2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/hdreg.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/kthread.h>
25 #include <trace/events/block.h>
27 #define DM_MSG_PREFIX "core"
31 * ratelimit state to be used in DMXXX_LIMIT().
33 DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
34 DEFAULT_RATELIMIT_INTERVAL,
35 DEFAULT_RATELIMIT_BURST);
36 EXPORT_SYMBOL(dm_ratelimit_state);
40 * Cookies are numeric values sent with CHANGE and REMOVE
41 * uevents while resuming, removing or renaming the device.
43 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
44 #define DM_COOKIE_LENGTH 24
46 static const char *_name = DM_NAME;
48 static unsigned int major = 0;
49 static unsigned int _major = 0;
51 static DEFINE_IDR(_minor_idr);
53 static DEFINE_SPINLOCK(_minor_lock);
55 static void do_deferred_remove(struct work_struct *w);
57 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
59 static struct workqueue_struct *deferred_remove_workqueue;
63 * One of these is allocated per bio.
66 struct mapped_device *md;
70 unsigned long start_time;
71 spinlock_t endio_lock;
72 struct dm_stats_aux stats_aux;
76 * For request-based dm.
77 * One of these is allocated per request.
79 struct dm_rq_target_io {
80 struct mapped_device *md;
82 struct request *orig, *clone;
83 struct kthread_work work;
89 * For request-based dm - the bio clones we allocate are embedded in these
92 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
93 * the bioset is created - this means the bio has to come at the end of the
96 struct dm_rq_clone_bio_info {
98 struct dm_rq_target_io *tio;
102 union map_info *dm_get_rq_mapinfo(struct request *rq)
104 if (rq && rq->end_io_data)
105 return &((struct dm_rq_target_io *)rq->end_io_data)->info;
108 EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
110 #define MINOR_ALLOCED ((void *)-1)
113 * Bits for the md->flags field.
115 #define DMF_BLOCK_IO_FOR_SUSPEND 0
116 #define DMF_SUSPENDED 1
118 #define DMF_FREEING 3
119 #define DMF_DELETING 4
120 #define DMF_NOFLUSH_SUSPENDING 5
121 #define DMF_MERGE_IS_OPTIONAL 6
122 #define DMF_DEFERRED_REMOVE 7
123 #define DMF_SUSPENDED_INTERNALLY 8
126 * A dummy definition to make RCU happy.
127 * struct dm_table should never be dereferenced in this file.
134 * Work processed by per-device workqueue.
136 struct mapped_device {
137 struct srcu_struct io_barrier;
138 struct mutex suspend_lock;
143 * The current mapping.
144 * Use dm_get_live_table{_fast} or take suspend_lock for
147 struct dm_table __rcu *map;
149 struct list_head table_devices;
150 struct mutex table_devices_lock;
154 struct request_queue *queue;
156 /* Protect queue and type against concurrent access. */
157 struct mutex type_lock;
159 struct target_type *immutable_target_type;
161 struct gendisk *disk;
167 * A list of ios that arrived while we were suspended.
170 wait_queue_head_t wait;
171 struct work_struct work;
172 struct bio_list deferred;
173 spinlock_t deferred_lock;
176 * Processing queue (flush)
178 struct workqueue_struct *wq;
181 * io objects are allocated from here.
192 wait_queue_head_t eventq;
194 struct list_head uevent_list;
195 spinlock_t uevent_lock; /* Protect access to uevent_list */
198 * freeze/thaw support require holding onto a super block
200 struct super_block *frozen_sb;
201 struct block_device *bdev;
203 /* forced geometry settings */
204 struct hd_geometry geometry;
206 /* kobject and completion */
207 struct dm_kobject_holder kobj_holder;
209 /* zero-length flush that will be cloned and submitted to targets */
210 struct bio flush_bio;
212 /* the number of internal suspends */
213 unsigned internal_suspend_count;
215 struct dm_stats stats;
217 struct kthread_worker kworker;
218 struct task_struct *kworker_task;
222 * For mempools pre-allocation at the table loading time.
224 struct dm_md_mempools {
230 struct table_device {
231 struct list_head list;
233 struct dm_dev dm_dev;
236 #define RESERVED_BIO_BASED_IOS 16
237 #define RESERVED_REQUEST_BASED_IOS 256
238 #define RESERVED_MAX_IOS 1024
239 static struct kmem_cache *_io_cache;
240 static struct kmem_cache *_rq_tio_cache;
241 static struct kmem_cache *_rq_cache;
244 * Bio-based DM's mempools' reserved IOs set by the user.
246 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
249 * Request-based DM's mempools' reserved IOs set by the user.
251 static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
253 static unsigned __dm_get_reserved_ios(unsigned *reserved_ios,
254 unsigned def, unsigned max)
256 unsigned ios = ACCESS_ONCE(*reserved_ios);
257 unsigned modified_ios = 0;
265 (void)cmpxchg(reserved_ios, ios, modified_ios);
272 unsigned dm_get_reserved_bio_based_ios(void)
274 return __dm_get_reserved_ios(&reserved_bio_based_ios,
275 RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
277 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
279 unsigned dm_get_reserved_rq_based_ios(void)
281 return __dm_get_reserved_ios(&reserved_rq_based_ios,
282 RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
284 EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
286 static int __init local_init(void)
290 /* allocate a slab for the dm_ios */
291 _io_cache = KMEM_CACHE(dm_io, 0);
295 _rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
297 goto out_free_io_cache;
299 _rq_cache = kmem_cache_create("dm_clone_request", sizeof(struct request),
300 __alignof__(struct request), 0, NULL);
302 goto out_free_rq_tio_cache;
304 r = dm_uevent_init();
306 goto out_free_rq_cache;
308 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
309 if (!deferred_remove_workqueue) {
311 goto out_uevent_exit;
315 r = register_blkdev(_major, _name);
317 goto out_free_workqueue;
325 destroy_workqueue(deferred_remove_workqueue);
329 kmem_cache_destroy(_rq_cache);
330 out_free_rq_tio_cache:
331 kmem_cache_destroy(_rq_tio_cache);
333 kmem_cache_destroy(_io_cache);
338 static void local_exit(void)
340 flush_scheduled_work();
341 destroy_workqueue(deferred_remove_workqueue);
343 kmem_cache_destroy(_rq_cache);
344 kmem_cache_destroy(_rq_tio_cache);
345 kmem_cache_destroy(_io_cache);
346 unregister_blkdev(_major, _name);
351 DMINFO("cleaned up");
354 static int (*_inits[])(void) __initdata = {
365 static void (*_exits[])(void) = {
376 static int __init dm_init(void)
378 const int count = ARRAY_SIZE(_inits);
382 for (i = 0; i < count; i++) {
397 static void __exit dm_exit(void)
399 int i = ARRAY_SIZE(_exits);
405 * Should be empty by this point.
407 idr_destroy(&_minor_idr);
411 * Block device functions
413 int dm_deleting_md(struct mapped_device *md)
415 return test_bit(DMF_DELETING, &md->flags);
418 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
420 struct mapped_device *md;
422 spin_lock(&_minor_lock);
424 md = bdev->bd_disk->private_data;
428 if (test_bit(DMF_FREEING, &md->flags) ||
429 dm_deleting_md(md)) {
435 atomic_inc(&md->open_count);
437 spin_unlock(&_minor_lock);
439 return md ? 0 : -ENXIO;
442 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
444 struct mapped_device *md;
446 spin_lock(&_minor_lock);
448 md = disk->private_data;
452 if (atomic_dec_and_test(&md->open_count) &&
453 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
454 queue_work(deferred_remove_workqueue, &deferred_remove_work);
458 spin_unlock(&_minor_lock);
461 int dm_open_count(struct mapped_device *md)
463 return atomic_read(&md->open_count);
467 * Guarantees nothing is using the device before it's deleted.
