2 * Copyright © 2008-2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
32 #include <drm/i915_drm.h>
33 #include "i915_trace.h"
34 #include "intel_drv.h"
37 * 965+ support PIPE_CONTROL commands, which provide finer grained control
38 * over cache flushing.
41 struct drm_i915_gem_object *obj;
42 volatile u32 *cpu_page;
46 static inline int ring_space(struct intel_ring_buffer *ring)
48 int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
55 gen2_render_ring_flush(struct intel_ring_buffer *ring,
56 u32 invalidate_domains,
63 if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
64 cmd |= MI_NO_WRITE_FLUSH;
66 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
69 ret = intel_ring_begin(ring, 2);
73 intel_ring_emit(ring, cmd);
74 intel_ring_emit(ring, MI_NOOP);
75 intel_ring_advance(ring);
81 gen4_render_ring_flush(struct intel_ring_buffer *ring,
82 u32 invalidate_domains,
85 struct drm_device *dev = ring->dev;
92 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
93 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
94 * also flushed at 2d versus 3d pipeline switches.
98 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
99 * MI_READ_FLUSH is set, and is always flushed on 965.
101 * I915_GEM_DOMAIN_COMMAND may not exist?
103 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
104 * invalidated when MI_EXE_FLUSH is set.
106 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
107 * invalidated with every MI_FLUSH.
111 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
112 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
113 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
114 * are flushed at any MI_FLUSH.
117 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
118 if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
119 cmd &= ~MI_NO_WRITE_FLUSH;
120 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
123 if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
124 (IS_G4X(dev) || IS_GEN5(dev)))
125 cmd |= MI_INVALIDATE_ISP;
127 ret = intel_ring_begin(ring, 2);
131 intel_ring_emit(ring, cmd);
132 intel_ring_emit(ring, MI_NOOP);
133 intel_ring_advance(ring);
139 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
140 * implementing two workarounds on gen6. From section 1.4.7.1
141 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
143 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
144 * produced by non-pipelined state commands), software needs to first
145 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
148 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
149 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
151 * And the workaround for these two requires this workaround first:
153 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
154 * BEFORE the pipe-control with a post-sync op and no write-cache
157 * And this last workaround is tricky because of the requirements on
158 * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
161 * "1 of the following must also be set:
162 * - Render Target Cache Flush Enable ([12] of DW1)
163 * - Depth Cache Flush Enable ([0] of DW1)
164 * - Stall at Pixel Scoreboard ([1] of DW1)
165 * - Depth Stall ([13] of DW1)
166 * - Post-Sync Operation ([13] of DW1)
167 * - Notify Enable ([8] of DW1)"
169 * The cache flushes require the workaround flush that triggered this
170 * one, so we can't use it. Depth stall would trigger the same.
171 * Post-sync nonzero is what triggered this second workaround, so we
172 * can't use that one either. Notify enable is IRQs, which aren't
173 * really our business. That leaves only stall at scoreboard.
176 intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
178 struct pipe_control *pc = ring->private;
179 u32 scratch_addr = pc->gtt_offset + 128;
183 ret = intel_ring_begin(ring, 6);
187 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
188 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
189 PIPE_CONTROL_STALL_AT_SCOREBOARD);
190 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
191 intel_ring_emit(ring, 0); /* low dword */
192 intel_ring_emit(ring, 0); /* high dword */
193 intel_ring_emit(ring, MI_NOOP);
194 intel_ring_advance(ring);
196 ret = intel_ring_begin(ring, 6);
200 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
201 intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
202 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
203 intel_ring_emit(ring, 0);
204 intel_ring_emit(ring, 0);
205 intel_ring_emit(ring, MI_NOOP);
206 intel_ring_advance(ring);
212 gen6_render_ring_flush(struct intel_ring_buffer *ring,
213 u32 invalidate_domains, u32 flush_domains)
216 struct pipe_control *pc = ring->private;
217 u32 scratch_addr = pc->gtt_offset + 128;
220 /* Force SNB workarounds for PIPE_CONTROL flushes */
221 ret = intel_emit_post_sync_nonzero_flush(ring);
225 /* Just flush everything. Experiments have shown that reducing the
226 * number of bits based on the write domains has little performance
230 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
231 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
233 * Ensure that any following seqno writes only happen
234 * when the render cache is indeed flushed.
236 flags |= PIPE_CONTROL_CS_STALL;
238 if (invalidate_domains) {
239 flags |= PIPE_CONTROL_TLB_INVALIDATE;
240 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
241 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
242 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
243 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
244 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
246 * TLB invalidate requires a post-sync write.
248 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
251 ret = intel_ring_begin(ring, 4);
255 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
256 intel_ring_emit(ring, flags);
257 intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
258 intel_ring_emit(ring, 0);
259 intel_ring_advance(ring);
265 gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
269 ret = intel_ring_begin(ring, 4);
273 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
274 intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
275 PIPE_CONTROL_STALL_AT_SCOREBOARD);
276 intel_ring_emit(ring, 0);
277 intel_ring_emit(ring, 0);
278 intel_ring_advance(ring);
283 static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
287 if (!ring->fbc_dirty)
290 ret = intel_ring_begin(ring, 4);
293 intel_ring_emit(ring, MI_NOOP);
294 /* WaFbcNukeOn3DBlt:ivb/hsw */
295 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
296 intel_ring_emit(ring, MSG_FBC_REND_STATE);
297 intel_ring_emit(ring, value);
298 intel_ring_advance(ring);
300 ring->fbc_dirty = false;
305 gen7_render_ring_flush(struct intel_ring_buffer *ring,
306 u32 invalidate_domains, u32 flush_domains)
309 struct pipe_control *pc = ring->private;
310 u32 scratch_addr = pc->gtt_offset + 128;
314 * Ensure that any following seqno writes only happen when the render
315 * cache is indeed flushed.
317 * Workaround: 4th PIPE_CONTROL command (except the ones with only
318 * read-cache invalidate bits set) must have the CS_STALL bit set. We
319 * don't try to be clever and just set it unconditionally.
