2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2016 Microsemi Corporation
4 * Copyright 2014-2015 PMC-Sierra, Inc.
5 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14 * NON INFRINGEMENT. See the GNU General Public License for more details.
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.20-170"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91 "Use 'simple mode' rather than 'performant mode'");
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1920},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103c, 0x1925},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
124 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
125 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
126 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
127 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
128 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C6},
129 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
130 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
131 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
132 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CA},
133 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CB},
134 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CC},
135 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CD},
136 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21CE},
137 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
138 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
139 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
140 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
141 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
142 {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
143 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
144 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
145 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
146 {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
147 {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
148 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
149 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150 {PCI_VENDOR_ID_COMPAQ, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
151 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
155 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
157 /* board_id = Subsystem Device ID & Vendor ID
158 * product = Marketing Name for the board
159 * access = Address of the struct of function pointers
161 static struct board_type products[] = {
162 {0x40700E11, "Smart Array 5300", &SA5A_access},
163 {0x40800E11, "Smart Array 5i", &SA5B_access},
164 {0x40820E11, "Smart Array 532", &SA5B_access},
165 {0x40830E11, "Smart Array 5312", &SA5B_access},
166 {0x409A0E11, "Smart Array 641", &SA5A_access},
167 {0x409B0E11, "Smart Array 642", &SA5A_access},
168 {0x409C0E11, "Smart Array 6400", &SA5A_access},
169 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
170 {0x40910E11, "Smart Array 6i", &SA5A_access},
171 {0x3225103C, "Smart Array P600", &SA5A_access},
172 {0x3223103C, "Smart Array P800", &SA5A_access},
173 {0x3234103C, "Smart Array P400", &SA5A_access},
174 {0x3235103C, "Smart Array P400i", &SA5A_access},
175 {0x3211103C, "Smart Array E200i", &SA5A_access},
176 {0x3212103C, "Smart Array E200", &SA5A_access},
177 {0x3213103C, "Smart Array E200i", &SA5A_access},
178 {0x3214103C, "Smart Array E200i", &SA5A_access},
179 {0x3215103C, "Smart Array E200i", &SA5A_access},
180 {0x3237103C, "Smart Array E500", &SA5A_access},
181 {0x323D103C, "Smart Array P700m", &SA5A_access},
182 {0x3241103C, "Smart Array P212", &SA5_access},
183 {0x3243103C, "Smart Array P410", &SA5_access},
184 {0x3245103C, "Smart Array P410i", &SA5_access},
185 {0x3247103C, "Smart Array P411", &SA5_access},
186 {0x3249103C, "Smart Array P812", &SA5_access},
187 {0x324A103C, "Smart Array P712m", &SA5_access},
188 {0x324B103C, "Smart Array P711m", &SA5_access},
189 {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
190 {0x3350103C, "Smart Array P222", &SA5_access},
191 {0x3351103C, "Smart Array P420", &SA5_access},
192 {0x3352103C, "Smart Array P421", &SA5_access},
193 {0x3353103C, "Smart Array P822", &SA5_access},
194 {0x3354103C, "Smart Array P420i", &SA5_access},
195 {0x3355103C, "Smart Array P220i", &SA5_access},
196 {0x3356103C, "Smart Array P721m", &SA5_access},
197 {0x1920103C, "Smart Array P430i", &SA5_access},
198 {0x1921103C, "Smart Array P830i", &SA5_access},
199 {0x1922103C, "Smart Array P430", &SA5_access},
200 {0x1923103C, "Smart Array P431", &SA5_access},
201 {0x1924103C, "Smart Array P830", &SA5_access},
202 {0x1925103C, "Smart Array P831", &SA5_access},
203 {0x1926103C, "Smart Array P731m", &SA5_access},
204 {0x1928103C, "Smart Array P230i", &SA5_access},
205 {0x1929103C, "Smart Array P530", &SA5_access},
206 {0x21BD103C, "Smart Array P244br", &SA5_access},
207 {0x21BE103C, "Smart Array P741m", &SA5_access},
208 {0x21BF103C, "Smart HBA H240ar", &SA5_access},
209 {0x21C0103C, "Smart Array P440ar", &SA5_access},
210 {0x21C1103C, "Smart Array P840ar", &SA5_access},
211 {0x21C2103C, "Smart Array P440", &SA5_access},
212 {0x21C3103C, "Smart Array P441", &SA5_access},
213 {0x21C4103C, "Smart Array", &SA5_access},
214 {0x21C5103C, "Smart Array P841", &SA5_access},
215 {0x21C6103C, "Smart HBA H244br", &SA5_access},
216 {0x21C7103C, "Smart HBA H240", &SA5_access},
217 {0x21C8103C, "Smart HBA H241", &SA5_access},
218 {0x21C9103C, "Smart Array", &SA5_access},
219 {0x21CA103C, "Smart Array P246br", &SA5_access},
220 {0x21CB103C, "Smart Array P840", &SA5_access},
221 {0x21CC103C, "Smart Array", &SA5_access},
222 {0x21CD103C, "Smart Array", &SA5_access},
223 {0x21CE103C, "Smart HBA", &SA5_access},
224 {0x05809005, "SmartHBA-SA", &SA5_access},
225 {0x05819005, "SmartHBA-SA 8i", &SA5_access},
226 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
227 {0x05839005, "SmartHBA-SA 8e", &SA5_access},
228 {0x05849005, "SmartHBA-SA 16i", &SA5_access},
229 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
230 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
231 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
232 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
233 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
234 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
235 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
238 static struct scsi_transport_template *hpsa_sas_transport_template;
239 static int hpsa_add_sas_host(struct ctlr_info *h);
240 static void hpsa_delete_sas_host(struct ctlr_info *h);
241 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
242 struct hpsa_scsi_dev_t *device);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
244 static struct hpsa_scsi_dev_t
245 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
246 struct sas_rphy *rphy);
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle;
252 static int number_of_controllers;
254 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
255 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
256 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
260 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
264 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
265 static struct CommandList *cmd_alloc(struct ctlr_info *h);
266 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
267 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
268 struct scsi_cmnd *scmd);
269 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
270 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
272 static void hpsa_free_cmd_pool(struct ctlr_info *h);
273 #define VPD_PAGE (1 << 8)
274 #define HPSA_SIMPLE_ERROR_BITS 0x03
276 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
277 static void hpsa_scan_start(struct Scsi_Host *);
278 static int hpsa_scan_finished(struct Scsi_Host *sh,
279 unsigned long elapsed_time);
280 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
282 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
283 static int hpsa_slave_alloc(struct scsi_device *sdev);
284 static int hpsa_slave_configure(struct scsi_device *sdev);
285 static void hpsa_slave_destroy(struct scsi_device *sdev);
287 static void hpsa_update_scsi_devices(struct ctlr_info *h);
288 static int check_for_unit_attention(struct ctlr_info *h,
289 struct CommandList *c);
290 static void check_ioctl_unit_attention(struct ctlr_info *h,
291 struct CommandList *c);
292 /* performant mode helper functions */
293 static void calc_bucket_map(int *bucket, int num_buckets,
294 int nsgs, int min_blocks, u32 *bucket_map);
295 static void hpsa_free_performant_mode(struct ctlr_info *h);
296 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
297 static inline u32 next_command(struct ctlr_info *h, u8 q);
298 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
299 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
301 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
302 unsigned long *memory_bar);
303 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
305 static int wait_for_device_to_become_ready(struct ctlr_info *h,
306 unsigned char lunaddr[],
308 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
310 static inline void finish_cmd(struct CommandList *c);
311 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
312 #define BOARD_NOT_READY 0
313 #define BOARD_READY 1
314 static void hpsa_drain_accel_commands(struct ctlr_info *h);
315 static void hpsa_flush_cache(struct ctlr_info *h);
316 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
317 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
318 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
319 static void hpsa_command_resubmit_worker(struct work_struct *work);
320 static u32 lockup_detected(struct ctlr_info *h);
321 static int detect_controller_lockup(struct ctlr_info *h);
322 static void hpsa_disable_rld_caching(struct ctlr_info *h);
323 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
324 struct ReportExtendedLUNdata *buf, int bufsize);
325 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
326 unsigned char scsi3addr[], u8 page);
327 static int hpsa_luns_changed(struct ctlr_info *h);
328 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
329 struct hpsa_scsi_dev_t *dev,
330 unsigned char *scsi3addr);
332 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
334 unsigned long *priv = shost_priv(sdev->host);
335 return (struct ctlr_info *) *priv;
338 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
340 unsigned long *priv = shost_priv(sh);
341 return (struct ctlr_info *) *priv;
344 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
346 return c->scsi_cmd == SCSI_CMD_IDLE;
349 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
350 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
351 u8 *sense_key, u8 *asc, u8 *ascq)
353 struct scsi_sense_hdr sshdr;
360 if (sense_data_len < 1)
363 rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
365 *sense_key = sshdr.sense_key;
371 static int check_for_unit_attention(struct ctlr_info *h,
372 struct CommandList *c)
374 u8 sense_key, asc, ascq;
377 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
378 sense_len = sizeof(c->err_info->SenseInfo);
380 sense_len = c->err_info->SenseLen;
382 decode_sense_data(c->err_info->SenseInfo, sense_len,
383 &sense_key, &asc, &ascq);
384 if (sense_key != UNIT_ATTENTION || asc == 0xff)
389 dev_warn(&h->pdev->dev,
390 "%s: a state change detected, command retried\n",
394 dev_warn(&h->pdev->dev,
395 "%s: LUN failure detected\n", h->devname);
397 case REPORT_LUNS_CHANGED:
398 dev_warn(&h->pdev->dev,
399 "%s: report LUN data changed\n", h->devname);
401 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
402 * target (array) devices.
406 dev_warn(&h->pdev->dev,
407 "%s: a power on or device reset detected\n",
410 case UNIT_ATTENTION_CLEARED:
411 dev_warn(&h->pdev->dev,
412 "%s: unit attention cleared by another initiator\n",
416 dev_warn(&h->pdev->dev,
417 "%s: unknown unit attention detected\n",
424 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
426 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
427 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
428 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
430 dev_warn(&h->pdev->dev, HPSA "device busy");
434 static u32 lockup_detected(struct ctlr_info *h);
435 static ssize_t host_show_lockup_detected(struct device *dev,
436 struct device_attribute *attr, char *buf)
440 struct Scsi_Host *shost = class_to_shost(dev);
442 h = shost_to_hba(shost);
443 ld = lockup_detected(h);
445 return sprintf(buf, "ld=%d\n", ld);
448 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
449 struct device_attribute *attr,
450 const char *buf, size_t count)
454 struct Scsi_Host *shost = class_to_shost(dev);
457 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
459 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
460 strncpy(tmpbuf, buf, len);
462 if (sscanf(tmpbuf, "%d", &status) != 1)
464 h = shost_to_hba(shost);
465 h->acciopath_status = !!status;
466 dev_warn(&h->pdev->dev,
467 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
468 h->acciopath_status ? "enabled" : "disabled");
472 static ssize_t host_store_raid_offload_debug(struct device *dev,
473 struct device_attribute *attr,
474 const char *buf, size_t count)
476 int debug_level, len;
478 struct Scsi_Host *shost = class_to_shost(dev);
481 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
483 len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
484 strncpy(tmpbuf, buf, len);
486 if (sscanf(tmpbuf, "%d", &debug_level) != 1)
490 h = shost_to_hba(shost);
491 h->raid_offload_debug = debug_level;
492 dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
493 h->raid_offload_debug);
497 static ssize_t host_store_rescan(struct device *dev,
498 struct device_attribute *attr,
499 const char *buf, size_t count)
502 struct Scsi_Host *shost = class_to_shost(dev);
503 h = shost_to_hba(shost);
504 hpsa_scan_start(h->scsi_host);
508 static ssize_t host_show_firmware_revision(struct device *dev,
509 struct device_attribute *attr, char *buf)
512 struct Scsi_Host *shost = class_to_shost(dev);
513 unsigned char *fwrev;
515 h = shost_to_hba(shost);
516 if (!h->hba_inquiry_data)
518 fwrev = &h->hba_inquiry_data[32];
519 return snprintf(buf, 20, "%c%c%c%c\n",
520 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
523 static ssize_t host_show_commands_outstanding(struct device *dev,
524 struct device_attribute *attr, char *buf)
526 struct Scsi_Host *shost = class_to_shost(dev);
527 struct ctlr_info *h = shost_to_hba(shost);
529 return snprintf(buf, 20, "%d\n",
530 atomic_read(&h->commands_outstanding));
533 static ssize_t host_show_transport_mode(struct device *dev,
534 struct device_attribute *attr, char *buf)
537 struct Scsi_Host *shost = class_to_shost(dev);
539 h = shost_to_hba(shost);
540 return snprintf(buf, 20, "%s\n",
541 h->transMethod & CFGTBL_Trans_Performant ?
542 "performant" : "simple");
545 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
546 struct device_attribute *attr, char *buf)
549 struct Scsi_Host *shost = class_to_shost(dev);
551 h = shost_to_hba(shost);
552 return snprintf(buf, 30, "HP SSD Smart Path %s\n",
553 (h->acciopath_status == 1) ? "enabled" : "disabled");
556 /* List of controllers which cannot be hard reset on kexec with reset_devices */
557 static u32 unresettable_controller[] = {
558 0x324a103C, /* Smart Array P712m */
559 0x324b103C, /* Smart Array P711m */
560 0x3223103C, /* Smart Array P800 */
561 0x3234103C, /* Smart Array P400 */
562 0x3235103C, /* Smart Array P400i */
563 0x3211103C, /* Smart Array E200i */
564 0x3212103C, /* Smart Array E200 */
565 0x3213103C, /* Smart Array E200i */
566 0x3214103C, /* Smart Array E200i */
567 0x3215103C, /* Smart Array E200i */
568 0x3237103C, /* Smart Array E500 */
569 0x323D103C, /* Smart Array P700m */
570 0x40800E11, /* Smart Array 5i */
571 0x409C0E11, /* Smart Array 6400 */
572 0x409D0E11, /* Smart Array 6400 EM */
573 0x40700E11, /* Smart Array 5300 */
574 0x40820E11, /* Smart Array 532 */
575 0x40830E11, /* Smart Array 5312 */
576 0x409A0E11, /* Smart Array 641 */
577 0x409B0E11, /* Smart Array 642 */
578 0x40910E11, /* Smart Array 6i */
581 /* List of controllers which cannot even be soft reset */
582 static u32 soft_unresettable_controller[] = {
583 0x40800E11, /* Smart Array 5i */
584 0x40700E11, /* Smart Array 5300 */
585 0x40820E11, /* Smart Array 532 */
586 0x40830E11, /* Smart Array 5312 */
587 0x409A0E11, /* Smart Array 641 */
588 0x409B0E11, /* Smart Array 642 */
589 0x40910E11, /* Smart Array 6i */
590 /* Exclude 640x boards. These are two pci devices in one slot
591 * which share a battery backed cache module. One controls the
592 * cache, the other accesses the cache through the one that controls
593 * it. If we reset the one controlling the cache, the other will
594 * likely not be happy. Just forbid resetting this conjoined mess.
595 * The 640x isn't really supported by hpsa anyway.
597 0x409C0E11, /* Smart Array 6400 */
598 0x409D0E11, /* Smart Array 6400 EM */
601 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
605 for (i = 0; i < nelems; i++)
606 if (a[i] == board_id)
611 static int ctlr_is_hard_resettable(u32 board_id)
613 return !board_id_in_array(unresettable_controller,
614 ARRAY_SIZE(unresettable_controller), board_id);
617 static int ctlr_is_soft_resettable(u32 board_id)
619 return !board_id_in_array(soft_unresettable_controller,
620 ARRAY_SIZE(soft_unresettable_controller), board_id);
623 static int ctlr_is_resettable(u32 board_id)
625 return ctlr_is_hard_resettable(board_id) ||
626 ctlr_is_soft_resettable(board_id);
629 static ssize_t host_show_resettable(struct device *dev,
630 struct device_attribute *attr, char *buf)
633 struct Scsi_Host *shost = class_to_shost(dev);
635 h = shost_to_hba(shost);
636 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
639 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
641 return (scsi3addr[3] & 0xC0) == 0x40;
644 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
645 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
647 #define HPSA_RAID_0 0
648 #define HPSA_RAID_4 1
649 #define HPSA_RAID_1 2 /* also used for RAID 10 */
650 #define HPSA_RAID_5 3 /* also used for RAID 50 */
651 #define HPSA_RAID_51 4
652 #define HPSA_RAID_6 5 /* also used for RAID 60 */
653 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
654 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
655 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
657 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
659 return !device->physical_device;
662 static ssize_t raid_level_show(struct device *dev,
663 struct device_attribute *attr, char *buf)
666 unsigned char rlevel;
668 struct scsi_device *sdev;
669 struct hpsa_scsi_dev_t *hdev;
672 sdev = to_scsi_device(dev);
673 h = sdev_to_hba(sdev);
674 spin_lock_irqsave(&h->lock, flags);
675 hdev = sdev->hostdata;
677 spin_unlock_irqrestore(&h->lock, flags);
681 /* Is this even a logical drive? */
682 if (!is_logical_device(hdev)) {
683 spin_unlock_irqrestore(&h->lock, flags);
684 l = snprintf(buf, PAGE_SIZE, "N/A\n");
688 rlevel = hdev->raid_level;
689 spin_unlock_irqrestore(&h->lock, flags);
690 if (rlevel > RAID_UNKNOWN)
691 rlevel = RAID_UNKNOWN;
692 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
696 static ssize_t lunid_show(struct device *dev,
697 struct device_attribute *attr, char *buf)
700 struct scsi_device *sdev;
701 struct hpsa_scsi_dev_t *hdev;
703 unsigned char lunid[8];
705 sdev = to_scsi_device(dev);
706 h = sdev_to_hba(sdev);
707 spin_lock_irqsave(&h->lock, flags);
708 hdev = sdev->hostdata;
710 spin_unlock_irqrestore(&h->lock, flags);
713 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
714 spin_unlock_irqrestore(&h->lock, flags);
715 return snprintf(buf, 20, "0x%8phN\n", lunid);
718 static ssize_t unique_id_show(struct device *dev,
719 struct device_attribute *attr, char *buf)
722 struct scsi_device *sdev;
723 struct hpsa_scsi_dev_t *hdev;
725 unsigned char sn[16];
727 sdev = to_scsi_device(dev);
728 h = sdev_to_hba(sdev);
729 spin_lock_irqsave(&h->lock, flags);
730 hdev = sdev->hostdata;
732 spin_unlock_irqrestore(&h->lock, flags);
735 memcpy(sn, hdev->device_id, sizeof(sn));
736 spin_unlock_irqrestore(&h->lock, flags);
737 return snprintf(buf, 16 * 2 + 2,
738 "%02X%02X%02X%02X%02X%02X%02X%02X"
739 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
740 sn[0], sn[1], sn[2], sn[3],
741 sn[4], sn[5], sn[6], sn[7],
742 sn[8], sn[9], sn[10], sn[11],
743 sn[12], sn[13], sn[14], sn[15]);
746 static ssize_t sas_address_show(struct device *dev,
747 struct device_attribute *attr, char *buf)
750 struct scsi_device *sdev;
751 struct hpsa_scsi_dev_t *hdev;
755 sdev = to_scsi_device(dev);
756 h = sdev_to_hba(sdev);
757 spin_lock_irqsave(&h->lock, flags);
758 hdev = sdev->hostdata;
759 if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
760 spin_unlock_irqrestore(&h->lock, flags);
763 sas_address = hdev->sas_address;
764 spin_unlock_irqrestore(&h->lock, flags);
766 return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
769 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
770 struct device_attribute *attr, char *buf)
773 struct scsi_device *sdev;
774 struct hpsa_scsi_dev_t *hdev;
778 sdev = to_scsi_device(dev);
779 h = sdev_to_hba(sdev);
780 spin_lock_irqsave(&h->lock, flags);
781 hdev = sdev->hostdata;
783 spin_unlock_irqrestore(&h->lock, flags);
786 offload_enabled = hdev->offload_enabled;
787 spin_unlock_irqrestore(&h->lock, flags);
789 if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
790 return snprintf(buf, 20, "%d\n", offload_enabled);
792 return snprintf(buf, 40, "%s\n",
793 "Not applicable for a controller");
797 static ssize_t path_info_show(struct device *dev,
798 struct device_attribute *attr, char *buf)
801 struct scsi_device *sdev;
802 struct hpsa_scsi_dev_t *hdev;
808 u8 path_map_index = 0;
810 unsigned char phys_connector[2];
812 sdev = to_scsi_device(dev);
813 h = sdev_to_hba(sdev);
814 spin_lock_irqsave(&h->devlock, flags);
815 hdev = sdev->hostdata;
817 spin_unlock_irqrestore(&h->devlock, flags);
822 for (i = 0; i < MAX_PATHS; i++) {
823 path_map_index = 1<<i;
824 if (i == hdev->active_path_index)
826 else if (hdev->path_map & path_map_index)
831 output_len += scnprintf(buf + output_len,
832 PAGE_SIZE - output_len,
833 "[%d:%d:%d:%d] %20.20s ",
834 h->scsi_host->host_no,
835 hdev->bus, hdev->target, hdev->lun,
836 scsi_device_type(hdev->devtype));
838 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
839 output_len += scnprintf(buf + output_len,
840 PAGE_SIZE - output_len,
846 memcpy(&phys_connector, &hdev->phys_connector[i],
847 sizeof(phys_connector));
848 if (phys_connector[0] < '0')
849 phys_connector[0] = '0';
850 if (phys_connector[1] < '0')
851 phys_connector[1] = '0';
852 output_len += scnprintf(buf + output_len,
853 PAGE_SIZE - output_len,
856 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
857 hdev->expose_device) {
858 if (box == 0 || box == 0xFF) {
859 output_len += scnprintf(buf + output_len,
860 PAGE_SIZE - output_len,
864 output_len += scnprintf(buf + output_len,
865 PAGE_SIZE - output_len,
866 "BOX: %hhu BAY: %hhu %s\n",
869 } else if (box != 0 && box != 0xFF) {
870 output_len += scnprintf(buf + output_len,
871 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
874 output_len += scnprintf(buf + output_len,
875 PAGE_SIZE - output_len, "%s\n", active);
878 spin_unlock_irqrestore(&h->devlock, flags);
882 static ssize_t host_show_ctlr_num(struct device *dev,
883 struct device_attribute *attr, char *buf)
886 struct Scsi_Host *shost = class_to_shost(dev);
888 h = shost_to_hba(shost);
889 return snprintf(buf, 20, "%d\n", h->ctlr);
892 static ssize_t host_show_legacy_board(struct device *dev,
893 struct device_attribute *attr, char *buf)
896 struct Scsi_Host *shost = class_to_shost(dev);
898 h = shost_to_hba(shost);
899 return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
902 static DEVICE_ATTR_RO(raid_level);
903 static DEVICE_ATTR_RO(lunid);
904 static DEVICE_ATTR_RO(unique_id);
905 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
906 static DEVICE_ATTR_RO(sas_address);
907 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
908 host_show_hp_ssd_smart_path_enabled, NULL);
909 static DEVICE_ATTR_RO(path_info);
910 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
911 host_show_hp_ssd_smart_path_status,
912 host_store_hp_ssd_smart_path_status);
913 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
914 host_store_raid_offload_debug);
915 static DEVICE_ATTR(firmware_revision, S_IRUGO,
916 host_show_firmware_revision, NULL);
917 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
918 host_show_commands_outstanding, NULL);
919 static DEVICE_ATTR(transport_mode, S_IRUGO,
920 host_show_transport_mode, NULL);
921 static DEVICE_ATTR(resettable, S_IRUGO,
922 host_show_resettable, NULL);
923 static DEVICE_ATTR(lockup_detected, S_IRUGO,
924 host_show_lockup_detected, NULL);
925 static DEVICE_ATTR(ctlr_num, S_IRUGO,
926 host_show_ctlr_num, NULL);
927 static DEVICE_ATTR(legacy_board, S_IRUGO,
928 host_show_legacy_board, NULL);
930 static struct device_attribute *hpsa_sdev_attrs[] = {
931 &dev_attr_raid_level,
934 &dev_attr_hp_ssd_smart_path_enabled,
936 &dev_attr_sas_address,
940 static struct device_attribute *hpsa_shost_attrs[] = {
942 &dev_attr_firmware_revision,
943 &dev_attr_commands_outstanding,
944 &dev_attr_transport_mode,
945 &dev_attr_resettable,
946 &dev_attr_hp_ssd_smart_path_status,
947 &dev_attr_raid_offload_debug,
948 &dev_attr_lockup_detected,
950 &dev_attr_legacy_board,
954 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
955 HPSA_MAX_CONCURRENT_PASSTHRUS)
957 static struct scsi_host_template hpsa_driver_template = {
958 .module = THIS_MODULE,
961 .queuecommand = hpsa_scsi_queue_command,
962 .scan_start = hpsa_scan_start,
963 .scan_finished = hpsa_scan_finished,
964 .change_queue_depth = hpsa_change_queue_depth,
966 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
968 .slave_alloc = hpsa_slave_alloc,
969 .slave_configure = hpsa_slave_configure,
970 .slave_destroy = hpsa_slave_destroy,
972 .compat_ioctl = hpsa_compat_ioctl,
974 .sdev_attrs = hpsa_sdev_attrs,
975 .shost_attrs = hpsa_shost_attrs,
980 static inline u32 next_command(struct ctlr_info *h, u8 q)
983 struct reply_queue_buffer *rq = &h->reply_queue[q];
985 if (h->transMethod & CFGTBL_Trans_io_accel1)
986 return h->access.command_completed(h, q);
988 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
989 return h->access.command_completed(h, q);
991 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
992 a = rq->head[rq->current_entry];
994 atomic_dec(&h->commands_outstanding);
998 /* Check for wraparound */
999 if (rq->current_entry == h->max_commands) {
1000 rq->current_entry = 0;
1001 rq->wraparound ^= 1;
1007 * There are some special bits in the bus address of the
1008 * command that we have to set for the controller to know
1009 * how to process the command:
1011 * Normal performant mode:
1012 * bit 0: 1 means performant mode, 0 means simple mode.
1013 * bits 1-3 = block fetch table entry
1014 * bits 4-6 = command type (== 0)
1017 * bit 0 = "performant mode" bit.
1018 * bits 1-3 = block fetch table entry
1019 * bits 4-6 = command type (== 110)
1020 * (command type is needed because ioaccel1 mode
1021 * commands are submitted through the same register as normal
1022 * mode commands, so this is how the controller knows whether
1023 * the command is normal mode or ioaccel1 mode.)
1026 * bit 0 = "performant mode" bit.
1027 * bits 1-4 = block fetch table entry (note extra bit)
1028 * bits 4-6 = not needed, because ioaccel2 mode has
1029 * a separate special register for submitting commands.
1033 * set_performant_mode: Modify the tag for cciss performant
1034 * set bit 0 for pull model, bits 3-1 for block fetch
1037 #define DEFAULT_REPLY_QUEUE (-1)
1038 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1041 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1042 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1043 if (unlikely(!h->msix_vectors))
1045 c->Header.ReplyQueue = reply_queue;
1049 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1050 struct CommandList *c,
1053 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1056 * Tell the controller to post the reply to the queue for this
1057 * processor. This seems to give the best I/O throughput.
1059 cp->ReplyQueue = reply_queue;
1061 * Set the bits in the address sent down to include:
1062 * - performant mode bit (bit 0)
1063 * - pull count (bits 1-3)
1064 * - command type (bits 4-6)
1066 c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1067 IOACCEL1_BUSADDR_CMDTYPE;
1070 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1071 struct CommandList *c,
1074 struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1075 &h->ioaccel2_cmd_pool[c->cmdindex];
1077 /* Tell the controller to post the reply to the queue for this
1078 * processor. This seems to give the best I/O throughput.
1080 cp->reply_queue = reply_queue;
1081 /* Set the bits in the address sent down to include:
1082 * - performant mode bit not used in ioaccel mode 2
1083 * - pull count (bits 0-3)
1084 * - command type isn't needed for ioaccel2
1086 c->busaddr |= h->ioaccel2_blockFetchTable[0];
1089 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1090 struct CommandList *c,
1093 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1096 * Tell the controller to post the reply to the queue for this
1097 * processor. This seems to give the best I/O throughput.
1099 cp->reply_queue = reply_queue;
1101 * Set the bits in the address sent down to include:
1102 * - performant mode bit not used in ioaccel mode 2
1103 * - pull count (bits 0-3)
1104 * - command type isn't needed for ioaccel2
1106 c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1109 static int is_firmware_flash_cmd(u8 *cdb)
1111 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1115 * During firmware flash, the heartbeat register may not update as frequently
1116 * as it should. So we dial down lockup detection during firmware flash. and
1117 * dial it back up when firmware flash completes.
