1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Simple synchronous userspace interface to SPI devices
5 * Copyright (C) 2006 SWAPP
7 * Copyright (C) 2007 David Brownell (simplification, cleanup)
10 #include <linux/init.h>
11 #include <linux/ioctl.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/list.h>
16 #include <linux/errno.h>
17 #include <linux/mod_devicetable.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/property.h>
21 #include <linux/slab.h>
22 #include <linux/compat.h>
24 #include <linux/spi/spi.h>
25 #include <linux/spi/spidev.h>
27 #include <linux/uaccess.h>
31 * This supports access to SPI devices using normal userspace I/O calls.
32 * Note that while traditional UNIX/POSIX I/O semantics are half duplex,
33 * and often mask message boundaries, full SPI support requires full duplex
34 * transfers. There are several kinds of internal message boundaries to
35 * handle chipselect management and other protocol options.
37 * SPI has a character major number assigned. We allocate minor numbers
38 * dynamically using a bitmask. You must use hotplug tools, such as udev
39 * (or mdev with busybox) to create and destroy the /dev/spidevB.C device
40 * nodes, since there is no fixed association of minor numbers with any
41 * particular SPI bus or device.
43 #define SPIDEV_MAJOR 153 /* assigned */
44 #define N_SPI_MINORS 32 /* ... up to 256 */
46 static DECLARE_BITMAP(minors, N_SPI_MINORS);
48 static_assert(N_SPI_MINORS > 0 && N_SPI_MINORS <= 256);
50 /* Bit masks for spi_device.mode management. Note that incorrect
51 * settings for some settings can cause *lots* of trouble for other
52 * devices on a shared bus:
54 * - CS_HIGH ... this device will be active when it shouldn't be
55 * - 3WIRE ... when active, it won't behave as it should
56 * - NO_CS ... there will be no explicit message boundaries; this
57 * is completely incompatible with the shared bus model
58 * - READY ... transfers may proceed when they shouldn't.
60 * REVISIT should changing those flags be privileged?
62 #define SPI_MODE_MASK (SPI_MODE_X_MASK | SPI_CS_HIGH \
63 | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
64 | SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
65 | SPI_TX_QUAD | SPI_TX_OCTAL | SPI_RX_DUAL \
66 | SPI_RX_QUAD | SPI_RX_OCTAL \
71 struct mutex spi_lock;
72 struct spi_device *spi;
73 struct list_head device_entry;
75 /* TX/RX buffers are NULL unless this device is open (users > 0) */
76 struct mutex buf_lock;
83 static LIST_HEAD(device_list);
84 static DEFINE_MUTEX(device_list_lock);
86 static unsigned bufsiz = 4096;
87 module_param(bufsiz, uint, S_IRUGO);
88 MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message");
90 /*-------------------------------------------------------------------------*/
93 spidev_sync_unlocked(struct spi_device *spi, struct spi_message *message)
97 status = spi_sync(spi, message);
99 status = message->actual_length;
105 spidev_sync(struct spidev_data *spidev, struct spi_message *message)
108 struct spi_device *spi;
110 mutex_lock(&spidev->spi_lock);
116 status = spidev_sync_unlocked(spi, message);
118 mutex_unlock(&spidev->spi_lock);
122 static inline ssize_t
123 spidev_sync_write(struct spidev_data *spidev, size_t len)
125 struct spi_transfer t = {
126 .tx_buf = spidev->tx_buffer,
128 .speed_hz = spidev->speed_hz,
130 struct spi_message m;
132 spi_message_init(&m);
133 spi_message_add_tail(&t, &m);
