1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
34 #define MLOG_MASK_PREFIX ML_JOURNAL
35 #include <cluster/masklog.h>
40 #include "blockcheck.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
47 #include "localalloc.h"
54 #include "buffer_head_io.h"
56 DEFINE_SPINLOCK(trans_inc_lock);
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
60 static int ocfs2_force_read_journal(struct inode *inode);
61 static int ocfs2_recover_node(struct ocfs2_super *osb,
62 int node_num, int slot_num);
63 static int __ocfs2_recovery_thread(void *arg);
64 static int ocfs2_commit_cache(struct ocfs2_super *osb);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
67 int dirty, int replayed);
68 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
70 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
72 static int ocfs2_commit_thread(void *arg);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
75 struct ocfs2_dinode *la_dinode,
76 struct ocfs2_dinode *tl_dinode,
77 struct ocfs2_quota_recovery *qrec);
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
81 return __ocfs2_wait_on_mount(osb, 0);
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
86 return __ocfs2_wait_on_mount(osb, 1);
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
94 enum ocfs2_replay_state {
95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE /* Replay was already queued */
100 struct ocfs2_replay_map {
101 unsigned int rm_slots;
102 enum ocfs2_replay_state rm_state;
103 unsigned char rm_replay_slots[0];
106 void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
108 if (!osb->replay_map)
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb->replay_map->rm_state == REPLAY_DONE)
115 osb->replay_map->rm_state = state;
118 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
120 struct ocfs2_replay_map *replay_map;
123 /* If replay map is already set, we don't do it again */
127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 (osb->max_slots * sizeof(char)), GFP_KERNEL);
135 spin_lock(&osb->osb_lock);
137 replay_map->rm_slots = osb->max_slots;
138 replay_map->rm_state = REPLAY_UNNEEDED;
140 /* set rm_replay_slots for offline slot(s) */
141 for (i = 0; i < replay_map->rm_slots; i++) {
142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 replay_map->rm_replay_slots[i] = 1;
146 osb->replay_map = replay_map;
147 spin_unlock(&osb->osb_lock);
151 void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
153 struct ocfs2_replay_map *replay_map = osb->replay_map;
159 if (replay_map->rm_state != REPLAY_NEEDED)
162 for (i = 0; i < replay_map->rm_slots; i++)
163 if (replay_map->rm_replay_slots[i])
164 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
166 replay_map->rm_state = REPLAY_DONE;
169 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
171 struct ocfs2_replay_map *replay_map = osb->replay_map;
173 if (!osb->replay_map)
177 osb->replay_map = NULL;
180 int ocfs2_recovery_init(struct ocfs2_super *osb)
182 struct ocfs2_recovery_map *rm;
184 mutex_init(&osb->recovery_lock);
185 osb->disable_recovery = 0;
186 osb->recovery_thread_task = NULL;
187 init_waitqueue_head(&osb->recovery_event);
189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 osb->max_slots * sizeof(unsigned int),
197 rm->rm_entries = (unsigned int *)((char *)rm +
198 sizeof(struct ocfs2_recovery_map));
199 osb->recovery_map = rm;
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
207 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
210 return osb->recovery_thread_task != NULL;
213 void ocfs2_recovery_exit(struct ocfs2_super *osb)
215 struct ocfs2_recovery_map *rm;
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb->recovery_lock);
220 osb->disable_recovery = 1;
221 mutex_unlock(&osb->recovery_lock);
222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
227 flush_workqueue(ocfs2_wq);
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
233 rm = osb->recovery_map;
234 /* XXX: Should we bug if there are dirty entries? */
239 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 unsigned int node_num)
243 struct ocfs2_recovery_map *rm = osb->recovery_map;
245 assert_spin_locked(&osb->osb_lock);
247 for (i = 0; i < rm->rm_used; i++) {
248 if (rm->rm_entries[i] == node_num)
255 /* Behaves like test-and-set. Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 unsigned int node_num)
259 struct ocfs2_recovery_map *rm = osb->recovery_map;
261 spin_lock(&osb->osb_lock);
262 if (__ocfs2_recovery_map_test(osb, node_num)) {
263 spin_unlock(&osb->osb_lock);
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm->rm_used >= osb->max_slots);
270 rm->rm_entries[rm->rm_used] = node_num;
272 spin_unlock(&osb->osb_lock);
277 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 unsigned int node_num)
281 struct ocfs2_recovery_map *rm = osb->recovery_map;
283 spin_lock(&osb->osb_lock);
285 for (i = 0; i < rm->rm_used; i++) {
286 if (rm->rm_entries[i] == node_num)
290 if (i < rm->rm_used) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 (rm->rm_used - i - 1) * sizeof(unsigned int));
297 spin_unlock(&osb->osb_lock);
300 static int ocfs2_commit_cache(struct ocfs2_super *osb)
303 unsigned int flushed;
304 struct ocfs2_journal *journal = NULL;
308 journal = osb->journal;
310 /* Flush all pending commits and checkpoint the journal. */
311 down_write(&journal->j_trans_barrier);
313 if (atomic_read(&journal->j_num_trans) == 0) {
314 up_write(&journal->j_trans_barrier);
315 mlog(0, "No transactions for me to flush!\n");
319 jbd2_journal_lock_updates(journal->j_journal);
320 status = jbd2_journal_flush(journal->j_journal);
321 jbd2_journal_unlock_updates(journal->j_journal);
323 up_write(&journal->j_trans_barrier);
328 ocfs2_inc_trans_id(journal);
330 flushed = atomic_read(&journal->j_num_trans);
331 atomic_set(&journal->j_num_trans, 0);
332 up_write(&journal->j_trans_barrier);
334 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
335 journal->j_trans_id, flushed);
337 ocfs2_wake_downconvert_thread(osb);
338 wake_up(&journal->j_checkpointed);
344 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
346 journal_t *journal = osb->journal->j_journal;
349 BUG_ON(!osb || !osb->journal->j_journal);
351 if (ocfs2_is_hard_readonly(osb))
352 return ERR_PTR(-EROFS);
354 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
355 BUG_ON(max_buffs <= 0);
357 /* Nested transaction? Just return the handle... */
358 if (journal_current_handle())
359 return jbd2_journal_start(journal, max_buffs);
361 down_read(&osb->journal->j_trans_barrier);
363 handle = jbd2_journal_start(journal, max_buffs);
364 if (IS_ERR(handle)) {
365 up_read(&osb->journal->j_trans_barrier);
367 mlog_errno(PTR_ERR(handle));
369 if (is_journal_aborted(journal)) {
370 ocfs2_abort(osb->sb, "Detected aborted journal");
371 handle = ERR_PTR(-EROFS);
374 if (!ocfs2_mount_local(osb))
375 atomic_inc(&(osb->journal->j_num_trans));
381 int ocfs2_commit_trans(struct ocfs2_super *osb,
385 struct ocfs2_journal *journal = osb->journal;
389 nested = handle->h_ref > 1;
390 ret = jbd2_journal_stop(handle);
395 up_read(&journal->j_trans_barrier);
401 * 'nblocks' is what you want to add to the current transaction.
