, 10, &level))
3318 if (request_module("md-%s", clevel) != 0)
3319 request_module("md-level-%s", clevel);
3320 spin_lock(&pers_lock);
3321 pers = find_pers(level, clevel);
3322 if (!pers || !try_module_get(pers->owner)) {
3323 spin_unlock(&pers_lock);
3324 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3328 spin_unlock(&pers_lock);
3330 if (pers == mddev->pers) {
3331 /* Nothing to do! */
3332 module_put(pers->owner);
3336 if (!pers->takeover) {
3337 module_put(pers->owner);
3338 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3339 mdname(mddev), clevel);
3344 rdev_for_each(rdev, mddev)
3345 rdev->new_raid_disk = rdev->raid_disk;
3347 /* ->takeover must set new_* and/or delta_disks
3348 * if it succeeds, and may set them when it fails.
3350 priv = pers->takeover(mddev);
3352 mddev->new_level = mddev->level;
3353 mddev->new_layout = mddev->layout;
3354 mddev->new_chunk_sectors = mddev->chunk_sectors;
3355 mddev->raid_disks -= mddev->delta_disks;
3356 mddev->delta_disks = 0;
3357 mddev->reshape_backwards = 0;
3358 module_put(pers->owner);
3359 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3360 mdname(mddev), clevel);
3365 /* Looks like we have a winner */
3366 mddev_suspend(mddev);
3367 mddev_detach(mddev);
3369 spin_lock(&mddev->lock);
3370 oldpers = mddev->pers;
3371 oldpriv = mddev->private;
3373 mddev->private = priv;
3374 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3375 mddev->level = mddev->new_level;
3376 mddev->layout = mddev->new_layout;
3377 mddev->chunk_sectors = mddev->new_chunk_sectors;
3378 mddev->delta_disks = 0;
3379 mddev->reshape_backwards = 0;
3380 mddev->degraded = 0;
3381 spin_unlock(&mddev->lock);
3383 if (oldpers->sync_request == NULL &&
3385 /* We are converting from a no-redundancy array
3386 * to a redundancy array and metadata is managed
3387 * externally so we need to be sure that writes
3388 * won't block due to a need to transition
3390 * until external management is started.
3393 mddev->safemode_delay = 0;
3394 mddev->safemode = 0;
3397 oldpers->free(mddev, oldpriv);
3399 if (oldpers->sync_request == NULL &&
3400 pers->sync_request != NULL) {
3401 /* need to add the md_redundancy_group */
3402 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3404 "md: cannot register extra attributes for %s\n",
3406 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3408 if (oldpers->sync_request != NULL &&
3409 pers->sync_request == NULL) {
3410 /* need to remove the md_redundancy_group */
3411 if (mddev->to_remove == NULL)
3412 mddev->to_remove = &md_redundancy_group;
3415 rdev_for_each(rdev, mddev) {
3416 if (rdev->raid_disk < 0)
3418 if (rdev->new_raid_disk >= mddev->raid_disks)
3419 rdev->new_raid_disk = -1;
3420 if (rdev->new_raid_disk == rdev->raid_disk)
3422 sysfs_unlink_rdev(mddev, rdev);
3424 rdev_for_each(rdev, mddev) {
3425 if (rdev->raid_disk < 0)
3427 if (rdev->new_raid_disk == rdev->raid_disk)
3429 rdev->raid_disk = rdev->new_raid_disk;
3430 if (rdev->raid_disk < 0)
3431 clear_bit(In_sync, &rdev->flags);
3433 if (sysfs_link_rdev(mddev, rdev))
3434 printk(KERN_WARNING "md: cannot register rd%d"
3435 " for %s after level change\n",
3436 rdev->raid_disk, mdname(mddev));
3440 if (pers->sync_request == NULL) {
3441 /* this is now an array without redundancy, so
3442 * it must always be in_sync
3445 del_timer_sync(&mddev->safemode_timer);
3447 blk_set_stacking_limits(&mddev->queue->limits);
3449 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3450 mddev_resume(mddev);
3452 md_update_sb(mddev, 1);
3453 sysfs_notify(&mddev->kobj, NULL, "level");
3454 md_new_event(mddev);
3457 mddev_unlock(mddev);
3461 static struct md_sysfs_entry md_level =
3462 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3465 layout_show(struct mddev *mddev, char *page)
3467 /* just a number, not meaningful for all levels */
3468 if (mddev->reshape_position != MaxSector &&
3469 mddev->layout != mddev->new_layout)
3470 return sprintf(page, "%d (%d)\n",
3471 mddev->new_layout, mddev->layout);
3472 return sprintf(page, "%d\n", mddev->layout);
3476 layout_store(struct mddev *mddev, const char *buf, size_t len)
3479 unsigned long n = simple_strtoul(buf, &e, 10);
3482 if (!*buf || (*e && *e != '\n'))
3484 err = mddev_lock(mddev);
3489 if (mddev->pers->check_reshape == NULL)
3494 mddev->new_layout = n;
3495 err = mddev->pers->check_reshape(mddev);
3497 mddev->new_layout = mddev->layout;
3500 mddev->new_layout = n;
3501 if (mddev->reshape_position == MaxSector)
3504 mddev_unlock(mddev);
3507 static struct md_sysfs_entry md_layout =
3508 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3511 raid_disks_show(struct mddev *mddev, char *page)
3513 if (mddev->raid_disks == 0)
3515 if (mddev->reshape_position != MaxSector &&
3516 mddev->delta_disks != 0)
3517 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3518 mddev->raid_disks - mddev->delta_disks);
3519 return sprintf(page, "%d\n", mddev->raid_disks);
3522 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3525 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3529 unsigned long n = simple_strtoul(buf, &e, 10);
3531 if (!*buf || (*e && *e != '\n'))
3534 err = mddev_lock(mddev);
3538 err = update_raid_disks(mddev, n);
3539 else if (mddev->reshape_position != MaxSector) {
3540 struct md_rdev *rdev;
3541 int olddisks = mddev->raid_disks - mddev->delta_disks;
3544 rdev_for_each(rdev, mddev) {
3546 rdev->data_offset < rdev->new_data_offset)
3549 rdev->data_offset > rdev->new_data_offset)
3553 mddev->delta_disks = n - olddisks;
3554 mddev->raid_disks = n;
3555 mddev->reshape_backwards = (mddev->delta_disks < 0);
3557 mddev->raid_disks = n;
3559 mddev_unlock(mddev);
3560 return err ? err : len;
3562 static struct md_sysfs_entry md_raid_disks =
3563 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3566 chunk_size_show(struct mddev *mddev, char *page)
3568 if (mddev->reshape_position != MaxSector &&
3569 mddev->chunk_sectors != mddev->new_chunk_sectors)
3570 return sprintf(page, "%d (%d)\n",
3571 mddev->new_chunk_sectors << 9,
3572 mddev->chunk_sectors << 9);
3573 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3577 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3581 unsigned long n = simple_strtoul(buf, &e, 10);
3583 if (!*buf || (*e && *e != '\n'))
3586 err = mddev_lock(mddev);
3590 if (mddev->pers->check_reshape == NULL)
3595 mddev->new_chunk_sectors = n >> 9;
3596 err = mddev->pers->check_reshape(mddev);
3598 mddev->new_chunk_sectors = mddev->chunk_sectors;
3601 mddev->new_chunk_sectors = n >> 9;
3602 if (mddev->reshape_position == MaxSector)
3603 mddev->chunk_sectors = n >> 9;
3605 mddev_unlock(mddev);
3608 static struct md_sysfs_entry md_chunk_size =
3609 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3612 resync_start_show(struct mddev *mddev, char *page)
3614 if (mddev->recovery_cp == MaxSector)
3615 return sprintf(page, "none\n");
3616 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3620 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3624 unsigned long long n = simple_strtoull(buf, &e, 10);
3626 err = mddev_lock(mddev);
3629 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3631 else if (cmd_match(buf, "none"))
3633 else if (!*buf || (*e && *e != '\n'))
3637 mddev->recovery_cp = n;
3639 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3641 mddev_unlock(mddev);
3644 static struct md_sysfs_entry md_resync_start =
3645 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3646 resync_start_show, resync_start_store);
3649 * The array state can be:
3652 * No devices, no size, no level
3653 * Equivalent to STOP_ARRAY ioctl
3655 * May have some settings, but array is not active
3656 * all IO results in error
3657 * When written, doesn't tear down array, but just stops it
3658 * suspended (not supported yet)
3659 * All IO requests will block. The array can be reconfigured.
3660 * Writing this, if accepted, will block until array is quiescent
3662 * no resync can happen. no superblocks get written.
3663 * write requests fail
3665 * like readonly, but behaves like 'clean' on a write request.
3667 * clean - no pending writes, but otherwise active.
3668 * When written to inactive array, starts without resync
3669 * If a write request arrives then
3670 * if metadata is known, mark 'dirty' and switch to 'active'.
3671 * if not known, block and switch to write-pending
3672 * If written to an active array that has pending writes, then fails.
3674 * fully active: IO and resync can be happening.
3675 * When written to inactive array, starts with resync
3678 * clean, but writes are blocked waiting for 'active' to be written.
3681 * like active, but no writes have been seen for a while (100msec).
3684 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3685 write_pending, active_idle, bad_word};
3686 static char *array_states[] = {
3687 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3688 "write-pending", "active-idle", NULL };
3690 static int match_word(const char *word, char **list)
3693 for (n=0; list[n]; n++)
3694 if (cmd_match(word, list[n]))
3700 array_state_show(struct mddev *mddev, char *page)
3702 enum array_state st = inactive;
3715 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3717 else if (mddev->safemode)
3723 if (list_empty(&mddev->disks) &&
3724 mddev->raid_disks == 0 &&
3725 mddev->dev_sectors == 0)
3730 return sprintf(page, "%s\n", array_states[st]);
3733 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3734 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3735 static int do_md_run(struct mddev *mddev);
3736 static int restart_array(struct mddev *mddev);
3739 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3742 enum array_state st = match_word(buf, array_states);
3744 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3745 /* don't take reconfig_mutex when toggling between
3748 spin_lock(&mddev->lock);
3750 restart_array(mddev);
3751 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3752 wake_up(&mddev->sb_wait);
3754 } else /* st == clean */ {
3755 restart_array(mddev);
3756 if (atomic_read(&mddev->writes_pending) == 0) {
3757 if (mddev->in_sync == 0) {
3759 if (mddev->safemode == 1)
3760 mddev->safemode = 0;
3761 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3767 spin_unlock(&mddev->lock);
3770 err = mddev_lock(mddev);
3778 /* stopping an active array */
3779 err = do_md_stop(mddev, 0, NULL);
3782 /* stopping an active array */
3784 err = do_md_stop(mddev, 2, NULL);
3786 err = 0; /* already inactive */
3789 break; /* not supported yet */
3792 err = md_set_readonly(mddev, NULL);
3795 set_disk_ro(mddev->gendisk, 1);
3796 err = do_md_run(mddev);
3802 err = md_set_readonly(mddev, NULL);
3803 else if (mddev->ro == 1)
3804 err = restart_array(mddev);
3807 set_disk_ro(mddev->gendisk, 0);
3811 err = do_md_run(mddev);
3816 restart_array(mddev);
3817 spin_lock(&mddev->lock);
3818 if (atomic_read(&mddev->writes_pending) == 0) {
3819 if (mddev->in_sync == 0) {
3821 if (mddev->safemode == 1)
3822 mddev->safemode = 0;
3823 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3828 spin_unlock(&mddev->lock);
3834 restart_array(mddev);
3835 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3836 wake_up(&mddev->sb_wait);
3840 set_disk_ro(mddev->gendisk, 0);
3841 err = do_md_run(mddev);
3846 /* these cannot be set */
3851 if (mddev->hold_active == UNTIL_IOCTL)
3852 mddev->hold_active = 0;
3853 sysfs_notify_dirent_safe(mddev->sysfs_state);
3855 mddev_unlock(mddev);
3858 static struct md_sysfs_entry md_array_state =
3859 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3862 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3863 return sprintf(page, "%d\n",
3864 atomic_read(&mddev->max_corr_read_errors));
3868 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3871 unsigned long n = simple_strtoul(buf, &e, 10);
3873 if (*buf && (*e == 0 || *e == '\n')) {
3874 atomic_set(&mddev->max_corr_read_errors, n);
3880 static struct md_sysfs_entry max_corr_read_errors =
3881 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3882 max_corrected_read_errors_store);
3885 null_show(struct mddev *mddev, char *page)
3891 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3893 /* buf must be %d:%d\n? giving major and minor numbers */
3894 /* The new device is added to the array.
3895 * If the array has a persistent superblock, we read the
3896 * superblock to initialise info and check validity.
3897 * Otherwise, only checking done is that in bind_rdev_to_array,
3898 * which mainly checks size.
3901 int major = simple_strtoul(buf, &e, 10);
3904 struct md_rdev *rdev;
3907 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3909 minor = simple_strtoul(e+1, &e, 10);
3910 if (*e && *e != '\n')
3912 dev = MKDEV(major, minor);
3913 if (major != MAJOR(dev) ||
3914 minor != MINOR(dev))
3917 flush_workqueue(md_misc_wq);
3919 err = mddev_lock(mddev);
3922 if (mddev->persistent) {
3923 rdev = md_import_device(dev, mddev->major_version,
3924 mddev->minor_version);
3925 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3926 struct md_rdev *rdev0
3927 = list_entry(mddev->disks.next,
3928 struct md_rdev, same_set);
3929 err = super_types[mddev->major_version]
3930 .load_super(rdev, rdev0, mddev->minor_version);
3934 } else if (mddev->external)
3935 rdev = md_import_device(dev, -2, -1);
3937 rdev = md_import_device(dev, -1, -1);
3940 return PTR_ERR(rdev);
3941 err = bind_rdev_to_array(rdev, mddev);
3945 mddev_unlock(mddev);
3946 return err ? err : len;
3949 static struct md_sysfs_entry md_new_device =
3950 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3953 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3956 unsigned long chunk, end_chunk;
3959 err = mddev_lock(mddev);
3964 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3966 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3967 if (buf == end) break;
3968 if (*end == '-') { /* range */
3970 end_chunk = simple_strtoul(buf, &end, 0);
3971 if (buf == end) break;
3973 if (*end && !isspace(*end)) break;
3974 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3975 buf = skip_spaces(end);
3977 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3979 mddev_unlock(mddev);
3983 static struct md_sysfs_entry md_bitmap =
3984 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3987 size_show(struct mddev *mddev, char *page)
3989 return sprintf(page, "%llu\n",
3990 (unsigned long long)mddev->dev_sectors / 2);
3993 static int update_size(struct mddev *mddev, sector_t num_sectors);
3996 size_store(struct mddev *mddev, const char *buf, size_t len)
3998 /* If array is inactive, we can reduce the component size, but
3999 * not increase it (except from 0).
4000 * If array is active, we can try an on-line resize
4003 int err = strict_blocks_to_sectors(buf, §ors);
4007 err = mddev_lock(mddev);
4011 err = update_size(mddev, sectors);
4012 md_update_sb(mddev, 1);
4014 if (mddev->dev_sectors == 0 ||
4015 mddev->dev_sectors > sectors)
4016 mddev->dev_sectors = sectors;
4020 mddev_unlock(mddev);
4021 return err ? err : len;
4024 static struct md_sysfs_entry md_size =
4025 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4027 /* Metadata version.
4029 * 'none' for arrays with no metadata (good luck...)
