2 * NSA Security-Enhanced Linux (SELinux) security module
4 * This file contains the SELinux hook function implementations.
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
26 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
53 #include <net/ip.h> /* for local_port_range[] */
55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h> /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/quota.h>
70 #include <linux/un.h> /* for Unix socket types */
71 #include <net/af_unix.h> /* for Unix socket types */
72 #include <linux/parser.h>
73 #include <linux/nfs_mount.h>
75 #include <linux/hugetlb.h>
76 #include <linux/personality.h>
77 #include <linux/audit.h>
78 #include <linux/string.h>
79 #include <linux/selinux.h>
80 #include <linux/mutex.h>
81 #include <linux/posix-timers.h>
82 #include <linux/syslog.h>
83 #include <linux/user_namespace.h>
84 #include <linux/export.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
98 extern struct security_operations *security_ops;
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
106 static int __init enforcing_setup(char *str)
108 unsigned long enforcing;
109 if (!kstrtoul(str, 0, &enforcing))
110 selinux_enforcing = enforcing ? 1 : 0;
113 __setup("enforcing=", enforcing_setup);
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
119 static int __init selinux_enabled_setup(char *str)
121 unsigned long enabled;
122 if (!kstrtoul(str, 0, &enabled))
123 selinux_enabled = enabled ? 1 : 0;
126 __setup("selinux=", selinux_enabled_setup);
128 int selinux_enabled = 1;
131 static struct kmem_cache *sel_inode_cache;
134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
137 * This function checks the SECMARK reference counter to see if any SECMARK
138 * targets are currently configured, if the reference counter is greater than
139 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
140 * enabled, false (0) if SECMARK is disabled. If the always_check_network
141 * policy capability is enabled, SECMARK is always considered enabled.
144 static int selinux_secmark_enabled(void)
146 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
150 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
153 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
154 * (1) if any are enabled or false (0) if neither are enabled. If the
155 * always_check_network policy capability is enabled, peer labeling
156 * is always considered enabled.
159 static int selinux_peerlbl_enabled(void)
161 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
165 * initialise the security for the init task
167 static void cred_init_security(void)
169 struct cred *cred = (struct cred *) current->real_cred;
170 struct task_security_struct *tsec;
172 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
174 panic("SELinux: Failed to initialize initial task.\n");
176 tsec->osid = tsec->sid = SECINITSID_KERNEL;
177 cred->security = tsec;
181 * get the security ID of a set of credentials
183 static inline u32 cred_sid(const struct cred *cred)
185 const struct task_security_struct *tsec;
187 tsec = cred->security;
192 * get the objective security ID of a task
194 static inline u32 task_sid(const struct task_struct *task)
199 sid = cred_sid(__task_cred(task));
205 * get the subjective security ID of the current task
207 static inline u32 current_sid(void)
209 const struct task_security_struct *tsec = current_security();
214 /* Allocate and free functions for each kind of security blob. */
216 static int inode_alloc_security(struct inode *inode)
218 struct inode_security_struct *isec;
219 u32 sid = current_sid();
221 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
225 mutex_init(&isec->lock);
226 INIT_LIST_HEAD(&isec->list);
228 isec->sid = SECINITSID_UNLABELED;
229 isec->sclass = SECCLASS_FILE;
230 isec->task_sid = sid;
231 inode->i_security = isec;
236 static void inode_free_rcu(struct rcu_head *head)
238 struct inode_security_struct *isec;
240 isec = container_of(head, struct inode_security_struct, rcu);
241 kmem_cache_free(sel_inode_cache, isec);
244 static void inode_free_security(struct inode *inode)
246 struct inode_security_struct *isec = inode->i_security;
247 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
249 spin_lock(&sbsec->isec_lock);
250 if (!list_empty(&isec->list))
251 list_del_init(&isec->list);
252 spin_unlock(&sbsec->isec_lock);
255 * The inode may still be referenced in a path walk and
256 * a call to selinux_inode_permission() can be made
257 * after inode_free_security() is called. Ideally, the VFS
258 * wouldn't do this, but fixing that is a much harder
259 * job. For now, simply free the i_security via RCU, and
260 * leave the current inode->i_security pointer intact.
261 * The inode will be freed after the RCU grace period too.
263 call_rcu(&isec->rcu, inode_free_rcu);
266 static int file_alloc_security(struct file *file)
268 struct file_security_struct *fsec;
269 u32 sid = current_sid();
271 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
276 fsec->fown_sid = sid;
277 file->f_security = fsec;
282 static void file_free_security(struct file *file)
284 struct file_security_struct *fsec = file->f_security;
285 file->f_security = NULL;
289 static int superblock_alloc_security(struct super_block *sb)
291 struct superblock_security_struct *sbsec;
293 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
297 mutex_init(&sbsec->lock);
298 INIT_LIST_HEAD(&sbsec->isec_head);
299 spin_lock_init(&sbsec->isec_lock);
301 sbsec->sid = SECINITSID_UNLABELED;
302 sbsec->def_sid = SECINITSID_FILE;
303 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
304 sb->s_security = sbsec;
309 static void superblock_free_security(struct super_block *sb)
311 struct superblock_security_struct *sbsec = sb->s_security;
312 sb->s_security = NULL;
316 /* The file system's label must be initialized prior to use. */
318 static const char *labeling_behaviors[7] = {
320 "uses transition SIDs",
322 "uses genfs_contexts",
323 "not configured for labeling",
324 "uses mountpoint labeling",
325 "uses native labeling",
328 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
330 static inline int inode_doinit(struct inode *inode)
332 return inode_doinit_with_dentry(inode, NULL);
341 Opt_labelsupport = 5,
345 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
347 static const match_table_t tokens = {
348 {Opt_context, CONTEXT_STR "%s"},
349 {Opt_fscontext, FSCONTEXT_STR "%s"},
350 {Opt_defcontext, DEFCONTEXT_STR "%s"},
351 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
352 {Opt_labelsupport, LABELSUPP_STR},
356 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
358 static int may_context_mount_sb_relabel(u32 sid,
359 struct superblock_security_struct *sbsec,
360 const struct cred *cred)
362 const struct task_security_struct *tsec = cred->security;
365 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
366 FILESYSTEM__RELABELFROM, NULL);
370 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
371 FILESYSTEM__RELABELTO, NULL);
375 static int may_context_mount_inode_relabel(u32 sid,
376 struct superblock_security_struct *sbsec,
377 const struct cred *cred)
379 const struct task_security_struct *tsec = cred->security;
381 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
382 FILESYSTEM__RELABELFROM, NULL);
386 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
387 FILESYSTEM__ASSOCIATE, NULL);
391 static int selinux_is_sblabel_mnt(struct super_block *sb)
393 struct superblock_security_struct *sbsec = sb->s_security;
395 if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
396 sbsec->behavior == SECURITY_FS_USE_TRANS ||
397 sbsec->behavior == SECURITY_FS_USE_TASK)
400 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
401 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
405 * Special handling for rootfs. Is genfs but supports
406 * setting SELinux context on in-core inodes.
408 if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
414 static int sb_finish_set_opts(struct super_block *sb)
416 struct superblock_security_struct *sbsec = sb->s_security;
417 struct dentry *root = sb->s_root;
418 struct inode *root_inode = root->d_inode;
421 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
422 /* Make sure that the xattr handler exists and that no
423 error other than -ENODATA is returned by getxattr on
424 the root directory. -ENODATA is ok, as this may be
425 the first boot of the SELinux kernel before we have
426 assigned xattr values to the filesystem. */
427 if (!root_inode->i_op->getxattr) {
428 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
429 "xattr support\n", sb->s_id, sb->s_type->name);
433 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
434 if (rc < 0 && rc != -ENODATA) {
435 if (rc == -EOPNOTSUPP)
436 printk(KERN_WARNING "SELinux: (dev %s, type "
437 "%s) has no security xattr handler\n",
438 sb->s_id, sb->s_type->name);
440 printk(KERN_WARNING "SELinux: (dev %s, type "
441 "%s) getxattr errno %d\n", sb->s_id,
442 sb->s_type->name, -rc);
447 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
448 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
449 sb->s_id, sb->s_type->name);
451 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
452 sb->s_id, sb->s_type->name,
453 labeling_behaviors[sbsec->behavior-1]);
455 sbsec->flags |= SE_SBINITIALIZED;
456 if (selinux_is_sblabel_mnt(sb))
457 sbsec->flags |= SBLABEL_MNT;
459 /* Initialize the root inode. */
460 rc = inode_doinit_with_dentry(root_inode, root);
462 /* Initialize any other inodes associated with the superblock, e.g.
463 inodes created prior to initial policy load or inodes created
464 during get_sb by a pseudo filesystem that directly
466 spin_lock(&sbsec->isec_lock);
468 if (!list_empty(&sbsec->isec_head)) {
469 struct inode_security_struct *isec =
470 list_entry(sbsec->isec_head.next,
471 struct inode_security_struct, list);
472 struct inode *inode = isec->inode;
473 spin_unlock(&sbsec->isec_lock);
474 inode = igrab(inode);
476 if (!IS_PRIVATE(inode))
480 spin_lock(&sbsec->isec_lock);
481 list_del_init(&isec->list);
484 spin_unlock(&sbsec->isec_lock);
490 * This function should allow an FS to ask what it's mount security
491 * options were so it can use those later for submounts, displaying
492 * mount options, or whatever.