403 * This might call jbd2_journal_restart() which will commit dirty buffers
404 * and then restart the transaction. Before calling
405 * ocfs2_extend_trans(), any changed blocks should have been
406 * dirtied. After calling it, all blocks which need to be changed must
407 * go through another set of journal_access/journal_dirty calls.
409 * WARNING: This will not release any semaphores or disk locks taken
410 * during the transaction, so make sure they were taken *before*
411 * start_trans or we'll have ordering deadlocks.
413 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
414 * good because transaction ids haven't yet been recorded on the
415 * cluster locks associated with this handle.
417 int ocfs2_extend_trans(handle_t *handle, int nblocks)
419 int status, old_nblocks;
427 old_nblocks = handle->h_buffer_credits;
430 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks);
432 #ifdef CONFIG_OCFS2_DEBUG_FS
435 status = jbd2_journal_extend(handle, nblocks);
444 "jbd2_journal_extend failed, trying "
445 "jbd2_journal_restart\n");
446 status = jbd2_journal_restart(handle,
447 old_nblocks + nblocks);
461 struct ocfs2_triggers {
462 struct jbd2_buffer_trigger_type ot_triggers;
466 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
468 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
471 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
472 struct buffer_head *bh,
473 void *data, size_t size)
475 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
478 * We aren't guaranteed to have the superblock here, so we
479 * must unconditionally compute the ecc data.
480 * __ocfs2_journal_access() will only set the triggers if
481 * metaecc is enabled.
483 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
487 * Quota blocks have their own trigger because the struct ocfs2_block_check
488 * offset depends on the blocksize.
490 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
491 struct buffer_head *bh,
492 void *data, size_t size)
494 struct ocfs2_disk_dqtrailer *dqt =
495 ocfs2_block_dqtrailer(size, data);
498 * We aren't guaranteed to have the superblock here, so we
499 * must unconditionally compute the ecc data.
500 * __ocfs2_journal_access() will only set the triggers if
501 * metaecc is enabled.
503 ocfs2_block_check_compute(data, size, &dqt->dq_check);
507 * Directory blocks also have their own trigger because the
508 * struct ocfs2_block_check offset depends on the blocksize.
510 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 struct buffer_head *bh,
512 void *data, size_t size)
514 struct ocfs2_dir_block_trailer *trailer =
515 ocfs2_dir_trailer_from_size(size, data);
518 * We aren't guaranteed to have the superblock here, so we
519 * must unconditionally compute the ecc data.
520 * __ocfs2_journal_access() will only set the triggers if
521 * metaecc is enabled.
523 ocfs2_block_check_compute(data, size, &trailer->db_check);
526 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
527 struct buffer_head *bh)
530 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
531 "bh->b_blocknr = %llu\n",
533 (unsigned long long)bh->b_blocknr);
535 /* We aren't guaranteed to have the superblock here - but if we
536 * don't, it'll just crash. */
537 ocfs2_error(bh->b_assoc_map->host->i_sb,
538 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
541 static struct ocfs2_triggers di_triggers = {
543 .t_frozen = ocfs2_frozen_trigger,
544 .t_abort = ocfs2_abort_trigger,
546 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
549 static struct ocfs2_triggers eb_triggers = {
551 .t_frozen = ocfs2_frozen_trigger,
552 .t_abort = ocfs2_abort_trigger,
554 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
557 static struct ocfs2_triggers rb_triggers = {
559 .t_frozen = ocfs2_frozen_trigger,
560 .t_abort = ocfs2_abort_trigger,
562 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
565 static struct ocfs2_triggers gd_triggers = {
567 .t_frozen = ocfs2_frozen_trigger,
568 .t_abort = ocfs2_abort_trigger,
570 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
573 static struct ocfs2_triggers db_triggers = {
575 .t_frozen = ocfs2_db_frozen_trigger,
576 .t_abort = ocfs2_abort_trigger,
580 static struct ocfs2_triggers xb_triggers = {
582 .t_frozen = ocfs2_frozen_trigger,
583 .t_abort = ocfs2_abort_trigger,
585 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
588 static struct ocfs2_triggers dq_triggers = {
590 .t_frozen = ocfs2_dq_frozen_trigger,
591 .t_abort = ocfs2_abort_trigger,
595 static struct ocfs2_triggers dr_triggers = {
597 .t_frozen = ocfs2_frozen_trigger,
598 .t_abort = ocfs2_abort_trigger,
600 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
603 static struct ocfs2_triggers dl_triggers = {
605 .t_frozen = ocfs2_frozen_trigger,
606 .t_abort = ocfs2_abort_trigger,
608 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
611 static int __ocfs2_journal_access(handle_t *handle,
612 struct ocfs2_caching_info *ci,
613 struct buffer_head *bh,
614 struct ocfs2_triggers *triggers,
618 struct ocfs2_super *osb =
619 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
621 BUG_ON(!ci || !ci->ci_ops);
625 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
626 (unsigned long long)bh->b_blocknr, type,
627 (type == OCFS2_JOURNAL_ACCESS_CREATE) ?
