2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
60 static struct dentry *debugfs_root;
63 * struct regulator_map
65 * Used to provide symbolic supply names to devices.
67 struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
71 struct regulator_dev *regulator;
75 * struct regulator_enable_gpio
77 * Management for shared enable GPIO pin
79 struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert:1;
88 * struct regulator_supply_alias
90 * Used to map lookups for a supply onto an alternative device.
92 struct regulator_supply_alias {
93 struct list_head list;
94 struct device *src_dev;
95 const char *src_supply;
96 struct device *alias_dev;
97 const char *alias_supply;
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static void _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
111 const char *supply_name);
113 static const char *rdev_get_name(struct regulator_dev *rdev)
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
123 static bool have_full_constraints(void)
125 return has_full_constraints || of_have_populated_dt();
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
139 struct device_node *regnode = NULL;
140 char prop_name[32]; /* 32 is max size of property name */
142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
144 snprintf(prop_name, 32, "%s-supply", supply);
145 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
148 dev_dbg(dev, "Looking up %s property in node %s failed",
149 prop_name, dev->of_node->full_name);
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
157 if (!rdev->constraints)
160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 int *min_uV, int *max_uV)
170 BUG_ON(*min_uV > *max_uV);
172 if (!rdev->constraints) {
173 rdev_err(rdev, "no constraints\n");
176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 rdev_err(rdev, "operation not allowed\n");
181 if (*max_uV > rdev->constraints->max_uV)
182 *max_uV = rdev->constraints->max_uV;
183 if (*min_uV < rdev->constraints->min_uV)
184 *min_uV = rdev->constraints->min_uV;
186 if (*min_uV > *max_uV) {
187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
195 /* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 int *min_uV, int *max_uV)
201 struct regulator *regulator;
203 list_for_each_entry(regulator, &rdev->consumer_list, list) {
205 * Assume consumers that didn't say anything are OK
206 * with anything in the constraint range.
208 if (!regulator->min_uV && !regulator->max_uV)
211 if (*max_uV > regulator->max_uV)
212 *max_uV = regulator->max_uV;
213 if (*min_uV < regulator->min_uV)
214 *min_uV = regulator->min_uV;
217 if (*min_uV > *max_uV) {
218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 int *min_uA, int *max_uA)
230 BUG_ON(*min_uA > *max_uA);
232 if (!rdev->constraints) {
233 rdev_err(rdev, "no constraints\n");
236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 rdev_err(rdev, "operation not allowed\n");
241 if (*max_uA > rdev->constraints->max_uA)
242 *max_uA = rdev->constraints->max_uA;
243 if (*min_uA < rdev->constraints->min_uA)
244 *min_uA = rdev->constraints->min_uA;
246 if (*min_uA > *max_uA) {
247 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
259 case REGULATOR_MODE_FAST:
260 case REGULATOR_MODE_NORMAL:
261 case REGULATOR_MODE_IDLE:
262 case REGULATOR_MODE_STANDBY:
265 rdev_err(rdev, "invalid mode %x specified\n", *mode);
269 if (!rdev->constraints) {
270 rdev_err(rdev, "no constraints\n");
273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 rdev_err(rdev, "operation not allowed\n");
278 /* The modes are bitmasks, the most power hungry modes having
279 * the lowest values. If the requested mode isn't supported
280 * try higher modes. */
282 if (rdev->constraints->valid_modes_mask & *mode)
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
293 if (!rdev->constraints) {
294 rdev_err(rdev, "no constraints\n");
297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 rdev_err(rdev, "operation not allowed\n");
304 static ssize_t regulator_uV_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
310 mutex_lock(&rdev->mutex);
311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 mutex_unlock(&rdev->mutex);
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
318 static ssize_t regulator_uA_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
332 return sprintf(buf, "%s\n", rdev_get_name(rdev));
334 static DEVICE_ATTR_RO(name);
336 static ssize_t regulator_print_opmode(char *buf, int mode)
339 case REGULATOR_MODE_FAST:
340 return sprintf(buf, "fast\n");
341 case REGULATOR_MODE_NORMAL:
342 return sprintf(buf, "normal\n");
343 case REGULATOR_MODE_IDLE:
344 return sprintf(buf, "idle\n");
345 case REGULATOR_MODE_STANDBY:
346 return sprintf(buf, "standby\n");
348 return sprintf(buf, "unknown\n");
351 static ssize_t regulator_opmode_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
356 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
360 static ssize_t regulator_print_state(char *buf, int state)
363 return sprintf(buf, "enabled\n");
365 return sprintf(buf, "disabled\n");
367 return sprintf(buf, "unknown\n");
370 static ssize_t regulator_state_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
376 mutex_lock(&rdev->mutex);
377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 mutex_unlock(&rdev->mutex);
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
384 static ssize_t regulator_status_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
387 struct regulator_dev *rdev = dev_get_drvdata(dev);
391 status = rdev->desc->ops->get_status(rdev);
396 case REGULATOR_STATUS_OFF:
399 case REGULATOR_STATUS_ON:
402 case REGULATOR_STATUS_ERROR:
405 case REGULATOR_STATUS_FAST:
408 case REGULATOR_STATUS_NORMAL:
411 case REGULATOR_STATUS_IDLE:
414 case REGULATOR_STATUS_STANDBY:
417 case REGULATOR_STATUS_BYPASS:
420 case REGULATOR_STATUS_UNDEFINED:
427 return sprintf(buf, "%s\n", label);
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
436 if (!rdev->constraints)
437 return sprintf(buf, "constraint not defined\n");
439 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
448 if (!rdev->constraints)
449 return sprintf(buf, "constraint not defined\n");
451 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
458 struct regulator_dev *rdev = dev_get_drvdata(dev);
460 if (!rdev->constraints)
461 return sprintf(buf, "constraint not defined\n");
463 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
472 if (!rdev->constraints)
473 return sprintf(buf, "constraint not defined\n");
475 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
482 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 struct regulator *regulator;
486 mutex_lock(&rdev->mutex);
487 list_for_each_entry(regulator, &rdev->consumer_list, list)
488 uA += regulator->uA_load;
489 mutex_unlock(&rdev->mutex);
490 return sprintf(buf, "%d\n", uA);
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
497 struct regulator_dev *rdev = dev_get_drvdata(dev);
498 return sprintf(buf, "%d\n", rdev->use_count);
500 static DEVICE_ATTR_RO(num_users);
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
507 switch (rdev->desc->type) {
508 case REGULATOR_VOLTAGE:
509 return sprintf(buf, "voltage\n");
510 case REGULATOR_CURRENT:
511 return sprintf(buf, "current\n");
513 return sprintf(buf, "unknown\n");
515 static DEVICE_ATTR_RO(type);
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 struct device_attribute *attr, char *buf)
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 regulator_suspend_mem_uV_show, NULL);
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 struct device_attribute *attr, char *buf)
530 struct regulator_dev *rdev = dev_get_drvdata(dev);
532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 regulator_suspend_disk_uV_show, NULL);
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 regulator_suspend_standby_uV_show, NULL);
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 struct device_attribute *attr, char *buf)
550 struct regulator_dev *rdev = dev_get_drvdata(dev);
552 return regulator_print_opmode(buf,
553 rdev->constraints->state_mem.mode);
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 regulator_suspend_mem_mode_show, NULL);
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 struct device_attribute *attr, char *buf)
561 struct regulator_dev *rdev = dev_get_drvdata(dev);
563 return regulator_print_opmode(buf,
564 rdev->constraints->state_disk.mode);
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 regulator_suspend_disk_mode_show, NULL);
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_standby.mode);
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 regulator_suspend_standby_mode_show, NULL);
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
585 return regulator_print_state(buf,
586 rdev->constraints->state_mem.enabled);
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 regulator_suspend_mem_state_show, NULL);
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
596 return regulator_print_state(buf,
597 rdev->constraints->state_disk.enabled);
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 regulator_suspend_disk_state_show, NULL);
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
607 return regulator_print_state(buf,
608 rdev->constraints->state_standby.enabled);
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 regulator_suspend_standby_state_show, NULL);
613 static ssize_t regulator_bypass_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
621 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
630 return sprintf(buf, "%s\n", report);
632 static DEVICE_ATTR(bypass, 0444,
633 regulator_bypass_show, NULL);
636 * These are the only attributes are present for all regulators.
637 * Other attributes are a function of regulator functionality.
639 static struct attribute *regulator_dev_attrs[] = {
641 &dev_attr_num_users.attr,
645 ATTRIBUTE_GROUPS(regulator_dev);
647 static void regulator_dev_release(struct device *dev)
649 struct regulator_dev *rdev = dev_get_drvdata(dev);
653 static struct class regulator_class = {
655 .dev_release = regulator_dev_release,
656 .dev_groups = regulator_dev_groups,
659 /* Calculate the new optimum regulator operating mode based on the new total
660 * consumer load. All locks held by caller */
661 static void drms_uA_update(struct regulator_dev *rdev)
663 struct regulator *sibling;
664 int current_uA = 0, output_uV, input_uV, err;
667 err = regulator_check_drms(rdev);
668 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
669 (!rdev->desc->ops->get_voltage &&
670 !rdev->desc->ops->get_voltage_sel) ||
671 !rdev->desc->ops->set_mode)
674 /* get output voltage */
675 output_uV = _regulator_get_voltage(rdev);
679 /* get input voltage */
682 input_uV = regulator_get_voltage(rdev->supply);
684 input_uV = rdev->constraints->input_uV;
688 /* calc total requested load */
689 list_for_each_entry(sibling, &rdev->consumer_list, list)
690 current_uA += sibling->uA_load;
692 /* now get the optimum mode for our new total regulator load */
693 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
694 output_uV, current_uA);
696 /* check the new mode is allowed */
697 err = regulator_mode_constrain(rdev, &mode);
699 rdev->desc->ops->set_mode(rdev, mode);
702 static int suspend_set_state(struct regulator_dev *rdev,
703 struct regulator_state *rstate)
707 /* If we have no suspend mode configration don't set anything;
708 * only warn if the driver implements set_suspend_voltage or
709 * set_suspend_mode callback.