134 return spidev_sync(spidev, &m);
137 static inline ssize_t
138 spidev_sync_read(struct spidev_data *spidev, size_t len)
140 struct spi_transfer t = {
141 .rx_buf = spidev->rx_buffer,
143 .speed_hz = spidev->speed_hz,
145 struct spi_message m;
147 spi_message_init(&m);
148 spi_message_add_tail(&t, &m);
149 return spidev_sync(spidev, &m);
152 /*-------------------------------------------------------------------------*/
154 /* Read-only message with current device setup */
156 spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
158 struct spidev_data *spidev;
161 /* chipselect only toggles at start or end of operation */
165 spidev = filp->private_data;
167 mutex_lock(&spidev->buf_lock);
168 status = spidev_sync_read(spidev, count);
170 unsigned long missing;
172 missing = copy_to_user(buf, spidev->rx_buffer, status);
173 if (missing == status)
176 status = status - missing;
178 mutex_unlock(&spidev->buf_lock);
183 /* Write-only message with current device setup */
185 spidev_write(struct file *filp, const char __user *buf,
186 size_t count, loff_t *f_pos)
188 struct spidev_data *spidev;
190 unsigned long missing;
192 /* chipselect only toggles at start or end of operation */
196 spidev = filp->private_data;
198 mutex_lock(&spidev->buf_lock);
199 missing = copy_from_user(spidev->tx_buffer, buf, count);
201 status = spidev_sync_write(spidev, count);
204 mutex_unlock(&spidev->buf_lock);
209 static int spidev_message(struct spidev_data *spidev,
210 struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
212 struct spi_message msg;
213 struct spi_transfer *k_xfers;
214 struct spi_transfer *k_tmp;
215 struct spi_ioc_transfer *u_tmp;
216 unsigned n, total, tx_total, rx_total;
218 int status = -EFAULT;
220 spi_message_init(&msg);
221 k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);
225 /* Construct spi_message, copying any tx data to bounce buffer.
226 * We walk the array of user-provided transfers, using each one
227 * to initialize a kernel version of the same transfer.
229 tx_buf = spidev->tx_buffer;
230 rx_buf = spidev->rx_buffer;
234 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
236 n--, k_tmp++, u_tmp++) {
237 /* Ensure that also following allocations from rx_buf/tx_buf will meet
238 * DMA alignment requirements.
240 unsigned int len_aligned = ALIGN(u_tmp->len, ARCH_KMALLOC_MINALIGN);
242 k_tmp->len = u_tmp->len;
245 /* Since the function returns the total length of transfers
246 * on success, restrict the total to positive int values to
247 * avoid the return value looking like an error. Also check
248 * each transfer length to avoid arithmetic overflow.
250 if (total > INT_MAX || k_tmp->len > INT_MAX) {
256 /* this transfer needs space in RX bounce buffer */
257 rx_total += len_aligned;
258 if (rx_total > bufsiz) {
262 k_tmp->rx_buf = rx_buf;
263 rx_buf += len_aligned;
266 /* this transfer needs space in TX bounce buffer */
267 tx_total += len_aligned;
268 if (tx_total > bufsiz) {
272 k_tmp->tx_buf = tx_buf;
273 if (copy_from_user(tx_buf, (const u8 __user *)
274 (uintptr_t) u_tmp->tx_buf,
277 tx_buf += len_aligned;
280 k_tmp->cs_change = !!u_tmp->cs_change;
281 k_tmp->tx_nbits = u_tmp->tx_nbits;
282 k_tmp->rx_nbits = u_tmp->rx_nbits;
283 k_tmp->bits_per_word = u_tmp->bits_per_word;
284 k_tmp->delay.value = u_tmp->delay_usecs;
285 k_tmp->delay.unit = SPI_DELAY_UNIT_USECS;
286 k_tmp->speed_hz = u_tmp->speed_hz;