628 "OCFS2_JOURNAL_ACCESS_CREATE" :
629 "OCFS2_JOURNAL_ACCESS_WRITE",
632 /* we can safely remove this assertion after testing. */
633 if (!buffer_uptodate(bh)) {
634 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
635 mlog(ML_ERROR, "b_blocknr=%llu\n",
636 (unsigned long long)bh->b_blocknr);
640 /* Set the current transaction information on the ci so
641 * that the locking code knows whether it can drop it's locks
642 * on this ci or not. We're protected from the commit
643 * thread updating the current transaction id until
644 * ocfs2_commit_trans() because ocfs2_start_trans() took
645 * j_trans_barrier for us. */
646 ocfs2_set_ci_lock_trans(osb->journal, ci);
648 ocfs2_metadata_cache_io_lock(ci);
650 case OCFS2_JOURNAL_ACCESS_CREATE:
651 case OCFS2_JOURNAL_ACCESS_WRITE:
652 status = jbd2_journal_get_write_access(handle, bh);
655 case OCFS2_JOURNAL_ACCESS_UNDO:
656 status = jbd2_journal_get_undo_access(handle, bh);
661 mlog(ML_ERROR, "Unknown access type!\n");
663 if (!status && ocfs2_meta_ecc(osb) && triggers)
664 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
665 ocfs2_metadata_cache_io_unlock(ci);
668 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
675 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
676 struct buffer_head *bh, int type)
678 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
681 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
682 struct buffer_head *bh, int type)
684 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
687 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
688 struct buffer_head *bh, int type)
690 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
694 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
695 struct buffer_head *bh, int type)
697 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
700 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
701 struct buffer_head *bh, int type)
703 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
706 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
707 struct buffer_head *bh, int type)
709 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
712 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
713 struct buffer_head *bh, int type)
715 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
718 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
719 struct buffer_head *bh, int type)
721 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
724 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
725 struct buffer_head *bh, int type)
727 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
730 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
731 struct buffer_head *bh, int type)
733 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
736 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
740 mlog_entry("(bh->b_blocknr=%llu)\n",
741 (unsigned long long)bh->b_blocknr);
743 status = jbd2_journal_dirty_metadata(handle, bh);
749 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
751 void ocfs2_set_journal_params(struct ocfs2_super *osb)
753 journal_t *journal = osb->journal->j_journal;
754 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
756 if (osb->osb_commit_interval)
757 commit_interval = osb->osb_commit_interval;
759 write_lock(&journal->j_state_lock);
760 journal->j_commit_interval = commit_interval;
761 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
762 journal->j_flags |= JBD2_BARRIER;
764 journal->j_flags &= ~JBD2_BARRIER;
765 write_unlock(&journal->j_state_lock);
768 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
771 struct inode *inode = NULL; /* the journal inode */
772 journal_t *j_journal = NULL;
773 struct ocfs2_dinode *di = NULL;
774 struct buffer_head *bh = NULL;
775 struct ocfs2_super *osb;
782 osb = journal->j_osb;
784 /* already have the inode for our journal */
785 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
792 if (is_bad_inode(inode)) {
793 mlog(ML_ERROR, "access error (bad inode)\n");
800 SET_INODE_JOURNAL(inode);
801 OCFS2_I(inode)->ip_open_count++;
803 /* Skip recovery waits here - journal inode metadata never
804 * changes in a live cluster so it can be considered an
805 * exception to the rule. */
806 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
808 if (status != -ERESTARTSYS)
809 mlog(ML_ERROR, "Could not get lock on journal!\n");
814 di = (struct ocfs2_dinode *)bh->b_data;
816 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
817 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
823 mlog(0, "inode->i_size = %lld\n", inode->i_size);
824 mlog(0, "inode->i_blocks = %llu\n",
825 (unsigned long long)inode->i_blocks);
826 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode)->ip_clusters);
828 /* call the kernels journal init function now */
829 j_journal = jbd2_journal_init_inode(inode);
830 if (j_journal == NULL) {
831 mlog(ML_ERROR, "Linux journal layer error\n");
836 mlog(0, "Returned from jbd2_journal_init_inode\n");
837 mlog(0, "j_journal->j_maxlen = %u\n", j_journal->j_maxlen);
839 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
840 OCFS2_JOURNAL_DIRTY_FL);
842 journal->j_journal = j_journal;
843 journal->j_inode = inode;
846 ocfs2_set_journal_params(osb);
848 journal->j_state = OCFS2_JOURNAL_LOADED;
854 ocfs2_inode_unlock(inode, 1);
857 OCFS2_I(inode)->ip_open_count--;
866 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
868 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
871 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
873 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
876 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
877 int dirty, int replayed)
881 struct ocfs2_journal *journal = osb->journal;
882 struct buffer_head *bh = journal->j_bh;
883 struct ocfs2_dinode *fe;
887 fe = (struct ocfs2_dinode *)bh->b_data;
889 /* The journal bh on the osb always comes from ocfs2_journal_init()
890 * and was validated there inside ocfs2_inode_lock_full(). It's a
891 * code bug if we mess it up. */
892 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
894 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
896 flags |= OCFS2_JOURNAL_DIRTY_FL;
898 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
899 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
902 ocfs2_bump_recovery_generation(fe);
904 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
905 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
914 * If the journal has been kmalloc'd it needs to be freed after this
917 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
919 struct ocfs2_journal *journal = NULL;
921 struct inode *inode = NULL;
922 int num_running_trans = 0;
928 journal = osb->journal;
932 inode = journal->j_inode;
934 if (journal->j_state != OCFS2_JOURNAL_LOADED)
937 /* need to inc inode use count - jbd2_journal_destroy will iput. */
941 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
942 if (num_running_trans > 0)
943 mlog(0, "Shutting down journal: must wait on %d "
944 "running transactions!\n",
947 /* Do a commit_cache here. It will flush our journal, *and*
948 * release any locks that are still held.