321 flags |= PIPE_CONTROL_CS_STALL;
323 /* Just flush everything. Experiments have shown that reducing the
324 * number of bits based on the write domains has little performance
328 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
329 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
331 if (invalidate_domains) {
332 flags |= PIPE_CONTROL_TLB_INVALIDATE;
333 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
334 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
335 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
336 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
337 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
339 * TLB invalidate requires a post-sync write.
341 flags |= PIPE_CONTROL_QW_WRITE;
342 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
344 /* Workaround: we must issue a pipe_control with CS-stall bit
345 * set before a pipe_control command that has the state cache
346 * invalidate bit set. */
347 gen7_render_ring_cs_stall_wa(ring);
350 ret = intel_ring_begin(ring, 4);
354 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
355 intel_ring_emit(ring, flags);
356 intel_ring_emit(ring, scratch_addr);
357 intel_ring_emit(ring, 0);
358 intel_ring_advance(ring);
361 return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
366 static void ring_write_tail(struct intel_ring_buffer *ring,
369 drm_i915_private_t *dev_priv = ring->dev->dev_private;
370 I915_WRITE_TAIL(ring, value);
373 u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
375 drm_i915_private_t *dev_priv = ring->dev->dev_private;
376 u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
377 RING_ACTHD(ring->mmio_base) : ACTHD;
379 return I915_READ(acthd_reg);
382 static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
384 struct drm_i915_private *dev_priv = ring->dev->dev_private;
387 addr = dev_priv->status_page_dmah->busaddr;
388 if (INTEL_INFO(ring->dev)->gen >= 4)
389 addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
390 I915_WRITE(HWS_PGA, addr);
393 static int init_ring_common(struct intel_ring_buffer *ring)
395 struct drm_device *dev = ring->dev;
396 drm_i915_private_t *dev_priv = dev->dev_private;
397 struct drm_i915_gem_object *obj = ring->obj;
401 if (HAS_FORCE_WAKE(dev))
402 gen6_gt_force_wake_get(dev_priv);
404 if (I915_NEED_GFX_HWS(dev))
405 intel_ring_setup_status_page(ring);
407 ring_setup_phys_status_page(ring);
409 /* Stop the ring if it's running. */
410 I915_WRITE_CTL(ring, 0);
411 I915_WRITE_HEAD(ring, 0);
412 ring->write_tail(ring, 0);
414 head = I915_READ_HEAD(ring) & HEAD_ADDR;
416 /* G45 ring initialization fails to reset head to zero */
418 DRM_DEBUG_KMS("%s head not reset to zero "
419 "ctl %08x head %08x tail %08x start %08x\n",
422 I915_READ_HEAD(ring),
423 I915_READ_TAIL(ring),
424 I915_READ_START(ring));
426 I915_WRITE_HEAD(ring, 0);
428 if (I915_READ_HEAD(ring) & HEAD_ADDR) {
429 DRM_ERROR("failed to set %s head to zero "
430 "ctl %08x head %08x tail %08x start %08x\n",
433 I915_READ_HEAD(ring),
434 I915_READ_TAIL(ring),
435 I915_READ_START(ring));
439 /* Initialize the ring. This must happen _after_ we've cleared the ring
440 * registers with the above sequence (the readback of the HEAD registers
441 * also enforces ordering), otherwise the hw might lose the new ring
442 * register values. */
443 I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
445 ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
448 /* If the head is still not zero, the ring is dead */
449 if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
450 I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
451 (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
452 DRM_ERROR("%s initialization failed "
453 "ctl %08x head %08x tail %08x start %08x\n",
456 I915_READ_HEAD(ring),
457 I915_READ_TAIL(ring),
458 I915_READ_START(ring));
463 if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
464 i915_kernel_lost_context(ring->dev);
466 ring->head = I915_READ_HEAD(ring);
467 ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
468 ring->space = ring_space(ring);
469 ring->last_retired_head = -1;
472 memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
475 if (HAS_FORCE_WAKE(dev))
476 gen6_gt_force_wake_put(dev_priv);
482 init_pipe_control(struct intel_ring_buffer *ring)
484 struct pipe_control *pc;
485 struct drm_i915_gem_object *obj;
491 pc = kmalloc(sizeof(*pc), GFP_KERNEL);
495 obj = i915_gem_alloc_object(ring->dev, 4096);
497 DRM_ERROR("Failed to allocate seqno page\n");
502 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
504 ret = i915_gem_object_pin(obj, 4096, true, false);
508 pc->gtt_offset = i915_gem_obj_ggtt_offset(obj);
509 pc->cpu_page = kmap(sg_page(obj->pages->sgl));
510 if (pc->cpu_page == NULL) {
515 DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
516 ring->name, pc->gtt_offset);
523 i915_gem_object_unpin(obj);
525 drm_gem_object_unreference(&obj->base);
532 cleanup_pipe_control(struct intel_ring_buffer *ring)
534 struct pipe_control *pc = ring->private;
535 struct drm_i915_gem_object *obj;
539 kunmap(sg_page(obj->pages->sgl));
540 i915_gem_object_unpin(obj);
541 drm_gem_object_unreference(&obj->base);
546 static int init_render_ring(struct intel_ring_buffer *ring)
548 struct drm_device *dev = ring->dev;
549 struct drm_i915_private *dev_priv = dev->dev_private;
550 int ret = init_ring_common(ring);
552 if (INTEL_INFO(dev)->gen > 3)
553 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
555 /* We need to disable the AsyncFlip performance optimisations in order
556 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
557 * programmed to '1' on all products.
559 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
561 if (INTEL_INFO(dev)->gen >= 6)
562 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
564 /* Required for the hardware to program scanline values for waiting */
565 if (INTEL_INFO(dev)->gen == 6)
567 _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
570 I915_WRITE(GFX_MODE_GEN7,
571 _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
572 _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
574 if (INTEL_INFO(dev)->gen >= 5) {
575 ret = init_pipe_control(ring);
581 /* From the Sandybridge PRM, volume 1 part 3, page 24:
582 * "If this bit is set, STCunit will have LRA as replacement
583 * policy. [...] This bit must be reset. LRA replacement
584 * policy is not supported."