711 if (!rstate->enabled && !rstate->disabled) {
712 if (rdev->desc->ops->set_suspend_voltage ||
713 rdev->desc->ops->set_suspend_mode)
714 rdev_warn(rdev, "No configuration\n");
718 if (rstate->enabled && rstate->disabled) {
719 rdev_err(rdev, "invalid configuration\n");
723 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
724 ret = rdev->desc->ops->set_suspend_enable(rdev);
725 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
726 ret = rdev->desc->ops->set_suspend_disable(rdev);
727 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
731 rdev_err(rdev, "failed to enabled/disable\n");
735 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
736 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
738 rdev_err(rdev, "failed to set voltage\n");
743 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
744 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
746 rdev_err(rdev, "failed to set mode\n");
753 /* locks held by caller */
754 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
756 if (!rdev->constraints)
760 case PM_SUSPEND_STANDBY:
761 return suspend_set_state(rdev,
762 &rdev->constraints->state_standby);
764 return suspend_set_state(rdev,
765 &rdev->constraints->state_mem);
767 return suspend_set_state(rdev,
768 &rdev->constraints->state_disk);
774 static void print_constraints(struct regulator_dev *rdev)
776 struct regulation_constraints *constraints = rdev->constraints;
781 if (constraints->min_uV && constraints->max_uV) {
782 if (constraints->min_uV == constraints->max_uV)
783 count += sprintf(buf + count, "%d mV ",
784 constraints->min_uV / 1000);
786 count += sprintf(buf + count, "%d <--> %d mV ",
787 constraints->min_uV / 1000,
788 constraints->max_uV / 1000);
791 if (!constraints->min_uV ||
792 constraints->min_uV != constraints->max_uV) {
793 ret = _regulator_get_voltage(rdev);
795 count += sprintf(buf + count, "at %d mV ", ret / 1000);
798 if (constraints->uV_offset)
799 count += sprintf(buf, "%dmV offset ",
800 constraints->uV_offset / 1000);
802 if (constraints->min_uA && constraints->max_uA) {
803 if (constraints->min_uA == constraints->max_uA)
804 count += sprintf(buf + count, "%d mA ",
805 constraints->min_uA / 1000);
807 count += sprintf(buf + count, "%d <--> %d mA ",
808 constraints->min_uA / 1000,
809 constraints->max_uA / 1000);
812 if (!constraints->min_uA ||
813 constraints->min_uA != constraints->max_uA) {
814 ret = _regulator_get_current_limit(rdev);
816 count += sprintf(buf + count, "at %d mA ", ret / 1000);
819 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
820 count += sprintf(buf + count, "fast ");
821 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
822 count += sprintf(buf + count, "normal ");
823 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
824 count += sprintf(buf + count, "idle ");
825 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
826 count += sprintf(buf + count, "standby");
829 sprintf(buf, "no parameters");
831 rdev_info(rdev, "%s\n", buf);
833 if ((constraints->min_uV != constraints->max_uV) &&
834 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
836 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
839 static int machine_constraints_voltage(struct regulator_dev *rdev,
840 struct regulation_constraints *constraints)
842 const struct regulator_ops *ops = rdev->desc->ops;
845 /* do we need to apply the constraint voltage */
846 if (rdev->constraints->apply_uV &&
847 rdev->constraints->min_uV == rdev->constraints->max_uV) {
848 int current_uV = _regulator_get_voltage(rdev);
849 if (current_uV < 0) {
851 "failed to get the current voltage(%d)\n",
855 if (current_uV < rdev->constraints->min_uV ||
856 current_uV > rdev->constraints->max_uV) {
857 ret = _regulator_do_set_voltage(
858 rdev, rdev->constraints->min_uV,
859 rdev->constraints->max_uV);
862 "failed to apply %duV constraint(%d)\n",
863 rdev->constraints->min_uV, ret);
869 /* constrain machine-level voltage specs to fit
870 * the actual range supported by this regulator.
872 if (ops->list_voltage && rdev->desc->n_voltages) {
873 int count = rdev->desc->n_voltages;
875 int min_uV = INT_MAX;
876 int max_uV = INT_MIN;
877 int cmin = constraints->min_uV;
878 int cmax = constraints->max_uV;
880 /* it's safe to autoconfigure fixed-voltage supplies
881 and the constraints are used by list_voltage. */
882 if (count == 1 && !cmin) {
885 constraints->min_uV = cmin;
886 constraints->max_uV = cmax;
889 /* voltage constraints are optional */
890 if ((cmin == 0) && (cmax == 0))
893 /* else require explicit machine-level constraints */
894 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
895 rdev_err(rdev, "invalid voltage constraints\n");
899 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
900 for (i = 0; i < count; i++) {
903 value = ops->list_voltage(rdev, i);
907 /* maybe adjust [min_uV..max_uV] */
908 if (value >= cmin && value < min_uV)
910 if (value <= cmax && value > max_uV)
914 /* final: [min_uV..max_uV] valid iff constraints valid */
915 if (max_uV < min_uV) {
917 "unsupportable voltage constraints %u-%uuV\n",
922 /* use regulator's subset of machine constraints */
923 if (constraints->min_uV < min_uV) {
924 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
925 constraints->min_uV, min_uV);
926 constraints->min_uV = min_uV;
928 if (constraints->max_uV > max_uV) {
929 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
930 constraints->max_uV, max_uV);
931 constraints->max_uV = max_uV;
938 static int machine_constraints_current(struct regulator_dev *rdev,
939 struct regulation_constraints *constraints)
941 const struct regulator_ops *ops = rdev->desc->ops;
944 if (!constraints->min_uA && !constraints->max_uA)
947 if (constraints->min_uA > constraints->max_uA) {
948 rdev_err(rdev, "Invalid current constraints\n");
952 if (!ops->set_current_limit || !ops->get_current_limit) {
953 rdev_warn(rdev, "Operation of current configuration missing\n");
957 /* Set regulator current in constraints range */
958 ret = ops->set_current_limit(rdev, constraints->min_uA,
959 constraints->max_uA);
961 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
968 static int _regulator_do_enable(struct regulator_dev *rdev);
971 * set_machine_constraints - sets regulator constraints
972 * @rdev: regulator source
973 * @constraints: constraints to apply
975 * Allows platform initialisation code to define and constrain
976 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
977 * Constraints *must* be set by platform code in order for some
978 * regulator operations to proceed i.e. set_voltage, set_current_limit,
981 static int set_machine_constraints(struct regulator_dev *rdev,
982 const struct regulation_constraints *constraints)
985 const struct regulator_ops *ops = rdev->desc->ops;
988 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
991 rdev->constraints = kzalloc(sizeof(*constraints),
993 if (!rdev->constraints)
996 ret = machine_constraints_voltage(rdev, rdev->constraints);
1000 ret = machine_constraints_current(rdev, rdev->constraints);
1004 /* do we need to setup our suspend state */
1005 if (rdev->constraints->initial_state) {
1006 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1008 rdev_err(rdev, "failed to set suspend state\n");
1013 if (rdev->constraints->initial_mode) {
1014 if (!ops->set_mode) {
1015 rdev_err(rdev, "no set_mode operation\n");
1020 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1022 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1027 /* If the constraints say the regulator should be on at this point
1028 * and we have control then make sure it is enabled.
1030 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1031 ret = _regulator_do_enable(rdev);
1032 if (ret < 0 && ret != -EINVAL) {
1033 rdev_err(rdev, "failed to enable\n");
1038 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1039 && ops->set_ramp_delay) {
1040 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1042 rdev_err(rdev, "failed to set ramp_delay\n");
1047 print_constraints(rdev);
1050 kfree(rdev->constraints);
1051 rdev->constraints = NULL;
1056 * set_supply - set regulator supply regulator
1057 * @rdev: regulator name
1058 * @supply_rdev: supply regulator name
1060 * Called by platform initialisation code to set the supply regulator for this
1061 * regulator. This ensures that a regulators supply will also be enabled by the
1062 * core if it's child is enabled.
1064 static int set_supply(struct regulator_dev *rdev,
1065 struct regulator_dev *supply_rdev)
1069 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1071 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1072 if (rdev->supply == NULL) {
1076 supply_rdev->open_count++;
1082 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1083 * @rdev: regulator source
1084 * @consumer_dev_name: dev_name() string for device supply applies to
1085 * @supply: symbolic name for supply
1087 * Allows platform initialisation code to map physical regulator
1088 * sources to symbolic names for supplies for use by devices. Devices
1089 * should use these symbolic names to request regulators, avoiding the
1090 * need to provide board-specific regulator names as platform data.
1092 static int set_consumer_device_supply(struct regulator_dev *rdev,
1093 const char *consumer_dev_name,
1096 struct regulator_map *node;
1102 if (consumer_dev_name != NULL)
1107 list_for_each_entry(node, ®ulator_map_list, list) {
1108 if (node->dev_name && consumer_dev_name) {
1109 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1111 } else if (node->dev_name || consumer_dev_name) {
1115 if (strcmp(node->supply, supply) != 0)
1118 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1120 dev_name(&node->regulator->dev),
1121 node->regulator->desc->name,
1123 dev_name(&rdev->dev), rdev_get_name(rdev));
1127 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1131 node->regulator = rdev;
1132 node->supply = supply;
1135 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1136 if (node->dev_name == NULL) {
1142 list_add(&node->list, ®ulator_map_list);
1146 static void unset_regulator_supplies(struct regulator_dev *rdev)
1148 struct regulator_map *node, *n;
1150 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1151 if (rdev == node->regulator) {
1152 list_del(&node->list);
1153 kfree(node->dev_name);
1159 #define REG_STR_SIZE 64
1161 static struct regulator *create_regulator(struct regulator_dev *rdev,
1163 const char *supply_name)
1165 struct regulator *regulator;
1166 char buf[REG_STR_SIZE];
1169 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1170 if (regulator == NULL)
1173 mutex_lock(&rdev->mutex);
1174 regulator->rdev = rdev;
1175 list_add(®ulator->list, &rdev->consumer_list);
1178 regulator->dev = dev;
1180 /* Add a link to the device sysfs entry */
1181 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1182 dev->kobj.name, supply_name);
1183 if (size >= REG_STR_SIZE)
1186 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1187 if (regulator->supply_name == NULL)
1190 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1193 rdev_warn(rdev, "could not add device link %s err %d\n",
1194 dev->kobj.name, err);
1198 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1199 if (regulator->supply_name == NULL)
1203 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1205 if (!regulator->debugfs) {
1206 rdev_warn(rdev, "Failed to create debugfs directory\n");
1208 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1209 ®ulator->uA_load);
1210 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1211 ®ulator->min_uV);
1212 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1213 ®ulator->max_uV);
1217 * Check now if the regulator is an always on regulator - if
1218 * it is then we don't need to do nearly so much work for
1219 * enable/disable calls.