1119 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1120 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1121 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1122 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1123 struct CommandList *c)
1125 if (!is_firmware_flash_cmd(c->Request.CDB))
1127 atomic_inc(&h->firmware_flash_in_progress);
1128 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1131 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1132 struct CommandList *c)
1134 if (is_firmware_flash_cmd(c->Request.CDB) &&
1135 atomic_dec_and_test(&h->firmware_flash_in_progress))
1136 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1139 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1140 struct CommandList *c, int reply_queue)
1142 dial_down_lockup_detection_during_fw_flash(h, c);
1143 atomic_inc(&h->commands_outstanding);
1145 atomic_inc(&c->device->commands_outstanding);
1147 reply_queue = h->reply_map[raw_smp_processor_id()];
1148 switch (c->cmd_type) {
1150 set_ioaccel1_performant_mode(h, c, reply_queue);
1151 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1154 set_ioaccel2_performant_mode(h, c, reply_queue);
1155 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1158 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1159 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1162 set_performant_mode(h, c, reply_queue);
1163 h->access.submit_command(h, c);
1167 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1169 __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1172 static inline int is_hba_lunid(unsigned char scsi3addr[])
1174 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1177 static inline int is_scsi_rev_5(struct ctlr_info *h)
1179 if (!h->hba_inquiry_data)
1181 if ((h->hba_inquiry_data[2] & 0x07) == 5)
1186 static int hpsa_find_target_lun(struct ctlr_info *h,
1187 unsigned char scsi3addr[], int bus, int *target, int *lun)
1189 /* finds an unused bus, target, lun for a new physical device
1190 * assumes h->devlock is held
1193 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1195 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1197 for (i = 0; i < h->ndevices; i++) {
1198 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1199 __set_bit(h->dev[i]->target, lun_taken);
1202 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1203 if (i < HPSA_MAX_DEVICES) {
1212 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1213 struct hpsa_scsi_dev_t *dev, char *description)
1215 #define LABEL_SIZE 25
1216 char label[LABEL_SIZE];
1218 if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1221 switch (dev->devtype) {
1223 snprintf(label, LABEL_SIZE, "controller");
1225 case TYPE_ENCLOSURE:
1226 snprintf(label, LABEL_SIZE, "enclosure");
1231 snprintf(label, LABEL_SIZE, "external");
1232 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1233 snprintf(label, LABEL_SIZE, "%s",
1234 raid_label[PHYSICAL_DRIVE]);
1236 snprintf(label, LABEL_SIZE, "RAID-%s",
1237 dev->raid_level > RAID_UNKNOWN ? "?" :
1238 raid_label[dev->raid_level]);
1241 snprintf(label, LABEL_SIZE, "rom");
1244 snprintf(label, LABEL_SIZE, "tape");
1246 case TYPE_MEDIUM_CHANGER:
1247 snprintf(label, LABEL_SIZE, "changer");
1250 snprintf(label, LABEL_SIZE, "UNKNOWN");
1254 dev_printk(level, &h->pdev->dev,
1255 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1256 h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1258 scsi_device_type(dev->devtype),
1262 dev->offload_config ? '+' : '-',
1263 dev->offload_to_be_enabled ? '+' : '-',
1264 dev->expose_device);
1267 /* Add an entry into h->dev[] array. */
1268 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1269 struct hpsa_scsi_dev_t *device,
1270 struct hpsa_scsi_dev_t *added[], int *nadded)
1272 /* assumes h->devlock is held */
1273 int n = h->ndevices;
1275 unsigned char addr1[8], addr2[8];
1276 struct hpsa_scsi_dev_t *sd;
1278 if (n >= HPSA_MAX_DEVICES) {
1279 dev_err(&h->pdev->dev, "too many devices, some will be "
1284 /* physical devices do not have lun or target assigned until now. */
1285 if (device->lun != -1)
1286 /* Logical device, lun is already assigned. */
1289 /* If this device a non-zero lun of a multi-lun device
1290 * byte 4 of the 8-byte LUN addr will contain the logical
1291 * unit no, zero otherwise.
1293 if (device->scsi3addr[4] == 0) {
1294 /* This is not a non-zero lun of a multi-lun device */
1295 if (hpsa_find_target_lun(h, device->scsi3addr,
1296 device->bus, &device->target, &device->lun) != 0)
1301 /* This is a non-zero lun of a multi-lun device.
1302 * Search through our list and find the device which
1303 * has the same 8 byte LUN address, excepting byte 4 and 5.
1304 * Assign the same bus and target for this new LUN.
1305 * Use the logical unit number from the firmware.
1307 memcpy(addr1, device->scsi3addr, 8);
1310 for (i = 0; i < n; i++) {
1312 memcpy(addr2, sd->scsi3addr, 8);
1315 /* differ only in byte 4 and 5? */
1316 if (memcmp(addr1, addr2, 8) == 0) {
1317 device->bus = sd->bus;
1318 device->target = sd->target;
1319 device->lun = device->scsi3addr[4];
1323 if (device->lun == -1) {
1324 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1325 " suspect firmware bug or unsupported hardware "
1326 "configuration.\n");
1334 added[*nadded] = device;
1336 hpsa_show_dev_msg(KERN_INFO, h, device,
1337 device->expose_device ? "added" : "masked");
1342 * Called during a scan operation.
1344 * Update an entry in h->dev[] array.
1346 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1347 int entry, struct hpsa_scsi_dev_t *new_entry)
1349 /* assumes h->devlock is held */
1350 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1352 /* Raid level changed. */
1353 h->dev[entry]->raid_level = new_entry->raid_level;
1356 * ioacccel_handle may have changed for a dual domain disk
1358 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1360 /* Raid offload parameters changed. Careful about the ordering. */
1361 if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1363 * if drive is newly offload_enabled, we want to copy the
1364 * raid map data first. If previously offload_enabled and
1365 * offload_config were set, raid map data had better be
1366 * the same as it was before. If raid map data has changed
1367 * then it had better be the case that
1368 * h->dev[entry]->offload_enabled is currently 0.
1370 h->dev[entry]->raid_map = new_entry->raid_map;
1371 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1373 if (new_entry->offload_to_be_enabled) {
1374 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1375 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1377 h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1378 h->dev[entry]->offload_config = new_entry->offload_config;
1379 h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1380 h->dev[entry]->queue_depth = new_entry->queue_depth;
1383 * We can turn off ioaccel offload now, but need to delay turning
1384 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1385 * can't do that until all the devices are updated.
1387 h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1390 * turn ioaccel off immediately if told to do so.
1392 if (!new_entry->offload_to_be_enabled)
1393 h->dev[entry]->offload_enabled = 0;
1395 hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1398 /* Replace an entry from h->dev[] array. */
1399 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1400 int entry, struct hpsa_scsi_dev_t *new_entry,
1401 struct hpsa_scsi_dev_t *added[], int *nadded,
1402 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1404 /* assumes h->devlock is held */
1405 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1406 removed[*nremoved] = h->dev[entry];
1410 * New physical devices won't have target/lun assigned yet
1411 * so we need to preserve the values in the slot we are replacing.
1413 if (new_entry->target == -1) {
1414 new_entry->target = h->dev[entry]->target;
1415 new_entry->lun = h->dev[entry]->lun;
1418 h->dev[entry] = new_entry;
1419 added[*nadded] = new_entry;
1422 hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1425 /* Remove an entry from h->dev[] array. */
1426 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1427 struct hpsa_scsi_dev_t *removed[], int *nremoved)
1429 /* assumes h->devlock is held */
1431 struct hpsa_scsi_dev_t *sd;
1433 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1436 removed[*nremoved] = h->dev[entry];
1439 for (i = entry; i < h->ndevices-1; i++)
1440 h->dev[i] = h->dev[i+1];
1442 hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1445 #define SCSI3ADDR_EQ(a, b) ( \
1446 (a)[7] == (b)[7] && \
1447 (a)[6] == (b)[6] && \
1448 (a)[5] == (b)[5] && \
1449 (a)[4] == (b)[4] && \
1450 (a)[3] == (b)[3] && \
1451 (a)[2] == (b)[2] && \
1452 (a)[1] == (b)[1] && \
1455 static void fixup_botched_add(struct ctlr_info *h,
1456 struct hpsa_scsi_dev_t *added)
1458 /* called when scsi_add_device fails in order to re-adjust
1459 * h->dev[] to match the mid layer's view.
1461 unsigned long flags;
1464 spin_lock_irqsave(&h->lock, flags);
1465 for (i = 0; i < h->ndevices; i++) {
1466 if (h->dev[i] == added) {
1467 for (j = i; j < h->ndevices-1; j++)
1468 h->dev[j] = h->dev[j+1];
1473 spin_unlock_irqrestore(&h->lock, flags);
1477 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1478 struct hpsa_scsi_dev_t *dev2)
1480 /* we compare everything except lun and target as these
1481 * are not yet assigned. Compare parts likely
1484 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1485 sizeof(dev1->scsi3addr)) != 0)
1487 if (memcmp(dev1->device_id, dev2->device_id,
1488 sizeof(dev1->device_id)) != 0)
1490 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1492 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1494 if (dev1->devtype != dev2->devtype)
1496 if (dev1->bus != dev2->bus)
1501 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1502 struct hpsa_scsi_dev_t *dev2)
1504 /* Device attributes that can change, but don't mean
1505 * that the device is a different device, nor that the OS
1506 * needs to be told anything about the change.
1508 if (dev1->raid_level != dev2->raid_level)
1510 if (dev1->offload_config != dev2->offload_config)
1512 if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1514 if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1515 if (dev1->queue_depth != dev2->queue_depth)
1518 * This can happen for dual domain devices. An active
1519 * path change causes the ioaccel handle to change
1521 * for example note the handle differences between p0 and p1
1522 * Device WWN ,WWN hash,Handle
1523 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1524 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1526 if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1531 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1532 * and return needle location in *index. If scsi3addr matches, but not
1533 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1534 * location in *index.
1535 * In the case of a minor device attribute change, such as RAID level, just
1536 * return DEVICE_UPDATED, along with the updated device's location in index.
1537 * If needle not found, return DEVICE_NOT_FOUND.
1539 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1540 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1544 #define DEVICE_NOT_FOUND 0
1545 #define DEVICE_CHANGED 1
1546 #define DEVICE_SAME 2
1547 #define DEVICE_UPDATED 3
1549 return DEVICE_NOT_FOUND;
1551 for (i = 0; i < haystack_size; i++) {
1552 if (haystack[i] == NULL) /* previously removed. */
1554 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1556 if (device_is_the_same(needle, haystack[i])) {
1557 if (device_updated(needle, haystack[i]))
1558 return DEVICE_UPDATED;
1561 /* Keep offline devices offline */
1562 if (needle->volume_offline)
1563 return DEVICE_NOT_FOUND;
1564 return DEVICE_CHANGED;
1569 return DEVICE_NOT_FOUND;
1572 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1573 unsigned char scsi3addr[])
1575 struct offline_device_entry *device;
1576 unsigned long flags;
1578 /* Check to see if device is already on the list */
1579 spin_lock_irqsave(&h->offline_device_lock, flags);
1580 list_for_each_entry(device, &h->offline_device_list, offline_list) {
1581 if (memcmp(device->scsi3addr, scsi3addr,
1582 sizeof(device->scsi3addr)) == 0) {
1583 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1587 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1589 /* Device is not on the list, add it. */
1590 device = kmalloc(sizeof(*device), GFP_KERNEL);
1594 memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1595 spin_lock_irqsave(&h->offline_device_lock, flags);
1596 list_add_tail(&device->offline_list, &h->offline_device_list);
1597 spin_unlock_irqrestore(&h->offline_device_lock, flags);
1600 /* Print a message explaining various offline volume states */
1601 static void hpsa_show_volume_status(struct ctlr_info *h,
1602 struct hpsa_scsi_dev_t *sd)
1604 if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1605 dev_info(&h->pdev->dev,
1606 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1607 h->scsi_host->host_no,
1608 sd->bus, sd->target, sd->lun);
1609 switch (sd->volume_offline) {
1612 case HPSA_LV_UNDERGOING_ERASE:
1613 dev_info(&h->pdev->dev,
1614 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1615 h->scsi_host->host_no,
1616 sd->bus, sd->target, sd->lun);
1618 case HPSA_LV_NOT_AVAILABLE:
1619 dev_info(&h->pdev->dev,
1620 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1621 h->scsi_host->host_no,
1622 sd->bus, sd->target, sd->lun);
1624 case HPSA_LV_UNDERGOING_RPI:
1625 dev_info(&h->pdev->dev,
1626 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1627 h->scsi_host->host_no,
1628 sd->bus, sd->target, sd->lun);
1630 case HPSA_LV_PENDING_RPI:
1631 dev_info(&h->pdev->dev,
1632 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1633 h->scsi_host->host_no,
1634 sd->bus, sd->target, sd->lun);
1636 case HPSA_LV_ENCRYPTED_NO_KEY:
1637 dev_info(&h->pdev->dev,
1638 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1639 h->scsi_host->host_no,
1640 sd->bus, sd->target, sd->lun);
1642 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1643 dev_info(&h->pdev->dev,
1644 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1645 h->scsi_host->host_no,
1646 sd->bus, sd->target, sd->lun);
1648 case HPSA_LV_UNDERGOING_ENCRYPTION:
1649 dev_info(&h->pdev->dev,
1650 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1651 h->scsi_host->host_no,
1652 sd->bus, sd->target, sd->lun);
1654 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1655 dev_info(&h->pdev->dev,
1656 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1657 h->scsi_host->host_no,
1658 sd->bus, sd->target, sd->lun);
1660 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1661 dev_info(&h->pdev->dev,
1662 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1663 h->scsi_host->host_no,
1664 sd->bus, sd->target, sd->lun);
1666 case HPSA_LV_PENDING_ENCRYPTION:
1667 dev_info(&h->pdev->dev,
1668 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1669 h->scsi_host->host_no,
1670 sd->bus, sd->target, sd->lun);
1672 case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1673 dev_info(&h->pdev->dev,
1674 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1675 h->scsi_host->host_no,
1676 sd->bus, sd->target, sd->lun);
1682 * Figure the list of physical drive pointers for a logical drive with
1683 * raid offload configured.
1685 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1686 struct hpsa_scsi_dev_t *dev[], int ndevices,
1687 struct hpsa_scsi_dev_t *logical_drive)
1689 struct raid_map_data *map = &logical_drive->raid_map;
1690 struct raid_map_disk_data *dd = &map->data[0];
1692 int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1693 le16_to_cpu(map->metadata_disks_per_row);
1694 int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1695 le16_to_cpu(map->layout_map_count) *
1696 total_disks_per_row;
1697 int nphys_disk = le16_to_cpu(map->layout_map_count) *
1698 total_disks_per_row;
1701 if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1702 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1704 logical_drive->nphysical_disks = nraid_map_entries;
1707 for (i = 0; i < nraid_map_entries; i++) {
1708 logical_drive->phys_disk[i] = NULL;
1709 if (!logical_drive->offload_config)
1711 for (j = 0; j < ndevices; j++) {
1714 if (dev[j]->devtype != TYPE_DISK &&
1715 dev[j]->devtype != TYPE_ZBC)
1717 if (is_logical_device(dev[j]))
1719 if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1722 logical_drive->phys_disk[i] = dev[j];
1724 qdepth = min(h->nr_cmds, qdepth +
1725 logical_drive->phys_disk[i]->queue_depth);
1730 * This can happen if a physical drive is removed and
1731 * the logical drive is degraded. In that case, the RAID
1732 * map data will refer to a physical disk which isn't actually
1733 * present. And in that case offload_enabled should already
1734 * be 0, but we'll turn it off here just in case
1736 if (!logical_drive->phys_disk[i]) {
1737 dev_warn(&h->pdev->dev,
1738 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1740 h->scsi_host->host_no, logical_drive->bus,
1741 logical_drive->target, logical_drive->lun);
1742 logical_drive->offload_enabled = 0;
1743 logical_drive->offload_to_be_enabled = 0;
1744 logical_drive->queue_depth = 8;
1747 if (nraid_map_entries)
1749 * This is correct for reads, too high for full stripe writes,
1750 * way too high for partial stripe writes
1752 logical_drive->queue_depth = qdepth;
1754 if (logical_drive->external)
1755 logical_drive->queue_depth = EXTERNAL_QD;
1757 logical_drive->queue_depth = h->nr_cmds;
1761 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1762 struct hpsa_scsi_dev_t *dev[], int ndevices)
1766 for (i = 0; i < ndevices; i++) {
1769 if (dev[i]->devtype != TYPE_DISK &&
1770 dev[i]->devtype != TYPE_ZBC)
1772 if (!is_logical_device(dev[i]))
1776 * If offload is currently enabled, the RAID map and
1777 * phys_disk[] assignment *better* not be changing
1778 * because we would be changing ioaccel phsy_disk[] pointers
1779 * on a ioaccel volume processing I/O requests.
1781 * If an ioaccel volume status changed, initially because it was
1782 * re-configured and thus underwent a transformation, or
1783 * a drive failed, we would have received a state change
1784 * request and ioaccel should have been turned off. When the
1785 * transformation completes, we get another state change
1786 * request to turn ioaccel back on. In this case, we need
1787 * to update the ioaccel information.
1789 * Thus: If it is not currently enabled, but will be after
1790 * the scan completes, make sure the ioaccel pointers
1794 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1795 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1799 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1806 if (is_logical_device(device)) /* RAID */
1807 rc = scsi_add_device(h->scsi_host, device->bus,
1808 device->target, device->lun);
1810 rc = hpsa_add_sas_device(h->sas_host, device);
1815 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1816 struct hpsa_scsi_dev_t *dev)
1821 for (i = 0; i < h->nr_cmds; i++) {
1822 struct CommandList *c = h->cmd_pool + i;
1823 int refcount = atomic_inc_return(&c->refcount);
1825 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1827 unsigned long flags;
1829 spin_lock_irqsave(&h->lock, flags); /* Implied MB */
1830 if (!hpsa_is_cmd_idle(c))
1832 spin_unlock_irqrestore(&h->lock, flags);
1842 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1843 struct hpsa_scsi_dev_t *device)
1847 int num_wait = NUM_WAIT;
1849 if (device->external)
1850 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1853 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1856 if (++waits > num_wait)
1861 if (waits > num_wait) {
1862 dev_warn(&h->pdev->dev,
1863 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1865 h->scsi_host->host_no,
1866 device->bus, device->target, device->lun, cmds);
1870 static void hpsa_remove_device(struct ctlr_info *h,
1871 struct hpsa_scsi_dev_t *device)
1873 struct scsi_device *sdev = NULL;
1879 * Allow for commands to drain
1881 device->removed = 1;
1882 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1884 if (is_logical_device(device)) { /* RAID */
1885 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1886 device->target, device->lun);
1888 scsi_remove_device(sdev);
1889 scsi_device_put(sdev);
1892 * We don't expect to get here. Future commands
1893 * to this device will get a selection timeout as
1894 * if the device were gone.
1896 hpsa_show_dev_msg(KERN_WARNING, h, device,
1897 "didn't find device for removal.");
1901 hpsa_remove_sas_device(device);
1905 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1906 struct hpsa_scsi_dev_t *sd[], int nsds)
1908 /* sd contains scsi3 addresses and devtypes, and inquiry
1909 * data. This function takes what's in sd to be the current
1910 * reality and updates h->dev[] to reflect that reality.
1912 int i, entry, device_change, changes = 0;
1913 struct hpsa_scsi_dev_t *csd;
1914 unsigned long flags;
1915 struct hpsa_scsi_dev_t **added, **removed;
1916 int nadded, nremoved;
1919 * A reset can cause a device status to change
1920 * re-schedule the scan to see what happened.
1922 spin_lock_irqsave(&h->reset_lock, flags);
1923 if (h->reset_in_progress) {
1924 h->drv_req_rescan = 1;
1925 spin_unlock_irqrestore(&h->reset_lock, flags);
1928 spin_unlock_irqrestore(&h->reset_lock, flags);
1930 added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1931 removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1933 if (!added || !removed) {
1934 dev_warn(&h->pdev->dev, "out of memory in "
1935 "adjust_hpsa_scsi_table\n");
1939 spin_lock_irqsave(&h->devlock, flags);
1941 /* find any devices in h->dev[] that are not in
1942 * sd[] and remove them from h->dev[], and for any
1943 * devices which have changed, remove the old device
1944 * info and add the new device info.
1945 * If minor device attributes change, just update
1946 * the existing device structure.
1951 while (i < h->ndevices) {
1953 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1954 if (device_change == DEVICE_NOT_FOUND) {
1956 hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1957 continue; /* remove ^^^, hence i not incremented */
1958 } else if (device_change == DEVICE_CHANGED) {
1960 hpsa_scsi_replace_entry(h, i, sd[entry],
1961 added, &nadded, removed, &nremoved);
1962 /* Set it to NULL to prevent it from being freed
1963 * at the bottom of hpsa_update_scsi_devices()
1966 } else if (device_change == DEVICE_UPDATED) {
1967 hpsa_scsi_update_entry(h, i, sd[entry]);
1972 /* Now, make sure every device listed in sd[] is also
1973 * listed in h->dev[], adding them if they aren't found
1976 for (i = 0; i < nsds; i++) {
1977 if (!sd[i]) /* if already added above. */
1980 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1981 * as the SCSI mid-layer does not handle such devices well.
1982 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1983 * at 160Hz, and prevents the system from coming up.
1985 if (sd[i]->volume_offline) {
1986 hpsa_show_volume_status(h, sd[i]);
1987 hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1991 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1992 h->ndevices, &entry);
1993 if (device_change == DEVICE_NOT_FOUND) {
1995 if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1997 sd[i] = NULL; /* prevent from being freed later. */
1998 } else if (device_change == DEVICE_CHANGED) {
1999 /* should never happen... */
2001 dev_warn(&h->pdev->dev,
2002 "device unexpectedly changed.\n");
2003 /* but if it does happen, we just ignore that device */
2006 hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2009 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2010 * any logical drives that need it enabled.
2012 * The raid map should be current by now.
2014 * We are updating the device list used for I/O requests.
2016 for (i = 0; i < h->ndevices; i++) {
2017 if (h->dev[i] == NULL)
2019 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2022 spin_unlock_irqrestore(&h->devlock, flags);
2024 /* Monitor devices which are in one of several NOT READY states to be
2025 * brought online later. This must be done without holding h->devlock,
2026 * so don't touch h->dev[]
2028 for (i = 0; i < nsds; i++) {
2029 if (!sd[i]) /* if already added above. */
2031 if (sd[i]->volume_offline)
2032 hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2035 /* Don't notify scsi mid layer of any changes the first time through
2036 * (or if there are no changes) scsi_scan_host will do it later the
2037 * first time through.
2042 /* Notify scsi mid layer of any removed devices */
2043 for (i = 0; i < nremoved; i++) {
2044 if (removed[i] == NULL)
2046 if (removed[i]->expose_device)
2047 hpsa_remove_device(h, removed[i]);
2052 /* Notify scsi mid layer of any added devices */
2053 for (i = 0; i < nadded; i++) {
2056 if (added[i] == NULL)
2058 if (!(added[i]->expose_device))
2060 rc = hpsa_add_device(h, added[i]);
2063 dev_warn(&h->pdev->dev,
2064 "addition failed %d, device not added.", rc);
2065 /* now we have to remove it from h->dev,
2066 * since it didn't get added to scsi mid layer
2068 fixup_botched_add(h, added[i]);
2069 h->drv_req_rescan = 1;
2078 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2079 * Assume's h->devlock is held.
2081 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2082 int bus, int target, int lun)
2085 struct hpsa_scsi_dev_t *sd;
2087 for (i = 0; i < h->ndevices; i++) {
2089 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2095 static int hpsa_slave_alloc(struct scsi_device *sdev)
2097 struct hpsa_scsi_dev_t *sd = NULL;
2098 unsigned long flags;
2099 struct ctlr_info *h;
2101 h = sdev_to_hba(sdev);
2102 spin_lock_irqsave(&h->devlock, flags);
2103 if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2104 struct scsi_target *starget;
2105 struct sas_rphy *rphy;
2107 starget = scsi_target(sdev);
2108 rphy = target_to_rphy(starget);
2109 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2111 sd->target = sdev_id(sdev);
2112 sd->lun = sdev->lun;
2116 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2117 sdev_id(sdev), sdev->lun);
2119 if (sd && sd->expose_device) {
2120 atomic_set(&sd->ioaccel_cmds_out, 0);
2121 sdev->hostdata = sd;
2123 sdev->hostdata = NULL;
2124 spin_unlock_irqrestore(&h->devlock, flags);
2128 /* configure scsi device based on internal per-device structure */
2129 static int hpsa_slave_configure(struct scsi_device *sdev)
2131 struct hpsa_scsi_dev_t *sd;
2134 sd = sdev->hostdata;
2135 sdev->no_uld_attach = !sd || !sd->expose_device;
2138 sd->was_removed = 0;
2140 queue_depth = EXTERNAL_QD;
2141 sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2142 blk_queue_rq_timeout(sdev->request_queue,
2143 HPSA_EH_PTRAID_TIMEOUT);
2145 queue_depth = sd->queue_depth != 0 ?
2146 sd->queue_depth : sdev->host->can_queue;
2149 queue_depth = sdev->host->can_queue;
2151 scsi_change_queue_depth(sdev, queue_depth);
2156 static void hpsa_slave_destroy(struct scsi_device *sdev)
2158 struct hpsa_scsi_dev_t *hdev = NULL;
2160 hdev = sdev->hostdata;
2163 hdev->was_removed = 1;
2166 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2170 if (!h->ioaccel2_cmd_sg_list)
2172 for (i = 0; i < h->nr_cmds; i++) {
2173 kfree(h->ioaccel2_cmd_sg_list[i]);
2174 h->ioaccel2_cmd_sg_list[i] = NULL;
2176 kfree(h->ioaccel2_cmd_sg_list);
2177 h->ioaccel2_cmd_sg_list = NULL;
2180 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2184 if (h->chainsize <= 0)
2187 h->ioaccel2_cmd_sg_list =
2188 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2190 if (!h->ioaccel2_cmd_sg_list)
2192 for (i = 0; i < h->nr_cmds; i++) {
2193 h->ioaccel2_cmd_sg_list[i] =
2194 kmalloc_array(h->maxsgentries,
2195 sizeof(*h->ioaccel2_cmd_sg_list[i]),
2197 if (!h->ioaccel2_cmd_sg_list[i])
2203 hpsa_free_ioaccel2_sg_chain_blocks(h);
2207 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2211 if (!h->cmd_sg_list)
2213 for (i = 0; i < h->nr_cmds; i++) {
2214 kfree(h->cmd_sg_list[i]);
2215 h->cmd_sg_list[i] = NULL;
2217 kfree(h->cmd_sg_list);
2218 h->cmd_sg_list = NULL;
2221 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2225 if (h->chainsize <= 0)
2228 h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2230 if (!h->cmd_sg_list)
2233 for (i = 0; i < h->nr_cmds; i++) {
2234 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2235 sizeof(*h->cmd_sg_list[i]),
2237 if (!h->cmd_sg_list[i])
2244 hpsa_free_sg_chain_blocks(h);
2248 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2249 struct io_accel2_cmd *cp, struct CommandList *c)
2251 struct ioaccel2_sg_element *chain_block;
2255 chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2256 chain_size = le32_to_cpu(cp->sg[0].length);
2257 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2259 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2260 /* prevent subsequent unmapping */
2261 cp->sg->address = 0;
2264 cp->sg->address = cpu_to_le64(temp64);
2268 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2269 struct io_accel2_cmd *cp)
2271 struct ioaccel2_sg_element *chain_sg;
2276 temp64 = le64_to_cpu(chain_sg->address);
2277 chain_size = le32_to_cpu(cp->sg[0].length);
2278 dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2281 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2282 struct CommandList *c)
2284 struct SGDescriptor *chain_sg, *chain_block;
2288 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2289 chain_block = h->cmd_sg_list[c->cmdindex];
2290 chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2291 chain_len = sizeof(*chain_sg) *
2292 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2293 chain_sg->Len = cpu_to_le32(chain_len);
2294 temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2296 if (dma_mapping_error(&h->pdev->dev, temp64)) {
2297 /* prevent subsequent unmapping */
2298 chain_sg->Addr = cpu_to_le64(0);
2301 chain_sg->Addr = cpu_to_le64(temp64);
2305 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2306 struct CommandList *c)
2308 struct SGDescriptor *chain_sg;
2310 if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2313 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2314 dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2315 le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2319 /* Decode the various types of errors on ioaccel2 path.
2320 * Return 1 for any error that should generate a RAID path retry.
2321 * Return 0 for errors that don't require a RAID path retry.
2323 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2324 struct CommandList *c,
2325 struct scsi_cmnd *cmd,
2326 struct io_accel2_cmd *c2,
2327 struct hpsa_scsi_dev_t *dev)
2331 u32 ioaccel2_resid = 0;
2333 switch (c2->error_data.serv_response) {
2334 case IOACCEL2_SERV_RESPONSE_COMPLETE:
2335 switch (c2->error_data.status) {
2336 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2338 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2339 cmd->result |= SAM_STAT_CHECK_CONDITION;
2340 if (c2->error_data.data_present !=
2341 IOACCEL2_SENSE_DATA_PRESENT) {
2342 memset(cmd->sense_buffer, 0,
2343 SCSI_SENSE_BUFFERSIZE);
2346 /* copy the sense data */
2347 data_len = c2->error_data.sense_data_len;
2348 if (data_len > SCSI_SENSE_BUFFERSIZE)
2349 data_len = SCSI_SENSE_BUFFERSIZE;
2350 if (data_len > sizeof(c2->error_data.sense_data_buff))
2352 sizeof(c2->error_data.sense_data_buff);
2353 memcpy(cmd->sense_buffer,
2354 c2->error_data.sense_data_buff, data_len);
2357 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2360 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2363 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2366 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2374 case IOACCEL2_SERV_RESPONSE_FAILURE:
2375 switch (c2->error_data.status) {
2376 case IOACCEL2_STATUS_SR_IO_ERROR:
2377 case IOACCEL2_STATUS_SR_IO_ABORTED:
2378 case IOACCEL2_STATUS_SR_OVERRUN:
2381 case IOACCEL2_STATUS_SR_UNDERRUN:
2382 cmd->result = (DID_OK << 16); /* host byte */
2383 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2384 ioaccel2_resid = get_unaligned_le32(
2385 &c2->error_data.resid_cnt[0]);
2386 scsi_set_resid(cmd, ioaccel2_resid);
2388 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2389 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2390 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2392 * Did an HBA disk disappear? We will eventually
2393 * get a state change event from the controller but
2394 * in the meantime, we need to tell the OS that the
2395 * HBA disk is no longer there and stop I/O
2396 * from going down. This allows the potential re-insert
2397 * of the disk to get the same device node.
2399 if (dev->physical_device && dev->expose_device) {
2400 cmd->result = DID_NO_CONNECT << 16;
2402 h->drv_req_rescan = 1;
2403 dev_warn(&h->pdev->dev,
2404 "%s: device is gone!\n", __func__);
2407 * Retry by sending down the RAID path.
2408 * We will get an event from ctlr to
2409 * trigger rescan regardless.