494 static int selinux_get_mnt_opts(const struct super_block *sb,
495 struct security_mnt_opts *opts)
498 struct superblock_security_struct *sbsec = sb->s_security;
499 char *context = NULL;
503 security_init_mnt_opts(opts);
505 if (!(sbsec->flags & SE_SBINITIALIZED))
511 /* make sure we always check enough bits to cover the mask */
512 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
514 tmp = sbsec->flags & SE_MNTMASK;
515 /* count the number of mount options for this sb */
516 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
518 opts->num_mnt_opts++;
521 /* Check if the Label support flag is set */
522 if (sbsec->flags & SBLABEL_MNT)
523 opts->num_mnt_opts++;
525 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
526 if (!opts->mnt_opts) {
531 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
532 if (!opts->mnt_opts_flags) {
538 if (sbsec->flags & FSCONTEXT_MNT) {
539 rc = security_sid_to_context(sbsec->sid, &context, &len);
542 opts->mnt_opts[i] = context;
543 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
545 if (sbsec->flags & CONTEXT_MNT) {
546 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
549 opts->mnt_opts[i] = context;
550 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
552 if (sbsec->flags & DEFCONTEXT_MNT) {
553 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
556 opts->mnt_opts[i] = context;
557 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
559 if (sbsec->flags & ROOTCONTEXT_MNT) {
560 struct inode *root = sbsec->sb->s_root->d_inode;
561 struct inode_security_struct *isec = root->i_security;
563 rc = security_sid_to_context(isec->sid, &context, &len);
566 opts->mnt_opts[i] = context;
567 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
569 if (sbsec->flags & SBLABEL_MNT) {
570 opts->mnt_opts[i] = NULL;
571 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
574 BUG_ON(i != opts->num_mnt_opts);
579 security_free_mnt_opts(opts);
583 static int bad_option(struct superblock_security_struct *sbsec, char flag,
584 u32 old_sid, u32 new_sid)
586 char mnt_flags = sbsec->flags & SE_MNTMASK;
588 /* check if the old mount command had the same options */
589 if (sbsec->flags & SE_SBINITIALIZED)
590 if (!(sbsec->flags & flag) ||
591 (old_sid != new_sid))
594 /* check if we were passed the same options twice,
595 * aka someone passed context=a,context=b
597 if (!(sbsec->flags & SE_SBINITIALIZED))
598 if (mnt_flags & flag)
604 * Allow filesystems with binary mount data to explicitly set mount point
605 * labeling information.
607 static int selinux_set_mnt_opts(struct super_block *sb,
608 struct security_mnt_opts *opts,
609 unsigned long kern_flags,
610 unsigned long *set_kern_flags)
612 const struct cred *cred = current_cred();
614 struct superblock_security_struct *sbsec = sb->s_security;
615 const char *name = sb->s_type->name;
616 struct inode *inode = sbsec->sb->s_root->d_inode;
617 struct inode_security_struct *root_isec = inode->i_security;
618 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
619 u32 defcontext_sid = 0;
620 char **mount_options = opts->mnt_opts;
621 int *flags = opts->mnt_opts_flags;
622 int num_opts = opts->num_mnt_opts;
624 mutex_lock(&sbsec->lock);
626 if (!ss_initialized) {
628 /* Defer initialization until selinux_complete_init,
629 after the initial policy is loaded and the security
630 server is ready to handle calls. */
634 printk(KERN_WARNING "SELinux: Unable to set superblock options "
635 "before the security server is initialized\n");
638 if (kern_flags && !set_kern_flags) {
639 /* Specifying internal flags without providing a place to
640 * place the results is not allowed */
646 * Binary mount data FS will come through this function twice. Once
647 * from an explicit call and once from the generic calls from the vfs.
648 * Since the generic VFS calls will not contain any security mount data
649 * we need to skip the double mount verification.
651 * This does open a hole in which we will not notice if the first
652 * mount using this sb set explict options and a second mount using
653 * this sb does not set any security options. (The first options
654 * will be used for both mounts)
656 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
661 * parse the mount options, check if they are valid sids.
662 * also check if someone is trying to mount the same sb more
663 * than once with different security options.
665 for (i = 0; i < num_opts; i++) {
668 if (flags[i] == SBLABEL_MNT)
670 rc = security_context_to_sid(mount_options[i],
671 strlen(mount_options[i]), &sid, GFP_KERNEL);
673 printk(KERN_WARNING "SELinux: security_context_to_sid"
674 "(%s) failed for (dev %s, type %s) errno=%d\n",
675 mount_options[i], sb->s_id, name, rc);
682 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
684 goto out_double_mount;
686 sbsec->flags |= FSCONTEXT_MNT;
691 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
693 goto out_double_mount;
695 sbsec->flags |= CONTEXT_MNT;
697 case ROOTCONTEXT_MNT:
698 rootcontext_sid = sid;
700 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
702 goto out_double_mount;
704 sbsec->flags |= ROOTCONTEXT_MNT;
708 defcontext_sid = sid;
710 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
712 goto out_double_mount;
714 sbsec->flags |= DEFCONTEXT_MNT;
723 if (sbsec->flags & SE_SBINITIALIZED) {
724 /* previously mounted with options, but not on this attempt? */
725 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
726 goto out_double_mount;
731 if (strcmp(sb->s_type->name, "proc") == 0)
732 sbsec->flags |= SE_SBPROC;
734 if (!sbsec->behavior) {
736 * Determine the labeling behavior to use for this
739 rc = security_fs_use(sb);
742 "%s: security_fs_use(%s) returned %d\n",
743 __func__, sb->s_type->name, rc);
747 /* sets the context of the superblock for the fs being mounted. */
749 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
753 sbsec->sid = fscontext_sid;
757 * Switch to using mount point labeling behavior.
758 * sets the label used on all file below the mountpoint, and will set
759 * the superblock context if not already set.
761 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
762 sbsec->behavior = SECURITY_FS_USE_NATIVE;
763 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
767 if (!fscontext_sid) {
768 rc = may_context_mount_sb_relabel(context_sid, sbsec,
772 sbsec->sid = context_sid;
774 rc = may_context_mount_inode_relabel(context_sid, sbsec,
779 if (!rootcontext_sid)
780 rootcontext_sid = context_sid;
782 sbsec->mntpoint_sid = context_sid;
783 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
786 if (rootcontext_sid) {
787 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
792 root_isec->sid = rootcontext_sid;
793 root_isec->initialized = 1;
796 if (defcontext_sid) {
797 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
798 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
800 printk(KERN_WARNING "SELinux: defcontext option is "
801 "invalid for this filesystem type\n");
805 if (defcontext_sid != sbsec->def_sid) {
806 rc = may_context_mount_inode_relabel(defcontext_sid,
812 sbsec->def_sid = defcontext_sid;
815 rc = sb_finish_set_opts(sb);
817 mutex_unlock(&sbsec->lock);
821 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
822 "security settings for (dev %s, type %s)\n", sb->s_id, name);
826 static int selinux_cmp_sb_context(const struct super_block *oldsb,
827 const struct super_block *newsb)
829 struct superblock_security_struct *old = oldsb->s_security;
830 struct superblock_security_struct *new = newsb->s_security;
831 char oldflags = old->flags & SE_MNTMASK;
832 char newflags = new->flags & SE_MNTMASK;
834 if (oldflags != newflags)
836 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
838 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
840 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
842 if (oldflags & ROOTCONTEXT_MNT) {
843 struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
844 struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
845 if (oldroot->sid != newroot->sid)
850 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
851 "different security settings for (dev %s, "
852 "type %s)\n", newsb->s_id, newsb->s_type->name);
856 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
857 struct super_block *newsb)
859 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
860 struct superblock_security_struct *newsbsec = newsb->s_security;
862 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
863 int set_context = (oldsbsec->flags & CONTEXT_MNT);
864 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
867 * if the parent was able to be mounted it clearly had no special lsm
868 * mount options. thus we can safely deal with this superblock later
873 /* how can we clone if the old one wasn't set up?? */
874 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
876 /* if fs is reusing a sb, make sure that the contexts match */
877 if (newsbsec->flags & SE_SBINITIALIZED)
878 return selinux_cmp_sb_context(oldsb, newsb);
880 mutex_lock(&newsbsec->lock);
882 newsbsec->flags = oldsbsec->flags;
884 newsbsec->sid = oldsbsec->sid;
885 newsbsec->def_sid = oldsbsec->def_sid;
886 newsbsec->behavior = oldsbsec->behavior;
889 u32 sid = oldsbsec->mntpoint_sid;
893 if (!set_rootcontext) {
894 struct inode *newinode = newsb->s_root->d_inode;
895 struct inode_security_struct *newisec = newinode->i_security;
898 newsbsec->mntpoint_sid = sid;
900 if (set_rootcontext) {
901 const struct inode *oldinode = oldsb->s_root->d_inode;
902 const struct inode_security_struct *oldisec = oldinode->i_security;
903 struct inode *newinode = newsb->s_root->d_inode;
