]> Git Repo - linux.git/blob - kernel/dma/direct.c
dma-mapping: introduce DMA range map, supplanting dma_pfn_offset
[linux.git] / kernel / dma / direct.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/pfn.h>
14 #include <linux/vmalloc.h>
15 #include <linux/set_memory.h>
16 #include <linux/slab.h>
17
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26                 phys_addr_t phys)
27 {
28         if (force_dma_unencrypted(dev))
29                 return phys_to_dma_unencrypted(dev, phys);
30         return phys_to_dma(dev, phys);
31 }
32
33 static inline struct page *dma_direct_to_page(struct device *dev,
34                 dma_addr_t dma_addr)
35 {
36         return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41         phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42         u64 max_dma = phys_to_dma_direct(dev, phys);
43
44         return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48                                   u64 *phys_limit)
49 {
50         u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52         /*
53          * Optimistically try the zone that the physical address mask falls
54          * into first.  If that returns memory that isn't actually addressable
55          * we will fallback to the next lower zone and try again.
56          *
57          * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58          * zones.
59          */
60         *phys_limit = dma_to_phys(dev, dma_limit);
61         if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62                 return GFP_DMA;
63         if (*phys_limit <= DMA_BIT_MASK(32))
64                 return GFP_DMA32;
65         return 0;
66 }
67
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70         dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71
72         if (dma_addr == DMA_MAPPING_ERROR)
73                 return false;
74         return dma_addr + size - 1 <=
75                 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77
78 /*
79  * Decrypting memory is allowed to block, so if this device requires
80  * unencrypted memory it must come from atomic pools.
81  */
82 static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp,
83                                               unsigned long attrs)
84 {
85         if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
86                 return false;
87         if (gfpflags_allow_blocking(gfp))
88                 return false;
89         if (force_dma_unencrypted(dev))
90                 return true;
91         if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
92                 return false;
93         if (dma_alloc_need_uncached(dev, attrs))
94                 return true;
95         return false;
96 }
97
98 static inline bool dma_should_free_from_pool(struct device *dev,
99                                              unsigned long attrs)
100 {
101         if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
102                 return true;
103         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
104             !force_dma_unencrypted(dev))
105                 return false;
106         if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
107                 return true;
108         return false;
109 }
110
111 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
112                 gfp_t gfp)
113 {
114         int node = dev_to_node(dev);
115         struct page *page = NULL;
116         u64 phys_limit;
117
118         WARN_ON_ONCE(!PAGE_ALIGNED(size));
119
120         gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
121                                            &phys_limit);
122         page = dma_alloc_contiguous(dev, size, gfp);
123         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
124                 dma_free_contiguous(dev, page, size);
125                 page = NULL;
126         }
127 again:
128         if (!page)
129                 page = alloc_pages_node(node, gfp, get_order(size));
130         if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
131                 dma_free_contiguous(dev, page, size);
132                 page = NULL;
133
134                 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
135                     phys_limit < DMA_BIT_MASK(64) &&
136                     !(gfp & (GFP_DMA32 | GFP_DMA))) {
137                         gfp |= GFP_DMA32;
138                         goto again;
139                 }
140
141                 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
142                         gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
143                         goto again;
144                 }
145         }
146
147         return page;
148 }
149
150 void *dma_direct_alloc(struct device *dev, size_t size,
151                 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
152 {
153         struct page *page;
154         void *ret;
155         int err;
156
157         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
158             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
159             dma_alloc_need_uncached(dev, attrs))
160                 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
161
162         size = PAGE_ALIGN(size);
163         if (attrs & DMA_ATTR_NO_WARN)
164                 gfp |= __GFP_NOWARN;
165
166         if (dma_should_alloc_from_pool(dev, gfp, attrs)) {
167                 u64 phys_mask;
168
169                 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
170                                 &phys_mask);
171                 page = dma_alloc_from_pool(dev, size, &ret, gfp,
172                                 dma_coherent_ok);
173                 if (!page)
174                         return NULL;
175                 goto done;
176         }
177
178         /* we always manually zero the memory once we are done */
179         page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
180         if (!page)
181                 return NULL;
182
183         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
184             !force_dma_unencrypted(dev)) {
185                 /* remove any dirty cache lines on the kernel alias */
186                 if (!PageHighMem(page))
187                         arch_dma_prep_coherent(page, size);
188                 /* return the page pointer as the opaque cookie */
189                 ret = page;
190                 goto done;
191         }
192
193         if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
194              dma_alloc_need_uncached(dev, attrs)) ||
195             (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
196                 /* remove any dirty cache lines on the kernel alias */
197                 arch_dma_prep_coherent(page, size);
198
199                 /* create a coherent mapping */
200                 ret = dma_common_contiguous_remap(page, size,
201                                 dma_pgprot(dev, PAGE_KERNEL, attrs),
202                                 __builtin_return_address(0));
203                 if (!ret)
204                         goto out_free_pages;
205                 if (force_dma_unencrypted(dev)) {
206                         err = set_memory_decrypted((unsigned long)ret,
207                                                    1 << get_order(size));
208                         if (err)
209                                 goto out_free_pages;
210                 }
211                 memset(ret, 0, size);
212                 goto done;
213         }
214
215         if (PageHighMem(page)) {
216                 /*
217                  * Depending on the cma= arguments and per-arch setup
218                  * dma_alloc_contiguous could return highmem pages.