1221 if (!_regulator_can_change_status(rdev) &&
1222 _regulator_is_enabled(rdev))
1223 regulator->always_on = true;
1225 mutex_unlock(&rdev->mutex);
1228 list_del(®ulator->list);
1230 mutex_unlock(&rdev->mutex);
1234 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1236 if (rdev->constraints && rdev->constraints->enable_time)
1237 return rdev->constraints->enable_time;
1238 if (!rdev->desc->ops->enable_time)
1239 return rdev->desc->enable_time;
1240 return rdev->desc->ops->enable_time(rdev);
1243 static struct regulator_supply_alias *regulator_find_supply_alias(
1244 struct device *dev, const char *supply)
1246 struct regulator_supply_alias *map;
1248 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1249 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1255 static void regulator_supply_alias(struct device **dev, const char **supply)
1257 struct regulator_supply_alias *map;
1259 map = regulator_find_supply_alias(*dev, *supply);
1261 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1262 *supply, map->alias_supply,
1263 dev_name(map->alias_dev));
1264 *dev = map->alias_dev;
1265 *supply = map->alias_supply;
1269 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1273 struct regulator_dev *r;
1274 struct device_node *node;
1275 struct regulator_map *map;
1276 const char *devname = NULL;
1278 regulator_supply_alias(&dev, &supply);
1280 /* first do a dt based lookup */
1281 if (dev && dev->of_node) {
1282 node = of_get_regulator(dev, supply);
1284 list_for_each_entry(r, ®ulator_list, list)
1285 if (r->dev.parent &&
1286 node == r->dev.of_node)
1288 *ret = -EPROBE_DEFER;
1292 * If we couldn't even get the node then it's
1293 * not just that the device didn't register
1294 * yet, there's no node and we'll never
1301 /* if not found, try doing it non-dt way */
1303 devname = dev_name(dev);
1305 list_for_each_entry(r, ®ulator_list, list)
1306 if (strcmp(rdev_get_name(r), supply) == 0)
1309 list_for_each_entry(map, ®ulator_map_list, list) {
1310 /* If the mapping has a device set up it must match */
1311 if (map->dev_name &&
1312 (!devname || strcmp(map->dev_name, devname)))
1315 if (strcmp(map->supply, supply) == 0)
1316 return map->regulator;
1323 /* Internal regulator request function */
1324 static struct regulator *_regulator_get(struct device *dev, const char *id,
1325 bool exclusive, bool allow_dummy)
1327 struct regulator_dev *rdev;
1328 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1329 const char *devname = NULL;
1333 pr_err("get() with no identifier\n");
1334 return ERR_PTR(-EINVAL);
1338 devname = dev_name(dev);
1340 if (have_full_constraints())
1343 ret = -EPROBE_DEFER;
1345 mutex_lock(®ulator_list_mutex);
1347 rdev = regulator_dev_lookup(dev, id, &ret);
1351 regulator = ERR_PTR(ret);
1354 * If we have return value from dev_lookup fail, we do not expect to
1355 * succeed, so, quit with appropriate error value
1357 if (ret && ret != -ENODEV)
1361 devname = "deviceless";
1364 * Assume that a regulator is physically present and enabled
1365 * even if it isn't hooked up and just provide a dummy.
1367 if (have_full_constraints() && allow_dummy) {
1368 pr_warn("%s supply %s not found, using dummy regulator\n",
1371 rdev = dummy_regulator_rdev;
1373 /* Don't log an error when called from regulator_get_optional() */
1374 } else if (!have_full_constraints() || exclusive) {
1375 dev_warn(dev, "dummy supplies not allowed\n");
1378 mutex_unlock(®ulator_list_mutex);
1382 if (rdev->exclusive) {
1383 regulator = ERR_PTR(-EPERM);
1387 if (exclusive && rdev->open_count) {
1388 regulator = ERR_PTR(-EBUSY);
1392 if (!try_module_get(rdev->owner))
1395 regulator = create_regulator(rdev, dev, id);
1396 if (regulator == NULL) {
1397 regulator = ERR_PTR(-ENOMEM);
1398 module_put(rdev->owner);
1404 rdev->exclusive = 1;
1406 ret = _regulator_is_enabled(rdev);
1408 rdev->use_count = 1;
1410 rdev->use_count = 0;
1414 mutex_unlock(®ulator_list_mutex);
1420 * regulator_get - lookup and obtain a reference to a regulator.
1421 * @dev: device for regulator "consumer"
1422 * @id: Supply name or regulator ID.
1424 * Returns a struct regulator corresponding to the regulator producer,
1425 * or IS_ERR() condition containing errno.
1427 * Use of supply names configured via regulator_set_device_supply() is
1428 * strongly encouraged. It is recommended that the supply name used
1429 * should match the name used for the supply and/or the relevant
1430 * device pins in the datasheet.
1432 struct regulator *regulator_get(struct device *dev, const char *id)
1434 return _regulator_get(dev, id, false, true);
1436 EXPORT_SYMBOL_GPL(regulator_get);
1439 * regulator_get_exclusive - obtain exclusive access to a regulator.
1440 * @dev: device for regulator "consumer"
1441 * @id: Supply name or regulator ID.
1443 * Returns a struct regulator corresponding to the regulator producer,
1444 * or IS_ERR() condition containing errno. Other consumers will be
1445 * unable to obtain this regulator while this reference is held and the
1446 * use count for the regulator will be initialised to reflect the current
1447 * state of the regulator.
1449 * This is intended for use by consumers which cannot tolerate shared
1450 * use of the regulator such as those which need to force the
1451 * regulator off for correct operation of the hardware they are
1454 * Use of supply names configured via regulator_set_device_supply() is
1455 * strongly encouraged. It is recommended that the supply name used
1456 * should match the name used for the supply and/or the relevant
1457 * device pins in the datasheet.
1459 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1461 return _regulator_get(dev, id, true, false);
1463 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1466 * regulator_get_optional - obtain optional access to a regulator.
1467 * @dev: device for regulator "consumer"
1468 * @id: Supply name or regulator ID.
1470 * Returns a struct regulator corresponding to the regulator producer,
1471 * or IS_ERR() condition containing errno.
1473 * This is intended for use by consumers for devices which can have
1474 * some supplies unconnected in normal use, such as some MMC devices.
1475 * It can allow the regulator core to provide stub supplies for other
1476 * supplies requested using normal regulator_get() calls without
1477 * disrupting the operation of drivers that can handle absent
1480 * Use of supply names configured via regulator_set_device_supply() is
1481 * strongly encouraged. It is recommended that the supply name used
1482 * should match the name used for the supply and/or the relevant
1483 * device pins in the datasheet.
1485 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1487 return _regulator_get(dev, id, false, false);
1489 EXPORT_SYMBOL_GPL(regulator_get_optional);
1491 /* Locks held by regulator_put() */
1492 static void _regulator_put(struct regulator *regulator)
1494 struct regulator_dev *rdev;
1496 if (regulator == NULL || IS_ERR(regulator))
1499 rdev = regulator->rdev;
1501 debugfs_remove_recursive(regulator->debugfs);
1503 /* remove any sysfs entries */
1505 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1506 kfree(regulator->supply_name);
1507 list_del(®ulator->list);
1511 rdev->exclusive = 0;
1513 module_put(rdev->owner);
1517 * regulator_put - "free" the regulator source
1518 * @regulator: regulator source
1520 * Note: drivers must ensure that all regulator_enable calls made on this
1521 * regulator source are balanced by regulator_disable calls prior to calling
1524 void regulator_put(struct regulator *regulator)
1526 mutex_lock(®ulator_list_mutex);
1527 _regulator_put(regulator);
1528 mutex_unlock(®ulator_list_mutex);
1530 EXPORT_SYMBOL_GPL(regulator_put);
1533 * regulator_register_supply_alias - Provide device alias for supply lookup
1535 * @dev: device that will be given as the regulator "consumer"
1536 * @id: Supply name or regulator ID
1537 * @alias_dev: device that should be used to lookup the supply
1538 * @alias_id: Supply name or regulator ID that should be used to lookup the
1541 * All lookups for id on dev will instead be conducted for alias_id on
1544 int regulator_register_supply_alias(struct device *dev, const char *id,
1545 struct device *alias_dev,
1546 const char *alias_id)
1548 struct regulator_supply_alias *map;
1550 map = regulator_find_supply_alias(dev, id);
1554 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1559 map->src_supply = id;
1560 map->alias_dev = alias_dev;
1561 map->alias_supply = alias_id;
1563 list_add(&map->list, ®ulator_supply_alias_list);
1565 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1566 id, dev_name(dev), alias_id, dev_name(alias_dev));
1570 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1573 * regulator_unregister_supply_alias - Remove device alias
1575 * @dev: device that will be given as the regulator "consumer"
1576 * @id: Supply name or regulator ID
1578 * Remove a lookup alias if one exists for id on dev.
1580 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1582 struct regulator_supply_alias *map;
1584 map = regulator_find_supply_alias(dev, id);
1586 list_del(&map->list);
1590 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1593 * regulator_bulk_register_supply_alias - register multiple aliases
1595 * @dev: device that will be given as the regulator "consumer"
1596 * @id: List of supply names or regulator IDs
1597 * @alias_dev: device that should be used to lookup the supply
1598 * @alias_id: List of supply names or regulator IDs that should be used to
1600 * @num_id: Number of aliases to register
1602 * @return 0 on success, an errno on failure.
1604 * This helper function allows drivers to register several supply
1605 * aliases in one operation. If any of the aliases cannot be
1606 * registered any aliases that were registered will be removed
1607 * before returning to the caller.
1609 int regulator_bulk_register_supply_alias(struct device *dev,
1610 const char *const *id,
1611 struct device *alias_dev,
1612 const char *const *alias_id,
1618 for (i = 0; i < num_id; ++i) {
1619 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1629 "Failed to create supply alias %s,%s -> %s,%s\n",
1630 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1633 regulator_unregister_supply_alias(dev, id[i]);
1637 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1640 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1642 * @dev: device that will be given as the regulator "consumer"
1643 * @id: List of supply names or regulator IDs
1644 * @num_id: Number of aliases to unregister
1646 * This helper function allows drivers to unregister several supply
1647 * aliases in one operation.
1649 void regulator_bulk_unregister_supply_alias(struct device *dev,
1650 const char *const *id,
1655 for (i = 0; i < num_id; ++i)
1656 regulator_unregister_supply_alias(dev, id[i]);
1658 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1661 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1662 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1663 const struct regulator_config *config)
1665 struct regulator_enable_gpio *pin;
1666 struct gpio_desc *gpiod;
1669 gpiod = gpio_to_desc(config->ena_gpio);
1671 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
1672 if (pin->gpiod == gpiod) {
1673 rdev_dbg(rdev, "GPIO %d is already used\n",
1675 goto update_ena_gpio_to_rdev;
1679 ret = gpio_request_one(config->ena_gpio,
1680 GPIOF_DIR_OUT | config->ena_gpio_flags,
1681 rdev_get_name(rdev));
1685 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1687 gpio_free(config->ena_gpio);
1692 pin->ena_gpio_invert = config->ena_gpio_invert;
1693 list_add(&pin->list, ®ulator_ena_gpio_list);
1695 update_ena_gpio_to_rdev:
1696 pin->request_count++;
1697 rdev->ena_pin = pin;
1701 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1703 struct regulator_enable_gpio *pin, *n;
1708 /* Free the GPIO only in case of no use */
1709 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
1710 if (pin->gpiod == rdev->ena_pin->gpiod) {
1711 if (pin->request_count <= 1) {
1712 pin->request_count = 0;
1713 gpiod_put(pin->gpiod);
1714 list_del(&pin->list);
1717 pin->request_count--;
1724 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1725 * @rdev: regulator_dev structure
1726 * @enable: enable GPIO at initial use?