2417 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2419 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2421 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2424 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2434 return retry; /* retry on raid path? */
2437 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2438 struct CommandList *c)
2440 struct hpsa_scsi_dev_t *dev = c->device;
2443 * Reset c->scsi_cmd here so that the reset handler will know
2444 * this command has completed. Then, check to see if the handler is
2445 * waiting for this command, and, if so, wake it.
2447 c->scsi_cmd = SCSI_CMD_IDLE;
2448 mb(); /* Declare command idle before checking for pending events. */
2450 atomic_dec(&dev->commands_outstanding);
2451 if (dev->in_reset &&
2452 atomic_read(&dev->commands_outstanding) <= 0)
2453 wake_up_all(&h->event_sync_wait_queue);
2457 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2458 struct CommandList *c)
2460 hpsa_cmd_resolve_events(h, c);
2461 cmd_tagged_free(h, c);
2464 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2465 struct CommandList *c, struct scsi_cmnd *cmd)
2467 hpsa_cmd_resolve_and_free(h, c);
2468 if (cmd && cmd->scsi_done)
2469 cmd->scsi_done(cmd);
2472 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2474 INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2475 queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2478 static void process_ioaccel2_completion(struct ctlr_info *h,
2479 struct CommandList *c, struct scsi_cmnd *cmd,
2480 struct hpsa_scsi_dev_t *dev)
2482 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2484 /* check for good status */
2485 if (likely(c2->error_data.serv_response == 0 &&
2486 c2->error_data.status == 0))
2487 return hpsa_cmd_free_and_done(h, c, cmd);
2490 * Any RAID offload error results in retry which will use
2491 * the normal I/O path so the controller can handle whatever is
2494 if (is_logical_device(dev) &&
2495 c2->error_data.serv_response ==
2496 IOACCEL2_SERV_RESPONSE_FAILURE) {
2497 if (c2->error_data.status ==
2498 IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2499 dev->offload_enabled = 0;
2500 dev->offload_to_be_enabled = 0;
2503 if (dev->in_reset) {
2504 cmd->result = DID_RESET << 16;
2505 return hpsa_cmd_free_and_done(h, c, cmd);
2508 return hpsa_retry_cmd(h, c);
2511 if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2512 return hpsa_retry_cmd(h, c);
2514 return hpsa_cmd_free_and_done(h, c, cmd);
2517 /* Returns 0 on success, < 0 otherwise. */
2518 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2519 struct CommandList *cp)
2521 u8 tmf_status = cp->err_info->ScsiStatus;
2523 switch (tmf_status) {
2524 case CISS_TMF_COMPLETE:
2526 * CISS_TMF_COMPLETE never happens, instead,
2527 * ei->CommandStatus == 0 for this case.
2529 case CISS_TMF_SUCCESS:
2531 case CISS_TMF_INVALID_FRAME:
2532 case CISS_TMF_NOT_SUPPORTED:
2533 case CISS_TMF_FAILED:
2534 case CISS_TMF_WRONG_LUN:
2535 case CISS_TMF_OVERLAPPED_TAG:
2538 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2545 static void complete_scsi_command(struct CommandList *cp)
2547 struct scsi_cmnd *cmd;
2548 struct ctlr_info *h;
2549 struct ErrorInfo *ei;
2550 struct hpsa_scsi_dev_t *dev;
2551 struct io_accel2_cmd *c2;
2554 u8 asc; /* additional sense code */
2555 u8 ascq; /* additional sense code qualifier */
2556 unsigned long sense_data_size;
2563 cmd->result = DID_NO_CONNECT << 16;
2564 return hpsa_cmd_free_and_done(h, cp, cmd);
2567 dev = cmd->device->hostdata;
2569 cmd->result = DID_NO_CONNECT << 16;
2570 return hpsa_cmd_free_and_done(h, cp, cmd);
2572 c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2574 scsi_dma_unmap(cmd); /* undo the DMA mappings */
2575 if ((cp->cmd_type == CMD_SCSI) &&
2576 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2577 hpsa_unmap_sg_chain_block(h, cp);
2579 if ((cp->cmd_type == CMD_IOACCEL2) &&
2580 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2581 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2583 cmd->result = (DID_OK << 16); /* host byte */
2584 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2586 /* SCSI command has already been cleaned up in SML */
2587 if (dev->was_removed) {
2588 hpsa_cmd_resolve_and_free(h, cp);
2592 if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2593 if (dev->physical_device && dev->expose_device &&
2595 cmd->result = DID_NO_CONNECT << 16;
2596 return hpsa_cmd_free_and_done(h, cp, cmd);
2598 if (likely(cp->phys_disk != NULL))
2599 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2603 * We check for lockup status here as it may be set for
2604 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2605 * fail_all_oustanding_cmds()
2607 if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2608 /* DID_NO_CONNECT will prevent a retry */
2609 cmd->result = DID_NO_CONNECT << 16;
2610 return hpsa_cmd_free_and_done(h, cp, cmd);
2613 if (cp->cmd_type == CMD_IOACCEL2)
2614 return process_ioaccel2_completion(h, cp, cmd, dev);
2616 scsi_set_resid(cmd, ei->ResidualCnt);
2617 if (ei->CommandStatus == 0)
2618 return hpsa_cmd_free_and_done(h, cp, cmd);
2620 /* For I/O accelerator commands, copy over some fields to the normal
2621 * CISS header used below for error handling.
2623 if (cp->cmd_type == CMD_IOACCEL1) {
2624 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2625 cp->Header.SGList = scsi_sg_count(cmd);
2626 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2627 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2628 IOACCEL1_IOFLAGS_CDBLEN_MASK;
2629 cp->Header.tag = c->tag;
2630 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2631 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2633 /* Any RAID offload error results in retry which will use
2634 * the normal I/O path so the controller can handle whatever's
2637 if (is_logical_device(dev)) {
2638 if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2639 dev->offload_enabled = 0;
2640 return hpsa_retry_cmd(h, cp);
2644 /* an error has occurred */
2645 switch (ei->CommandStatus) {
2647 case CMD_TARGET_STATUS:
2648 cmd->result |= ei->ScsiStatus;
2649 /* copy the sense data */
2650 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2651 sense_data_size = SCSI_SENSE_BUFFERSIZE;
2653 sense_data_size = sizeof(ei->SenseInfo);
2654 if (ei->SenseLen < sense_data_size)
2655 sense_data_size = ei->SenseLen;
2656 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2658 decode_sense_data(ei->SenseInfo, sense_data_size,
2659 &sense_key, &asc, &ascq);
2660 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2661 switch (sense_key) {
2662 case ABORTED_COMMAND:
2663 cmd->result |= DID_SOFT_ERROR << 16;
2665 case UNIT_ATTENTION:
2666 if (asc == 0x3F && ascq == 0x0E)
2667 h->drv_req_rescan = 1;
2669 case ILLEGAL_REQUEST:
2670 if (asc == 0x25 && ascq == 0x00) {
2672 cmd->result = DID_NO_CONNECT << 16;
2678 /* Problem was not a check condition
2679 * Pass it up to the upper layers...
2681 if (ei->ScsiStatus) {
2682 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2683 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2684 "Returning result: 0x%x\n",
2686 sense_key, asc, ascq,
2688 } else { /* scsi status is zero??? How??? */
2689 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2690 "Returning no connection.\n", cp),
2692 /* Ordinarily, this case should never happen,
2693 * but there is a bug in some released firmware
2694 * revisions that allows it to happen if, for
2695 * example, a 4100 backplane loses power and
2696 * the tape drive is in it. We assume that
2697 * it's a fatal error of some kind because we
2698 * can't show that it wasn't. We will make it
2699 * look like selection timeout since that is
2700 * the most common reason for this to occur,
2701 * and it's severe enough.
2704 cmd->result = DID_NO_CONNECT << 16;
2708 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2710 case CMD_DATA_OVERRUN:
2711 dev_warn(&h->pdev->dev,
2712 "CDB %16phN data overrun\n", cp->Request.CDB);
2715 /* print_bytes(cp, sizeof(*cp), 1, 0);
2717 /* We get CMD_INVALID if you address a non-existent device
2718 * instead of a selection timeout (no response). You will
2719 * see this if you yank out a drive, then try to access it.
2720 * This is kind of a shame because it means that any other
2721 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2722 * missing target. */
2723 cmd->result = DID_NO_CONNECT << 16;
2726 case CMD_PROTOCOL_ERR:
2727 cmd->result = DID_ERROR << 16;
2728 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2731 case CMD_HARDWARE_ERR:
2732 cmd->result = DID_ERROR << 16;
2733 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2736 case CMD_CONNECTION_LOST:
2737 cmd->result = DID_ERROR << 16;
2738 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2742 cmd->result = DID_ABORT << 16;
2744 case CMD_ABORT_FAILED:
2745 cmd->result = DID_ERROR << 16;
2746 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2749 case CMD_UNSOLICITED_ABORT:
2750 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2751 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2755 cmd->result = DID_TIME_OUT << 16;
2756 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2759 case CMD_UNABORTABLE:
2760 cmd->result = DID_ERROR << 16;
2761 dev_warn(&h->pdev->dev, "Command unabortable\n");
2763 case CMD_TMF_STATUS:
2764 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2765 cmd->result = DID_ERROR << 16;
2767 case CMD_IOACCEL_DISABLED:
2768 /* This only handles the direct pass-through case since RAID
2769 * offload is handled above. Just attempt a retry.
2771 cmd->result = DID_SOFT_ERROR << 16;
2772 dev_warn(&h->pdev->dev,
2773 "cp %p had HP SSD Smart Path error\n", cp);
2776 cmd->result = DID_ERROR << 16;
2777 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2778 cp, ei->CommandStatus);
2781 return hpsa_cmd_free_and_done(h, cp, cmd);
2784 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2785 int sg_used, enum dma_data_direction data_direction)
2789 for (i = 0; i < sg_used; i++)
2790 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2791 le32_to_cpu(c->SG[i].Len),
2795 static int hpsa_map_one(struct pci_dev *pdev,
2796 struct CommandList *cp,
2799 enum dma_data_direction data_direction)
2803 if (buflen == 0 || data_direction == DMA_NONE) {
2804 cp->Header.SGList = 0;
2805 cp->Header.SGTotal = cpu_to_le16(0);
2809 addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2810 if (dma_mapping_error(&pdev->dev, addr64)) {
2811 /* Prevent subsequent unmap of something never mapped */
2812 cp->Header.SGList = 0;
2813 cp->Header.SGTotal = cpu_to_le16(0);
2816 cp->SG[0].Addr = cpu_to_le64(addr64);
2817 cp->SG[0].Len = cpu_to_le32(buflen);
2818 cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2819 cp->Header.SGList = 1; /* no. SGs contig in this cmd */
2820 cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2824 #define NO_TIMEOUT ((unsigned long) -1)
2825 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2826 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2827 struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2829 DECLARE_COMPLETION_ONSTACK(wait);
2832 __enqueue_cmd_and_start_io(h, c, reply_queue);
2833 if (timeout_msecs == NO_TIMEOUT) {
2834 /* TODO: get rid of this no-timeout thing */
2835 wait_for_completion_io(&wait);
2838 if (!wait_for_completion_io_timeout(&wait,
2839 msecs_to_jiffies(timeout_msecs))) {
2840 dev_warn(&h->pdev->dev, "Command timed out.\n");
2846 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2847 int reply_queue, unsigned long timeout_msecs)
2849 if (unlikely(lockup_detected(h))) {
2850 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2853 return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2856 static u32 lockup_detected(struct ctlr_info *h)
2859 u32 rc, *lockup_detected;
2862 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2863 rc = *lockup_detected;
2868 #define MAX_DRIVER_CMD_RETRIES 25
2869 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2870 struct CommandList *c, enum dma_data_direction data_direction,
2871 unsigned long timeout_msecs)
2873 int backoff_time = 10, retry_count = 0;
2877 memset(c->err_info, 0, sizeof(*c->err_info));
2878 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2883 if (retry_count > 3) {
2884 msleep(backoff_time);
2885 if (backoff_time < 1000)
2888 } while ((check_for_unit_attention(h, c) ||
2889 check_for_busy(h, c)) &&
2890 retry_count <= MAX_DRIVER_CMD_RETRIES);
2891 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2892 if (retry_count > MAX_DRIVER_CMD_RETRIES)
2897 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2898 struct CommandList *c)
2900 const u8 *cdb = c->Request.CDB;
2901 const u8 *lun = c->Header.LUN.LunAddrBytes;
2903 dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2907 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2908 struct CommandList *cp)
2910 const struct ErrorInfo *ei = cp->err_info;
2911 struct device *d = &cp->h->pdev->dev;
2912 u8 sense_key, asc, ascq;
2915 switch (ei->CommandStatus) {
2916 case CMD_TARGET_STATUS:
2917 if (ei->SenseLen > sizeof(ei->SenseInfo))
2918 sense_len = sizeof(ei->SenseInfo);
2920 sense_len = ei->SenseLen;
2921 decode_sense_data(ei->SenseInfo, sense_len,
2922 &sense_key, &asc, &ascq);
2923 hpsa_print_cmd(h, "SCSI status", cp);
2924 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2925 dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2926 sense_key, asc, ascq);
2928 dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2929 if (ei->ScsiStatus == 0)
2930 dev_warn(d, "SCSI status is abnormally zero. "
2931 "(probably indicates selection timeout "
2932 "reported incorrectly due to a known "
2933 "firmware bug, circa July, 2001.)\n");
2935 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2937 case CMD_DATA_OVERRUN:
2938 hpsa_print_cmd(h, "overrun condition", cp);
2941 /* controller unfortunately reports SCSI passthru's
2942 * to non-existent targets as invalid commands.
2944 hpsa_print_cmd(h, "invalid command", cp);
2945 dev_warn(d, "probably means device no longer present\n");
2948 case CMD_PROTOCOL_ERR:
2949 hpsa_print_cmd(h, "protocol error", cp);
2951 case CMD_HARDWARE_ERR:
2952 hpsa_print_cmd(h, "hardware error", cp);
2954 case CMD_CONNECTION_LOST:
2955 hpsa_print_cmd(h, "connection lost", cp);
2958 hpsa_print_cmd(h, "aborted", cp);
2960 case CMD_ABORT_FAILED:
2961 hpsa_print_cmd(h, "abort failed", cp);
2963 case CMD_UNSOLICITED_ABORT:
2964 hpsa_print_cmd(h, "unsolicited abort", cp);
2967 hpsa_print_cmd(h, "timed out", cp);
2969 case CMD_UNABORTABLE:
2970 hpsa_print_cmd(h, "unabortable", cp);
2972 case CMD_CTLR_LOCKUP:
2973 hpsa_print_cmd(h, "controller lockup detected", cp);
2976 hpsa_print_cmd(h, "unknown status", cp);
2977 dev_warn(d, "Unknown command status %x\n",
2982 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
2983 u8 page, u8 *buf, size_t bufsize)
2986 struct CommandList *c;
2987 struct ErrorInfo *ei;
2990 if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
2991 page, scsi3addr, TYPE_CMD)) {
2995 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3000 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3001 hpsa_scsi_interpret_error(h, c);
3009 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3016 buf = kzalloc(1024, GFP_KERNEL);
3020 rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3026 sa = get_unaligned_be64(buf+12);
3033 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3034 u16 page, unsigned char *buf,
3035 unsigned char bufsize)
3038 struct CommandList *c;
3039 struct ErrorInfo *ei;
3043 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3044 page, scsi3addr, TYPE_CMD)) {
3048 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3053 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3054 hpsa_scsi_interpret_error(h, c);
3062 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3063 u8 reset_type, int reply_queue)
3066 struct CommandList *c;
3067 struct ErrorInfo *ei;
3072 /* fill_cmd can't fail here, no data buffer to map. */
3073 (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3074 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3076 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3079 /* no unmap needed here because no data xfer. */
3082 if (ei->CommandStatus != 0) {
3083 hpsa_scsi_interpret_error(h, c);
3091 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3092 struct hpsa_scsi_dev_t *dev,
3093 unsigned char *scsi3addr)
3097 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3098 struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3100 if (hpsa_is_cmd_idle(c))
3103 switch (c->cmd_type) {
3105 case CMD_IOCTL_PEND:
3106 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3107 sizeof(c->Header.LUN.LunAddrBytes));
3112 if (c->phys_disk == dev) {
3113 /* HBA mode match */
3116 /* Possible RAID mode -- check each phys dev. */
3117 /* FIXME: Do we need to take out a lock here? If
3118 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3120 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3121 /* FIXME: an alternate test might be
3123 * match = dev->phys_disk[i]->ioaccel_handle
3124 * == c2->scsi_nexus; */
3125 match = dev->phys_disk[i] == c->phys_disk;
3131 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3132 match = dev->phys_disk[i]->ioaccel_handle ==
3133 le32_to_cpu(ac->it_nexus);
3137 case 0: /* The command is in the middle of being initialized. */
3142 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3150 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3151 u8 reset_type, int reply_queue)
3155 /* We can really only handle one reset at a time */
3156 if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3157 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3161 rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3163 /* incremented by sending the reset request */
3164 atomic_dec(&dev->commands_outstanding);
3165 wait_event(h->event_sync_wait_queue,
3166 atomic_read(&dev->commands_outstanding) <= 0 ||
3167 lockup_detected(h));
3170 if (unlikely(lockup_detected(h))) {
3171 dev_warn(&h->pdev->dev,
3172 "Controller lockup detected during reset wait\n");
3177 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3179 mutex_unlock(&h->reset_mutex);
3183 static void hpsa_get_raid_level(struct ctlr_info *h,
3184 unsigned char *scsi3addr, unsigned char *raid_level)
3189 *raid_level = RAID_UNKNOWN;
3190 buf = kzalloc(64, GFP_KERNEL);
3194 if (!hpsa_vpd_page_supported(h, scsi3addr,
3195 HPSA_VPD_LV_DEVICE_GEOMETRY))
3198 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3199 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3202 *raid_level = buf[8];
3203 if (*raid_level > RAID_UNKNOWN)
3204 *raid_level = RAID_UNKNOWN;
3210 #define HPSA_MAP_DEBUG
3211 #ifdef HPSA_MAP_DEBUG
3212 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3213 struct raid_map_data *map_buff)
3215 struct raid_map_disk_data *dd = &map_buff->data[0];
3217 u16 map_cnt, row_cnt, disks_per_row;
3222 /* Show details only if debugging has been activated. */
3223 if (h->raid_offload_debug < 2)
3226 dev_info(&h->pdev->dev, "structure_size = %u\n",
3227 le32_to_cpu(map_buff->structure_size));
3228 dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3229 le32_to_cpu(map_buff->volume_blk_size));
3230 dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3231 le64_to_cpu(map_buff->volume_blk_cnt));
3232 dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3233 map_buff->phys_blk_shift);
3234 dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3235 map_buff->parity_rotation_shift);
3236 dev_info(&h->pdev->dev, "strip_size = %u\n",
3237 le16_to_cpu(map_buff->strip_size));
3238 dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3239 le64_to_cpu(map_buff->disk_starting_blk));
3240 dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3241 le64_to_cpu(map_buff->disk_blk_cnt));
3242 dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3243 le16_to_cpu(map_buff->data_disks_per_row));
3244 dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3245 le16_to_cpu(map_buff->metadata_disks_per_row));
3246 dev_info(&h->pdev->dev, "row_cnt = %u\n",
3247 le16_to_cpu(map_buff->row_cnt));
3248 dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3249 le16_to_cpu(map_buff->layout_map_count));
3250 dev_info(&h->pdev->dev, "flags = 0x%x\n",
3251 le16_to_cpu(map_buff->flags));
3252 dev_info(&h->pdev->dev, "encryption = %s\n",
3253 le16_to_cpu(map_buff->flags) &
3254 RAID_MAP_FLAG_ENCRYPT_ON ? "ON" : "OFF");
3255 dev_info(&h->pdev->dev, "dekindex = %u\n",
3256 le16_to_cpu(map_buff->dekindex));
3257 map_cnt = le16_to_cpu(map_buff->layout_map_count);
3258 for (map = 0; map < map_cnt; map++) {
3259 dev_info(&h->pdev->dev, "Map%u:\n", map);
3260 row_cnt = le16_to_cpu(map_buff->row_cnt);
3261 for (row = 0; row < row_cnt; row++) {
3262 dev_info(&h->pdev->dev, " Row%u:\n", row);
3264 le16_to_cpu(map_buff->data_disks_per_row);
3265 for (col = 0; col < disks_per_row; col++, dd++)
3266 dev_info(&h->pdev->dev,
3267 " D%02u: h=0x%04x xor=%u,%u\n",
3268 col, dd->ioaccel_handle,
3269 dd->xor_mult[0], dd->xor_mult[1]);
3271 le16_to_cpu(map_buff->metadata_disks_per_row);
3272 for (col = 0; col < disks_per_row; col++, dd++)
3273 dev_info(&h->pdev->dev,
3274 " M%02u: h=0x%04x xor=%u,%u\n",
3275 col, dd->ioaccel_handle,
3276 dd->xor_mult[0], dd->xor_mult[1]);
3281 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3282 __attribute__((unused)) int rc,
3283 __attribute__((unused)) struct raid_map_data *map_buff)
3288 static int hpsa_get_raid_map(struct ctlr_info *h,
3289 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3292 struct CommandList *c;
3293 struct ErrorInfo *ei;
3297 if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3298 sizeof(this_device->raid_map), 0,
3299 scsi3addr, TYPE_CMD)) {
3300 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3304 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3309 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3310 hpsa_scsi_interpret_error(h, c);
3316 /* @todo in the future, dynamically allocate RAID map memory */
3317 if (le32_to_cpu(this_device->raid_map.structure_size) >
3318 sizeof(this_device->raid_map)) {
3319 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3322 hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3329 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3330 unsigned char scsi3addr[], u16 bmic_device_index,
3331 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3334 struct CommandList *c;
3335 struct ErrorInfo *ei;
3339 rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3340 0, RAID_CTLR_LUNID, TYPE_CMD);
3344 c->Request.CDB[2] = bmic_device_index & 0xff;
3345 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3347 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3352 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3353 hpsa_scsi_interpret_error(h, c);
3361 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3362 struct bmic_identify_controller *buf, size_t bufsize)
3365 struct CommandList *c;
3366 struct ErrorInfo *ei;
3370 rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3371 0, RAID_CTLR_LUNID, TYPE_CMD);
3375 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3380 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3381 hpsa_scsi_interpret_error(h, c);
3389 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3390 unsigned char scsi3addr[], u16 bmic_device_index,
3391 struct bmic_identify_physical_device *buf, size_t bufsize)
3394 struct CommandList *c;
3395 struct ErrorInfo *ei;
3398 rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3399 0, RAID_CTLR_LUNID, TYPE_CMD);
3403 c->Request.CDB[2] = bmic_device_index & 0xff;
3404 c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3406 hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3409 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3410 hpsa_scsi_interpret_error(h, c);
3420 * get enclosure information
3421 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3422 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3423 * Uses id_physical_device to determine the box_index.
3425 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3426 unsigned char *scsi3addr,
3427 struct ReportExtendedLUNdata *rlep, int rle_index,
3428 struct hpsa_scsi_dev_t *encl_dev)
3431 struct CommandList *c = NULL;
3432 struct ErrorInfo *ei = NULL;
3433 struct bmic_sense_storage_box_params *bssbp = NULL;
3434 struct bmic_identify_physical_device *id_phys = NULL;
3435 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3436 u16 bmic_device_index = 0;
3439 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3441 bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3443 if (encl_dev->target == -1 || encl_dev->lun == -1) {
3448 if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3453 bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3457 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3461 rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3462 id_phys, sizeof(*id_phys));
3464 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3465 __func__, encl_dev->external, bmic_device_index);
3471 rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3472 sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3477 if (id_phys->phys_connector[1] == 'E')
3478 c->Request.CDB[5] = id_phys->box_index;
3480 c->Request.CDB[5] = 0;
3482 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3488 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3493 encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3494 memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3495 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3506 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3507 "Error, could not get enclosure information");
3510 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3511 unsigned char *scsi3addr)
3513 struct ReportExtendedLUNdata *physdev;
3518 physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3522 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3523 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3527 nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3529 for (i = 0; i < nphysicals; i++)
3530 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3531 sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3540 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3541 struct hpsa_scsi_dev_t *dev)
3546 if (is_hba_lunid(scsi3addr)) {
3547 struct bmic_sense_subsystem_info *ssi;
3549 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3553 rc = hpsa_bmic_sense_subsystem_information(h,
3554 scsi3addr, 0, ssi, sizeof(*ssi));
3556 sa = get_unaligned_be64(ssi->primary_world_wide_id);
3557 h->sas_address = sa;
3562 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3564 dev->sas_address = sa;
3567 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3568 struct ReportExtendedLUNdata *physdev)
3573 if (h->discovery_polling)
3576 nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3578 for (i = 0; i < nphysicals; i++) {
3579 if (physdev->LUN[i].device_type ==
3580 BMIC_DEVICE_TYPE_CONTROLLER
3581 && !is_hba_lunid(physdev->LUN[i].lunid)) {
3582 dev_info(&h->pdev->dev,
3583 "External controller present, activate discovery polling and disable rld caching\n");
3584 hpsa_disable_rld_caching(h);
3585 h->discovery_polling = 1;
3591 /* Get a device id from inquiry page 0x83 */
3592 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3593 unsigned char scsi3addr[], u8 page)
3598 unsigned char *buf, bufsize;
3600 buf = kzalloc(256, GFP_KERNEL);
3604 /* Get the size of the page list first */
3605 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3606 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3607 buf, HPSA_VPD_HEADER_SZ);
3609 goto exit_unsupported;
3611 if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3612 bufsize = pages + HPSA_VPD_HEADER_SZ;
3616 /* Get the whole VPD page list */
3617 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3618 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3621 goto exit_unsupported;
3624 for (i = 1; i <= pages; i++)
3625 if (buf[3 + i] == page)
3626 goto exit_supported;
3636 * Called during a scan operation.
3637 * Sets ioaccel status on the new device list, not the existing device list
3639 * The device list used during I/O will be updated later in
3640 * adjust_hpsa_scsi_table.
3642 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3643 unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3649 this_device->offload_config = 0;
3650 this_device->offload_enabled = 0;
3651 this_device->offload_to_be_enabled = 0;
3653 buf = kzalloc(64, GFP_KERNEL);
3656 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3658 rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3659 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3663 #define IOACCEL_STATUS_BYTE 4
3664 #define OFFLOAD_CONFIGURED_BIT 0x01
3665 #define OFFLOAD_ENABLED_BIT 0x02
3666 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3667 this_device->offload_config =
3668 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3669 if (this_device->offload_config) {
3670 this_device->offload_to_be_enabled =
3671 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3672 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3673 this_device->offload_to_be_enabled = 0;
3681 /* Get the device id from inquiry page 0x83 */
3682 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3683 unsigned char *device_id, int index, int buflen)
3688 /* Does controller have VPD for device id? */
3689 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3690 return 1; /* not supported */
3692 buf = kzalloc(64, GFP_KERNEL);
3696 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3697 HPSA_VPD_LV_DEVICE_ID, buf, 64);
3701 memcpy(device_id, &buf[8], buflen);
3706 return rc; /*0 - got id, otherwise, didn't */
3709 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3710 void *buf, int bufsize,
3711 int extended_response)
3714 struct CommandList *c;
3715 unsigned char scsi3addr[8];
3716 struct ErrorInfo *ei;
3720 /* address the controller */
3721 memset(scsi3addr, 0, sizeof(scsi3addr));
3722 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3723 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3727 if (extended_response)
3728 c->Request.CDB[1] = extended_response;
3729 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3734 if (ei->CommandStatus != 0 &&
3735 ei->CommandStatus != CMD_DATA_UNDERRUN) {
3736 hpsa_scsi_interpret_error(h, c);
3739 struct ReportLUNdata *rld = buf;
3741 if (rld->extended_response_flag != extended_response) {
3742 if (!h->legacy_board) {
3743 dev_err(&h->pdev->dev,
3744 "report luns requested format %u, got %u\n",
3746 rld->extended_response_flag);
3757 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3758 struct ReportExtendedLUNdata *buf, int bufsize)
3761 struct ReportLUNdata *lbuf;
3763 rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3764 HPSA_REPORT_PHYS_EXTENDED);
3765 if (!rc || rc != -EOPNOTSUPP)
3768 /* REPORT PHYS EXTENDED is not supported */
3769 lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3773 rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3778 /* Copy ReportLUNdata header */
3779 memcpy(buf, lbuf, 8);
3780 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3781 for (i = 0; i < nphys; i++)
3782 memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3788 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3789 struct ReportLUNdata *buf, int bufsize)
3791 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3794 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3795 int bus, int target, int lun)
3798 device->target = target;
3802 /* Use VPD inquiry to get details of volume status */
3803 static int hpsa_get_volume_status(struct ctlr_info *h,
3804 unsigned char scsi3addr[])
3811 buf = kzalloc(64, GFP_KERNEL);
3813 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3815 /* Does controller have VPD for logical volume status? */
3816 if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3819 /* Get the size of the VPD return buffer */
3820 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3821 buf, HPSA_VPD_HEADER_SZ);
3826 /* Now get the whole VPD buffer */
3827 rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3828 buf, size + HPSA_VPD_HEADER_SZ);
3831 status = buf[4]; /* status byte */
3837 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3840 /* Determine offline status of a volume.