904 struct inode_security_struct *newisec = newinode->i_security;
906 newisec->sid = oldisec->sid;
909 sb_finish_set_opts(newsb);
910 mutex_unlock(&newsbsec->lock);
914 static int selinux_parse_opts_str(char *options,
915 struct security_mnt_opts *opts)
918 char *context = NULL, *defcontext = NULL;
919 char *fscontext = NULL, *rootcontext = NULL;
920 int rc, num_mnt_opts = 0;
922 opts->num_mnt_opts = 0;
924 /* Standard string-based options. */
925 while ((p = strsep(&options, "|")) != NULL) {
927 substring_t args[MAX_OPT_ARGS];
932 token = match_token(p, tokens, args);
936 if (context || defcontext) {
938 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
941 context = match_strdup(&args[0]);
951 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
954 fscontext = match_strdup(&args[0]);
961 case Opt_rootcontext:
964 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
967 rootcontext = match_strdup(&args[0]);
975 if (context || defcontext) {
977 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
980 defcontext = match_strdup(&args[0]);
986 case Opt_labelsupport:
990 printk(KERN_WARNING "SELinux: unknown mount option\n");
997 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1001 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1002 if (!opts->mnt_opts_flags) {
1003 kfree(opts->mnt_opts);
1008 opts->mnt_opts[num_mnt_opts] = fscontext;
1009 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1012 opts->mnt_opts[num_mnt_opts] = context;
1013 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1016 opts->mnt_opts[num_mnt_opts] = rootcontext;
1017 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1020 opts->mnt_opts[num_mnt_opts] = defcontext;
1021 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1024 opts->num_mnt_opts = num_mnt_opts;
1035 * string mount options parsing and call set the sbsec
1037 static int superblock_doinit(struct super_block *sb, void *data)
1040 char *options = data;
1041 struct security_mnt_opts opts;
1043 security_init_mnt_opts(&opts);
1048 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1050 rc = selinux_parse_opts_str(options, &opts);
1055 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1058 security_free_mnt_opts(&opts);
1062 static void selinux_write_opts(struct seq_file *m,
1063 struct security_mnt_opts *opts)
1068 for (i = 0; i < opts->num_mnt_opts; i++) {
1071 if (opts->mnt_opts[i])
1072 has_comma = strchr(opts->mnt_opts[i], ',');
1076 switch (opts->mnt_opts_flags[i]) {
1078 prefix = CONTEXT_STR;
1081 prefix = FSCONTEXT_STR;
1083 case ROOTCONTEXT_MNT:
1084 prefix = ROOTCONTEXT_STR;
1086 case DEFCONTEXT_MNT:
1087 prefix = DEFCONTEXT_STR;
1091 seq_puts(m, LABELSUPP_STR);
1097 /* we need a comma before each option */
1099 seq_puts(m, prefix);
1102 seq_puts(m, opts->mnt_opts[i]);
1108 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1110 struct security_mnt_opts opts;
1113 rc = selinux_get_mnt_opts(sb, &opts);
1115 /* before policy load we may get EINVAL, don't show anything */
1121 selinux_write_opts(m, &opts);
1123 security_free_mnt_opts(&opts);
1128 static inline u16 inode_mode_to_security_class(umode_t mode)
1130 switch (mode & S_IFMT) {
1132 return SECCLASS_SOCK_FILE;
1134 return SECCLASS_LNK_FILE;
1136 return SECCLASS_FILE;
1138 return SECCLASS_BLK_FILE;
1140 return SECCLASS_DIR;
1142 return SECCLASS_CHR_FILE;
1144 return SECCLASS_FIFO_FILE;
1148 return SECCLASS_FILE;
1151 static inline int default_protocol_stream(int protocol)
1153 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1156 static inline int default_protocol_dgram(int protocol)
1158 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1161 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1167 case SOCK_SEQPACKET:
1168 return SECCLASS_UNIX_STREAM_SOCKET;
1170 return SECCLASS_UNIX_DGRAM_SOCKET;
1177 if (default_protocol_stream(protocol))
1178 return SECCLASS_TCP_SOCKET;
1180 return SECCLASS_RAWIP_SOCKET;
1182 if (default_protocol_dgram(protocol))
1183 return SECCLASS_UDP_SOCKET;
1185 return SECCLASS_RAWIP_SOCKET;
1187 return SECCLASS_DCCP_SOCKET;
1189 return SECCLASS_RAWIP_SOCKET;
1195 return SECCLASS_NETLINK_ROUTE_SOCKET;
1196 case NETLINK_FIREWALL:
1197 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1198 case NETLINK_SOCK_DIAG:
1199 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201 return SECCLASS_NETLINK_NFLOG_SOCKET;
1203 return SECCLASS_NETLINK_XFRM_SOCKET;
1204 case NETLINK_SELINUX:
1205 return SECCLASS_NETLINK_SELINUX_SOCKET;
1207 return SECCLASS_NETLINK_AUDIT_SOCKET;
1208 case NETLINK_IP6_FW:
1209 return SECCLASS_NETLINK_IP6FW_SOCKET;
1210 case NETLINK_DNRTMSG:
1211 return SECCLASS_NETLINK_DNRT_SOCKET;
1212 case NETLINK_KOBJECT_UEVENT:
1213 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1215 return SECCLASS_NETLINK_SOCKET;
1218 return SECCLASS_PACKET_SOCKET;
1220 return SECCLASS_KEY_SOCKET;
1222 return SECCLASS_APPLETALK_SOCKET;
1225 return SECCLASS_SOCKET;
1228 #ifdef CONFIG_PROC_FS
1229 static int selinux_proc_get_sid(struct dentry *dentry,
1234 char *buffer, *path;
1236 buffer = (char *)__get_free_page(GFP_KERNEL);
1240 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1244 /* each process gets a /proc/PID/ entry. Strip off the
1245 * PID part to get a valid selinux labeling.
1246 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1247 while (path[1] >= '0' && path[1] <= '9') {
1251 rc = security_genfs_sid("proc", path, tclass, sid);
1253 free_page((unsigned long)buffer);
1257 static int selinux_proc_get_sid(struct dentry *dentry,
1265 /* The inode's security attributes must be initialized before first use. */
1266 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1268 struct superblock_security_struct *sbsec = NULL;
1269 struct inode_security_struct *isec = inode->i_security;
1271 struct dentry *dentry;
1272 #define INITCONTEXTLEN 255
1273 char *context = NULL;
1277 if (isec->initialized)
1280 mutex_lock(&isec->lock);
1281 if (isec->initialized)
1284 sbsec = inode->i_sb->s_security;
1285 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1286 /* Defer initialization until selinux_complete_init,
1287 after the initial policy is loaded and the security
1288 server is ready to handle calls. */
1289 spin_lock(&sbsec->isec_lock);
1290 if (list_empty(&isec->list))
1291 list_add(&isec->list, &sbsec->isec_head);
1292 spin_unlock(&sbsec->isec_lock);
1296 switch (sbsec->behavior) {
1297 case SECURITY_FS_USE_NATIVE:
1299 case SECURITY_FS_USE_XATTR:
1300 if (!inode->i_op->getxattr) {
1301 isec->sid = sbsec->def_sid;
1305 /* Need a dentry, since the xattr API requires one.
1306 Life would be simpler if we could just pass the inode. */
1308 /* Called from d_instantiate or d_splice_alias. */
1309 dentry = dget(opt_dentry);
1311 /* Called from selinux_complete_init, try to find a dentry. */
1312 dentry = d_find_alias(inode);
1316 * this is can be hit on boot when a file is accessed
1317 * before the policy is loaded. When we load policy we
1318 * may find inodes that have no dentry on the
1319 * sbsec->isec_head list. No reason to complain as these
1320 * will get fixed up the next time we go through
1321 * inode_doinit with a dentry, before these inodes could
1322 * be used again by userspace.
1327 len = INITCONTEXTLEN;
1328 context = kmalloc(len+1, GFP_NOFS);
1334 context[len] = '\0';
1335 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1337 if (rc == -ERANGE) {
1340 /* Need a larger buffer. Query for the right size. */
1341 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1348 context = kmalloc(len+1, GFP_NOFS);
1354 context[len] = '\0';
1355 rc = inode->i_op->getxattr(dentry,
1361 if (rc != -ENODATA) {
1362 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1363 "%d for dev=%s ino=%ld\n", __func__,
1364 -rc, inode->i_sb->s_id, inode->i_ino);
1368 /* Map ENODATA to the default file SID */
1369 sid = sbsec->def_sid;
1372 rc = security_context_to_sid_default(context, rc, &sid,
1376 char *dev = inode->i_sb->s_id;
1377 unsigned long ino = inode->i_ino;
1379 if (rc == -EINVAL) {
1380 if (printk_ratelimit())
1381 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1382 "context=%s. This indicates you may need to relabel the inode or the "
1383 "filesystem in question.\n", ino, dev, context);
1385 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1386 "returned %d for dev=%s ino=%ld\n",
1387 __func__, context, -rc, dev, ino);
1390 /* Leave with the unlabeled SID */
1398 case SECURITY_FS_USE_TASK:
1399 isec->sid = isec->task_sid;
1401 case SECURITY_FS_USE_TRANS:
1402 /* Default to the fs SID. */
1403 isec->sid = sbsec->sid;
1405 /* Try to obtain a transition SID. */
1406 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1407 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1408 isec->sclass, NULL, &sid);
1413 case SECURITY_FS_USE_MNTPOINT:
1414 isec->sid = sbsec->mntpoint_sid;
1417 /* Default to the fs superblock SID. */
1418 isec->sid = sbsec->sid;
1420 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1421 /* We must have a dentry to determine the label on
1424 /* Called from d_instantiate or
1425 * d_splice_alias. */
1426 dentry = dget(opt_dentry);
1428 /* Called from selinux_complete_init, try to
1430 dentry = d_find_alias(inode);
1432 * This can be hit on boot when a file is accessed
1433 * before the policy is loaded. When we load policy we
1434 * may find inodes that have no dentry on the
1435 * sbsec->isec_head list. No reason to complain as
1436 * these will get fixed up the next time we go through
1437 * inode_doinit() with a dentry, before these inodes
1438 * could be used again by userspace.