1728 * GPIO is enabled in case of initial use. (enable_count is 0)
1729 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1731 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1733 struct regulator_enable_gpio *pin = rdev->ena_pin;
1739 /* Enable GPIO at initial use */
1740 if (pin->enable_count == 0)
1741 gpiod_set_value_cansleep(pin->gpiod,
1742 !pin->ena_gpio_invert);
1744 pin->enable_count++;
1746 if (pin->enable_count > 1) {
1747 pin->enable_count--;
1751 /* Disable GPIO if not used */
1752 if (pin->enable_count <= 1) {
1753 gpiod_set_value_cansleep(pin->gpiod,
1754 pin->ena_gpio_invert);
1755 pin->enable_count = 0;
1763 * _regulator_enable_delay - a delay helper function
1764 * @delay: time to delay in microseconds
1766 * Delay for the requested amount of time as per the guidelines in:
1768 * Documentation/timers/timers-howto.txt
1770 * The assumption here is that regulators will never be enabled in
1771 * atomic context and therefore sleeping functions can be used.
1773 static void _regulator_enable_delay(unsigned int delay)
1775 unsigned int ms = delay / 1000;
1776 unsigned int us = delay % 1000;
1780 * For small enough values, handle super-millisecond
1781 * delays in the usleep_range() call below.
1790 * Give the scheduler some room to coalesce with any other
1791 * wakeup sources. For delays shorter than 10 us, don't even
1792 * bother setting up high-resolution timers and just busy-
1796 usleep_range(us, us + 100);
1801 static int _regulator_do_enable(struct regulator_dev *rdev)
1805 /* Query before enabling in case configuration dependent. */
1806 ret = _regulator_get_enable_time(rdev);
1810 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1814 trace_regulator_enable(rdev_get_name(rdev));
1816 if (rdev->desc->off_on_delay) {
1817 /* if needed, keep a distance of off_on_delay from last time
1818 * this regulator was disabled.
1820 unsigned long start_jiffy = jiffies;
1821 unsigned long intended, max_delay, remaining;
1823 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1824 intended = rdev->last_off_jiffy + max_delay;
1826 if (time_before(start_jiffy, intended)) {
1827 /* calc remaining jiffies to deal with one-time
1829 * in case of multiple timer wrapping, either it can be
1830 * detected by out-of-range remaining, or it cannot be
1831 * detected and we gets a panelty of
1832 * _regulator_enable_delay().
1834 remaining = intended - start_jiffy;
1835 if (remaining <= max_delay)
1836 _regulator_enable_delay(
1837 jiffies_to_usecs(remaining));
1841 if (rdev->ena_pin) {
1842 ret = regulator_ena_gpio_ctrl(rdev, true);
1845 rdev->ena_gpio_state = 1;
1846 } else if (rdev->desc->ops->enable) {
1847 ret = rdev->desc->ops->enable(rdev);
1854 /* Allow the regulator to ramp; it would be useful to extend
1855 * this for bulk operations so that the regulators can ramp
1857 trace_regulator_enable_delay(rdev_get_name(rdev));
1859 _regulator_enable_delay(delay);
1861 trace_regulator_enable_complete(rdev_get_name(rdev));
1866 /* locks held by regulator_enable() */
1867 static int _regulator_enable(struct regulator_dev *rdev)
1871 /* check voltage and requested load before enabling */
1872 if (rdev->constraints &&
1873 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1874 drms_uA_update(rdev);
1876 if (rdev->use_count == 0) {
1877 /* The regulator may on if it's not switchable or left on */
1878 ret = _regulator_is_enabled(rdev);
1879 if (ret == -EINVAL || ret == 0) {
1880 if (!_regulator_can_change_status(rdev))
1883 ret = _regulator_do_enable(rdev);
1887 } else if (ret < 0) {
1888 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1891 /* Fallthrough on positive return values - already enabled */
1900 * regulator_enable - enable regulator output
1901 * @regulator: regulator source
1903 * Request that the regulator be enabled with the regulator output at
1904 * the predefined voltage or current value. Calls to regulator_enable()
1905 * must be balanced with calls to regulator_disable().
1907 * NOTE: the output value can be set by other drivers, boot loader or may be
1908 * hardwired in the regulator.
1910 int regulator_enable(struct regulator *regulator)
1912 struct regulator_dev *rdev = regulator->rdev;
1915 if (regulator->always_on)
1919 ret = regulator_enable(rdev->supply);
1924 mutex_lock(&rdev->mutex);
1925 ret = _regulator_enable(rdev);
1926 mutex_unlock(&rdev->mutex);
1928 if (ret != 0 && rdev->supply)
1929 regulator_disable(rdev->supply);
1933 EXPORT_SYMBOL_GPL(regulator_enable);
1935 static int _regulator_do_disable(struct regulator_dev *rdev)
1939 trace_regulator_disable(rdev_get_name(rdev));
1941 if (rdev->ena_pin) {
1942 ret = regulator_ena_gpio_ctrl(rdev, false);
1945 rdev->ena_gpio_state = 0;
1947 } else if (rdev->desc->ops->disable) {
1948 ret = rdev->desc->ops->disable(rdev);
1953 /* cares about last_off_jiffy only if off_on_delay is required by
1956 if (rdev->desc->off_on_delay)
1957 rdev->last_off_jiffy = jiffies;
1959 trace_regulator_disable_complete(rdev_get_name(rdev));
1964 /* locks held by regulator_disable() */
1965 static int _regulator_disable(struct regulator_dev *rdev)
1969 if (WARN(rdev->use_count <= 0,
1970 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1973 /* are we the last user and permitted to disable ? */
1974 if (rdev->use_count == 1 &&
1975 (rdev->constraints && !rdev->constraints->always_on)) {
1977 /* we are last user */
1978 if (_regulator_can_change_status(rdev)) {
1979 ret = _regulator_do_disable(rdev);
1981 rdev_err(rdev, "failed to disable\n");
1984 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1988 rdev->use_count = 0;
1989 } else if (rdev->use_count > 1) {
1991 if (rdev->constraints &&
1992 (rdev->constraints->valid_ops_mask &
1993 REGULATOR_CHANGE_DRMS))
1994 drms_uA_update(rdev);
2003 * regulator_disable - disable regulator output
2004 * @regulator: regulator source
2006 * Disable the regulator output voltage or current. Calls to
2007 * regulator_enable() must be balanced with calls to
2008 * regulator_disable().
2010 * NOTE: this will only disable the regulator output if no other consumer
2011 * devices have it enabled, the regulator device supports disabling and
2012 * machine constraints permit this operation.
2014 int regulator_disable(struct regulator *regulator)
2016 struct regulator_dev *rdev = regulator->rdev;
2019 if (regulator->always_on)
2022 mutex_lock(&rdev->mutex);
2023 ret = _regulator_disable(rdev);
2024 mutex_unlock(&rdev->mutex);
2026 if (ret == 0 && rdev->supply)
2027 regulator_disable(rdev->supply);
2031 EXPORT_SYMBOL_GPL(regulator_disable);
2033 /* locks held by regulator_force_disable() */
2034 static int _regulator_force_disable(struct regulator_dev *rdev)
2038 ret = _regulator_do_disable(rdev);
2040 rdev_err(rdev, "failed to force disable\n");
2044 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2045 REGULATOR_EVENT_DISABLE, NULL);
2051 * regulator_force_disable - force disable regulator output
2052 * @regulator: regulator source
2054 * Forcibly disable the regulator output voltage or current.
2055 * NOTE: this *will* disable the regulator output even if other consumer
2056 * devices have it enabled. This should be used for situations when device
2057 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2059 int regulator_force_disable(struct regulator *regulator)
2061 struct regulator_dev *rdev = regulator->rdev;
2064 mutex_lock(&rdev->mutex);
2065 regulator->uA_load = 0;
2066 ret = _regulator_force_disable(regulator->rdev);
2067 mutex_unlock(&rdev->mutex);
2070 while (rdev->open_count--)
2071 regulator_disable(rdev->supply);
2075 EXPORT_SYMBOL_GPL(regulator_force_disable);
2077 static void regulator_disable_work(struct work_struct *work)
2079 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2083 mutex_lock(&rdev->mutex);
2085 BUG_ON(!rdev->deferred_disables);
2087 count = rdev->deferred_disables;
2088 rdev->deferred_disables = 0;
2090 for (i = 0; i < count; i++) {
2091 ret = _regulator_disable(rdev);
2093 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2096 mutex_unlock(&rdev->mutex);
2099 for (i = 0; i < count; i++) {
2100 ret = regulator_disable(rdev->supply);
2103 "Supply disable failed: %d\n", ret);
2110 * regulator_disable_deferred - disable regulator output with delay
2111 * @regulator: regulator source
2112 * @ms: miliseconds until the regulator is disabled
2114 * Execute regulator_disable() on the regulator after a delay. This
2115 * is intended for use with devices that require some time to quiesce.
2117 * NOTE: this will only disable the regulator output if no other consumer
2118 * devices have it enabled, the regulator device supports disabling and
2119 * machine constraints permit this operation.
2121 int regulator_disable_deferred(struct regulator *regulator, int ms)
2123 struct regulator_dev *rdev = regulator->rdev;
2126 if (regulator->always_on)
2130 return regulator_disable(regulator);
2132 mutex_lock(&rdev->mutex);
2133 rdev->deferred_disables++;
2134 mutex_unlock(&rdev->mutex);
2136 ret = queue_delayed_work(system_power_efficient_wq,
2137 &rdev->disable_work,
2138 msecs_to_jiffies(ms));
2144 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2146 static int _regulator_is_enabled(struct regulator_dev *rdev)
2148 /* A GPIO control always takes precedence */
2150 return rdev->ena_gpio_state;
2152 /* If we don't know then assume that the regulator is always on */
2153 if (!rdev->desc->ops->is_enabled)
2156 return rdev->desc->ops->is_enabled(rdev);
2160 * regulator_is_enabled - is the regulator output enabled
2161 * @regulator: regulator source
2163 * Returns positive if the regulator driver backing the source/client
2164 * has requested that the device be enabled, zero if it hasn't, else a
2165 * negative errno code.