3843 * 0xff (offline for unknown reasons)
3844 * # (integer code indicating one of several NOT READY states
3845 * describing why a volume is to be kept offline)
3847 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3848 unsigned char scsi3addr[])
3850 struct CommandList *c;
3851 unsigned char *sense;
3852 u8 sense_key, asc, ascq;
3857 #define ASC_LUN_NOT_READY 0x04
3858 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3859 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3863 (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3864 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3868 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3870 sense = c->err_info->SenseInfo;
3871 if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3872 sense_len = sizeof(c->err_info->SenseInfo);
3874 sense_len = c->err_info->SenseLen;
3875 decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3876 cmd_status = c->err_info->CommandStatus;
3877 scsi_status = c->err_info->ScsiStatus;
3880 /* Determine the reason for not ready state */
3881 ldstat = hpsa_get_volume_status(h, scsi3addr);
3883 /* Keep volume offline in certain cases: */
3885 case HPSA_LV_FAILED:
3886 case HPSA_LV_UNDERGOING_ERASE:
3887 case HPSA_LV_NOT_AVAILABLE:
3888 case HPSA_LV_UNDERGOING_RPI:
3889 case HPSA_LV_PENDING_RPI:
3890 case HPSA_LV_ENCRYPTED_NO_KEY:
3891 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3892 case HPSA_LV_UNDERGOING_ENCRYPTION:
3893 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3894 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3896 case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3897 /* If VPD status page isn't available,
3898 * use ASC/ASCQ to determine state
3900 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3901 (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3910 static int hpsa_update_device_info(struct ctlr_info *h,
3911 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3912 unsigned char *is_OBDR_device)
3915 #define OBDR_SIG_OFFSET 43
3916 #define OBDR_TAPE_SIG "$DR-10"
3917 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3918 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3920 unsigned char *inq_buff;
3921 unsigned char *obdr_sig;
3924 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3930 /* Do an inquiry to the device to see what it is. */
3931 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3932 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3933 dev_err(&h->pdev->dev,
3934 "%s: inquiry failed, device will be skipped.\n",
3936 rc = HPSA_INQUIRY_FAILED;
3940 scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3941 scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3943 this_device->devtype = (inq_buff[0] & 0x1f);
3944 memcpy(this_device->scsi3addr, scsi3addr, 8);
3945 memcpy(this_device->vendor, &inq_buff[8],
3946 sizeof(this_device->vendor));
3947 memcpy(this_device->model, &inq_buff[16],
3948 sizeof(this_device->model));
3949 this_device->rev = inq_buff[2];
3950 memset(this_device->device_id, 0,
3951 sizeof(this_device->device_id));
3952 if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3953 sizeof(this_device->device_id)) < 0) {
3954 dev_err(&h->pdev->dev,
3955 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3957 h->scsi_host->host_no,
3958 this_device->bus, this_device->target,
3960 scsi_device_type(this_device->devtype),
3961 this_device->model);
3962 rc = HPSA_LV_FAILED;
3966 if ((this_device->devtype == TYPE_DISK ||
3967 this_device->devtype == TYPE_ZBC) &&
3968 is_logical_dev_addr_mode(scsi3addr)) {
3969 unsigned char volume_offline;
3971 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3972 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3973 hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3974 volume_offline = hpsa_volume_offline(h, scsi3addr);
3975 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
3978 * Legacy boards might not support volume status
3980 dev_info(&h->pdev->dev,
3981 "C0:T%d:L%d Volume status not available, assuming online.\n",
3982 this_device->target, this_device->lun);
3985 this_device->volume_offline = volume_offline;
3986 if (volume_offline == HPSA_LV_FAILED) {
3987 rc = HPSA_LV_FAILED;
3988 dev_err(&h->pdev->dev,
3989 "%s: LV failed, device will be skipped.\n",
3994 this_device->raid_level = RAID_UNKNOWN;
3995 this_device->offload_config = 0;
3996 this_device->offload_enabled = 0;
3997 this_device->offload_to_be_enabled = 0;
3998 this_device->hba_ioaccel_enabled = 0;
3999 this_device->volume_offline = 0;
4000 this_device->queue_depth = h->nr_cmds;
4003 if (this_device->external)
4004 this_device->queue_depth = EXTERNAL_QD;
4006 if (is_OBDR_device) {
4007 /* See if this is a One-Button-Disaster-Recovery device
4008 * by looking for "$DR-10" at offset 43 in inquiry data.
4010 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4011 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4012 strncmp(obdr_sig, OBDR_TAPE_SIG,
4013 OBDR_SIG_LEN) == 0);
4024 * Helper function to assign bus, target, lun mapping of devices.
4025 * Logical drive target and lun are assigned at this time, but
4026 * physical device lun and target assignment are deferred (assigned
4027 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4029 static void figure_bus_target_lun(struct ctlr_info *h,
4030 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4032 u32 lunid = get_unaligned_le32(lunaddrbytes);
4034 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4035 /* physical device, target and lun filled in later */
4036 if (is_hba_lunid(lunaddrbytes)) {
4037 int bus = HPSA_HBA_BUS;
4040 bus = HPSA_LEGACY_HBA_BUS;
4041 hpsa_set_bus_target_lun(device,
4042 bus, 0, lunid & 0x3fff);
4044 /* defer target, lun assignment for physical devices */
4045 hpsa_set_bus_target_lun(device,
4046 HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4049 /* It's a logical device */
4050 if (device->external) {
4051 hpsa_set_bus_target_lun(device,
4052 HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4056 hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4060 static int figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4061 int i, int nphysicals, int nlocal_logicals)
4063 /* In report logicals, local logicals are listed first,
4064 * then any externals.
4066 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4068 if (i == raid_ctlr_position)
4071 if (i < logicals_start)
4074 /* i is in logicals range, but still within local logicals */
4075 if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4078 return 1; /* it's an external lun */
4082 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4083 * logdev. The number of luns in physdev and logdev are returned in
4084 * *nphysicals and *nlogicals, respectively.
4085 * Returns 0 on success, -1 otherwise.
4087 static int hpsa_gather_lun_info(struct ctlr_info *h,
4088 struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4089 struct ReportLUNdata *logdev, u32 *nlogicals)
4091 if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4092 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4095 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4096 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4097 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4098 HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4099 *nphysicals = HPSA_MAX_PHYS_LUN;
4101 if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4102 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4105 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4106 /* Reject Logicals in excess of our max capability. */
4107 if (*nlogicals > HPSA_MAX_LUN) {
4108 dev_warn(&h->pdev->dev,
4109 "maximum logical LUNs (%d) exceeded. "
4110 "%d LUNs ignored.\n", HPSA_MAX_LUN,
4111 *nlogicals - HPSA_MAX_LUN);
4112 *nlogicals = HPSA_MAX_LUN;
4114 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4115 dev_warn(&h->pdev->dev,
4116 "maximum logical + physical LUNs (%d) exceeded. "
4117 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4118 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4119 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4124 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4125 int i, int nphysicals, int nlogicals,
4126 struct ReportExtendedLUNdata *physdev_list,
4127 struct ReportLUNdata *logdev_list)
4129 /* Helper function, figure out where the LUN ID info is coming from
4130 * given index i, lists of physical and logical devices, where in
4131 * the list the raid controller is supposed to appear (first or last)
4134 int logicals_start = nphysicals + (raid_ctlr_position == 0);
4135 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4137 if (i == raid_ctlr_position)
4138 return RAID_CTLR_LUNID;
4140 if (i < logicals_start)
4141 return &physdev_list->LUN[i -
4142 (raid_ctlr_position == 0)].lunid[0];
4144 if (i < last_device)
4145 return &logdev_list->LUN[i - nphysicals -
4146 (raid_ctlr_position == 0)][0];
4151 /* get physical drive ioaccel handle and queue depth */
4152 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4153 struct hpsa_scsi_dev_t *dev,
4154 struct ReportExtendedLUNdata *rlep, int rle_index,
4155 struct bmic_identify_physical_device *id_phys)
4158 struct ext_report_lun_entry *rle;
4160 rle = &rlep->LUN[rle_index];
4162 dev->ioaccel_handle = rle->ioaccel_handle;
4163 if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4164 dev->hba_ioaccel_enabled = 1;
4165 memset(id_phys, 0, sizeof(*id_phys));
4166 rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4167 GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4170 /* Reserve space for FW operations */
4171 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4172 #define DRIVE_QUEUE_DEPTH 7
4174 le16_to_cpu(id_phys->current_queue_depth_limit) -
4175 DRIVE_CMDS_RESERVED_FOR_FW;
4177 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4180 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4181 struct ReportExtendedLUNdata *rlep, int rle_index,
4182 struct bmic_identify_physical_device *id_phys)
4184 struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4186 if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4187 this_device->hba_ioaccel_enabled = 1;
4189 memcpy(&this_device->active_path_index,
4190 &id_phys->active_path_number,
4191 sizeof(this_device->active_path_index));
4192 memcpy(&this_device->path_map,
4193 &id_phys->redundant_path_present_map,
4194 sizeof(this_device->path_map));
4195 memcpy(&this_device->box,
4196 &id_phys->alternate_paths_phys_box_on_port,
4197 sizeof(this_device->box));
4198 memcpy(&this_device->phys_connector,
4199 &id_phys->alternate_paths_phys_connector,
4200 sizeof(this_device->phys_connector));
4201 memcpy(&this_device->bay,
4202 &id_phys->phys_bay_in_box,
4203 sizeof(this_device->bay));
4206 /* get number of local logical disks. */
4207 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4208 struct bmic_identify_controller *id_ctlr,
4214 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4218 memset(id_ctlr, 0, sizeof(*id_ctlr));
4219 rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4221 if (id_ctlr->configured_logical_drive_count < 255)
4222 *nlocals = id_ctlr->configured_logical_drive_count;
4224 *nlocals = le16_to_cpu(
4225 id_ctlr->extended_logical_unit_count);
4231 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4233 struct bmic_identify_physical_device *id_phys;
4234 bool is_spare = false;
4237 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4241 rc = hpsa_bmic_id_physical_device(h,
4243 GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4244 id_phys, sizeof(*id_phys));
4246 is_spare = (id_phys->more_flags >> 6) & 0x01;
4252 #define RPL_DEV_FLAG_NON_DISK 0x1
4253 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4254 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4256 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4258 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4259 struct ext_report_lun_entry *rle)
4264 if (!MASKED_DEVICE(lunaddrbytes))
4267 device_flags = rle->device_flags;
4268 device_type = rle->device_type;
4270 if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4271 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4276 if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4279 if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4283 * Spares may be spun down, we do not want to
4284 * do an Inquiry to a RAID set spare drive as
4285 * that would have them spun up, that is a
4286 * performance hit because I/O to the RAID device
4287 * stops while the spin up occurs which can take
4290 if (hpsa_is_disk_spare(h, lunaddrbytes))
4296 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4298 /* the idea here is we could get notified
4299 * that some devices have changed, so we do a report
4300 * physical luns and report logical luns cmd, and adjust
4301 * our list of devices accordingly.
4303 * The scsi3addr's of devices won't change so long as the
4304 * adapter is not reset. That means we can rescan and
4305 * tell which devices we already know about, vs. new
4306 * devices, vs. disappearing devices.
4308 struct ReportExtendedLUNdata *physdev_list = NULL;
4309 struct ReportLUNdata *logdev_list = NULL;
4310 struct bmic_identify_physical_device *id_phys = NULL;
4311 struct bmic_identify_controller *id_ctlr = NULL;
4314 u32 nlocal_logicals = 0;
4315 u32 ndev_allocated = 0;
4316 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4318 int i, n_ext_target_devs, ndevs_to_allocate;
4319 int raid_ctlr_position;
4320 bool physical_device;
4321 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4323 currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4324 physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4325 logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4326 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4327 id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4328 id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4330 if (!currentsd || !physdev_list || !logdev_list ||
4331 !tmpdevice || !id_phys || !id_ctlr) {
4332 dev_err(&h->pdev->dev, "out of memory\n");
4335 memset(lunzerobits, 0, sizeof(lunzerobits));
4337 h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4339 if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4340 logdev_list, &nlogicals)) {
4341 h->drv_req_rescan = 1;
4345 /* Set number of local logicals (non PTRAID) */
4346 if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4347 dev_warn(&h->pdev->dev,
4348 "%s: Can't determine number of local logical devices.\n",
4352 /* We might see up to the maximum number of logical and physical disks
4353 * plus external target devices, and a device for the local RAID
4356 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4358 hpsa_ext_ctrl_present(h, physdev_list);
4360 /* Allocate the per device structures */
4361 for (i = 0; i < ndevs_to_allocate; i++) {
4362 if (i >= HPSA_MAX_DEVICES) {
4363 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4364 " %d devices ignored.\n", HPSA_MAX_DEVICES,
4365 ndevs_to_allocate - HPSA_MAX_DEVICES);
4369 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4370 if (!currentsd[i]) {
4371 h->drv_req_rescan = 1;
4377 if (is_scsi_rev_5(h))
4378 raid_ctlr_position = 0;
4380 raid_ctlr_position = nphysicals + nlogicals;
4382 /* adjust our table of devices */
4383 n_ext_target_devs = 0;
4384 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4385 u8 *lunaddrbytes, is_OBDR = 0;
4387 int phys_dev_index = i - (raid_ctlr_position == 0);
4388 bool skip_device = false;
4390 memset(tmpdevice, 0, sizeof(*tmpdevice));
4392 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4394 /* Figure out where the LUN ID info is coming from */
4395 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4396 i, nphysicals, nlogicals, physdev_list, logdev_list);
4398 /* Determine if this is a lun from an external target array */
4399 tmpdevice->external =
4400 figure_external_status(h, raid_ctlr_position, i,
4401 nphysicals, nlocal_logicals);
4404 * Skip over some devices such as a spare.
4406 if (!tmpdevice->external && physical_device) {
4407 skip_device = hpsa_skip_device(h, lunaddrbytes,
4408 &physdev_list->LUN[phys_dev_index]);
4413 /* Get device type, vendor, model, device id, raid_map */
4414 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4416 if (rc == -ENOMEM) {
4417 dev_warn(&h->pdev->dev,
4418 "Out of memory, rescan deferred.\n");
4419 h->drv_req_rescan = 1;
4423 h->drv_req_rescan = 1;
4427 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4428 this_device = currentsd[ncurrent];
4430 *this_device = *tmpdevice;
4431 this_device->physical_device = physical_device;
4434 * Expose all devices except for physical devices that
4437 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4438 this_device->expose_device = 0;
4440 this_device->expose_device = 1;
4444 * Get the SAS address for physical devices that are exposed.
4446 if (this_device->physical_device && this_device->expose_device)
4447 hpsa_get_sas_address(h, lunaddrbytes, this_device);
4449 switch (this_device->devtype) {
4451 /* We don't *really* support actual CD-ROM devices,
4452 * just "One Button Disaster Recovery" tape drive
4453 * which temporarily pretends to be a CD-ROM drive.
4454 * So we check that the device is really an OBDR tape
4455 * device by checking for "$DR-10" in bytes 43-48 of
4463 if (this_device->physical_device) {
4464 /* The disk is in HBA mode. */
4465 /* Never use RAID mapper in HBA mode. */
4466 this_device->offload_enabled = 0;
4467 hpsa_get_ioaccel_drive_info(h, this_device,
4468 physdev_list, phys_dev_index, id_phys);
4469 hpsa_get_path_info(this_device,
4470 physdev_list, phys_dev_index, id_phys);
4475 case TYPE_MEDIUM_CHANGER:
4478 case TYPE_ENCLOSURE:
4479 if (!this_device->external)
4480 hpsa_get_enclosure_info(h, lunaddrbytes,
4481 physdev_list, phys_dev_index,
4486 /* Only present the Smartarray HBA as a RAID controller.
4487 * If it's a RAID controller other than the HBA itself
4488 * (an external RAID controller, MSA500 or similar)
4491 if (!is_hba_lunid(lunaddrbytes))
4498 if (ncurrent >= HPSA_MAX_DEVICES)
4502 if (h->sas_host == NULL) {
4505 rc = hpsa_add_sas_host(h);
4507 dev_warn(&h->pdev->dev,
4508 "Could not add sas host %d\n", rc);
4513 adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4516 for (i = 0; i < ndev_allocated; i++)
4517 kfree(currentsd[i]);
4519 kfree(physdev_list);
4525 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4526 struct scatterlist *sg)
4528 u64 addr64 = (u64) sg_dma_address(sg);
4529 unsigned int len = sg_dma_len(sg);
4531 desc->Addr = cpu_to_le64(addr64);
4532 desc->Len = cpu_to_le32(len);
4537 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4538 * dma mapping and fills in the scatter gather entries of the
4541 static int hpsa_scatter_gather(struct ctlr_info *h,
4542 struct CommandList *cp,
4543 struct scsi_cmnd *cmd)
4545 struct scatterlist *sg;
4546 int use_sg, i, sg_limit, chained, last_sg;
4547 struct SGDescriptor *curr_sg;
4549 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4551 use_sg = scsi_dma_map(cmd);
4556 goto sglist_finished;
4559 * If the number of entries is greater than the max for a single list,
4560 * then we have a chained list; we will set up all but one entry in the
4561 * first list (the last entry is saved for link information);
4562 * otherwise, we don't have a chained list and we'll set up at each of
4563 * the entries in the one list.
4566 chained = use_sg > h->max_cmd_sg_entries;
4567 sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4568 last_sg = scsi_sg_count(cmd) - 1;
4569 scsi_for_each_sg(cmd, sg, sg_limit, i) {
4570 hpsa_set_sg_descriptor(curr_sg, sg);
4576 * Continue with the chained list. Set curr_sg to the chained
4577 * list. Modify the limit to the total count less the entries
4578 * we've already set up. Resume the scan at the list entry
4579 * where the previous loop left off.
4581 curr_sg = h->cmd_sg_list[cp->cmdindex];
4582 sg_limit = use_sg - sg_limit;
4583 for_each_sg(sg, sg, sg_limit, i) {
4584 hpsa_set_sg_descriptor(curr_sg, sg);
4589 /* Back the pointer up to the last entry and mark it as "last". */
4590 (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4592 if (use_sg + chained > h->maxSG)
4593 h->maxSG = use_sg + chained;
4596 cp->Header.SGList = h->max_cmd_sg_entries;
4597 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4598 if (hpsa_map_sg_chain_block(h, cp)) {
4599 scsi_dma_unmap(cmd);
4607 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
4608 cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4612 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4613 u8 *cdb, int cdb_len,
4616 dev_warn(&h->pdev->dev,
4617 "%s: Blocking zero-length request: CDB:%*phN\n",
4618 func, cdb_len, cdb);
4621 #define IO_ACCEL_INELIGIBLE 1
4622 /* zero-length transfers trigger hardware errors. */
4623 static bool is_zero_length_transfer(u8 *cdb)
4627 /* Block zero-length transfer sizes on certain commands. */
4631 case VERIFY: /* 0x2F */
4632 case WRITE_VERIFY: /* 0x2E */
4633 block_cnt = get_unaligned_be16(&cdb[7]);
4637 case VERIFY_12: /* 0xAF */
4638 case WRITE_VERIFY_12: /* 0xAE */
4639 block_cnt = get_unaligned_be32(&cdb[6]);
4643 case VERIFY_16: /* 0x8F */
4644 block_cnt = get_unaligned_be32(&cdb[10]);
4650 return block_cnt == 0;
4653 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4659 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4667 if (*cdb_len == 6) {
4668 block = (((cdb[1] & 0x1F) << 16) |
4675 BUG_ON(*cdb_len != 12);
4676 block = get_unaligned_be32(&cdb[2]);
4677 block_cnt = get_unaligned_be32(&cdb[6]);
4679 if (block_cnt > 0xffff)
4680 return IO_ACCEL_INELIGIBLE;
4682 cdb[0] = is_write ? WRITE_10 : READ_10;
4684 cdb[2] = (u8) (block >> 24);
4685 cdb[3] = (u8) (block >> 16);
4686 cdb[4] = (u8) (block >> 8);
4687 cdb[5] = (u8) (block);
4689 cdb[7] = (u8) (block_cnt >> 8);
4690 cdb[8] = (u8) (block_cnt);
4698 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4699 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4700 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4702 struct scsi_cmnd *cmd = c->scsi_cmd;
4703 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4705 unsigned int total_len = 0;
4706 struct scatterlist *sg;
4709 struct SGDescriptor *curr_sg;
4710 u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4712 /* TODO: implement chaining support */
4713 if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4714 atomic_dec(&phys_disk->ioaccel_cmds_out);
4715 return IO_ACCEL_INELIGIBLE;
4718 BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4720 if (is_zero_length_transfer(cdb)) {
4721 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4722 atomic_dec(&phys_disk->ioaccel_cmds_out);
4723 return IO_ACCEL_INELIGIBLE;
4726 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4727 atomic_dec(&phys_disk->ioaccel_cmds_out);
4728 return IO_ACCEL_INELIGIBLE;
4731 c->cmd_type = CMD_IOACCEL1;
4733 /* Adjust the DMA address to point to the accelerated command buffer */
4734 c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4735 (c->cmdindex * sizeof(*cp));
4736 BUG_ON(c->busaddr & 0x0000007F);
4738 use_sg = scsi_dma_map(cmd);
4740 atomic_dec(&phys_disk->ioaccel_cmds_out);
4746 scsi_for_each_sg(cmd, sg, use_sg, i) {
4747 addr64 = (u64) sg_dma_address(sg);
4748 len = sg_dma_len(sg);
4750 curr_sg->Addr = cpu_to_le64(addr64);
4751 curr_sg->Len = cpu_to_le32(len);
4752 curr_sg->Ext = cpu_to_le32(0);
4755 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4757 switch (cmd->sc_data_direction) {
4759 control |= IOACCEL1_CONTROL_DATA_OUT;
4761 case DMA_FROM_DEVICE:
4762 control |= IOACCEL1_CONTROL_DATA_IN;
4765 control |= IOACCEL1_CONTROL_NODATAXFER;
4768 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4769 cmd->sc_data_direction);
4774 control |= IOACCEL1_CONTROL_NODATAXFER;
4777 c->Header.SGList = use_sg;
4778 /* Fill out the command structure to submit */
4779 cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4780 cp->transfer_len = cpu_to_le32(total_len);
4781 cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4782 (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4783 cp->control = cpu_to_le32(control);
4784 memcpy(cp->CDB, cdb, cdb_len);
4785 memcpy(cp->CISS_LUN, scsi3addr, 8);
4786 /* Tag was already set at init time. */
4787 enqueue_cmd_and_start_io(h, c);
4792 * Queue a command directly to a device behind the controller using the
4793 * I/O accelerator path.
4795 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4796 struct CommandList *c)
4798 struct scsi_cmnd *cmd = c->scsi_cmd;
4799 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4809 return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4810 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4814 * Set encryption parameters for the ioaccel2 request
4816 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4817 struct CommandList *c, struct io_accel2_cmd *cp)
4819 struct scsi_cmnd *cmd = c->scsi_cmd;
4820 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4821 struct raid_map_data *map = &dev->raid_map;
4824 /* Are we doing encryption on this device */
4825 if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4827 /* Set the data encryption key index. */
4828 cp->dekindex = map->dekindex;
4830 /* Set the encryption enable flag, encoded into direction field. */
4831 cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4833 /* Set encryption tweak values based on logical block address
4834 * If block size is 512, tweak value is LBA.
4835 * For other block sizes, tweak is (LBA * block size)/ 512)
4837 switch (cmd->cmnd[0]) {
4838 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4841 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4842 (cmd->cmnd[2] << 8) |
4847 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4850 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4854 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4857 dev_err(&h->pdev->dev,
4858 "ERROR: %s: size (0x%x) not supported for encryption\n",
4859 __func__, cmd->cmnd[0]);
4864 if (le32_to_cpu(map->volume_blk_size) != 512)
4865 first_block = first_block *
4866 le32_to_cpu(map->volume_blk_size)/512;
4868 cp->tweak_lower = cpu_to_le32(first_block);
4869 cp->tweak_upper = cpu_to_le32(first_block >> 32);
4872 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4873 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4874 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4876 struct scsi_cmnd *cmd = c->scsi_cmd;
4877 struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4878 struct ioaccel2_sg_element *curr_sg;
4880 struct scatterlist *sg;
4888 if (!cmd->device->hostdata)
4891 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4893 if (is_zero_length_transfer(cdb)) {
4894 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4895 atomic_dec(&phys_disk->ioaccel_cmds_out);
4896 return IO_ACCEL_INELIGIBLE;
4899 if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4900 atomic_dec(&phys_disk->ioaccel_cmds_out);
4901 return IO_ACCEL_INELIGIBLE;
4904 c->cmd_type = CMD_IOACCEL2;
4905 /* Adjust the DMA address to point to the accelerated command buffer */
4906 c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4907 (c->cmdindex * sizeof(*cp));
4908 BUG_ON(c->busaddr & 0x0000007F);
4910 memset(cp, 0, sizeof(*cp));
4911 cp->IU_type = IOACCEL2_IU_TYPE;
4913 use_sg = scsi_dma_map(cmd);
4915 atomic_dec(&phys_disk->ioaccel_cmds_out);
4921 if (use_sg > h->ioaccel_maxsg) {
4922 addr64 = le64_to_cpu(
4923 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4924 curr_sg->address = cpu_to_le64(addr64);
4925 curr_sg->length = 0;
4926 curr_sg->reserved[0] = 0;
4927 curr_sg->reserved[1] = 0;
4928 curr_sg->reserved[2] = 0;
4929 curr_sg->chain_indicator = IOACCEL2_CHAIN;
4931 curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4933 scsi_for_each_sg(cmd, sg, use_sg, i) {
4934 addr64 = (u64) sg_dma_address(sg);
4935 len = sg_dma_len(sg);
4937 curr_sg->address = cpu_to_le64(addr64);
4938 curr_sg->length = cpu_to_le32(len);
4939 curr_sg->reserved[0] = 0;
4940 curr_sg->reserved[1] = 0;
4941 curr_sg->reserved[2] = 0;
4942 curr_sg->chain_indicator = 0;
4947 * Set the last s/g element bit
4949 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4951 switch (cmd->sc_data_direction) {
4953 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4954 cp->direction |= IOACCEL2_DIR_DATA_OUT;
4956 case DMA_FROM_DEVICE:
4957 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4958 cp->direction |= IOACCEL2_DIR_DATA_IN;
4961 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4962 cp->direction |= IOACCEL2_DIR_NO_DATA;
4965 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4966 cmd->sc_data_direction);
4971 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4972 cp->direction |= IOACCEL2_DIR_NO_DATA;
4975 /* Set encryption parameters, if necessary */
4976 set_encrypt_ioaccel2(h, c, cp);
4978 cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4979 cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4980 memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4982 cp->data_len = cpu_to_le32(total_len);
4983 cp->err_ptr = cpu_to_le64(c->busaddr +
4984 offsetof(struct io_accel2_cmd, error_data));
4985 cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4987 /* fill in sg elements */
4988 if (use_sg > h->ioaccel_maxsg) {
4990 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4991 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4992 atomic_dec(&phys_disk->ioaccel_cmds_out);
4993 scsi_dma_unmap(cmd);
4997 cp->sg_count = (u8) use_sg;
4999 if (phys_disk->in_reset) {
5000 cmd->result = DID_RESET << 16;
5004 enqueue_cmd_and_start_io(h, c);
5009 * Queue a command to the correct I/O accelerator path.
5011 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5012 struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5013 u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5015 if (!c->scsi_cmd->device)
5018 if (!c->scsi_cmd->device->hostdata)
5021 if (phys_disk->in_reset)
5024 /* Try to honor the device's queue depth */
5025 if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5026 phys_disk->queue_depth) {
5027 atomic_dec(&phys_disk->ioaccel_cmds_out);
5028 return IO_ACCEL_INELIGIBLE;
5030 if (h->transMethod & CFGTBL_Trans_io_accel1)
5031 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5032 cdb, cdb_len, scsi3addr,
5035 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5036 cdb, cdb_len, scsi3addr,
5040 static void raid_map_helper(struct raid_map_data *map,
5041 int offload_to_mirror, u32 *map_index, u32 *current_group)
5043 if (offload_to_mirror == 0) {
5044 /* use physical disk in the first mirrored group. */
5045 *map_index %= le16_to_cpu(map->data_disks_per_row);
5049 /* determine mirror group that *map_index indicates */
5050 *current_group = *map_index /
5051 le16_to_cpu(map->data_disks_per_row);
5052 if (offload_to_mirror == *current_group)
5054 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5055 /* select map index from next group */
5056 *map_index += le16_to_cpu(map->data_disks_per_row);
5059 /* select map index from first group */
5060 *map_index %= le16_to_cpu(map->data_disks_per_row);
5063 } while (offload_to_mirror != *current_group);
5067 * Attempt to perform offload RAID mapping for a logical volume I/O.