4030 * 'external' for arrays with externally managed metadata,
4031 * or N.M for internally known formats
4034 metadata_show(struct mddev *mddev, char *page)
4036 if (mddev->persistent)
4037 return sprintf(page, "%d.%d\n",
4038 mddev->major_version, mddev->minor_version);
4039 else if (mddev->external)
4040 return sprintf(page, "external:%s\n", mddev->metadata_type);
4042 return sprintf(page, "none\n");
4046 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4051 /* Changing the details of 'external' metadata is
4052 * always permitted. Otherwise there must be
4053 * no devices attached to the array.
4056 err = mddev_lock(mddev);
4060 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4062 else if (!list_empty(&mddev->disks))
4066 if (cmd_match(buf, "none")) {
4067 mddev->persistent = 0;
4068 mddev->external = 0;
4069 mddev->major_version = 0;
4070 mddev->minor_version = 90;
4073 if (strncmp(buf, "external:", 9) == 0) {
4074 size_t namelen = len-9;
4075 if (namelen >= sizeof(mddev->metadata_type))
4076 namelen = sizeof(mddev->metadata_type)-1;
4077 strncpy(mddev->metadata_type, buf+9, namelen);
4078 mddev->metadata_type[namelen] = 0;
4079 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4080 mddev->metadata_type[--namelen] = 0;
4081 mddev->persistent = 0;
4082 mddev->external = 1;
4083 mddev->major_version = 0;
4084 mddev->minor_version = 90;
4087 major = simple_strtoul(buf, &e, 10);
4089 if (e==buf || *e != '.')
4092 minor = simple_strtoul(buf, &e, 10);
4093 if (e==buf || (*e && *e != '\n') )
4096 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4098 mddev->major_version = major;
4099 mddev->minor_version = minor;
4100 mddev->persistent = 1;
4101 mddev->external = 0;
4104 mddev_unlock(mddev);
4108 static struct md_sysfs_entry md_metadata =
4109 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4112 action_show(struct mddev *mddev, char *page)
4114 char *type = "idle";
4115 unsigned long recovery = mddev->recovery;
4116 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4118 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4119 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4120 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4122 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4123 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4125 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4129 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4132 return sprintf(page, "%s\n", type);
4136 action_store(struct mddev *mddev, const char *page, size_t len)
4138 if (!mddev->pers || !mddev->pers->sync_request)
4141 if (cmd_match(page, "frozen"))
4142 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4144 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4146 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4147 flush_workqueue(md_misc_wq);
4148 if (mddev->sync_thread) {
4149 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4150 if (mddev_lock(mddev) == 0) {
4151 md_reap_sync_thread(mddev);
4152 mddev_unlock(mddev);
4155 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4156 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4158 else if (cmd_match(page, "resync"))
4159 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4160 else if (cmd_match(page, "recover")) {
4161 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4162 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4163 } else if (cmd_match(page, "reshape")) {
4165 if (mddev->pers->start_reshape == NULL)
4167 err = mddev_lock(mddev);
4169 err = mddev->pers->start_reshape(mddev);
4170 mddev_unlock(mddev);
4174 sysfs_notify(&mddev->kobj, NULL, "degraded");
4176 if (cmd_match(page, "check"))
4177 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4178 else if (!cmd_match(page, "repair"))
4180 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4181 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4183 if (mddev->ro == 2) {
4184 /* A write to sync_action is enough to justify
4185 * canceling read-auto mode
4188 md_wakeup_thread(mddev->sync_thread);
4190 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4191 md_wakeup_thread(mddev->thread);
4192 sysfs_notify_dirent_safe(mddev->sysfs_action);
4196 static struct md_sysfs_entry md_scan_mode =
4197 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4200 last_sync_action_show(struct mddev *mddev, char *page)
4202 return sprintf(page, "%s\n", mddev->last_sync_action);
4205 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4208 mismatch_cnt_show(struct mddev *mddev, char *page)
4210 return sprintf(page, "%llu\n",
4211 (unsigned long long)
4212 atomic64_read(&mddev->resync_mismatches));
4215 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4218 sync_min_show(struct mddev *mddev, char *page)
4220 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4221 mddev->sync_speed_min ? "local": "system");
4225 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4229 if (strncmp(buf, "system", 6)==0) {
4230 mddev->sync_speed_min = 0;
4233 min = simple_strtoul(buf, &e, 10);
4234 if (buf == e || (*e && *e != '\n') || min <= 0)
4236 mddev->sync_speed_min = min;
4240 static struct md_sysfs_entry md_sync_min =
4241 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4244 sync_max_show(struct mddev *mddev, char *page)
4246 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4247 mddev->sync_speed_max ? "local": "system");
4251 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4255 if (strncmp(buf, "system", 6)==0) {
4256 mddev->sync_speed_max = 0;
4259 max = simple_strtoul(buf, &e, 10);
4260 if (buf == e || (*e && *e != '\n') || max <= 0)
4262 mddev->sync_speed_max = max;
4266 static struct md_sysfs_entry md_sync_max =
4267 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4270 degraded_show(struct mddev *mddev, char *page)
4272 return sprintf(page, "%d\n", mddev->degraded);
4274 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4277 sync_force_parallel_show(struct mddev *mddev, char *page)
4279 return sprintf(page, "%d\n", mddev->parallel_resync);
4283 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4287 if (kstrtol(buf, 10, &n))
4290 if (n != 0 && n != 1)
4293 mddev->parallel_resync = n;
4295 if (mddev->sync_thread)
4296 wake_up(&resync_wait);
4301 /* force parallel resync, even with shared block devices */
4302 static struct md_sysfs_entry md_sync_force_parallel =
4303 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4304 sync_force_parallel_show, sync_force_parallel_store);
4307 sync_speed_show(struct mddev *mddev, char *page)
4309 unsigned long resync, dt, db;
4310 if (mddev->curr_resync == 0)
4311 return sprintf(page, "none\n");
4312 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4313 dt = (jiffies - mddev->resync_mark) / HZ;
4315 db = resync - mddev->resync_mark_cnt;
4316 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4319 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4322 sync_completed_show(struct mddev *mddev, char *page)
4324 unsigned long long max_sectors, resync;
4326 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4327 return sprintf(page, "none\n");
4329 if (mddev->curr_resync == 1 ||
4330 mddev->curr_resync == 2)
4331 return sprintf(page, "delayed\n");
4333 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4334 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4335 max_sectors = mddev->resync_max_sectors;
4337 max_sectors = mddev->dev_sectors;
4339 resync = mddev->curr_resync_completed;
4340 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4343 static struct md_sysfs_entry md_sync_completed =
4344 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4347 min_sync_show(struct mddev *mddev, char *page)
4349 return sprintf(page, "%llu\n",
4350 (unsigned long long)mddev->resync_min);
4353 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4355 unsigned long long min;
4359 if (kstrtoull(buf, 10, &min))
4362 spin_lock(&mddev->lock);
4364 if (min > mddev->resync_max)
4368 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4371 /* Must be a multiple of chunk_size */
4372 chunk = mddev->chunk_sectors;
4374 sector_t temp = min;
4377 if (sector_div(temp, chunk))
4380 mddev->resync_min = min;
4384 spin_unlock(&mddev->lock);
4388 static struct md_sysfs_entry md_min_sync =
4389 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4392 max_sync_show(struct mddev *mddev, char *page)
4394 if (mddev->resync_max == MaxSector)
4395 return sprintf(page, "max\n");
4397 return sprintf(page, "%llu\n",
4398 (unsigned long long)mddev->resync_max);
4401 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4404 spin_lock(&mddev->lock);
4405 if (strncmp(buf, "max", 3) == 0)
4406 mddev->resync_max = MaxSector;
4408 unsigned long long max;
4412 if (kstrtoull(buf, 10, &max))
4414 if (max < mddev->resync_min)
4418 if (max < mddev->resync_max &&
4420 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4423 /* Must be a multiple of chunk_size */
4424 chunk = mddev->chunk_sectors;
4426 sector_t temp = max;
4429 if (sector_div(temp, chunk))
4432 mddev->resync_max = max;
4434 wake_up(&mddev->recovery_wait);
4437 spin_unlock(&mddev->lock);
4441 static struct md_sysfs_entry md_max_sync =
4442 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4445 suspend_lo_show(struct mddev *mddev, char *page)
4447 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4451 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4454 unsigned long long new = simple_strtoull(buf, &e, 10);
4455 unsigned long long old;
4458 if (buf == e || (*e && *e != '\n'))
4461 err = mddev_lock(mddev);
4465 if (mddev->pers == NULL ||
4466 mddev->pers->quiesce == NULL)
4468 old = mddev->suspend_lo;
4469 mddev->suspend_lo = new;
4471 /* Shrinking suspended region */
4472 mddev->pers->quiesce(mddev, 2);
4474 /* Expanding suspended region - need to wait */
4475 mddev->pers->quiesce(mddev, 1);
4476 mddev->pers->quiesce(mddev, 0);
4480 mddev_unlock(mddev);
4483 static struct md_sysfs_entry md_suspend_lo =
4484 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4487 suspend_hi_show(struct mddev *mddev, char *page)
4489 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4493 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4496 unsigned long long new = simple_strtoull(buf, &e, 10);
4497 unsigned long long old;
4500 if (buf == e || (*e && *e != '\n'))
4503 err = mddev_lock(mddev);
4507 if (mddev->pers == NULL ||
4508 mddev->pers->quiesce == NULL)
4510 old = mddev->suspend_hi;
4511 mddev->suspend_hi = new;
4513 /* Shrinking suspended region */
4514 mddev->pers->quiesce(mddev, 2);
4516 /* Expanding suspended region - need to wait */
4517 mddev->pers->quiesce(mddev, 1);
4518 mddev->pers->quiesce(mddev, 0);
4522 mddev_unlock(mddev);
4525 static struct md_sysfs_entry md_suspend_hi =
4526 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4529 reshape_position_show(struct mddev *mddev, char *page)
4531 if (mddev->reshape_position != MaxSector)
4532 return sprintf(page, "%llu\n",
4533 (unsigned long long)mddev->reshape_position);
4534 strcpy(page, "none\n");
4539 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4541 struct md_rdev *rdev;
4544 unsigned long long new = simple_strtoull(buf, &e, 10);
4546 if (buf == e || (*e && *e != '\n'))
4548 err = mddev_lock(mddev);
4554 mddev->reshape_position = new;
4555 mddev->delta_disks = 0;
4556 mddev->reshape_backwards = 0;
4557 mddev->new_level = mddev->level;
4558 mddev->new_layout = mddev->layout;
4559 mddev->new_chunk_sectors = mddev->chunk_sectors;
4560 rdev_for_each(rdev, mddev)
4561 rdev->new_data_offset = rdev->data_offset;
4564 mddev_unlock(mddev);
4568 static struct md_sysfs_entry md_reshape_position =
4569 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4570 reshape_position_store);
4573 reshape_direction_show(struct mddev *mddev, char *page)
4575 return sprintf(page, "%s\n",
4576 mddev->reshape_backwards ? "backwards" : "forwards");
4580 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4585 if (cmd_match(buf, "forwards"))
4587 else if (cmd_match(buf, "backwards"))
4591 if (mddev->reshape_backwards == backwards)
4594 err = mddev_lock(mddev);
4597 /* check if we are allowed to change */
4598 if (mddev->delta_disks)
4600 else if (mddev->persistent &&
4601 mddev->major_version == 0)
4604 mddev->reshape_backwards = backwards;
4605 mddev_unlock(mddev);
4609 static struct md_sysfs_entry md_reshape_direction =
4610 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4611 reshape_direction_store);
4614 array_size_show(struct mddev *mddev, char *page)
4616 if (mddev->external_size)
4617 return sprintf(page, "%llu\n",
4618 (unsigned long long)mddev->array_sectors/2);
4620 return sprintf(page, "default\n");
4624 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4629 err = mddev_lock(mddev);
4633 if (strncmp(buf, "default", 7) == 0) {
4635 sectors = mddev->pers->size(mddev, 0, 0);
4637 sectors = mddev->array_sectors;
4639 mddev->external_size = 0;
4641 if (strict_blocks_to_sectors(buf, §ors) < 0)
4643 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4646 mddev->external_size = 1;
4650 mddev->array_sectors = sectors;
4652 set_capacity(mddev->gendisk, mddev->array_sectors);
4653 revalidate_disk(mddev->gendisk);
4656 mddev_unlock(mddev);
4660 static struct md_sysfs_entry md_array_size =
4661 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4664 static struct attribute *md_default_attrs[] = {
4667 &md_raid_disks.attr,
4668 &md_chunk_size.attr,
4670 &md_resync_start.attr,
4672 &md_new_device.attr,
4673 &md_safe_delay.attr,
4674 &md_array_state.attr,
4675 &md_reshape_position.attr,
4676 &md_reshape_direction.attr,
4677 &md_array_size.attr,
4678 &max_corr_read_errors.attr,
4682 static struct attribute *md_redundancy_attrs[] = {
4684 &md_last_scan_mode.attr,
4685 &md_mismatches.attr,
4688 &md_sync_speed.attr,
4689 &md_sync_force_parallel.attr,
4690 &md_sync_completed.attr,
4693 &md_suspend_lo.attr,
4694 &md_suspend_hi.attr,
4699 static struct attribute_group md_redundancy_group = {
4701 .attrs = md_redundancy_attrs,
4705 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4707 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4708 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4713 spin_lock(&all_mddevs_lock);
4714 if (list_empty(&mddev->all_mddevs)) {
4715 spin_unlock(&all_mddevs_lock);
4719 spin_unlock(&all_mddevs_lock);
4721 rv = entry->show(mddev, page);
4727 md_attr_store(struct kobject *kobj, struct attribute *attr,
4728 const char *page, size_t length)
4730 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4731 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4736 if (!capable(CAP_SYS_ADMIN))
4738 spin_lock(&all_mddevs_lock);
4739 if (list_empty(&mddev->all_mddevs)) {
4740 spin_unlock(&all_mddevs_lock);
4744 spin_unlock(&all_mddevs_lock);
4745 rv = entry->store(mddev, page, length);
4750 static void md_free(struct kobject *ko)
4752 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4754 if (mddev->sysfs_state)
4755 sysfs_put(mddev->sysfs_state);
4757 if (mddev->gendisk) {
4758 del_gendisk(mddev->gendisk);
4759 put_disk(mddev->gendisk);
4762 blk_cleanup_queue(mddev->queue);
4767 static const struct sysfs_ops md_sysfs_ops = {
4768 .show = md_attr_show,
4769 .store = md_attr_store,
4771 static struct kobj_type md_ktype = {
4773 .sysfs_ops = &md_sysfs_ops,
4774 .default_attrs = md_default_attrs,
4779 static void mddev_delayed_delete(struct work_struct *ws)
4781 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4783 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4784 kobject_del(&mddev->kobj);
4785 kobject_put(&mddev->kobj);
4788 static int md_alloc(dev_t dev, char *name)
4790 static DEFINE_MUTEX(disks_mutex);
4791 struct mddev *mddev = mddev_find(dev);
4792 struct gendisk *disk;
4801 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4802 shift = partitioned ? MdpMinorShift : 0;
4803 unit = MINOR(mddev->unit) >> shift;
4805 /* wait for any previous instance of this device to be
4806 * completely removed (mddev_delayed_delete).
4808 flush_workqueue(md_misc_wq);
4810 mutex_lock(&disks_mutex);
4816 /* Need to ensure that 'name' is not a duplicate.