586 I915_WRITE(CACHE_MODE_0,
587 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
589 /* This is not explicitly set for GEN6, so read the register.
590 * see intel_ring_mi_set_context() for why we care.
591 * TODO: consider explicitly setting the bit for GEN5
593 ring->itlb_before_ctx_switch =
594 !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
597 if (INTEL_INFO(dev)->gen >= 6)
598 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
600 if (HAS_L3_GPU_CACHE(dev))
601 I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
606 static void render_ring_cleanup(struct intel_ring_buffer *ring)
608 struct drm_device *dev = ring->dev;
613 if (HAS_BROKEN_CS_TLB(dev))
614 drm_gem_object_unreference(to_gem_object(ring->private));
616 if (INTEL_INFO(dev)->gen >= 5)
617 cleanup_pipe_control(ring);
619 ring->private = NULL;
623 update_mboxes(struct intel_ring_buffer *ring,
626 /* NB: In order to be able to do semaphore MBOX updates for varying number
627 * of rings, it's easiest if we round up each individual update to a
628 * multiple of 2 (since ring updates must always be a multiple of 2)
629 * even though the actual update only requires 3 dwords.
631 #define MBOX_UPDATE_DWORDS 4
632 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
633 intel_ring_emit(ring, mmio_offset);
634 intel_ring_emit(ring, ring->outstanding_lazy_request);
635 intel_ring_emit(ring, MI_NOOP);
639 * gen6_add_request - Update the semaphore mailbox registers
641 * @ring - ring that is adding a request
642 * @seqno - return seqno stuck into the ring
644 * Update the mailbox registers in the *other* rings with the current seqno.
645 * This acts like a signal in the canonical semaphore.
648 gen6_add_request(struct intel_ring_buffer *ring)
650 struct drm_device *dev = ring->dev;
651 struct drm_i915_private *dev_priv = dev->dev_private;
652 struct intel_ring_buffer *useless;
655 ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
656 MBOX_UPDATE_DWORDS) +
660 #undef MBOX_UPDATE_DWORDS
662 for_each_ring(useless, dev_priv, i) {
663 u32 mbox_reg = ring->signal_mbox[i];
664 if (mbox_reg != GEN6_NOSYNC)
665 update_mboxes(ring, mbox_reg);
668 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
669 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
670 intel_ring_emit(ring, ring->outstanding_lazy_request);
671 intel_ring_emit(ring, MI_USER_INTERRUPT);
672 intel_ring_advance(ring);
677 static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
680 struct drm_i915_private *dev_priv = dev->dev_private;
681 return dev_priv->last_seqno < seqno;
685 * intel_ring_sync - sync the waiter to the signaller on seqno
687 * @waiter - ring that is waiting
688 * @signaller - ring which has, or will signal
689 * @seqno - seqno which the waiter will block on
692 gen6_ring_sync(struct intel_ring_buffer *waiter,
693 struct intel_ring_buffer *signaller,
697 u32 dw1 = MI_SEMAPHORE_MBOX |
698 MI_SEMAPHORE_COMPARE |
699 MI_SEMAPHORE_REGISTER;
701 /* Throughout all of the GEM code, seqno passed implies our current
702 * seqno is >= the last seqno executed. However for hardware the
703 * comparison is strictly greater than.
707 WARN_ON(signaller->semaphore_register[waiter->id] ==
708 MI_SEMAPHORE_SYNC_INVALID);
710 ret = intel_ring_begin(waiter, 4);
714 /* If seqno wrap happened, omit the wait with no-ops */
715 if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
716 intel_ring_emit(waiter,
718 signaller->semaphore_register[waiter->id]);
719 intel_ring_emit(waiter, seqno);
720 intel_ring_emit(waiter, 0);
721 intel_ring_emit(waiter, MI_NOOP);
723 intel_ring_emit(waiter, MI_NOOP);
724 intel_ring_emit(waiter, MI_NOOP);
725 intel_ring_emit(waiter, MI_NOOP);
726 intel_ring_emit(waiter, MI_NOOP);
728 intel_ring_advance(waiter);
733 #define PIPE_CONTROL_FLUSH(ring__, addr__) \
735 intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
736 PIPE_CONTROL_DEPTH_STALL); \
737 intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
738 intel_ring_emit(ring__, 0); \
739 intel_ring_emit(ring__, 0); \
743 pc_render_add_request(struct intel_ring_buffer *ring)
745 struct pipe_control *pc = ring->private;
746 u32 scratch_addr = pc->gtt_offset + 128;
749 /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
750 * incoherent with writes to memory, i.e. completely fubar,
751 * so we need to use PIPE_NOTIFY instead.
753 * However, we also need to workaround the qword write
754 * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
755 * memory before requesting an interrupt.