469 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
473 spin_lock(&_minor_lock);
475 if (dm_open_count(md)) {
478 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
479 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
482 set_bit(DMF_DELETING, &md->flags);
484 spin_unlock(&_minor_lock);
489 int dm_cancel_deferred_remove(struct mapped_device *md)
493 spin_lock(&_minor_lock);
495 if (test_bit(DMF_DELETING, &md->flags))
498 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
500 spin_unlock(&_minor_lock);
505 static void do_deferred_remove(struct work_struct *w)
507 dm_deferred_remove();
510 sector_t dm_get_size(struct mapped_device *md)
512 return get_capacity(md->disk);
515 struct request_queue *dm_get_md_queue(struct mapped_device *md)
520 struct dm_stats *dm_get_stats(struct mapped_device *md)
525 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
527 struct mapped_device *md = bdev->bd_disk->private_data;
529 return dm_get_geometry(md, geo);
532 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
533 unsigned int cmd, unsigned long arg)
535 struct mapped_device *md = bdev->bd_disk->private_data;
537 struct dm_table *map;
538 struct dm_target *tgt;
542 map = dm_get_live_table(md, &srcu_idx);
544 if (!map || !dm_table_get_size(map))
547 /* We only support devices that have a single target */
548 if (dm_table_get_num_targets(map) != 1)
551 tgt = dm_table_get_target(map, 0);
552 if (!tgt->type->ioctl)
555 if (dm_suspended_md(md)) {
560 r = tgt->type->ioctl(tgt, cmd, arg);
563 dm_put_live_table(md, srcu_idx);
565 if (r == -ENOTCONN) {
573 static struct dm_io *alloc_io(struct mapped_device *md)
575 return mempool_alloc(md->io_pool, GFP_NOIO);
578 static void free_io(struct mapped_device *md, struct dm_io *io)
580 mempool_free(io, md->io_pool);
583 static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
585 bio_put(&tio->clone);
588 static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
591 return mempool_alloc(md->io_pool, gfp_mask);
594 static void free_rq_tio(struct dm_rq_target_io *tio)
596 mempool_free(tio, tio->md->io_pool);
599 static struct request *alloc_clone_request(struct mapped_device *md,
602 return mempool_alloc(md->rq_pool, gfp_mask);
605 static void free_clone_request(struct mapped_device *md, struct request *rq)
607 mempool_free(rq, md->rq_pool);
610 static int md_in_flight(struct mapped_device *md)
612 return atomic_read(&md->pending[READ]) +
613 atomic_read(&md->pending[WRITE]);
616 static void start_io_acct(struct dm_io *io)
618 struct mapped_device *md = io->md;
619 struct bio *bio = io->bio;
621 int rw = bio_data_dir(bio);
623 io->start_time = jiffies;
625 cpu = part_stat_lock();
626 part_round_stats(cpu, &dm_disk(md)->part0);
628 atomic_set(&dm_disk(md)->part0.in_flight[rw],
629 atomic_inc_return(&md->pending[rw]));
631 if (unlikely(dm_stats_used(&md->stats)))
632 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
633 bio_sectors(bio), false, 0, &io->stats_aux);
636 static void end_io_acct(struct dm_io *io)
638 struct mapped_device *md = io->md;
639 struct bio *bio = io->bio;
640 unsigned long duration = jiffies - io->start_time;
642 int rw = bio_data_dir(bio);
644 generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
646 if (unlikely(dm_stats_used(&md->stats)))
647 dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
648 bio_sectors(bio), true, duration, &io->stats_aux);
651 * After this is decremented the bio must not be touched if it is
654 pending = atomic_dec_return(&md->pending[rw]);
655 atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
656 pending += atomic_read(&md->pending[rw^0x1]);
658 /* nudge anyone waiting on suspend queue */
664 * Add the bio to the list of deferred io.
666 static void queue_io(struct mapped_device *md, struct bio *bio)
670 spin_lock_irqsave(&md->deferred_lock, flags);
671 bio_list_add(&md->deferred, bio);
672 spin_unlock_irqrestore(&md->deferred_lock, flags);
673 queue_work(md->wq, &md->work);
677 * Everyone (including functions in this file), should use this
678 * function to access the md->map field, and make sure they call
679 * dm_put_live_table() when finished.
681 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
683 *srcu_idx = srcu_read_lock(&md->io_barrier);
685 return srcu_dereference(md->map, &md->io_barrier);
688 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
690 srcu_read_unlock(&md->io_barrier, srcu_idx);
693 void dm_sync_table(struct mapped_device *md)
695 synchronize_srcu(&md->io_barrier);
696 synchronize_rcu_expedited();
700 * A fast alternative to dm_get_live_table/dm_put_live_table.
701 * The caller must not block between these two functions.
703 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
706 return rcu_dereference(md->map);
709 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
715 * Open a table device so we can use it as a map destination.
717 static int open_table_device(struct table_device *td, dev_t dev,
718 struct mapped_device *md)
720 static char *_claim_ptr = "I belong to device-mapper";
721 struct block_device *bdev;
725 BUG_ON(td->dm_dev.bdev);
727 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
729 return PTR_ERR(bdev);
731 r = bd_link_disk_holder(bdev, dm_disk(md));
733 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
737 td->dm_dev.bdev = bdev;
742 * Close a table device that we've been using.
744 static void close_table_device(struct table_device *td, struct mapped_device *md)
746 if (!td->dm_dev.bdev)
749 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
750 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
751 td->dm_dev.bdev = NULL;
754 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
756 struct table_device *td;
758 list_for_each_entry(td, l, list)
759 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
765 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
766 struct dm_dev **result) {
768 struct table_device *td;
770 mutex_lock(&md->table_devices_lock);
771 td = find_table_device(&md->table_devices, dev, mode);
773 td = kmalloc(sizeof(*td), GFP_KERNEL);
775 mutex_unlock(&md->table_devices_lock);
779 td->dm_dev.mode = mode;
780 td->dm_dev.bdev = NULL;
782 if ((r = open_table_device(td, dev, md))) {
783 mutex_unlock(&md->table_devices_lock);
788 format_dev_t(td->dm_dev.name, dev);
790 atomic_set(&td->count, 0);
791 list_add(&td->list, &md->table_devices);
793 atomic_inc(&td->count);
794 mutex_unlock(&md->table_devices_lock);
796 *result = &td->dm_dev;
799 EXPORT_SYMBOL_GPL(dm_get_table_device);
801 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
803 struct table_device *td = container_of(d, struct table_device, dm_dev);
805 mutex_lock(&md->table_devices_lock);
806 if (atomic_dec_and_test(&td->count)) {
807 close_table_device(td, md);
811 mutex_unlock(&md->table_devices_lock);
813 EXPORT_SYMBOL(dm_put_table_device);
815 static void free_table_devices(struct list_head *devices)
817 struct list_head *tmp, *next;
819 list_for_each_safe(tmp, next, devices) {
820 struct table_device *td = list_entry(tmp, struct table_device, list);
822 DMWARN("dm_destroy: %s still exists with %d references",
823 td->dm_dev.name, atomic_read(&td->count));
829 * Get the geometry associated with a dm device
831 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
839 * Set the geometry of a device.
841 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
843 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
845 if (geo->start > sz) {
846 DMWARN("Start sector is beyond the geometry limits.");
855 /*-----------------------------------------------------------------
857 * A more elegant soln is in the works that uses the queue
858 * merge fn, unfortunately there are a couple of changes to
859 * the block layer that I want to make for this. So in the
860 * interests of getting something for people to use I give
861 * you this clearly demarcated crap.
862 *---------------------------------------------------------------*/
864 static int __noflush_suspending(struct mapped_device *md)
866 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
870 * Decrements the number of outstanding ios that a bio has been
871 * cloned into, completing the original io if necc.
873 static void dec_pending(struct dm_io *io, int error)
878 struct mapped_device *md = io->md;
880 /* Push-back supersedes any I/O errors */
881 if (unlikely(error)) {
882 spin_lock_irqsave(&io->endio_lock, flags);
883 if (!(io->error > 0 && __noflush_suspending(md)))
885 spin_unlock_irqrestore(&io->endio_lock, flags);
888 if (atomic_dec_and_test(&io->io_count)) {
889 if (io->error == DM_ENDIO_REQUEUE) {
891 * Target requested pushing back the I/O.
893 spin_lock_irqsave(&md->deferred_lock, flags);
894 if (__noflush_suspending(md))
895 bio_list_add_head(&md->deferred, io->bio);
897 /* noflush suspend was interrupted. */
899 spin_unlock_irqrestore(&md->deferred_lock, flags);
902 io_error = io->error;
907 if (io_error == DM_ENDIO_REQUEUE)
910 if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
912 * Preflush done for flush with data, reissue
915 bio->bi_rw &= ~REQ_FLUSH;
918 /* done with normal IO or empty flush */
919 trace_block_bio_complete(md->queue, bio, io_error);
920 bio_endio(bio, io_error);
925 static void disable_write_same(struct mapped_device *md)
927 struct queue_limits *limits = dm_get_queue_limits(md);
929 /* device doesn't really support WRITE SAME, disable it */
930 limits->max_write_same_sectors = 0;
933 static void clone_endio(struct bio *bio, int error)
936 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
937 struct dm_io *io = tio->io;
938 struct mapped_device *md = tio->io->md;
939 dm_endio_fn endio = tio->ti->type->end_io;
941 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
945 r = endio(tio->ti, bio, error);
946 if (r < 0 || r == DM_ENDIO_REQUEUE)
948 * error and requeue request are handled
952 else if (r == DM_ENDIO_INCOMPLETE)
953 /* The target will handle the io */
956 DMWARN("unimplemented target endio return value: %d", r);
961 if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
962 !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
963 disable_write_same(md);
966 dec_pending(io, error);
970 * Partial completion handling for request-based dm
972 static void end_clone_bio(struct bio *clone, int error)
974 struct dm_rq_clone_bio_info *info =
975 container_of(clone, struct dm_rq_clone_bio_info, clone);
976 struct dm_rq_target_io *tio = info->tio;
977 struct bio *bio = info->orig;
978 unsigned int nr_bytes = info->orig->bi_iter.bi_size;
984 * An error has already been detected on the request.