4818 struct mddev *mddev2;
4819 spin_lock(&all_mddevs_lock);
4821 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4822 if (mddev2->gendisk &&
4823 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4824 spin_unlock(&all_mddevs_lock);
4827 spin_unlock(&all_mddevs_lock);
4831 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4834 mddev->queue->queuedata = mddev;
4836 blk_queue_make_request(mddev->queue, md_make_request);
4837 blk_set_stacking_limits(&mddev->queue->limits);
4839 disk = alloc_disk(1 << shift);
4841 blk_cleanup_queue(mddev->queue);
4842 mddev->queue = NULL;
4845 disk->major = MAJOR(mddev->unit);
4846 disk->first_minor = unit << shift;
4848 strcpy(disk->disk_name, name);
4849 else if (partitioned)
4850 sprintf(disk->disk_name, "md_d%d", unit);
4852 sprintf(disk->disk_name, "md%d", unit);
4853 disk->fops = &md_fops;
4854 disk->private_data = mddev;
4855 disk->queue = mddev->queue;
4856 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4857 /* Allow extended partitions. This makes the
4858 * 'mdp' device redundant, but we can't really
4861 disk->flags |= GENHD_FL_EXT_DEVT;
4862 mddev->gendisk = disk;
4863 /* As soon as we call add_disk(), another thread could get
4864 * through to md_open, so make sure it doesn't get too far
4866 mutex_lock(&mddev->open_mutex);
4869 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4870 &disk_to_dev(disk)->kobj, "%s", "md");
4872 /* This isn't possible, but as kobject_init_and_add is marked
4873 * __must_check, we must do something with the result
4875 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4879 if (mddev->kobj.sd &&
4880 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4881 printk(KERN_DEBUG "pointless warning\n");
4882 mutex_unlock(&mddev->open_mutex);
4884 mutex_unlock(&disks_mutex);
4885 if (!error && mddev->kobj.sd) {
4886 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4887 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4893 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4895 md_alloc(dev, NULL);
4899 static int add_named_array(const char *val, struct kernel_param *kp)
4901 /* val must be "md_*" where * is not all digits.
4902 * We allocate an array with a large free minor number, and
4903 * set the name to val. val must not already be an active name.
4905 int len = strlen(val);
4906 char buf[DISK_NAME_LEN];
4908 while (len && val[len-1] == '\n')
4910 if (len >= DISK_NAME_LEN)
4912 strlcpy(buf, val, len+1);
4913 if (strncmp(buf, "md_", 3) != 0)
4915 return md_alloc(0, buf);
4918 static void md_safemode_timeout(unsigned long data)
4920 struct mddev *mddev = (struct mddev *) data;
4922 if (!atomic_read(&mddev->writes_pending)) {
4923 mddev->safemode = 1;
4924 if (mddev->external)
4925 sysfs_notify_dirent_safe(mddev->sysfs_state);
4927 md_wakeup_thread(mddev->thread);
4930 static int start_dirty_degraded;
4932 int md_run(struct mddev *mddev)
4935 struct md_rdev *rdev;
4936 struct md_personality *pers;
4938 if (list_empty(&mddev->disks))
4939 /* cannot run an array with no devices.. */
4944 /* Cannot run until previous stop completes properly */
4945 if (mddev->sysfs_active)
4949 * Analyze all RAID superblock(s)
4951 if (!mddev->raid_disks) {
4952 if (!mddev->persistent)
4957 if (mddev->level != LEVEL_NONE)
4958 request_module("md-level-%d", mddev->level);
4959 else if (mddev->clevel[0])
4960 request_module("md-%s", mddev->clevel);
4963 * Drop all container device buffers, from now on
4964 * the only valid external interface is through the md
4967 rdev_for_each(rdev, mddev) {
4968 if (test_bit(Faulty, &rdev->flags))
4970 sync_blockdev(rdev->bdev);
4971 invalidate_bdev(rdev->bdev);
4973 /* perform some consistency tests on the device.
4974 * We don't want the data to overlap the metadata,
4975 * Internal Bitmap issues have been handled elsewhere.
4977 if (rdev->meta_bdev) {
4978 /* Nothing to check */;
4979 } else if (rdev->data_offset < rdev->sb_start) {
4980 if (mddev->dev_sectors &&
4981 rdev->data_offset + mddev->dev_sectors
4983 printk("md: %s: data overlaps metadata\n",
4988 if (rdev->sb_start + rdev->sb_size/512
4989 > rdev->data_offset) {
4990 printk("md: %s: metadata overlaps data\n",
4995 sysfs_notify_dirent_safe(rdev->sysfs_state);
4998 if (mddev->bio_set == NULL)
4999 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5001 spin_lock(&pers_lock);
5002 pers = find_pers(mddev->level, mddev->clevel);
5003 if (!pers || !try_module_get(pers->owner)) {
5004 spin_unlock(&pers_lock);
5005 if (mddev->level != LEVEL_NONE)
5006 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5009 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5013 spin_unlock(&pers_lock);
5014 if (mddev->level != pers->level) {
5015 mddev->level = pers->level;
5016 mddev->new_level = pers->level;
5018 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5020 if (mddev->reshape_position != MaxSector &&
5021 pers->start_reshape == NULL) {
5022 /* This personality cannot handle reshaping... */
5023 module_put(pers->owner);
5027 if (pers->sync_request) {
5028 /* Warn if this is a potentially silly
5031 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5032 struct md_rdev *rdev2;
5035 rdev_for_each(rdev, mddev)
5036 rdev_for_each(rdev2, mddev) {
5038 rdev->bdev->bd_contains ==
5039 rdev2->bdev->bd_contains) {
5041 "%s: WARNING: %s appears to be"
5042 " on the same physical disk as"
5045 bdevname(rdev->bdev,b),
5046 bdevname(rdev2->bdev,b2));
5053 "True protection against single-disk"
5054 " failure might be compromised.\n");
5057 mddev->recovery = 0;
5058 /* may be over-ridden by personality */
5059 mddev->resync_max_sectors = mddev->dev_sectors;
5061 mddev->ok_start_degraded = start_dirty_degraded;
5063 if (start_readonly && mddev->ro == 0)
5064 mddev->ro = 2; /* read-only, but switch on first write */
5066 err = pers->run(mddev);
5068 printk(KERN_ERR "md: pers->run() failed ...\n");
5069 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5070 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5071 " but 'external_size' not in effect?\n", __func__);
5073 "md: invalid array_size %llu > default size %llu\n",
5074 (unsigned long long)mddev->array_sectors / 2,
5075 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5078 if (err == 0 && pers->sync_request &&
5079 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5080 err = bitmap_create(mddev);
5082 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5083 mdname(mddev), err);
5086 mddev_detach(mddev);
5088 pers->free(mddev, mddev->private);
5089 module_put(pers->owner);
5090 bitmap_destroy(mddev);
5094 mddev->queue->backing_dev_info.congested_data = mddev;
5095 mddev->queue->backing_dev_info.congested_fn = md_congested;
5096 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5098 if (pers->sync_request) {
5099 if (mddev->kobj.sd &&
5100 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5102 "md: cannot register extra attributes for %s\n",
5104 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5105 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5108 atomic_set(&mddev->writes_pending,0);
5109 atomic_set(&mddev->max_corr_read_errors,
5110 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5111 mddev->safemode = 0;
5112 mddev->safemode_timer.function = md_safemode_timeout;
5113 mddev->safemode_timer.data = (unsigned long) mddev;
5114 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5117 spin_lock(&mddev->lock);
5120 spin_unlock(&mddev->lock);
5121 rdev_for_each(rdev, mddev)
5122 if (rdev->raid_disk >= 0)
5123 if (sysfs_link_rdev(mddev, rdev))
5124 /* failure here is OK */;
5126 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5128 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5129 md_update_sb(mddev, 0);
5131 md_new_event(mddev);
5132 sysfs_notify_dirent_safe(mddev->sysfs_state);
5133 sysfs_notify_dirent_safe(mddev->sysfs_action);
5134 sysfs_notify(&mddev->kobj, NULL, "degraded");
5137 EXPORT_SYMBOL_GPL(md_run);
5139 static int do_md_run(struct mddev *mddev)
5143 err = md_run(mddev);
5146 err = bitmap_load(mddev);
5148 bitmap_destroy(mddev);
5152 md_wakeup_thread(mddev->thread);
5153 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5155 set_capacity(mddev->gendisk, mddev->array_sectors);
5156 revalidate_disk(mddev->gendisk);
5158 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5163 static int restart_array(struct mddev *mddev)
5165 struct gendisk *disk = mddev->gendisk;
5167 /* Complain if it has no devices */
5168 if (list_empty(&mddev->disks))
5174 mddev->safemode = 0;
5176 set_disk_ro(disk, 0);
5177 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5179 /* Kick recovery or resync if necessary */
5180 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5181 md_wakeup_thread(mddev->thread);
5182 md_wakeup_thread(mddev->sync_thread);
5183 sysfs_notify_dirent_safe(mddev->sysfs_state);
5187 static void md_clean(struct mddev *mddev)
5189 mddev->array_sectors = 0;
5190 mddev->external_size = 0;
5191 mddev->dev_sectors = 0;
5192 mddev->raid_disks = 0;
5193 mddev->recovery_cp = 0;
5194 mddev->resync_min = 0;
5195 mddev->resync_max = MaxSector;
5196 mddev->reshape_position = MaxSector;
5197 mddev->external = 0;
5198 mddev->persistent = 0;
5199 mddev->level = LEVEL_NONE;
5200 mddev->clevel[0] = 0;
5203 mddev->metadata_type[0] = 0;
5204 mddev->chunk_sectors = 0;
5205 mddev->ctime = mddev->utime = 0;
5207 mddev->max_disks = 0;
5209 mddev->can_decrease_events = 0;
5210 mddev->delta_disks = 0;
5211 mddev->reshape_backwards = 0;
5212 mddev->new_level = LEVEL_NONE;
5213 mddev->new_layout = 0;
5214 mddev->new_chunk_sectors = 0;
5215 mddev->curr_resync = 0;
5216 atomic64_set(&mddev->resync_mismatches, 0);
5217 mddev->suspend_lo = mddev->suspend_hi = 0;
5218 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5219 mddev->recovery = 0;
5222 mddev->degraded = 0;
5223 mddev->safemode = 0;
5224 mddev->merge_check_needed = 0;
5225 mddev->bitmap_info.offset = 0;
5226 mddev->bitmap_info.default_offset = 0;
5227 mddev->bitmap_info.default_space = 0;
5228 mddev->bitmap_info.chunksize = 0;
5229 mddev->bitmap_info.daemon_sleep = 0;
5230 mddev->bitmap_info.max_write_behind = 0;
5233 static void __md_stop_writes(struct mddev *mddev)
5235 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5236 flush_workqueue(md_misc_wq);
5237 if (mddev->sync_thread) {
5238 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5239 md_reap_sync_thread(mddev);
5242 del_timer_sync(&mddev->safemode_timer);
5244 bitmap_flush(mddev);
5245 md_super_wait(mddev);
5247 if (mddev->ro == 0 &&
5248 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5249 /* mark array as shutdown cleanly */
5251 md_update_sb(mddev, 1);
5255 void md_stop_writes(struct mddev *mddev)
5257 mddev_lock_nointr(mddev);
5258 __md_stop_writes(mddev);
5259 mddev_unlock(mddev);
5261 EXPORT_SYMBOL_GPL(md_stop_writes);
5263 static void mddev_detach(struct mddev *mddev)
5265 struct bitmap *bitmap = mddev->bitmap;
5266 /* wait for behind writes to complete */
5267 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5268 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5270 /* need to kick something here to make sure I/O goes? */
5271 wait_event(bitmap->behind_wait,
5272 atomic_read(&bitmap->behind_writes) == 0);
5274 if (mddev->pers && mddev->pers->quiesce) {
5275 mddev->pers->quiesce(mddev, 1);
5276 mddev->pers->quiesce(mddev, 0);
5278 md_unregister_thread(&mddev->thread);
5280 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5283 static void __md_stop(struct mddev *mddev)
5285 struct md_personality *pers = mddev->pers;
5286 mddev_detach(mddev);
5287 spin_lock(&mddev->lock);
5290 spin_unlock(&mddev->lock);
5291 pers->free(mddev, mddev->private);
5292 if (pers->sync_request && mddev->to_remove == NULL)
5293 mddev->to_remove = &md_redundancy_group;
5294 module_put(pers->owner);
5295 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5298 void md_stop(struct mddev *mddev)
5300 /* stop the array and free an attached data structures.
5301 * This is called from dm-raid
5304 bitmap_destroy(mddev);
5306 bioset_free(mddev->bio_set);
5309 EXPORT_SYMBOL_GPL(md_stop);
5311 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5316 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5318 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5319 md_wakeup_thread(mddev->thread);
5321 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5322 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5323 if (mddev->sync_thread)
5324 /* Thread might be blocked waiting for metadata update
5325 * which will now never happen */
5326 wake_up_process(mddev->sync_thread->tsk);
5328 mddev_unlock(mddev);
5329 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5331 mddev_lock_nointr(mddev);
5333 mutex_lock(&mddev->open_mutex);
5334 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5335 mddev->sync_thread ||
5336 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5337 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5338 printk("md: %s still in use.\n",mdname(mddev));
5340 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5342 md_wakeup_thread(mddev->thread);
5348 __md_stop_writes(mddev);
5354 set_disk_ro(mddev->gendisk, 1);
5355 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5356 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5357 md_wakeup_thread(mddev->thread);
5358 sysfs_notify_dirent_safe(mddev->sysfs_state);
5362 mutex_unlock(&mddev->open_mutex);
5367 * 0 - completely stop and dis-assemble array
5368 * 2 - stop but do not disassemble array
5370 static int do_md_stop(struct mddev *mddev, int mode,
5371 struct block_device *bdev)
5373 struct gendisk *disk = mddev->gendisk;
5374 struct md_rdev *rdev;
5377 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5379 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5380 md_wakeup_thread(mddev->thread);
5382 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5383 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5384 if (mddev->sync_thread)
5385 /* Thread might be blocked waiting for metadata update
5386 * which will now never happen */
5387 wake_up_process(mddev->sync_thread->tsk);
5389 mddev_unlock(mddev);
5390 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5391 !test_bit(MD_RECOVERY_RUNNING,
5392 &mddev->recovery)));
5393 mddev_lock_nointr(mddev);
5395 mutex_lock(&mddev->open_mutex);
5396 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5397 mddev->sysfs_active ||
5398 mddev->sync_thread ||
5399 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5400 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5401 printk("md: %s still in use.\n",mdname(mddev));
5402 mutex_unlock(&mddev->open_mutex);
5404 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5405 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5406 md_wakeup_thread(mddev->thread);
5412 set_disk_ro(disk, 0);
5414 __md_stop_writes(mddev);
5416 mddev->queue->merge_bvec_fn = NULL;
5417 mddev->queue->backing_dev_info.congested_fn = NULL;
5419 /* tell userspace to handle 'inactive' */
5420 sysfs_notify_dirent_safe(mddev->sysfs_state);
5422 rdev_for_each(rdev, mddev)
5423 if (rdev->raid_disk >= 0)
5424 sysfs_unlink_rdev(mddev, rdev);
5426 set_capacity(disk, 0);
5427 mutex_unlock(&mddev->open_mutex);
5429 revalidate_disk(disk);
5434 mutex_unlock(&mddev->open_mutex);
5436 * Free resources if final stop
5439 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5441 bitmap_destroy(mddev);
5442 if (mddev->bitmap_info.file) {
5443 struct file *f = mddev->bitmap_info.file;
5444 spin_lock(&mddev->lock);
5445 mddev->bitmap_info.file = NULL;
5446 spin_unlock(&mddev->lock);
5449 mddev->bitmap_info.offset = 0;
5451 export_array(mddev);
5454 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5455 if (mddev->hold_active == UNTIL_STOP)
5456 mddev->hold_active = 0;
5458 blk_integrity_unregister(disk);
5459 md_new_event(mddev);
5460 sysfs_notify_dirent_safe(mddev->sysfs_state);
5465 static void autorun_array(struct mddev *mddev)
5467 struct md_rdev *rdev;
5470 if (list_empty(&mddev->disks))
5473 printk(KERN_INFO "md: running: ");
5475 rdev_for_each(rdev, mddev) {
5476 char b[BDEVNAME_SIZE];
5477 printk("<%s>", bdevname(rdev->bdev,b));
5481 err = do_md_run(mddev);
5483 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5484 do_md_stop(mddev, 0, NULL);
5489 * lets try to run arrays based on all disks that have arrived
5490 * until now. (those are in pending_raid_disks)
5492 * the method: pick the first pending disk, collect all disks with
5493 * the same UUID, remove all from the pending list and put them into
5494 * the 'same_array' list. Then order this list based on superblock
5495 * update time (freshest comes first), kick out 'old' disks and
5496 * compare superblocks. If everything's fine then run it.