287 k_tmp->word_delay.value = u_tmp->word_delay_usecs;
288 k_tmp->word_delay.unit = SPI_DELAY_UNIT_USECS;
289 if (!k_tmp->speed_hz)
290 k_tmp->speed_hz = spidev->speed_hz;
292 dev_dbg(&spidev->spi->dev,
293 " xfer len %u %s%s%s%dbits %u usec %u usec %uHz\n",
295 k_tmp->rx_buf ? "rx " : "",
296 k_tmp->tx_buf ? "tx " : "",
297 k_tmp->cs_change ? "cs " : "",
298 k_tmp->bits_per_word ? : spidev->spi->bits_per_word,
300 k_tmp->word_delay.value,
301 k_tmp->speed_hz ? : spidev->spi->max_speed_hz);
303 spi_message_add_tail(k_tmp, &msg);
306 status = spidev_sync_unlocked(spidev->spi, &msg);
310 /* copy any rx data out of bounce buffer */
311 for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
313 n--, k_tmp++, u_tmp++) {
315 if (copy_to_user((u8 __user *)
316 (uintptr_t) u_tmp->rx_buf, k_tmp->rx_buf,
330 static struct spi_ioc_transfer *
331 spidev_get_ioc_message(unsigned int cmd, struct spi_ioc_transfer __user *u_ioc,
336 /* Check type, command number and direction */
337 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC
338 || _IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
339 || _IOC_DIR(cmd) != _IOC_WRITE)
340 return ERR_PTR(-ENOTTY);
342 tmp = _IOC_SIZE(cmd);
343 if ((tmp % sizeof(struct spi_ioc_transfer)) != 0)
344 return ERR_PTR(-EINVAL);
345 *n_ioc = tmp / sizeof(struct spi_ioc_transfer);
349 /* copy into scratch area */
350 return memdup_user(u_ioc, tmp);
354 spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
357 struct spidev_data *spidev;
358 struct spi_device *spi;
361 struct spi_ioc_transfer *ioc;
363 /* Check type and command number */
364 if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)
367 /* guard against device removal before, or while,
368 * we issue this ioctl.
370 spidev = filp->private_data;
371 mutex_lock(&spidev->spi_lock);
372 spi = spi_dev_get(spidev->spi);
374 mutex_unlock(&spidev->spi_lock);
378 /* use the buffer lock here for triple duty:
379 * - prevent I/O (from us) so calling spi_setup() is safe;
380 * - prevent concurrent SPI_IOC_WR_* from morphing
381 * data fields while SPI_IOC_RD_* reads them;
382 * - SPI_IOC_MESSAGE needs the buffer locked "normally".
384 mutex_lock(&spidev->buf_lock);
388 case SPI_IOC_RD_MODE:
389 case SPI_IOC_RD_MODE32:
393 struct spi_controller *ctlr = spi->controller;
395 if (ctlr->use_gpio_descriptors && ctlr->cs_gpiods &&
396 ctlr->cs_gpiods[spi_get_chipselect(spi, 0)])
400 if (cmd == SPI_IOC_RD_MODE)
401 retval = put_user(tmp & SPI_MODE_MASK,
404 retval = put_user(tmp & SPI_MODE_MASK,
405 (__u32 __user *)arg);
407 case SPI_IOC_RD_LSB_FIRST:
408 retval = put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0,
411 case SPI_IOC_RD_BITS_PER_WORD:
412 retval = put_user(spi->bits_per_word, (__u8 __user *)arg);
414 case SPI_IOC_RD_MAX_SPEED_HZ:
415 retval = put_user(spidev->speed_hz, (__u32 __user *)arg);
419 case SPI_IOC_WR_MODE:
420 case SPI_IOC_WR_MODE32:
421 if (cmd == SPI_IOC_WR_MODE)
422 retval = get_user(tmp, (u8 __user *)arg);
424 retval = get_user(tmp, (u32 __user *)arg);
426 struct spi_controller *ctlr = spi->controller;
427 u32 save = spi->mode;
429 if (tmp & ~SPI_MODE_MASK) {
434 if (ctlr->use_gpio_descriptors && ctlr->cs_gpiods &&
435 ctlr->cs_gpiods[spi_get_chipselect(spi, 0)])
438 tmp |= spi->mode & ~SPI_MODE_MASK;
439 spi->mode = tmp & SPI_MODE_USER_MASK;
440 retval = spi_setup(spi);
444 dev_dbg(&spi->dev, "spi mode %x\n", tmp);