985 * Once error occurred, just let clone->end_io() handle
991 * Don't notice the error to the upper layer yet.
992 * The error handling decision is made by the target driver,
993 * when the request is completed.
1000 * I/O for the bio successfully completed.
1001 * Notice the data completion to the upper layer.
1005 * bios are processed from the head of the list.
1006 * So the completing bio should always be rq->bio.
1007 * If it's not, something wrong is happening.
1009 if (tio->orig->bio != bio)
1010 DMERR("bio completion is going in the middle of the request");
1013 * Update the original request.
1014 * Do not use blk_end_request() here, because it may complete
1015 * the original request before the clone, and break the ordering.
1017 blk_update_request(tio->orig, 0, nr_bytes);
1021 * Don't touch any member of the md after calling this function because
1022 * the md may be freed in dm_put() at the end of this function.
1023 * Or do dm_get() before calling this function and dm_put() later.
1025 static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1027 atomic_dec(&md->pending[rw]);
1029 /* nudge anyone waiting on suspend queue */
1030 if (!md_in_flight(md))
1034 * Run this off this callpath, as drivers could invoke end_io while
1035 * inside their request_fn (and holding the queue lock). Calling
1036 * back into ->request_fn() could deadlock attempting to grab the
1040 blk_run_queue_async(md->queue);
1043 * dm_put() must be at the end of this function. See the comment above
1048 static void free_rq_clone(struct request *clone)
1050 struct dm_rq_target_io *tio = clone->end_io_data;
1052 blk_rq_unprep_clone(clone);
1053 if (clone->q && clone->q->mq_ops)
1054 tio->ti->type->release_clone_rq(clone);
1056 free_clone_request(tio->md, clone);
1061 * Complete the clone and the original request.
1062 * Must be called without clone's queue lock held,
1063 * see end_clone_request() for more details.
1065 static void dm_end_request(struct request *clone, int error)
1067 int rw = rq_data_dir(clone);
1068 struct dm_rq_target_io *tio = clone->end_io_data;
1069 struct mapped_device *md = tio->md;
1070 struct request *rq = tio->orig;
1072 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1073 rq->errors = clone->errors;
1074 rq->resid_len = clone->resid_len;
1078 * We are using the sense buffer of the original
1080 * So setting the length of the sense data is enough.
1082 rq->sense_len = clone->sense_len;
1085 free_rq_clone(clone);
1086 blk_end_request_all(rq, error);
1087 rq_completed(md, rw, true);
1090 static void dm_unprep_request(struct request *rq)
1092 struct dm_rq_target_io *tio = rq->special;
1093 struct request *clone = tio->clone;
1096 rq->cmd_flags &= ~REQ_DONTPREP;
1099 free_rq_clone(clone);
1103 * Requeue the original request of a clone.
1105 static void dm_requeue_unmapped_original_request(struct mapped_device *md,
1108 int rw = rq_data_dir(rq);
1109 struct request_queue *q = rq->q;
1110 unsigned long flags;
1112 dm_unprep_request(rq);
1114 spin_lock_irqsave(q->queue_lock, flags);
1115 blk_requeue_request(q, rq);
1116 spin_unlock_irqrestore(q->queue_lock, flags);
1118 rq_completed(md, rw, false);
1121 static void dm_requeue_unmapped_request(struct request *clone)
1123 struct dm_rq_target_io *tio = clone->end_io_data;
1125 dm_requeue_unmapped_original_request(tio->md, tio->orig);
1128 static void __stop_queue(struct request_queue *q)
1133 static void stop_queue(struct request_queue *q)
1135 unsigned long flags;
1137 spin_lock_irqsave(q->queue_lock, flags);
1139 spin_unlock_irqrestore(q->queue_lock, flags);
1142 static void __start_queue(struct request_queue *q)
1144 if (blk_queue_stopped(q))
1148 static void start_queue(struct request_queue *q)
1150 unsigned long flags;
1152 spin_lock_irqsave(q->queue_lock, flags);
1154 spin_unlock_irqrestore(q->queue_lock, flags);
1157 static void dm_done(struct request *clone, int error, bool mapped)
1160 struct dm_rq_target_io *tio = clone->end_io_data;
1161 dm_request_endio_fn rq_end_io = NULL;
1164 rq_end_io = tio->ti->type->rq_end_io;
1166 if (mapped && rq_end_io)
1167 r = rq_end_io(tio->ti, clone, error, &tio->info);
1170 if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1171 !clone->q->limits.max_write_same_sectors))
1172 disable_write_same(tio->md);
1175 /* The target wants to complete the I/O */
1176 dm_end_request(clone, r);
1177 else if (r == DM_ENDIO_INCOMPLETE)
1178 /* The target will handle the I/O */
1180 else if (r == DM_ENDIO_REQUEUE)
1181 /* The target wants to requeue the I/O */
1182 dm_requeue_unmapped_request(clone);
1184 DMWARN("unimplemented target endio return value: %d", r);
1190 * Request completion handler for request-based dm
1192 static void dm_softirq_done(struct request *rq)
1195 struct dm_rq_target_io *tio = rq->special;
1196 struct request *clone = tio->clone;
1199 blk_end_request_all(rq, tio->error);
1200 rq_completed(tio->md, rq_data_dir(rq), false);
1205 if (rq->cmd_flags & REQ_FAILED)
1208 dm_done(clone, tio->error, mapped);
1212 * Complete the clone and the original request with the error status
1213 * through softirq context.
1215 static void dm_complete_request(struct request *rq, int error)
1217 struct dm_rq_target_io *tio = rq->special;
1220 blk_complete_request(rq);
1224 * Complete the not-mapped clone and the original request with the error status
1225 * through softirq context.
1226 * Target's rq_end_io() function isn't called.
1227 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1229 static void dm_kill_unmapped_request(struct request *rq, int error)
1231 rq->cmd_flags |= REQ_FAILED;
1232 dm_complete_request(rq, error);
1236 * Called with the clone's queue lock held
1238 static void end_clone_request(struct request *clone, int error)
1240 struct dm_rq_target_io *tio = clone->end_io_data;
1242 if (!clone->q->mq_ops) {
1244 * For just cleaning up the information of the queue in which
1245 * the clone was dispatched.
1246 * The clone is *NOT* freed actually here because it is alloced
1247 * from dm own mempool (REQ_ALLOCED isn't set).
1249 __blk_put_request(clone->q, clone);
1253 * Actual request completion is done in a softirq context which doesn't
1254 * hold the clone's queue lock. Otherwise, deadlock could occur because:
1255 * - another request may be submitted by the upper level driver
1256 * of the stacking during the completion
1257 * - the submission which requires queue lock may be done
1258 * against this clone's queue
1260 dm_complete_request(tio->orig, error);
1264 * Return maximum size of I/O possible at the supplied sector up to the current
1267 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1269 sector_t target_offset = dm_target_offset(ti, sector);
1271 return ti->len - target_offset;
1274 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1276 sector_t len = max_io_len_target_boundary(sector, ti);
1277 sector_t offset, max_len;
1280 * Does the target need to split even further?
1282 if (ti->max_io_len) {
1283 offset = dm_target_offset(ti, sector);
1284 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1285 max_len = sector_div(offset, ti->max_io_len);
1287 max_len = offset & (ti->max_io_len - 1);
1288 max_len = ti->max_io_len - max_len;
1297 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1299 if (len > UINT_MAX) {
1300 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1301 (unsigned long long)len, UINT_MAX);
1302 ti->error = "Maximum size of target IO is too large";
1306 ti->max_io_len = (uint32_t) len;
1310 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1313 * A target may call dm_accept_partial_bio only from the map routine. It is
1314 * allowed for all bio types except REQ_FLUSH.
1316 * dm_accept_partial_bio informs the dm that the target only wants to process
1317 * additional n_sectors sectors of the bio and the rest of the data should be
1318 * sent in a next bio.
1320 * A diagram that explains the arithmetics:
1321 * +--------------------+---------------+-------+
1323 * +--------------------+---------------+-------+
1325 * <-------------- *tio->len_ptr --------------->
1326 * <------- bi_size ------->
1329 * Region 1 was already iterated over with bio_advance or similar function.
1330 * (it may be empty if the target doesn't use bio_advance)
1331 * Region 2 is the remaining bio size that the target wants to process.
1332 * (it may be empty if region 1 is non-empty, although there is no reason
1334 * The target requires that region 3 is to be sent in the next bio.