757 ret = intel_ring_begin(ring, 32);
761 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
762 PIPE_CONTROL_WRITE_FLUSH |
763 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
764 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
765 intel_ring_emit(ring, ring->outstanding_lazy_request);
766 intel_ring_emit(ring, 0);
767 PIPE_CONTROL_FLUSH(ring, scratch_addr);
768 scratch_addr += 128; /* write to separate cachelines */
769 PIPE_CONTROL_FLUSH(ring, scratch_addr);
771 PIPE_CONTROL_FLUSH(ring, scratch_addr);
773 PIPE_CONTROL_FLUSH(ring, scratch_addr);
775 PIPE_CONTROL_FLUSH(ring, scratch_addr);
777 PIPE_CONTROL_FLUSH(ring, scratch_addr);
779 intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
780 PIPE_CONTROL_WRITE_FLUSH |
781 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
782 PIPE_CONTROL_NOTIFY);
783 intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
784 intel_ring_emit(ring, ring->outstanding_lazy_request);
785 intel_ring_emit(ring, 0);
786 intel_ring_advance(ring);
792 gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
794 /* Workaround to force correct ordering between irq and seqno writes on
795 * ivb (and maybe also on snb) by reading from a CS register (like
796 * ACTHD) before reading the status page. */
798 intel_ring_get_active_head(ring);
799 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
803 ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
805 return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
809 ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
811 intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
815 pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
817 struct pipe_control *pc = ring->private;
818 return pc->cpu_page[0];
822 pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
824 struct pipe_control *pc = ring->private;
825 pc->cpu_page[0] = seqno;
829 gen5_ring_get_irq(struct intel_ring_buffer *ring)
831 struct drm_device *dev = ring->dev;
832 drm_i915_private_t *dev_priv = dev->dev_private;
835 if (!dev->irq_enabled)
838 spin_lock_irqsave(&dev_priv->irq_lock, flags);
839 if (ring->irq_refcount++ == 0) {
840 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
841 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
844 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
850 gen5_ring_put_irq(struct intel_ring_buffer *ring)
852 struct drm_device *dev = ring->dev;
853 drm_i915_private_t *dev_priv = dev->dev_private;
856 spin_lock_irqsave(&dev_priv->irq_lock, flags);
857 if (--ring->irq_refcount == 0) {
858 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
859 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
862 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
866 i9xx_ring_get_irq(struct intel_ring_buffer *ring)
868 struct drm_device *dev = ring->dev;
869 drm_i915_private_t *dev_priv = dev->dev_private;
872 if (!dev->irq_enabled)
875 spin_lock_irqsave(&dev_priv->irq_lock, flags);
876 if (ring->irq_refcount++ == 0) {
877 dev_priv->irq_mask &= ~ring->irq_enable_mask;
878 I915_WRITE(IMR, dev_priv->irq_mask);
881 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
887 i9xx_ring_put_irq(struct intel_ring_buffer *ring)
889 struct drm_device *dev = ring->dev;
890 drm_i915_private_t *dev_priv = dev->dev_private;
893 spin_lock_irqsave(&dev_priv->irq_lock, flags);
894 if (--ring->irq_refcount == 0) {
895 dev_priv->irq_mask |= ring->irq_enable_mask;
896 I915_WRITE(IMR, dev_priv->irq_mask);
899 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
903 i8xx_ring_get_irq(struct intel_ring_buffer *ring)
905 struct drm_device *dev = ring->dev;
906 drm_i915_private_t *dev_priv = dev->dev_private;
909 if (!dev->irq_enabled)
912 spin_lock_irqsave(&dev_priv->irq_lock, flags);
913 if (ring->irq_refcount++ == 0) {
914 dev_priv->irq_mask &= ~ring->irq_enable_mask;
915 I915_WRITE16(IMR, dev_priv->irq_mask);
918 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
924 i8xx_ring_put_irq(struct intel_ring_buffer *ring)
926 struct drm_device *dev = ring->dev;
927 drm_i915_private_t *dev_priv = dev->dev_private;
930 spin_lock_irqsave(&dev_priv->irq_lock, flags);
931 if (--ring->irq_refcount == 0) {
932 dev_priv->irq_mask |= ring->irq_enable_mask;
933 I915_WRITE16(IMR, dev_priv->irq_mask);
936 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
939 void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
941 struct drm_device *dev = ring->dev;
942 drm_i915_private_t *dev_priv = ring->dev->dev_private;
945 /* The ring status page addresses are no longer next to the rest of
946 * the ring registers as of gen7.
951 mmio = RENDER_HWS_PGA_GEN7;
954 mmio = BLT_HWS_PGA_GEN7;
957 mmio = BSD_HWS_PGA_GEN7;
960 mmio = VEBOX_HWS_PGA_GEN7;
963 } else if (IS_GEN6(ring->dev)) {
964 mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
966 mmio = RING_HWS_PGA(ring->mmio_base);
969 I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
974 bsd_ring_flush(struct intel_ring_buffer *ring,
975 u32 invalidate_domains,
980 ret = intel_ring_begin(ring, 2);
984 intel_ring_emit(ring, MI_FLUSH);
985 intel_ring_emit(ring, MI_NOOP);
986 intel_ring_advance(ring);
991 i9xx_add_request(struct intel_ring_buffer *ring)
995 ret = intel_ring_begin(ring, 4);
999 intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1000 intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1001 intel_ring_emit(ring, ring->outstanding_lazy_request);
1002 intel_ring_emit(ring, MI_USER_INTERRUPT);
1003 intel_ring_advance(ring);
1009 gen6_ring_get_irq(struct intel_ring_buffer *ring)
1011 struct drm_device *dev = ring->dev;
1012 drm_i915_private_t *dev_priv = dev->dev_private;
1013 unsigned long flags;
1015 if (!dev->irq_enabled)
1018 /* It looks like we need to prevent the gt from suspending while waiting
1019 * for an notifiy irq, otherwise irqs seem to get lost on at least the
1020 * blt/bsd rings on ivb. */
1021 gen6_gt_force_wake_get(dev_priv);
1023 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1024 if (ring->irq_refcount++ == 0) {
1025 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1026 I915_WRITE_IMR(ring,
1027 ~(ring->irq_enable_mask |
1028 GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1030 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1031 dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
1032 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1033 POSTING_READ(GTIMR);
1035 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1041 gen6_ring_put_irq(struct intel_ring_buffer *ring)
1043 struct drm_device *dev = ring->dev;
1044 drm_i915_private_t *dev_priv = dev->dev_private;
1045 unsigned long flags;
1047 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1048 if (--ring->irq_refcount == 0) {
1049 if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1050 I915_WRITE_IMR(ring,
1051 ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1053 I915_WRITE_IMR(ring, ~0);
1054 dev_priv->gt_irq_mask |= ring->irq_enable_mask;
1055 I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1056 POSTING_READ(GTIMR);
1058 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1060 gen6_gt_force_wake_put(dev_priv);
1064 hsw_vebox_get_irq(struct intel_ring_buffer *ring)
1066 struct drm_device *dev = ring->dev;
1067 struct drm_i915_private *dev_priv = dev->dev_private;
1068 unsigned long flags;
1070 if (!dev->irq_enabled)