949 * set the SHUTDOWN flag and release the trans lock.
950 * the commit thread will take the trans lock for us below. */
951 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
953 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
954 * drop the trans_lock (which we want to hold until we
955 * completely destroy the journal. */
956 if (osb->commit_task) {
957 /* Wait for the commit thread */
958 mlog(0, "Waiting for ocfs2commit to exit....\n");
959 kthread_stop(osb->commit_task);
960 osb->commit_task = NULL;
963 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
965 if (ocfs2_mount_local(osb)) {
966 jbd2_journal_lock_updates(journal->j_journal);
967 status = jbd2_journal_flush(journal->j_journal);
968 jbd2_journal_unlock_updates(journal->j_journal);
975 * Do not toggle if flush was unsuccessful otherwise
976 * will leave dirty metadata in a "clean" journal
978 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
983 /* Shutdown the kernel journal system */
984 jbd2_journal_destroy(journal->j_journal);
985 journal->j_journal = NULL;
987 OCFS2_I(inode)->ip_open_count--;
989 /* unlock our journal */
990 ocfs2_inode_unlock(inode, 1);
992 brelse(journal->j_bh);
993 journal->j_bh = NULL;
995 journal->j_state = OCFS2_JOURNAL_FREE;
997 // up_write(&journal->j_trans_barrier);
1004 static void ocfs2_clear_journal_error(struct super_block *sb,
1010 olderr = jbd2_journal_errno(journal);
1012 mlog(ML_ERROR, "File system error %d recorded in "
1013 "journal %u.\n", olderr, slot);
1014 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1017 jbd2_journal_ack_err(journal);
1018 jbd2_journal_clear_err(journal);
1022 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1025 struct ocfs2_super *osb;
1031 osb = journal->j_osb;
1033 status = jbd2_journal_load(journal->j_journal);
1035 mlog(ML_ERROR, "Failed to load journal!\n");
1039 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1041 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1047 /* Launch the commit thread */
1049 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1051 if (IS_ERR(osb->commit_task)) {
1052 status = PTR_ERR(osb->commit_task);
1053 osb->commit_task = NULL;
1054 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1055 "error=%d", status);
1059 osb->commit_task = NULL;
1067 /* 'full' flag tells us whether we clear out all blocks or if we just
1068 * mark the journal clean */
1069 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1077 status = jbd2_journal_wipe(journal->j_journal, full);
1083 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1092 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1095 struct ocfs2_recovery_map *rm = osb->recovery_map;
1097 spin_lock(&osb->osb_lock);
1098 empty = (rm->rm_used == 0);
1099 spin_unlock(&osb->osb_lock);
1104 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1106 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1110 * JBD Might read a cached version of another nodes journal file. We
1111 * don't want this as this file changes often and we get no
1112 * notification on those changes. The only way to be sure that we've
1113 * got the most up to date version of those blocks then is to force
1114 * read them off disk. Just searching through the buffer cache won't
1115 * work as there may be pages backing this file which are still marked
1116 * up to date. We know things can't change on this file underneath us
1117 * as we have the lock by now :)
1119 static int ocfs2_force_read_journal(struct inode *inode)
1123 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1124 #define CONCURRENT_JOURNAL_FILL 32ULL
1125 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1129 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1131 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
1133 while (v_blkno < num_blocks) {
1134 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1135 &p_blkno, &p_blocks, NULL);
1141 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1142 p_blocks = CONCURRENT_JOURNAL_FILL;
1144 /* We are reading journal data which should not
1145 * be put in the uptodate cache */
1146 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1147 p_blkno, p_blocks, bhs);
1153 for(i = 0; i < p_blocks; i++) {
1158 v_blkno += p_blocks;
1162 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1168 struct ocfs2_la_recovery_item {
1169 struct list_head lri_list;
1171 struct ocfs2_dinode *lri_la_dinode;
1172 struct ocfs2_dinode *lri_tl_dinode;
1173 struct ocfs2_quota_recovery *lri_qrec;
1176 /* Does the second half of the recovery process. By this point, the
1177 * node is marked clean and can actually be considered recovered,
1178 * hence it's no longer in the recovery map, but there's still some
1179 * cleanup we can do which shouldn't happen within the recovery thread
1180 * as locking in that context becomes very difficult if we are to take
1181 * recovering nodes into account.
1183 * NOTE: This function can and will sleep on recovery of other nodes
1184 * during cluster locking, just like any other ocfs2 process.