5498 * If "unit" is allocated, then bump its reference count
5500 static void autorun_devices(int part)
5502 struct md_rdev *rdev0, *rdev, *tmp;
5503 struct mddev *mddev;
5504 char b[BDEVNAME_SIZE];
5506 printk(KERN_INFO "md: autorun ...\n");
5507 while (!list_empty(&pending_raid_disks)) {
5510 LIST_HEAD(candidates);
5511 rdev0 = list_entry(pending_raid_disks.next,
5512 struct md_rdev, same_set);
5514 printk(KERN_INFO "md: considering %s ...\n",
5515 bdevname(rdev0->bdev,b));
5516 INIT_LIST_HEAD(&candidates);
5517 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5518 if (super_90_load(rdev, rdev0, 0) >= 0) {
5519 printk(KERN_INFO "md: adding %s ...\n",
5520 bdevname(rdev->bdev,b));
5521 list_move(&rdev->same_set, &candidates);
5524 * now we have a set of devices, with all of them having
5525 * mostly sane superblocks. It's time to allocate the
5529 dev = MKDEV(mdp_major,
5530 rdev0->preferred_minor << MdpMinorShift);
5531 unit = MINOR(dev) >> MdpMinorShift;
5533 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5536 if (rdev0->preferred_minor != unit) {
5537 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5538 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5542 md_probe(dev, NULL, NULL);
5543 mddev = mddev_find(dev);
5544 if (!mddev || !mddev->gendisk) {
5548 "md: cannot allocate memory for md drive.\n");
5551 if (mddev_lock(mddev))
5552 printk(KERN_WARNING "md: %s locked, cannot run\n",
5554 else if (mddev->raid_disks || mddev->major_version
5555 || !list_empty(&mddev->disks)) {
5557 "md: %s already running, cannot run %s\n",
5558 mdname(mddev), bdevname(rdev0->bdev,b));
5559 mddev_unlock(mddev);
5561 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5562 mddev->persistent = 1;
5563 rdev_for_each_list(rdev, tmp, &candidates) {
5564 list_del_init(&rdev->same_set);
5565 if (bind_rdev_to_array(rdev, mddev))
5568 autorun_array(mddev);
5569 mddev_unlock(mddev);
5571 /* on success, candidates will be empty, on error
5574 rdev_for_each_list(rdev, tmp, &candidates) {
5575 list_del_init(&rdev->same_set);
5580 printk(KERN_INFO "md: ... autorun DONE.\n");
5582 #endif /* !MODULE */
5584 static int get_version(void __user *arg)
5588 ver.major = MD_MAJOR_VERSION;
5589 ver.minor = MD_MINOR_VERSION;
5590 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5592 if (copy_to_user(arg, &ver, sizeof(ver)))
5598 static int get_array_info(struct mddev *mddev, void __user *arg)
5600 mdu_array_info_t info;
5601 int nr,working,insync,failed,spare;
5602 struct md_rdev *rdev;
5604 nr = working = insync = failed = spare = 0;
5606 rdev_for_each_rcu(rdev, mddev) {
5608 if (test_bit(Faulty, &rdev->flags))
5612 if (test_bit(In_sync, &rdev->flags))
5620 info.major_version = mddev->major_version;
5621 info.minor_version = mddev->minor_version;
5622 info.patch_version = MD_PATCHLEVEL_VERSION;
5623 info.ctime = mddev->ctime;
5624 info.level = mddev->level;
5625 info.size = mddev->dev_sectors / 2;
5626 if (info.size != mddev->dev_sectors / 2) /* overflow */
5629 info.raid_disks = mddev->raid_disks;
5630 info.md_minor = mddev->md_minor;
5631 info.not_persistent= !mddev->persistent;
5633 info.utime = mddev->utime;
5636 info.state = (1<<MD_SB_CLEAN);
5637 if (mddev->bitmap && mddev->bitmap_info.offset)
5638 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5639 info.active_disks = insync;
5640 info.working_disks = working;
5641 info.failed_disks = failed;
5642 info.spare_disks = spare;
5644 info.layout = mddev->layout;
5645 info.chunk_size = mddev->chunk_sectors << 9;
5647 if (copy_to_user(arg, &info, sizeof(info)))
5653 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5655 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5659 file = kmalloc(sizeof(*file), GFP_NOIO);
5664 spin_lock(&mddev->lock);
5665 /* bitmap disabled, zero the first byte and copy out */
5666 if (!mddev->bitmap_info.file)
5667 file->pathname[0] = '\0';
5668 else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5669 file->pathname, sizeof(file->pathname))),
5673 memmove(file->pathname, ptr,
5674 sizeof(file->pathname)-(ptr-file->pathname));
5675 spin_unlock(&mddev->lock);
5678 copy_to_user(arg, file, sizeof(*file)))
5685 static int get_disk_info(struct mddev *mddev, void __user * arg)
5687 mdu_disk_info_t info;
5688 struct md_rdev *rdev;
5690 if (copy_from_user(&info, arg, sizeof(info)))
5694 rdev = find_rdev_nr_rcu(mddev, info.number);
5696 info.major = MAJOR(rdev->bdev->bd_dev);
5697 info.minor = MINOR(rdev->bdev->bd_dev);
5698 info.raid_disk = rdev->raid_disk;
5700 if (test_bit(Faulty, &rdev->flags))
5701 info.state |= (1<<MD_DISK_FAULTY);
5702 else if (test_bit(In_sync, &rdev->flags)) {
5703 info.state |= (1<<MD_DISK_ACTIVE);
5704 info.state |= (1<<MD_DISK_SYNC);
5706 if (test_bit(WriteMostly, &rdev->flags))
5707 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5709 info.major = info.minor = 0;
5710 info.raid_disk = -1;
5711 info.state = (1<<MD_DISK_REMOVED);
5715 if (copy_to_user(arg, &info, sizeof(info)))
5721 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5723 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5724 struct md_rdev *rdev;
5725 dev_t dev = MKDEV(info->major,info->minor);
5727 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5730 if (!mddev->raid_disks) {
5732 /* expecting a device which has a superblock */
5733 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5736 "md: md_import_device returned %ld\n",
5738 return PTR_ERR(rdev);
5740 if (!list_empty(&mddev->disks)) {
5741 struct md_rdev *rdev0
5742 = list_entry(mddev->disks.next,
5743 struct md_rdev, same_set);
5744 err = super_types[mddev->major_version]
5745 .load_super(rdev, rdev0, mddev->minor_version);
5748 "md: %s has different UUID to %s\n",
5749 bdevname(rdev->bdev,b),
5750 bdevname(rdev0->bdev,b2));
5755 err = bind_rdev_to_array(rdev, mddev);
5762 * add_new_disk can be used once the array is assembled
5763 * to add "hot spares". They must already have a superblock
5768 if (!mddev->pers->hot_add_disk) {
5770 "%s: personality does not support diskops!\n",
5774 if (mddev->persistent)
5775 rdev = md_import_device(dev, mddev->major_version,
5776 mddev->minor_version);
5778 rdev = md_import_device(dev, -1, -1);
5781 "md: md_import_device returned %ld\n",
5783 return PTR_ERR(rdev);
5785 /* set saved_raid_disk if appropriate */
5786 if (!mddev->persistent) {
5787 if (info->state & (1<<MD_DISK_SYNC) &&
5788 info->raid_disk < mddev->raid_disks) {
5789 rdev->raid_disk = info->raid_disk;
5790 set_bit(In_sync, &rdev->flags);
5791 clear_bit(Bitmap_sync, &rdev->flags);
5793 rdev->raid_disk = -1;
5794 rdev->saved_raid_disk = rdev->raid_disk;
5796 super_types[mddev->major_version].
5797 validate_super(mddev, rdev);
5798 if ((info->state & (1<<MD_DISK_SYNC)) &&
5799 rdev->raid_disk != info->raid_disk) {
5800 /* This was a hot-add request, but events doesn't
5801 * match, so reject it.
5807 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5808 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5809 set_bit(WriteMostly, &rdev->flags);
5811 clear_bit(WriteMostly, &rdev->flags);
5813 rdev->raid_disk = -1;
5814 err = bind_rdev_to_array(rdev, mddev);
5815 if (!err && !mddev->pers->hot_remove_disk) {
5816 /* If there is hot_add_disk but no hot_remove_disk
5817 * then added disks for geometry changes,
5818 * and should be added immediately.
5820 super_types[mddev->major_version].
5821 validate_super(mddev, rdev);
5822 err = mddev->pers->hot_add_disk(mddev, rdev);
5824 unbind_rdev_from_array(rdev);
5829 sysfs_notify_dirent_safe(rdev->sysfs_state);
5831 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5832 if (mddev->degraded)
5833 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5834 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5836 md_new_event(mddev);
5837 md_wakeup_thread(mddev->thread);
5841 /* otherwise, add_new_disk is only allowed
5842 * for major_version==0 superblocks
5844 if (mddev->major_version != 0) {
5845 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5850 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5852 rdev = md_import_device(dev, -1, 0);
5855 "md: error, md_import_device() returned %ld\n",
5857 return PTR_ERR(rdev);
5859 rdev->desc_nr = info->number;
5860 if (info->raid_disk < mddev->raid_disks)
5861 rdev->raid_disk = info->raid_disk;
5863 rdev->raid_disk = -1;
5865 if (rdev->raid_disk < mddev->raid_disks)
5866 if (info->state & (1<<MD_DISK_SYNC))
5867 set_bit(In_sync, &rdev->flags);
5869 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5870 set_bit(WriteMostly, &rdev->flags);
5872 if (!mddev->persistent) {
5873 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5874 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5876 rdev->sb_start = calc_dev_sboffset(rdev);
5877 rdev->sectors = rdev->sb_start;
5879 err = bind_rdev_to_array(rdev, mddev);
5889 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5891 char b[BDEVNAME_SIZE];
5892 struct md_rdev *rdev;
5894 rdev = find_rdev(mddev, dev);
5898 clear_bit(Blocked, &rdev->flags);
5899 remove_and_add_spares(mddev, rdev);
5901 if (rdev->raid_disk >= 0)
5904 kick_rdev_from_array(rdev);
5905 md_update_sb(mddev, 1);
5906 md_new_event(mddev);
5910 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5911 bdevname(rdev->bdev,b), mdname(mddev));
5915 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5917 char b[BDEVNAME_SIZE];
5919 struct md_rdev *rdev;
5924 if (mddev->major_version != 0) {
5925 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5926 " version-0 superblocks.\n",
5930 if (!mddev->pers->hot_add_disk) {
5932 "%s: personality does not support diskops!\n",
5937 rdev = md_import_device(dev, -1, 0);
5940 "md: error, md_import_device() returned %ld\n",
5945 if (mddev->persistent)
5946 rdev->sb_start = calc_dev_sboffset(rdev);
5948 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5950 rdev->sectors = rdev->sb_start;
5952 if (test_bit(Faulty, &rdev->flags)) {
5954 "md: can not hot-add faulty %s disk to %s!\n",
5955 bdevname(rdev->bdev,b), mdname(mddev));
5959 clear_bit(In_sync, &rdev->flags);
5961 rdev->saved_raid_disk = -1;
5962 err = bind_rdev_to_array(rdev, mddev);
5967 * The rest should better be atomic, we can have disk failures
5968 * noticed in interrupt contexts ...
5971 rdev->raid_disk = -1;
5973 md_update_sb(mddev, 1);
5976 * Kick recovery, maybe this spare has to be added to the
5977 * array immediately.
5979 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5980 md_wakeup_thread(mddev->thread);
5981 md_new_event(mddev);
5989 static int set_bitmap_file(struct mddev *mddev, int fd)
5994 if (!mddev->pers->quiesce || !mddev->thread)
5996 if (mddev->recovery || mddev->sync_thread)
5998 /* we should be able to change the bitmap.. */
6002 struct inode *inode;
6005 if (mddev->bitmap || mddev->bitmap_info.file)
6006 return -EEXIST; /* cannot add when bitmap is present */
6010 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6015 inode = f->f_mapping->host;
6016 if (!S_ISREG(inode->i_mode)) {
6017 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6020 } else if (!(f->f_mode & FMODE_WRITE)) {
6021 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6024 } else if (atomic_read(&inode->i_writecount) != 1) {
6025 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6033 mddev->bitmap_info.file = f;
6034 mddev->bitmap_info.offset = 0; /* file overrides offset */
6035 } else if (mddev->bitmap == NULL)
6036 return -ENOENT; /* cannot remove what isn't there */
6039 mddev->pers->quiesce(mddev, 1);
6041 err = bitmap_create(mddev);
6043 err = bitmap_load(mddev);
6045 if (fd < 0 || err) {
6046 bitmap_destroy(mddev);
6047 fd = -1; /* make sure to put the file */
6049 mddev->pers->quiesce(mddev, 0);
6052 struct file *f = mddev->bitmap_info.file;
6054 spin_lock(&mddev->lock);
6055 mddev->bitmap_info.file = NULL;
6056 spin_unlock(&mddev->lock);
6065 * set_array_info is used two different ways
6066 * The original usage is when creating a new array.
6067 * In this usage, raid_disks is > 0 and it together with
6068 * level, size, not_persistent,layout,chunksize determine the
6069 * shape of the array.
6070 * This will always create an array with a type-0.90.0 superblock.
6071 * The newer usage is when assembling an array.
6072 * In this case raid_disks will be 0, and the major_version field is
6073 * use to determine which style super-blocks are to be found on the devices.
6074 * The minor and patch _version numbers are also kept incase the
6075 * super_block handler wishes to interpret them.
6077 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6080 if (info->raid_disks == 0) {
6081 /* just setting version number for superblock loading */
6082 if (info->major_version < 0 ||
6083 info->major_version >= ARRAY_SIZE(super_types) ||
6084 super_types[info->major_version].name == NULL) {
6085 /* maybe try to auto-load a module? */
6087 "md: superblock version %d not known\n",
6088 info->major_version);
6091 mddev->major_version = info->major_version;
6092 mddev->minor_version = info->minor_version;
6093 mddev->patch_version = info->patch_version;
6094 mddev->persistent = !info->not_persistent;
6095 /* ensure mddev_put doesn't delete this now that there
6096 * is some minimal configuration.