1073 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1074 if (ring->irq_refcount++ == 0) {
1075 u32 pm_imr = I915_READ(GEN6_PMIMR);
1076 I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1077 I915_WRITE(GEN6_PMIMR, pm_imr & ~ring->irq_enable_mask);
1078 POSTING_READ(GEN6_PMIMR);
1080 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1086 hsw_vebox_put_irq(struct intel_ring_buffer *ring)
1088 struct drm_device *dev = ring->dev;
1089 struct drm_i915_private *dev_priv = dev->dev_private;
1090 unsigned long flags;
1092 if (!dev->irq_enabled)
1095 spin_lock_irqsave(&dev_priv->irq_lock, flags);
1096 if (--ring->irq_refcount == 0) {
1097 u32 pm_imr = I915_READ(GEN6_PMIMR);
1098 I915_WRITE_IMR(ring, ~0);
1099 I915_WRITE(GEN6_PMIMR, pm_imr | ring->irq_enable_mask);
1100 POSTING_READ(GEN6_PMIMR);
1102 spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1106 i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1107 u32 offset, u32 length,
1112 ret = intel_ring_begin(ring, 2);
1116 intel_ring_emit(ring,
1117 MI_BATCH_BUFFER_START |
1119 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1120 intel_ring_emit(ring, offset);
1121 intel_ring_advance(ring);
1126 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1127 #define I830_BATCH_LIMIT (256*1024)
1129 i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1130 u32 offset, u32 len,
1135 if (flags & I915_DISPATCH_PINNED) {
1136 ret = intel_ring_begin(ring, 4);
1140 intel_ring_emit(ring, MI_BATCH_BUFFER);
1141 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1142 intel_ring_emit(ring, offset + len - 8);
1143 intel_ring_emit(ring, MI_NOOP);
1144 intel_ring_advance(ring);
1146 struct drm_i915_gem_object *obj = ring->private;
1147 u32 cs_offset = i915_gem_obj_ggtt_offset(obj);
1149 if (len > I830_BATCH_LIMIT)
1152 ret = intel_ring_begin(ring, 9+3);
1155 /* Blit the batch (which has now all relocs applied) to the stable batch
1156 * scratch bo area (so that the CS never stumbles over its tlb
1157 * invalidation bug) ... */
1158 intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1159 XY_SRC_COPY_BLT_WRITE_ALPHA |
1160 XY_SRC_COPY_BLT_WRITE_RGB);
1161 intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1162 intel_ring_emit(ring, 0);
1163 intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1164 intel_ring_emit(ring, cs_offset);
1165 intel_ring_emit(ring, 0);
1166 intel_ring_emit(ring, 4096);
1167 intel_ring_emit(ring, offset);
1168 intel_ring_emit(ring, MI_FLUSH);
1170 /* ... and execute it. */
1171 intel_ring_emit(ring, MI_BATCH_BUFFER);
1172 intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1173 intel_ring_emit(ring, cs_offset + len - 8);
1174 intel_ring_advance(ring);
1181 i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1182 u32 offset, u32 len,
1187 ret = intel_ring_begin(ring, 2);
1191 intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1192 intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1193 intel_ring_advance(ring);
1198 static void cleanup_status_page(struct intel_ring_buffer *ring)
1200 struct drm_i915_gem_object *obj;
1202 obj = ring->status_page.obj;
1206 kunmap(sg_page(obj->pages->sgl));
1207 i915_gem_object_unpin(obj);
1208 drm_gem_object_unreference(&obj->base);
1209 ring->status_page.obj = NULL;
1212 static int init_status_page(struct intel_ring_buffer *ring)
1214 struct drm_device *dev = ring->dev;
1215 struct drm_i915_gem_object *obj;
1218 obj = i915_gem_alloc_object(dev, 4096);
1220 DRM_ERROR("Failed to allocate status page\n");
1225 i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1227 ret = i915_gem_object_pin(obj, 4096, true, false);
1232 ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
1233 ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
1234 if (ring->status_page.page_addr == NULL) {
1238 ring->status_page.obj = obj;
1239 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1241 DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1242 ring->name, ring->status_page.gfx_addr);
1247 i915_gem_object_unpin(obj);
1249 drm_gem_object_unreference(&obj->base);
1254 static int init_phys_status_page(struct intel_ring_buffer *ring)
1256 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1258 if (!dev_priv->status_page_dmah) {
1259 dev_priv->status_page_dmah =
1260 drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
1261 if (!dev_priv->status_page_dmah)
1265 ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
1266 memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1271 static int intel_init_ring_buffer(struct drm_device *dev,
1272 struct intel_ring_buffer *ring)
1274 struct drm_i915_gem_object *obj;
1275 struct drm_i915_private *dev_priv = dev->dev_private;
1279 INIT_LIST_HEAD(&ring->active_list);
1280 INIT_LIST_HEAD(&ring->request_list);
1281 ring->size = 32 * PAGE_SIZE;
1282 memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1284 init_waitqueue_head(&ring->irq_queue);
1286 if (I915_NEED_GFX_HWS(dev)) {
1287 ret = init_status_page(ring);
1291 BUG_ON(ring->id != RCS);
1292 ret = init_phys_status_page(ring);
1299 obj = i915_gem_object_create_stolen(dev, ring->size);
1301 obj = i915_gem_alloc_object(dev, ring->size);
1303 DRM_ERROR("Failed to allocate ringbuffer\n");
1310 ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1314 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1318 ring->virtual_start =
1319 ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
1321 if (ring->virtual_start == NULL) {
1322 DRM_ERROR("Failed to map ringbuffer.\n");
1327 ret = ring->init(ring);
1331 /* Workaround an erratum on the i830 which causes a hang if
1332 * the TAIL pointer points to within the last 2 cachelines
1335 ring->effective_size = ring->size;
1336 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1337 ring->effective_size -= 128;
1342 iounmap(ring->virtual_start);
1344 i915_gem_object_unpin(obj);
1346 drm_gem_object_unreference(&obj->base);
1349 cleanup_status_page(ring);
1353 void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1355 struct drm_i915_private *dev_priv;
1358 if (ring->obj == NULL)
1361 /* Disable the ring buffer. The ring must be idle at this point */
1362 dev_priv = ring->dev->dev_private;
1363 ret = intel_ring_idle(ring);
1365 DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1368 I915_WRITE_CTL(ring, 0);
1370 iounmap(ring->virtual_start);
1372 i915_gem_object_unpin(ring->obj);
1373 drm_gem_object_unreference(&ring->obj->base);
1377 ring->cleanup(ring);
1379 cleanup_status_page(ring);
1382 static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1386 ret = i915_wait_seqno(ring, seqno);
1388 i915_gem_retire_requests_ring(ring);
1393 static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1395 struct drm_i915_gem_request *request;
1399 i915_gem_retire_requests_ring(ring);
1401 if (ring->last_retired_head != -1) {
1402 ring->head = ring->last_retired_head;
1403 ring->last_retired_head = -1;
1404 ring->space = ring_space(ring);
1405 if (ring->space >= n)
1409 list_for_each_entry(request, &ring->request_list, list) {
1412 if (request->tail == -1)
1415 space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1417 space += ring->size;
1419 seqno = request->seqno;
1423 /* Consume this request in case we need more space than
1424 * is available and so need to prevent a race between
1425 * updating last_retired_head and direct reads of
1426 * I915_RING_HEAD. It also provides a nice sanity check.