1442 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1443 rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
1452 isec->initialized = 1;
1455 mutex_unlock(&isec->lock);
1457 if (isec->sclass == SECCLASS_FILE)
1458 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1462 /* Convert a Linux signal to an access vector. */
1463 static inline u32 signal_to_av(int sig)
1469 /* Commonly granted from child to parent. */
1470 perm = PROCESS__SIGCHLD;
1473 /* Cannot be caught or ignored */
1474 perm = PROCESS__SIGKILL;
1477 /* Cannot be caught or ignored */
1478 perm = PROCESS__SIGSTOP;
1481 /* All other signals. */
1482 perm = PROCESS__SIGNAL;
1490 * Check permission between a pair of credentials
1491 * fork check, ptrace check, etc.
1493 static int cred_has_perm(const struct cred *actor,
1494 const struct cred *target,
1497 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1499 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1503 * Check permission between a pair of tasks, e.g. signal checks,
1504 * fork check, ptrace check, etc.
1505 * tsk1 is the actor and tsk2 is the target
1506 * - this uses the default subjective creds of tsk1
1508 static int task_has_perm(const struct task_struct *tsk1,
1509 const struct task_struct *tsk2,
1512 const struct task_security_struct *__tsec1, *__tsec2;
1516 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1517 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1519 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1523 * Check permission between current and another task, e.g. signal checks,
1524 * fork check, ptrace check, etc.
1525 * current is the actor and tsk2 is the target
1526 * - this uses current's subjective creds
1528 static int current_has_perm(const struct task_struct *tsk,
1533 sid = current_sid();
1534 tsid = task_sid(tsk);
1535 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1538 #if CAP_LAST_CAP > 63
1539 #error Fix SELinux to handle capabilities > 63.
1542 /* Check whether a task is allowed to use a capability. */
1543 static int cred_has_capability(const struct cred *cred,
1546 struct common_audit_data ad;
1547 struct av_decision avd;
1549 u32 sid = cred_sid(cred);
1550 u32 av = CAP_TO_MASK(cap);
1553 ad.type = LSM_AUDIT_DATA_CAP;
1556 switch (CAP_TO_INDEX(cap)) {
1558 sclass = SECCLASS_CAPABILITY;
1561 sclass = SECCLASS_CAPABILITY2;
1565 "SELinux: out of range capability %d\n", cap);
1570 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1571 if (audit == SECURITY_CAP_AUDIT) {
1572 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1579 /* Check whether a task is allowed to use a system operation. */
1580 static int task_has_system(struct task_struct *tsk,
1583 u32 sid = task_sid(tsk);
1585 return avc_has_perm(sid, SECINITSID_KERNEL,
1586 SECCLASS_SYSTEM, perms, NULL);
1589 /* Check whether a task has a particular permission to an inode.
1590 The 'adp' parameter is optional and allows other audit
1591 data to be passed (e.g. the dentry). */
1592 static int inode_has_perm(const struct cred *cred,
1593 struct inode *inode,
1595 struct common_audit_data *adp)
1597 struct inode_security_struct *isec;
1600 validate_creds(cred);
1602 if (unlikely(IS_PRIVATE(inode)))
1605 sid = cred_sid(cred);
1606 isec = inode->i_security;
1608 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1611 /* Same as inode_has_perm, but pass explicit audit data containing
1612 the dentry to help the auditing code to more easily generate the
1613 pathname if needed. */
1614 static inline int dentry_has_perm(const struct cred *cred,
1615 struct dentry *dentry,
1618 struct inode *inode = dentry->d_inode;
1619 struct common_audit_data ad;
1621 ad.type = LSM_AUDIT_DATA_DENTRY;
1622 ad.u.dentry = dentry;
1623 return inode_has_perm(cred, inode, av, &ad);
1626 /* Same as inode_has_perm, but pass explicit audit data containing
1627 the path to help the auditing code to more easily generate the
1628 pathname if needed. */
1629 static inline int path_has_perm(const struct cred *cred,
1633 struct inode *inode = path->dentry->d_inode;
1634 struct common_audit_data ad;
1636 ad.type = LSM_AUDIT_DATA_PATH;
1638 return inode_has_perm(cred, inode, av, &ad);
1641 /* Same as path_has_perm, but uses the inode from the file struct. */
1642 static inline int file_path_has_perm(const struct cred *cred,
1646 struct common_audit_data ad;
1648 ad.type = LSM_AUDIT_DATA_PATH;
1649 ad.u.path = file->f_path;
1650 return inode_has_perm(cred, file_inode(file), av, &ad);
1653 /* Check whether a task can use an open file descriptor to
1654 access an inode in a given way. Check access to the
1655 descriptor itself, and then use dentry_has_perm to
1656 check a particular permission to the file.
1657 Access to the descriptor is implicitly granted if it
1658 has the same SID as the process. If av is zero, then
1659 access to the file is not checked, e.g. for cases
1660 where only the descriptor is affected like seek. */
1661 static int file_has_perm(const struct cred *cred,
1665 struct file_security_struct *fsec = file->f_security;
1666 struct inode *inode = file_inode(file);
1667 struct common_audit_data ad;
1668 u32 sid = cred_sid(cred);
1671 ad.type = LSM_AUDIT_DATA_PATH;
1672 ad.u.path = file->f_path;
1674 if (sid != fsec->sid) {
1675 rc = avc_has_perm(sid, fsec->sid,
1683 /* av is zero if only checking access to the descriptor. */
1686 rc = inode_has_perm(cred, inode, av, &ad);
1692 /* Check whether a task can create a file. */
1693 static int may_create(struct inode *dir,
1694 struct dentry *dentry,
1697 const struct task_security_struct *tsec = current_security();
1698 struct inode_security_struct *dsec;
1699 struct superblock_security_struct *sbsec;
1701 struct common_audit_data ad;
1704 dsec = dir->i_security;
1705 sbsec = dir->i_sb->s_security;
1708 newsid = tsec->create_sid;
1710 ad.type = LSM_AUDIT_DATA_DENTRY;
1711 ad.u.dentry = dentry;
1713 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1714 DIR__ADD_NAME | DIR__SEARCH,
1719 if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1720 rc = security_transition_sid(sid, dsec->sid, tclass,
1721 &dentry->d_name, &newsid);
1726 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1730 return avc_has_perm(newsid, sbsec->sid,
1731 SECCLASS_FILESYSTEM,
1732 FILESYSTEM__ASSOCIATE, &ad);
1735 /* Check whether a task can create a key. */
1736 static int may_create_key(u32 ksid,
1737 struct task_struct *ctx)
1739 u32 sid = task_sid(ctx);
1741 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1745 #define MAY_UNLINK 1
1748 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1749 static int may_link(struct inode *dir,
1750 struct dentry *dentry,
1754 struct inode_security_struct *dsec, *isec;
1755 struct common_audit_data ad;
1756 u32 sid = current_sid();
1760 dsec = dir->i_security;
1761 isec = dentry->d_inode->i_security;
1763 ad.type = LSM_AUDIT_DATA_DENTRY;
1764 ad.u.dentry = dentry;
1767 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1768 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1783 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1788 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1792 static inline int may_rename(struct inode *old_dir,
1793 struct dentry *old_dentry,
1794 struct inode *new_dir,
1795 struct dentry *new_dentry)
1797 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1798 struct common_audit_data ad;
1799 u32 sid = current_sid();
1801 int old_is_dir, new_is_dir;
1804 old_dsec = old_dir->i_security;
1805 old_isec = old_dentry->d_inode->i_security;
1806 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1807 new_dsec = new_dir->i_security;
1809 ad.type = LSM_AUDIT_DATA_DENTRY;
1811 ad.u.dentry = old_dentry;
1812 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1813 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1816 rc = avc_has_perm(sid, old_isec->sid,
1817 old_isec->sclass, FILE__RENAME, &ad);
1820 if (old_is_dir && new_dir != old_dir) {
1821 rc = avc_has_perm(sid, old_isec->sid,
1822 old_isec->sclass, DIR__REPARENT, &ad);
1827 ad.u.dentry = new_dentry;
1828 av = DIR__ADD_NAME | DIR__SEARCH;
1829 if (new_dentry->d_inode)
1830 av |= DIR__REMOVE_NAME;
1831 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1834 if (new_dentry->d_inode) {
1835 new_isec = new_dentry->d_inode->i_security;
1836 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1837 rc = avc_has_perm(sid, new_isec->sid,
1839 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1847 /* Check whether a task can perform a filesystem operation. */
1848 static int superblock_has_perm(const struct cred *cred,
1849 struct super_block *sb,
1851 struct common_audit_data *ad)
1853 struct superblock_security_struct *sbsec;
1854 u32 sid = cred_sid(cred);
1856 sbsec = sb->s_security;
1857 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1860 /* Convert a Linux mode and permission mask to an access vector. */
1861 static inline u32 file_mask_to_av(int mode, int mask)
1865 if (!S_ISDIR(mode)) {
1866 if (mask & MAY_EXEC)
1867 av |= FILE__EXECUTE;
1868 if (mask & MAY_READ)
1871 if (mask & MAY_APPEND)
1873 else if (mask & MAY_WRITE)
1877 if (mask & MAY_EXEC)
1879 if (mask & MAY_WRITE)
1881 if (mask & MAY_READ)
1888 /* Convert a Linux file to an access vector. */
1889 static inline u32 file_to_av(struct file *file)
1893 if (file->f_mode & FMODE_READ)
1895 if (file->f_mode & FMODE_WRITE) {
1896 if (file->f_flags & O_APPEND)
1903 * Special file opened with flags 3 for ioctl-only use.