1186 void ocfs2_complete_recovery(struct work_struct *work)
1189 struct ocfs2_journal *journal =
1190 container_of(work, struct ocfs2_journal, j_recovery_work);
1191 struct ocfs2_super *osb = journal->j_osb;
1192 struct ocfs2_dinode *la_dinode, *tl_dinode;
1193 struct ocfs2_la_recovery_item *item, *n;
1194 struct ocfs2_quota_recovery *qrec;
1195 LIST_HEAD(tmp_la_list);
1199 mlog(0, "completing recovery from keventd\n");
1201 spin_lock(&journal->j_lock);
1202 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1203 spin_unlock(&journal->j_lock);
1205 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1206 list_del_init(&item->lri_list);
1208 mlog(0, "Complete recovery for slot %d\n", item->lri_slot);
1210 ocfs2_wait_on_quotas(osb);
1212 la_dinode = item->lri_la_dinode;
1214 mlog(0, "Clean up local alloc %llu\n",
1215 (unsigned long long)le64_to_cpu(la_dinode->i_blkno));
1217 ret = ocfs2_complete_local_alloc_recovery(osb,
1225 tl_dinode = item->lri_tl_dinode;
1227 mlog(0, "Clean up truncate log %llu\n",
1228 (unsigned long long)le64_to_cpu(tl_dinode->i_blkno));
1230 ret = ocfs2_complete_truncate_log_recovery(osb,
1238 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1242 qrec = item->lri_qrec;
1244 mlog(0, "Recovering quota files");
1245 ret = ocfs2_finish_quota_recovery(osb, qrec,
1249 /* Recovery info is already freed now */
1255 mlog(0, "Recovery completion\n");
1259 /* NOTE: This function always eats your references to la_dinode and
1260 * tl_dinode, either manually on error, or by passing them to
1261 * ocfs2_complete_recovery */
1262 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1264 struct ocfs2_dinode *la_dinode,
1265 struct ocfs2_dinode *tl_dinode,
1266 struct ocfs2_quota_recovery *qrec)
1268 struct ocfs2_la_recovery_item *item;
1270 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1272 /* Though we wish to avoid it, we are in fact safe in
1273 * skipping local alloc cleanup as fsck.ocfs2 is more
1274 * than capable of reclaiming unused space. */
1282 ocfs2_free_quota_recovery(qrec);
1284 mlog_errno(-ENOMEM);
1288 INIT_LIST_HEAD(&item->lri_list);
1289 item->lri_la_dinode = la_dinode;
1290 item->lri_slot = slot_num;
1291 item->lri_tl_dinode = tl_dinode;
1292 item->lri_qrec = qrec;
1294 spin_lock(&journal->j_lock);
1295 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1296 queue_work(ocfs2_wq, &journal->j_recovery_work);
1297 spin_unlock(&journal->j_lock);
1300 /* Called by the mount code to queue recovery the last part of
1301 * recovery for it's own and offline slot(s). */
1302 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1304 struct ocfs2_journal *journal = osb->journal;
1306 /* No need to queue up our truncate_log as regular cleanup will catch
1308 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1309 osb->local_alloc_copy, NULL, NULL);
1310 ocfs2_schedule_truncate_log_flush(osb, 0);
1312 osb->local_alloc_copy = NULL;
1315 /* queue to recover orphan slots for all offline slots */
1316 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1317 ocfs2_queue_replay_slots(osb);
1318 ocfs2_free_replay_slots(osb);
1321 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1323 if (osb->quota_rec) {
1324 ocfs2_queue_recovery_completion(osb->journal,
1329 osb->quota_rec = NULL;
1333 static int __ocfs2_recovery_thread(void *arg)
1335 int status, node_num, slot_num;
1336 struct ocfs2_super *osb = arg;
1337 struct ocfs2_recovery_map *rm = osb->recovery_map;
1338 int *rm_quota = NULL;
1339 int rm_quota_used = 0, i;
1340 struct ocfs2_quota_recovery *qrec;
1344 status = ocfs2_wait_on_mount(osb);
1349 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1355 status = ocfs2_super_lock(osb, 1);
1361 status = ocfs2_compute_replay_slots(osb);
1365 /* queue recovery for our own slot */
1366 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1369 spin_lock(&osb->osb_lock);
1370 while (rm->rm_used) {
1371 /* It's always safe to remove entry zero, as we won't
1372 * clear it until ocfs2_recover_node() has succeeded. */
1373 node_num = rm->rm_entries[0];
1374 spin_unlock(&osb->osb_lock);
1375 mlog(0, "checking node %d\n", node_num);
1376 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1377 if (slot_num == -ENOENT) {
1379 mlog(0, "no slot for this node, so no recovery"
1383 mlog(0, "node %d was using slot %d\n", node_num, slot_num);
1385 /* It is a bit subtle with quota recovery. We cannot do it
1386 * immediately because we have to obtain cluster locks from
1387 * quota files and we also don't want to just skip it because
1388 * then quota usage would be out of sync until some node takes
1389 * the slot. So we remember which nodes need quota recovery
1390 * and when everything else is done, we recover quotas. */
1391 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1392 if (i == rm_quota_used)
1393 rm_quota[rm_quota_used++] = slot_num;
1395 status = ocfs2_recover_node(osb, node_num, slot_num);
1398 ocfs2_recovery_map_clear(osb, node_num);
1401 "Error %d recovering node %d on device (%u,%u)!\n",
1403 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1404 mlog(ML_ERROR, "Volume requires unmount.\n");
1407 spin_lock(&osb->osb_lock);
1409 spin_unlock(&osb->osb_lock);
1410 mlog(0, "All nodes recovered\n");
1412 /* Refresh all journal recovery generations from disk */
1413 status = ocfs2_check_journals_nolocks(osb);
1414 status = (status == -EROFS) ? 0 : status;
1418 /* Now it is right time to recover quotas... We have to do this under
1419 * superblock lock so that noone can start using the slot (and crash)
1420 * before we recover it */
1421 for (i = 0; i < rm_quota_used; i++) {
1422 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1424 status = PTR_ERR(qrec);
