1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2018 Christoph Hellwig.
5 * DMA operations that map physical memory directly without using an IOMMU.
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
10 #include <linux/dma-direct.h>
11 #include <linux/scatterlist.h>
12 #include <linux/dma-contiguous.h>
13 #include <linux/pfn.h>
14 #include <linux/vmalloc.h>
15 #include <linux/set_memory.h>
16 #include <linux/slab.h>
19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use it
20 * it for entirely different regions. In that case the arch code needs to
21 * override the variable below for dma-direct to work properly.
23 unsigned int zone_dma_bits __ro_after_init = 24;
25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
28 if (force_dma_unencrypted(dev))
29 return phys_to_dma_unencrypted(dev, phys);
30 return phys_to_dma(dev, phys);
33 static inline struct page *dma_direct_to_page(struct device *dev,
36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
39 u64 dma_direct_get_required_mask(struct device *dev)
41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 u64 max_dma = phys_to_dma_direct(dev, phys);
44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
50 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
53 * Optimistically try the zone that the physical address mask falls
54 * into first. If that returns memory that isn't actually addressable
55 * we will fallback to the next lower zone and try again.
57 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
60 *phys_limit = dma_to_phys(dev, dma_limit);
61 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
63 if (*phys_limit <= DMA_BIT_MASK(32))
68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
70 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
72 if (dma_addr == DMA_MAPPING_ERROR)
74 return dma_addr + size - 1 <=
75 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
79 * Decrypting memory is allowed to block, so if this device requires
80 * unencrypted memory it must come from atomic pools.
82 static inline bool dma_should_alloc_from_pool(struct device *dev, gfp_t gfp,
85 if (!IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
87 if (gfpflags_allow_blocking(gfp))
89 if (force_dma_unencrypted(dev))
91 if (!IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
93 if (dma_alloc_need_uncached(dev, attrs))
98 static inline bool dma_should_free_from_pool(struct device *dev,
101 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL))
103 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
104 !force_dma_unencrypted(dev))
106 if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP))
111 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
114 int node = dev_to_node(dev);
115 struct page *page = NULL;
118 WARN_ON_ONCE(!PAGE_ALIGNED(size));
120 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
122 page = dma_alloc_contiguous(dev, size, gfp);
123 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
124 dma_free_contiguous(dev, page, size);
129 page = alloc_pages_node(node, gfp, get_order(size));
130 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
131 dma_free_contiguous(dev, page, size);
134 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
135 phys_limit < DMA_BIT_MASK(64) &&
136 !(gfp & (GFP_DMA32 | GFP_DMA))) {
141 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
142 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
150 void *dma_direct_alloc(struct device *dev, size_t size,
151 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
157 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
158 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
159 dma_alloc_need_uncached(dev, attrs))
160 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
162 size = PAGE_ALIGN(size);
163 if (attrs & DMA_ATTR_NO_WARN)
166 if (dma_should_alloc_from_pool(dev, gfp, attrs)) {
169 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
171 page = dma_alloc_from_pool(dev, size, &ret, gfp,
178 /* we always manually zero the memory once we are done */
179 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
183 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
184 !force_dma_unencrypted(dev)) {
185 /* remove any dirty cache lines on the kernel alias */
186 if (!PageHighMem(page))
187 arch_dma_prep_coherent(page, size);
188 /* return the page pointer as the opaque cookie */
193 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
194 dma_alloc_need_uncached(dev, attrs)) ||
195 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
196 /* remove any dirty cache lines on the kernel alias */
197 arch_dma_prep_coherent(page, size);
199 /* create a coherent mapping */
200 ret = dma_common_contiguous_remap(page, size,
201 dma_pgprot(dev, PAGE_KERNEL, attrs),
202 __builtin_return_address(0));
205 if (force_dma_unencrypted(dev)) {
206 err = set_memory_decrypted((unsigned long)ret,
207 1 << get_order(size));
211 memset(ret, 0, size);
215 if (PageHighMem(page)) {
217 * Depending on the cma= arguments and per-arch setup
218 * dma_alloc_contiguous could return highmem pages.
219 * Without remapping there is no way to return them here,
220 * so log an error and fail.