5069 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5070 struct CommandList *c)
5072 struct scsi_cmnd *cmd = c->scsi_cmd;
5073 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5074 struct raid_map_data *map = &dev->raid_map;
5075 struct raid_map_disk_data *dd = &map->data[0];
5078 u64 first_block, last_block;
5081 u64 first_row, last_row;
5082 u32 first_row_offset, last_row_offset;
5083 u32 first_column, last_column;
5084 u64 r0_first_row, r0_last_row;
5085 u32 r5or6_blocks_per_row;
5086 u64 r5or6_first_row, r5or6_last_row;
5087 u32 r5or6_first_row_offset, r5or6_last_row_offset;
5088 u32 r5or6_first_column, r5or6_last_column;
5089 u32 total_disks_per_row;
5091 u32 first_group, last_group, current_group;
5099 #if BITS_PER_LONG == 32
5102 int offload_to_mirror;
5110 /* check for valid opcode, get LBA and block count */
5111 switch (cmd->cmnd[0]) {
5116 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5117 (cmd->cmnd[2] << 8) |
5119 block_cnt = cmd->cmnd[4];
5128 (((u64) cmd->cmnd[2]) << 24) |
5129 (((u64) cmd->cmnd[3]) << 16) |
5130 (((u64) cmd->cmnd[4]) << 8) |
5133 (((u32) cmd->cmnd[7]) << 8) |
5141 (((u64) cmd->cmnd[2]) << 24) |
5142 (((u64) cmd->cmnd[3]) << 16) |
5143 (((u64) cmd->cmnd[4]) << 8) |
5146 (((u32) cmd->cmnd[6]) << 24) |
5147 (((u32) cmd->cmnd[7]) << 16) |
5148 (((u32) cmd->cmnd[8]) << 8) |
5156 (((u64) cmd->cmnd[2]) << 56) |
5157 (((u64) cmd->cmnd[3]) << 48) |
5158 (((u64) cmd->cmnd[4]) << 40) |
5159 (((u64) cmd->cmnd[5]) << 32) |
5160 (((u64) cmd->cmnd[6]) << 24) |
5161 (((u64) cmd->cmnd[7]) << 16) |
5162 (((u64) cmd->cmnd[8]) << 8) |
5165 (((u32) cmd->cmnd[10]) << 24) |
5166 (((u32) cmd->cmnd[11]) << 16) |
5167 (((u32) cmd->cmnd[12]) << 8) |
5171 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5173 last_block = first_block + block_cnt - 1;
5175 /* check for write to non-RAID-0 */
5176 if (is_write && dev->raid_level != 0)
5177 return IO_ACCEL_INELIGIBLE;
5179 /* check for invalid block or wraparound */
5180 if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5181 last_block < first_block)
5182 return IO_ACCEL_INELIGIBLE;
5184 /* calculate stripe information for the request */
5185 blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5186 le16_to_cpu(map->strip_size);
5187 strip_size = le16_to_cpu(map->strip_size);
5188 #if BITS_PER_LONG == 32
5189 tmpdiv = first_block;
5190 (void) do_div(tmpdiv, blocks_per_row);
5192 tmpdiv = last_block;
5193 (void) do_div(tmpdiv, blocks_per_row);
5195 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5196 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5197 tmpdiv = first_row_offset;
5198 (void) do_div(tmpdiv, strip_size);
5199 first_column = tmpdiv;
5200 tmpdiv = last_row_offset;
5201 (void) do_div(tmpdiv, strip_size);
5202 last_column = tmpdiv;
5204 first_row = first_block / blocks_per_row;
5205 last_row = last_block / blocks_per_row;
5206 first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5207 last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5208 first_column = first_row_offset / strip_size;
5209 last_column = last_row_offset / strip_size;
5212 /* if this isn't a single row/column then give to the controller */
5213 if ((first_row != last_row) || (first_column != last_column))
5214 return IO_ACCEL_INELIGIBLE;
5216 /* proceeding with driver mapping */
5217 total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5218 le16_to_cpu(map->metadata_disks_per_row);
5219 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5220 le16_to_cpu(map->row_cnt);
5221 map_index = (map_row * total_disks_per_row) + first_column;
5223 switch (dev->raid_level) {
5225 break; /* nothing special to do */
5227 /* Handles load balance across RAID 1 members.
5228 * (2-drive R1 and R10 with even # of drives.)
5229 * Appropriate for SSDs, not optimal for HDDs
5231 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5232 if (dev->offload_to_mirror)
5233 map_index += le16_to_cpu(map->data_disks_per_row);
5234 dev->offload_to_mirror = !dev->offload_to_mirror;
5237 /* Handles N-way mirrors (R1-ADM)
5238 * and R10 with # of drives divisible by 3.)
5240 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5242 offload_to_mirror = dev->offload_to_mirror;
5243 raid_map_helper(map, offload_to_mirror,
5244 &map_index, ¤t_group);
5245 /* set mirror group to use next time */
5247 (offload_to_mirror >=
5248 le16_to_cpu(map->layout_map_count) - 1)
5249 ? 0 : offload_to_mirror + 1;
5250 dev->offload_to_mirror = offload_to_mirror;
5251 /* Avoid direct use of dev->offload_to_mirror within this
5252 * function since multiple threads might simultaneously
5253 * increment it beyond the range of dev->layout_map_count -1.
5258 if (le16_to_cpu(map->layout_map_count) <= 1)
5261 /* Verify first and last block are in same RAID group */
5262 r5or6_blocks_per_row =
5263 le16_to_cpu(map->strip_size) *
5264 le16_to_cpu(map->data_disks_per_row);
5265 BUG_ON(r5or6_blocks_per_row == 0);
5266 stripesize = r5or6_blocks_per_row *
5267 le16_to_cpu(map->layout_map_count);
5268 #if BITS_PER_LONG == 32
5269 tmpdiv = first_block;
5270 first_group = do_div(tmpdiv, stripesize);
5271 tmpdiv = first_group;
5272 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5273 first_group = tmpdiv;
5274 tmpdiv = last_block;
5275 last_group = do_div(tmpdiv, stripesize);
5276 tmpdiv = last_group;
5277 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5278 last_group = tmpdiv;
5280 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5281 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5283 if (first_group != last_group)
5284 return IO_ACCEL_INELIGIBLE;
5286 /* Verify request is in a single row of RAID 5/6 */
5287 #if BITS_PER_LONG == 32
5288 tmpdiv = first_block;
5289 (void) do_div(tmpdiv, stripesize);
5290 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5291 tmpdiv = last_block;
5292 (void) do_div(tmpdiv, stripesize);
5293 r5or6_last_row = r0_last_row = tmpdiv;
5295 first_row = r5or6_first_row = r0_first_row =
5296 first_block / stripesize;
5297 r5or6_last_row = r0_last_row = last_block / stripesize;
5299 if (r5or6_first_row != r5or6_last_row)
5300 return IO_ACCEL_INELIGIBLE;
5303 /* Verify request is in a single column */
5304 #if BITS_PER_LONG == 32
5305 tmpdiv = first_block;
5306 first_row_offset = do_div(tmpdiv, stripesize);
5307 tmpdiv = first_row_offset;
5308 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5309 r5or6_first_row_offset = first_row_offset;
5310 tmpdiv = last_block;
5311 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5312 tmpdiv = r5or6_last_row_offset;
5313 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5314 tmpdiv = r5or6_first_row_offset;
5315 (void) do_div(tmpdiv, map->strip_size);
5316 first_column = r5or6_first_column = tmpdiv;
5317 tmpdiv = r5or6_last_row_offset;
5318 (void) do_div(tmpdiv, map->strip_size);
5319 r5or6_last_column = tmpdiv;
5321 first_row_offset = r5or6_first_row_offset =
5322 (u32)((first_block % stripesize) %
5323 r5or6_blocks_per_row);
5325 r5or6_last_row_offset =
5326 (u32)((last_block % stripesize) %
5327 r5or6_blocks_per_row);
5329 first_column = r5or6_first_column =
5330 r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5332 r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5334 if (r5or6_first_column != r5or6_last_column)
5335 return IO_ACCEL_INELIGIBLE;
5337 /* Request is eligible */
5338 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5339 le16_to_cpu(map->row_cnt);
5341 map_index = (first_group *
5342 (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5343 (map_row * total_disks_per_row) + first_column;
5346 return IO_ACCEL_INELIGIBLE;
5349 if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5350 return IO_ACCEL_INELIGIBLE;
5352 c->phys_disk = dev->phys_disk[map_index];
5354 return IO_ACCEL_INELIGIBLE;
5356 disk_handle = dd[map_index].ioaccel_handle;
5357 disk_block = le64_to_cpu(map->disk_starting_blk) +
5358 first_row * le16_to_cpu(map->strip_size) +
5359 (first_row_offset - first_column *
5360 le16_to_cpu(map->strip_size));
5361 disk_block_cnt = block_cnt;
5363 /* handle differing logical/physical block sizes */
5364 if (map->phys_blk_shift) {
5365 disk_block <<= map->phys_blk_shift;
5366 disk_block_cnt <<= map->phys_blk_shift;
5368 BUG_ON(disk_block_cnt > 0xffff);
5370 /* build the new CDB for the physical disk I/O */
5371 if (disk_block > 0xffffffff) {
5372 cdb[0] = is_write ? WRITE_16 : READ_16;
5374 cdb[2] = (u8) (disk_block >> 56);
5375 cdb[3] = (u8) (disk_block >> 48);
5376 cdb[4] = (u8) (disk_block >> 40);
5377 cdb[5] = (u8) (disk_block >> 32);
5378 cdb[6] = (u8) (disk_block >> 24);
5379 cdb[7] = (u8) (disk_block >> 16);
5380 cdb[8] = (u8) (disk_block >> 8);
5381 cdb[9] = (u8) (disk_block);
5382 cdb[10] = (u8) (disk_block_cnt >> 24);
5383 cdb[11] = (u8) (disk_block_cnt >> 16);
5384 cdb[12] = (u8) (disk_block_cnt >> 8);
5385 cdb[13] = (u8) (disk_block_cnt);
5390 cdb[0] = is_write ? WRITE_10 : READ_10;
5392 cdb[2] = (u8) (disk_block >> 24);
5393 cdb[3] = (u8) (disk_block >> 16);
5394 cdb[4] = (u8) (disk_block >> 8);
5395 cdb[5] = (u8) (disk_block);
5397 cdb[7] = (u8) (disk_block_cnt >> 8);
5398 cdb[8] = (u8) (disk_block_cnt);
5402 return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5404 dev->phys_disk[map_index]);
5408 * Submit commands down the "normal" RAID stack path
5409 * All callers to hpsa_ciss_submit must check lockup_detected
5410 * beforehand, before (opt.) and after calling cmd_alloc
5412 static int hpsa_ciss_submit(struct ctlr_info *h,
5413 struct CommandList *c, struct scsi_cmnd *cmd,
5414 struct hpsa_scsi_dev_t *dev)
5416 cmd->host_scribble = (unsigned char *) c;
5417 c->cmd_type = CMD_SCSI;
5419 c->Header.ReplyQueue = 0; /* unused in simple mode */
5420 memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5421 c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5423 /* Fill in the request block... */
5425 c->Request.Timeout = 0;
5426 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5427 c->Request.CDBLen = cmd->cmd_len;
5428 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5429 switch (cmd->sc_data_direction) {
5431 c->Request.type_attr_dir =
5432 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5434 case DMA_FROM_DEVICE:
5435 c->Request.type_attr_dir =
5436 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5439 c->Request.type_attr_dir =
5440 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5442 case DMA_BIDIRECTIONAL:
5443 /* This can happen if a buggy application does a scsi passthru
5444 * and sets both inlen and outlen to non-zero. ( see
5445 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5448 c->Request.type_attr_dir =
5449 TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5450 /* This is technically wrong, and hpsa controllers should
5451 * reject it with CMD_INVALID, which is the most correct
5452 * response, but non-fibre backends appear to let it
5453 * slide by, and give the same results as if this field
5454 * were set correctly. Either way is acceptable for
5455 * our purposes here.
5461 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5462 cmd->sc_data_direction);
5467 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5468 hpsa_cmd_resolve_and_free(h, c);
5469 return SCSI_MLQUEUE_HOST_BUSY;
5472 if (dev->in_reset) {
5473 hpsa_cmd_resolve_and_free(h, c);
5474 return SCSI_MLQUEUE_HOST_BUSY;
5477 enqueue_cmd_and_start_io(h, c);
5478 /* the cmd'll come back via intr handler in complete_scsi_command() */
5482 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5483 struct CommandList *c)
5485 dma_addr_t cmd_dma_handle, err_dma_handle;
5487 /* Zero out all of commandlist except the last field, refcount */
5488 memset(c, 0, offsetof(struct CommandList, refcount));
5489 c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5490 cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5491 c->err_info = h->errinfo_pool + index;
5492 memset(c->err_info, 0, sizeof(*c->err_info));
5493 err_dma_handle = h->errinfo_pool_dhandle
5494 + index * sizeof(*c->err_info);
5495 c->cmdindex = index;
5496 c->busaddr = (u32) cmd_dma_handle;
5497 c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5498 c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5500 c->scsi_cmd = SCSI_CMD_IDLE;
5503 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5507 for (i = 0; i < h->nr_cmds; i++) {
5508 struct CommandList *c = h->cmd_pool + i;
5510 hpsa_cmd_init(h, i, c);
5511 atomic_set(&c->refcount, 0);
5515 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5516 struct CommandList *c)
5518 dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5520 BUG_ON(c->cmdindex != index);
5522 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5523 memset(c->err_info, 0, sizeof(*c->err_info));
5524 c->busaddr = (u32) cmd_dma_handle;
5527 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5528 struct CommandList *c, struct scsi_cmnd *cmd)
5530 struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5531 int rc = IO_ACCEL_INELIGIBLE;
5534 return SCSI_MLQUEUE_HOST_BUSY;
5537 return SCSI_MLQUEUE_HOST_BUSY;
5539 if (hpsa_simple_mode)
5540 return IO_ACCEL_INELIGIBLE;
5542 cmd->host_scribble = (unsigned char *) c;
5544 if (dev->offload_enabled) {
5545 hpsa_cmd_init(h, c->cmdindex, c);
5546 c->cmd_type = CMD_SCSI;
5548 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5549 if (rc < 0) /* scsi_dma_map failed. */
5550 rc = SCSI_MLQUEUE_HOST_BUSY;
5551 } else if (dev->hba_ioaccel_enabled) {
5552 hpsa_cmd_init(h, c->cmdindex, c);
5553 c->cmd_type = CMD_SCSI;
5555 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5556 if (rc < 0) /* scsi_dma_map failed. */
5557 rc = SCSI_MLQUEUE_HOST_BUSY;
5562 static void hpsa_command_resubmit_worker(struct work_struct *work)
5564 struct scsi_cmnd *cmd;
5565 struct hpsa_scsi_dev_t *dev;
5566 struct CommandList *c = container_of(work, struct CommandList, work);
5569 dev = cmd->device->hostdata;
5571 cmd->result = DID_NO_CONNECT << 16;
5572 return hpsa_cmd_free_and_done(c->h, c, cmd);
5575 if (dev->in_reset) {
5576 cmd->result = DID_RESET << 16;
5577 return hpsa_cmd_free_and_done(c->h, c, cmd);
5580 if (c->cmd_type == CMD_IOACCEL2) {
5581 struct ctlr_info *h = c->h;
5582 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5585 if (c2->error_data.serv_response ==
5586 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5587 rc = hpsa_ioaccel_submit(h, c, cmd);
5590 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5592 * If we get here, it means dma mapping failed.
5593 * Try again via scsi mid layer, which will
5594 * then get SCSI_MLQUEUE_HOST_BUSY.
5596 cmd->result = DID_IMM_RETRY << 16;
5597 return hpsa_cmd_free_and_done(h, c, cmd);
5599 /* else, fall thru and resubmit down CISS path */
5602 hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5603 if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5605 * If we get here, it means dma mapping failed. Try
5606 * again via scsi mid layer, which will then get
5607 * SCSI_MLQUEUE_HOST_BUSY.
5609 * hpsa_ciss_submit will have already freed c
5610 * if it encountered a dma mapping failure.
5612 cmd->result = DID_IMM_RETRY << 16;
5613 cmd->scsi_done(cmd);
5617 /* Running in struct Scsi_Host->host_lock less mode */
5618 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5620 struct ctlr_info *h;
5621 struct hpsa_scsi_dev_t *dev;
5622 struct CommandList *c;
5625 /* Get the ptr to our adapter structure out of cmd->host. */
5626 h = sdev_to_hba(cmd->device);
5628 BUG_ON(cmd->request->tag < 0);
5630 dev = cmd->device->hostdata;
5632 cmd->result = DID_NO_CONNECT << 16;
5633 cmd->scsi_done(cmd);
5638 cmd->result = DID_NO_CONNECT << 16;
5639 cmd->scsi_done(cmd);
5643 if (unlikely(lockup_detected(h))) {
5644 cmd->result = DID_NO_CONNECT << 16;
5645 cmd->scsi_done(cmd);
5650 return SCSI_MLQUEUE_DEVICE_BUSY;
5652 c = cmd_tagged_alloc(h, cmd);
5654 return SCSI_MLQUEUE_DEVICE_BUSY;
5657 * Call alternate submit routine for I/O accelerated commands.
5658 * Retries always go down the normal I/O path.
5660 if (likely(cmd->retries == 0 &&
5661 !blk_rq_is_passthrough(cmd->request) &&
5662 h->acciopath_status)) {
5663 rc = hpsa_ioaccel_submit(h, c, cmd);
5666 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5667 hpsa_cmd_resolve_and_free(h, c);
5668 return SCSI_MLQUEUE_HOST_BUSY;
5671 return hpsa_ciss_submit(h, c, cmd, dev);
5674 static void hpsa_scan_complete(struct ctlr_info *h)
5676 unsigned long flags;
5678 spin_lock_irqsave(&h->scan_lock, flags);
5679 h->scan_finished = 1;
5680 wake_up(&h->scan_wait_queue);
5681 spin_unlock_irqrestore(&h->scan_lock, flags);
5684 static void hpsa_scan_start(struct Scsi_Host *sh)
5686 struct ctlr_info *h = shost_to_hba(sh);
5687 unsigned long flags;
5690 * Don't let rescans be initiated on a controller known to be locked
5691 * up. If the controller locks up *during* a rescan, that thread is
5692 * probably hosed, but at least we can prevent new rescan threads from
5693 * piling up on a locked up controller.
5695 if (unlikely(lockup_detected(h)))
5696 return hpsa_scan_complete(h);
5699 * If a scan is already waiting to run, no need to add another
5701 spin_lock_irqsave(&h->scan_lock, flags);
5702 if (h->scan_waiting) {
5703 spin_unlock_irqrestore(&h->scan_lock, flags);
5707 spin_unlock_irqrestore(&h->scan_lock, flags);
5709 /* wait until any scan already in progress is finished. */
5711 spin_lock_irqsave(&h->scan_lock, flags);
5712 if (h->scan_finished)
5714 h->scan_waiting = 1;
5715 spin_unlock_irqrestore(&h->scan_lock, flags);
5716 wait_event(h->scan_wait_queue, h->scan_finished);
5717 /* Note: We don't need to worry about a race between this
5718 * thread and driver unload because the midlayer will
5719 * have incremented the reference count, so unload won't
5720 * happen if we're in here.
5723 h->scan_finished = 0; /* mark scan as in progress */
5724 h->scan_waiting = 0;
5725 spin_unlock_irqrestore(&h->scan_lock, flags);
5727 if (unlikely(lockup_detected(h)))
5728 return hpsa_scan_complete(h);
5731 * Do the scan after a reset completion
5733 spin_lock_irqsave(&h->reset_lock, flags);
5734 if (h->reset_in_progress) {
5735 h->drv_req_rescan = 1;
5736 spin_unlock_irqrestore(&h->reset_lock, flags);
5737 hpsa_scan_complete(h);
5740 spin_unlock_irqrestore(&h->reset_lock, flags);
5742 hpsa_update_scsi_devices(h);
5744 hpsa_scan_complete(h);
5747 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5749 struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5756 else if (qdepth > logical_drive->queue_depth)
5757 qdepth = logical_drive->queue_depth;
5759 return scsi_change_queue_depth(sdev, qdepth);
5762 static int hpsa_scan_finished(struct Scsi_Host *sh,
5763 unsigned long elapsed_time)
5765 struct ctlr_info *h = shost_to_hba(sh);
5766 unsigned long flags;
5769 spin_lock_irqsave(&h->scan_lock, flags);
5770 finished = h->scan_finished;
5771 spin_unlock_irqrestore(&h->scan_lock, flags);
5775 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5777 struct Scsi_Host *sh;
5779 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5781 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5788 sh->max_channel = 3;
5789 sh->max_cmd_len = MAX_COMMAND_SIZE;
5790 sh->max_lun = HPSA_MAX_LUN;
5791 sh->max_id = HPSA_MAX_LUN;
5792 sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5793 sh->cmd_per_lun = sh->can_queue;
5794 sh->sg_tablesize = h->maxsgentries;
5795 sh->transportt = hpsa_sas_transport_template;
5796 sh->hostdata[0] = (unsigned long) h;
5797 sh->irq = pci_irq_vector(h->pdev, 0);
5798 sh->unique_id = sh->irq;
5804 static int hpsa_scsi_add_host(struct ctlr_info *h)
5808 rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5810 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5813 scsi_scan_host(h->scsi_host);
5818 * The block layer has already gone to the trouble of picking out a unique,
5819 * small-integer tag for this request. We use an offset from that value as
5820 * an index to select our command block. (The offset allows us to reserve the
5821 * low-numbered entries for our own uses.)
5823 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5825 int idx = scmd->request->tag;
5830 /* Offset to leave space for internal cmds. */
5831 return idx += HPSA_NRESERVED_CMDS;
5835 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5836 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5838 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5839 struct CommandList *c, unsigned char lunaddr[],
5844 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5845 (void) fill_cmd(c, TEST_UNIT_READY, h,
5846 NULL, 0, 0, lunaddr, TYPE_CMD);
5847 rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5850 /* no unmap needed here because no data xfer. */
5852 /* Check if the unit is already ready. */
5853 if (c->err_info->CommandStatus == CMD_SUCCESS)
5857 * The first command sent after reset will receive "unit attention" to
5858 * indicate that the LUN has been reset...this is actually what we're
5859 * looking for (but, success is good too).
5861 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5862 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5863 (c->err_info->SenseInfo[2] == NO_SENSE ||
5864 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5871 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5872 * returns zero when the unit is ready, and non-zero when giving up.
5874 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5875 struct CommandList *c,
5876 unsigned char lunaddr[], int reply_queue)
5880 int waittime = 1; /* seconds */
5882 /* Send test unit ready until device ready, or give up. */
5883 for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5886 * Wait for a bit. do this first, because if we send
5887 * the TUR right away, the reset will just abort it.
5889 msleep(1000 * waittime);
5891 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5895 /* Increase wait time with each try, up to a point. */
5896 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5899 dev_warn(&h->pdev->dev,
5900 "waiting %d secs for device to become ready.\n",
5907 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5908 unsigned char lunaddr[],
5915 struct CommandList *c;
5920 * If no specific reply queue was requested, then send the TUR
5921 * repeatedly, requesting a reply on each reply queue; otherwise execute
5922 * the loop exactly once using only the specified queue.
5924 if (reply_queue == DEFAULT_REPLY_QUEUE) {
5926 last_queue = h->nreply_queues - 1;
5928 first_queue = reply_queue;
5929 last_queue = reply_queue;
5932 for (rq = first_queue; rq <= last_queue; rq++) {
5933 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5939 dev_warn(&h->pdev->dev, "giving up on device.\n");
5941 dev_warn(&h->pdev->dev, "device is ready.\n");
5947 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5948 * complaining. Doing a host- or bus-reset can't do anything good here.
5950 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5954 struct ctlr_info *h;
5955 struct hpsa_scsi_dev_t *dev = NULL;
5958 unsigned long flags;
5960 /* find the controller to which the command to be aborted was sent */
5961 h = sdev_to_hba(scsicmd->device);
5962 if (h == NULL) /* paranoia */
5965 spin_lock_irqsave(&h->reset_lock, flags);
5966 h->reset_in_progress = 1;
5967 spin_unlock_irqrestore(&h->reset_lock, flags);
5969 if (lockup_detected(h)) {
5971 goto return_reset_status;
5974 dev = scsicmd->device->hostdata;
5976 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5978 goto return_reset_status;
5981 if (dev->devtype == TYPE_ENCLOSURE) {
5983 goto return_reset_status;
5986 /* if controller locked up, we can guarantee command won't complete */
5987 if (lockup_detected(h)) {
5988 snprintf(msg, sizeof(msg),
5989 "cmd %d RESET FAILED, lockup detected",
5990 hpsa_get_cmd_index(scsicmd));
5991 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5993 goto return_reset_status;
5996 /* this reset request might be the result of a lockup; check */
5997 if (detect_controller_lockup(h)) {
5998 snprintf(msg, sizeof(msg),
5999 "cmd %d RESET FAILED, new lockup detected",
6000 hpsa_get_cmd_index(scsicmd));
6001 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6003 goto return_reset_status;
6006 /* Do not attempt on controller */
6007 if (is_hba_lunid(dev->scsi3addr)) {
6009 goto return_reset_status;
6012 if (is_logical_dev_addr_mode(dev->scsi3addr))
6013 reset_type = HPSA_DEVICE_RESET_MSG;
6015 reset_type = HPSA_PHYS_TARGET_RESET;
6017 sprintf(msg, "resetting %s",
6018 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6019 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6022 * wait to see if any commands will complete before sending reset
6024 dev->in_reset = true; /* block any new cmds from OS for this device */
6025 for (i = 0; i < 10; i++) {
6026 if (atomic_read(&dev->commands_outstanding) > 0)
6032 /* send a reset to the SCSI LUN which the command was sent to */
6033 rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6039 sprintf(msg, "reset %s %s",
6040 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6041 rc == SUCCESS ? "completed successfully" : "failed");
6042 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6044 return_reset_status:
6045 spin_lock_irqsave(&h->reset_lock, flags);
6046 h->reset_in_progress = 0;
6048 dev->in_reset = false;
6049 spin_unlock_irqrestore(&h->reset_lock, flags);
6054 * For operations with an associated SCSI command, a command block is allocated
6055 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6056 * block request tag as an index into a table of entries. cmd_tagged_free() is
6057 * the complement, although cmd_free() may be called instead.
6059 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6060 struct scsi_cmnd *scmd)
6062 int idx = hpsa_get_cmd_index(scmd);
6063 struct CommandList *c = h->cmd_pool + idx;
6065 if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6066 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6067 idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6068 /* The index value comes from the block layer, so if it's out of
6069 * bounds, it's probably not our bug.
6074 if (unlikely(!hpsa_is_cmd_idle(c))) {
6076 * We expect that the SCSI layer will hand us a unique tag
6077 * value. Thus, there should never be a collision here between
6078 * two requests...because if the selected command isn't idle
6079 * then someone is going to be very disappointed.
6081 if (idx != h->last_collision_tag) { /* Print once per tag */
6082 dev_warn(&h->pdev->dev,
6083 "%s: tag collision (tag=%d)\n", __func__, idx);
6084 if (c->scsi_cmd != NULL)
6085 scsi_print_command(c->scsi_cmd);
6087 scsi_print_command(scmd);
6088 h->last_collision_tag = idx;
6093 atomic_inc(&c->refcount);
6095 hpsa_cmd_partial_init(h, idx, c);
6099 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6102 * Release our reference to the block. We don't need to do anything
6103 * else to free it, because it is accessed by index.
6105 (void)atomic_dec(&c->refcount);
6109 * For operations that cannot sleep, a command block is allocated at init,
6110 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6111 * which ones are free or in use. Lock must be held when calling this.
6112 * cmd_free() is the complement.
6113 * This function never gives up and returns NULL. If it hangs,
6114 * another thread must call cmd_free() to free some tags.
6117 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6119 struct CommandList *c;
6124 * There is some *extremely* small but non-zero chance that that
6125 * multiple threads could get in here, and one thread could
6126 * be scanning through the list of bits looking for a free
6127 * one, but the free ones are always behind him, and other
6128 * threads sneak in behind him and eat them before he can
6129 * get to them, so that while there is always a free one, a
6130 * very unlucky thread might be starved anyway, never able to
6131 * beat the other threads. In reality, this happens so
6132 * infrequently as to be indistinguishable from never.
6134 * Note that we start allocating commands before the SCSI host structure
6135 * is initialized. Since the search starts at bit zero, this
6136 * all works, since we have at least one command structure available;
6137 * however, it means that the structures with the low indexes have to be
6138 * reserved for driver-initiated requests, while requests from the block
6139 * layer will use the higher indexes.
6143 i = find_next_zero_bit(h->cmd_pool_bits,
6144 HPSA_NRESERVED_CMDS,
6146 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6150 c = h->cmd_pool + i;
6151 refcount = atomic_inc_return(&c->refcount);
6152 if (unlikely(refcount > 1)) {
6153 cmd_free(h, c); /* already in use */
6154 offset = (i + 1) % HPSA_NRESERVED_CMDS;
6157 set_bit(i & (BITS_PER_LONG - 1),
6158 h->cmd_pool_bits + (i / BITS_PER_LONG));
6159 break; /* it's ours now. */
6161 hpsa_cmd_partial_init(h, i, c);
6167 * This is the complementary operation to cmd_alloc(). Note, however, in some
6168 * corner cases it may also be used to free blocks allocated by
6169 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6170 * the clear-bit is harmless.