1912 * Convert a file to an access vector and include the correct open
1915 static inline u32 open_file_to_av(struct file *file)
1917 u32 av = file_to_av(file);
1919 if (selinux_policycap_openperm)
1925 /* Hook functions begin here. */
1927 static int selinux_ptrace_access_check(struct task_struct *child,
1932 rc = cap_ptrace_access_check(child, mode);
1936 if (mode & PTRACE_MODE_READ) {
1937 u32 sid = current_sid();
1938 u32 csid = task_sid(child);
1939 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1942 return current_has_perm(child, PROCESS__PTRACE);
1945 static int selinux_ptrace_traceme(struct task_struct *parent)
1949 rc = cap_ptrace_traceme(parent);
1953 return task_has_perm(parent, current, PROCESS__PTRACE);
1956 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1957 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1961 error = current_has_perm(target, PROCESS__GETCAP);
1965 return cap_capget(target, effective, inheritable, permitted);
1968 static int selinux_capset(struct cred *new, const struct cred *old,
1969 const kernel_cap_t *effective,
1970 const kernel_cap_t *inheritable,
1971 const kernel_cap_t *permitted)
1975 error = cap_capset(new, old,
1976 effective, inheritable, permitted);
1980 return cred_has_perm(old, new, PROCESS__SETCAP);
1984 * (This comment used to live with the selinux_task_setuid hook,
1985 * which was removed).
1987 * Since setuid only affects the current process, and since the SELinux
1988 * controls are not based on the Linux identity attributes, SELinux does not
1989 * need to control this operation. However, SELinux does control the use of
1990 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1993 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1998 rc = cap_capable(cred, ns, cap, audit);
2002 return cred_has_capability(cred, cap, audit);
2005 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2007 const struct cred *cred = current_cred();
2019 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2024 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2027 rc = 0; /* let the kernel handle invalid cmds */
2033 static int selinux_quota_on(struct dentry *dentry)
2035 const struct cred *cred = current_cred();
2037 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2040 static int selinux_syslog(int type)
2045 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2046 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2047 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2049 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2050 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2051 /* Set level of messages printed to console */
2052 case SYSLOG_ACTION_CONSOLE_LEVEL:
2053 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2055 case SYSLOG_ACTION_CLOSE: /* Close log */
2056 case SYSLOG_ACTION_OPEN: /* Open log */
2057 case SYSLOG_ACTION_READ: /* Read from log */
2058 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2059 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2061 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2068 * Check that a process has enough memory to allocate a new virtual
2069 * mapping. 0 means there is enough memory for the allocation to
2070 * succeed and -ENOMEM implies there is not.
2072 * Do not audit the selinux permission check, as this is applied to all
2073 * processes that allocate mappings.
2075 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2077 int rc, cap_sys_admin = 0;
2079 rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2080 SECURITY_CAP_NOAUDIT);
2084 return __vm_enough_memory(mm, pages, cap_sys_admin);
2087 /* binprm security operations */
2089 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2091 const struct task_security_struct *old_tsec;
2092 struct task_security_struct *new_tsec;
2093 struct inode_security_struct *isec;
2094 struct common_audit_data ad;
2095 struct inode *inode = file_inode(bprm->file);
2098 rc = cap_bprm_set_creds(bprm);
2102 /* SELinux context only depends on initial program or script and not
2103 * the script interpreter */
2104 if (bprm->cred_prepared)
2107 old_tsec = current_security();
2108 new_tsec = bprm->cred->security;
2109 isec = inode->i_security;
2111 /* Default to the current task SID. */
2112 new_tsec->sid = old_tsec->sid;
2113 new_tsec->osid = old_tsec->sid;
2115 /* Reset fs, key, and sock SIDs on execve. */
2116 new_tsec->create_sid = 0;
2117 new_tsec->keycreate_sid = 0;
2118 new_tsec->sockcreate_sid = 0;
2120 if (old_tsec->exec_sid) {
2121 new_tsec->sid = old_tsec->exec_sid;
2122 /* Reset exec SID on execve. */
2123 new_tsec->exec_sid = 0;
2126 * Minimize confusion: if no_new_privs and a transition is
2127 * explicitly requested, then fail the exec.
2129 if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2132 /* Check for a default transition on this program. */
2133 rc = security_transition_sid(old_tsec->sid, isec->sid,
2134 SECCLASS_PROCESS, NULL,
2140 ad.type = LSM_AUDIT_DATA_PATH;
2141 ad.u.path = bprm->file->f_path;
2143 if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2144 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2145 new_tsec->sid = old_tsec->sid;
2147 if (new_tsec->sid == old_tsec->sid) {
2148 rc = avc_has_perm(old_tsec->sid, isec->sid,
2149 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2153 /* Check permissions for the transition. */
2154 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2155 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2159 rc = avc_has_perm(new_tsec->sid, isec->sid,
2160 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2164 /* Check for shared state */
2165 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2166 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2167 SECCLASS_PROCESS, PROCESS__SHARE,
2173 /* Make sure that anyone attempting to ptrace over a task that
2174 * changes its SID has the appropriate permit */
2176 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2177 struct task_struct *tracer;
2178 struct task_security_struct *sec;
2182 tracer = ptrace_parent(current);
2183 if (likely(tracer != NULL)) {
2184 sec = __task_cred(tracer)->security;
2190 rc = avc_has_perm(ptsid, new_tsec->sid,
2192 PROCESS__PTRACE, NULL);
2198 /* Clear any possibly unsafe personality bits on exec: */
2199 bprm->per_clear |= PER_CLEAR_ON_SETID;
2205 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2207 const struct task_security_struct *tsec = current_security();
2215 /* Enable secure mode for SIDs transitions unless
2216 the noatsecure permission is granted between
2217 the two SIDs, i.e. ahp returns 0. */
2218 atsecure = avc_has_perm(osid, sid,
2220 PROCESS__NOATSECURE, NULL);
2223 return (atsecure || cap_bprm_secureexec(bprm));
2226 static int match_file(const void *p, struct file *file, unsigned fd)
2228 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2231 /* Derived from fs/exec.c:flush_old_files. */
2232 static inline void flush_unauthorized_files(const struct cred *cred,
2233 struct files_struct *files)
2235 struct file *file, *devnull = NULL;
2236 struct tty_struct *tty;
2240 tty = get_current_tty();
2242 spin_lock(&tty_files_lock);
2243 if (!list_empty(&tty->tty_files)) {
2244 struct tty_file_private *file_priv;
2246 /* Revalidate access to controlling tty.
2247 Use file_path_has_perm on the tty path directly
2248 rather than using file_has_perm, as this particular
2249 open file may belong to another process and we are
2250 only interested in the inode-based check here. */
2251 file_priv = list_first_entry(&tty->tty_files,
2252 struct tty_file_private, list);
2253 file = file_priv->file;
2254 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2257 spin_unlock(&tty_files_lock);
2260 /* Reset controlling tty. */
2264 /* Revalidate access to inherited open files. */
2265 n = iterate_fd(files, 0, match_file, cred);
2266 if (!n) /* none found? */
2269 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2270 if (IS_ERR(devnull))
2272 /* replace all the matching ones with this */
2274 replace_fd(n - 1, devnull, 0);
2275 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2281 * Prepare a process for imminent new credential changes due to exec
2283 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2285 struct task_security_struct *new_tsec;
2286 struct rlimit *rlim, *initrlim;
2289 new_tsec = bprm->cred->security;
2290 if (new_tsec->sid == new_tsec->osid)
2293 /* Close files for which the new task SID is not authorized. */
2294 flush_unauthorized_files(bprm->cred, current->files);
2296 /* Always clear parent death signal on SID transitions. */
2297 current->pdeath_signal = 0;
2299 /* Check whether the new SID can inherit resource limits from the old
2300 * SID. If not, reset all soft limits to the lower of the current
2301 * task's hard limit and the init task's soft limit.