6098 mddev->ctime = get_seconds();
6101 mddev->major_version = MD_MAJOR_VERSION;
6102 mddev->minor_version = MD_MINOR_VERSION;
6103 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6104 mddev->ctime = get_seconds();
6106 mddev->level = info->level;
6107 mddev->clevel[0] = 0;
6108 mddev->dev_sectors = 2 * (sector_t)info->size;
6109 mddev->raid_disks = info->raid_disks;
6110 /* don't set md_minor, it is determined by which /dev/md* was
6113 if (info->state & (1<<MD_SB_CLEAN))
6114 mddev->recovery_cp = MaxSector;
6116 mddev->recovery_cp = 0;
6117 mddev->persistent = ! info->not_persistent;
6118 mddev->external = 0;
6120 mddev->layout = info->layout;
6121 mddev->chunk_sectors = info->chunk_size >> 9;
6123 mddev->max_disks = MD_SB_DISKS;
6125 if (mddev->persistent)
6127 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6129 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6130 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6131 mddev->bitmap_info.offset = 0;
6133 mddev->reshape_position = MaxSector;
6136 * Generate a 128 bit UUID
6138 get_random_bytes(mddev->uuid, 16);
6140 mddev->new_level = mddev->level;
6141 mddev->new_chunk_sectors = mddev->chunk_sectors;
6142 mddev->new_layout = mddev->layout;
6143 mddev->delta_disks = 0;
6144 mddev->reshape_backwards = 0;
6149 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6151 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6153 if (mddev->external_size)
6156 mddev->array_sectors = array_sectors;
6158 EXPORT_SYMBOL(md_set_array_sectors);
6160 static int update_size(struct mddev *mddev, sector_t num_sectors)
6162 struct md_rdev *rdev;
6164 int fit = (num_sectors == 0);
6166 if (mddev->pers->resize == NULL)
6168 /* The "num_sectors" is the number of sectors of each device that
6169 * is used. This can only make sense for arrays with redundancy.
6170 * linear and raid0 always use whatever space is available. We can only
6171 * consider changing this number if no resync or reconstruction is
6172 * happening, and if the new size is acceptable. It must fit before the
6173 * sb_start or, if that is <data_offset, it must fit before the size
6174 * of each device. If num_sectors is zero, we find the largest size
6177 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6183 rdev_for_each(rdev, mddev) {
6184 sector_t avail = rdev->sectors;
6186 if (fit && (num_sectors == 0 || num_sectors > avail))
6187 num_sectors = avail;
6188 if (avail < num_sectors)
6191 rv = mddev->pers->resize(mddev, num_sectors);
6193 revalidate_disk(mddev->gendisk);
6197 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6200 struct md_rdev *rdev;
6201 /* change the number of raid disks */
6202 if (mddev->pers->check_reshape == NULL)
6206 if (raid_disks <= 0 ||
6207 (mddev->max_disks && raid_disks >= mddev->max_disks))
6209 if (mddev->sync_thread ||
6210 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6211 mddev->reshape_position != MaxSector)
6214 rdev_for_each(rdev, mddev) {
6215 if (mddev->raid_disks < raid_disks &&
6216 rdev->data_offset < rdev->new_data_offset)
6218 if (mddev->raid_disks > raid_disks &&
6219 rdev->data_offset > rdev->new_data_offset)
6223 mddev->delta_disks = raid_disks - mddev->raid_disks;
6224 if (mddev->delta_disks < 0)
6225 mddev->reshape_backwards = 1;
6226 else if (mddev->delta_disks > 0)
6227 mddev->reshape_backwards = 0;
6229 rv = mddev->pers->check_reshape(mddev);
6231 mddev->delta_disks = 0;
6232 mddev->reshape_backwards = 0;
6238 * update_array_info is used to change the configuration of an
6240 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6241 * fields in the info are checked against the array.
6242 * Any differences that cannot be handled will cause an error.
6243 * Normally, only one change can be managed at a time.
6245 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6251 /* calculate expected state,ignoring low bits */
6252 if (mddev->bitmap && mddev->bitmap_info.offset)
6253 state |= (1 << MD_SB_BITMAP_PRESENT);
6255 if (mddev->major_version != info->major_version ||
6256 mddev->minor_version != info->minor_version ||
6257 /* mddev->patch_version != info->patch_version || */
6258 mddev->ctime != info->ctime ||
6259 mddev->level != info->level ||
6260 /* mddev->layout != info->layout || */
6261 !mddev->persistent != info->not_persistent||
6262 mddev->chunk_sectors != info->chunk_size >> 9 ||
6263 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6264 ((state^info->state) & 0xfffffe00)
6267 /* Check there is only one change */
6268 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6270 if (mddev->raid_disks != info->raid_disks)
6272 if (mddev->layout != info->layout)
6274 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6281 if (mddev->layout != info->layout) {
6283 * we don't need to do anything at the md level, the
6284 * personality will take care of it all.
6286 if (mddev->pers->check_reshape == NULL)
6289 mddev->new_layout = info->layout;
6290 rv = mddev->pers->check_reshape(mddev);
6292 mddev->new_layout = mddev->layout;
6296 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6297 rv = update_size(mddev, (sector_t)info->size * 2);
6299 if (mddev->raid_disks != info->raid_disks)
6300 rv = update_raid_disks(mddev, info->raid_disks);
6302 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6303 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6305 if (mddev->recovery || mddev->sync_thread)
6307 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6308 /* add the bitmap */
6311 if (mddev->bitmap_info.default_offset == 0)
6313 mddev->bitmap_info.offset =
6314 mddev->bitmap_info.default_offset;
6315 mddev->bitmap_info.space =
6316 mddev->bitmap_info.default_space;
6317 mddev->pers->quiesce(mddev, 1);
6318 rv = bitmap_create(mddev);
6320 rv = bitmap_load(mddev);
6322 bitmap_destroy(mddev);
6323 mddev->pers->quiesce(mddev, 0);
6325 /* remove the bitmap */
6328 if (mddev->bitmap->storage.file)
6330 mddev->pers->quiesce(mddev, 1);
6331 bitmap_destroy(mddev);
6332 mddev->pers->quiesce(mddev, 0);
6333 mddev->bitmap_info.offset = 0;
6336 md_update_sb(mddev, 1);
6340 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6342 struct md_rdev *rdev;
6345 if (mddev->pers == NULL)
6349 rdev = find_rdev_rcu(mddev, dev);
6353 md_error(mddev, rdev);
6354 if (!test_bit(Faulty, &rdev->flags))
6362 * We have a problem here : there is no easy way to give a CHS
6363 * virtual geometry. We currently pretend that we have a 2 heads
6364 * 4 sectors (with a BIG number of cylinders...). This drives
6365 * dosfs just mad... ;-)
6367 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6369 struct mddev *mddev = bdev->bd_disk->private_data;
6373 geo->cylinders = mddev->array_sectors / 8;
6377 static inline bool md_ioctl_valid(unsigned int cmd)
6382 case GET_ARRAY_INFO:
6383 case GET_BITMAP_FILE:
6386 case HOT_REMOVE_DISK:
6389 case RESTART_ARRAY_RW:
6391 case SET_ARRAY_INFO:
6392 case SET_BITMAP_FILE:
6393 case SET_DISK_FAULTY:
6402 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6403 unsigned int cmd, unsigned long arg)
6406 void __user *argp = (void __user *)arg;
6407 struct mddev *mddev = NULL;
6410 if (!md_ioctl_valid(cmd))
6415 case GET_ARRAY_INFO:
6419 if (!capable(CAP_SYS_ADMIN))
6424 * Commands dealing with the RAID driver but not any
6429 err = get_version(argp);
6435 autostart_arrays(arg);
6442 * Commands creating/starting a new array:
6445 mddev = bdev->bd_disk->private_data;
6452 /* Some actions do not requires the mutex */
6454 case GET_ARRAY_INFO:
6455 if (!mddev->raid_disks && !mddev->external)
6458 err = get_array_info(mddev, argp);
6462 if (!mddev->raid_disks && !mddev->external)
6465 err = get_disk_info(mddev, argp);
6468 case SET_DISK_FAULTY:
6469 err = set_disk_faulty(mddev, new_decode_dev(arg));
6472 case GET_BITMAP_FILE:
6473 err = get_bitmap_file(mddev, argp);
6478 if (cmd == ADD_NEW_DISK)
6479 /* need to ensure md_delayed_delete() has completed */
6480 flush_workqueue(md_misc_wq);
6482 if (cmd == HOT_REMOVE_DISK)
6483 /* need to ensure recovery thread has run */
6484 wait_event_interruptible_timeout(mddev->sb_wait,
6485 !test_bit(MD_RECOVERY_NEEDED,
6487 msecs_to_jiffies(5000));
6488 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6489 /* Need to flush page cache, and ensure no-one else opens
6492 mutex_lock(&mddev->open_mutex);
6493 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6494 mutex_unlock(&mddev->open_mutex);
6498 set_bit(MD_STILL_CLOSED, &mddev->flags);
6499 mutex_unlock(&mddev->open_mutex);
6500 sync_blockdev(bdev);
6502 err = mddev_lock(mddev);
6505 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6510 if (cmd == SET_ARRAY_INFO) {
6511 mdu_array_info_t info;
6513 memset(&info, 0, sizeof(info));
6514 else if (copy_from_user(&info, argp, sizeof(info))) {
6519 err = update_array_info(mddev, &info);
6521 printk(KERN_WARNING "md: couldn't update"
6522 " array info. %d\n", err);
6527 if (!list_empty(&mddev->disks)) {
6529 "md: array %s already has disks!\n",
6534 if (mddev->raid_disks) {
6536 "md: array %s already initialised!\n",
6541 err = set_array_info(mddev, &info);
6543 printk(KERN_WARNING "md: couldn't set"
6544 " array info. %d\n", err);
6551 * Commands querying/configuring an existing array:
6553 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6554 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6555 if ((!mddev->raid_disks && !mddev->external)
6556 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6557 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6558 && cmd != GET_BITMAP_FILE) {
6564 * Commands even a read-only array can execute:
6567 case RESTART_ARRAY_RW:
6568 err = restart_array(mddev);
6572 err = do_md_stop(mddev, 0, bdev);
6576 err = md_set_readonly(mddev, bdev);
6579 case HOT_REMOVE_DISK:
6580 err = hot_remove_disk(mddev, new_decode_dev(arg));
6584 /* We can support ADD_NEW_DISK on read-only arrays
6585 * on if we are re-adding a preexisting device.
6586 * So require mddev->pers and MD_DISK_SYNC.
6589 mdu_disk_info_t info;
6590 if (copy_from_user(&info, argp, sizeof(info)))
6592 else if (!(info.state & (1<<MD_DISK_SYNC)))
6593 /* Need to clear read-only for this */
6596 err = add_new_disk(mddev, &info);
6602 if (get_user(ro, (int __user *)(arg))) {
6608 /* if the bdev is going readonly the value of mddev->ro
6609 * does not matter, no writes are coming
6614 /* are we are already prepared for writes? */
6618 /* transitioning to readauto need only happen for
6619 * arrays that call md_write_start
6622 err = restart_array(mddev);
6625 set_disk_ro(mddev->gendisk, 0);
6632 * The remaining ioctls are changing the state of the
6633 * superblock, so we do not allow them on read-only arrays.
6635 if (mddev->ro && mddev->pers) {
6636 if (mddev->ro == 2) {
6638 sysfs_notify_dirent_safe(mddev->sysfs_state);
6639 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6640 /* mddev_unlock will wake thread */
6641 /* If a device failed while we were read-only, we
6642 * need to make sure the metadata is updated now.
6644 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6645 mddev_unlock(mddev);
6646 wait_event(mddev->sb_wait,
6647 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6648 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6649 mddev_lock_nointr(mddev);
6660 mdu_disk_info_t info;
6661 if (copy_from_user(&info, argp, sizeof(info)))
6664 err = add_new_disk(mddev, &info);
6669 err = hot_add_disk(mddev, new_decode_dev(arg));
6673 err = do_md_run(mddev);
6676 case SET_BITMAP_FILE:
6677 err = set_bitmap_file(mddev, (int)arg);
6686 if (mddev->hold_active == UNTIL_IOCTL &&
6688 mddev->hold_active = 0;
6689 mddev_unlock(mddev);
6693 #ifdef CONFIG_COMPAT
6694 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6695 unsigned int cmd, unsigned long arg)
6698 case HOT_REMOVE_DISK:
6700 case SET_DISK_FAULTY:
6701 case SET_BITMAP_FILE:
6702 /* These take in integer arg, do not convert */
6705 arg = (unsigned long)compat_ptr(arg);
6709 return md_ioctl(bdev, mode, cmd, arg);
6711 #endif /* CONFIG_COMPAT */
6713 static int md_open(struct block_device *bdev, fmode_t mode)
6716 * Succeed if we can lock the mddev, which confirms that
6717 * it isn't being stopped right now.
6719 struct mddev *mddev = mddev_find(bdev->bd_dev);
6725 if (mddev->gendisk != bdev->bd_disk) {
6726 /* we are racing with mddev_put which is discarding this
6730 /* Wait until bdev->bd_disk is definitely gone */
6731 flush_workqueue(md_misc_wq);
6732 /* Then retry the open from the top */
6733 return -ERESTARTSYS;
6735 BUG_ON(mddev != bdev->bd_disk->private_data);
6737 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6741 atomic_inc(&mddev->openers);
6742 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6743 mutex_unlock(&mddev->open_mutex);
6745 check_disk_change(bdev);
6750 static void md_release(struct gendisk *disk, fmode_t mode)
6752 struct mddev *mddev = disk->private_data;
6755 atomic_dec(&mddev->openers);
6759 static int md_media_changed(struct gendisk *disk)
6761 struct mddev *mddev = disk->private_data;
6763 return mddev->changed;
6766 static int md_revalidate(struct gendisk *disk)
6768 struct mddev *mddev = disk->private_data;
6773 static const struct block_device_operations md_fops =
6775 .owner = THIS_MODULE,
6777 .release = md_release,
6779 #ifdef CONFIG_COMPAT
6780 .compat_ioctl = md_compat_ioctl,
6782 .getgeo = md_getgeo,
6783 .media_changed = md_media_changed,
6784 .revalidate_disk= md_revalidate,
6787 static int md_thread(void *arg)
6789 struct md_thread *thread = arg;
6792 * md_thread is a 'system-thread', it's priority should be very
6793 * high. We avoid resource deadlocks individually in each
6794 * raid personality. (RAID5 does preallocation) We also use RR and
6795 * the very same RT priority as kswapd, thus we will never get
6796 * into a priority inversion deadlock.
6798 * we definitely have to have equal or higher priority than
6799 * bdflush, otherwise bdflush will deadlock if there are too
6800 * many dirty RAID5 blocks.
6803 allow_signal(SIGKILL);
6804 while (!kthread_should_stop()) {
6806 /* We need to wait INTERRUPTIBLE so that
6807 * we don't add to the load-average.