1428 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1432 ocfs2_super_unlock(osb, 1);
1434 /* queue recovery for offline slots */
1435 ocfs2_queue_replay_slots(osb);
1438 mutex_lock(&osb->recovery_lock);
1439 if (!status && !ocfs2_recovery_completed(osb)) {
1440 mutex_unlock(&osb->recovery_lock);
1444 ocfs2_free_replay_slots(osb);
1445 osb->recovery_thread_task = NULL;
1446 mb(); /* sync with ocfs2_recovery_thread_running */
1447 wake_up(&osb->recovery_event);
1449 mutex_unlock(&osb->recovery_lock);
1455 /* no one is callint kthread_stop() for us so the kthread() api
1456 * requires that we call do_exit(). And it isn't exported, but
1457 * complete_and_exit() seems to be a minimal wrapper around it. */
1458 complete_and_exit(NULL, status);
1462 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1464 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1465 node_num, osb->node_num);
1467 mutex_lock(&osb->recovery_lock);
1468 if (osb->disable_recovery)
1471 /* People waiting on recovery will wait on
1472 * the recovery map to empty. */
1473 if (ocfs2_recovery_map_set(osb, node_num))
1474 mlog(0, "node %d already in recovery map.\n", node_num);
1476 mlog(0, "starting recovery thread...\n");
1478 if (osb->recovery_thread_task)
1481 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1483 if (IS_ERR(osb->recovery_thread_task)) {
1484 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1485 osb->recovery_thread_task = NULL;
1489 mutex_unlock(&osb->recovery_lock);
1490 wake_up(&osb->recovery_event);
1495 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1497 struct buffer_head **bh,
1498 struct inode **ret_inode)
1500 int status = -EACCES;
1501 struct inode *inode = NULL;
1503 BUG_ON(slot_num >= osb->max_slots);
1505 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1507 if (!inode || is_bad_inode(inode)) {
1511 SET_INODE_JOURNAL(inode);
1513 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1523 if (status || !ret_inode)
1531 /* Does the actual journal replay and marks the journal inode as
1532 * clean. Will only replay if the journal inode is marked dirty. */
1533 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1540 struct inode *inode = NULL;
1541 struct ocfs2_dinode *fe;
1542 journal_t *journal = NULL;
1543 struct buffer_head *bh = NULL;
1546 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1552 fe = (struct ocfs2_dinode *)bh->b_data;
1553 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1558 * As the fs recovery is asynchronous, there is a small chance that
1559 * another node mounted (and recovered) the slot before the recovery
1560 * thread could get the lock. To handle that, we dirty read the journal
1561 * inode for that slot to get the recovery generation. If it is
1562 * different than what we expected, the slot has been recovered.
1563 * If not, it needs recovery.
1565 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1566 mlog(0, "Slot %u already recovered (old/new=%u/%u)\n", slot_num,
1567 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1568 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1573 /* Continue with recovery as the journal has not yet been recovered */
1575 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1577 mlog(0, "status returned from ocfs2_inode_lock=%d\n", status);
1578 if (status != -ERESTARTSYS)
1579 mlog(ML_ERROR, "Could not lock journal!\n");
1584 fe = (struct ocfs2_dinode *) bh->b_data;
1586 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1587 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1589 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1590 mlog(0, "No recovery required for node %d\n", node_num);
1591 /* Refresh recovery generation for the slot */
1592 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1596 /* we need to run complete recovery for offline orphan slots */
1597 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1599 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1601 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1603 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1605 status = ocfs2_force_read_journal(inode);
1611 mlog(0, "calling journal_init_inode\n");
1612 journal = jbd2_journal_init_inode(inode);
1613 if (journal == NULL) {
1614 mlog(ML_ERROR, "Linux journal layer error\n");
1619 status = jbd2_journal_load(journal);
1624 jbd2_journal_destroy(journal);
1628 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1630 /* wipe the journal */
1631 mlog(0, "flushing the journal.\n");
1632 jbd2_journal_lock_updates(journal);
1633 status = jbd2_journal_flush(journal);
1634 jbd2_journal_unlock_updates(journal);
1638 /* This will mark the node clean */
1639 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1640 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1641 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1643 /* Increment recovery generation to indicate successful recovery */
1644 ocfs2_bump_recovery_generation(fe);
1645 osb->slot_recovery_generations[slot_num] =
1646 ocfs2_get_recovery_generation(fe);
1648 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1649 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1656 jbd2_journal_destroy(journal);
1659 /* drop the lock on this nodes journal */
1661 ocfs2_inode_unlock(inode, 1);
1673 * Do the most important parts of node recovery:
1674 * - Replay it's journal
1675 * - Stamp a clean local allocator file
1676 * - Stamp a clean truncate log
1677 * - Mark the node clean
1679 * If this function completes without error, a node in OCFS2 can be
1680 * said to have been safely recovered. As a result, failure during the
1681 * second part of a nodes recovery process (local alloc recovery) is
1682 * far less concerning.