2167 * Note that the device backing this regulator handle can have multiple
2168 * users, so it might be enabled even if regulator_enable() was never
2169 * called for this particular source.
2171 int regulator_is_enabled(struct regulator *regulator)
2175 if (regulator->always_on)
2178 mutex_lock(®ulator->rdev->mutex);
2179 ret = _regulator_is_enabled(regulator->rdev);
2180 mutex_unlock(®ulator->rdev->mutex);
2184 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2187 * regulator_can_change_voltage - check if regulator can change voltage
2188 * @regulator: regulator source
2190 * Returns positive if the regulator driver backing the source/client
2191 * can change its voltage, false otherwise. Useful for detecting fixed
2192 * or dummy regulators and disabling voltage change logic in the client
2195 int regulator_can_change_voltage(struct regulator *regulator)
2197 struct regulator_dev *rdev = regulator->rdev;
2199 if (rdev->constraints &&
2200 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2201 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2204 if (rdev->desc->continuous_voltage_range &&
2205 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2206 rdev->constraints->min_uV != rdev->constraints->max_uV)
2212 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2215 * regulator_count_voltages - count regulator_list_voltage() selectors
2216 * @regulator: regulator source
2218 * Returns number of selectors, or negative errno. Selectors are
2219 * numbered starting at zero, and typically correspond to bitfields
2220 * in hardware registers.
2222 int regulator_count_voltages(struct regulator *regulator)
2224 struct regulator_dev *rdev = regulator->rdev;
2226 if (rdev->desc->n_voltages)
2227 return rdev->desc->n_voltages;
2232 return regulator_count_voltages(rdev->supply);
2234 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2237 * regulator_list_voltage - enumerate supported voltages
2238 * @regulator: regulator source
2239 * @selector: identify voltage to list
2240 * Context: can sleep
2242 * Returns a voltage that can be passed to @regulator_set_voltage(),
2243 * zero if this selector code can't be used on this system, or a
2246 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2248 struct regulator_dev *rdev = regulator->rdev;
2249 const struct regulator_ops *ops = rdev->desc->ops;
2252 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2253 return rdev->desc->fixed_uV;
2255 if (ops->list_voltage) {
2256 if (selector >= rdev->desc->n_voltages)
2258 mutex_lock(&rdev->mutex);
2259 ret = ops->list_voltage(rdev, selector);
2260 mutex_unlock(&rdev->mutex);
2261 } else if (rdev->supply) {
2262 ret = regulator_list_voltage(rdev->supply, selector);
2268 if (ret < rdev->constraints->min_uV)
2270 else if (ret > rdev->constraints->max_uV)
2276 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2279 * regulator_get_regmap - get the regulator's register map
2280 * @regulator: regulator source
2282 * Returns the register map for the given regulator, or an ERR_PTR value
2283 * if the regulator doesn't use regmap.
2285 struct regmap *regulator_get_regmap(struct regulator *regulator)
2287 struct regmap *map = regulator->rdev->regmap;
2289 return map ? map : ERR_PTR(-EOPNOTSUPP);
2293 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2294 * @regulator: regulator source
2295 * @vsel_reg: voltage selector register, output parameter
2296 * @vsel_mask: mask for voltage selector bitfield, output parameter
2298 * Returns the hardware register offset and bitmask used for setting the
2299 * regulator voltage. This might be useful when configuring voltage-scaling
2300 * hardware or firmware that can make I2C requests behind the kernel's back,
2303 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2304 * and 0 is returned, otherwise a negative errno is returned.
2306 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2308 unsigned *vsel_mask)
2310 struct regulator_dev *rdev = regulator->rdev;
2311 struct regulator_ops *ops = rdev->desc->ops;
2313 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2316 *vsel_reg = rdev->desc->vsel_reg;
2317 *vsel_mask = rdev->desc->vsel_mask;
2321 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2324 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2325 * @regulator: regulator source
2326 * @selector: identify voltage to list
2328 * Converts the selector to a hardware-specific voltage selector that can be
2329 * directly written to the regulator registers. The address of the voltage
2330 * register can be determined by calling @regulator_get_hardware_vsel_register.
2332 * On error a negative errno is returned.
2334 int regulator_list_hardware_vsel(struct regulator *regulator,
2337 struct regulator_dev *rdev = regulator->rdev;
2338 struct regulator_ops *ops = rdev->desc->ops;
2340 if (selector >= rdev->desc->n_voltages)
2342 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2347 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2350 * regulator_get_linear_step - return the voltage step size between VSEL values
2351 * @regulator: regulator source
2353 * Returns the voltage step size between VSEL values for linear
2354 * regulators, or return 0 if the regulator isn't a linear regulator.
2356 unsigned int regulator_get_linear_step(struct regulator *regulator)
2358 struct regulator_dev *rdev = regulator->rdev;
2360 return rdev->desc->uV_step;
2362 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2365 * regulator_is_supported_voltage - check if a voltage range can be supported
2367 * @regulator: Regulator to check.
2368 * @min_uV: Minimum required voltage in uV.
2369 * @max_uV: Maximum required voltage in uV.
2371 * Returns a boolean or a negative error code.
2373 int regulator_is_supported_voltage(struct regulator *regulator,
2374 int min_uV, int max_uV)
2376 struct regulator_dev *rdev = regulator->rdev;
2377 int i, voltages, ret;
2379 /* If we can't change voltage check the current voltage */
2380 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2381 ret = regulator_get_voltage(regulator);
2383 return min_uV <= ret && ret <= max_uV;
2388 /* Any voltage within constrains range is fine? */
2389 if (rdev->desc->continuous_voltage_range)
2390 return min_uV >= rdev->constraints->min_uV &&
2391 max_uV <= rdev->constraints->max_uV;
2393 ret = regulator_count_voltages(regulator);
2398 for (i = 0; i < voltages; i++) {
2399 ret = regulator_list_voltage(regulator, i);
2401 if (ret >= min_uV && ret <= max_uV)
2407 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2409 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2410 int min_uV, int max_uV)
2415 unsigned int selector;
2416 int old_selector = -1;
2418 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2420 min_uV += rdev->constraints->uV_offset;
2421 max_uV += rdev->constraints->uV_offset;
2424 * If we can't obtain the old selector there is not enough
2425 * info to call set_voltage_time_sel().
2427 if (_regulator_is_enabled(rdev) &&
2428 rdev->desc->ops->set_voltage_time_sel &&
2429 rdev->desc->ops->get_voltage_sel) {
2430 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2431 if (old_selector < 0)
2432 return old_selector;
2435 if (rdev->desc->ops->set_voltage) {
2436 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2440 if (rdev->desc->ops->list_voltage)
2441 best_val = rdev->desc->ops->list_voltage(rdev,
2444 best_val = _regulator_get_voltage(rdev);
2447 } else if (rdev->desc->ops->set_voltage_sel) {
2448 if (rdev->desc->ops->map_voltage) {
2449 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2452 if (rdev->desc->ops->list_voltage ==
2453 regulator_list_voltage_linear)
2454 ret = regulator_map_voltage_linear(rdev,
2456 else if (rdev->desc->ops->list_voltage ==
2457 regulator_list_voltage_linear_range)
2458 ret = regulator_map_voltage_linear_range(rdev,
2461 ret = regulator_map_voltage_iterate(rdev,
2466 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2467 if (min_uV <= best_val && max_uV >= best_val) {
2469 if (old_selector == selector)
2472 ret = rdev->desc->ops->set_voltage_sel(
2482 /* Call set_voltage_time_sel if successfully obtained old_selector */
2483 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2484 && old_selector != selector) {
2486 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2487 old_selector, selector);
2489 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2494 /* Insert any necessary delays */
2495 if (delay >= 1000) {
2496 mdelay(delay / 1000);
2497 udelay(delay % 1000);
2503 if (ret == 0 && best_val >= 0) {
2504 unsigned long data = best_val;
2506 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2510 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2516 * regulator_set_voltage - set regulator output voltage
2517 * @regulator: regulator source
2518 * @min_uV: Minimum required voltage in uV
2519 * @max_uV: Maximum acceptable voltage in uV
2521 * Sets a voltage regulator to the desired output voltage. This can be set
2522 * during any regulator state. IOW, regulator can be disabled or enabled.
2524 * If the regulator is enabled then the voltage will change to the new value
2525 * immediately otherwise if the regulator is disabled the regulator will
2526 * output at the new voltage when enabled.
2528 * NOTE: If the regulator is shared between several devices then the lowest
2529 * request voltage that meets the system constraints will be used.
2530 * Regulator system constraints must be set for this regulator before
2531 * calling this function otherwise this call will fail.
2533 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2535 struct regulator_dev *rdev = regulator->rdev;
2537 int old_min_uV, old_max_uV;
2540 mutex_lock(&rdev->mutex);
2542 /* If we're setting the same range as last time the change
2543 * should be a noop (some cpufreq implementations use the same
2544 * voltage for multiple frequencies, for example).
2546 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2549 /* If we're trying to set a range that overlaps the current voltage,
2550 * return succesfully even though the regulator does not support
2551 * changing the voltage.
2553 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2554 current_uV = _regulator_get_voltage(rdev);
2555 if (min_uV <= current_uV && current_uV <= max_uV) {
2556 regulator->min_uV = min_uV;
2557 regulator->max_uV = max_uV;
2563 if (!rdev->desc->ops->set_voltage &&
2564 !rdev->desc->ops->set_voltage_sel) {
2569 /* constraints check */
2570 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2574 /* restore original values in case of error */
2575 old_min_uV = regulator->min_uV;
2576 old_max_uV = regulator->max_uV;
2577 regulator->min_uV = min_uV;
2578 regulator->max_uV = max_uV;
2580 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2584 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2589 mutex_unlock(&rdev->mutex);
2592 regulator->min_uV = old_min_uV;
2593 regulator->max_uV = old_max_uV;
2594 mutex_unlock(&rdev->mutex);
2597 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2600 * regulator_set_voltage_time - get raise/fall time
2601 * @regulator: regulator source
2602 * @old_uV: starting voltage in microvolts
2603 * @new_uV: target voltage in microvolts
2605 * Provided with the starting and ending voltage, this function attempts to
2606 * calculate the time in microseconds required to rise or fall to this new
2609 int regulator_set_voltage_time(struct regulator *regulator,
2610 int old_uV, int new_uV)
2612 struct regulator_dev *rdev = regulator->rdev;
2613 const struct regulator_ops *ops = rdev->desc->ops;
2619 /* Currently requires operations to do this */
2620 if (!ops->list_voltage || !ops->set_voltage_time_sel
2621 || !rdev->desc->n_voltages)
2624 for (i = 0; i < rdev->desc->n_voltages; i++) {
2625 /* We only look for exact voltage matches here */
2626 voltage = regulator_list_voltage(regulator, i);
2631 if (voltage == old_uV)
2633 if (voltage == new_uV)
2637 if (old_sel < 0 || new_sel < 0)
2640 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2642 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2645 * regulator_set_voltage_time_sel - get raise/fall time
2646 * @rdev: regulator source device
2647 * @old_selector: selector for starting voltage
2648 * @new_selector: selector for target voltage
2650 * Provided with the starting and target voltage selectors, this function
2651 * returns time in microseconds required to rise or fall to this new voltage
2653 * Drivers providing ramp_delay in regulation_constraints can use this as their
2654 * set_voltage_time_sel() operation.