1336 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1337 * the partially processed part (the sum of regions 1+2) must be the same for all
1338 * copies of the bio.
1340 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1342 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1343 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1344 BUG_ON(bio->bi_rw & REQ_FLUSH);
1345 BUG_ON(bi_size > *tio->len_ptr);
1346 BUG_ON(n_sectors > bi_size);
1347 *tio->len_ptr -= bi_size - n_sectors;
1348 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1350 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1352 static void __map_bio(struct dm_target_io *tio)
1356 struct mapped_device *md;
1357 struct bio *clone = &tio->clone;
1358 struct dm_target *ti = tio->ti;
1360 clone->bi_end_io = clone_endio;
1363 * Map the clone. If r == 0 we don't need to do
1364 * anything, the target has assumed ownership of
1367 atomic_inc(&tio->io->io_count);
1368 sector = clone->bi_iter.bi_sector;
1369 r = ti->type->map(ti, clone);
1370 if (r == DM_MAPIO_REMAPPED) {
1371 /* the bio has been remapped so dispatch it */
1373 trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1374 tio->io->bio->bi_bdev->bd_dev, sector);
1376 generic_make_request(clone);
1377 } else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1378 /* error the io and bail out, or requeue it if needed */
1380 dec_pending(tio->io, r);
1383 DMWARN("unimplemented target map return value: %d", r);
1389 struct mapped_device *md;
1390 struct dm_table *map;
1394 unsigned sector_count;
1397 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1399 bio->bi_iter.bi_sector = sector;
1400 bio->bi_iter.bi_size = to_bytes(len);
1404 * Creates a bio that consists of range of complete bvecs.
1406 static void clone_bio(struct dm_target_io *tio, struct bio *bio,
1407 sector_t sector, unsigned len)
1409 struct bio *clone = &tio->clone;
1411 __bio_clone_fast(clone, bio);
1413 if (bio_integrity(bio))
1414 bio_integrity_clone(clone, bio, GFP_NOIO);
1416 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1417 clone->bi_iter.bi_size = to_bytes(len);
1419 if (bio_integrity(bio))
1420 bio_integrity_trim(clone, 0, len);
1423 static struct dm_target_io *alloc_tio(struct clone_info *ci,
1424 struct dm_target *ti,
1425 unsigned target_bio_nr)
1427 struct dm_target_io *tio;
1430 clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1431 tio = container_of(clone, struct dm_target_io, clone);
1435 tio->target_bio_nr = target_bio_nr;
1440 static void __clone_and_map_simple_bio(struct clone_info *ci,
1441 struct dm_target *ti,
1442 unsigned target_bio_nr, unsigned *len)
1444 struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1445 struct bio *clone = &tio->clone;
1449 __bio_clone_fast(clone, ci->bio);
1451 bio_setup_sector(clone, ci->sector, *len);
1456 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1457 unsigned num_bios, unsigned *len)
1459 unsigned target_bio_nr;
1461 for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1462 __clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1465 static int __send_empty_flush(struct clone_info *ci)
1467 unsigned target_nr = 0;
1468 struct dm_target *ti;
1470 BUG_ON(bio_has_data(ci->bio));
1471 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1472 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1477 static void __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1478 sector_t sector, unsigned *len)
1480 struct bio *bio = ci->bio;
1481 struct dm_target_io *tio;
1482 unsigned target_bio_nr;
1483 unsigned num_target_bios = 1;
1486 * Does the target want to receive duplicate copies of the bio?
1488 if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1489 num_target_bios = ti->num_write_bios(ti, bio);
1491 for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1492 tio = alloc_tio(ci, ti, target_bio_nr);
1494 clone_bio(tio, bio, sector, *len);
1499 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1501 static unsigned get_num_discard_bios(struct dm_target *ti)
1503 return ti->num_discard_bios;
1506 static unsigned get_num_write_same_bios(struct dm_target *ti)
1508 return ti->num_write_same_bios;
1511 typedef bool (*is_split_required_fn)(struct dm_target *ti);
1513 static bool is_split_required_for_discard(struct dm_target *ti)
1515 return ti->split_discard_bios;
1518 static int __send_changing_extent_only(struct clone_info *ci,
1519 get_num_bios_fn get_num_bios,
1520 is_split_required_fn is_split_required)
1522 struct dm_target *ti;
1527 ti = dm_table_find_target(ci->map, ci->sector);
1528 if (!dm_target_is_valid(ti))
1532 * Even though the device advertised support for this type of
1533 * request, that does not mean every target supports it, and
1534 * reconfiguration might also have changed that since the
1535 * check was performed.
1537 num_bios = get_num_bios ? get_num_bios(ti) : 0;
1541 if (is_split_required && !is_split_required(ti))
1542 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1544 len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1546 __send_duplicate_bios(ci, ti, num_bios, &len);
1549 } while (ci->sector_count -= len);
1554 static int __send_discard(struct clone_info *ci)
1556 return __send_changing_extent_only(ci, get_num_discard_bios,
1557 is_split_required_for_discard);
1560 static int __send_write_same(struct clone_info *ci)
1562 return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1566 * Select the correct strategy for processing a non-flush bio.
1568 static int __split_and_process_non_flush(struct clone_info *ci)
1570 struct bio *bio = ci->bio;
1571 struct dm_target *ti;
1574 if (unlikely(bio->bi_rw & REQ_DISCARD))
1575 return __send_discard(ci);
1576 else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1577 return __send_write_same(ci);
1579 ti = dm_table_find_target(ci->map, ci->sector);
1580 if (!dm_target_is_valid(ti))
1583 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1585 __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1588 ci->sector_count -= len;
1594 * Entry point to split a bio into clones and submit them to the targets.
1596 static void __split_and_process_bio(struct mapped_device *md,
1597 struct dm_table *map, struct bio *bio)
1599 struct clone_info ci;
1602 if (unlikely(!map)) {
1609 ci.io = alloc_io(md);
1611 atomic_set(&ci.io->io_count, 1);
1614 spin_lock_init(&ci.io->endio_lock);
1615 ci.sector = bio->bi_iter.bi_sector;
1617 start_io_acct(ci.io);
1619 if (bio->bi_rw & REQ_FLUSH) {
1620 ci.bio = &ci.md->flush_bio;
1621 ci.sector_count = 0;
1622 error = __send_empty_flush(&ci);
1623 /* dec_pending submits any data associated with flush */
1626 ci.sector_count = bio_sectors(bio);
1627 while (ci.sector_count && !error)
1628 error = __split_and_process_non_flush(&ci);
1631 /* drop the extra reference count */
1632 dec_pending(ci.io, error);
1634 /*-----------------------------------------------------------------
1636 *---------------------------------------------------------------*/
1638 static int dm_merge_bvec(struct request_queue *q,
1639 struct bvec_merge_data *bvm,
1640 struct bio_vec *biovec)
1642 struct mapped_device *md = q->queuedata;
1643 struct dm_table *map = dm_get_live_table_fast(md);
1644 struct dm_target *ti;
1645 sector_t max_sectors;
1651 ti = dm_table_find_target(map, bvm->bi_sector);
1652 if (!dm_target_is_valid(ti))
1656 * Find maximum amount of I/O that won't need splitting
1658 max_sectors = min(max_io_len(bvm->bi_sector, ti),
1659 (sector_t) queue_max_sectors(q));
1660 max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
1661 if (unlikely(max_size < 0)) /* this shouldn't _ever_ happen */
1665 * merge_bvec_fn() returns number of bytes
1666 * it can accept at this offset
1667 * max is precomputed maximal io size
1669 if (max_size && ti->type->merge)
1670 max_size = ti->type->merge(ti, bvm, biovec, max_size);
1672 * If the target doesn't support merge method and some of the devices
1673 * provided their merge_bvec method (we know this by looking for the
1674 * max_hw_sectors that dm_set_device_limits may set), then we can't
1675 * allow bios with multiple vector entries. So always set max_size
1676 * to 0, and the code below allows just one page.