2303 * Note that the setting of hard limits (even to lower them) can be
2304 * controlled by the setrlimit check. The inclusion of the init task's
2305 * soft limit into the computation is to avoid resetting soft limits
2306 * higher than the default soft limit for cases where the default is
2307 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2309 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2310 PROCESS__RLIMITINH, NULL);
2312 /* protect against do_prlimit() */
2314 for (i = 0; i < RLIM_NLIMITS; i++) {
2315 rlim = current->signal->rlim + i;
2316 initrlim = init_task.signal->rlim + i;
2317 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2319 task_unlock(current);
2320 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2325 * Clean up the process immediately after the installation of new credentials
2328 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2330 const struct task_security_struct *tsec = current_security();
2331 struct itimerval itimer;
2341 /* Check whether the new SID can inherit signal state from the old SID.
2342 * If not, clear itimers to avoid subsequent signal generation and
2343 * flush and unblock signals.
2345 * This must occur _after_ the task SID has been updated so that any
2346 * kill done after the flush will be checked against the new SID.
2348 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2350 memset(&itimer, 0, sizeof itimer);
2351 for (i = 0; i < 3; i++)
2352 do_setitimer(i, &itimer, NULL);
2353 spin_lock_irq(¤t->sighand->siglock);
2354 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2355 __flush_signals(current);
2356 flush_signal_handlers(current, 1);
2357 sigemptyset(¤t->blocked);
2359 spin_unlock_irq(¤t->sighand->siglock);
2362 /* Wake up the parent if it is waiting so that it can recheck
2363 * wait permission to the new task SID. */
2364 read_lock(&tasklist_lock);
2365 __wake_up_parent(current, current->real_parent);
2366 read_unlock(&tasklist_lock);
2369 /* superblock security operations */
2371 static int selinux_sb_alloc_security(struct super_block *sb)
2373 return superblock_alloc_security(sb);
2376 static void selinux_sb_free_security(struct super_block *sb)
2378 superblock_free_security(sb);
2381 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2386 return !memcmp(prefix, option, plen);
2389 static inline int selinux_option(char *option, int len)
2391 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2392 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2393 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2394 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2395 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2398 static inline void take_option(char **to, char *from, int *first, int len)
2405 memcpy(*to, from, len);
2409 static inline void take_selinux_option(char **to, char *from, int *first,
2412 int current_size = 0;
2420 while (current_size < len) {
2430 static int selinux_sb_copy_data(char *orig, char *copy)
2432 int fnosec, fsec, rc = 0;
2433 char *in_save, *in_curr, *in_end;
2434 char *sec_curr, *nosec_save, *nosec;
2440 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2448 in_save = in_end = orig;
2452 open_quote = !open_quote;
2453 if ((*in_end == ',' && open_quote == 0) ||
2455 int len = in_end - in_curr;
2457 if (selinux_option(in_curr, len))
2458 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2460 take_option(&nosec, in_curr, &fnosec, len);
2462 in_curr = in_end + 1;
2464 } while (*in_end++);
2466 strcpy(in_save, nosec_save);
2467 free_page((unsigned long)nosec_save);
2472 static int selinux_sb_remount(struct super_block *sb, void *data)
2475 struct security_mnt_opts opts;
2476 char *secdata, **mount_options;
2477 struct superblock_security_struct *sbsec = sb->s_security;
2479 if (!(sbsec->flags & SE_SBINITIALIZED))
2485 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2488 security_init_mnt_opts(&opts);
2489 secdata = alloc_secdata();
2492 rc = selinux_sb_copy_data(data, secdata);
2494 goto out_free_secdata;
2496 rc = selinux_parse_opts_str(secdata, &opts);
2498 goto out_free_secdata;
2500 mount_options = opts.mnt_opts;
2501 flags = opts.mnt_opts_flags;
2503 for (i = 0; i < opts.num_mnt_opts; i++) {
2507 if (flags[i] == SBLABEL_MNT)
2509 len = strlen(mount_options[i]);
2510 rc = security_context_to_sid(mount_options[i], len, &sid,
2513 printk(KERN_WARNING "SELinux: security_context_to_sid"
2514 "(%s) failed for (dev %s, type %s) errno=%d\n",
2515 mount_options[i], sb->s_id, sb->s_type->name, rc);
2521 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2522 goto out_bad_option;
2525 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2526 goto out_bad_option;
2528 case ROOTCONTEXT_MNT: {
2529 struct inode_security_struct *root_isec;
2530 root_isec = sb->s_root->d_inode->i_security;
2532 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2533 goto out_bad_option;
2536 case DEFCONTEXT_MNT:
2537 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2538 goto out_bad_option;
2547 security_free_mnt_opts(&opts);
2549 free_secdata(secdata);
2552 printk(KERN_WARNING "SELinux: unable to change security options "
2553 "during remount (dev %s, type=%s)\n", sb->s_id,
2558 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2560 const struct cred *cred = current_cred();
2561 struct common_audit_data ad;
2564 rc = superblock_doinit(sb, data);
2568 /* Allow all mounts performed by the kernel */
2569 if (flags & MS_KERNMOUNT)
2572 ad.type = LSM_AUDIT_DATA_DENTRY;
2573 ad.u.dentry = sb->s_root;
2574 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2577 static int selinux_sb_statfs(struct dentry *dentry)
2579 const struct cred *cred = current_cred();
2580 struct common_audit_data ad;
2582 ad.type = LSM_AUDIT_DATA_DENTRY;
2583 ad.u.dentry = dentry->d_sb->s_root;
2584 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2587 static int selinux_mount(const char *dev_name,
2590 unsigned long flags,
2593 const struct cred *cred = current_cred();
2595 if (flags & MS_REMOUNT)
2596 return superblock_has_perm(cred, path->dentry->d_sb,
2597 FILESYSTEM__REMOUNT, NULL);
2599 return path_has_perm(cred, path, FILE__MOUNTON);
2602 static int selinux_umount(struct vfsmount *mnt, int flags)
2604 const struct cred *cred = current_cred();
2606 return superblock_has_perm(cred, mnt->mnt_sb,
2607 FILESYSTEM__UNMOUNT, NULL);
2610 /* inode security operations */
2612 static int selinux_inode_alloc_security(struct inode *inode)
2614 return inode_alloc_security(inode);
2617 static void selinux_inode_free_security(struct inode *inode)
2619 inode_free_security(inode);
2622 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2623 struct qstr *name, void **ctx,
2626 const struct cred *cred = current_cred();
2627 struct task_security_struct *tsec;
2628 struct inode_security_struct *dsec;
2629 struct superblock_security_struct *sbsec;
2630 struct inode *dir = dentry->d_parent->d_inode;
2634 tsec = cred->security;
2635 dsec = dir->i_security;
2636 sbsec = dir->i_sb->s_security;
2638 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2639 newsid = tsec->create_sid;
2641 rc = security_transition_sid(tsec->sid, dsec->sid,
2642 inode_mode_to_security_class(mode),
2647 "%s: security_transition_sid failed, rc=%d\n",
2653 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2656 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2657 const struct qstr *qstr,
2659 void **value, size_t *len)
2661 const struct task_security_struct *tsec = current_security();
2662 struct inode_security_struct *dsec;
2663 struct superblock_security_struct *sbsec;
2664 u32 sid, newsid, clen;
2668 dsec = dir->i_security;
2669 sbsec = dir->i_sb->s_security;
2672 newsid = tsec->create_sid;
2674 if ((sbsec->flags & SE_SBINITIALIZED) &&
2675 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2676 newsid = sbsec->mntpoint_sid;
2677 else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2678 rc = security_transition_sid(sid, dsec->sid,
2679 inode_mode_to_security_class(inode->i_mode),
2682 printk(KERN_WARNING "%s: "
2683 "security_transition_sid failed, rc=%d (dev=%s "
2686 -rc, inode->i_sb->s_id, inode->i_ino);
2691 /* Possibly defer initialization to selinux_complete_init. */
2692 if (sbsec->flags & SE_SBINITIALIZED) {
2693 struct inode_security_struct *isec = inode->i_security;
2694 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2696 isec->initialized = 1;
2699 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2703 *name = XATTR_SELINUX_SUFFIX;
2706 rc = security_sid_to_context_force(newsid, &context, &clen);
2716 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2718 return may_create(dir, dentry, SECCLASS_FILE);
2721 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2723 return may_link(dir, old_dentry, MAY_LINK);
2726 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2728 return may_link(dir, dentry, MAY_UNLINK);
2731 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2733 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2736 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2738 return may_create(dir, dentry, SECCLASS_DIR);
2741 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2743 return may_link(dir, dentry, MAY_RMDIR);
2746 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2748 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2751 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2752 struct inode *new_inode, struct dentry *new_dentry)
2754 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2757 static int selinux_inode_readlink(struct dentry *dentry)
2759 const struct cred *cred = current_cred();
2761 return dentry_has_perm(cred, dentry, FILE__READ);
2764 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2766 const struct cred *cred = current_cred();
2768 return dentry_has_perm(cred, dentry, FILE__READ);
2771 static noinline int audit_inode_permission(struct inode *inode,
2772 u32 perms, u32 audited, u32 denied,
2775 struct common_audit_data ad;
2776 struct inode_security_struct *isec = inode->i_security;
2779 ad.type = LSM_AUDIT_DATA_INODE;
2782 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2783 audited, denied, &ad, flags);
2789 static int selinux_inode_permission(struct inode *inode, int mask)
2791 const struct cred *cred = current_cred();
2794 unsigned flags = mask & MAY_NOT_BLOCK;
2795 struct inode_security_struct *isec;
2797 struct av_decision avd;
2799 u32 audited, denied;
2801 from_access = mask & MAY_ACCESS;
2802 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2804 /* No permission to check. Existence test. */
2808 validate_creds(cred);
2810 if (unlikely(IS_PRIVATE(inode)))
2813 perms = file_mask_to_av(inode->i_mode, mask);
2815 sid = cred_sid(cred);
2816 isec = inode->i_security;
2818 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2819 audited = avc_audit_required(perms, &avd, rc,
2820 from_access ? FILE__AUDIT_ACCESS : 0,
2822 if (likely(!audited))
2825 rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2831 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2833 const struct cred *cred = current_cred();
2834 unsigned int ia_valid = iattr->ia_valid;
2835 __u32 av = FILE__WRITE;
2837 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2838 if (ia_valid & ATTR_FORCE) {
2839 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2845 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2846 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2847 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2849 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2852 return dentry_has_perm(cred, dentry, av);
2855 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2857 const struct cred *cred = current_cred();
2860 path.dentry = dentry;
2863 return path_has_perm(cred, &path, FILE__GETATTR);
2866 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2868 const struct cred *cred = current_cred();
2870 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2871 sizeof XATTR_SECURITY_PREFIX - 1)) {
2872 if (!strcmp(name, XATTR_NAME_CAPS)) {
2873 if (!capable(CAP_SETFCAP))
2875 } else if (!capable(CAP_SYS_ADMIN)) {
2876 /* A different attribute in the security namespace.