6172 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6174 if (atomic_dec_and_test(&c->refcount)) {
6177 i = c - h->cmd_pool;
6178 clear_bit(i & (BITS_PER_LONG - 1),
6179 h->cmd_pool_bits + (i / BITS_PER_LONG));
6183 #ifdef CONFIG_COMPAT
6185 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6188 IOCTL32_Command_struct __user *arg32 =
6189 (IOCTL32_Command_struct __user *) arg;
6190 IOCTL_Command_struct arg64;
6191 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6195 memset(&arg64, 0, sizeof(arg64));
6197 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6198 sizeof(arg64.LUN_info));
6199 err |= copy_from_user(&arg64.Request, &arg32->Request,
6200 sizeof(arg64.Request));
6201 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6202 sizeof(arg64.error_info));
6203 err |= get_user(arg64.buf_size, &arg32->buf_size);
6204 err |= get_user(cp, &arg32->buf);
6205 arg64.buf = compat_ptr(cp);
6206 err |= copy_to_user(p, &arg64, sizeof(arg64));
6211 err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6214 err |= copy_in_user(&arg32->error_info, &p->error_info,
6215 sizeof(arg32->error_info));
6221 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6222 unsigned int cmd, void __user *arg)
6224 BIG_IOCTL32_Command_struct __user *arg32 =
6225 (BIG_IOCTL32_Command_struct __user *) arg;
6226 BIG_IOCTL_Command_struct arg64;
6227 BIG_IOCTL_Command_struct __user *p =
6228 compat_alloc_user_space(sizeof(arg64));
6232 memset(&arg64, 0, sizeof(arg64));
6234 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6235 sizeof(arg64.LUN_info));
6236 err |= copy_from_user(&arg64.Request, &arg32->Request,
6237 sizeof(arg64.Request));
6238 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6239 sizeof(arg64.error_info));
6240 err |= get_user(arg64.buf_size, &arg32->buf_size);
6241 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6242 err |= get_user(cp, &arg32->buf);
6243 arg64.buf = compat_ptr(cp);
6244 err |= copy_to_user(p, &arg64, sizeof(arg64));
6249 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6252 err |= copy_in_user(&arg32->error_info, &p->error_info,
6253 sizeof(arg32->error_info));
6259 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6263 case CCISS_GETPCIINFO:
6264 case CCISS_GETINTINFO:
6265 case CCISS_SETINTINFO:
6266 case CCISS_GETNODENAME:
6267 case CCISS_SETNODENAME:
6268 case CCISS_GETHEARTBEAT:
6269 case CCISS_GETBUSTYPES:
6270 case CCISS_GETFIRMVER:
6271 case CCISS_GETDRIVVER:
6272 case CCISS_REVALIDVOLS:
6273 case CCISS_DEREGDISK:
6274 case CCISS_REGNEWDISK:
6276 case CCISS_RESCANDISK:
6277 case CCISS_GETLUNINFO:
6278 return hpsa_ioctl(dev, cmd, arg);
6280 case CCISS_PASSTHRU32:
6281 return hpsa_ioctl32_passthru(dev, cmd, arg);
6282 case CCISS_BIG_PASSTHRU32:
6283 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6286 return -ENOIOCTLCMD;
6291 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6293 struct hpsa_pci_info pciinfo;
6297 pciinfo.domain = pci_domain_nr(h->pdev->bus);
6298 pciinfo.bus = h->pdev->bus->number;
6299 pciinfo.dev_fn = h->pdev->devfn;
6300 pciinfo.board_id = h->board_id;
6301 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6306 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6308 DriverVer_type DriverVer;
6309 unsigned char vmaj, vmin, vsubmin;
6312 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6313 &vmaj, &vmin, &vsubmin);
6315 dev_info(&h->pdev->dev, "driver version string '%s' "
6316 "unrecognized.", HPSA_DRIVER_VERSION);
6321 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6324 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6329 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6331 IOCTL_Command_struct iocommand;
6332 struct CommandList *c;
6339 if (!capable(CAP_SYS_RAWIO))
6341 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6343 if ((iocommand.buf_size < 1) &&
6344 (iocommand.Request.Type.Direction != XFER_NONE)) {
6347 if (iocommand.buf_size > 0) {
6348 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6351 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6352 /* Copy the data into the buffer we created */
6353 if (copy_from_user(buff, iocommand.buf,
6354 iocommand.buf_size)) {
6359 memset(buff, 0, iocommand.buf_size);
6364 /* Fill in the command type */
6365 c->cmd_type = CMD_IOCTL_PEND;
6366 c->scsi_cmd = SCSI_CMD_BUSY;
6367 /* Fill in Command Header */
6368 c->Header.ReplyQueue = 0; /* unused in simple mode */
6369 if (iocommand.buf_size > 0) { /* buffer to fill */
6370 c->Header.SGList = 1;
6371 c->Header.SGTotal = cpu_to_le16(1);
6372 } else { /* no buffers to fill */
6373 c->Header.SGList = 0;
6374 c->Header.SGTotal = cpu_to_le16(0);
6376 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6378 /* Fill in Request block */
6379 memcpy(&c->Request, &iocommand.Request,
6380 sizeof(c->Request));
6382 /* Fill in the scatter gather information */
6383 if (iocommand.buf_size > 0) {
6384 temp64 = dma_map_single(&h->pdev->dev, buff,
6385 iocommand.buf_size, DMA_BIDIRECTIONAL);
6386 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6387 c->SG[0].Addr = cpu_to_le64(0);
6388 c->SG[0].Len = cpu_to_le32(0);
6392 c->SG[0].Addr = cpu_to_le64(temp64);
6393 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6394 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6396 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6398 if (iocommand.buf_size > 0)
6399 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6400 check_ioctl_unit_attention(h, c);
6406 /* Copy the error information out */
6407 memcpy(&iocommand.error_info, c->err_info,
6408 sizeof(iocommand.error_info));
6409 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6413 if ((iocommand.Request.Type.Direction & XFER_READ) &&
6414 iocommand.buf_size > 0) {
6415 /* Copy the data out of the buffer we created */
6416 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6428 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6430 BIG_IOCTL_Command_struct *ioc;
6431 struct CommandList *c;
6432 unsigned char **buff = NULL;
6433 int *buff_size = NULL;
6439 BYTE __user *data_ptr;
6443 if (!capable(CAP_SYS_RAWIO))
6445 ioc = vmemdup_user(argp, sizeof(*ioc));
6447 status = PTR_ERR(ioc);
6450 if ((ioc->buf_size < 1) &&
6451 (ioc->Request.Type.Direction != XFER_NONE)) {
6455 /* Check kmalloc limits using all SGs */
6456 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6460 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6464 buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6469 buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6474 left = ioc->buf_size;
6475 data_ptr = ioc->buf;
6477 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6478 buff_size[sg_used] = sz;
6479 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6480 if (buff[sg_used] == NULL) {
6484 if (ioc->Request.Type.Direction & XFER_WRITE) {
6485 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6490 memset(buff[sg_used], 0, sz);
6497 c->cmd_type = CMD_IOCTL_PEND;
6498 c->scsi_cmd = SCSI_CMD_BUSY;
6499 c->Header.ReplyQueue = 0;
6500 c->Header.SGList = (u8) sg_used;
6501 c->Header.SGTotal = cpu_to_le16(sg_used);
6502 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6503 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6504 if (ioc->buf_size > 0) {
6506 for (i = 0; i < sg_used; i++) {
6507 temp64 = dma_map_single(&h->pdev->dev, buff[i],
6508 buff_size[i], DMA_BIDIRECTIONAL);
6509 if (dma_mapping_error(&h->pdev->dev,
6510 (dma_addr_t) temp64)) {
6511 c->SG[i].Addr = cpu_to_le64(0);
6512 c->SG[i].Len = cpu_to_le32(0);
6513 hpsa_pci_unmap(h->pdev, c, i,
6518 c->SG[i].Addr = cpu_to_le64(temp64);
6519 c->SG[i].Len = cpu_to_le32(buff_size[i]);
6520 c->SG[i].Ext = cpu_to_le32(0);
6522 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6524 status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6527 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6528 check_ioctl_unit_attention(h, c);
6534 /* Copy the error information out */
6535 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6536 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6540 if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6543 /* Copy the data out of the buffer we created */
6544 BYTE __user *ptr = ioc->buf;
6545 for (i = 0; i < sg_used; i++) {
6546 if (copy_to_user(ptr, buff[i], buff_size[i])) {
6550 ptr += buff_size[i];
6560 for (i = 0; i < sg_used; i++)
6569 static void check_ioctl_unit_attention(struct ctlr_info *h,
6570 struct CommandList *c)
6572 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6573 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6574 (void) check_for_unit_attention(h, c);
6580 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6583 struct ctlr_info *h;
6584 void __user *argp = (void __user *)arg;
6587 h = sdev_to_hba(dev);
6590 case CCISS_DEREGDISK:
6591 case CCISS_REGNEWDISK:
6593 hpsa_scan_start(h->scsi_host);
6595 case CCISS_GETPCIINFO:
6596 return hpsa_getpciinfo_ioctl(h, argp);
6597 case CCISS_GETDRIVVER:
6598 return hpsa_getdrivver_ioctl(h, argp);
6599 case CCISS_PASSTHRU:
6600 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6602 rc = hpsa_passthru_ioctl(h, argp);
6603 atomic_inc(&h->passthru_cmds_avail);
6605 case CCISS_BIG_PASSTHRU:
6606 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6608 rc = hpsa_big_passthru_ioctl(h, argp);
6609 atomic_inc(&h->passthru_cmds_avail);
6616 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6618 struct CommandList *c;
6622 /* fill_cmd can't fail here, no data buffer to map */
6623 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6624 RAID_CTLR_LUNID, TYPE_MSG);
6625 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6627 enqueue_cmd_and_start_io(h, c);
6628 /* Don't wait for completion, the reset won't complete. Don't free
6629 * the command either. This is the last command we will send before
6630 * re-initializing everything, so it doesn't matter and won't leak.
6635 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6636 void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6639 enum dma_data_direction dir = DMA_NONE;
6641 c->cmd_type = CMD_IOCTL_PEND;
6642 c->scsi_cmd = SCSI_CMD_BUSY;
6643 c->Header.ReplyQueue = 0;
6644 if (buff != NULL && size > 0) {
6645 c->Header.SGList = 1;
6646 c->Header.SGTotal = cpu_to_le16(1);
6648 c->Header.SGList = 0;
6649 c->Header.SGTotal = cpu_to_le16(0);
6651 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6653 if (cmd_type == TYPE_CMD) {
6656 /* are we trying to read a vital product page */
6657 if (page_code & VPD_PAGE) {
6658 c->Request.CDB[1] = 0x01;
6659 c->Request.CDB[2] = (page_code & 0xff);
6661 c->Request.CDBLen = 6;
6662 c->Request.type_attr_dir =
6663 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6664 c->Request.Timeout = 0;
6665 c->Request.CDB[0] = HPSA_INQUIRY;
6666 c->Request.CDB[4] = size & 0xFF;
6668 case RECEIVE_DIAGNOSTIC:
6669 c->Request.CDBLen = 6;
6670 c->Request.type_attr_dir =
6671 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6672 c->Request.Timeout = 0;
6673 c->Request.CDB[0] = cmd;
6674 c->Request.CDB[1] = 1;
6675 c->Request.CDB[2] = 1;
6676 c->Request.CDB[3] = (size >> 8) & 0xFF;
6677 c->Request.CDB[4] = size & 0xFF;
6679 case HPSA_REPORT_LOG:
6680 case HPSA_REPORT_PHYS:
6681 /* Talking to controller so It's a physical command
6682 mode = 00 target = 0. Nothing to write.
6684 c->Request.CDBLen = 12;
6685 c->Request.type_attr_dir =
6686 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6687 c->Request.Timeout = 0;
6688 c->Request.CDB[0] = cmd;
6689 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6690 c->Request.CDB[7] = (size >> 16) & 0xFF;
6691 c->Request.CDB[8] = (size >> 8) & 0xFF;
6692 c->Request.CDB[9] = size & 0xFF;
6694 case BMIC_SENSE_DIAG_OPTIONS:
6695 c->Request.CDBLen = 16;
6696 c->Request.type_attr_dir =
6697 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6698 c->Request.Timeout = 0;
6699 /* Spec says this should be BMIC_WRITE */
6700 c->Request.CDB[0] = BMIC_READ;
6701 c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6703 case BMIC_SET_DIAG_OPTIONS:
6704 c->Request.CDBLen = 16;
6705 c->Request.type_attr_dir =
6706 TYPE_ATTR_DIR(cmd_type,
6707 ATTR_SIMPLE, XFER_WRITE);
6708 c->Request.Timeout = 0;
6709 c->Request.CDB[0] = BMIC_WRITE;
6710 c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6712 case HPSA_CACHE_FLUSH:
6713 c->Request.CDBLen = 12;
6714 c->Request.type_attr_dir =
6715 TYPE_ATTR_DIR(cmd_type,
6716 ATTR_SIMPLE, XFER_WRITE);
6717 c->Request.Timeout = 0;
6718 c->Request.CDB[0] = BMIC_WRITE;
6719 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6720 c->Request.CDB[7] = (size >> 8) & 0xFF;
6721 c->Request.CDB[8] = size & 0xFF;
6723 case TEST_UNIT_READY:
6724 c->Request.CDBLen = 6;
6725 c->Request.type_attr_dir =
6726 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6727 c->Request.Timeout = 0;
6729 case HPSA_GET_RAID_MAP:
6730 c->Request.CDBLen = 12;
6731 c->Request.type_attr_dir =
6732 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6733 c->Request.Timeout = 0;
6734 c->Request.CDB[0] = HPSA_CISS_READ;
6735 c->Request.CDB[1] = cmd;
6736 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6737 c->Request.CDB[7] = (size >> 16) & 0xFF;
6738 c->Request.CDB[8] = (size >> 8) & 0xFF;
6739 c->Request.CDB[9] = size & 0xFF;
6741 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6742 c->Request.CDBLen = 10;
6743 c->Request.type_attr_dir =
6744 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6745 c->Request.Timeout = 0;
6746 c->Request.CDB[0] = BMIC_READ;
6747 c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6748 c->Request.CDB[7] = (size >> 16) & 0xFF;
6749 c->Request.CDB[8] = (size >> 8) & 0xFF;
6751 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6752 c->Request.CDBLen = 10;
6753 c->Request.type_attr_dir =
6754 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6755 c->Request.Timeout = 0;
6756 c->Request.CDB[0] = BMIC_READ;
6757 c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6758 c->Request.CDB[7] = (size >> 16) & 0xFF;
6759 c->Request.CDB[8] = (size >> 8) & 0XFF;
6761 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6762 c->Request.CDBLen = 10;
6763 c->Request.type_attr_dir =
6764 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6765 c->Request.Timeout = 0;
6766 c->Request.CDB[0] = BMIC_READ;
6767 c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6768 c->Request.CDB[7] = (size >> 16) & 0xFF;
6769 c->Request.CDB[8] = (size >> 8) & 0XFF;
6771 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6772 c->Request.CDBLen = 10;
6773 c->Request.type_attr_dir =
6774 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6775 c->Request.Timeout = 0;
6776 c->Request.CDB[0] = BMIC_READ;
6777 c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6778 c->Request.CDB[7] = (size >> 16) & 0xFF;
6779 c->Request.CDB[8] = (size >> 8) & 0XFF;
6781 case BMIC_IDENTIFY_CONTROLLER:
6782 c->Request.CDBLen = 10;
6783 c->Request.type_attr_dir =
6784 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6785 c->Request.Timeout = 0;
6786 c->Request.CDB[0] = BMIC_READ;
6787 c->Request.CDB[1] = 0;
6788 c->Request.CDB[2] = 0;
6789 c->Request.CDB[3] = 0;
6790 c->Request.CDB[4] = 0;
6791 c->Request.CDB[5] = 0;
6792 c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6793 c->Request.CDB[7] = (size >> 16) & 0xFF;
6794 c->Request.CDB[8] = (size >> 8) & 0XFF;
6795 c->Request.CDB[9] = 0;
6798 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6801 } else if (cmd_type == TYPE_MSG) {
6804 case HPSA_PHYS_TARGET_RESET:
6805 c->Request.CDBLen = 16;
6806 c->Request.type_attr_dir =
6807 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6808 c->Request.Timeout = 0; /* Don't time out */
6809 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6810 c->Request.CDB[0] = HPSA_RESET;
6811 c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6812 /* Physical target reset needs no control bytes 4-7*/
6813 c->Request.CDB[4] = 0x00;
6814 c->Request.CDB[5] = 0x00;
6815 c->Request.CDB[6] = 0x00;
6816 c->Request.CDB[7] = 0x00;
6818 case HPSA_DEVICE_RESET_MSG:
6819 c->Request.CDBLen = 16;
6820 c->Request.type_attr_dir =
6821 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6822 c->Request.Timeout = 0; /* Don't time out */
6823 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6824 c->Request.CDB[0] = cmd;
6825 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6826 /* If bytes 4-7 are zero, it means reset the */
6828 c->Request.CDB[4] = 0x00;
6829 c->Request.CDB[5] = 0x00;
6830 c->Request.CDB[6] = 0x00;
6831 c->Request.CDB[7] = 0x00;
6834 dev_warn(&h->pdev->dev, "unknown message type %d\n",
6839 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6843 switch (GET_DIR(c->Request.type_attr_dir)) {
6845 dir = DMA_FROM_DEVICE;
6848 dir = DMA_TO_DEVICE;
6854 dir = DMA_BIDIRECTIONAL;
6856 if (hpsa_map_one(h->pdev, c, buff, size, dir))
6862 * Map (physical) PCI mem into (virtual) kernel space
6864 static void __iomem *remap_pci_mem(ulong base, ulong size)
6866 ulong page_base = ((ulong) base) & PAGE_MASK;
6867 ulong page_offs = ((ulong) base) - page_base;
6868 void __iomem *page_remapped = ioremap_nocache(page_base,
6871 return page_remapped ? (page_remapped + page_offs) : NULL;
6874 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6876 return h->access.command_completed(h, q);
6879 static inline bool interrupt_pending(struct ctlr_info *h)
6881 return h->access.intr_pending(h);
6884 static inline long interrupt_not_for_us(struct ctlr_info *h)
6886 return (h->access.intr_pending(h) == 0) ||
6887 (h->interrupts_enabled == 0);
6890 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6893 if (unlikely(tag_index >= h->nr_cmds)) {
6894 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6900 static inline void finish_cmd(struct CommandList *c)
6902 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6903 if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6904 || c->cmd_type == CMD_IOACCEL2))
6905 complete_scsi_command(c);
6906 else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6907 complete(c->waiting);
6910 /* process completion of an indexed ("direct lookup") command */
6911 static inline void process_indexed_cmd(struct ctlr_info *h,
6915 struct CommandList *c;
6917 tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6918 if (!bad_tag(h, tag_index, raw_tag)) {
6919 c = h->cmd_pool + tag_index;
6924 /* Some controllers, like p400, will give us one interrupt
6925 * after a soft reset, even if we turned interrupts off.
6926 * Only need to check for this in the hpsa_xxx_discard_completions
6929 static int ignore_bogus_interrupt(struct ctlr_info *h)
6931 if (likely(!reset_devices))
6934 if (likely(h->interrupts_enabled))
6937 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6938 "(known firmware bug.) Ignoring.\n");
6944 * Convert &h->q[x] (passed to interrupt handlers) back to h.
6945 * Relies on (h-q[x] == x) being true for x such that
6946 * 0 <= x < MAX_REPLY_QUEUES.
6948 static struct ctlr_info *queue_to_hba(u8 *queue)
6950 return container_of((queue - *queue), struct ctlr_info, q[0]);
6953 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6955 struct ctlr_info *h = queue_to_hba(queue);
6956 u8 q = *(u8 *) queue;
6959 if (ignore_bogus_interrupt(h))
6962 if (interrupt_not_for_us(h))
6964 h->last_intr_timestamp = get_jiffies_64();
6965 while (interrupt_pending(h)) {
6966 raw_tag = get_next_completion(h, q);
6967 while (raw_tag != FIFO_EMPTY)
6968 raw_tag = next_command(h, q);
6973 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6975 struct ctlr_info *h = queue_to_hba(queue);
6977 u8 q = *(u8 *) queue;
6979 if (ignore_bogus_interrupt(h))
6982 h->last_intr_timestamp = get_jiffies_64();
6983 raw_tag = get_next_completion(h, q);
6984 while (raw_tag != FIFO_EMPTY)
6985 raw_tag = next_command(h, q);
6989 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6991 struct ctlr_info *h = queue_to_hba((u8 *) queue);
6993 u8 q = *(u8 *) queue;
6995 if (interrupt_not_for_us(h))
6997 h->last_intr_timestamp = get_jiffies_64();
6998 while (interrupt_pending(h)) {
6999 raw_tag = get_next_completion(h, q);
7000 while (raw_tag != FIFO_EMPTY) {
7001 process_indexed_cmd(h, raw_tag);
7002 raw_tag = next_command(h, q);
7008 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7010 struct ctlr_info *h = queue_to_hba(queue);
7012 u8 q = *(u8 *) queue;
7014 h->last_intr_timestamp = get_jiffies_64();
7015 raw_tag = get_next_completion(h, q);
7016 while (raw_tag != FIFO_EMPTY) {
7017 process_indexed_cmd(h, raw_tag);
7018 raw_tag = next_command(h, q);
7023 /* Send a message CDB to the firmware. Careful, this only works
7024 * in simple mode, not performant mode due to the tag lookup.
7025 * We only ever use this immediately after a controller reset.
7027 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7031 struct CommandListHeader CommandHeader;
7032 struct RequestBlock Request;
7033 struct ErrDescriptor ErrorDescriptor;
7035 struct Command *cmd;
7036 static const size_t cmd_sz = sizeof(*cmd) +
7037 sizeof(cmd->ErrorDescriptor);
7041 void __iomem *vaddr;
7044 vaddr = pci_ioremap_bar(pdev, 0);
7048 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7049 * CCISS commands, so they must be allocated from the lower 4GiB of
7052 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7058 cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7064 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7065 * although there's no guarantee, we assume that the address is at
7066 * least 4-byte aligned (most likely, it's page-aligned).
7068 paddr32 = cpu_to_le32(paddr64);
7070 cmd->CommandHeader.ReplyQueue = 0;
7071 cmd->CommandHeader.SGList = 0;
7072 cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7073 cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7074 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7076 cmd->Request.CDBLen = 16;
7077 cmd->Request.type_attr_dir =
7078 TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7079 cmd->Request.Timeout = 0; /* Don't time out */
7080 cmd->Request.CDB[0] = opcode;
7081 cmd->Request.CDB[1] = type;
7082 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7083 cmd->ErrorDescriptor.Addr =
7084 cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7085 cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7087 writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7089 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7090 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7091 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7093 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7098 /* we leak the DMA buffer here ... no choice since the controller could
7099 * still complete the command.
7101 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7102 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7107 dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7109 if (tag & HPSA_ERROR_BIT) {
7110 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7115 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7120 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7122 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7123 void __iomem *vaddr, u32 use_doorbell)
7127 /* For everything after the P600, the PCI power state method
7128 * of resetting the controller doesn't work, so we have this
7129 * other way using the doorbell register.
7131 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7132 writel(use_doorbell, vaddr + SA5_DOORBELL);
7134 /* PMC hardware guys tell us we need a 10 second delay after
7135 * doorbell reset and before any attempt to talk to the board
7136 * at all to ensure that this actually works and doesn't fall
7137 * over in some weird corner cases.
7140 } else { /* Try to do it the PCI power state way */
7142 /* Quoting from the Open CISS Specification: "The Power
7143 * Management Control/Status Register (CSR) controls the power
7144 * state of the device. The normal operating state is D0,
7145 * CSR=00h. The software off state is D3, CSR=03h. To reset
7146 * the controller, place the interface device in D3 then to D0,
7147 * this causes a secondary PCI reset which will reset the
7152 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7154 /* enter the D3hot power management state */
7155 rc = pci_set_power_state(pdev, PCI_D3hot);
7161 /* enter the D0 power management state */
7162 rc = pci_set_power_state(pdev, PCI_D0);
7167 * The P600 requires a small delay when changing states.
7168 * Otherwise we may think the board did not reset and we bail.
7169 * This for kdump only and is particular to the P600.
7176 static void init_driver_version(char *driver_version, int len)
7178 memset(driver_version, 0, len);
7179 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7182 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7184 char *driver_version;
7185 int i, size = sizeof(cfgtable->driver_version);
7187 driver_version = kmalloc(size, GFP_KERNEL);
7188 if (!driver_version)
7191 init_driver_version(driver_version, size);
7192 for (i = 0; i < size; i++)
7193 writeb(driver_version[i], &cfgtable->driver_version[i]);
7194 kfree(driver_version);
7198 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7199 unsigned char *driver_ver)
7203 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7204 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7207 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7210 char *driver_ver, *old_driver_ver;
7211 int rc, size = sizeof(cfgtable->driver_version);
7213 old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7214 if (!old_driver_ver)
7216 driver_ver = old_driver_ver + size;
7218 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7219 * should have been changed, otherwise we know the reset failed.
7221 init_driver_version(old_driver_ver, size);
7222 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7223 rc = !memcmp(driver_ver, old_driver_ver, size);
7224 kfree(old_driver_ver);
7227 /* This does a hard reset of the controller using PCI power management
7228 * states or the using the doorbell register.
7230 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7234 u64 cfg_base_addr_index;
7235 void __iomem *vaddr;
7236 unsigned long paddr;
7237 u32 misc_fw_support;
7239 struct CfgTable __iomem *cfgtable;
7241 u16 command_register;
7243 /* For controllers as old as the P600, this is very nearly
7246 * pci_save_state(pci_dev);
7247 * pci_set_power_state(pci_dev, PCI_D3hot);
7248 * pci_set_power_state(pci_dev, PCI_D0);
7249 * pci_restore_state(pci_dev);
7251 * For controllers newer than the P600, the pci power state
7252 * method of resetting doesn't work so we have another way
7253 * using the doorbell register.
7256 if (!ctlr_is_resettable(board_id)) {
7257 dev_warn(&pdev->dev, "Controller not resettable\n");
7261 /* if controller is soft- but not hard resettable... */
7262 if (!ctlr_is_hard_resettable(board_id))
7263 return -ENOTSUPP; /* try soft reset later. */
7265 /* Save the PCI command register */
7266 pci_read_config_word(pdev, 4, &command_register);
7267 pci_save_state(pdev);
7269 /* find the first memory BAR, so we can find the cfg table */
7270 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7273 vaddr = remap_pci_mem(paddr, 0x250);
7277 /* find cfgtable in order to check if reset via doorbell is supported */
7278 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7279 &cfg_base_addr_index, &cfg_offset);
7282 cfgtable = remap_pci_mem(pci_resource_start(pdev,
7283 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7288 rc = write_driver_ver_to_cfgtable(cfgtable);
7290 goto unmap_cfgtable;
7292 /* If reset via doorbell register is supported, use that.
7293 * There are two such methods. Favor the newest method.
7295 misc_fw_support = readl(&cfgtable->misc_fw_support);
7296 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7298 use_doorbell = DOORBELL_CTLR_RESET2;
7300 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7302 dev_warn(&pdev->dev,
7303 "Soft reset not supported. Firmware update is required.\n");
7304 rc = -ENOTSUPP; /* try soft reset */
7305 goto unmap_cfgtable;
7309 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7311 goto unmap_cfgtable;
7313 pci_restore_state(pdev);
7314 pci_write_config_word(pdev, 4, command_register);
7316 /* Some devices (notably the HP Smart Array 5i Controller)
7317 need a little pause here */
7318 msleep(HPSA_POST_RESET_PAUSE_MSECS);
7320 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7322 dev_warn(&pdev->dev,
7323 "Failed waiting for board to become ready after hard reset\n");
7324 goto unmap_cfgtable;
7327 rc = controller_reset_failed(vaddr);
7329 goto unmap_cfgtable;
7331 dev_warn(&pdev->dev, "Unable to successfully reset "
7332 "controller. Will try soft reset.\n");
7335 dev_info(&pdev->dev, "board ready after hard reset.\n");
7347 * We cannot read the structure directly, for portability we must use
7349 * This is for debug only.
7351 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7357 dev_info(dev, "Controller Configuration information\n");
7358 dev_info(dev, "------------------------------------\n");
7359 for (i = 0; i < 4; i++)
7360 temp_name[i] = readb(&(tb->Signature[i]));
7361 temp_name[4] = '\0';
7362 dev_info(dev, " Signature = %s\n", temp_name);
7363 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
7364 dev_info(dev, " Transport methods supported = 0x%x\n",
7365 readl(&(tb->TransportSupport)));
7366 dev_info(dev, " Transport methods active = 0x%x\n",
7367 readl(&(tb->TransportActive)));
7368 dev_info(dev, " Requested transport Method = 0x%x\n",
7369 readl(&(tb->HostWrite.TransportRequest)));
7370 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
7371 readl(&(tb->HostWrite.CoalIntDelay)));
7372 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
7373 readl(&(tb->HostWrite.CoalIntCount)));
7374 dev_info(dev, " Max outstanding commands = %d\n",
7375 readl(&(tb->CmdsOutMax)));
7376 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7377 for (i = 0; i < 16; i++)
7378 temp_name[i] = readb(&(tb->ServerName[i]));
7379 temp_name[16] = '\0';
7380 dev_info(dev, " Server Name = %s\n", temp_name);
7381 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
7382 readl(&(tb->HeartBeat)));
7383 #endif /* HPSA_DEBUG */
7386 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7388 int i, offset, mem_type, bar_type;
7390 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7393 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7394 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7395 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7398 mem_type = pci_resource_flags(pdev, i) &
7399 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7401 case PCI_BASE_ADDRESS_MEM_TYPE_32:
7402 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7403 offset += 4; /* 32 bit */
7405 case PCI_BASE_ADDRESS_MEM_TYPE_64:
7408 default: /* reserved in PCI 2.2 */
7409 dev_warn(&pdev->dev,
7410 "base address is invalid\n");
7415 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7421 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7423 pci_free_irq_vectors(h->pdev);
7424 h->msix_vectors = 0;
7427 static void hpsa_setup_reply_map(struct ctlr_info *h)
7429 const struct cpumask *mask;
7430 unsigned int queue, cpu;
7432 for (queue = 0; queue < h->msix_vectors; queue++) {
7433 mask = pci_irq_get_affinity(h->pdev, queue);
7437 for_each_cpu(cpu, mask)
7438 h->reply_map[cpu] = queue;
7443 for_each_possible_cpu(cpu)
7444 h->reply_map[cpu] = 0;
7447 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7448 * controllers that are capable. If not, we use legacy INTx mode.
7450 static int hpsa_interrupt_mode(struct ctlr_info *h)
7452 unsigned int flags = PCI_IRQ_LEGACY;
7455 /* Some boards advertise MSI but don't really support it */
7456 switch (h->board_id) {
7463 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7464 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7466 h->msix_vectors = ret;
7470 flags |= PCI_IRQ_MSI;
7474 ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7480 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7484 u32 subsystem_vendor_id, subsystem_device_id;
7486 subsystem_vendor_id = pdev->subsystem_vendor;
7487 subsystem_device_id = pdev->subsystem_device;
7488 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7489 subsystem_vendor_id;
7492 *legacy_board = false;
7493 for (i = 0; i < ARRAY_SIZE(products); i++)
7494 if (*board_id == products[i].board_id) {
7495 if (products[i].access != &SA5A_access &&
7496 products[i].access != &SA5B_access)
7498 dev_warn(&pdev->dev,
7499 "legacy board ID: 0x%08x\n",
7502 *legacy_board = true;
7506 dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7508 *legacy_board = true;
7509 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7512 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7513 unsigned long *memory_bar)
7517 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7518 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7519 /* addressing mode bits already removed */
7520 *memory_bar = pci_resource_start(pdev, i);
7521 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7525 dev_warn(&pdev->dev, "no memory BAR found\n");
7529 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7535 iterations = HPSA_BOARD_READY_ITERATIONS;
7537 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7539 for (i = 0; i < iterations; i++) {
7540 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7541 if (wait_for_ready) {
7542 if (scratchpad == HPSA_FIRMWARE_READY)
7545 if (scratchpad != HPSA_FIRMWARE_READY)
7548 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7550 dev_warn(&pdev->dev, "board not ready, timed out.\n");
7554 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7555 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7558 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7559 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7560 *cfg_base_addr &= (u32) 0x0000ffff;
7561 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7562 if (*cfg_base_addr_index == -1) {
7563 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7569 static void hpsa_free_cfgtables(struct ctlr_info *h)
7571 if (h->transtable) {
7572 iounmap(h->transtable);
7573 h->transtable = NULL;
7576 iounmap(h->cfgtable);
7581 /* Find and map CISS config table and transfer table
7582 + * several items must be unmapped (freed) later
7584 static int hpsa_find_cfgtables(struct ctlr_info *h)
7588 u64 cfg_base_addr_index;
7592 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7593 &cfg_base_addr_index, &cfg_offset);
7596 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7597 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7599 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7602 rc = write_driver_ver_to_cfgtable(h->cfgtable);
7605 /* Find performant mode table. */
7606 trans_offset = readl(&h->cfgtable->TransMethodOffset);
7607 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7608 cfg_base_addr_index)+cfg_offset+trans_offset,
7609 sizeof(*h->transtable));
7610 if (!h->transtable) {
7611 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7612 hpsa_free_cfgtables(h);
7618 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7620 #define MIN_MAX_COMMANDS 16
7621 BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7623 h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7625 /* Limit commands in memory limited kdump scenario. */
7626 if (reset_devices && h->max_commands > 32)
7627 h->max_commands = 32;
7629 if (h->max_commands < MIN_MAX_COMMANDS) {
7630 dev_warn(&h->pdev->dev,
7631 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7634 h->max_commands = MIN_MAX_COMMANDS;
7638 /* If the controller reports that the total max sg entries is greater than 512,
7639 * then we know that chained SG blocks work. (Original smart arrays did not
7640 * support chained SG blocks and would return zero for max sg entries.)