1678 else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
1682 dm_put_live_table_fast(md);
1684 * Always allow an entire first page
1686 if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
1687 max_size = biovec->bv_len;
1693 * The request function that just remaps the bio built up by
1696 static void _dm_request(struct request_queue *q, struct bio *bio)
1698 int rw = bio_data_dir(bio);
1699 struct mapped_device *md = q->queuedata;
1701 struct dm_table *map;
1703 map = dm_get_live_table(md, &srcu_idx);
1705 generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1707 /* if we're suspended, we have to queue this io for later */
1708 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1709 dm_put_live_table(md, srcu_idx);
1711 if (bio_rw(bio) != READA)
1718 __split_and_process_bio(md, map, bio);
1719 dm_put_live_table(md, srcu_idx);
1723 int dm_request_based(struct mapped_device *md)
1725 return blk_queue_stackable(md->queue);
1728 static void dm_request(struct request_queue *q, struct bio *bio)
1730 struct mapped_device *md = q->queuedata;
1732 if (dm_request_based(md))
1733 blk_queue_bio(q, bio);
1735 _dm_request(q, bio);
1738 static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1742 if (blk_queue_io_stat(clone->q))
1743 clone->cmd_flags |= REQ_IO_STAT;
1745 clone->start_time = jiffies;
1746 r = blk_insert_cloned_request(clone->q, clone);
1748 /* must complete clone in terms of original request */
1749 dm_complete_request(rq, r);
1752 static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1755 struct dm_rq_target_io *tio = data;
1756 struct dm_rq_clone_bio_info *info =
1757 container_of(bio, struct dm_rq_clone_bio_info, clone);
1759 info->orig = bio_orig;
1761 bio->bi_end_io = end_clone_bio;
1766 static int setup_clone(struct request *clone, struct request *rq,
1767 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1771 r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1772 dm_rq_bio_constructor, tio);
1776 clone->cmd = rq->cmd;
1777 clone->cmd_len = rq->cmd_len;
1778 clone->sense = rq->sense;
1779 clone->end_io = end_clone_request;
1780 clone->end_io_data = tio;
1787 static struct request *clone_rq(struct request *rq, struct mapped_device *md,
1788 struct dm_rq_target_io *tio, gfp_t gfp_mask)
1790 struct request *clone = alloc_clone_request(md, gfp_mask);
1795 blk_rq_init(NULL, clone);
1796 if (setup_clone(clone, rq, tio, gfp_mask)) {
1798 free_clone_request(md, clone);
1805 static void map_tio_request(struct kthread_work *work);
1807 static struct dm_rq_target_io *prep_tio(struct request *rq,
1808 struct mapped_device *md, gfp_t gfp_mask)
1810 struct dm_rq_target_io *tio;
1812 struct dm_table *table;
1814 tio = alloc_rq_tio(md, gfp_mask);
1823 memset(&tio->info, 0, sizeof(tio->info));
1824 init_kthread_work(&tio->work, map_tio_request);
1826 table = dm_get_live_table(md, &srcu_idx);
1827 if (!dm_table_mq_request_based(table)) {
1828 if (!clone_rq(rq, md, tio, gfp_mask)) {
1829 dm_put_live_table(md, srcu_idx);
1834 dm_put_live_table(md, srcu_idx);
1840 * Called with the queue lock held.
1842 static int dm_prep_fn(struct request_queue *q, struct request *rq)
1844 struct mapped_device *md = q->queuedata;
1845 struct dm_rq_target_io *tio;
1847 if (unlikely(rq->special)) {
1848 DMWARN("Already has something in rq->special.");
1849 return BLKPREP_KILL;
1852 tio = prep_tio(rq, md, GFP_ATOMIC);
1854 return BLKPREP_DEFER;
1857 rq->cmd_flags |= REQ_DONTPREP;
1864 * 0 : the request has been processed
1865 * DM_MAPIO_REQUEUE : the original request needs to be requeued
1866 * < 0 : the request was completed due to failure
1868 static int map_request(struct dm_target *ti, struct request *rq,
1869 struct mapped_device *md)
1872 struct dm_rq_target_io *tio = rq->special;
1873 struct request *clone = NULL;
1877 r = ti->type->map_rq(ti, clone, &tio->info);
1879 r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
1881 /* The target wants to complete the I/O */
1882 dm_kill_unmapped_request(rq, r);
1886 return DM_MAPIO_REQUEUE;
1887 if (setup_clone(clone, rq, tio, GFP_KERNEL)) {
1889 ti->type->release_clone_rq(clone);
1890 return DM_MAPIO_REQUEUE;
1895 case DM_MAPIO_SUBMITTED:
1896 /* The target has taken the I/O to submit by itself later */
1898 case DM_MAPIO_REMAPPED:
1899 /* The target has remapped the I/O so dispatch it */
1900 trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
1902 dm_dispatch_clone_request(clone, rq);
1904 case DM_MAPIO_REQUEUE:
1905 /* The target wants to requeue the I/O */
1906 dm_requeue_unmapped_request(clone);
1910 DMWARN("unimplemented target map return value: %d", r);
1914 /* The target wants to complete the I/O */
1915 dm_kill_unmapped_request(rq, r);
1922 static void map_tio_request(struct kthread_work *work)
1924 struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
1925 struct request *rq = tio->orig;
1926 struct mapped_device *md = tio->md;
1928 if (map_request(tio->ti, rq, md) == DM_MAPIO_REQUEUE)
1929 dm_requeue_unmapped_original_request(md, rq);
1932 static void dm_start_request(struct mapped_device *md, struct request *orig)
1934 blk_start_request(orig);
1935 atomic_inc(&md->pending[rq_data_dir(orig)]);
1938 * Hold the md reference here for the in-flight I/O.
1939 * We can't rely on the reference count by device opener,
1940 * because the device may be closed during the request completion
1941 * when all bios are completed.
1942 * See the comment in rq_completed() too.
1948 * q->request_fn for request-based dm.
1949 * Called with the queue lock held.
1951 static void dm_request_fn(struct request_queue *q)
1953 struct mapped_device *md = q->queuedata;
1955 struct dm_table *map = dm_get_live_table(md, &srcu_idx);
1956 struct dm_target *ti;
1958 struct dm_rq_target_io *tio;
1962 * For suspend, check blk_queue_stopped() and increment
1963 * ->pending within a single queue_lock not to increment the
1964 * number of in-flight I/Os after the queue is stopped in
1967 while (!blk_queue_stopped(q)) {
1968 rq = blk_peek_request(q);
1972 /* always use block 0 to find the target for flushes for now */
1974 if (!(rq->cmd_flags & REQ_FLUSH))
1975 pos = blk_rq_pos(rq);
1977 ti = dm_table_find_target(map, pos);
1978 if (!dm_target_is_valid(ti)) {
1980 * Must perform setup, that rq_completed() requires,
1981 * before calling dm_kill_unmapped_request
1983 DMERR_LIMIT("request attempted access beyond the end of device");
1984 dm_start_request(md, rq);
1985 dm_kill_unmapped_request(rq, -EIO);
1989 if (ti->type->busy && ti->type->busy(ti))
1992 dm_start_request(md, rq);
1995 /* Establish tio->ti before queuing work (map_tio_request) */
1997 queue_kthread_work(&md->kworker, &tio->work);
1998 BUG_ON(!irqs_disabled());
2004 blk_delay_queue(q, HZ / 10);
2006 dm_put_live_table(md, srcu_idx);
2009 int dm_underlying_device_busy(struct request_queue *q)
2011 return blk_lld_busy(q);
2013 EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
2015 static int dm_lld_busy(struct request_queue *q)
2018 struct mapped_device *md = q->queuedata;
2019 struct dm_table *map = dm_get_live_table_fast(md);
2021 if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
2024 r = dm_table_any_busy_target(map);
2026 dm_put_live_table_fast(md);
2031 static int dm_any_congested(void *congested_data, int bdi_bits)
2034 struct mapped_device *md = congested_data;
2035 struct dm_table *map;
2037 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2038 map = dm_get_live_table_fast(md);
2041 * Request-based dm cares about only own queue for
2042 * the query about congestion status of request_queue
2044 if (dm_request_based(md))
2045 r = md->queue->backing_dev_info.state &
2048 r = dm_table_any_congested(map, bdi_bits);
2050 dm_put_live_table_fast(md);
2056 /*-----------------------------------------------------------------
2057 * An IDR is used to keep track of allocated minor numbers.
2058 *---------------------------------------------------------------*/
2059 static void free_minor(int minor)
2061 spin_lock(&_minor_lock);
2062 idr_remove(&_minor_idr, minor);
2063 spin_unlock(&_minor_lock);
2067 * See if the device with a specific minor # is free.
2069 static int specific_minor(int minor)
2073 if (minor >= (1 << MINORBITS))
2076 idr_preload(GFP_KERNEL);
2077 spin_lock(&_minor_lock);
2079 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2081 spin_unlock(&_minor_lock);
2084 return r == -ENOSPC ? -EBUSY : r;
2088 static int next_free_minor(int *minor)
2092 idr_preload(GFP_KERNEL);
2093 spin_lock(&_minor_lock);
2095 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2097 spin_unlock(&_minor_lock);
2105 static const struct block_device_operations dm_blk_dops;
2107 static void dm_wq_work(struct work_struct *work);
2109 static void dm_init_md_queue(struct mapped_device *md)
2112 * Request-based dm devices cannot be stacked on top of bio-based dm
2113 * devices. The type of this dm device has not been decided yet.
2114 * The type is decided at the first table loading time.