1684 static int ocfs2_recover_node(struct ocfs2_super *osb,
1685 int node_num, int slot_num)
1688 struct ocfs2_dinode *la_copy = NULL;
1689 struct ocfs2_dinode *tl_copy = NULL;
1691 mlog_entry("(node_num=%d, slot_num=%d, osb->node_num = %d)\n",
1692 node_num, slot_num, osb->node_num);
1694 /* Should not ever be called to recover ourselves -- in that
1695 * case we should've called ocfs2_journal_load instead. */
1696 BUG_ON(osb->node_num == node_num);
1698 status = ocfs2_replay_journal(osb, node_num, slot_num);
1700 if (status == -EBUSY) {
1701 mlog(0, "Skipping recovery for slot %u (node %u) "
1702 "as another node has recovered it\n", slot_num,
1711 /* Stamp a clean local alloc file AFTER recovering the journal... */
1712 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1718 /* An error from begin_truncate_log_recovery is not
1719 * serious enough to warrant halting the rest of
1721 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1725 /* Likewise, this would be a strange but ultimately not so
1726 * harmful place to get an error... */
1727 status = ocfs2_clear_slot(osb, slot_num);
1731 /* This will kfree the memory pointed to by la_copy and tl_copy */
1732 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1742 /* Test node liveness by trylocking his journal. If we get the lock,
1743 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1744 * still alive (we couldn't get the lock) and < 0 on error. */
1745 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1749 struct inode *inode = NULL;
1751 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1753 if (inode == NULL) {
1754 mlog(ML_ERROR, "access error\n");
1758 if (is_bad_inode(inode)) {
1759 mlog(ML_ERROR, "access error (bad inode)\n");
1765 SET_INODE_JOURNAL(inode);
1767 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1768 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1770 if (status != -EAGAIN)
1775 ocfs2_inode_unlock(inode, 1);
1783 /* Call this underneath ocfs2_super_lock. It also assumes that the
1784 * slot info struct has been updated from disk. */
1785 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1787 unsigned int node_num;
1790 struct buffer_head *bh = NULL;
1791 struct ocfs2_dinode *di;
1793 /* This is called with the super block cluster lock, so we
1794 * know that the slot map can't change underneath us. */
1796 for (i = 0; i < osb->max_slots; i++) {
1797 /* Read journal inode to get the recovery generation */
1798 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1803 di = (struct ocfs2_dinode *)bh->b_data;
1804 gen = ocfs2_get_recovery_generation(di);
1808 spin_lock(&osb->osb_lock);
1809 osb->slot_recovery_generations[i] = gen;
1811 mlog(0, "Slot %u recovery generation is %u\n", i,
1812 osb->slot_recovery_generations[i]);
1814 if (i == osb->slot_num) {
1815 spin_unlock(&osb->osb_lock);
1819 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1820 if (status == -ENOENT) {
1821 spin_unlock(&osb->osb_lock);
1825 if (__ocfs2_recovery_map_test(osb, node_num)) {
1826 spin_unlock(&osb->osb_lock);
1829 spin_unlock(&osb->osb_lock);
1831 /* Ok, we have a slot occupied by another node which
1832 * is not in the recovery map. We trylock his journal
1833 * file here to test if he's alive. */
1834 status = ocfs2_trylock_journal(osb, i);
1836 /* Since we're called from mount, we know that
1837 * the recovery thread can't race us on
1838 * setting / checking the recovery bits. */
1839 ocfs2_recovery_thread(osb, node_num);
1840 } else if ((status < 0) && (status != -EAGAIN)) {
1853 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1854 * randomness to the timeout to minimize multple nodes firing the timer at the
1857 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1861 get_random_bytes(&time, sizeof(time));
1862 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1863 return msecs_to_jiffies(time);
1867 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1868 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1869 * is done to catch any orphans that are left over in orphan directories.
1871 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1872 * seconds. It gets an EX lock on os_lockres and checks sequence number
1873 * stored in LVB. If the sequence number has changed, it means some other
1874 * node has done the scan. This node skips the scan and tracks the
1875 * sequence number. If the sequence number didn't change, it means a scan
1876 * hasn't happened. The node queues a scan and increments the
1877 * sequence number in the LVB.
1879 void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1881 struct ocfs2_orphan_scan *os;
1885 os = &osb->osb_orphan_scan;
1887 mlog(0, "Begin orphan scan\n");
1889 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1892 status = ocfs2_orphan_scan_lock(osb, &seqno);
1894 if (status != -EAGAIN)
1899 /* Do no queue the tasks if the volume is being umounted */
1900 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1903 if (os->os_seqno != seqno) {
1904 os->os_seqno = seqno;
1908 for (i = 0; i < osb->max_slots; i++)
1909 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1912 * We queued a recovery on orphan slots, increment the sequence
1913 * number and update LVB so other node will skip the scan for a while
1917 os->os_scantime = CURRENT_TIME;
1919 ocfs2_orphan_scan_unlock(osb, seqno);
1921 mlog(0, "Orphan scan completed\n");
1925 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1926 void ocfs2_orphan_scan_work(struct work_struct *work)
1928 struct ocfs2_orphan_scan *os;
1929 struct ocfs2_super *osb;
1931 os = container_of(work, struct ocfs2_orphan_scan,
1932 os_orphan_scan_work.work);
1935 mutex_lock(&os->os_lock);
1936 ocfs2_queue_orphan_scan(osb);
1937 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1938 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1939 ocfs2_orphan_scan_timeout());
1940 mutex_unlock(&os->os_lock);
1943 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1945 struct ocfs2_orphan_scan *os;
1947 os = &osb->osb_orphan_scan;
1948 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1949 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1950 mutex_lock(&os->os_lock);
1951 cancel_delayed_work(&os->os_orphan_scan_work);
1952 mutex_unlock(&os->os_lock);
1956 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1958 struct ocfs2_orphan_scan *os;
1960 os = &osb->osb_orphan_scan;
1964 mutex_init(&os->os_lock);
1965 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
1968 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1970 struct ocfs2_orphan_scan *os;
1972 os = &osb->osb_orphan_scan;
1973 os->os_scantime = CURRENT_TIME;