7642 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7644 return h->maxsgentries > 512;
7647 /* Interrogate the hardware for some limits:
7648 * max commands, max SG elements without chaining, and with chaining,
7649 * SG chain block size, etc.
7651 static void hpsa_find_board_params(struct ctlr_info *h)
7653 hpsa_get_max_perf_mode_cmds(h);
7654 h->nr_cmds = h->max_commands;
7655 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7656 h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7657 if (hpsa_supports_chained_sg_blocks(h)) {
7658 /* Limit in-command s/g elements to 32 save dma'able memory. */
7659 h->max_cmd_sg_entries = 32;
7660 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7661 h->maxsgentries--; /* save one for chain pointer */
7664 * Original smart arrays supported at most 31 s/g entries
7665 * embedded inline in the command (trying to use more
7666 * would lock up the controller)
7668 h->max_cmd_sg_entries = 31;
7669 h->maxsgentries = 31; /* default to traditional values */
7673 /* Find out what task management functions are supported and cache */
7674 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7675 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7676 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7677 if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7678 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7679 if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7680 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7683 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7685 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7686 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7692 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7696 driver_support = readl(&(h->cfgtable->driver_support));
7697 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7699 driver_support |= ENABLE_SCSI_PREFETCH;
7701 driver_support |= ENABLE_UNIT_ATTN;
7702 writel(driver_support, &(h->cfgtable->driver_support));
7705 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7706 * in a prefetch beyond physical memory.
7708 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7712 if (h->board_id != 0x3225103C)
7714 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7715 dma_prefetch |= 0x8000;
7716 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7719 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7723 unsigned long flags;
7724 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7725 for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7726 spin_lock_irqsave(&h->lock, flags);
7727 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7728 spin_unlock_irqrestore(&h->lock, flags);
7729 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7731 /* delay and try again */
7732 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7739 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7743 unsigned long flags;
7745 /* under certain very rare conditions, this can take awhile.
7746 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7747 * as we enter this code.)
7749 for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7750 if (h->remove_in_progress)
7752 spin_lock_irqsave(&h->lock, flags);
7753 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7754 spin_unlock_irqrestore(&h->lock, flags);
7755 if (!(doorbell_value & CFGTBL_ChangeReq))
7757 /* delay and try again */
7758 msleep(MODE_CHANGE_WAIT_INTERVAL);
7765 /* return -ENODEV or other reason on error, 0 on success */
7766 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7770 trans_support = readl(&(h->cfgtable->TransportSupport));
7771 if (!(trans_support & SIMPLE_MODE))
7774 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7776 /* Update the field, and then ring the doorbell */
7777 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7778 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7779 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7780 if (hpsa_wait_for_mode_change_ack(h))
7782 print_cfg_table(&h->pdev->dev, h->cfgtable);
7783 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7785 h->transMethod = CFGTBL_Trans_Simple;
7788 dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7792 /* free items allocated or mapped by hpsa_pci_init */
7793 static void hpsa_free_pci_init(struct ctlr_info *h)
7795 hpsa_free_cfgtables(h); /* pci_init 4 */
7796 iounmap(h->vaddr); /* pci_init 3 */
7798 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
7800 * call pci_disable_device before pci_release_regions per
7801 * Documentation/PCI/pci.rst
7803 pci_disable_device(h->pdev); /* pci_init 1 */
7804 pci_release_regions(h->pdev); /* pci_init 2 */
7807 /* several items must be freed later */
7808 static int hpsa_pci_init(struct ctlr_info *h)
7810 int prod_index, err;
7813 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7816 h->product_name = products[prod_index].product_name;
7817 h->access = *(products[prod_index].access);
7818 h->legacy_board = legacy_board;
7819 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7820 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7822 err = pci_enable_device(h->pdev);
7824 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7825 pci_disable_device(h->pdev);
7829 err = pci_request_regions(h->pdev, HPSA);
7831 dev_err(&h->pdev->dev,
7832 "failed to obtain PCI resources\n");
7833 pci_disable_device(h->pdev);
7837 pci_set_master(h->pdev);
7839 err = hpsa_interrupt_mode(h);
7843 /* setup mapping between CPU and reply queue */
7844 hpsa_setup_reply_map(h);
7846 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7848 goto clean2; /* intmode+region, pci */
7849 h->vaddr = remap_pci_mem(h->paddr, 0x250);
7851 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7853 goto clean2; /* intmode+region, pci */
7855 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7857 goto clean3; /* vaddr, intmode+region, pci */
7858 err = hpsa_find_cfgtables(h);
7860 goto clean3; /* vaddr, intmode+region, pci */
7861 hpsa_find_board_params(h);
7863 if (!hpsa_CISS_signature_present(h)) {
7865 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7867 hpsa_set_driver_support_bits(h);
7868 hpsa_p600_dma_prefetch_quirk(h);
7869 err = hpsa_enter_simple_mode(h);
7871 goto clean4; /* cfgtables, vaddr, intmode+region, pci */
7874 clean4: /* cfgtables, vaddr, intmode+region, pci */
7875 hpsa_free_cfgtables(h);
7876 clean3: /* vaddr, intmode+region, pci */
7879 clean2: /* intmode+region, pci */
7880 hpsa_disable_interrupt_mode(h);
7883 * call pci_disable_device before pci_release_regions per
7884 * Documentation/PCI/pci.rst
7886 pci_disable_device(h->pdev);
7887 pci_release_regions(h->pdev);
7891 static void hpsa_hba_inquiry(struct ctlr_info *h)
7895 #define HBA_INQUIRY_BYTE_COUNT 64
7896 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7897 if (!h->hba_inquiry_data)
7899 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7900 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7902 kfree(h->hba_inquiry_data);
7903 h->hba_inquiry_data = NULL;
7907 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7910 void __iomem *vaddr;
7915 /* kdump kernel is loading, we don't know in which state is
7916 * the pci interface. The dev->enable_cnt is equal zero
7917 * so we call enable+disable, wait a while and switch it on.
7919 rc = pci_enable_device(pdev);
7921 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7924 pci_disable_device(pdev);
7925 msleep(260); /* a randomly chosen number */
7926 rc = pci_enable_device(pdev);
7928 dev_warn(&pdev->dev, "failed to enable device.\n");
7932 pci_set_master(pdev);
7934 vaddr = pci_ioremap_bar(pdev, 0);
7935 if (vaddr == NULL) {
7939 writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7942 /* Reset the controller with a PCI power-cycle or via doorbell */
7943 rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7945 /* -ENOTSUPP here means we cannot reset the controller
7946 * but it's already (and still) up and running in
7947 * "performant mode". Or, it might be 640x, which can't reset
7948 * due to concerns about shared bbwc between 6402/6404 pair.
7953 /* Now try to get the controller to respond to a no-op */
7954 dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7955 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7956 if (hpsa_noop(pdev) == 0)
7959 dev_warn(&pdev->dev, "no-op failed%s\n",
7960 (i < 11 ? "; re-trying" : ""));
7965 pci_disable_device(pdev);
7969 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7971 kfree(h->cmd_pool_bits);
7972 h->cmd_pool_bits = NULL;
7974 dma_free_coherent(&h->pdev->dev,
7975 h->nr_cmds * sizeof(struct CommandList),
7977 h->cmd_pool_dhandle);
7979 h->cmd_pool_dhandle = 0;
7981 if (h->errinfo_pool) {
7982 dma_free_coherent(&h->pdev->dev,
7983 h->nr_cmds * sizeof(struct ErrorInfo),
7985 h->errinfo_pool_dhandle);
7986 h->errinfo_pool = NULL;
7987 h->errinfo_pool_dhandle = 0;
7991 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7993 h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
7994 sizeof(unsigned long),
7996 h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
7997 h->nr_cmds * sizeof(*h->cmd_pool),
7998 &h->cmd_pool_dhandle, GFP_KERNEL);
7999 h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8000 h->nr_cmds * sizeof(*h->errinfo_pool),
8001 &h->errinfo_pool_dhandle, GFP_KERNEL);
8002 if ((h->cmd_pool_bits == NULL)
8003 || (h->cmd_pool == NULL)
8004 || (h->errinfo_pool == NULL)) {
8005 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8008 hpsa_preinitialize_commands(h);
8011 hpsa_free_cmd_pool(h);
8015 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8016 static void hpsa_free_irqs(struct ctlr_info *h)
8021 if (hpsa_simple_mode)
8022 irq_vector = h->intr_mode;
8024 if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8025 /* Single reply queue, only one irq to free */
8026 free_irq(pci_irq_vector(h->pdev, irq_vector),
8027 &h->q[h->intr_mode]);
8028 h->q[h->intr_mode] = 0;
8032 for (i = 0; i < h->msix_vectors; i++) {
8033 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8036 for (; i < MAX_REPLY_QUEUES; i++)
8040 /* returns 0 on success; cleans up and returns -Enn on error */
8041 static int hpsa_request_irqs(struct ctlr_info *h,
8042 irqreturn_t (*msixhandler)(int, void *),
8043 irqreturn_t (*intxhandler)(int, void *))
8048 if (hpsa_simple_mode)
8049 irq_vector = h->intr_mode;
8052 * initialize h->q[x] = x so that interrupt handlers know which
8055 for (i = 0; i < MAX_REPLY_QUEUES; i++)
8058 if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8059 /* If performant mode and MSI-X, use multiple reply queues */
8060 for (i = 0; i < h->msix_vectors; i++) {
8061 sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8062 rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8068 dev_err(&h->pdev->dev,
8069 "failed to get irq %d for %s\n",
8070 pci_irq_vector(h->pdev, i), h->devname);
8071 for (j = 0; j < i; j++) {
8072 free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8075 for (; j < MAX_REPLY_QUEUES; j++)
8081 /* Use single reply pool */
8082 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8083 sprintf(h->intrname[0], "%s-msi%s", h->devname,
8084 h->msix_vectors ? "x" : "");
8085 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8088 &h->q[h->intr_mode]);
8090 sprintf(h->intrname[h->intr_mode],
8091 "%s-intx", h->devname);
8092 rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8093 intxhandler, IRQF_SHARED,
8095 &h->q[h->intr_mode]);
8099 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8100 pci_irq_vector(h->pdev, irq_vector), h->devname);
8107 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8110 hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8112 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8113 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8115 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8119 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8120 rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8122 dev_warn(&h->pdev->dev, "Board failed to become ready "
8123 "after soft reset.\n");
8130 static void hpsa_free_reply_queues(struct ctlr_info *h)
8134 for (i = 0; i < h->nreply_queues; i++) {
8135 if (!h->reply_queue[i].head)
8137 dma_free_coherent(&h->pdev->dev,
8138 h->reply_queue_size,
8139 h->reply_queue[i].head,
8140 h->reply_queue[i].busaddr);
8141 h->reply_queue[i].head = NULL;
8142 h->reply_queue[i].busaddr = 0;
8144 h->reply_queue_size = 0;
8147 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8149 hpsa_free_performant_mode(h); /* init_one 7 */
8150 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
8151 hpsa_free_cmd_pool(h); /* init_one 5 */
8152 hpsa_free_irqs(h); /* init_one 4 */
8153 scsi_host_put(h->scsi_host); /* init_one 3 */
8154 h->scsi_host = NULL; /* init_one 3 */
8155 hpsa_free_pci_init(h); /* init_one 2_5 */
8156 free_percpu(h->lockup_detected); /* init_one 2 */
8157 h->lockup_detected = NULL; /* init_one 2 */
8158 if (h->resubmit_wq) {
8159 destroy_workqueue(h->resubmit_wq); /* init_one 1 */
8160 h->resubmit_wq = NULL;
8162 if (h->rescan_ctlr_wq) {
8163 destroy_workqueue(h->rescan_ctlr_wq);
8164 h->rescan_ctlr_wq = NULL;
8166 if (h->monitor_ctlr_wq) {
8167 destroy_workqueue(h->monitor_ctlr_wq);
8168 h->monitor_ctlr_wq = NULL;
8171 kfree(h); /* init_one 1 */
8174 /* Called when controller lockup detected. */
8175 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8178 struct CommandList *c;
8181 flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8182 for (i = 0; i < h->nr_cmds; i++) {
8183 c = h->cmd_pool + i;
8184 refcount = atomic_inc_return(&c->refcount);
8186 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8188 atomic_dec(&h->commands_outstanding);
8193 dev_warn(&h->pdev->dev,
8194 "failed %d commands in fail_all\n", failcount);
8197 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8201 for_each_online_cpu(cpu) {
8202 u32 *lockup_detected;
8203 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8204 *lockup_detected = value;
8206 wmb(); /* be sure the per-cpu variables are out to memory */
8209 static void controller_lockup_detected(struct ctlr_info *h)
8211 unsigned long flags;
8212 u32 lockup_detected;
8214 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8215 spin_lock_irqsave(&h->lock, flags);
8216 lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8217 if (!lockup_detected) {
8218 /* no heartbeat, but controller gave us a zero. */
8219 dev_warn(&h->pdev->dev,
8220 "lockup detected after %d but scratchpad register is zero\n",
8221 h->heartbeat_sample_interval / HZ);
8222 lockup_detected = 0xffffffff;
8224 set_lockup_detected_for_all_cpus(h, lockup_detected);
8225 spin_unlock_irqrestore(&h->lock, flags);
8226 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8227 lockup_detected, h->heartbeat_sample_interval / HZ);
8228 if (lockup_detected == 0xffff0000) {
8229 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8230 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8232 pci_disable_device(h->pdev);
8233 fail_all_outstanding_cmds(h);
8236 static int detect_controller_lockup(struct ctlr_info *h)
8240 unsigned long flags;
8242 now = get_jiffies_64();
8243 /* If we've received an interrupt recently, we're ok. */
8244 if (time_after64(h->last_intr_timestamp +
8245 (h->heartbeat_sample_interval), now))
8249 * If we've already checked the heartbeat recently, we're ok.
8250 * This could happen if someone sends us a signal. We
8251 * otherwise don't care about signals in this thread.
8253 if (time_after64(h->last_heartbeat_timestamp +
8254 (h->heartbeat_sample_interval), now))
8257 /* If heartbeat has not changed since we last looked, we're not ok. */
8258 spin_lock_irqsave(&h->lock, flags);
8259 heartbeat = readl(&h->cfgtable->HeartBeat);
8260 spin_unlock_irqrestore(&h->lock, flags);
8261 if (h->last_heartbeat == heartbeat) {
8262 controller_lockup_detected(h);
8267 h->last_heartbeat = heartbeat;
8268 h->last_heartbeat_timestamp = now;
8273 * Set ioaccel status for all ioaccel volumes.
8275 * Called from monitor controller worker (hpsa_event_monitor_worker)
8277 * A Volume (or Volumes that comprise an Array set may be undergoing a
8278 * transformation, so we will be turning off ioaccel for all volumes that
8279 * make up the Array.
8281 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8287 struct hpsa_scsi_dev_t *device;
8292 buf = kmalloc(64, GFP_KERNEL);
8297 * Run through current device list used during I/O requests.
8299 for (i = 0; i < h->ndevices; i++) {
8304 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8305 HPSA_VPD_LV_IOACCEL_STATUS))
8310 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8311 VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8316 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8317 device->offload_config =
8318 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8319 if (device->offload_config)
8320 device->offload_to_be_enabled =
8321 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8324 * Immediately turn off ioaccel for any volume the
8325 * controller tells us to. Some of the reasons could be:
8326 * transformation - change to the LVs of an Array.
8327 * degraded volume - component failure
8329 * If ioaccel is to be re-enabled, re-enable later during the
8330 * scan operation so the driver can get a fresh raidmap
8331 * before turning ioaccel back on.
8334 if (!device->offload_to_be_enabled)
8335 device->offload_enabled = 0;
8341 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8345 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8348 /* Ask the controller to clear the events we're handling. */
8349 if ((h->transMethod & (CFGTBL_Trans_io_accel1
8350 | CFGTBL_Trans_io_accel2)) &&
8351 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8352 h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8354 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8355 event_type = "state change";
8356 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8357 event_type = "configuration change";
8358 /* Stop sending new RAID offload reqs via the IO accelerator */
8359 scsi_block_requests(h->scsi_host);
8360 hpsa_set_ioaccel_status(h);
8361 hpsa_drain_accel_commands(h);
8362 /* Set 'accelerator path config change' bit */
8363 dev_warn(&h->pdev->dev,
8364 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8365 h->events, event_type);
8366 writel(h->events, &(h->cfgtable->clear_event_notify));
8367 /* Set the "clear event notify field update" bit 6 */
8368 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8369 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8370 hpsa_wait_for_clear_event_notify_ack(h);
8371 scsi_unblock_requests(h->scsi_host);
8373 /* Acknowledge controller notification events. */
8374 writel(h->events, &(h->cfgtable->clear_event_notify));
8375 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8376 hpsa_wait_for_clear_event_notify_ack(h);
8381 /* Check a register on the controller to see if there are configuration
8382 * changes (added/changed/removed logical drives, etc.) which mean that
8383 * we should rescan the controller for devices.
8384 * Also check flag for driver-initiated rescan.
8386 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8388 if (h->drv_req_rescan) {
8389 h->drv_req_rescan = 0;
8393 if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8396 h->events = readl(&(h->cfgtable->event_notify));
8397 return h->events & RESCAN_REQUIRED_EVENT_BITS;
8401 * Check if any of the offline devices have become ready
8403 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8405 unsigned long flags;
8406 struct offline_device_entry *d;
8407 struct list_head *this, *tmp;
8409 spin_lock_irqsave(&h->offline_device_lock, flags);
8410 list_for_each_safe(this, tmp, &h->offline_device_list) {
8411 d = list_entry(this, struct offline_device_entry,
8413 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8414 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8415 spin_lock_irqsave(&h->offline_device_lock, flags);
8416 list_del(&d->offline_list);
8417 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8420 spin_lock_irqsave(&h->offline_device_lock, flags);
8422 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8426 static int hpsa_luns_changed(struct ctlr_info *h)
8428 int rc = 1; /* assume there are changes */
8429 struct ReportLUNdata *logdev = NULL;
8431 /* if we can't find out if lun data has changed,
8432 * assume that it has.
8435 if (!h->lastlogicals)
8438 logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8442 if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8443 dev_warn(&h->pdev->dev,
8444 "report luns failed, can't track lun changes.\n");
8447 if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8448 dev_info(&h->pdev->dev,
8449 "Lun changes detected.\n");
8450 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8453 rc = 0; /* no changes detected. */
8459 static void hpsa_perform_rescan(struct ctlr_info *h)
8461 struct Scsi_Host *sh = NULL;
8462 unsigned long flags;
8465 * Do the scan after the reset
8467 spin_lock_irqsave(&h->reset_lock, flags);
8468 if (h->reset_in_progress) {
8469 h->drv_req_rescan = 1;
8470 spin_unlock_irqrestore(&h->reset_lock, flags);
8473 spin_unlock_irqrestore(&h->reset_lock, flags);
8475 sh = scsi_host_get(h->scsi_host);
8477 hpsa_scan_start(sh);
8479 h->drv_req_rescan = 0;
8484 * watch for controller events
8486 static void hpsa_event_monitor_worker(struct work_struct *work)
8488 struct ctlr_info *h = container_of(to_delayed_work(work),
8489 struct ctlr_info, event_monitor_work);
8490 unsigned long flags;
8492 spin_lock_irqsave(&h->lock, flags);
8493 if (h->remove_in_progress) {
8494 spin_unlock_irqrestore(&h->lock, flags);
8497 spin_unlock_irqrestore(&h->lock, flags);
8499 if (hpsa_ctlr_needs_rescan(h)) {
8500 hpsa_ack_ctlr_events(h);
8501 hpsa_perform_rescan(h);
8504 spin_lock_irqsave(&h->lock, flags);
8505 if (!h->remove_in_progress)
8506 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8507 HPSA_EVENT_MONITOR_INTERVAL);
8508 spin_unlock_irqrestore(&h->lock, flags);
8511 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8513 unsigned long flags;
8514 struct ctlr_info *h = container_of(to_delayed_work(work),
8515 struct ctlr_info, rescan_ctlr_work);
8517 spin_lock_irqsave(&h->lock, flags);
8518 if (h->remove_in_progress) {
8519 spin_unlock_irqrestore(&h->lock, flags);
8522 spin_unlock_irqrestore(&h->lock, flags);
8524 if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8525 hpsa_perform_rescan(h);
8526 } else if (h->discovery_polling) {
8527 if (hpsa_luns_changed(h)) {
8528 dev_info(&h->pdev->dev,
8529 "driver discovery polling rescan.\n");
8530 hpsa_perform_rescan(h);
8533 spin_lock_irqsave(&h->lock, flags);
8534 if (!h->remove_in_progress)
8535 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8536 h->heartbeat_sample_interval);
8537 spin_unlock_irqrestore(&h->lock, flags);
8540 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8542 unsigned long flags;
8543 struct ctlr_info *h = container_of(to_delayed_work(work),
8544 struct ctlr_info, monitor_ctlr_work);
8546 detect_controller_lockup(h);
8547 if (lockup_detected(h))
8550 spin_lock_irqsave(&h->lock, flags);
8551 if (!h->remove_in_progress)
8552 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8553 h->heartbeat_sample_interval);
8554 spin_unlock_irqrestore(&h->lock, flags);
8557 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8560 struct workqueue_struct *wq = NULL;
8562 wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8564 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8569 static void hpda_free_ctlr_info(struct ctlr_info *h)
8571 kfree(h->reply_map);
8575 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8577 struct ctlr_info *h;
8579 h = kzalloc(sizeof(*h), GFP_KERNEL);
8583 h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8584 if (!h->reply_map) {
8591 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8594 struct ctlr_info *h;
8595 int try_soft_reset = 0;
8596 unsigned long flags;
8599 if (number_of_controllers == 0)
8600 printk(KERN_INFO DRIVER_NAME "\n");
8602 rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8604 dev_warn(&pdev->dev, "Board ID not found\n");
8608 rc = hpsa_init_reset_devices(pdev, board_id);
8610 if (rc != -ENOTSUPP)
8612 /* If the reset fails in a particular way (it has no way to do
8613 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8614 * a soft reset once we get the controller configured up to the
8615 * point that it can accept a command.
8621 reinit_after_soft_reset:
8623 /* Command structures must be aligned on a 32-byte boundary because
8624 * the 5 lower bits of the address are used by the hardware. and by
8625 * the driver. See comments in hpsa.h for more info.
8627 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8628 h = hpda_alloc_ctlr_info();
8630 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8636 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8637 INIT_LIST_HEAD(&h->offline_device_list);
8638 spin_lock_init(&h->lock);
8639 spin_lock_init(&h->offline_device_lock);
8640 spin_lock_init(&h->scan_lock);
8641 spin_lock_init(&h->reset_lock);
8642 atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8644 /* Allocate and clear per-cpu variable lockup_detected */
8645 h->lockup_detected = alloc_percpu(u32);
8646 if (!h->lockup_detected) {
8647 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8649 goto clean1; /* aer/h */
8651 set_lockup_detected_for_all_cpus(h, 0);
8653 rc = hpsa_pci_init(h);
8655 goto clean2; /* lu, aer/h */
8657 /* relies on h-> settings made by hpsa_pci_init, including
8658 * interrupt_mode h->intr */
8659 rc = hpsa_scsi_host_alloc(h);
8661 goto clean2_5; /* pci, lu, aer/h */
8663 sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8664 h->ctlr = number_of_controllers;
8665 number_of_controllers++;
8667 /* configure PCI DMA stuff */
8668 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8672 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8676 dev_err(&pdev->dev, "no suitable DMA available\n");
8677 goto clean3; /* shost, pci, lu, aer/h */
8681 /* make sure the board interrupts are off */
8682 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8684 rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8686 goto clean3; /* shost, pci, lu, aer/h */
8687 rc = hpsa_alloc_cmd_pool(h);
8689 goto clean4; /* irq, shost, pci, lu, aer/h */
8690 rc = hpsa_alloc_sg_chain_blocks(h);
8692 goto clean5; /* cmd, irq, shost, pci, lu, aer/h */
8693 init_waitqueue_head(&h->scan_wait_queue);
8694 init_waitqueue_head(&h->event_sync_wait_queue);
8695 mutex_init(&h->reset_mutex);
8696 h->scan_finished = 1; /* no scan currently in progress */
8697 h->scan_waiting = 0;
8699 pci_set_drvdata(pdev, h);
8702 spin_lock_init(&h->devlock);
8703 rc = hpsa_put_ctlr_into_performant_mode(h);
8705 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8707 /* create the resubmit workqueue */
8708 h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8709 if (!h->rescan_ctlr_wq) {
8714 h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8715 if (!h->resubmit_wq) {
8717 goto clean7; /* aer/h */
8720 h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8721 if (!h->monitor_ctlr_wq) {
8727 * At this point, the controller is ready to take commands.
8728 * Now, if reset_devices and the hard reset didn't work, try
8729 * the soft reset and see if that works.
8731 if (try_soft_reset) {
8733 /* This is kind of gross. We may or may not get a completion
8734 * from the soft reset command, and if we do, then the value
8735 * from the fifo may or may not be valid. So, we wait 10 secs
8736 * after the reset throwing away any completions we get during
8737 * that time. Unregister the interrupt handler and register
8738 * fake ones to scoop up any residual completions.
8740 spin_lock_irqsave(&h->lock, flags);
8741 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8742 spin_unlock_irqrestore(&h->lock, flags);
8744 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8745 hpsa_intx_discard_completions);
8747 dev_warn(&h->pdev->dev,
8748 "Failed to request_irq after soft reset.\n");
8750 * cannot goto clean7 or free_irqs will be called
8751 * again. Instead, do its work
8753 hpsa_free_performant_mode(h); /* clean7 */
8754 hpsa_free_sg_chain_blocks(h); /* clean6 */
8755 hpsa_free_cmd_pool(h); /* clean5 */
8757 * skip hpsa_free_irqs(h) clean4 since that
8758 * was just called before request_irqs failed
8763 rc = hpsa_kdump_soft_reset(h);
8765 /* Neither hard nor soft reset worked, we're hosed. */
8768 dev_info(&h->pdev->dev, "Board READY.\n");
8769 dev_info(&h->pdev->dev,
8770 "Waiting for stale completions to drain.\n");
8771 h->access.set_intr_mask(h, HPSA_INTR_ON);
8773 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8775 rc = controller_reset_failed(h->cfgtable);
8777 dev_info(&h->pdev->dev,
8778 "Soft reset appears to have failed.\n");
8780 /* since the controller's reset, we have to go back and re-init
8781 * everything. Easiest to just forget what we've done and do it
8784 hpsa_undo_allocations_after_kdump_soft_reset(h);
8787 /* don't goto clean, we already unallocated */
8790 goto reinit_after_soft_reset;
8793 /* Enable Accelerated IO path at driver layer */
8794 h->acciopath_status = 1;
8795 /* Disable discovery polling.*/
8796 h->discovery_polling = 0;
8799 /* Turn the interrupts on so we can service requests */
8800 h->access.set_intr_mask(h, HPSA_INTR_ON);
8802 hpsa_hba_inquiry(h);
8804 h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8805 if (!h->lastlogicals)
8806 dev_info(&h->pdev->dev,
8807 "Can't track change to report lun data\n");
8809 /* hook into SCSI subsystem */
8810 rc = hpsa_scsi_add_host(h);
8812 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8814 /* Monitor the controller for firmware lockups */
8815 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8816 INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8817 schedule_delayed_work(&h->monitor_ctlr_work,
8818 h->heartbeat_sample_interval);
8819 INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8820 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8821 h->heartbeat_sample_interval);
8822 INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8823 schedule_delayed_work(&h->event_monitor_work,
8824 HPSA_EVENT_MONITOR_INTERVAL);
8827 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8828 hpsa_free_performant_mode(h);
8829 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8830 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8831 hpsa_free_sg_chain_blocks(h);
8832 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8833 hpsa_free_cmd_pool(h);
8834 clean4: /* irq, shost, pci, lu, aer/h */
8836 clean3: /* shost, pci, lu, aer/h */
8837 scsi_host_put(h->scsi_host);
8838 h->scsi_host = NULL;
8839 clean2_5: /* pci, lu, aer/h */
8840 hpsa_free_pci_init(h);
8841 clean2: /* lu, aer/h */
8842 if (h->lockup_detected) {
8843 free_percpu(h->lockup_detected);
8844 h->lockup_detected = NULL;
8846 clean1: /* wq/aer/h */
8847 if (h->resubmit_wq) {
8848 destroy_workqueue(h->resubmit_wq);
8849 h->resubmit_wq = NULL;
8851 if (h->rescan_ctlr_wq) {
8852 destroy_workqueue(h->rescan_ctlr_wq);
8853 h->rescan_ctlr_wq = NULL;
8855 if (h->monitor_ctlr_wq) {
8856 destroy_workqueue(h->monitor_ctlr_wq);
8857 h->monitor_ctlr_wq = NULL;
8863 static void hpsa_flush_cache(struct ctlr_info *h)
8866 struct CommandList *c;
8869 if (unlikely(lockup_detected(h)))
8871 flush_buf = kzalloc(4, GFP_KERNEL);
8877 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8878 RAID_CTLR_LUNID, TYPE_CMD)) {
8881 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8885 if (c->err_info->CommandStatus != 0)
8887 dev_warn(&h->pdev->dev,
8888 "error flushing cache on controller\n");
8893 /* Make controller gather fresh report lun data each time we
8894 * send down a report luns request
8896 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8899 struct CommandList *c;
8902 /* Don't bother trying to set diag options if locked up */
8903 if (unlikely(h->lockup_detected))
8906 options = kzalloc(sizeof(*options), GFP_KERNEL);
8912 /* first, get the current diag options settings */
8913 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8914 RAID_CTLR_LUNID, TYPE_CMD))
8917 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8919 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8922 /* Now, set the bit for disabling the RLD caching */
8923 *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8925 if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8926 RAID_CTLR_LUNID, TYPE_CMD))
8929 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8931 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8934 /* Now verify that it got set: */
8935 if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8936 RAID_CTLR_LUNID, TYPE_CMD))
8939 rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8941 if ((rc != 0) || (c->err_info->CommandStatus != 0))
8944 if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8948 dev_err(&h->pdev->dev,
8949 "Error: failed to disable report lun data caching.\n");
8955 static void __hpsa_shutdown(struct pci_dev *pdev)
8957 struct ctlr_info *h;
8959 h = pci_get_drvdata(pdev);
8960 /* Turn board interrupts off and send the flush cache command
8961 * sendcmd will turn off interrupt, and send the flush...