2656 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2657 unsigned int old_selector,
2658 unsigned int new_selector)
2660 unsigned int ramp_delay = 0;
2661 int old_volt, new_volt;
2663 if (rdev->constraints->ramp_delay)
2664 ramp_delay = rdev->constraints->ramp_delay;
2665 else if (rdev->desc->ramp_delay)
2666 ramp_delay = rdev->desc->ramp_delay;
2668 if (ramp_delay == 0) {
2669 rdev_warn(rdev, "ramp_delay not set\n");
2674 if (!rdev->desc->ops->list_voltage)
2677 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2678 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2680 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2682 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2685 * regulator_sync_voltage - re-apply last regulator output voltage
2686 * @regulator: regulator source
2688 * Re-apply the last configured voltage. This is intended to be used
2689 * where some external control source the consumer is cooperating with
2690 * has caused the configured voltage to change.
2692 int regulator_sync_voltage(struct regulator *regulator)
2694 struct regulator_dev *rdev = regulator->rdev;
2695 int ret, min_uV, max_uV;
2697 mutex_lock(&rdev->mutex);
2699 if (!rdev->desc->ops->set_voltage &&
2700 !rdev->desc->ops->set_voltage_sel) {
2705 /* This is only going to work if we've had a voltage configured. */
2706 if (!regulator->min_uV && !regulator->max_uV) {
2711 min_uV = regulator->min_uV;
2712 max_uV = regulator->max_uV;
2714 /* This should be a paranoia check... */
2715 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2719 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2723 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2726 mutex_unlock(&rdev->mutex);
2729 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2731 static int _regulator_get_voltage(struct regulator_dev *rdev)
2735 if (rdev->desc->ops->get_voltage_sel) {
2736 sel = rdev->desc->ops->get_voltage_sel(rdev);
2739 ret = rdev->desc->ops->list_voltage(rdev, sel);
2740 } else if (rdev->desc->ops->get_voltage) {
2741 ret = rdev->desc->ops->get_voltage(rdev);
2742 } else if (rdev->desc->ops->list_voltage) {
2743 ret = rdev->desc->ops->list_voltage(rdev, 0);
2744 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2745 ret = rdev->desc->fixed_uV;
2746 } else if (rdev->supply) {
2747 ret = regulator_get_voltage(rdev->supply);
2754 return ret - rdev->constraints->uV_offset;
2758 * regulator_get_voltage - get regulator output voltage
2759 * @regulator: regulator source
2761 * This returns the current regulator voltage in uV.
2763 * NOTE: If the regulator is disabled it will return the voltage value. This
2764 * function should not be used to determine regulator state.
2766 int regulator_get_voltage(struct regulator *regulator)
2770 mutex_lock(®ulator->rdev->mutex);
2772 ret = _regulator_get_voltage(regulator->rdev);
2774 mutex_unlock(®ulator->rdev->mutex);
2778 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2781 * regulator_set_current_limit - set regulator output current limit
2782 * @regulator: regulator source
2783 * @min_uA: Minimum supported current in uA
2784 * @max_uA: Maximum supported current in uA
2786 * Sets current sink to the desired output current. This can be set during
2787 * any regulator state. IOW, regulator can be disabled or enabled.
2789 * If the regulator is enabled then the current will change to the new value
2790 * immediately otherwise if the regulator is disabled the regulator will
2791 * output at the new current when enabled.
2793 * NOTE: Regulator system constraints must be set for this regulator before
2794 * calling this function otherwise this call will fail.
2796 int regulator_set_current_limit(struct regulator *regulator,
2797 int min_uA, int max_uA)
2799 struct regulator_dev *rdev = regulator->rdev;
2802 mutex_lock(&rdev->mutex);
2805 if (!rdev->desc->ops->set_current_limit) {
2810 /* constraints check */
2811 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2815 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2817 mutex_unlock(&rdev->mutex);
2820 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2822 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2826 mutex_lock(&rdev->mutex);
2829 if (!rdev->desc->ops->get_current_limit) {
2834 ret = rdev->desc->ops->get_current_limit(rdev);
2836 mutex_unlock(&rdev->mutex);
2841 * regulator_get_current_limit - get regulator output current
2842 * @regulator: regulator source
2844 * This returns the current supplied by the specified current sink in uA.
2846 * NOTE: If the regulator is disabled it will return the current value. This
2847 * function should not be used to determine regulator state.
2849 int regulator_get_current_limit(struct regulator *regulator)
2851 return _regulator_get_current_limit(regulator->rdev);
2853 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2856 * regulator_set_mode - set regulator operating mode
2857 * @regulator: regulator source
2858 * @mode: operating mode - one of the REGULATOR_MODE constants
2860 * Set regulator operating mode to increase regulator efficiency or improve
2861 * regulation performance.
2863 * NOTE: Regulator system constraints must be set for this regulator before
2864 * calling this function otherwise this call will fail.
2866 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2868 struct regulator_dev *rdev = regulator->rdev;
2870 int regulator_curr_mode;
2872 mutex_lock(&rdev->mutex);
2875 if (!rdev->desc->ops->set_mode) {
2880 /* return if the same mode is requested */
2881 if (rdev->desc->ops->get_mode) {
2882 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2883 if (regulator_curr_mode == mode) {
2889 /* constraints check */
2890 ret = regulator_mode_constrain(rdev, &mode);
2894 ret = rdev->desc->ops->set_mode(rdev, mode);
2896 mutex_unlock(&rdev->mutex);
2899 EXPORT_SYMBOL_GPL(regulator_set_mode);
2901 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2905 mutex_lock(&rdev->mutex);
2908 if (!rdev->desc->ops->get_mode) {
2913 ret = rdev->desc->ops->get_mode(rdev);
2915 mutex_unlock(&rdev->mutex);
2920 * regulator_get_mode - get regulator operating mode
2921 * @regulator: regulator source
2923 * Get the current regulator operating mode.
2925 unsigned int regulator_get_mode(struct regulator *regulator)
2927 return _regulator_get_mode(regulator->rdev);
2929 EXPORT_SYMBOL_GPL(regulator_get_mode);
2932 * regulator_set_optimum_mode - set regulator optimum operating mode
2933 * @regulator: regulator source
2934 * @uA_load: load current
2936 * Notifies the regulator core of a new device load. This is then used by
2937 * DRMS (if enabled by constraints) to set the most efficient regulator
2938 * operating mode for the new regulator loading.
2940 * Consumer devices notify their supply regulator of the maximum power
2941 * they will require (can be taken from device datasheet in the power
2942 * consumption tables) when they change operational status and hence power
2943 * state. Examples of operational state changes that can affect power
2944 * consumption are :-
2946 * o Device is opened / closed.
2947 * o Device I/O is about to begin or has just finished.
2948 * o Device is idling in between work.
2950 * This information is also exported via sysfs to userspace.
2952 * DRMS will sum the total requested load on the regulator and change
2953 * to the most efficient operating mode if platform constraints allow.
2955 * Returns the new regulator mode or error.
2957 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2959 struct regulator_dev *rdev = regulator->rdev;
2960 struct regulator *consumer;
2961 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2965 input_uV = regulator_get_voltage(rdev->supply);
2967 mutex_lock(&rdev->mutex);
2970 * first check to see if we can set modes at all, otherwise just
2971 * tell the consumer everything is OK.
2973 regulator->uA_load = uA_load;
2974 ret = regulator_check_drms(rdev);
2980 if (!rdev->desc->ops->get_optimum_mode)
2984 * we can actually do this so any errors are indicators of
2985 * potential real failure.
2989 if (!rdev->desc->ops->set_mode)
2992 /* get output voltage */
2993 output_uV = _regulator_get_voltage(rdev);
2994 if (output_uV <= 0) {
2995 rdev_err(rdev, "invalid output voltage found\n");
2999 /* No supply? Use constraint voltage */
3001 input_uV = rdev->constraints->input_uV;
3002 if (input_uV <= 0) {
3003 rdev_err(rdev, "invalid input voltage found\n");
3007 /* calc total requested load for this regulator */
3008 list_for_each_entry(consumer, &rdev->consumer_list, list)
3009 total_uA_load += consumer->uA_load;
3011 mode = rdev->desc->ops->get_optimum_mode(rdev,
3012 input_uV, output_uV,
3014 ret = regulator_mode_constrain(rdev, &mode);
3016 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
3017 total_uA_load, input_uV, output_uV);
3021 ret = rdev->desc->ops->set_mode(rdev, mode);
3023 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
3028 mutex_unlock(&rdev->mutex);
3031 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3034 * regulator_allow_bypass - allow the regulator to go into bypass mode
3036 * @regulator: Regulator to configure
3037 * @enable: enable or disable bypass mode
3039 * Allow the regulator to go into bypass mode if all other consumers
3040 * for the regulator also enable bypass mode and the machine
3041 * constraints allow this. Bypass mode means that the regulator is
3042 * simply passing the input directly to the output with no regulation.
3044 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3046 struct regulator_dev *rdev = regulator->rdev;
3049 if (!rdev->desc->ops->set_bypass)
3052 if (rdev->constraints &&
3053 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3056 mutex_lock(&rdev->mutex);
3058 if (enable && !regulator->bypass) {
3059 rdev->bypass_count++;
3061 if (rdev->bypass_count == rdev->open_count) {
3062 ret = rdev->desc->ops->set_bypass(rdev, enable);
3064 rdev->bypass_count--;
3067 } else if (!enable && regulator->bypass) {
3068 rdev->bypass_count--;
3070 if (rdev->bypass_count != rdev->open_count) {
3071 ret = rdev->desc->ops->set_bypass(rdev, enable);
3073 rdev->bypass_count++;
3078 regulator->bypass = enable;
3080 mutex_unlock(&rdev->mutex);
3084 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3087 * regulator_register_notifier - register regulator event notifier
3088 * @regulator: regulator source
3089 * @nb: notifier block
3091 * Register notifier block to receive regulator events.