2877 Restrict to administrator. */
2882 /* Not an attribute we recognize, so just check the
2883 ordinary setattr permission. */
2884 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2887 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2888 const void *value, size_t size, int flags)
2890 struct inode *inode = dentry->d_inode;
2891 struct inode_security_struct *isec = inode->i_security;
2892 struct superblock_security_struct *sbsec;
2893 struct common_audit_data ad;
2894 u32 newsid, sid = current_sid();
2897 if (strcmp(name, XATTR_NAME_SELINUX))
2898 return selinux_inode_setotherxattr(dentry, name);
2900 sbsec = inode->i_sb->s_security;
2901 if (!(sbsec->flags & SBLABEL_MNT))
2904 if (!inode_owner_or_capable(inode))
2907 ad.type = LSM_AUDIT_DATA_DENTRY;
2908 ad.u.dentry = dentry;
2910 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2911 FILE__RELABELFROM, &ad);
2915 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
2916 if (rc == -EINVAL) {
2917 if (!capable(CAP_MAC_ADMIN)) {
2918 struct audit_buffer *ab;
2922 /* We strip a nul only if it is at the end, otherwise the
2923 * context contains a nul and we should audit that */
2926 if (str[size - 1] == '\0')
2927 audit_size = size - 1;
2934 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2935 audit_log_format(ab, "op=setxattr invalid_context=");
2936 audit_log_n_untrustedstring(ab, value, audit_size);
2941 rc = security_context_to_sid_force(value, size, &newsid);
2946 rc = avc_has_perm(sid, newsid, isec->sclass,
2947 FILE__RELABELTO, &ad);
2951 rc = security_validate_transition(isec->sid, newsid, sid,
2956 return avc_has_perm(newsid,
2958 SECCLASS_FILESYSTEM,
2959 FILESYSTEM__ASSOCIATE,
2963 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2964 const void *value, size_t size,
2967 struct inode *inode = dentry->d_inode;
2968 struct inode_security_struct *isec = inode->i_security;
2972 if (strcmp(name, XATTR_NAME_SELINUX)) {
2973 /* Not an attribute we recognize, so nothing to do. */
2977 rc = security_context_to_sid_force(value, size, &newsid);
2979 printk(KERN_ERR "SELinux: unable to map context to SID"
2980 "for (%s, %lu), rc=%d\n",
2981 inode->i_sb->s_id, inode->i_ino, -rc);
2985 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2987 isec->initialized = 1;
2992 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2994 const struct cred *cred = current_cred();
2996 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2999 static int selinux_inode_listxattr(struct dentry *dentry)
3001 const struct cred *cred = current_cred();
3003 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3006 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3008 if (strcmp(name, XATTR_NAME_SELINUX))
3009 return selinux_inode_setotherxattr(dentry, name);
3011 /* No one is allowed to remove a SELinux security label.
3012 You can change the label, but all data must be labeled. */
3017 * Copy the inode security context value to the user.
3019 * Permission check is handled by selinux_inode_getxattr hook.
3021 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3025 char *context = NULL;
3026 struct inode_security_struct *isec = inode->i_security;
3028 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3032 * If the caller has CAP_MAC_ADMIN, then get the raw context
3033 * value even if it is not defined by current policy; otherwise,
3034 * use the in-core value under current policy.
3035 * Use the non-auditing forms of the permission checks since
3036 * getxattr may be called by unprivileged processes commonly
3037 * and lack of permission just means that we fall back to the
3038 * in-core context value, not a denial.
3040 error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3041 SECURITY_CAP_NOAUDIT);
3043 error = security_sid_to_context_force(isec->sid, &context,
3046 error = security_sid_to_context(isec->sid, &context, &size);
3059 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3060 const void *value, size_t size, int flags)
3062 struct inode_security_struct *isec = inode->i_security;
3066 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3069 if (!value || !size)
3072 rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
3076 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3078 isec->initialized = 1;
3082 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3084 const int len = sizeof(XATTR_NAME_SELINUX);
3085 if (buffer && len <= buffer_size)
3086 memcpy(buffer, XATTR_NAME_SELINUX, len);
3090 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3092 struct inode_security_struct *isec = inode->i_security;
3096 /* file security operations */
3098 static int selinux_revalidate_file_permission(struct file *file, int mask)
3100 const struct cred *cred = current_cred();
3101 struct inode *inode = file_inode(file);
3103 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3104 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3107 return file_has_perm(cred, file,
3108 file_mask_to_av(inode->i_mode, mask));
3111 static int selinux_file_permission(struct file *file, int mask)
3113 struct inode *inode = file_inode(file);
3114 struct file_security_struct *fsec = file->f_security;
3115 struct inode_security_struct *isec = inode->i_security;
3116 u32 sid = current_sid();
3119 /* No permission to check. Existence test. */
3122 if (sid == fsec->sid && fsec->isid == isec->sid &&
3123 fsec->pseqno == avc_policy_seqno())
3124 /* No change since file_open check. */
3127 return selinux_revalidate_file_permission(file, mask);
3130 static int selinux_file_alloc_security(struct file *file)
3132 return file_alloc_security(file);
3135 static void selinux_file_free_security(struct file *file)
3137 file_free_security(file);
3140 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3143 const struct cred *cred = current_cred();
3153 case FS_IOC_GETFLAGS:
3155 case FS_IOC_GETVERSION:
3156 error = file_has_perm(cred, file, FILE__GETATTR);
3159 case FS_IOC_SETFLAGS:
3161 case FS_IOC_SETVERSION:
3162 error = file_has_perm(cred, file, FILE__SETATTR);
3165 /* sys_ioctl() checks */
3169 error = file_has_perm(cred, file, 0);
3174 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3175 SECURITY_CAP_AUDIT);
3178 /* default case assumes that the command will go
3179 * to the file's ioctl() function.
3182 error = file_has_perm(cred, file, FILE__IOCTL);
3187 static int default_noexec;
3189 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3191 const struct cred *cred = current_cred();
3194 if (default_noexec &&
3195 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3197 * We are making executable an anonymous mapping or a
3198 * private file mapping that will also be writable.
3199 * This has an additional check.
3201 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3207 /* read access is always possible with a mapping */
3208 u32 av = FILE__READ;
3210 /* write access only matters if the mapping is shared */
3211 if (shared && (prot & PROT_WRITE))
3214 if (prot & PROT_EXEC)
3215 av |= FILE__EXECUTE;
3217 return file_has_perm(cred, file, av);
3224 static int selinux_mmap_addr(unsigned long addr)
3228 /* do DAC check on address space usage */
3229 rc = cap_mmap_addr(addr);
3233 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3234 u32 sid = current_sid();
3235 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3236 MEMPROTECT__MMAP_ZERO, NULL);
3242 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3243 unsigned long prot, unsigned long flags)
3245 if (selinux_checkreqprot)
3248 return file_map_prot_check(file, prot,
3249 (flags & MAP_TYPE) == MAP_SHARED);
3252 static int selinux_file_mprotect(struct vm_area_struct *vma,
3253 unsigned long reqprot,
3256 const struct cred *cred = current_cred();
3258 if (selinux_checkreqprot)
3261 if (default_noexec &&
3262 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3264 if (vma->vm_start >= vma->vm_mm->start_brk &&
3265 vma->vm_end <= vma->vm_mm->brk) {
3266 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3267 } else if (!vma->vm_file &&
3268 vma->vm_start <= vma->vm_mm->start_stack &&
3269 vma->vm_end >= vma->vm_mm->start_stack) {
3270 rc = current_has_perm(current, PROCESS__EXECSTACK);
3271 } else if (vma->vm_file && vma->anon_vma) {
3273 * We are making executable a file mapping that has
3274 * had some COW done. Since pages might have been
3275 * written, check ability to execute the possibly
3276 * modified content. This typically should only
3277 * occur for text relocations.