2115 * To prevent problematic device stacking, clear the queue flag
2116 * for request stacking support until then.
2118 * This queue is new, so no concurrency on the queue_flags.
2120 queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2122 md->queue->queuedata = md;
2123 md->queue->backing_dev_info.congested_fn = dm_any_congested;
2124 md->queue->backing_dev_info.congested_data = md;
2125 blk_queue_make_request(md->queue, dm_request);
2126 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2127 blk_queue_merge_bvec(md->queue, dm_merge_bvec);
2131 * Allocate and initialise a blank device with a given minor.
2133 static struct mapped_device *alloc_dev(int minor)
2136 struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
2140 DMWARN("unable to allocate device, out of memory.");
2144 if (!try_module_get(THIS_MODULE))
2145 goto bad_module_get;
2147 /* get a minor number for the dev */
2148 if (minor == DM_ANY_MINOR)
2149 r = next_free_minor(&minor);
2151 r = specific_minor(minor);
2155 r = init_srcu_struct(&md->io_barrier);
2157 goto bad_io_barrier;
2159 md->type = DM_TYPE_NONE;
2160 mutex_init(&md->suspend_lock);
2161 mutex_init(&md->type_lock);
2162 mutex_init(&md->table_devices_lock);
2163 spin_lock_init(&md->deferred_lock);
2164 atomic_set(&md->holders, 1);
2165 atomic_set(&md->open_count, 0);
2166 atomic_set(&md->event_nr, 0);
2167 atomic_set(&md->uevent_seq, 0);
2168 INIT_LIST_HEAD(&md->uevent_list);
2169 INIT_LIST_HEAD(&md->table_devices);
2170 spin_lock_init(&md->uevent_lock);
2172 md->queue = blk_alloc_queue(GFP_KERNEL);
2176 dm_init_md_queue(md);
2178 md->disk = alloc_disk(1);
2182 atomic_set(&md->pending[0], 0);
2183 atomic_set(&md->pending[1], 0);
2184 init_waitqueue_head(&md->wait);
2185 INIT_WORK(&md->work, dm_wq_work);
2186 init_waitqueue_head(&md->eventq);
2187 init_completion(&md->kobj_holder.completion);
2188 md->kworker_task = NULL;
2190 md->disk->major = _major;
2191 md->disk->first_minor = minor;
2192 md->disk->fops = &dm_blk_dops;
2193 md->disk->queue = md->queue;
2194 md->disk->private_data = md;
2195 sprintf(md->disk->disk_name, "dm-%d", minor);
2197 format_dev_t(md->name, MKDEV(_major, minor));
2199 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2203 md->bdev = bdget_disk(md->disk, 0);
2207 bio_init(&md->flush_bio);
2208 md->flush_bio.bi_bdev = md->bdev;
2209 md->flush_bio.bi_rw = WRITE_FLUSH;
2211 dm_stats_init(&md->stats);
2213 /* Populate the mapping, nobody knows we exist yet */
2214 spin_lock(&_minor_lock);
2215 old_md = idr_replace(&_minor_idr, md, minor);
2216 spin_unlock(&_minor_lock);
2218 BUG_ON(old_md != MINOR_ALLOCED);
2223 destroy_workqueue(md->wq);
2225 del_gendisk(md->disk);
2228 blk_cleanup_queue(md->queue);
2230 cleanup_srcu_struct(&md->io_barrier);
2234 module_put(THIS_MODULE);
2240 static void unlock_fs(struct mapped_device *md);
2242 static void free_dev(struct mapped_device *md)
2244 int minor = MINOR(disk_devt(md->disk));
2247 destroy_workqueue(md->wq);
2249 if (md->kworker_task)
2250 kthread_stop(md->kworker_task);
2252 mempool_destroy(md->io_pool);
2254 mempool_destroy(md->rq_pool);
2256 bioset_free(md->bs);
2258 cleanup_srcu_struct(&md->io_barrier);
2259 free_table_devices(&md->table_devices);
2260 dm_stats_cleanup(&md->stats);
2262 spin_lock(&_minor_lock);
2263 md->disk->private_data = NULL;
2264 spin_unlock(&_minor_lock);
2265 if (blk_get_integrity(md->disk))
2266 blk_integrity_unregister(md->disk);
2267 del_gendisk(md->disk);
2269 blk_cleanup_queue(md->queue);
2273 module_put(THIS_MODULE);
2277 static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2279 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2281 if (md->io_pool && md->bs) {
2282 /* The md already has necessary mempools. */
2283 if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2285 * Reload bioset because front_pad may have changed
2286 * because a different table was loaded.
2288 bioset_free(md->bs);
2293 * There's no need to reload with request-based dm
2294 * because the size of front_pad doesn't change.
2295 * Note for future: If you are to reload bioset,
2296 * prep-ed requests in the queue may refer
2297 * to bio from the old bioset, so you must walk
2298 * through the queue to unprep.
2303 BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2305 md->io_pool = p->io_pool;
2307 md->rq_pool = p->rq_pool;
2313 /* mempool bind completed, now no need any mempools in the table */
2314 dm_table_free_md_mempools(t);
2318 * Bind a table to the device.
2320 static void event_callback(void *context)
2322 unsigned long flags;
2324 struct mapped_device *md = (struct mapped_device *) context;
2326 spin_lock_irqsave(&md->uevent_lock, flags);
2327 list_splice_init(&md->uevent_list, &uevents);
2328 spin_unlock_irqrestore(&md->uevent_lock, flags);
2330 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2332 atomic_inc(&md->event_nr);
2333 wake_up(&md->eventq);
2337 * Protected by md->suspend_lock obtained by dm_swap_table().
2339 static void __set_size(struct mapped_device *md, sector_t size)
2341 set_capacity(md->disk, size);
2343 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2347 * Return 1 if the queue has a compulsory merge_bvec_fn function.
2349 * If this function returns 0, then the device is either a non-dm
2350 * device without a merge_bvec_fn, or it is a dm device that is
2351 * able to split any bios it receives that are too big.
2353 int dm_queue_merge_is_compulsory(struct request_queue *q)
2355 struct mapped_device *dev_md;
2357 if (!q->merge_bvec_fn)
2360 if (q->make_request_fn == dm_request) {
2361 dev_md = q->queuedata;
2362 if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
2369 static int dm_device_merge_is_compulsory(struct dm_target *ti,
2370 struct dm_dev *dev, sector_t start,
2371 sector_t len, void *data)
2373 struct block_device *bdev = dev->bdev;
2374 struct request_queue *q = bdev_get_queue(bdev);
2376 return dm_queue_merge_is_compulsory(q);
2380 * Return 1 if it is acceptable to ignore merge_bvec_fn based
2381 * on the properties of the underlying devices.
2383 static int dm_table_merge_is_optional(struct dm_table *table)
2386 struct dm_target *ti;
2388 while (i < dm_table_get_num_targets(table)) {
2389 ti = dm_table_get_target(table, i++);
2391 if (ti->type->iterate_devices &&
2392 ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
2400 * Returns old map, which caller must destroy.
2402 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2403 struct queue_limits *limits)
2405 struct dm_table *old_map;
2406 struct request_queue *q = md->queue;
2408 int merge_is_optional;
2410 size = dm_table_get_size(t);
2413 * Wipe any geometry if the size of the table changed.
2415 if (size != dm_get_size(md))
2416 memset(&md->geometry, 0, sizeof(md->geometry));
2418 __set_size(md, size);
2420 dm_table_event_callback(t, event_callback, md);
2423 * The queue hasn't been stopped yet, if the old table type wasn't
2424 * for request-based during suspension. So stop it to prevent
2425 * I/O mapping before resume.
2426 * This must be done before setting the queue restrictions,
2427 * because request-based dm may be run just after the setting.
2429 if (dm_table_request_based(t) && !blk_queue_stopped(q))
2432 __bind_mempools(md, t);
2434 merge_is_optional = dm_table_merge_is_optional(t);
2436 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2437 rcu_assign_pointer(md->map, t);
2438 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2440 dm_table_set_restrictions(t, q, limits);
2441 if (merge_is_optional)
2442 set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2444 clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
2452 * Returns unbound table for the caller to free.
2454 static struct dm_table *__unbind(struct mapped_device *md)
2456 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2461 dm_table_event_callback(map, NULL, NULL);
2462 RCU_INIT_POINTER(md->map, NULL);
2469 * Constructor for a new device.
2471 int dm_create(int minor, struct mapped_device **result)
2473 struct mapped_device *md;
2475 md = alloc_dev(minor);
2486 * Functions to manage md->type.
2487 * All are required to hold md->type_lock.