222 dev_info(dev, "Rejecting highmem page from CMA.\n");
226 ret = page_address(page);
227 if (force_dma_unencrypted(dev)) {
228 err = set_memory_decrypted((unsigned long)ret,
229 1 << get_order(size));
234 memset(ret, 0, size);
236 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
237 dma_alloc_need_uncached(dev, attrs)) {
238 arch_dma_prep_coherent(page, size);
239 ret = arch_dma_set_uncached(ret, size);
241 goto out_encrypt_pages;
244 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
248 if (force_dma_unencrypted(dev)) {
249 err = set_memory_encrypted((unsigned long)page_address(page),
250 1 << get_order(size));
251 /* If memory cannot be re-encrypted, it must be leaked */
256 dma_free_contiguous(dev, page, size);
260 void dma_direct_free(struct device *dev, size_t size,
261 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
263 unsigned int page_order = get_order(size);
265 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
266 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
267 dma_alloc_need_uncached(dev, attrs)) {
268 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
272 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
273 if (dma_should_free_from_pool(dev, attrs) &&
274 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
277 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
278 !force_dma_unencrypted(dev)) {
279 /* cpu_addr is a struct page cookie, not a kernel address */
280 dma_free_contiguous(dev, cpu_addr, size);
284 if (force_dma_unencrypted(dev))
285 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
287 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
289 else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
290 arch_dma_clear_uncached(cpu_addr, size);
292 dma_free_contiguous(dev, dma_direct_to_page(dev, dma_addr), size);
295 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
296 defined(CONFIG_SWIOTLB)
297 void dma_direct_sync_sg_for_device(struct device *dev,
298 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
300 struct scatterlist *sg;
303 for_each_sg(sgl, sg, nents, i) {
304 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
306 if (unlikely(is_swiotlb_buffer(paddr)))
307 swiotlb_tbl_sync_single(dev, paddr, sg->length,
308 dir, SYNC_FOR_DEVICE);
310 if (!dev_is_dma_coherent(dev))
311 arch_sync_dma_for_device(paddr, sg->length,
317 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
318 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
319 defined(CONFIG_SWIOTLB)
320 void dma_direct_sync_sg_for_cpu(struct device *dev,
321 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
323 struct scatterlist *sg;
326 for_each_sg(sgl, sg, nents, i) {
327 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
329 if (!dev_is_dma_coherent(dev))
330 arch_sync_dma_for_cpu(paddr, sg->length, dir);
332 if (unlikely(is_swiotlb_buffer(paddr)))
333 swiotlb_tbl_sync_single(dev, paddr, sg->length, dir,
336 if (dir == DMA_FROM_DEVICE)
337 arch_dma_mark_clean(paddr, sg->length);
340 if (!dev_is_dma_coherent(dev))
341 arch_sync_dma_for_cpu_all();
344 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
345 int nents, enum dma_data_direction dir, unsigned long attrs)
347 struct scatterlist *sg;
350 for_each_sg(sgl, sg, nents, i)
351 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
356 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
357 enum dma_data_direction dir, unsigned long attrs)
360 struct scatterlist *sg;
362 for_each_sg(sgl, sg, nents, i) {
363 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
364 sg->offset, sg->length, dir, attrs);
365 if (sg->dma_address == DMA_MAPPING_ERROR)
367 sg_dma_len(sg) = sg->length;
373 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
377 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
378 size_t size, enum dma_data_direction dir, unsigned long attrs)
380 dma_addr_t dma_addr = paddr;
382 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
384 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
385 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
387 return DMA_MAPPING_ERROR;
393 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
394 void *cpu_addr, dma_addr_t dma_addr, size_t size,
397 struct page *page = dma_direct_to_page(dev, dma_addr);
400 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
402 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
406 bool dma_direct_can_mmap(struct device *dev)
408 return dev_is_dma_coherent(dev) ||
409 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
412 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
413 void *cpu_addr, dma_addr_t dma_addr, size_t size,
416 unsigned long user_count = vma_pages(vma);
417 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
418 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
421 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
423 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
426 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
428 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
429 user_count << PAGE_SHIFT, vma->vm_page_prot);
432 int dma_direct_supported(struct device *dev, u64 mask)
434 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
437 * Because 32-bit DMA masks are so common we expect every architecture
438 * to be able to satisfy them - either by not supporting more physical
439 * memory, or by providing a ZONE_DMA32. If neither is the case, the
440 * architecture needs to use an IOMMU instead of the direct mapping.
442 if (mask >= DMA_BIT_MASK(32))
446 * This check needs to be against the actual bit mask value, so use
447 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
450 if (IS_ENABLED(CONFIG_ZONE_DMA))
451 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
452 return mask >= phys_to_dma_unencrypted(dev, min_mask);
455 size_t dma_direct_max_mapping_size(struct device *dev)
457 /* If SWIOTLB is active, use its maximum mapping size */
458 if (is_swiotlb_active() &&
459 (dma_addressing_limited(dev) || swiotlb_force == SWIOTLB_FORCE))
460 return swiotlb_max_mapping_size(dev);
464 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
466 return !dev_is_dma_coherent(dev) ||
467 is_swiotlb_buffer(dma_to_phys(dev, dma_addr));
471 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
472 * @dev: device pointer; needed to "own" the alloced memory.
473 * @cpu_start: beginning of memory region covered by this offset.
474 * @dma_start: beginning of DMA/PCI region covered by this offset.
475 * @size: size of the region.
477 * This is for the simple case of a uniform offset which cannot
478 * be discovered by "dma-ranges".
480 * It returns -ENOMEM if out of memory, -EINVAL if a map
481 * already exists, 0 otherwise.
483 * Note: any call to this from a driver is a bug. The mapping needs
484 * to be described by the device tree or other firmware interfaces.
486 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
487 dma_addr_t dma_start, u64 size)
489 struct bus_dma_region *map;
490 u64 offset = (u64)cpu_start - (u64)dma_start;
492 if (dev->dma_range_map) {
493 dev_err(dev, "attempt to add DMA range to existing map\n");
500 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
503 map[0].cpu_start = cpu_start;
504 map[0].dma_start = dma_start;
505 map[0].offset = offset;
507 dev->dma_range_map = map;
510 EXPORT_SYMBOL_GPL(dma_direct_set_offset);