8962 * To write all data in the battery backed cache to disks
8964 hpsa_flush_cache(h);
8965 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8966 hpsa_free_irqs(h); /* init_one 4 */
8967 hpsa_disable_interrupt_mode(h); /* pci_init 2 */
8970 static void hpsa_shutdown(struct pci_dev *pdev)
8972 __hpsa_shutdown(pdev);
8973 pci_disable_device(pdev);
8976 static void hpsa_free_device_info(struct ctlr_info *h)
8980 for (i = 0; i < h->ndevices; i++) {
8986 static void hpsa_remove_one(struct pci_dev *pdev)
8988 struct ctlr_info *h;
8989 unsigned long flags;
8991 if (pci_get_drvdata(pdev) == NULL) {
8992 dev_err(&pdev->dev, "unable to remove device\n");
8995 h = pci_get_drvdata(pdev);
8997 /* Get rid of any controller monitoring work items */
8998 spin_lock_irqsave(&h->lock, flags);
8999 h->remove_in_progress = 1;
9000 spin_unlock_irqrestore(&h->lock, flags);
9001 cancel_delayed_work_sync(&h->monitor_ctlr_work);
9002 cancel_delayed_work_sync(&h->rescan_ctlr_work);
9003 cancel_delayed_work_sync(&h->event_monitor_work);
9004 destroy_workqueue(h->rescan_ctlr_wq);
9005 destroy_workqueue(h->resubmit_wq);
9006 destroy_workqueue(h->monitor_ctlr_wq);
9008 hpsa_delete_sas_host(h);
9011 * Call before disabling interrupts.
9012 * scsi_remove_host can trigger I/O operations especially
9013 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9014 * operations which cannot complete and will hang the system.
9017 scsi_remove_host(h->scsi_host); /* init_one 8 */
9018 /* includes hpsa_free_irqs - init_one 4 */
9019 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9020 __hpsa_shutdown(pdev);
9022 hpsa_free_device_info(h); /* scan */
9024 kfree(h->hba_inquiry_data); /* init_one 10 */
9025 h->hba_inquiry_data = NULL; /* init_one 10 */
9026 hpsa_free_ioaccel2_sg_chain_blocks(h);
9027 hpsa_free_performant_mode(h); /* init_one 7 */
9028 hpsa_free_sg_chain_blocks(h); /* init_one 6 */
9029 hpsa_free_cmd_pool(h); /* init_one 5 */
9030 kfree(h->lastlogicals);
9032 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9034 scsi_host_put(h->scsi_host); /* init_one 3 */
9035 h->scsi_host = NULL; /* init_one 3 */
9037 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9038 hpsa_free_pci_init(h); /* init_one 2.5 */
9040 free_percpu(h->lockup_detected); /* init_one 2 */
9041 h->lockup_detected = NULL; /* init_one 2 */
9042 /* (void) pci_disable_pcie_error_reporting(pdev); */ /* init_one 1 */
9044 hpda_free_ctlr_info(h); /* init_one 1 */
9047 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9048 __attribute__((unused)) pm_message_t state)
9053 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9058 static struct pci_driver hpsa_pci_driver = {
9060 .probe = hpsa_init_one,
9061 .remove = hpsa_remove_one,
9062 .id_table = hpsa_pci_device_id, /* id_table */
9063 .shutdown = hpsa_shutdown,
9064 .suspend = hpsa_suspend,
9065 .resume = hpsa_resume,
9068 /* Fill in bucket_map[], given nsgs (the max number of
9069 * scatter gather elements supported) and bucket[],
9070 * which is an array of 8 integers. The bucket[] array
9071 * contains 8 different DMA transfer sizes (in 16
9072 * byte increments) which the controller uses to fetch
9073 * commands. This function fills in bucket_map[], which
9074 * maps a given number of scatter gather elements to one of
9075 * the 8 DMA transfer sizes. The point of it is to allow the
9076 * controller to only do as much DMA as needed to fetch the
9077 * command, with the DMA transfer size encoded in the lower
9078 * bits of the command address.
9080 static void calc_bucket_map(int bucket[], int num_buckets,
9081 int nsgs, int min_blocks, u32 *bucket_map)
9085 /* Note, bucket_map must have nsgs+1 entries. */
9086 for (i = 0; i <= nsgs; i++) {
9087 /* Compute size of a command with i SG entries */
9088 size = i + min_blocks;
9089 b = num_buckets; /* Assume the biggest bucket */
9090 /* Find the bucket that is just big enough */
9091 for (j = 0; j < num_buckets; j++) {
9092 if (bucket[j] >= size) {
9097 /* for a command with i SG entries, use bucket b. */
9103 * return -ENODEV on err, 0 on success (or no action)
9104 * allocates numerous items that must be freed later
9106 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9109 unsigned long register_value;
9110 unsigned long transMethod = CFGTBL_Trans_Performant |
9111 (trans_support & CFGTBL_Trans_use_short_tags) |
9112 CFGTBL_Trans_enable_directed_msix |
9113 (trans_support & (CFGTBL_Trans_io_accel1 |
9114 CFGTBL_Trans_io_accel2));
9115 struct access_method access = SA5_performant_access;
9117 /* This is a bit complicated. There are 8 registers on
9118 * the controller which we write to to tell it 8 different
9119 * sizes of commands which there may be. It's a way of
9120 * reducing the DMA done to fetch each command. Encoded into
9121 * each command's tag are 3 bits which communicate to the controller
9122 * which of the eight sizes that command fits within. The size of
9123 * each command depends on how many scatter gather entries there are.
9124 * Each SG entry requires 16 bytes. The eight registers are programmed
9125 * with the number of 16-byte blocks a command of that size requires.
9126 * The smallest command possible requires 5 such 16 byte blocks.
9127 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9128 * blocks. Note, this only extends to the SG entries contained
9129 * within the command block, and does not extend to chained blocks
9130 * of SG elements. bft[] contains the eight values we write to
9131 * the registers. They are not evenly distributed, but have more
9132 * sizes for small commands, and fewer sizes for larger commands.
9134 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9135 #define MIN_IOACCEL2_BFT_ENTRY 5
9136 #define HPSA_IOACCEL2_HEADER_SZ 4
9137 int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9138 13, 14, 15, 16, 17, 18, 19,
9139 HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9140 BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9141 BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9142 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9143 16 * MIN_IOACCEL2_BFT_ENTRY);
9144 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9145 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9146 /* 5 = 1 s/g entry or 4k
9147 * 6 = 2 s/g entry or 8k
9148 * 8 = 4 s/g entry or 16k
9149 * 10 = 6 s/g entry or 24k
9152 /* If the controller supports either ioaccel method then
9153 * we can also use the RAID stack submit path that does not
9154 * perform the superfluous readl() after each command submission.
9156 if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9157 access = SA5_performant_access_no_read;
9159 /* Controller spec: zero out this buffer. */
9160 for (i = 0; i < h->nreply_queues; i++)
9161 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9163 bft[7] = SG_ENTRIES_IN_CMD + 4;
9164 calc_bucket_map(bft, ARRAY_SIZE(bft),
9165 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9166 for (i = 0; i < 8; i++)
9167 writel(bft[i], &h->transtable->BlockFetch[i]);
9169 /* size of controller ring buffer */
9170 writel(h->max_commands, &h->transtable->RepQSize);
9171 writel(h->nreply_queues, &h->transtable->RepQCount);
9172 writel(0, &h->transtable->RepQCtrAddrLow32);
9173 writel(0, &h->transtable->RepQCtrAddrHigh32);
9175 for (i = 0; i < h->nreply_queues; i++) {
9176 writel(0, &h->transtable->RepQAddr[i].upper);
9177 writel(h->reply_queue[i].busaddr,
9178 &h->transtable->RepQAddr[i].lower);
9181 writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9182 writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9184 * enable outbound interrupt coalescing in accelerator mode;
9186 if (trans_support & CFGTBL_Trans_io_accel1) {
9187 access = SA5_ioaccel_mode1_access;
9188 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9189 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9191 if (trans_support & CFGTBL_Trans_io_accel2)
9192 access = SA5_ioaccel_mode2_access;
9193 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9194 if (hpsa_wait_for_mode_change_ack(h)) {
9195 dev_err(&h->pdev->dev,
9196 "performant mode problem - doorbell timeout\n");
9199 register_value = readl(&(h->cfgtable->TransportActive));
9200 if (!(register_value & CFGTBL_Trans_Performant)) {
9201 dev_err(&h->pdev->dev,
9202 "performant mode problem - transport not active\n");
9205 /* Change the access methods to the performant access methods */
9207 h->transMethod = transMethod;
9209 if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9210 (trans_support & CFGTBL_Trans_io_accel2)))
9213 if (trans_support & CFGTBL_Trans_io_accel1) {
9214 /* Set up I/O accelerator mode */
9215 for (i = 0; i < h->nreply_queues; i++) {
9216 writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9217 h->reply_queue[i].current_entry =
9218 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9220 bft[7] = h->ioaccel_maxsg + 8;
9221 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9222 h->ioaccel1_blockFetchTable);
9224 /* initialize all reply queue entries to unused */
9225 for (i = 0; i < h->nreply_queues; i++)
9226 memset(h->reply_queue[i].head,
9227 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9228 h->reply_queue_size);
9230 /* set all the constant fields in the accelerator command
9231 * frames once at init time to save CPU cycles later.
9233 for (i = 0; i < h->nr_cmds; i++) {
9234 struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9236 cp->function = IOACCEL1_FUNCTION_SCSIIO;
9237 cp->err_info = (u32) (h->errinfo_pool_dhandle +
9238 (i * sizeof(struct ErrorInfo)));
9239 cp->err_info_len = sizeof(struct ErrorInfo);
9240 cp->sgl_offset = IOACCEL1_SGLOFFSET;
9241 cp->host_context_flags =
9242 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9243 cp->timeout_sec = 0;
9246 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9248 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9249 (i * sizeof(struct io_accel1_cmd)));
9251 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9252 u64 cfg_offset, cfg_base_addr_index;
9253 u32 bft2_offset, cfg_base_addr;
9256 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9257 &cfg_base_addr_index, &cfg_offset);
9258 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9259 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9260 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9261 4, h->ioaccel2_blockFetchTable);
9262 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9263 BUILD_BUG_ON(offsetof(struct CfgTable,
9264 io_accel_request_size_offset) != 0xb8);
9265 h->ioaccel2_bft2_regs =
9266 remap_pci_mem(pci_resource_start(h->pdev,
9267 cfg_base_addr_index) +
9268 cfg_offset + bft2_offset,
9270 sizeof(*h->ioaccel2_bft2_regs));
9271 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9272 writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9274 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9275 if (hpsa_wait_for_mode_change_ack(h)) {
9276 dev_err(&h->pdev->dev,
9277 "performant mode problem - enabling ioaccel mode\n");
9283 /* Free ioaccel1 mode command blocks and block fetch table */
9284 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9286 if (h->ioaccel_cmd_pool) {
9287 pci_free_consistent(h->pdev,
9288 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9289 h->ioaccel_cmd_pool,
9290 h->ioaccel_cmd_pool_dhandle);
9291 h->ioaccel_cmd_pool = NULL;
9292 h->ioaccel_cmd_pool_dhandle = 0;
9294 kfree(h->ioaccel1_blockFetchTable);
9295 h->ioaccel1_blockFetchTable = NULL;
9298 /* Allocate ioaccel1 mode command blocks and block fetch table */
9299 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9302 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9303 if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9304 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9306 /* Command structures must be aligned on a 128-byte boundary
9307 * because the 7 lower bits of the address are used by the
9310 BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9311 IOACCEL1_COMMANDLIST_ALIGNMENT);
9312 h->ioaccel_cmd_pool =
9313 dma_alloc_coherent(&h->pdev->dev,
9314 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9315 &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9317 h->ioaccel1_blockFetchTable =
9318 kmalloc(((h->ioaccel_maxsg + 1) *
9319 sizeof(u32)), GFP_KERNEL);
9321 if ((h->ioaccel_cmd_pool == NULL) ||
9322 (h->ioaccel1_blockFetchTable == NULL))
9325 memset(h->ioaccel_cmd_pool, 0,
9326 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9330 hpsa_free_ioaccel1_cmd_and_bft(h);
9334 /* Free ioaccel2 mode command blocks and block fetch table */
9335 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9337 hpsa_free_ioaccel2_sg_chain_blocks(h);
9339 if (h->ioaccel2_cmd_pool) {
9340 pci_free_consistent(h->pdev,
9341 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9342 h->ioaccel2_cmd_pool,
9343 h->ioaccel2_cmd_pool_dhandle);
9344 h->ioaccel2_cmd_pool = NULL;
9345 h->ioaccel2_cmd_pool_dhandle = 0;
9347 kfree(h->ioaccel2_blockFetchTable);
9348 h->ioaccel2_blockFetchTable = NULL;
9351 /* Allocate ioaccel2 mode command blocks and block fetch table */
9352 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9356 /* Allocate ioaccel2 mode command blocks and block fetch table */
9359 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9360 if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9361 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9363 BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9364 IOACCEL2_COMMANDLIST_ALIGNMENT);
9365 h->ioaccel2_cmd_pool =
9366 dma_alloc_coherent(&h->pdev->dev,
9367 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9368 &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9370 h->ioaccel2_blockFetchTable =
9371 kmalloc(((h->ioaccel_maxsg + 1) *
9372 sizeof(u32)), GFP_KERNEL);
9374 if ((h->ioaccel2_cmd_pool == NULL) ||
9375 (h->ioaccel2_blockFetchTable == NULL)) {
9380 rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9384 memset(h->ioaccel2_cmd_pool, 0,
9385 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9389 hpsa_free_ioaccel2_cmd_and_bft(h);
9393 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9394 static void hpsa_free_performant_mode(struct ctlr_info *h)
9396 kfree(h->blockFetchTable);
9397 h->blockFetchTable = NULL;
9398 hpsa_free_reply_queues(h);
9399 hpsa_free_ioaccel1_cmd_and_bft(h);
9400 hpsa_free_ioaccel2_cmd_and_bft(h);
9403 /* return -ENODEV on error, 0 on success (or no action)
9404 * allocates numerous items that must be freed later
9406 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9409 unsigned long transMethod = CFGTBL_Trans_Performant |
9410 CFGTBL_Trans_use_short_tags;
9413 if (hpsa_simple_mode)
9416 trans_support = readl(&(h->cfgtable->TransportSupport));
9417 if (!(trans_support & PERFORMANT_MODE))
9420 /* Check for I/O accelerator mode support */
9421 if (trans_support & CFGTBL_Trans_io_accel1) {
9422 transMethod |= CFGTBL_Trans_io_accel1 |
9423 CFGTBL_Trans_enable_directed_msix;
9424 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9427 } else if (trans_support & CFGTBL_Trans_io_accel2) {
9428 transMethod |= CFGTBL_Trans_io_accel2 |
9429 CFGTBL_Trans_enable_directed_msix;
9430 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9435 h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9436 hpsa_get_max_perf_mode_cmds(h);
9437 /* Performant mode ring buffer and supporting data structures */
9438 h->reply_queue_size = h->max_commands * sizeof(u64);
9440 for (i = 0; i < h->nreply_queues; i++) {
9441 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9442 h->reply_queue_size,
9443 &h->reply_queue[i].busaddr,
9445 if (!h->reply_queue[i].head) {
9447 goto clean1; /* rq, ioaccel */
9449 h->reply_queue[i].size = h->max_commands;
9450 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
9451 h->reply_queue[i].current_entry = 0;
9454 /* Need a block fetch table for performant mode */
9455 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9456 sizeof(u32)), GFP_KERNEL);
9457 if (!h->blockFetchTable) {
9459 goto clean1; /* rq, ioaccel */
9462 rc = hpsa_enter_performant_mode(h, trans_support);
9464 goto clean2; /* bft, rq, ioaccel */
9467 clean2: /* bft, rq, ioaccel */
9468 kfree(h->blockFetchTable);
9469 h->blockFetchTable = NULL;
9470 clean1: /* rq, ioaccel */
9471 hpsa_free_reply_queues(h);
9472 hpsa_free_ioaccel1_cmd_and_bft(h);
9473 hpsa_free_ioaccel2_cmd_and_bft(h);
9477 static int is_accelerated_cmd(struct CommandList *c)
9479 return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9482 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9484 struct CommandList *c = NULL;
9485 int i, accel_cmds_out;
9488 do { /* wait for all outstanding ioaccel commands to drain out */
9490 for (i = 0; i < h->nr_cmds; i++) {
9491 c = h->cmd_pool + i;
9492 refcount = atomic_inc_return(&c->refcount);
9493 if (refcount > 1) /* Command is allocated */
9494 accel_cmds_out += is_accelerated_cmd(c);
9497 if (accel_cmds_out <= 0)
9503 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9504 struct hpsa_sas_port *hpsa_sas_port)
9506 struct hpsa_sas_phy *hpsa_sas_phy;
9507 struct sas_phy *phy;
9509 hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9513 phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9514 hpsa_sas_port->next_phy_index);
9516 kfree(hpsa_sas_phy);
9520 hpsa_sas_port->next_phy_index++;
9521 hpsa_sas_phy->phy = phy;
9522 hpsa_sas_phy->parent_port = hpsa_sas_port;
9524 return hpsa_sas_phy;
9527 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9529 struct sas_phy *phy = hpsa_sas_phy->phy;
9531 sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9532 if (hpsa_sas_phy->added_to_port)
9533 list_del(&hpsa_sas_phy->phy_list_entry);
9534 sas_phy_delete(phy);
9535 kfree(hpsa_sas_phy);
9538 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9541 struct hpsa_sas_port *hpsa_sas_port;
9542 struct sas_phy *phy;
9543 struct sas_identify *identify;
9545 hpsa_sas_port = hpsa_sas_phy->parent_port;
9546 phy = hpsa_sas_phy->phy;
9548 identify = &phy->identify;
9549 memset(identify, 0, sizeof(*identify));
9550 identify->sas_address = hpsa_sas_port->sas_address;
9551 identify->device_type = SAS_END_DEVICE;
9552 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9553 identify->target_port_protocols = SAS_PROTOCOL_STP;
9554 phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9555 phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9556 phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9557 phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9558 phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9560 rc = sas_phy_add(hpsa_sas_phy->phy);
9564 sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9565 list_add_tail(&hpsa_sas_phy->phy_list_entry,
9566 &hpsa_sas_port->phy_list_head);
9567 hpsa_sas_phy->added_to_port = true;
9573 hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9574 struct sas_rphy *rphy)
9576 struct sas_identify *identify;
9578 identify = &rphy->identify;
9579 identify->sas_address = hpsa_sas_port->sas_address;
9580 identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9581 identify->target_port_protocols = SAS_PROTOCOL_STP;
9583 return sas_rphy_add(rphy);
9586 static struct hpsa_sas_port
9587 *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9591 struct hpsa_sas_port *hpsa_sas_port;
9592 struct sas_port *port;
9594 hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9598 INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9599 hpsa_sas_port->parent_node = hpsa_sas_node;
9601 port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9603 goto free_hpsa_port;
9605 rc = sas_port_add(port);
9609 hpsa_sas_port->port = port;
9610 hpsa_sas_port->sas_address = sas_address;
9611 list_add_tail(&hpsa_sas_port->port_list_entry,
9612 &hpsa_sas_node->port_list_head);
9614 return hpsa_sas_port;
9617 sas_port_free(port);
9619 kfree(hpsa_sas_port);
9624 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9626 struct hpsa_sas_phy *hpsa_sas_phy;
9627 struct hpsa_sas_phy *next;
9629 list_for_each_entry_safe(hpsa_sas_phy, next,
9630 &hpsa_sas_port->phy_list_head, phy_list_entry)
9631 hpsa_free_sas_phy(hpsa_sas_phy);
9633 sas_port_delete(hpsa_sas_port->port);
9634 list_del(&hpsa_sas_port->port_list_entry);
9635 kfree(hpsa_sas_port);
9638 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9640 struct hpsa_sas_node *hpsa_sas_node;
9642 hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9643 if (hpsa_sas_node) {
9644 hpsa_sas_node->parent_dev = parent_dev;
9645 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9648 return hpsa_sas_node;
9651 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9653 struct hpsa_sas_port *hpsa_sas_port;
9654 struct hpsa_sas_port *next;
9659 list_for_each_entry_safe(hpsa_sas_port, next,
9660 &hpsa_sas_node->port_list_head, port_list_entry)
9661 hpsa_free_sas_port(hpsa_sas_port);
9663 kfree(hpsa_sas_node);
9666 static struct hpsa_scsi_dev_t
9667 *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9668 struct sas_rphy *rphy)
9671 struct hpsa_scsi_dev_t *device;
9673 for (i = 0; i < h->ndevices; i++) {
9675 if (!device->sas_port)
9677 if (device->sas_port->rphy == rphy)
9684 static int hpsa_add_sas_host(struct ctlr_info *h)
9687 struct device *parent_dev;
9688 struct hpsa_sas_node *hpsa_sas_node;
9689 struct hpsa_sas_port *hpsa_sas_port;
9690 struct hpsa_sas_phy *hpsa_sas_phy;
9692 parent_dev = &h->scsi_host->shost_dev;
9694 hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9698 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9699 if (!hpsa_sas_port) {
9704 hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9705 if (!hpsa_sas_phy) {
9710 rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9714 h->sas_host = hpsa_sas_node;
9719 hpsa_free_sas_phy(hpsa_sas_phy);
9721 hpsa_free_sas_port(hpsa_sas_port);
9723 hpsa_free_sas_node(hpsa_sas_node);
9728 static void hpsa_delete_sas_host(struct ctlr_info *h)
9730 hpsa_free_sas_node(h->sas_host);
9733 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9734 struct hpsa_scsi_dev_t *device)
9737 struct hpsa_sas_port *hpsa_sas_port;
9738 struct sas_rphy *rphy;
9740 hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9744 rphy = sas_end_device_alloc(hpsa_sas_port->port);
9750 hpsa_sas_port->rphy = rphy;
9751 device->sas_port = hpsa_sas_port;
9753 rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9760 hpsa_free_sas_port(hpsa_sas_port);
9761 device->sas_port = NULL;
9766 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9768 if (device->sas_port) {
9769 hpsa_free_sas_port(device->sas_port);
9770 device->sas_port = NULL;
9775 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9781 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9783 struct Scsi_Host *shost = phy_to_shost(rphy);
9784 struct ctlr_info *h;
9785 struct hpsa_scsi_dev_t *sd;
9790 h = shost_to_hba(shost);
9795 sd = hpsa_find_device_by_sas_rphy(h, rphy);
9799 *identifier = sd->eli;
9805 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9811 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9817 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9823 hpsa_sas_phy_setup(struct sas_phy *phy)
9829 hpsa_sas_phy_release(struct sas_phy *phy)
9834 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9839 static struct sas_function_template hpsa_sas_transport_functions = {
9840 .get_linkerrors = hpsa_sas_get_linkerrors,
9841 .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9842 .get_bay_identifier = hpsa_sas_get_bay_identifier,
9843 .phy_reset = hpsa_sas_phy_reset,
9844 .phy_enable = hpsa_sas_phy_enable,
9845 .phy_setup = hpsa_sas_phy_setup,
9846 .phy_release = hpsa_sas_phy_release,
9847 .set_phy_speed = hpsa_sas_phy_speed,
9851 * This is it. Register the PCI driver information for the cards we control
9852 * the OS will call our registered routines when it finds one of our cards.
9854 static int __init hpsa_init(void)
9858 hpsa_sas_transport_template =
9859 sas_attach_transport(&hpsa_sas_transport_functions);
9860 if (!hpsa_sas_transport_template)
9863 rc = pci_register_driver(&hpsa_pci_driver);
9866 sas_release_transport(hpsa_sas_transport_template);
9871 static void __exit hpsa_cleanup(void)
9873 pci_unregister_driver(&hpsa_pci_driver);
9874 sas_release_transport(hpsa_sas_transport_template);
9877 static void __attribute__((unused)) verify_offsets(void)
9879 #define VERIFY_OFFSET(member, offset) \
9880 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9882 VERIFY_OFFSET(structure_size, 0);
9883 VERIFY_OFFSET(volume_blk_size, 4);
9884 VERIFY_OFFSET(volume_blk_cnt, 8);
9885 VERIFY_OFFSET(phys_blk_shift, 16);
9886 VERIFY_OFFSET(parity_rotation_shift, 17);
9887 VERIFY_OFFSET(strip_size, 18);
9888 VERIFY_OFFSET(disk_starting_blk, 20);
9889 VERIFY_OFFSET(disk_blk_cnt, 28);
9890 VERIFY_OFFSET(data_disks_per_row, 36);
9891 VERIFY_OFFSET(metadata_disks_per_row, 38);
9892 VERIFY_OFFSET(row_cnt, 40);
9893 VERIFY_OFFSET(layout_map_count, 42);
9894 VERIFY_OFFSET(flags, 44);
9895 VERIFY_OFFSET(dekindex, 46);
9896 /* VERIFY_OFFSET(reserved, 48 */
9897 VERIFY_OFFSET(data, 64);
9899 #undef VERIFY_OFFSET
9901 #define VERIFY_OFFSET(member, offset) \
9902 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9904 VERIFY_OFFSET(IU_type, 0);
9905 VERIFY_OFFSET(direction, 1);
9906 VERIFY_OFFSET(reply_queue, 2);
9907 /* VERIFY_OFFSET(reserved1, 3); */
9908 VERIFY_OFFSET(scsi_nexus, 4);
9909 VERIFY_OFFSET(Tag, 8);
9910 VERIFY_OFFSET(cdb, 16);
9911 VERIFY_OFFSET(cciss_lun, 32);
9912 VERIFY_OFFSET(data_len, 40);
9913 VERIFY_OFFSET(cmd_priority_task_attr, 44);
9914 VERIFY_OFFSET(sg_count, 45);
9915 /* VERIFY_OFFSET(reserved3 */
9916 VERIFY_OFFSET(err_ptr, 48);
9917 VERIFY_OFFSET(err_len, 56);
9918 /* VERIFY_OFFSET(reserved4 */
9919 VERIFY_OFFSET(sg, 64);
9921 #undef VERIFY_OFFSET
9923 #define VERIFY_OFFSET(member, offset) \
9924 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9926 VERIFY_OFFSET(dev_handle, 0x00);
9927 VERIFY_OFFSET(reserved1, 0x02);
9928 VERIFY_OFFSET(function, 0x03);
9929 VERIFY_OFFSET(reserved2, 0x04);
9930 VERIFY_OFFSET(err_info, 0x0C);
9931 VERIFY_OFFSET(reserved3, 0x10);
9932 VERIFY_OFFSET(err_info_len, 0x12);
9933 VERIFY_OFFSET(reserved4, 0x13);
9934 VERIFY_OFFSET(sgl_offset, 0x14);
9935 VERIFY_OFFSET(reserved5, 0x15);
9936 VERIFY_OFFSET(transfer_len, 0x1C);
9937 VERIFY_OFFSET(reserved6, 0x20);
9938 VERIFY_OFFSET(io_flags, 0x24);
9939 VERIFY_OFFSET(reserved7, 0x26);
9940 VERIFY_OFFSET(LUN, 0x34);
9941 VERIFY_OFFSET(control, 0x3C);
9942 VERIFY_OFFSET(CDB, 0x40);
9943 VERIFY_OFFSET(reserved8, 0x50);
9944 VERIFY_OFFSET(host_context_flags, 0x60);
9945 VERIFY_OFFSET(timeout_sec, 0x62);
9946 VERIFY_OFFSET(ReplyQueue, 0x64);
9947 VERIFY_OFFSET(reserved9, 0x65);
9948 VERIFY_OFFSET(tag, 0x68);
9949 VERIFY_OFFSET(host_addr, 0x70);
9950 VERIFY_OFFSET(CISS_LUN, 0x78);
9951 VERIFY_OFFSET(SG, 0x78 + 8);
9952 #undef VERIFY_OFFSET
9955 module_init(hpsa_init);
9956 module_exit(hpsa_cleanup);