2489 void dm_lock_md_type(struct mapped_device *md)
2491 mutex_lock(&md->type_lock);
2494 void dm_unlock_md_type(struct mapped_device *md)
2496 mutex_unlock(&md->type_lock);
2499 void dm_set_md_type(struct mapped_device *md, unsigned type)
2501 BUG_ON(!mutex_is_locked(&md->type_lock));
2505 unsigned dm_get_md_type(struct mapped_device *md)
2507 BUG_ON(!mutex_is_locked(&md->type_lock));
2511 static bool dm_md_type_request_based(struct mapped_device *md)
2513 unsigned table_type = dm_get_md_type(md);
2515 return (table_type == DM_TYPE_REQUEST_BASED ||
2516 table_type == DM_TYPE_MQ_REQUEST_BASED);
2519 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2521 return md->immutable_target_type;
2525 * The queue_limits are only valid as long as you have a reference
2528 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2530 BUG_ON(!atomic_read(&md->holders));
2531 return &md->queue->limits;
2533 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2536 * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
2538 static int dm_init_request_based_queue(struct mapped_device *md)
2540 struct request_queue *q = NULL;
2542 if (md->queue->elevator)
2545 /* Fully initialize the queue */
2546 q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
2551 dm_init_md_queue(md);
2552 blk_queue_softirq_done(md->queue, dm_softirq_done);
2553 blk_queue_prep_rq(md->queue, dm_prep_fn);
2554 blk_queue_lld_busy(md->queue, dm_lld_busy);
2556 /* Also initialize the request-based DM worker thread */
2557 init_kthread_worker(&md->kworker);
2558 md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2559 "kdmwork-%s", dm_device_name(md));
2561 elv_register_queue(md->queue);
2567 * Setup the DM device's queue based on md's type
2569 int dm_setup_md_queue(struct mapped_device *md)
2571 if (dm_md_type_request_based(md) && !dm_init_request_based_queue(md)) {
2572 DMWARN("Cannot initialize queue for request-based mapped device");
2579 struct mapped_device *dm_get_md(dev_t dev)
2581 struct mapped_device *md;
2582 unsigned minor = MINOR(dev);
2584 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2587 spin_lock(&_minor_lock);
2589 md = idr_find(&_minor_idr, minor);
2591 if ((md == MINOR_ALLOCED ||
2592 (MINOR(disk_devt(dm_disk(md))) != minor) ||
2593 dm_deleting_md(md) ||
2594 test_bit(DMF_FREEING, &md->flags))) {
2602 spin_unlock(&_minor_lock);
2606 EXPORT_SYMBOL_GPL(dm_get_md);
2608 void *dm_get_mdptr(struct mapped_device *md)
2610 return md->interface_ptr;
2613 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2615 md->interface_ptr = ptr;
2618 void dm_get(struct mapped_device *md)
2620 atomic_inc(&md->holders);
2621 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2624 int dm_hold(struct mapped_device *md)
2626 spin_lock(&_minor_lock);
2627 if (test_bit(DMF_FREEING, &md->flags)) {
2628 spin_unlock(&_minor_lock);
2632 spin_unlock(&_minor_lock);
2635 EXPORT_SYMBOL_GPL(dm_hold);
2637 const char *dm_device_name(struct mapped_device *md)
2641 EXPORT_SYMBOL_GPL(dm_device_name);
2643 static void __dm_destroy(struct mapped_device *md, bool wait)
2645 struct dm_table *map;
2650 map = dm_get_live_table(md, &srcu_idx);
2652 spin_lock(&_minor_lock);
2653 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2654 set_bit(DMF_FREEING, &md->flags);
2655 spin_unlock(&_minor_lock);
2657 if (dm_request_based(md))
2658 flush_kthread_worker(&md->kworker);
2661 * Take suspend_lock so that presuspend and postsuspend methods
2662 * do not race with internal suspend.
2664 mutex_lock(&md->suspend_lock);
2665 if (!dm_suspended_md(md)) {
2666 dm_table_presuspend_targets(map);
2667 dm_table_postsuspend_targets(map);
2669 mutex_unlock(&md->suspend_lock);
2671 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2672 dm_put_live_table(md, srcu_idx);
2675 * Rare, but there may be I/O requests still going to complete,
2676 * for example. Wait for all references to disappear.
2677 * No one should increment the reference count of the mapped_device,
2678 * after the mapped_device state becomes DMF_FREEING.
2681 while (atomic_read(&md->holders))
2683 else if (atomic_read(&md->holders))
2684 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2685 dm_device_name(md), atomic_read(&md->holders));
2688 dm_table_destroy(__unbind(md));
2692 void dm_destroy(struct mapped_device *md)
2694 __dm_destroy(md, true);
2697 void dm_destroy_immediate(struct mapped_device *md)
2699 __dm_destroy(md, false);
2702 void dm_put(struct mapped_device *md)
2704 atomic_dec(&md->holders);
2706 EXPORT_SYMBOL_GPL(dm_put);
2708 static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
2711 DECLARE_WAITQUEUE(wait, current);
2713 add_wait_queue(&md->wait, &wait);
2716 set_current_state(interruptible);
2718 if (!md_in_flight(md))
2721 if (interruptible == TASK_INTERRUPTIBLE &&
2722 signal_pending(current)) {
2729 set_current_state(TASK_RUNNING);
2731 remove_wait_queue(&md->wait, &wait);
2737 * Process the deferred bios
2739 static void dm_wq_work(struct work_struct *work)
2741 struct mapped_device *md = container_of(work, struct mapped_device,
2745 struct dm_table *map;
2747 map = dm_get_live_table(md, &srcu_idx);
2749 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2750 spin_lock_irq(&md->deferred_lock);
2751 c = bio_list_pop(&md->deferred);
2752 spin_unlock_irq(&md->deferred_lock);
2757 if (dm_request_based(md))
2758 generic_make_request(c);
2760 __split_and_process_bio(md, map, c);
2763 dm_put_live_table(md, srcu_idx);
2766 static void dm_queue_flush(struct mapped_device *md)
2768 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2769 smp_mb__after_atomic();
2770 queue_work(md->wq, &md->work);
2774 * Swap in a new table, returning the old one for the caller to destroy.
2776 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2778 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2779 struct queue_limits limits;
2782 mutex_lock(&md->suspend_lock);
2784 /* device must be suspended */
2785 if (!dm_suspended_md(md))
2789 * If the new table has no data devices, retain the existing limits.
2790 * This helps multipath with queue_if_no_path if all paths disappear,
2791 * then new I/O is queued based on these limits, and then some paths
2794 if (dm_table_has_no_data_devices(table)) {
2795 live_map = dm_get_live_table_fast(md);
2797 limits = md->queue->limits;
2798 dm_put_live_table_fast(md);
2802 r = dm_calculate_queue_limits(table, &limits);
2809 map = __bind(md, table, &limits);
2812 mutex_unlock(&md->suspend_lock);
2817 * Functions to lock and unlock any filesystem running on the
2820 static int lock_fs(struct mapped_device *md)
2824 WARN_ON(md->frozen_sb);
2826 md->frozen_sb = freeze_bdev(md->bdev);
2827 if (IS_ERR(md->frozen_sb)) {
2828 r = PTR_ERR(md->frozen_sb);
2829 md->frozen_sb = NULL;
2833 set_bit(DMF_FROZEN, &md->flags);
2838 static void unlock_fs(struct mapped_device *md)
2840 if (!test_bit(DMF_FROZEN, &md->flags))
2843 thaw_bdev(md->bdev, md->frozen_sb);
2844 md->frozen_sb = NULL;
2845 clear_bit(DMF_FROZEN, &md->flags);
2849 * If __dm_suspend returns 0, the device is completely quiescent
2850 * now. There is no request-processing activity. All new requests
2851 * are being added to md->deferred list.
2853 * Caller must hold md->suspend_lock
2855 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2856 unsigned suspend_flags, int interruptible)
2858 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2859 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2863 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2864 * This flag is cleared before dm_suspend returns.
2867 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2870 * This gets reverted if there's an error later and the targets
2871 * provide the .presuspend_undo hook.
2873 dm_table_presuspend_targets(map);
2876 * Flush I/O to the device.
2877 * Any I/O submitted after lock_fs() may not be flushed.
2878 * noflush takes precedence over do_lockfs.
2879 * (lock_fs() flushes I/Os and waits for them to complete.)
2881 if (!noflush && do_lockfs) {
2884 dm_table_presuspend_undo_targets(map);
2890 * Here we must make sure that no processes are submitting requests
2891 * to target drivers i.e. no one may be executing
2892 * __split_and_process_bio. This is called from dm_request and
2895 * To get all processes out of __split_and_process_bio in dm_request,
2896 * we take the write lock. To prevent any process from reentering
2897 * __split_and_process_bio from dm_request and quiesce the thread
2898 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2899 * flush_workqueue(md->wq).
2901 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2903 synchronize_srcu(&md->io_barrier);
2906 * Stop md->queue before flushing md->wq in case request-based
2907 * dm defers requests to md->wq from md->queue.