3093 int regulator_register_notifier(struct regulator *regulator,
3094 struct notifier_block *nb)
3096 return blocking_notifier_chain_register(®ulator->rdev->notifier,
3099 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3102 * regulator_unregister_notifier - unregister regulator event notifier
3103 * @regulator: regulator source
3104 * @nb: notifier block
3106 * Unregister regulator event notifier block.
3108 int regulator_unregister_notifier(struct regulator *regulator,
3109 struct notifier_block *nb)
3111 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
3114 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3116 /* notify regulator consumers and downstream regulator consumers.
3117 * Note mutex must be held by caller.
3119 static void _notifier_call_chain(struct regulator_dev *rdev,
3120 unsigned long event, void *data)
3122 /* call rdev chain first */
3123 blocking_notifier_call_chain(&rdev->notifier, event, data);
3127 * regulator_bulk_get - get multiple regulator consumers
3129 * @dev: Device to supply
3130 * @num_consumers: Number of consumers to register
3131 * @consumers: Configuration of consumers; clients are stored here.
3133 * @return 0 on success, an errno on failure.
3135 * This helper function allows drivers to get several regulator
3136 * consumers in one operation. If any of the regulators cannot be
3137 * acquired then any regulators that were allocated will be freed
3138 * before returning to the caller.
3140 int regulator_bulk_get(struct device *dev, int num_consumers,
3141 struct regulator_bulk_data *consumers)
3146 for (i = 0; i < num_consumers; i++)
3147 consumers[i].consumer = NULL;
3149 for (i = 0; i < num_consumers; i++) {
3150 consumers[i].consumer = regulator_get(dev,
3151 consumers[i].supply);
3152 if (IS_ERR(consumers[i].consumer)) {
3153 ret = PTR_ERR(consumers[i].consumer);
3154 dev_err(dev, "Failed to get supply '%s': %d\n",
3155 consumers[i].supply, ret);
3156 consumers[i].consumer = NULL;
3165 regulator_put(consumers[i].consumer);
3169 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3171 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3173 struct regulator_bulk_data *bulk = data;
3175 bulk->ret = regulator_enable(bulk->consumer);
3179 * regulator_bulk_enable - enable multiple regulator consumers
3181 * @num_consumers: Number of consumers
3182 * @consumers: Consumer data; clients are stored here.
3183 * @return 0 on success, an errno on failure
3185 * This convenience API allows consumers to enable multiple regulator
3186 * clients in a single API call. If any consumers cannot be enabled
3187 * then any others that were enabled will be disabled again prior to
3190 int regulator_bulk_enable(int num_consumers,
3191 struct regulator_bulk_data *consumers)
3193 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3197 for (i = 0; i < num_consumers; i++) {
3198 if (consumers[i].consumer->always_on)
3199 consumers[i].ret = 0;
3201 async_schedule_domain(regulator_bulk_enable_async,
3202 &consumers[i], &async_domain);
3205 async_synchronize_full_domain(&async_domain);
3207 /* If any consumer failed we need to unwind any that succeeded */
3208 for (i = 0; i < num_consumers; i++) {
3209 if (consumers[i].ret != 0) {
3210 ret = consumers[i].ret;
3218 for (i = 0; i < num_consumers; i++) {
3219 if (consumers[i].ret < 0)
3220 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3223 regulator_disable(consumers[i].consumer);
3228 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3231 * regulator_bulk_disable - disable multiple regulator consumers
3233 * @num_consumers: Number of consumers
3234 * @consumers: Consumer data; clients are stored here.
3235 * @return 0 on success, an errno on failure
3237 * This convenience API allows consumers to disable multiple regulator
3238 * clients in a single API call. If any consumers cannot be disabled
3239 * then any others that were disabled will be enabled again prior to
3242 int regulator_bulk_disable(int num_consumers,
3243 struct regulator_bulk_data *consumers)
3248 for (i = num_consumers - 1; i >= 0; --i) {
3249 ret = regulator_disable(consumers[i].consumer);
3257 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3258 for (++i; i < num_consumers; ++i) {
3259 r = regulator_enable(consumers[i].consumer);
3261 pr_err("Failed to reename %s: %d\n",
3262 consumers[i].supply, r);
3267 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3270 * regulator_bulk_force_disable - force disable multiple regulator consumers
3272 * @num_consumers: Number of consumers
3273 * @consumers: Consumer data; clients are stored here.
3274 * @return 0 on success, an errno on failure
3276 * This convenience API allows consumers to forcibly disable multiple regulator
3277 * clients in a single API call.
3278 * NOTE: This should be used for situations when device damage will
3279 * likely occur if the regulators are not disabled (e.g. over temp).
3280 * Although regulator_force_disable function call for some consumers can
3281 * return error numbers, the function is called for all consumers.
3283 int regulator_bulk_force_disable(int num_consumers,
3284 struct regulator_bulk_data *consumers)
3289 for (i = 0; i < num_consumers; i++)
3291 regulator_force_disable(consumers[i].consumer);
3293 for (i = 0; i < num_consumers; i++) {
3294 if (consumers[i].ret != 0) {
3295 ret = consumers[i].ret;
3304 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3307 * regulator_bulk_free - free multiple regulator consumers
3309 * @num_consumers: Number of consumers
3310 * @consumers: Consumer data; clients are stored here.
3312 * This convenience API allows consumers to free multiple regulator
3313 * clients in a single API call.
3315 void regulator_bulk_free(int num_consumers,
3316 struct regulator_bulk_data *consumers)
3320 for (i = 0; i < num_consumers; i++) {
3321 regulator_put(consumers[i].consumer);
3322 consumers[i].consumer = NULL;
3325 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3328 * regulator_notifier_call_chain - call regulator event notifier
3329 * @rdev: regulator source
3330 * @event: notifier block
3331 * @data: callback-specific data.
3333 * Called by regulator drivers to notify clients a regulator event has
3334 * occurred. We also notify regulator clients downstream.
3335 * Note lock must be held by caller.
3337 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3338 unsigned long event, void *data)
3340 _notifier_call_chain(rdev, event, data);
3344 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3347 * regulator_mode_to_status - convert a regulator mode into a status
3349 * @mode: Mode to convert
3351 * Convert a regulator mode into a status.
3353 int regulator_mode_to_status(unsigned int mode)
3356 case REGULATOR_MODE_FAST:
3357 return REGULATOR_STATUS_FAST;
3358 case REGULATOR_MODE_NORMAL:
3359 return REGULATOR_STATUS_NORMAL;
3360 case REGULATOR_MODE_IDLE:
3361 return REGULATOR_STATUS_IDLE;
3362 case REGULATOR_MODE_STANDBY:
3363 return REGULATOR_STATUS_STANDBY;
3365 return REGULATOR_STATUS_UNDEFINED;
3368 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3371 * To avoid cluttering sysfs (and memory) with useless state, only
3372 * create attributes that can be meaningfully displayed.
3374 static int add_regulator_attributes(struct regulator_dev *rdev)
3376 struct device *dev = &rdev->dev;
3377 const struct regulator_ops *ops = rdev->desc->ops;
3380 /* some attributes need specific methods to be displayed */
3381 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3382 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3383 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3384 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3385 status = device_create_file(dev, &dev_attr_microvolts);
3389 if (ops->get_current_limit) {
3390 status = device_create_file(dev, &dev_attr_microamps);
3394 if (ops->get_mode) {
3395 status = device_create_file(dev, &dev_attr_opmode);
3399 if (rdev->ena_pin || ops->is_enabled) {
3400 status = device_create_file(dev, &dev_attr_state);
3404 if (ops->get_status) {
3405 status = device_create_file(dev, &dev_attr_status);
3409 if (ops->get_bypass) {
3410 status = device_create_file(dev, &dev_attr_bypass);
3415 /* some attributes are type-specific */
3416 if (rdev->desc->type == REGULATOR_CURRENT) {
3417 status = device_create_file(dev, &dev_attr_requested_microamps);
3422 /* all the other attributes exist to support constraints;
3423 * don't show them if there are no constraints, or if the
3424 * relevant supporting methods are missing.
3426 if (!rdev->constraints)
3429 /* constraints need specific supporting methods */
3430 if (ops->set_voltage || ops->set_voltage_sel) {
3431 status = device_create_file(dev, &dev_attr_min_microvolts);
3434 status = device_create_file(dev, &dev_attr_max_microvolts);
3438 if (ops->set_current_limit) {
3439 status = device_create_file(dev, &dev_attr_min_microamps);
3442 status = device_create_file(dev, &dev_attr_max_microamps);
3447 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3450 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3453 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3457 if (ops->set_suspend_voltage) {
3458 status = device_create_file(dev,
3459 &dev_attr_suspend_standby_microvolts);
3462 status = device_create_file(dev,
3463 &dev_attr_suspend_mem_microvolts);
3466 status = device_create_file(dev,
3467 &dev_attr_suspend_disk_microvolts);
3472 if (ops->set_suspend_mode) {
3473 status = device_create_file(dev,
3474 &dev_attr_suspend_standby_mode);
3477 status = device_create_file(dev,
3478 &dev_attr_suspend_mem_mode);
3481 status = device_create_file(dev,
3482 &dev_attr_suspend_disk_mode);
3490 static void rdev_init_debugfs(struct regulator_dev *rdev)
3492 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3493 if (!rdev->debugfs) {
3494 rdev_warn(rdev, "Failed to create debugfs directory\n");
3498 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3500 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3502 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3503 &rdev->bypass_count);
3507 * regulator_register - register regulator
3508 * @regulator_desc: regulator to register
3509 * @config: runtime configuration for regulator
3511 * Called by regulator drivers to register a regulator.
3512 * Returns a valid pointer to struct regulator_dev on success
3513 * or an ERR_PTR() on error.