6808 * That means we need to be sure no signals are
6811 if (signal_pending(current))
6812 flush_signals(current);
6814 wait_event_interruptible_timeout
6816 test_bit(THREAD_WAKEUP, &thread->flags)
6817 || kthread_should_stop(),
6820 clear_bit(THREAD_WAKEUP, &thread->flags);
6821 if (!kthread_should_stop())
6822 thread->run(thread);
6828 void md_wakeup_thread(struct md_thread *thread)
6831 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6832 set_bit(THREAD_WAKEUP, &thread->flags);
6833 wake_up(&thread->wqueue);
6836 EXPORT_SYMBOL(md_wakeup_thread);
6838 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6839 struct mddev *mddev, const char *name)
6841 struct md_thread *thread;
6843 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6847 init_waitqueue_head(&thread->wqueue);
6850 thread->mddev = mddev;
6851 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6852 thread->tsk = kthread_run(md_thread, thread,
6854 mdname(thread->mddev),
6856 if (IS_ERR(thread->tsk)) {
6862 EXPORT_SYMBOL(md_register_thread);
6864 void md_unregister_thread(struct md_thread **threadp)
6866 struct md_thread *thread = *threadp;
6869 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6870 /* Locking ensures that mddev_unlock does not wake_up a
6871 * non-existent thread
6873 spin_lock(&pers_lock);
6875 spin_unlock(&pers_lock);
6877 kthread_stop(thread->tsk);
6880 EXPORT_SYMBOL(md_unregister_thread);
6882 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6884 if (!rdev || test_bit(Faulty, &rdev->flags))
6887 if (!mddev->pers || !mddev->pers->error_handler)
6889 mddev->pers->error_handler(mddev,rdev);
6890 if (mddev->degraded)
6891 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6892 sysfs_notify_dirent_safe(rdev->sysfs_state);
6893 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6894 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6895 md_wakeup_thread(mddev->thread);
6896 if (mddev->event_work.func)
6897 queue_work(md_misc_wq, &mddev->event_work);
6898 md_new_event_inintr(mddev);
6900 EXPORT_SYMBOL(md_error);
6902 /* seq_file implementation /proc/mdstat */
6904 static void status_unused(struct seq_file *seq)
6907 struct md_rdev *rdev;
6909 seq_printf(seq, "unused devices: ");
6911 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6912 char b[BDEVNAME_SIZE];
6914 seq_printf(seq, "%s ",
6915 bdevname(rdev->bdev,b));
6918 seq_printf(seq, "<none>");
6920 seq_printf(seq, "\n");
6923 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6925 sector_t max_sectors, resync, res;
6926 unsigned long dt, db;
6929 unsigned int per_milli;
6931 if (mddev->curr_resync <= 3)
6934 resync = mddev->curr_resync
6935 - atomic_read(&mddev->recovery_active);
6937 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6938 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6939 max_sectors = mddev->resync_max_sectors;
6941 max_sectors = mddev->dev_sectors;
6943 WARN_ON(max_sectors == 0);
6944 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6945 * in a sector_t, and (max_sectors>>scale) will fit in a
6946 * u32, as those are the requirements for sector_div.
6947 * Thus 'scale' must be at least 10
6950 if (sizeof(sector_t) > sizeof(unsigned long)) {
6951 while ( max_sectors/2 > (1ULL<<(scale+32)))
6954 res = (resync>>scale)*1000;
6955 sector_div(res, (u32)((max_sectors>>scale)+1));
6959 int i, x = per_milli/50, y = 20-x;
6960 seq_printf(seq, "[");
6961 for (i = 0; i < x; i++)
6962 seq_printf(seq, "=");
6963 seq_printf(seq, ">");
6964 for (i = 0; i < y; i++)
6965 seq_printf(seq, ".");
6966 seq_printf(seq, "] ");
6968 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6969 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6971 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6973 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6974 "resync" : "recovery"))),
6975 per_milli/10, per_milli % 10,
6976 (unsigned long long) resync/2,
6977 (unsigned long long) max_sectors/2);
6980 * dt: time from mark until now
6981 * db: blocks written from mark until now
6982 * rt: remaining time
6984 * rt is a sector_t, so could be 32bit or 64bit.
6985 * So we divide before multiply in case it is 32bit and close
6987 * We scale the divisor (db) by 32 to avoid losing precision
6988 * near the end of resync when the number of remaining sectors
6990 * We then divide rt by 32 after multiplying by db to compensate.
6991 * The '+1' avoids division by zero if db is very small.
6993 dt = ((jiffies - mddev->resync_mark) / HZ);
6995 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6996 - mddev->resync_mark_cnt;
6998 rt = max_sectors - resync; /* number of remaining sectors */
6999 sector_div(rt, db/32+1);
7003 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7004 ((unsigned long)rt % 60)/6);
7006 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7009 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7011 struct list_head *tmp;
7013 struct mddev *mddev;
7021 spin_lock(&all_mddevs_lock);
7022 list_for_each(tmp,&all_mddevs)
7024 mddev = list_entry(tmp, struct mddev, all_mddevs);
7026 spin_unlock(&all_mddevs_lock);
7029 spin_unlock(&all_mddevs_lock);
7031 return (void*)2;/* tail */
7035 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7037 struct list_head *tmp;
7038 struct mddev *next_mddev, *mddev = v;
7044 spin_lock(&all_mddevs_lock);
7046 tmp = all_mddevs.next;
7048 tmp = mddev->all_mddevs.next;
7049 if (tmp != &all_mddevs)
7050 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7052 next_mddev = (void*)2;
7055 spin_unlock(&all_mddevs_lock);
7063 static void md_seq_stop(struct seq_file *seq, void *v)
7065 struct mddev *mddev = v;
7067 if (mddev && v != (void*)1 && v != (void*)2)
7071 static int md_seq_show(struct seq_file *seq, void *v)
7073 struct mddev *mddev = v;
7075 struct md_rdev *rdev;
7077 if (v == (void*)1) {
7078 struct md_personality *pers;
7079 seq_printf(seq, "Personalities : ");
7080 spin_lock(&pers_lock);
7081 list_for_each_entry(pers, &pers_list, list)
7082 seq_printf(seq, "[%s] ", pers->name);
7084 spin_unlock(&pers_lock);
7085 seq_printf(seq, "\n");
7086 seq->poll_event = atomic_read(&md_event_count);
7089 if (v == (void*)2) {
7094 spin_lock(&mddev->lock);
7095 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7096 seq_printf(seq, "%s : %sactive", mdname(mddev),
7097 mddev->pers ? "" : "in");
7100 seq_printf(seq, " (read-only)");
7102 seq_printf(seq, " (auto-read-only)");
7103 seq_printf(seq, " %s", mddev->pers->name);
7108 rdev_for_each_rcu(rdev, mddev) {
7109 char b[BDEVNAME_SIZE];
7110 seq_printf(seq, " %s[%d]",
7111 bdevname(rdev->bdev,b), rdev->desc_nr);
7112 if (test_bit(WriteMostly, &rdev->flags))
7113 seq_printf(seq, "(W)");
7114 if (test_bit(Faulty, &rdev->flags)) {
7115 seq_printf(seq, "(F)");
7118 if (rdev->raid_disk < 0)
7119 seq_printf(seq, "(S)"); /* spare */
7120 if (test_bit(Replacement, &rdev->flags))
7121 seq_printf(seq, "(R)");
7122 sectors += rdev->sectors;
7126 if (!list_empty(&mddev->disks)) {
7128 seq_printf(seq, "\n %llu blocks",
7129 (unsigned long long)
7130 mddev->array_sectors / 2);
7132 seq_printf(seq, "\n %llu blocks",
7133 (unsigned long long)sectors / 2);
7135 if (mddev->persistent) {
7136 if (mddev->major_version != 0 ||
7137 mddev->minor_version != 90) {
7138 seq_printf(seq," super %d.%d",
7139 mddev->major_version,
7140 mddev->minor_version);
7142 } else if (mddev->external)
7143 seq_printf(seq, " super external:%s",
7144 mddev->metadata_type);
7146 seq_printf(seq, " super non-persistent");
7149 mddev->pers->status(seq, mddev);
7150 seq_printf(seq, "\n ");
7151 if (mddev->pers->sync_request) {
7152 if (mddev->curr_resync > 2) {
7153 status_resync(seq, mddev);
7154 seq_printf(seq, "\n ");
7155 } else if (mddev->curr_resync >= 1)
7156 seq_printf(seq, "\tresync=DELAYED\n ");
7157 else if (mddev->recovery_cp < MaxSector)
7158 seq_printf(seq, "\tresync=PENDING\n ");
7161 seq_printf(seq, "\n ");
7163 bitmap_status(seq, mddev->bitmap);
7165 seq_printf(seq, "\n");
7167 spin_unlock(&mddev->lock);
7172 static const struct seq_operations md_seq_ops = {
7173 .start = md_seq_start,
7174 .next = md_seq_next,
7175 .stop = md_seq_stop,
7176 .show = md_seq_show,
7179 static int md_seq_open(struct inode *inode, struct file *file)
7181 struct seq_file *seq;
7184 error = seq_open(file, &md_seq_ops);
7188 seq = file->private_data;
7189 seq->poll_event = atomic_read(&md_event_count);
7193 static int md_unloading;
7194 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7196 struct seq_file *seq = filp->private_data;
7200 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7201 poll_wait(filp, &md_event_waiters, wait);
7203 /* always allow read */
7204 mask = POLLIN | POLLRDNORM;
7206 if (seq->poll_event != atomic_read(&md_event_count))
7207 mask |= POLLERR | POLLPRI;
7211 static const struct file_operations md_seq_fops = {
7212 .owner = THIS_MODULE,
7213 .open = md_seq_open,
7215 .llseek = seq_lseek,
7216 .release = seq_release_private,
7217 .poll = mdstat_poll,
7220 int register_md_personality(struct md_personality *p)
7222 printk(KERN_INFO "md: %s personality registered for level %d\n",
7224 spin_lock(&pers_lock);
7225 list_add_tail(&p->list, &pers_list);
7226 spin_unlock(&pers_lock);
7229 EXPORT_SYMBOL(register_md_personality);
7231 int unregister_md_personality(struct md_personality *p)
7233 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7234 spin_lock(&pers_lock);
7235 list_del_init(&p->list);
7236 spin_unlock(&pers_lock);
7239 EXPORT_SYMBOL(unregister_md_personality);
7241 static int is_mddev_idle(struct mddev *mddev, int init)
7243 struct md_rdev *rdev;
7249 rdev_for_each_rcu(rdev, mddev) {
7250 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7251 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7252 (int)part_stat_read(&disk->part0, sectors[1]) -
7253 atomic_read(&disk->sync_io);
7254 /* sync IO will cause sync_io to increase before the disk_stats
7255 * as sync_io is counted when a request starts, and
7256 * disk_stats is counted when it completes.
7257 * So resync activity will cause curr_events to be smaller than
7258 * when there was no such activity.
7259 * non-sync IO will cause disk_stat to increase without
7260 * increasing sync_io so curr_events will (eventually)
7261 * be larger than it was before. Once it becomes
7262 * substantially larger, the test below will cause
7263 * the array to appear non-idle, and resync will slow
7265 * If there is a lot of outstanding resync activity when
7266 * we set last_event to curr_events, then all that activity
7267 * completing might cause the array to appear non-idle
7268 * and resync will be slowed down even though there might
7269 * not have been non-resync activity. This will only
7270 * happen once though. 'last_events' will soon reflect
7271 * the state where there is little or no outstanding
7272 * resync requests, and further resync activity will
7273 * always make curr_events less than last_events.
7276 if (init || curr_events - rdev->last_events > 64) {
7277 rdev->last_events = curr_events;
7285 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7287 /* another "blocks" (512byte) blocks have been synced */
7288 atomic_sub(blocks, &mddev->recovery_active);
7289 wake_up(&mddev->recovery_wait);
7291 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7292 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7293 md_wakeup_thread(mddev->thread);
7294 // stop recovery, signal do_sync ....
7297 EXPORT_SYMBOL(md_done_sync);
7299 /* md_write_start(mddev, bi)
7300 * If we need to update some array metadata (e.g. 'active' flag
7301 * in superblock) before writing, schedule a superblock update
7302 * and wait for it to complete.
7304 void md_write_start(struct mddev *mddev, struct bio *bi)
7307 if (bio_data_dir(bi) != WRITE)
7310 BUG_ON(mddev->ro == 1);
7311 if (mddev->ro == 2) {
7312 /* need to switch to read/write */
7314 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7315 md_wakeup_thread(mddev->thread);
7316 md_wakeup_thread(mddev->sync_thread);
7319 atomic_inc(&mddev->writes_pending);
7320 if (mddev->safemode == 1)
7321 mddev->safemode = 0;
7322 if (mddev->in_sync) {
7323 spin_lock(&mddev->lock);
7324 if (mddev->in_sync) {
7326 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7327 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7328 md_wakeup_thread(mddev->thread);
7331 spin_unlock(&mddev->lock);
7334 sysfs_notify_dirent_safe(mddev->sysfs_state);
7335 wait_event(mddev->sb_wait,
7336 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7338 EXPORT_SYMBOL(md_write_start);
7340 void md_write_end(struct mddev *mddev)
7342 if (atomic_dec_and_test(&mddev->writes_pending)) {
7343 if (mddev->safemode == 2)
7344 md_wakeup_thread(mddev->thread);
7345 else if (mddev->safemode_delay)
7346 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7349 EXPORT_SYMBOL(md_write_end);
7351 /* md_allow_write(mddev)
7352 * Calling this ensures that the array is marked 'active' so that writes
7353 * may proceed without blocking. It is important to call this before
7354 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7355 * Must be called with mddev_lock held.
7357 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7358 * is dropped, so return -EAGAIN after notifying userspace.
7360 int md_allow_write(struct mddev *mddev)
7366 if (!mddev->pers->sync_request)
7369 spin_lock(&mddev->lock);
7370 if (mddev->in_sync) {
7372 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7373 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7374 if (mddev->safemode_delay &&
7375 mddev->safemode == 0)
7376 mddev->safemode = 1;
7377 spin_unlock(&mddev->lock);
7378 md_update_sb(mddev, 0);
7379 sysfs_notify_dirent_safe(mddev->sysfs_state);
7381 spin_unlock(&mddev->lock);
7383 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7388 EXPORT_SYMBOL_GPL(md_allow_write);
7390 #define SYNC_MARKS 10
7391 #define SYNC_MARK_STEP (3*HZ)
7392 #define UPDATE_FREQUENCY (5*60*HZ)
7393 void md_do_sync(struct md_thread *thread)
7395 struct mddev *mddev = thread->mddev;
7396 struct mddev *mddev2;
7397 unsigned int currspeed = 0,
7399 sector_t max_sectors,j, io_sectors, recovery_done;
7400 unsigned long mark[SYNC_MARKS];
7401 unsigned long update_time;
7402 sector_t mark_cnt[SYNC_MARKS];
7404 struct list_head *tmp;
7405 sector_t last_check;
7407 struct md_rdev *rdev;
7408 char *desc, *action = NULL;
7409 struct blk_plug plug;
7411 /* just incase thread restarts... */
7412 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7414 if (mddev->ro) {/* never try to sync a read-only array */
7415 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7419 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7420 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7421 desc = "data-check";
7423 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7424 desc = "requested-resync";
7428 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7433 mddev->last_sync_action = action ?: desc;
7435 /* we overload curr_resync somewhat here.
7436 * 0 == not engaged in resync at all
7437 * 2 == checking that there is no conflict with another sync
7438 * 1 == like 2, but have yielded to allow conflicting resync to
7440 * other == active in resync - this many blocks
7442 * Before starting a resync we must have set curr_resync to
7443 * 2, and then checked that every "conflicting" array has curr_resync
7444 * less than ours. When we find one that is the same or higher
7445 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7446 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7447 * This will mean we have to start checking from the beginning again.