447 case SPI_IOC_WR_LSB_FIRST:
448 retval = get_user(tmp, (__u8 __user *)arg);
450 u32 save = spi->mode;
453 spi->mode |= SPI_LSB_FIRST;
455 spi->mode &= ~SPI_LSB_FIRST;
456 retval = spi_setup(spi);
460 dev_dbg(&spi->dev, "%csb first\n",
464 case SPI_IOC_WR_BITS_PER_WORD:
465 retval = get_user(tmp, (__u8 __user *)arg);
467 u8 save = spi->bits_per_word;
469 spi->bits_per_word = tmp;
470 retval = spi_setup(spi);
472 spi->bits_per_word = save;
474 dev_dbg(&spi->dev, "%d bits per word\n", tmp);
477 case SPI_IOC_WR_MAX_SPEED_HZ: {
480 retval = get_user(tmp, (__u32 __user *)arg);
488 save = spi->max_speed_hz;
490 spi->max_speed_hz = tmp;
491 retval = spi_setup(spi);
493 spidev->speed_hz = tmp;
494 dev_dbg(&spi->dev, "%d Hz (max)\n", spidev->speed_hz);
497 spi->max_speed_hz = save;
501 /* segmented and/or full-duplex I/O request */
502 /* Check message and copy into scratch area */
503 ioc = spidev_get_ioc_message(cmd,
504 (struct spi_ioc_transfer __user *)arg, &n_ioc);
506 retval = PTR_ERR(ioc);
510 break; /* n_ioc is also 0 */
512 /* translate to spi_message, execute */
513 retval = spidev_message(spidev, ioc, n_ioc);
518 mutex_unlock(&spidev->buf_lock);
520 mutex_unlock(&spidev->spi_lock);
526 spidev_compat_ioc_message(struct file *filp, unsigned int cmd,
529 struct spi_ioc_transfer __user *u_ioc;
531 struct spidev_data *spidev;
532 struct spi_device *spi;
534 struct spi_ioc_transfer *ioc;
536 u_ioc = (struct spi_ioc_transfer __user *) compat_ptr(arg);
538 /* guard against device removal before, or while,
539 * we issue this ioctl.
541 spidev = filp->private_data;
542 mutex_lock(&spidev->spi_lock);
543 spi = spi_dev_get(spidev->spi);
545 mutex_unlock(&spidev->spi_lock);
549 /* SPI_IOC_MESSAGE needs the buffer locked "normally" */
550 mutex_lock(&spidev->buf_lock);
552 /* Check message and copy into scratch area */
553 ioc = spidev_get_ioc_message(cmd, u_ioc, &n_ioc);
555 retval = PTR_ERR(ioc);
559 goto done; /* n_ioc is also 0 */
561 /* Convert buffer pointers */
562 for (n = 0; n < n_ioc; n++) {
563 ioc[n].rx_buf = (uintptr_t) compat_ptr(ioc[n].rx_buf);
564 ioc[n].tx_buf = (uintptr_t) compat_ptr(ioc[n].tx_buf);
567 /* translate to spi_message, execute */
568 retval = spidev_message(spidev, ioc, n_ioc);
572 mutex_unlock(&spidev->buf_lock);
574 mutex_unlock(&spidev->spi_lock);
579 spidev_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
581 if (_IOC_TYPE(cmd) == SPI_IOC_MAGIC
582 && _IOC_NR(cmd) == _IOC_NR(SPI_IOC_MESSAGE(0))
583 && _IOC_DIR(cmd) == _IOC_WRITE)
584 return spidev_compat_ioc_message(filp, cmd, arg);
586 return spidev_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
589 #define spidev_compat_ioctl NULL
590 #endif /* CONFIG_COMPAT */
592 static int spidev_open(struct inode *inode, struct file *filp)
594 struct spidev_data *spidev = NULL, *iter;
597 mutex_lock(&device_list_lock);
599 list_for_each_entry(iter, &device_list, device_entry) {
600 if (iter->devt == inode->i_rdev) {
608 pr_debug("spidev: nothing for minor %d\n", iminor(inode));
612 if (!spidev->tx_buffer) {
613 spidev->tx_buffer = kmalloc(bufsiz, GFP_KERNEL);
614 if (!spidev->tx_buffer) {
620 if (!spidev->rx_buffer) {
621 spidev->rx_buffer = kmalloc(bufsiz, GFP_KERNEL);
622 if (!spidev->rx_buffer) {
624 goto err_alloc_rx_buf;
629 filp->private_data = spidev;
630 stream_open(inode, filp);
632 mutex_unlock(&device_list_lock);
636 kfree(spidev->tx_buffer);
637 spidev->tx_buffer = NULL;