3515 struct regulator_dev *
3516 regulator_register(const struct regulator_desc *regulator_desc,
3517 const struct regulator_config *config)
3519 const struct regulation_constraints *constraints = NULL;
3520 const struct regulator_init_data *init_data;
3521 static atomic_t regulator_no = ATOMIC_INIT(0);
3522 struct regulator_dev *rdev;
3525 const char *supply = NULL;
3527 if (regulator_desc == NULL || config == NULL)
3528 return ERR_PTR(-EINVAL);
3533 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3534 return ERR_PTR(-EINVAL);
3536 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3537 regulator_desc->type != REGULATOR_CURRENT)
3538 return ERR_PTR(-EINVAL);
3540 /* Only one of each should be implemented */
3541 WARN_ON(regulator_desc->ops->get_voltage &&
3542 regulator_desc->ops->get_voltage_sel);
3543 WARN_ON(regulator_desc->ops->set_voltage &&
3544 regulator_desc->ops->set_voltage_sel);
3546 /* If we're using selectors we must implement list_voltage. */
3547 if (regulator_desc->ops->get_voltage_sel &&
3548 !regulator_desc->ops->list_voltage) {
3549 return ERR_PTR(-EINVAL);
3551 if (regulator_desc->ops->set_voltage_sel &&
3552 !regulator_desc->ops->list_voltage) {
3553 return ERR_PTR(-EINVAL);
3556 init_data = config->init_data;
3558 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3560 return ERR_PTR(-ENOMEM);
3562 mutex_lock(®ulator_list_mutex);
3564 mutex_init(&rdev->mutex);
3565 rdev->reg_data = config->driver_data;
3566 rdev->owner = regulator_desc->owner;
3567 rdev->desc = regulator_desc;
3569 rdev->regmap = config->regmap;
3570 else if (dev_get_regmap(dev, NULL))
3571 rdev->regmap = dev_get_regmap(dev, NULL);
3572 else if (dev->parent)
3573 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3574 INIT_LIST_HEAD(&rdev->consumer_list);
3575 INIT_LIST_HEAD(&rdev->list);
3576 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3577 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3579 /* preform any regulator specific init */
3580 if (init_data && init_data->regulator_init) {
3581 ret = init_data->regulator_init(rdev->reg_data);
3586 /* register with sysfs */
3587 rdev->dev.class = ®ulator_class;
3588 rdev->dev.of_node = of_node_get(config->of_node);
3589 rdev->dev.parent = dev;
3590 dev_set_name(&rdev->dev, "regulator.%d",
3591 atomic_inc_return(®ulator_no) - 1);
3592 ret = device_register(&rdev->dev);
3594 put_device(&rdev->dev);
3598 dev_set_drvdata(&rdev->dev, rdev);
3600 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3601 ret = regulator_ena_gpio_request(rdev, config);
3603 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3604 config->ena_gpio, ret);
3608 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3609 rdev->ena_gpio_state = 1;
3611 if (config->ena_gpio_invert)
3612 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3615 /* set regulator constraints */
3617 constraints = &init_data->constraints;
3619 ret = set_machine_constraints(rdev, constraints);
3623 /* add attributes supported by this regulator */
3624 ret = add_regulator_attributes(rdev);
3628 if (init_data && init_data->supply_regulator)
3629 supply = init_data->supply_regulator;
3630 else if (regulator_desc->supply_name)
3631 supply = regulator_desc->supply_name;
3634 struct regulator_dev *r;
3636 r = regulator_dev_lookup(dev, supply, &ret);
3638 if (ret == -ENODEV) {
3640 * No supply was specified for this regulator and
3641 * there will never be one.
3646 dev_err(dev, "Failed to find supply %s\n", supply);
3647 ret = -EPROBE_DEFER;
3651 ret = set_supply(rdev, r);
3655 /* Enable supply if rail is enabled */
3656 if (_regulator_is_enabled(rdev)) {
3657 ret = regulator_enable(rdev->supply);
3664 /* add consumers devices */
3666 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3667 ret = set_consumer_device_supply(rdev,
3668 init_data->consumer_supplies[i].dev_name,
3669 init_data->consumer_supplies[i].supply);
3671 dev_err(dev, "Failed to set supply %s\n",
3672 init_data->consumer_supplies[i].supply);
3673 goto unset_supplies;
3678 list_add(&rdev->list, ®ulator_list);
3680 rdev_init_debugfs(rdev);
3682 mutex_unlock(®ulator_list_mutex);
3686 unset_regulator_supplies(rdev);
3690 _regulator_put(rdev->supply);
3691 regulator_ena_gpio_free(rdev);
3692 kfree(rdev->constraints);
3694 device_unregister(&rdev->dev);
3695 /* device core frees rdev */
3696 rdev = ERR_PTR(ret);
3701 rdev = ERR_PTR(ret);
3704 EXPORT_SYMBOL_GPL(regulator_register);
3707 * regulator_unregister - unregister regulator
3708 * @rdev: regulator to unregister
3710 * Called by regulator drivers to unregister a regulator.
3712 void regulator_unregister(struct regulator_dev *rdev)
3718 while (rdev->use_count--)
3719 regulator_disable(rdev->supply);
3720 regulator_put(rdev->supply);
3722 mutex_lock(®ulator_list_mutex);
3723 debugfs_remove_recursive(rdev->debugfs);
3724 flush_work(&rdev->disable_work.work);
3725 WARN_ON(rdev->open_count);
3726 unset_regulator_supplies(rdev);
3727 list_del(&rdev->list);
3728 kfree(rdev->constraints);
3729 regulator_ena_gpio_free(rdev);
3730 of_node_put(rdev->dev.of_node);
3731 device_unregister(&rdev->dev);
3732 mutex_unlock(®ulator_list_mutex);
3734 EXPORT_SYMBOL_GPL(regulator_unregister);
3737 * regulator_suspend_prepare - prepare regulators for system wide suspend
3738 * @state: system suspend state
3740 * Configure each regulator with it's suspend operating parameters for state.
3741 * This will usually be called by machine suspend code prior to supending.
3743 int regulator_suspend_prepare(suspend_state_t state)
3745 struct regulator_dev *rdev;
3748 /* ON is handled by regulator active state */
3749 if (state == PM_SUSPEND_ON)
3752 mutex_lock(®ulator_list_mutex);
3753 list_for_each_entry(rdev, ®ulator_list, list) {
3755 mutex_lock(&rdev->mutex);
3756 ret = suspend_prepare(rdev, state);
3757 mutex_unlock(&rdev->mutex);
3760 rdev_err(rdev, "failed to prepare\n");
3765 mutex_unlock(®ulator_list_mutex);
3768 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3771 * regulator_suspend_finish - resume regulators from system wide suspend
3773 * Turn on regulators that might be turned off by regulator_suspend_prepare
3774 * and that should be turned on according to the regulators properties.
3776 int regulator_suspend_finish(void)
3778 struct regulator_dev *rdev;
3781 mutex_lock(®ulator_list_mutex);
3782 list_for_each_entry(rdev, ®ulator_list, list) {
3783 mutex_lock(&rdev->mutex);
3784 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3785 error = _regulator_do_enable(rdev);
3789 if (!have_full_constraints())
3791 if (!_regulator_is_enabled(rdev))
3794 error = _regulator_do_disable(rdev);
3799 mutex_unlock(&rdev->mutex);
3801 mutex_unlock(®ulator_list_mutex);
3804 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3807 * regulator_has_full_constraints - the system has fully specified constraints
3809 * Calling this function will cause the regulator API to disable all
3810 * regulators which have a zero use count and don't have an always_on
3811 * constraint in a late_initcall.
3813 * The intention is that this will become the default behaviour in a
3814 * future kernel release so users are encouraged to use this facility
3817 void regulator_has_full_constraints(void)
3819 has_full_constraints = 1;
3821 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3824 * rdev_get_drvdata - get rdev regulator driver data
3827 * Get rdev regulator driver private data. This call can be used in the
3828 * regulator driver context.
3830 void *rdev_get_drvdata(struct regulator_dev *rdev)
3832 return rdev->reg_data;
3834 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3837 * regulator_get_drvdata - get regulator driver data
3838 * @regulator: regulator
3840 * Get regulator driver private data. This call can be used in the consumer
3841 * driver context when non API regulator specific functions need to be called.
3843 void *regulator_get_drvdata(struct regulator *regulator)
3845 return regulator->rdev->reg_data;
3847 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3850 * regulator_set_drvdata - set regulator driver data
3851 * @regulator: regulator
3854 void regulator_set_drvdata(struct regulator *regulator, void *data)
3856 regulator->rdev->reg_data = data;
3858 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3861 * regulator_get_id - get regulator ID
3864 int rdev_get_id(struct regulator_dev *rdev)
3866 return rdev->desc->id;
3868 EXPORT_SYMBOL_GPL(rdev_get_id);
3870 struct device *rdev_get_dev(struct regulator_dev *rdev)
3874 EXPORT_SYMBOL_GPL(rdev_get_dev);
3876 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3878 return reg_init_data->driver_data;
3880 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3882 #ifdef CONFIG_DEBUG_FS
3883 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3884 size_t count, loff_t *ppos)
3886 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3887 ssize_t len, ret = 0;
3888 struct regulator_map *map;
3893 list_for_each_entry(map, ®ulator_map_list, list) {
3894 len = snprintf(buf + ret, PAGE_SIZE - ret,
3896 rdev_get_name(map->regulator), map->dev_name,
3900 if (ret > PAGE_SIZE) {
3906 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3914 static const struct file_operations supply_map_fops = {
3915 #ifdef CONFIG_DEBUG_FS
3916 .read = supply_map_read_file,
3917 .llseek = default_llseek,
3921 static int __init regulator_init(void)
3925 ret = class_register(®ulator_class);
3927 debugfs_root = debugfs_create_dir("regulator", NULL);
3929 pr_warn("regulator: Failed to create debugfs directory\n");
3931 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3934 regulator_dummy_init();
3939 /* init early to allow our consumers to complete system booting */
3940 core_initcall(regulator_init);
3942 static int __init regulator_init_complete(void)
3944 struct regulator_dev *rdev;
3945 const struct regulator_ops *ops;
3946 struct regulation_constraints *c;
3950 * Since DT doesn't provide an idiomatic mechanism for
3951 * enabling full constraints and since it's much more natural
3952 * with DT to provide them just assume that a DT enabled
3953 * system has full constraints.
3955 if (of_have_populated_dt())
3956 has_full_constraints = true;
3958 mutex_lock(®ulator_list_mutex);
3960 /* If we have a full configuration then disable any regulators
3961 * we have permission to change the status for and which are
3962 * not in use or always_on. This is effectively the default
3963 * for DT and ACPI as they have full constraints.
3965 list_for_each_entry(rdev, ®ulator_list, list) {
3966 ops = rdev->desc->ops;
3967 c = rdev->constraints;
3969 if (c && c->always_on)
3972 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3975 mutex_lock(&rdev->mutex);
3977 if (rdev->use_count)
3980 /* If we can't read the status assume it's on. */
3981 if (ops->is_enabled)
3982 enabled = ops->is_enabled(rdev);
3989 if (have_full_constraints()) {
3990 /* We log since this may kill the system if it
3992 rdev_info(rdev, "disabling\n");
3993 ret = _regulator_do_disable(rdev);
3995 rdev_err(rdev, "couldn't disable: %d\n", ret);
3997 /* The intention is that in future we will
3998 * assume that full constraints are provided
3999 * so warn even if we aren't going to do
4002 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4006 mutex_unlock(&rdev->mutex);
4009 mutex_unlock(®ulator_list_mutex);
4013 late_initcall_sync(regulator_init_complete);