2909 if (dm_request_based(md)) {
2910 stop_queue(md->queue);
2911 flush_kthread_worker(&md->kworker);
2914 flush_workqueue(md->wq);
2917 * At this point no more requests are entering target request routines.
2918 * We call dm_wait_for_completion to wait for all existing requests
2921 r = dm_wait_for_completion(md, interruptible);
2924 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2926 synchronize_srcu(&md->io_barrier);
2928 /* were we interrupted ? */
2932 if (dm_request_based(md))
2933 start_queue(md->queue);
2936 dm_table_presuspend_undo_targets(map);
2937 /* pushback list is already flushed, so skip flush */
2944 * We need to be able to change a mapping table under a mounted
2945 * filesystem. For example we might want to move some data in
2946 * the background. Before the table can be swapped with
2947 * dm_bind_table, dm_suspend must be called to flush any in
2948 * flight bios and ensure that any further io gets deferred.
2951 * Suspend mechanism in request-based dm.
2953 * 1. Flush all I/Os by lock_fs() if needed.
2954 * 2. Stop dispatching any I/O by stopping the request_queue.
2955 * 3. Wait for all in-flight I/Os to be completed or requeued.
2957 * To abort suspend, start the request_queue.
2959 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2961 struct dm_table *map = NULL;
2965 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2967 if (dm_suspended_md(md)) {
2972 if (dm_suspended_internally_md(md)) {
2973 /* already internally suspended, wait for internal resume */
2974 mutex_unlock(&md->suspend_lock);
2975 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2981 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2983 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
2987 set_bit(DMF_SUSPENDED, &md->flags);
2989 dm_table_postsuspend_targets(map);
2992 mutex_unlock(&md->suspend_lock);
2996 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2999 int r = dm_table_resume_targets(map);
3007 * Flushing deferred I/Os must be done after targets are resumed
3008 * so that mapping of targets can work correctly.
3009 * Request-based dm is queueing the deferred I/Os in its request_queue.
3011 if (dm_request_based(md))
3012 start_queue(md->queue);
3019 int dm_resume(struct mapped_device *md)
3022 struct dm_table *map = NULL;
3025 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3027 if (!dm_suspended_md(md))
3030 if (dm_suspended_internally_md(md)) {
3031 /* already internally suspended, wait for internal resume */
3032 mutex_unlock(&md->suspend_lock);
3033 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3039 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3040 if (!map || !dm_table_get_size(map))
3043 r = __dm_resume(md, map);
3047 clear_bit(DMF_SUSPENDED, &md->flags);
3051 mutex_unlock(&md->suspend_lock);
3057 * Internal suspend/resume works like userspace-driven suspend. It waits
3058 * until all bios finish and prevents issuing new bios to the target drivers.
3059 * It may be used only from the kernel.
3062 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3064 struct dm_table *map = NULL;
3066 if (md->internal_suspend_count++)
3067 return; /* nested internal suspend */
3069 if (dm_suspended_md(md)) {
3070 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3071 return; /* nest suspend */
3074 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3077 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3078 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3079 * would require changing .presuspend to return an error -- avoid this
3080 * until there is a need for more elaborate variants of internal suspend.
3082 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3084 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3086 dm_table_postsuspend_targets(map);
3089 static void __dm_internal_resume(struct mapped_device *md)
3091 BUG_ON(!md->internal_suspend_count);
3093 if (--md->internal_suspend_count)
3094 return; /* resume from nested internal suspend */
3096 if (dm_suspended_md(md))
3097 goto done; /* resume from nested suspend */
3100 * NOTE: existing callers don't need to call dm_table_resume_targets
3101 * (which may fail -- so best to avoid it for now by passing NULL map)
3103 (void) __dm_resume(md, NULL);
3106 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3107 smp_mb__after_atomic();
3108 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3111 void dm_internal_suspend_noflush(struct mapped_device *md)
3113 mutex_lock(&md->suspend_lock);
3114 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3115 mutex_unlock(&md->suspend_lock);
3117 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3119 void dm_internal_resume(struct mapped_device *md)
3121 mutex_lock(&md->suspend_lock);
3122 __dm_internal_resume(md);
3123 mutex_unlock(&md->suspend_lock);
3125 EXPORT_SYMBOL_GPL(dm_internal_resume);
3128 * Fast variants of internal suspend/resume hold md->suspend_lock,
3129 * which prevents interaction with userspace-driven suspend.
3132 void dm_internal_suspend_fast(struct mapped_device *md)
3134 mutex_lock(&md->suspend_lock);
3135 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3138 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3139 synchronize_srcu(&md->io_barrier);
3140 flush_workqueue(md->wq);
3141 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3143 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3145 void dm_internal_resume_fast(struct mapped_device *md)
3147 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3153 mutex_unlock(&md->suspend_lock);
3155 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3157 /*-----------------------------------------------------------------
3158 * Event notification.
3159 *---------------------------------------------------------------*/
3160 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3163 char udev_cookie[DM_COOKIE_LENGTH];
3164 char *envp[] = { udev_cookie, NULL };
3167 return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3169 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3170 DM_COOKIE_ENV_VAR_NAME, cookie);
3171 return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3176 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3178 return atomic_add_return(1, &md->uevent_seq);
3181 uint32_t dm_get_event_nr(struct mapped_device *md)
3183 return atomic_read(&md->event_nr);
3186 int dm_wait_event(struct mapped_device *md, int event_nr)
3188 return wait_event_interruptible(md->eventq,
3189 (event_nr != atomic_read(&md->event_nr)));
3192 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3194 unsigned long flags;
3196 spin_lock_irqsave(&md->uevent_lock, flags);
3197 list_add(elist, &md->uevent_list);
3198 spin_unlock_irqrestore(&md->uevent_lock, flags);
3202 * The gendisk is only valid as long as you have a reference
3205 struct gendisk *dm_disk(struct mapped_device *md)
3210 struct kobject *dm_kobject(struct mapped_device *md)
3212 return &md->kobj_holder.kobj;
3215 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3217 struct mapped_device *md;
3219 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3221 if (test_bit(DMF_FREEING, &md->flags) ||
3229 int dm_suspended_md(struct mapped_device *md)
3231 return test_bit(DMF_SUSPENDED, &md->flags);
3234 int dm_suspended_internally_md(struct mapped_device *md)
3236 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3239 int dm_test_deferred_remove_flag(struct mapped_device *md)
3241 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3244 int dm_suspended(struct dm_target *ti)
3246 return dm_suspended_md(dm_table_get_md(ti->table));
3248 EXPORT_SYMBOL_GPL(dm_suspended);
3250 int dm_noflush_suspending(struct dm_target *ti)
3252 return __noflush_suspending(dm_table_get_md(ti->table));
3254 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3256 struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity, unsigned per_bio_data_size)
3258 struct dm_md_mempools *pools = kzalloc(sizeof(*pools), GFP_KERNEL);
3259 struct kmem_cache *cachep;
3260 unsigned int pool_size = 0;
3261 unsigned int front_pad;
3267 case DM_TYPE_BIO_BASED:
3269 pool_size = dm_get_reserved_bio_based_ios();
3270 front_pad = roundup(per_bio_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3272 case DM_TYPE_REQUEST_BASED:
3273 pool_size = dm_get_reserved_rq_based_ios();
3274 pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3275 if (!pools->rq_pool)
3277 /* fall through to setup remaining rq-based pools */
3278 case DM_TYPE_MQ_REQUEST_BASED:
3279 cachep = _rq_tio_cache;
3281 pool_size = dm_get_reserved_rq_based_ios();
3282 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3283 /* per_bio_data_size is not used. See __bind_mempools(). */
3284 WARN_ON(per_bio_data_size != 0);
3290 pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3291 if (!pools->io_pool)
3294 pools->bs = bioset_create_nobvec(pool_size, front_pad);
3298 if (integrity && bioset_integrity_create(pools->bs, pool_size))
3304 dm_free_md_mempools(pools);
3309 void dm_free_md_mempools(struct dm_md_mempools *pools)
3315 mempool_destroy(pools->io_pool);
3318 mempool_destroy(pools->rq_pool);
3321 bioset_free(pools->bs);
3326 static const struct block_device_operations dm_blk_dops = {
3327 .open = dm_blk_open,
3328 .release = dm_blk_close,
3329 .ioctl = dm_blk_ioctl,
3330 .getgeo = dm_blk_getgeo,
3331 .owner = THIS_MODULE
3337 module_init(dm_init);
3338 module_exit(dm_exit);
3340 module_param(major, uint, 0);
3341 MODULE_PARM_DESC(major, "The major number of the device mapper");
3343 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3344 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3346 module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3347 MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3349 MODULE_DESCRIPTION(DM_NAME " driver");
3351 MODULE_LICENSE("GPL");