639 mutex_unlock(&device_list_lock);
643 static int spidev_release(struct inode *inode, struct file *filp)
645 struct spidev_data *spidev;
648 mutex_lock(&device_list_lock);
649 spidev = filp->private_data;
650 filp->private_data = NULL;
652 mutex_lock(&spidev->spi_lock);
653 /* ... after we unbound from the underlying device? */
654 dofree = (spidev->spi == NULL);
655 mutex_unlock(&spidev->spi_lock);
659 if (!spidev->users) {
661 kfree(spidev->tx_buffer);
662 spidev->tx_buffer = NULL;
664 kfree(spidev->rx_buffer);
665 spidev->rx_buffer = NULL;
670 spidev->speed_hz = spidev->spi->max_speed_hz;
672 #ifdef CONFIG_SPI_SLAVE
674 spi_slave_abort(spidev->spi);
676 mutex_unlock(&device_list_lock);
681 static const struct file_operations spidev_fops = {
682 .owner = THIS_MODULE,
683 /* REVISIT switch to aio primitives, so that userspace
684 * gets more complete API coverage. It'll simplify things
685 * too, except for the locking.
687 .write = spidev_write,
689 .unlocked_ioctl = spidev_ioctl,
690 .compat_ioctl = spidev_compat_ioctl,
692 .release = spidev_release,
696 /*-------------------------------------------------------------------------*/
698 /* The main reason to have this class is to make mdev/udev create the
699 * /dev/spidevB.C character device nodes exposing our userspace API.
700 * It also simplifies memory management.
703 static struct class *spidev_class;
705 static const struct spi_device_id spidev_spi_ids[] = {
706 { .name = "dh2228fv" },
707 { .name = "ltc2488" },
708 { .name = "sx1301" },
710 { .name = "dhcom-board" },
711 { .name = "m53cpld" },
712 { .name = "spi-petra" },
713 { .name = "spi-authenta" },
714 { .name = "em3581" },
715 { .name = "si3210" },
718 MODULE_DEVICE_TABLE(spi, spidev_spi_ids);
721 * spidev should never be referenced in DT without a specific compatible string,
722 * it is a Linux implementation thing rather than a description of the hardware.
724 static int spidev_of_check(struct device *dev)
726 if (device_property_match_string(dev, "compatible", "spidev") < 0)
729 dev_err(dev, "spidev listed directly in DT is not supported\n");
733 static const struct of_device_id spidev_dt_ids[] = {
734 { .compatible = "cisco,spi-petra", .data = &spidev_of_check },
735 { .compatible = "dh,dhcom-board", .data = &spidev_of_check },
736 { .compatible = "lineartechnology,ltc2488", .data = &spidev_of_check },
737 { .compatible = "lwn,bk4", .data = &spidev_of_check },
738 { .compatible = "menlo,m53cpld", .data = &spidev_of_check },
739 { .compatible = "micron,spi-authenta", .data = &spidev_of_check },
740 { .compatible = "rohm,dh2228fv", .data = &spidev_of_check },
741 { .compatible = "semtech,sx1301", .data = &spidev_of_check },
742 { .compatible = "silabs,em3581", .data = &spidev_of_check },
743 { .compatible = "silabs,si3210", .data = &spidev_of_check },
746 MODULE_DEVICE_TABLE(of, spidev_dt_ids);
748 /* Dummy SPI devices not to be used in production systems */
749 static int spidev_acpi_check(struct device *dev)
751 dev_warn(dev, "do not use this driver in production systems!\n");
755 static const struct acpi_device_id spidev_acpi_ids[] = {
757 * The ACPI SPT000* devices are only meant for development and
758 * testing. Systems used in production should have a proper ACPI
759 * description of the connected peripheral and they should also use
760 * a proper driver instead of poking directly to the SPI bus.