1434 ret = intel_ring_wait_seqno(ring, seqno);
1438 if (WARN_ON(ring->last_retired_head == -1))
1441 ring->head = ring->last_retired_head;
1442 ring->last_retired_head = -1;
1443 ring->space = ring_space(ring);
1444 if (WARN_ON(ring->space < n))
1450 static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1452 struct drm_device *dev = ring->dev;
1453 struct drm_i915_private *dev_priv = dev->dev_private;
1457 ret = intel_ring_wait_request(ring, n);
1461 trace_i915_ring_wait_begin(ring);
1462 /* With GEM the hangcheck timer should kick us out of the loop,
1463 * leaving it early runs the risk of corrupting GEM state (due
1464 * to running on almost untested codepaths). But on resume
1465 * timers don't work yet, so prevent a complete hang in that
1466 * case by choosing an insanely large timeout. */
1467 end = jiffies + 60 * HZ;
1470 ring->head = I915_READ_HEAD(ring);
1471 ring->space = ring_space(ring);
1472 if (ring->space >= n) {
1473 trace_i915_ring_wait_end(ring);
1477 if (dev->primary->master) {
1478 struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1479 if (master_priv->sarea_priv)
1480 master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1485 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1486 dev_priv->mm.interruptible);
1489 } while (!time_after(jiffies, end));
1490 trace_i915_ring_wait_end(ring);
1494 static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1496 uint32_t __iomem *virt;
1497 int rem = ring->size - ring->tail;
1499 if (ring->space < rem) {
1500 int ret = ring_wait_for_space(ring, rem);
1505 virt = ring->virtual_start + ring->tail;
1508 iowrite32(MI_NOOP, virt++);
1511 ring->space = ring_space(ring);
1516 int intel_ring_idle(struct intel_ring_buffer *ring)
1521 /* We need to add any requests required to flush the objects and ring */
1522 if (ring->outstanding_lazy_request) {
1523 ret = i915_add_request(ring, NULL);
1528 /* Wait upon the last request to be completed */
1529 if (list_empty(&ring->request_list))
1532 seqno = list_entry(ring->request_list.prev,
1533 struct drm_i915_gem_request,
1536 return i915_wait_seqno(ring, seqno);
1540 intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1542 if (ring->outstanding_lazy_request)
1545 return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1548 static int __intel_ring_begin(struct intel_ring_buffer *ring,
1553 if (unlikely(ring->tail + bytes > ring->effective_size)) {
1554 ret = intel_wrap_ring_buffer(ring);
1559 if (unlikely(ring->space < bytes)) {
1560 ret = ring_wait_for_space(ring, bytes);
1565 ring->space -= bytes;
1569 int intel_ring_begin(struct intel_ring_buffer *ring,
1572 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1575 ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1576 dev_priv->mm.interruptible);
1580 /* Preallocate the olr before touching the ring */
1581 ret = intel_ring_alloc_seqno(ring);
1585 return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1588 void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1590 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1592 BUG_ON(ring->outstanding_lazy_request);
1594 if (INTEL_INFO(ring->dev)->gen >= 6) {
1595 I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1596 I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1599 ring->set_seqno(ring, seqno);
1600 ring->hangcheck.seqno = seqno;
1603 void intel_ring_advance(struct intel_ring_buffer *ring)
1605 struct drm_i915_private *dev_priv = ring->dev->dev_private;
1607 ring->tail &= ring->size - 1;
1608 if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1610 ring->write_tail(ring, ring->tail);
1614 static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1617 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1619 /* Every tail move must follow the sequence below */
1621 /* Disable notification that the ring is IDLE. The GT
1622 * will then assume that it is busy and bring it out of rc6.
1624 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1625 _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1627 /* Clear the context id. Here be magic! */
1628 I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1630 /* Wait for the ring not to be idle, i.e. for it to wake up. */
1631 if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1632 GEN6_BSD_SLEEP_INDICATOR) == 0,
1634 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1636 /* Now that the ring is fully powered up, update the tail */
1637 I915_WRITE_TAIL(ring, value);
1638 POSTING_READ(RING_TAIL(ring->mmio_base));
1640 /* Let the ring send IDLE messages to the GT again,
1641 * and so let it sleep to conserve power when idle.