7452 mddev->curr_resync = 2;
7455 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7457 for_each_mddev(mddev2, tmp) {
7458 if (mddev2 == mddev)
7460 if (!mddev->parallel_resync
7461 && mddev2->curr_resync
7462 && match_mddev_units(mddev, mddev2)) {
7464 if (mddev < mddev2 && mddev->curr_resync == 2) {
7465 /* arbitrarily yield */
7466 mddev->curr_resync = 1;
7467 wake_up(&resync_wait);
7469 if (mddev > mddev2 && mddev->curr_resync == 1)
7470 /* no need to wait here, we can wait the next
7471 * time 'round when curr_resync == 2
7474 /* We need to wait 'interruptible' so as not to
7475 * contribute to the load average, and not to
7476 * be caught by 'softlockup'
7478 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7479 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7480 mddev2->curr_resync >= mddev->curr_resync) {
7481 printk(KERN_INFO "md: delaying %s of %s"
7482 " until %s has finished (they"
7483 " share one or more physical units)\n",
7484 desc, mdname(mddev), mdname(mddev2));
7486 if (signal_pending(current))
7487 flush_signals(current);
7489 finish_wait(&resync_wait, &wq);
7492 finish_wait(&resync_wait, &wq);
7495 } while (mddev->curr_resync < 2);
7498 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7499 /* resync follows the size requested by the personality,
7500 * which defaults to physical size, but can be virtual size
7502 max_sectors = mddev->resync_max_sectors;
7503 atomic64_set(&mddev->resync_mismatches, 0);
7504 /* we don't use the checkpoint if there's a bitmap */
7505 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7506 j = mddev->resync_min;
7507 else if (!mddev->bitmap)
7508 j = mddev->recovery_cp;
7510 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7511 max_sectors = mddev->resync_max_sectors;
7513 /* recovery follows the physical size of devices */
7514 max_sectors = mddev->dev_sectors;
7517 rdev_for_each_rcu(rdev, mddev)
7518 if (rdev->raid_disk >= 0 &&
7519 !test_bit(Faulty, &rdev->flags) &&
7520 !test_bit(In_sync, &rdev->flags) &&
7521 rdev->recovery_offset < j)
7522 j = rdev->recovery_offset;
7525 /* If there is a bitmap, we need to make sure all
7526 * writes that started before we added a spare
7527 * complete before we start doing a recovery.
7528 * Otherwise the write might complete and (via
7529 * bitmap_endwrite) set a bit in the bitmap after the
7530 * recovery has checked that bit and skipped that
7533 if (mddev->bitmap) {
7534 mddev->pers->quiesce(mddev, 1);
7535 mddev->pers->quiesce(mddev, 0);
7539 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7540 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7541 " %d KB/sec/disk.\n", speed_min(mddev));
7542 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7543 "(but not more than %d KB/sec) for %s.\n",
7544 speed_max(mddev), desc);
7546 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7549 for (m = 0; m < SYNC_MARKS; m++) {
7551 mark_cnt[m] = io_sectors;
7554 mddev->resync_mark = mark[last_mark];
7555 mddev->resync_mark_cnt = mark_cnt[last_mark];
7558 * Tune reconstruction:
7560 window = 32*(PAGE_SIZE/512);
7561 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7562 window/2, (unsigned long long)max_sectors/2);
7564 atomic_set(&mddev->recovery_active, 0);
7569 "md: resuming %s of %s from checkpoint.\n",
7570 desc, mdname(mddev));
7571 mddev->curr_resync = j;
7573 mddev->curr_resync = 3; /* no longer delayed */
7574 mddev->curr_resync_completed = j;
7575 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7576 md_new_event(mddev);
7577 update_time = jiffies;
7579 blk_start_plug(&plug);
7580 while (j < max_sectors) {
7585 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7586 ((mddev->curr_resync > mddev->curr_resync_completed &&
7587 (mddev->curr_resync - mddev->curr_resync_completed)
7588 > (max_sectors >> 4)) ||
7589 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7590 (j - mddev->curr_resync_completed)*2
7591 >= mddev->resync_max - mddev->curr_resync_completed
7593 /* time to update curr_resync_completed */
7594 wait_event(mddev->recovery_wait,
7595 atomic_read(&mddev->recovery_active) == 0);
7596 mddev->curr_resync_completed = j;
7597 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7598 j > mddev->recovery_cp)
7599 mddev->recovery_cp = j;
7600 update_time = jiffies;
7601 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7602 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7605 while (j >= mddev->resync_max &&
7606 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7607 /* As this condition is controlled by user-space,
7608 * we can block indefinitely, so use '_interruptible'
7609 * to avoid triggering warnings.
7611 flush_signals(current); /* just in case */
7612 wait_event_interruptible(mddev->recovery_wait,
7613 mddev->resync_max > j
7614 || test_bit(MD_RECOVERY_INTR,
7618 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7621 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7622 currspeed < speed_min(mddev));
7624 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7628 if (!skipped) { /* actual IO requested */
7629 io_sectors += sectors;
7630 atomic_add(sectors, &mddev->recovery_active);
7633 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7638 mddev->curr_resync = j;
7639 mddev->curr_mark_cnt = io_sectors;
7640 if (last_check == 0)
7641 /* this is the earliest that rebuild will be
7642 * visible in /proc/mdstat
7644 md_new_event(mddev);
7646 if (last_check + window > io_sectors || j == max_sectors)
7649 last_check = io_sectors;
7651 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7653 int next = (last_mark+1) % SYNC_MARKS;
7655 mddev->resync_mark = mark[next];
7656 mddev->resync_mark_cnt = mark_cnt[next];
7657 mark[next] = jiffies;
7658 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7662 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7666 * this loop exits only if either when we are slower than
7667 * the 'hard' speed limit, or the system was IO-idle for
7669 * the system might be non-idle CPU-wise, but we only care
7670 * about not overloading the IO subsystem. (things like an
7671 * e2fsck being done on the RAID array should execute fast)
7675 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7676 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7677 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7679 if (currspeed > speed_min(mddev)) {
7680 if ((currspeed > speed_max(mddev)) ||
7681 !is_mddev_idle(mddev, 0)) {
7687 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7688 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7689 ? "interrupted" : "done");
7691 * this also signals 'finished resyncing' to md_stop
7693 blk_finish_plug(&plug);
7694 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7696 /* tell personality that we are finished */
7697 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7699 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7700 mddev->curr_resync > 2) {
7701 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7702 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7703 if (mddev->curr_resync >= mddev->recovery_cp) {
7705 "md: checkpointing %s of %s.\n",
7706 desc, mdname(mddev));
7707 if (test_bit(MD_RECOVERY_ERROR,
7709 mddev->recovery_cp =
7710 mddev->curr_resync_completed;
7712 mddev->recovery_cp =
7716 mddev->recovery_cp = MaxSector;
7718 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7719 mddev->curr_resync = MaxSector;
7721 rdev_for_each_rcu(rdev, mddev)
7722 if (rdev->raid_disk >= 0 &&
7723 mddev->delta_disks >= 0 &&
7724 !test_bit(Faulty, &rdev->flags) &&
7725 !test_bit(In_sync, &rdev->flags) &&
7726 rdev->recovery_offset < mddev->curr_resync)
7727 rdev->recovery_offset = mddev->curr_resync;
7732 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7734 spin_lock(&mddev->lock);
7735 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7736 /* We completed so min/max setting can be forgotten if used. */
7737 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7738 mddev->resync_min = 0;
7739 mddev->resync_max = MaxSector;
7740 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7741 mddev->resync_min = mddev->curr_resync_completed;
7742 mddev->curr_resync = 0;
7743 spin_unlock(&mddev->lock);
7745 wake_up(&resync_wait);
7746 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7747 md_wakeup_thread(mddev->thread);
7750 EXPORT_SYMBOL_GPL(md_do_sync);
7752 static int remove_and_add_spares(struct mddev *mddev,
7753 struct md_rdev *this)
7755 struct md_rdev *rdev;
7759 rdev_for_each(rdev, mddev)
7760 if ((this == NULL || rdev == this) &&
7761 rdev->raid_disk >= 0 &&
7762 !test_bit(Blocked, &rdev->flags) &&
7763 (test_bit(Faulty, &rdev->flags) ||
7764 ! test_bit(In_sync, &rdev->flags)) &&
7765 atomic_read(&rdev->nr_pending)==0) {
7766 if (mddev->pers->hot_remove_disk(
7767 mddev, rdev) == 0) {
7768 sysfs_unlink_rdev(mddev, rdev);
7769 rdev->raid_disk = -1;
7773 if (removed && mddev->kobj.sd)
7774 sysfs_notify(&mddev->kobj, NULL, "degraded");
7779 rdev_for_each(rdev, mddev) {
7780 if (rdev->raid_disk >= 0 &&
7781 !test_bit(In_sync, &rdev->flags) &&
7782 !test_bit(Faulty, &rdev->flags))
7784 if (rdev->raid_disk >= 0)
7786 if (test_bit(Faulty, &rdev->flags))
7789 ! (rdev->saved_raid_disk >= 0 &&
7790 !test_bit(Bitmap_sync, &rdev->flags)))
7793 if (rdev->saved_raid_disk < 0)
7794 rdev->recovery_offset = 0;
7796 hot_add_disk(mddev, rdev) == 0) {
7797 if (sysfs_link_rdev(mddev, rdev))
7798 /* failure here is OK */;
7800 md_new_event(mddev);
7801 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7806 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7810 static void md_start_sync(struct work_struct *ws)
7812 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7814 mddev->sync_thread = md_register_thread(md_do_sync,
7817 if (!mddev->sync_thread) {
7818 printk(KERN_ERR "%s: could not start resync"
7821 /* leave the spares where they are, it shouldn't hurt */
7822 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7823 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7824 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7825 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7826 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7827 wake_up(&resync_wait);
7828 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7830 if (mddev->sysfs_action)
7831 sysfs_notify_dirent_safe(mddev->sysfs_action);
7833 md_wakeup_thread(mddev->sync_thread);
7834 sysfs_notify_dirent_safe(mddev->sysfs_action);
7835 md_new_event(mddev);
7839 * This routine is regularly called by all per-raid-array threads to
7840 * deal with generic issues like resync and super-block update.
7841 * Raid personalities that don't have a thread (linear/raid0) do not
7842 * need this as they never do any recovery or update the superblock.
7844 * It does not do any resync itself, but rather "forks" off other threads
7845 * to do that as needed.
7846 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7847 * "->recovery" and create a thread at ->sync_thread.
7848 * When the thread finishes it sets MD_RECOVERY_DONE
7849 * and wakeups up this thread which will reap the thread and finish up.
7850 * This thread also removes any faulty devices (with nr_pending == 0).
7852 * The overall approach is:
7853 * 1/ if the superblock needs updating, update it.
7854 * 2/ If a recovery thread is running, don't do anything else.
7855 * 3/ If recovery has finished, clean up, possibly marking spares active.
7856 * 4/ If there are any faulty devices, remove them.
7857 * 5/ If array is degraded, try to add spares devices
7858 * 6/ If array has spares or is not in-sync, start a resync thread.
7860 void md_check_recovery(struct mddev *mddev)
7862 if (mddev->suspended)
7866 bitmap_daemon_work(mddev);
7868 if (signal_pending(current)) {
7869 if (mddev->pers->sync_request && !mddev->external) {
7870 printk(KERN_INFO "md: %s in immediate safe mode\n",
7872 mddev->safemode = 2;
7874 flush_signals(current);
7877 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7880 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7881 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7882 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7883 (mddev->external == 0 && mddev->safemode == 1) ||
7884 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7885 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7889 if (mddev_trylock(mddev)) {
7893 /* On a read-only array we can:
7894 * - remove failed devices
7895 * - add already-in_sync devices if the array itself
7897 * As we only add devices that are already in-sync,
7898 * we can activate the spares immediately.
7900 remove_and_add_spares(mddev, NULL);
7901 /* There is no thread, but we need to call
7902 * ->spare_active and clear saved_raid_disk
7904 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7905 md_reap_sync_thread(mddev);
7906 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7910 if (!mddev->external) {
7912 spin_lock(&mddev->lock);
7913 if (mddev->safemode &&
7914 !atomic_read(&mddev->writes_pending) &&
7916 mddev->recovery_cp == MaxSector) {
7919 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7921 if (mddev->safemode == 1)
7922 mddev->safemode = 0;
7923 spin_unlock(&mddev->lock);
7925 sysfs_notify_dirent_safe(mddev->sysfs_state);
7928 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7929 md_update_sb(mddev, 0);
7931 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7932 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7933 /* resync/recovery still happening */
7934 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7937 if (mddev->sync_thread) {
7938 md_reap_sync_thread(mddev);
7941 /* Set RUNNING before clearing NEEDED to avoid
7942 * any transients in the value of "sync_action".
7944 mddev->curr_resync_completed = 0;
7945 spin_lock(&mddev->lock);
7946 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7947 spin_unlock(&mddev->lock);
7948 /* Clear some bits that don't mean anything, but
7951 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7952 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7954 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7955 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7957 /* no recovery is running.
7958 * remove any failed drives, then
7959 * add spares if possible.
7960 * Spares are also removed and re-added, to allow
7961 * the personality to fail the re-add.
7964 if (mddev->reshape_position != MaxSector) {
7965 if (mddev->pers->check_reshape == NULL ||
7966 mddev->pers->check_reshape(mddev) != 0)
7967 /* Cannot proceed */
7969 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7970 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7971 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7972 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7973 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7974 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7975 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7976 } else if (mddev->recovery_cp < MaxSector) {
7977 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7978 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7979 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7980 /* nothing to be done ... */
7983 if (mddev->pers->sync_request) {
7985 /* We are adding a device or devices to an array
7986 * which has the bitmap stored on all devices.
7987 * So make sure all bitmap pages get written
7989 bitmap_write_all(mddev->bitmap);
7991 INIT_WORK(&mddev->del_work, md_start_sync);
7992 queue_work(md_misc_wq, &mddev->del_work);
7996 if (!mddev->sync_thread) {
7997 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7998 wake_up(&resync_wait);
7999 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8001 if (mddev->sysfs_action)
8002 sysfs_notify_dirent_safe(mddev->sysfs_action);
8005 wake_up(&mddev->sb_wait);
8006 mddev_unlock(mddev);
8009 EXPORT_SYMBOL(md_check_recovery);
8011 void md_reap_sync_thread(struct mddev *mddev)
8013 struct md_rdev *rdev;
8015 /* resync has finished, collect result */
8016 md_unregister_thread(&mddev->sync_thread);
8017 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8018 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8020 /* activate any spares */
8021 if (mddev->pers->spare_active(mddev)) {
8022 sysfs_notify(&mddev->kobj, NULL,
8024 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8027 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8028 mddev->pers->finish_reshape)
8029 mddev->pers->finish_reshape(mddev);
8031 /* If array is no-longer degraded, then any saved_raid_disk
8032 * information must be scrapped.