219                  * Without remapping there is no way to return them here,
220                  * so log an error and fail.
221                  */
222                 dev_info(dev, "Rejecting highmem page from CMA.\n");
223                 goto out_free_pages;
224         }
225
226         ret = page_address(page);
227         if (force_dma_unencrypted(dev)) {
228                 err = set_memory_decrypted((unsigned long)ret,
229                                            1 << get_order(size));
230                 if (err)
231                         goto out_free_pages;
232         }
233
234         memset(ret, 0, size);
235
236         if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
237             dma_alloc_need_uncached(dev, attrs)) {
238                 arch_dma_prep_coherent(page, size);
239                 ret = arch_dma_set_uncached(ret, size);
240                 if (IS_ERR(ret))
241                         goto out_encrypt_pages;
242         }
243 done:
244         *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
245         return ret;
246
247 out_encrypt_pages:
248         if (force_dma_unencrypted(dev)) {
249                 err = set_memory_encrypted((unsigned long)page_address(page),
250                                            1 << get_order(size));
251                 /* If memory cannot be re-encrypted, it must be leaked */
252                 if (err)
253                         return NULL;
254         }
255 out_free_pages:
256         dma_free_contiguous(dev, page, size);
257         return NULL;
258 }
259
260 void dma_direct_free(struct device *dev, size_t size,
261                 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
262 {
263         unsigned int page_order = get_order(size);
264
265         if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
266             !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
267             dma_alloc_need_uncached(dev, attrs)) {
268                 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
269                 return;
270         }
271
272         /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
273         if (dma_should_free_from_pool(dev, attrs) &&
274             dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
275                 return;
276
277         if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
278             !force_dma_unencrypted(dev)) {
279                 /* cpu_addr is a struct page cookie, not a kernel address */
280                 dma_free_contiguous(dev, cpu_addr, size);
281                 return;
282         }
283
284         if (force_dma_unencrypted(dev))
285                 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
286
287         if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
288                 vunmap(cpu_addr);
289         else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
290                 arch_dma_clear_uncached(cpu_addr, size);
291
292         dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
293 }
294
295 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
296     defined(CONFIG_SWIOTLB)
297 void dma_direct_sync_sg_for_device(struct device *dev,
298                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
299 {
300         struct scatterlist *sg;
301         int i;
302
303         for_each_sg(sgl, sg, nents, i) {
304                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
305
306                 if (unlikely(is_swiotlb_buffer(paddr)))
307                         swiotlb_tbl_sync_single(dev, paddr, sg->length,
308                                         dir, SYNC_FOR_DEVICE);
309
310                 if (!dev_is_dma_coherent(dev))
311                         arch_sync_dma_for_device(paddr, sg->length,
312                                         dir);
313         }
314 }
315 #endif
316
317 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
318     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
319     defined(CONFIG_SWIOTLB)
320 void dma_direct_sync_sg_for_cpu(struct device *dev,
321                 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
322 {
323         struct scatterlist *sg;
324         int i;
325
326         for_each_sg(sgl, sg, nents, i) {
327                 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
328
329                 if (!dev_is_dma_coherent(dev))
330                         arch_sync_dma_for_cpu(paddr, sg->length, dir);
331
332                 if (unlikely(is_swiotlb_buffer(paddr)))
333                         swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
334                                         SYNC_FOR_CPU);
335
336                 if (dir == DMA_FROM_DEVICE)
337                         arch_dma_mark_clean(paddr, sg->length);
338         }
339
340         if (!dev_is_dma_coherent(dev))
341                 arch_sync_dma_for_cpu_all();
342 }
343
344 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
345                 int nents, enum dma_data_direction dir, unsigned long attrs)
346 {
347         struct scatterlist *sg;
348         int i;
349
350         for_each_sg(sgl, sg, nents, i)
351                 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
352                              attrs);
353 }
354 #endif
355
356 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
357                 enum dma_data_direction dir, unsigned long attrs)
358 {
359         int i;
360         struct scatterlist *sg;
361
362         for_each_sg(sgl, sg, nents, i) {
363                 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