1643 I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1644 _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1647 static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1648 u32 invalidate, u32 flush)
1653 ret = intel_ring_begin(ring, 4);
1659 * Bspec vol 1c.5 - video engine command streamer:
1660 * "If ENABLED, all TLBs will be invalidated once the flush
1661 * operation is complete. This bit is only valid when the
1662 * Post-Sync Operation field is a value of 1h or 3h."
1664 if (invalidate & I915_GEM_GPU_DOMAINS)
1665 cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1666 MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1667 intel_ring_emit(ring, cmd);
1668 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1669 intel_ring_emit(ring, 0);
1670 intel_ring_emit(ring, MI_NOOP);
1671 intel_ring_advance(ring);
1676 hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1677 u32 offset, u32 len,
1682 ret = intel_ring_begin(ring, 2);
1686 intel_ring_emit(ring,
1687 MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1688 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1689 /* bit0-7 is the length on GEN6+ */
1690 intel_ring_emit(ring, offset);
1691 intel_ring_advance(ring);
1697 gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1698 u32 offset, u32 len,
1703 ret = intel_ring_begin(ring, 2);
1707 intel_ring_emit(ring,
1708 MI_BATCH_BUFFER_START |
1709 (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1710 /* bit0-7 is the length on GEN6+ */
1711 intel_ring_emit(ring, offset);
1712 intel_ring_advance(ring);
1717 /* Blitter support (SandyBridge+) */
1719 static int gen6_ring_flush(struct intel_ring_buffer *ring,
1720 u32 invalidate, u32 flush)
1722 struct drm_device *dev = ring->dev;
1726 ret = intel_ring_begin(ring, 4);
1732 * Bspec vol 1c.3 - blitter engine command streamer:
1733 * "If ENABLED, all TLBs will be invalidated once the flush
1734 * operation is complete. This bit is only valid when the
1735 * Post-Sync Operation field is a value of 1h or 3h."
1737 if (invalidate & I915_GEM_DOMAIN_RENDER)
1738 cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1739 MI_FLUSH_DW_OP_STOREDW;
1740 intel_ring_emit(ring, cmd);
1741 intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1742 intel_ring_emit(ring, 0);
1743 intel_ring_emit(ring, MI_NOOP);
1744 intel_ring_advance(ring);
1746 if (IS_GEN7(dev) && flush)
1747 return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1752 int intel_init_render_ring_buffer(struct drm_device *dev)
1754 drm_i915_private_t *dev_priv = dev->dev_private;
1755 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1757 ring->name = "render ring";
1759 ring->mmio_base = RENDER_RING_BASE;
1761 if (INTEL_INFO(dev)->gen >= 6) {
1762 ring->add_request = gen6_add_request;
1763 ring->flush = gen7_render_ring_flush;
1764 if (INTEL_INFO(dev)->gen == 6)
1765 ring->flush = gen6_render_ring_flush;
1766 ring->irq_get = gen6_ring_get_irq;
1767 ring->irq_put = gen6_ring_put_irq;
1768 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1769 ring->get_seqno = gen6_ring_get_seqno;
1770 ring->set_seqno = ring_set_seqno;
1771 ring->sync_to = gen6_ring_sync;
1772 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1773 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1774 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1775 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1776 ring->signal_mbox[RCS] = GEN6_NOSYNC;
1777 ring->signal_mbox[VCS] = GEN6_VRSYNC;
1778 ring->signal_mbox[BCS] = GEN6_BRSYNC;
1779 ring->signal_mbox[VECS] = GEN6_VERSYNC;
1780 } else if (IS_GEN5(dev)) {
1781 ring->add_request = pc_render_add_request;
1782 ring->flush = gen4_render_ring_flush;
1783 ring->get_seqno = pc_render_get_seqno;
1784 ring->set_seqno = pc_render_set_seqno;
1785 ring->irq_get = gen5_ring_get_irq;
1786 ring->irq_put = gen5_ring_put_irq;
1787 ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1788 GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1790 ring->add_request = i9xx_add_request;
1791 if (INTEL_INFO(dev)->gen < 4)
1792 ring->flush = gen2_render_ring_flush;
1794 ring->flush = gen4_render_ring_flush;
1795 ring->get_seqno = ring_get_seqno;
1796 ring->set_seqno = ring_set_seqno;
1798 ring->irq_get = i8xx_ring_get_irq;
1799 ring->irq_put = i8xx_ring_put_irq;
1801 ring->irq_get = i9xx_ring_get_irq;
1802 ring->irq_put = i9xx_ring_put_irq;
1804 ring->irq_enable_mask = I915_USER_INTERRUPT;
1806 ring->write_tail = ring_write_tail;
1807 if (IS_HASWELL(dev))
1808 ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1809 else if (INTEL_INFO(dev)->gen >= 6)
1810 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1811 else if (INTEL_INFO(dev)->gen >= 4)
1812 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1813 else if (IS_I830(dev) || IS_845G(dev))
1814 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1816 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1817 ring->init = init_render_ring;
1818 ring->cleanup = render_ring_cleanup;
1820 /* Workaround batchbuffer to combat CS tlb bug. */
1821 if (HAS_BROKEN_CS_TLB(dev)) {
1822 struct drm_i915_gem_object *obj;
1825 obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1827 DRM_ERROR("Failed to allocate batch bo\n");
1831 ret = i915_gem_object_pin(obj, 0, true, false);
1833 drm_gem_object_unreference(&obj->base);
1834 DRM_ERROR("Failed to ping batch bo\n");
1838 ring->private = obj;
1841 return intel_init_ring_buffer(dev, ring);
1844 int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1846 drm_i915_private_t *dev_priv = dev->dev_private;
1847 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1850 ring->name = "render ring";
1852 ring->mmio_base = RENDER_RING_BASE;
1854 if (INTEL_INFO(dev)->gen >= 6) {
1855 /* non-kms not supported on gen6+ */
1859 /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1860 * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1861 * the special gen5 functions. */
1862 ring->add_request = i9xx_add_request;
1863 if (INTEL_INFO(dev)->gen < 4)