8034 if (!mddev->degraded)
8035 rdev_for_each(rdev, mddev)
8036 rdev->saved_raid_disk = -1;
8038 md_update_sb(mddev, 1);
8039 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8040 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8041 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8042 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8043 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8044 wake_up(&resync_wait);
8045 /* flag recovery needed just to double check */
8046 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8047 sysfs_notify_dirent_safe(mddev->sysfs_action);
8048 md_new_event(mddev);
8049 if (mddev->event_work.func)
8050 queue_work(md_misc_wq, &mddev->event_work);
8052 EXPORT_SYMBOL(md_reap_sync_thread);
8054 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8056 sysfs_notify_dirent_safe(rdev->sysfs_state);
8057 wait_event_timeout(rdev->blocked_wait,
8058 !test_bit(Blocked, &rdev->flags) &&
8059 !test_bit(BlockedBadBlocks, &rdev->flags),
8060 msecs_to_jiffies(5000));
8061 rdev_dec_pending(rdev, mddev);
8063 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8065 void md_finish_reshape(struct mddev *mddev)
8067 /* called be personality module when reshape completes. */
8068 struct md_rdev *rdev;
8070 rdev_for_each(rdev, mddev) {
8071 if (rdev->data_offset > rdev->new_data_offset)
8072 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8074 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8075 rdev->data_offset = rdev->new_data_offset;
8078 EXPORT_SYMBOL(md_finish_reshape);
8080 /* Bad block management.
8081 * We can record which blocks on each device are 'bad' and so just
8082 * fail those blocks, or that stripe, rather than the whole device.
8083 * Entries in the bad-block table are 64bits wide. This comprises:
8084 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8085 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8086 * A 'shift' can be set so that larger blocks are tracked and
8087 * consequently larger devices can be covered.
8088 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8090 * Locking of the bad-block table uses a seqlock so md_is_badblock
8091 * might need to retry if it is very unlucky.
8092 * We will sometimes want to check for bad blocks in a bi_end_io function,
8093 * so we use the write_seqlock_irq variant.
8095 * When looking for a bad block we specify a range and want to
8096 * know if any block in the range is bad. So we binary-search
8097 * to the last range that starts at-or-before the given endpoint,
8098 * (or "before the sector after the target range")
8099 * then see if it ends after the given start.
8101 * 0 if there are no known bad blocks in the range
8102 * 1 if there are known bad block which are all acknowledged
8103 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8104 * plus the start/length of the first bad section we overlap.
8106 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8107 sector_t *first_bad, int *bad_sectors)
8113 sector_t target = s + sectors;
8116 if (bb->shift > 0) {
8117 /* round the start down, and the end up */
8119 target += (1<<bb->shift) - 1;
8120 target >>= bb->shift;
8121 sectors = target - s;
8123 /* 'target' is now the first block after the bad range */
8126 seq = read_seqbegin(&bb->lock);
8131 /* Binary search between lo and hi for 'target'
8132 * i.e. for the last range that starts before 'target'
8134 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8135 * are known not to be the last range before target.
8136 * VARIANT: hi-lo is the number of possible
8137 * ranges, and decreases until it reaches 1
8139 while (hi - lo > 1) {
8140 int mid = (lo + hi) / 2;
8141 sector_t a = BB_OFFSET(p[mid]);
8143 /* This could still be the one, earlier ranges
8147 /* This and later ranges are definitely out. */
8150 /* 'lo' might be the last that started before target, but 'hi' isn't */
8152 /* need to check all range that end after 's' to see if
8153 * any are unacknowledged.
8156 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8157 if (BB_OFFSET(p[lo]) < target) {
8158 /* starts before the end, and finishes after
8159 * the start, so they must overlap
8161 if (rv != -1 && BB_ACK(p[lo]))
8165 *first_bad = BB_OFFSET(p[lo]);
8166 *bad_sectors = BB_LEN(p[lo]);
8172 if (read_seqretry(&bb->lock, seq))
8177 EXPORT_SYMBOL_GPL(md_is_badblock);
8180 * Add a range of bad blocks to the table.
8181 * This might extend the table, or might contract it
8182 * if two adjacent ranges can be merged.
8183 * We binary-search to find the 'insertion' point, then
8184 * decide how best to handle it.
8186 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8192 unsigned long flags;
8195 /* badblocks are disabled */
8199 /* round the start down, and the end up */
8200 sector_t next = s + sectors;
8202 next += (1<<bb->shift) - 1;
8207 write_seqlock_irqsave(&bb->lock, flags);
8212 /* Find the last range that starts at-or-before 's' */
8213 while (hi - lo > 1) {
8214 int mid = (lo + hi) / 2;
8215 sector_t a = BB_OFFSET(p[mid]);
8221 if (hi > lo && BB_OFFSET(p[lo]) > s)
8225 /* we found a range that might merge with the start
8228 sector_t a = BB_OFFSET(p[lo]);
8229 sector_t e = a + BB_LEN(p[lo]);
8230 int ack = BB_ACK(p[lo]);
8232 /* Yes, we can merge with a previous range */
8233 if (s == a && s + sectors >= e)
8234 /* new range covers old */
8237 ack = ack && acknowledged;
8239 if (e < s + sectors)
8241 if (e - a <= BB_MAX_LEN) {
8242 p[lo] = BB_MAKE(a, e-a, ack);
8245 /* does not all fit in one range,
8246 * make p[lo] maximal
8248 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8249 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8255 if (sectors && hi < bb->count) {
8256 /* 'hi' points to the first range that starts after 's'.
8257 * Maybe we can merge with the start of that range */
8258 sector_t a = BB_OFFSET(p[hi]);
8259 sector_t e = a + BB_LEN(p[hi]);
8260 int ack = BB_ACK(p[hi]);
8261 if (a <= s + sectors) {
8262 /* merging is possible */
8263 if (e <= s + sectors) {
8268 ack = ack && acknowledged;
8271 if (e - a <= BB_MAX_LEN) {
8272 p[hi] = BB_MAKE(a, e-a, ack);
8275 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8283 if (sectors == 0 && hi < bb->count) {
8284 /* we might be able to combine lo and hi */
8285 /* Note: 's' is at the end of 'lo' */
8286 sector_t a = BB_OFFSET(p[hi]);
8287 int lolen = BB_LEN(p[lo]);
8288 int hilen = BB_LEN(p[hi]);
8289 int newlen = lolen + hilen - (s - a);
8290 if (s >= a && newlen < BB_MAX_LEN) {
8291 /* yes, we can combine them */
8292 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8293 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8294 memmove(p + hi, p + hi + 1,
8295 (bb->count - hi - 1) * 8);
8300 /* didn't merge (it all).
8301 * Need to add a range just before 'hi' */
8302 if (bb->count >= MD_MAX_BADBLOCKS) {
8303 /* No room for more */
8307 int this_sectors = sectors;
8308 memmove(p + hi + 1, p + hi,
8309 (bb->count - hi) * 8);
8312 if (this_sectors > BB_MAX_LEN)
8313 this_sectors = BB_MAX_LEN;
8314 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8315 sectors -= this_sectors;
8322 bb->unacked_exist = 1;
8323 write_sequnlock_irqrestore(&bb->lock, flags);
8328 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8333 s += rdev->new_data_offset;
8335 s += rdev->data_offset;
8336 rv = md_set_badblocks(&rdev->badblocks,
8339 /* Make sure they get written out promptly */
8340 sysfs_notify_dirent_safe(rdev->sysfs_state);
8341 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8342 md_wakeup_thread(rdev->mddev->thread);
8346 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8349 * Remove a range of bad blocks from the table.
8350 * This may involve extending the table if we spilt a region,
8351 * but it must not fail. So if the table becomes full, we just
8352 * drop the remove request.
8354 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8358 sector_t target = s + sectors;
8361 if (bb->shift > 0) {
8362 /* When clearing we round the start up and the end down.
8363 * This should not matter as the shift should align with
8364 * the block size and no rounding should ever be needed.
8365 * However it is better the think a block is bad when it
8366 * isn't than to think a block is not bad when it is.
8368 s += (1<<bb->shift) - 1;
8370 target >>= bb->shift;
8371 sectors = target - s;
8374 write_seqlock_irq(&bb->lock);
8379 /* Find the last range that starts before 'target' */
8380 while (hi - lo > 1) {
8381 int mid = (lo + hi) / 2;
8382 sector_t a = BB_OFFSET(p[mid]);
8389 /* p[lo] is the last range that could overlap the
8390 * current range. Earlier ranges could also overlap,
8391 * but only this one can overlap the end of the range.
8393 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8394 /* Partial overlap, leave the tail of this range */
8395 int ack = BB_ACK(p[lo]);
8396 sector_t a = BB_OFFSET(p[lo]);
8397 sector_t end = a + BB_LEN(p[lo]);
8400 /* we need to split this range */
8401 if (bb->count >= MD_MAX_BADBLOCKS) {
8405 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8407 p[lo] = BB_MAKE(a, s-a, ack);
8410 p[lo] = BB_MAKE(target, end - target, ack);
8411 /* there is no longer an overlap */
8416 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8417 /* This range does overlap */
8418 if (BB_OFFSET(p[lo]) < s) {
8419 /* Keep the early parts of this range. */
8420 int ack = BB_ACK(p[lo]);
8421 sector_t start = BB_OFFSET(p[lo]);
8422 p[lo] = BB_MAKE(start, s - start, ack);
8423 /* now low doesn't overlap, so.. */
8428 /* 'lo' is strictly before, 'hi' is strictly after,
8429 * anything between needs to be discarded
8432 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8433 bb->count -= (hi - lo - 1);
8439 write_sequnlock_irq(&bb->lock);
8443 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8447 s += rdev->new_data_offset;
8449 s += rdev->data_offset;
8450 return md_clear_badblocks(&rdev->badblocks,
8453 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8456 * Acknowledge all bad blocks in a list.
8457 * This only succeeds if ->changed is clear. It is used by
8458 * in-kernel metadata updates
8460 void md_ack_all_badblocks(struct badblocks *bb)
8462 if (bb->page == NULL || bb->changed)
8463 /* no point even trying */
8465 write_seqlock_irq(&bb->lock);
8467 if (bb->changed == 0 && bb->unacked_exist) {
8470 for (i = 0; i < bb->count ; i++) {
8471 if (!BB_ACK(p[i])) {
8472 sector_t start = BB_OFFSET(p[i]);
8473 int len = BB_LEN(p[i]);
8474 p[i] = BB_MAKE(start, len, 1);
8477 bb->unacked_exist = 0;
8479 write_sequnlock_irq(&bb->lock);
8481 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8483 /* sysfs access to bad-blocks list.
8484 * We present two files.
8485 * 'bad-blocks' lists sector numbers and lengths of ranges that
8486 * are recorded as bad. The list is truncated to fit within
8487 * the one-page limit of sysfs.
8488 * Writing "sector length" to this file adds an acknowledged
8490 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8491 * been acknowledged. Writing to this file adds bad blocks
8492 * without acknowledging them. This is largely for testing.
8496 badblocks_show(struct badblocks *bb, char *page, int unack)
8507 seq = read_seqbegin(&bb->lock);
8512 while (len < PAGE_SIZE && i < bb->count) {
8513 sector_t s = BB_OFFSET(p[i]);
8514 unsigned int length = BB_LEN(p[i]);
8515 int ack = BB_ACK(p[i]);
8521 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8522 (unsigned long long)s << bb->shift,
8523 length << bb->shift);
8525 if (unack && len == 0)
8526 bb->unacked_exist = 0;
8528 if (read_seqretry(&bb->lock, seq))
8537 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8539 unsigned long long sector;
8543 /* Allow clearing via sysfs *only* for testing/debugging.
8544 * Normally only a successful write may clear a badblock
8547 if (page[0] == '-') {
8551 #endif /* DO_DEBUG */
8553 switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) {
8555 if (newline != '\n')
8567 md_clear_badblocks(bb, sector, length);
8570 #endif /* DO_DEBUG */
8571 if (md_set_badblocks(bb, sector, length, !unack))
8577 static int md_notify_reboot(struct notifier_block *this,
8578 unsigned long code, void *x)
8580 struct list_head *tmp;
8581 struct mddev *mddev;
8584 for_each_mddev(mddev, tmp) {
8585 if (mddev_trylock(mddev)) {
8587 __md_stop_writes(mddev);
8588 if (mddev->persistent)
8589 mddev->safemode = 2;
8590 mddev_unlock(mddev);
8595 * certain more exotic SCSI devices are known to be
8596 * volatile wrt too early system reboots. While the
8597 * right place to handle this issue is the given
8598 * driver, we do want to have a safe RAID driver ...
8606 static struct notifier_block md_notifier = {
8607 .notifier_call = md_notify_reboot,
8609 .priority = INT_MAX, /* before any real devices */
8612 static void md_geninit(void)
8614 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8616 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8619 static int __init md_init(void)
8623 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8627 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8631 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8634 if ((ret = register_blkdev(0, "mdp")) < 0)
8638 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8639 md_probe, NULL, NULL);
8640 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8641 md_probe, NULL, NULL);
8643 register_reboot_notifier(&md_notifier);
8644 raid_table_header = register_sysctl_table(raid_root_table);
8650 unregister_blkdev(MD_MAJOR, "md");
8652 destroy_workqueue(md_misc_wq);
8654 destroy_workqueue(md_wq);
8662 * Searches all registered partitions for autorun RAID arrays
8666 static LIST_HEAD(all_detected_devices);
8667 struct detected_devices_node {
8668 struct list_head list;
8672 void md_autodetect_dev(dev_t dev)
8674 struct detected_devices_node *node_detected_dev;
8676 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8677 if (node_detected_dev) {
8678 node_detected_dev->dev = dev;
8679 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8681 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8682 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8686 static void autostart_arrays(int part)
8688 struct md_rdev *rdev;
8689 struct detected_devices_node *node_detected_dev;
8691 int i_scanned, i_passed;
8696 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8698 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8700 node_detected_dev = list_entry(all_detected_devices.next,
8701 struct detected_devices_node, list);
8702 list_del(&node_detected_dev->list);
8703 dev = node_detected_dev->dev;
8704 kfree(node_detected_dev);
8705 rdev = md_import_device(dev,0, 90);
8709 if (test_bit(Faulty, &rdev->flags))
8712 set_bit(AutoDetected, &rdev->flags);
8713 list_add(&rdev->same_set, &pending_raid_disks);
8717 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8718 i_scanned, i_passed);
8720 autorun_devices(part);
8723 #endif /* !MODULE */
8725 static __exit void md_exit(void)
8727 struct mddev *mddev;
8728 struct list_head *tmp;
8731 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8732 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8734 unregister_blkdev(MD_MAJOR,"md");
8735 unregister_blkdev(mdp_major, "mdp");
8736 unregister_reboot_notifier(&md_notifier);
8737 unregister_sysctl_table(raid_table_header);
8739 /* We cannot unload the modules while some process is
8740 * waiting for us in select() or poll() - wake them up
8743 while (waitqueue_active(&md_event_waiters)) {
8744 /* not safe to leave yet */
8745 wake_up(&md_event_waiters);
8749 remove_proc_entry("mdstat", NULL);
8751 for_each_mddev(mddev, tmp) {
8752 export_array(mddev);
8753 mddev->hold_active = 0;
8755 destroy_workqueue(md_misc_wq);
8756 destroy_workqueue(md_wq);
8759 subsys_initcall(md_init);
8760 module_exit(md_exit)
8762 static int get_ro(char *buffer, struct kernel_param *kp)
8764 return sprintf(buffer, "%d", start_readonly);
8766 static int set_ro(const char *val, struct kernel_param *kp)
8769 int num = simple_strtoul(val, &e, 10);
8770 if (*val && (*e == '\0' || *e == '\n')) {
8771 start_readonly = num;
8777 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8778 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8779 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8781 MODULE_LICENSE("GPL");
8782 MODULE_DESCRIPTION("MD RAID framework");
8784 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);