1974 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1975 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1977 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
1978 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1979 ocfs2_orphan_scan_timeout());
1983 struct ocfs2_orphan_filldir_priv {
1985 struct ocfs2_super *osb;
1988 static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1989 loff_t pos, u64 ino, unsigned type)
1991 struct ocfs2_orphan_filldir_priv *p = priv;
1994 if (name_len == 1 && !strncmp(".", name, 1))
1996 if (name_len == 2 && !strncmp("..", name, 2))
1999 /* Skip bad inodes so that recovery can continue */
2000 iter = ocfs2_iget(p->osb, ino,
2001 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2005 mlog(0, "queue orphan %llu\n",
2006 (unsigned long long)OCFS2_I(iter)->ip_blkno);
2007 /* No locking is required for the next_orphan queue as there
2008 * is only ever a single process doing orphan recovery. */
2009 OCFS2_I(iter)->ip_next_orphan = p->head;
2015 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2017 struct inode **head)
2020 struct inode *orphan_dir_inode = NULL;
2021 struct ocfs2_orphan_filldir_priv priv;
2027 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2028 ORPHAN_DIR_SYSTEM_INODE,
2030 if (!orphan_dir_inode) {
2036 mutex_lock(&orphan_dir_inode->i_mutex);
2037 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2043 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
2044 ocfs2_orphan_filldir);
2053 ocfs2_inode_unlock(orphan_dir_inode, 0);
2055 mutex_unlock(&orphan_dir_inode->i_mutex);
2056 iput(orphan_dir_inode);
2060 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2065 spin_lock(&osb->osb_lock);
2066 ret = !osb->osb_orphan_wipes[slot];
2067 spin_unlock(&osb->osb_lock);
2071 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2074 spin_lock(&osb->osb_lock);
2075 /* Mark ourselves such that new processes in delete_inode()
2076 * know to quit early. */
2077 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2078 while (osb->osb_orphan_wipes[slot]) {
2079 /* If any processes are already in the middle of an
2080 * orphan wipe on this dir, then we need to wait for
2082 spin_unlock(&osb->osb_lock);
2083 wait_event_interruptible(osb->osb_wipe_event,
2084 ocfs2_orphan_recovery_can_continue(osb, slot));
2085 spin_lock(&osb->osb_lock);
2087 spin_unlock(&osb->osb_lock);
2090 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2093 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2097 * Orphan recovery. Each mounted node has it's own orphan dir which we
2098 * must run during recovery. Our strategy here is to build a list of
2099 * the inodes in the orphan dir and iget/iput them. The VFS does
2100 * (most) of the rest of the work.
2102 * Orphan recovery can happen at any time, not just mount so we have a
2103 * couple of extra considerations.
2105 * - We grab as many inodes as we can under the orphan dir lock -
2106 * doing iget() outside the orphan dir risks getting a reference on
2108 * - We must be sure not to deadlock with other processes on the
2109 * system wanting to run delete_inode(). This can happen when they go
2110 * to lock the orphan dir and the orphan recovery process attempts to
2111 * iget() inside the orphan dir lock. This can be avoided by
2112 * advertising our state to ocfs2_delete_inode().
2114 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2118 struct inode *inode = NULL;
2120 struct ocfs2_inode_info *oi;
2122 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot);
2124 ocfs2_mark_recovering_orphan_dir(osb, slot);
2125 ret = ocfs2_queue_orphans(osb, slot, &inode);
2126 ocfs2_clear_recovering_orphan_dir(osb, slot);
2128 /* Error here should be noted, but we want to continue with as
2129 * many queued inodes as we've got. */
2134 oi = OCFS2_I(inode);
2135 mlog(0, "iput orphan %llu\n", (unsigned long long)oi->ip_blkno);
2137 iter = oi->ip_next_orphan;
2139 spin_lock(&oi->ip_lock);
2140 /* The remote delete code may have set these on the
2141 * assumption that the other node would wipe them
2142 * successfully. If they are still in the node's
2143 * orphan dir, we need to reset that state. */
2144 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2146 /* Set the proper information to get us going into
2147 * ocfs2_delete_inode. */
2148 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2149 spin_unlock(&oi->ip_lock);
2159 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2161 /* This check is good because ocfs2 will wait on our recovery
2162 * thread before changing it to something other than MOUNTED
2164 wait_event(osb->osb_mount_event,
2165 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2166 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2167 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2169 /* If there's an error on mount, then we may never get to the
2170 * MOUNTED flag, but this is set right before
2171 * dismount_volume() so we can trust it. */
2172 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2173 mlog(0, "mount error, exiting!\n");
2180 static int ocfs2_commit_thread(void *arg)
2183 struct ocfs2_super *osb = arg;
2184 struct ocfs2_journal *journal = osb->journal;
2186 /* we can trust j_num_trans here because _should_stop() is only set in
2187 * shutdown and nobody other than ourselves should be able to start
2188 * transactions. committing on shutdown might take a few iterations
2189 * as final transactions put deleted inodes on the list */
2190 while (!(kthread_should_stop() &&
2191 atomic_read(&journal->j_num_trans) == 0)) {
2193 wait_event_interruptible(osb->checkpoint_event,
2194 atomic_read(&journal->j_num_trans)
2195 || kthread_should_stop());
2197 status = ocfs2_commit_cache(osb);
2201 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2203 "commit_thread: %u transactions pending on "
2205 atomic_read(&journal->j_num_trans));
2212 /* Reads all the journal inodes without taking any cluster locks. Used
2213 * for hard readonly access to determine whether any journal requires
2214 * recovery. Also used to refresh the recovery generation numbers after
2215 * a journal has been recovered by another node.
2217 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2221 struct buffer_head *di_bh = NULL;
2222 struct ocfs2_dinode *di;
2223 int journal_dirty = 0;
2225 for(slot = 0; slot < osb->max_slots; slot++) {
2226 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2232 di = (struct ocfs2_dinode *) di_bh->b_data;
2234 osb->slot_recovery_generations[slot] =
2235 ocfs2_get_recovery_generation(di);
2237 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2238 OCFS2_JOURNAL_DIRTY_FL)