364                                 sg->offset, sg->length, dir, attrs);
365                 if (sg->dma_address == DMA_MAPPING_ERROR)
366                         goto out_unmap;
367                 sg_dma_len(sg) = sg->length;
368         }
369
370         return nents;
371
372 out_unmap:
373         dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
374         return 0;
375 }
376
377 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
378                 size_t size, enum dma_data_direction dir, unsigned long attrs)
379 {
380         dma_addr_t dma_addr = paddr;
381
382         if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
383                 dev_err_once(dev,
384                              "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
385                              &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
386                 WARN_ON_ONCE(1);
387                 return DMA_MAPPING_ERROR;
388         }
389
390         return dma_addr;
391 }
392
393 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
394                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
395                 unsigned long attrs)
396 {
397         struct page *page = dma_direct_to_page(dev, dma_addr);
398         int ret;
399
400         ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
401         if (!ret)
402                 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
403         return ret;
404 }
405
406 bool dma_direct_can_mmap(struct device *dev)
407 {
408         return dev_is_dma_coherent(dev) ||
409                 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
410 }
411
412 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
413                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
414                 unsigned long attrs)
415 {
416         unsigned long user_count = vma_pages(vma);
417         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
418         unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
419         int ret = -ENXIO;
420
421         vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
422
423         if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
424                 return ret;
425
426         if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
427                 return -ENXIO;
428         return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
429                         user_count << PAGE_SHIFT, vma->vm_page_prot);
430 }
431
432 int dma_direct_supported(struct device *dev, u64 mask)
433 {
434         u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
435
436         /*
437          * Because 32-bit DMA masks are so common we expect every architecture
438          * to be able to satisfy them - either by not supporting more physical
439          * memory, or by providing a ZONE_DMA32.  If neither is the case, the
440          * architecture needs to use an IOMMU instead of the direct mapping.
441          */
442         if (mask >= DMA_BIT_MASK(32))
443                 return 1;
444
445         /*
446          * This check needs to be against the actual bit mask value, so use
447          * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
448          * part of the check.
449          */
450         if (IS_ENABLED(CONFIG_ZONE_DMA))
451                 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
452         return mask >= phys_to_dma_unencrypted(dev, min_mask);
453 }
454
455 size_t dma_direct_max_mapping_size(struct device *dev)
456 {
457         /* If SWIOTLB is active, use its maximum mapping size */
458         if (is_swiotlb_active() &&
459             (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
460                 return swiotlb_max_mapping_size(dev);
461         return SIZE_MAX;
462 }
463
464 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
465 {
466         return !dev_is_dma_coherent(dev) ||
467                 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
468 }
469
470 /**
471  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
472  * @dev:        device pointer; needed to "own" the alloced memory.
473  * @cpu_start:  beginning of memory region covered by this offset.
474  * @dma_start:  beginning of DMA/PCI region covered by this offset.
475  * @size:       size of the region.
476  *
477  * This is for the simple case of a uniform offset which cannot
478  * be discovered by "dma-ranges".
479  *
480  * It returns -ENOMEM if out of memory, -EINVAL if a map
481  * already exists, 0 otherwise.
482  *
483  * Note: any call to this from a driver is a bug.  The mapping needs
484  * to be described by the device tree or other firmware interfaces.
485  */
486 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
487                          dma_addr_t dma_start, u64 size)
488 {
489         struct bus_dma_region *map;
490         u64 offset = (u64)cpu_start - (u64)dma_start;
491
492         if (dev->dma_range_map) {
493                 dev_err(dev, "attempt to add DMA range to existing map\n");
494                 return -EINVAL;
495         }
496
497         if (!offset)
498                 return 0;
499
500         map = kcalloc(2, sizeof(*map), GFP_KERNEL);
501         if (!map)
502                 return -ENOMEM;
503         map[0].cpu_start = cpu_start;
504         map[0].dma_start = dma_start;
505         map[0].offset = offset;
506         map[0].size = size;
507         dev->dma_range_map = map;
508         return 0;
509 }
510 EXPORT_SYMBOL_GPL(dma_direct_set_offset);
This page took 0.064066 seconds and 4 git commands to generate.