762 { "SPT0001", (kernel_ulong_t)&spidev_acpi_check },
763 { "SPT0002", (kernel_ulong_t)&spidev_acpi_check },
764 { "SPT0003", (kernel_ulong_t)&spidev_acpi_check },
767 MODULE_DEVICE_TABLE(acpi, spidev_acpi_ids);
769 /*-------------------------------------------------------------------------*/
771 static int spidev_probe(struct spi_device *spi)
773 int (*match)(struct device *dev);
774 struct spidev_data *spidev;
778 match = device_get_match_data(&spi->dev);
780 status = match(&spi->dev);
785 /* Allocate driver data */
786 spidev = kzalloc(sizeof(*spidev), GFP_KERNEL);
790 /* Initialize the driver data */
792 mutex_init(&spidev->spi_lock);
793 mutex_init(&spidev->buf_lock);
795 INIT_LIST_HEAD(&spidev->device_entry);
797 /* If we can allocate a minor number, hook up this device.
798 * Reusing minors is fine so long as udev or mdev is working.
800 mutex_lock(&device_list_lock);
801 minor = find_first_zero_bit(minors, N_SPI_MINORS);
802 if (minor < N_SPI_MINORS) {
805 spidev->devt = MKDEV(SPIDEV_MAJOR, minor);
806 dev = device_create(spidev_class, &spi->dev, spidev->devt,
807 spidev, "spidev%d.%d",
808 spi->master->bus_num, spi_get_chipselect(spi, 0));
809 status = PTR_ERR_OR_ZERO(dev);
811 dev_dbg(&spi->dev, "no minor number available!\n");
815 set_bit(minor, minors);
816 list_add(&spidev->device_entry, &device_list);
818 mutex_unlock(&device_list_lock);
820 spidev->speed_hz = spi->max_speed_hz;
823 spi_set_drvdata(spi, spidev);
830 static void spidev_remove(struct spi_device *spi)
832 struct spidev_data *spidev = spi_get_drvdata(spi);
834 /* prevent new opens */
835 mutex_lock(&device_list_lock);
836 /* make sure ops on existing fds can abort cleanly */
837 mutex_lock(&spidev->spi_lock);
839 mutex_unlock(&spidev->spi_lock);
841 list_del(&spidev->device_entry);
842 device_destroy(spidev_class, spidev->devt);
843 clear_bit(MINOR(spidev->devt), minors);
844 if (spidev->users == 0)
846 mutex_unlock(&device_list_lock);
849 static struct spi_driver spidev_spi_driver = {
852 .of_match_table = spidev_dt_ids,
853 .acpi_match_table = spidev_acpi_ids,
855 .probe = spidev_probe,
856 .remove = spidev_remove,
857 .id_table = spidev_spi_ids,
859 /* NOTE: suspend/resume methods are not necessary here.
860 * We don't do anything except pass the requests to/from
861 * the underlying controller. The refrigerator handles
862 * most issues; the controller driver handles the rest.
866 /*-------------------------------------------------------------------------*/
868 static int __init spidev_init(void)
872 /* Claim our 256 reserved device numbers. Then register a class
873 * that will key udev/mdev to add/remove /dev nodes. Last, register
874 * the driver which manages those device numbers.
876 status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
880 spidev_class = class_create("spidev");
881 if (IS_ERR(spidev_class)) {
882 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
883 return PTR_ERR(spidev_class);
886 status = spi_register_driver(&spidev_spi_driver);
888 class_destroy(spidev_class);
889 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
893 module_init(spidev_init);
895 static void __exit spidev_exit(void)
897 spi_unregister_driver(&spidev_spi_driver);
898 class_destroy(spidev_class);
899 unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
901 module_exit(spidev_exit);
904 MODULE_DESCRIPTION("User mode SPI device interface");
905 MODULE_LICENSE("GPL");
906 MODULE_ALIAS("spi:spidev");