1864 ring->flush = gen2_render_ring_flush;
1866 ring->flush = gen4_render_ring_flush;
1867 ring->get_seqno = ring_get_seqno;
1868 ring->set_seqno = ring_set_seqno;
1870 ring->irq_get = i8xx_ring_get_irq;
1871 ring->irq_put = i8xx_ring_put_irq;
1873 ring->irq_get = i9xx_ring_get_irq;
1874 ring->irq_put = i9xx_ring_put_irq;
1876 ring->irq_enable_mask = I915_USER_INTERRUPT;
1877 ring->write_tail = ring_write_tail;
1878 if (INTEL_INFO(dev)->gen >= 4)
1879 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1880 else if (IS_I830(dev) || IS_845G(dev))
1881 ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1883 ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1884 ring->init = init_render_ring;
1885 ring->cleanup = render_ring_cleanup;
1888 INIT_LIST_HEAD(&ring->active_list);
1889 INIT_LIST_HEAD(&ring->request_list);
1892 ring->effective_size = ring->size;
1893 if (IS_I830(ring->dev) || IS_845G(ring->dev))
1894 ring->effective_size -= 128;
1896 ring->virtual_start = ioremap_wc(start, size);
1897 if (ring->virtual_start == NULL) {
1898 DRM_ERROR("can not ioremap virtual address for"
1903 if (!I915_NEED_GFX_HWS(dev)) {
1904 ret = init_phys_status_page(ring);
1912 int intel_init_bsd_ring_buffer(struct drm_device *dev)
1914 drm_i915_private_t *dev_priv = dev->dev_private;
1915 struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1917 ring->name = "bsd ring";
1920 ring->write_tail = ring_write_tail;
1921 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1922 ring->mmio_base = GEN6_BSD_RING_BASE;
1923 /* gen6 bsd needs a special wa for tail updates */
1925 ring->write_tail = gen6_bsd_ring_write_tail;
1926 ring->flush = gen6_bsd_ring_flush;
1927 ring->add_request = gen6_add_request;
1928 ring->get_seqno = gen6_ring_get_seqno;
1929 ring->set_seqno = ring_set_seqno;
1930 ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1931 ring->irq_get = gen6_ring_get_irq;
1932 ring->irq_put = gen6_ring_put_irq;
1933 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1934 ring->sync_to = gen6_ring_sync;
1935 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1936 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1937 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1938 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1939 ring->signal_mbox[RCS] = GEN6_RVSYNC;
1940 ring->signal_mbox[VCS] = GEN6_NOSYNC;
1941 ring->signal_mbox[BCS] = GEN6_BVSYNC;
1942 ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1944 ring->mmio_base = BSD_RING_BASE;
1945 ring->flush = bsd_ring_flush;
1946 ring->add_request = i9xx_add_request;
1947 ring->get_seqno = ring_get_seqno;
1948 ring->set_seqno = ring_set_seqno;
1950 ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1951 ring->irq_get = gen5_ring_get_irq;
1952 ring->irq_put = gen5_ring_put_irq;
1954 ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1955 ring->irq_get = i9xx_ring_get_irq;
1956 ring->irq_put = i9xx_ring_put_irq;
1958 ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1960 ring->init = init_ring_common;
1962 return intel_init_ring_buffer(dev, ring);
1965 int intel_init_blt_ring_buffer(struct drm_device *dev)
1967 drm_i915_private_t *dev_priv = dev->dev_private;
1968 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1970 ring->name = "blitter ring";
1973 ring->mmio_base = BLT_RING_BASE;
1974 ring->write_tail = ring_write_tail;
1975 ring->flush = gen6_ring_flush;
1976 ring->add_request = gen6_add_request;
1977 ring->get_seqno = gen6_ring_get_seqno;
1978 ring->set_seqno = ring_set_seqno;
1979 ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1980 ring->irq_get = gen6_ring_get_irq;
1981 ring->irq_put = gen6_ring_put_irq;
1982 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1983 ring->sync_to = gen6_ring_sync;
1984 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1985 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1986 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1987 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
1988 ring->signal_mbox[RCS] = GEN6_RBSYNC;
1989 ring->signal_mbox[VCS] = GEN6_VBSYNC;
1990 ring->signal_mbox[BCS] = GEN6_NOSYNC;
1991 ring->signal_mbox[VECS] = GEN6_VEBSYNC;
1992 ring->init = init_ring_common;
1994 return intel_init_ring_buffer(dev, ring);
1997 int intel_init_vebox_ring_buffer(struct drm_device *dev)
1999 drm_i915_private_t *dev_priv = dev->dev_private;
2000 struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
2002 ring->name = "video enhancement ring";
2005 ring->mmio_base = VEBOX_RING_BASE;
2006 ring->write_tail = ring_write_tail;
2007 ring->flush = gen6_ring_flush;
2008 ring->add_request = gen6_add_request;
2009 ring->get_seqno = gen6_ring_get_seqno;
2010 ring->set_seqno = ring_set_seqno;
2011 ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2012 ring->irq_get = hsw_vebox_get_irq;
2013 ring->irq_put = hsw_vebox_put_irq;
2014 ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
2015 ring->sync_to = gen6_ring_sync;
2016 ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
2017 ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
2018 ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
2019 ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
2020 ring->signal_mbox[RCS] = GEN6_RVESYNC;
2021 ring->signal_mbox[VCS] = GEN6_VVESYNC;
2022 ring->signal_mbox[BCS] = GEN6_BVESYNC;
2023 ring->signal_mbox[VECS] = GEN6_NOSYNC;
2024 ring->init = init_ring_common;
2026 return intel_init_ring_buffer(dev, ring);
2030 intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
2034 if (!ring->gpu_caches_dirty)
2037 ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
2041 trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
2043 ring->gpu_caches_dirty = false;
2048 intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
2050 uint32_t flush_domains;
2054 if (ring->gpu_caches_dirty)
2055 flush_domains = I915_GEM_GPU_DOMAINS;
2057 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2061 trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
2063 ring->gpu_caches_dirty = false;