3279 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3285 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3288 static int selinux_file_lock(struct file *file, unsigned int cmd)
3290 const struct cred *cred = current_cred();
3292 return file_has_perm(cred, file, FILE__LOCK);
3295 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3298 const struct cred *cred = current_cred();
3303 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3304 err = file_has_perm(cred, file, FILE__WRITE);
3313 case F_GETOWNER_UIDS:
3314 /* Just check FD__USE permission */
3315 err = file_has_perm(cred, file, 0);
3320 #if BITS_PER_LONG == 32
3325 err = file_has_perm(cred, file, FILE__LOCK);
3332 static int selinux_file_set_fowner(struct file *file)
3334 struct file_security_struct *fsec;
3336 fsec = file->f_security;
3337 fsec->fown_sid = current_sid();
3342 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3343 struct fown_struct *fown, int signum)
3346 u32 sid = task_sid(tsk);
3348 struct file_security_struct *fsec;
3350 /* struct fown_struct is never outside the context of a struct file */
3351 file = container_of(fown, struct file, f_owner);
3353 fsec = file->f_security;
3356 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3358 perm = signal_to_av(signum);
3360 return avc_has_perm(fsec->fown_sid, sid,
3361 SECCLASS_PROCESS, perm, NULL);
3364 static int selinux_file_receive(struct file *file)
3366 const struct cred *cred = current_cred();
3368 return file_has_perm(cred, file, file_to_av(file));
3371 static int selinux_file_open(struct file *file, const struct cred *cred)
3373 struct file_security_struct *fsec;
3374 struct inode_security_struct *isec;
3376 fsec = file->f_security;
3377 isec = file_inode(file)->i_security;
3379 * Save inode label and policy sequence number
3380 * at open-time so that selinux_file_permission
3381 * can determine whether revalidation is necessary.
3382 * Task label is already saved in the file security
3383 * struct as its SID.
3385 fsec->isid = isec->sid;
3386 fsec->pseqno = avc_policy_seqno();
3388 * Since the inode label or policy seqno may have changed
3389 * between the selinux_inode_permission check and the saving
3390 * of state above, recheck that access is still permitted.
3391 * Otherwise, access might never be revalidated against the
3392 * new inode label or new policy.
3393 * This check is not redundant - do not remove.
3395 return file_path_has_perm(cred, file, open_file_to_av(file));
3398 /* task security operations */
3400 static int selinux_task_create(unsigned long clone_flags)
3402 return current_has_perm(current, PROCESS__FORK);
3406 * allocate the SELinux part of blank credentials
3408 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3410 struct task_security_struct *tsec;
3412 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3416 cred->security = tsec;
3421 * detach and free the LSM part of a set of credentials
3423 static void selinux_cred_free(struct cred *cred)
3425 struct task_security_struct *tsec = cred->security;
3428 * cred->security == NULL if security_cred_alloc_blank() or
3429 * security_prepare_creds() returned an error.
3431 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3432 cred->security = (void *) 0x7UL;
3437 * prepare a new set of credentials for modification
3439 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3442 const struct task_security_struct *old_tsec;
3443 struct task_security_struct *tsec;
3445 old_tsec = old->security;
3447 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3451 new->security = tsec;
3456 * transfer the SELinux data to a blank set of creds
3458 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3460 const struct task_security_struct *old_tsec = old->security;
3461 struct task_security_struct *tsec = new->security;
3467 * set the security data for a kernel service
3468 * - all the creation contexts are set to unlabelled
3470 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3472 struct task_security_struct *tsec = new->security;
3473 u32 sid = current_sid();
3476 ret = avc_has_perm(sid, secid,
3477 SECCLASS_KERNEL_SERVICE,
3478 KERNEL_SERVICE__USE_AS_OVERRIDE,
3482 tsec->create_sid = 0;
3483 tsec->keycreate_sid = 0;
3484 tsec->sockcreate_sid = 0;
3490 * set the file creation context in a security record to the same as the
3491 * objective context of the specified inode
3493 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3495 struct inode_security_struct *isec = inode->i_security;
3496 struct task_security_struct *tsec = new->security;
3497 u32 sid = current_sid();
3500 ret = avc_has_perm(sid, isec->sid,
3501 SECCLASS_KERNEL_SERVICE,
3502 KERNEL_SERVICE__CREATE_FILES_AS,
3506 tsec->create_sid = isec->sid;
3510 static int selinux_kernel_module_request(char *kmod_name)
3513 struct common_audit_data ad;
3515 sid = task_sid(current);
3517 ad.type = LSM_AUDIT_DATA_KMOD;
3518 ad.u.kmod_name = kmod_name;
3520 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3521 SYSTEM__MODULE_REQUEST, &ad);
3524 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3526 return current_has_perm(p, PROCESS__SETPGID);
3529 static int selinux_task_getpgid(struct task_struct *p)
3531 return current_has_perm(p, PROCESS__GETPGID);
3534 static int selinux_task_getsid(struct task_struct *p)
3536 return current_has_perm(p, PROCESS__GETSESSION);
3539 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3541 *secid = task_sid(p);
3544 static int selinux_task_setnice(struct task_struct *p, int nice)
3548 rc = cap_task_setnice(p, nice);
3552 return current_has_perm(p, PROCESS__SETSCHED);
3555 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3559 rc = cap_task_setioprio(p, ioprio);
3563 return current_has_perm(p, PROCESS__SETSCHED);
3566 static int selinux_task_getioprio(struct task_struct *p)
3568 return current_has_perm(p, PROCESS__GETSCHED);
3571 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3572 struct rlimit *new_rlim)
3574 struct rlimit *old_rlim = p->signal->rlim + resource;
3576 /* Control the ability to change the hard limit (whether
3577 lowering or raising it), so that the hard limit can
3578 later be used as a safe reset point for the soft limit
3579 upon context transitions. See selinux_bprm_committing_creds. */
3580 if (old_rlim->rlim_max != new_rlim->rlim_max)
3581 return current_has_perm(p, PROCESS__SETRLIMIT);
3586 static int selinux_task_setscheduler(struct task_struct *p)
3590 rc = cap_task_setscheduler(p);
3594 return current_has_perm(p, PROCESS__SETSCHED);
3597 static int selinux_task_getscheduler(struct task_struct *p)
3599 return current_has_perm(p, PROCESS__GETSCHED);
3602 static int selinux_task_movememory(struct task_struct *p)
3604 return current_has_perm(p, PROCESS__SETSCHED);
3607 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3614 perm = PROCESS__SIGNULL; /* null signal; existence test */
3616 perm = signal_to_av(sig);
3618 rc = avc_has_perm(secid, task_sid(p),
3619 SECCLASS_PROCESS, perm, NULL);
3621 rc = current_has_perm(p, perm);
3625 static int selinux_task_wait(struct task_struct *p)
3627 return task_has_perm(p, current, PROCESS__SIGCHLD);
3630 static void selinux_task_to_inode(struct task_struct *p,
3631 struct inode *inode)
3633 struct inode_security_struct *isec = inode->i_security;
3634 u32 sid = task_sid(p);
3637 isec->initialized = 1;
3640 /* Returns error only if unable to parse addresses */
3641 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3642 struct common_audit_data *ad, u8 *proto)
3644 int offset, ihlen, ret = -EINVAL;
3645 struct iphdr _iph, *ih;
3647 offset = skb_network_offset(skb);
3648 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3652 ihlen = ih->ihl * 4;
3653 if (ihlen < sizeof(_iph))
3656 ad->u.net->v4info.saddr = ih->saddr;
3657 ad->u.net->v4info.daddr = ih->daddr;
3661 *proto = ih->protocol;
3663 switch (ih->protocol) {
3665 struct tcphdr _tcph, *th;
3667 if (ntohs(ih->frag_off) & IP_OFFSET)
3671 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3675 ad->u.net->sport = th->source;
3676 ad->u.net->dport = th->dest;
3681 struct udphdr _udph, *uh;
3683 if (ntohs(ih->frag_off) & IP_OFFSET)
3687 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3691 ad->u.net->sport = uh->source;
3692 ad->u.net->dport = uh->dest;
3696 case IPPROTO_DCCP: {
3697 struct dccp_hdr _dccph, *dh;
3699 if (ntohs(ih->frag_off) & IP_OFFSET)
3703 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3707 ad->u.net->sport = dh->dccph_sport;
3708 ad->u.net->dport = dh->dccph_dport;
3719 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3721 /* Returns error only if unable to parse addresses */
3722 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3723 struct common_audit_data *ad, u8 *proto)
3726 int ret = -EINVAL, offset;
3727 struct ipv6hdr _ipv6h, *ip6;
3730 offset = skb_network_offset(skb);
3731 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3735 ad->u.net->v6info.saddr = ip6->saddr;
3736 ad->u.net->v6info.daddr = ip6->daddr;
3739 nexthdr = ip6->nexthdr;
3740 offset += sizeof(_ipv6h);
3741 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3750 struct tcphdr _tcph, *th;
3752 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3756 ad->u.net->sport = th->source;
3757 ad->u.net->dport = th->dest;
3762 struct udphdr _udph, *uh;
3764 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3768 ad->u.net->sport = uh->source;
3769 ad->u.net->dport = uh->dest;
3773 case IPPROTO_DCCP: {
3774 struct dccp_hdr _dccph, *dh;
3776 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3780 ad->u.net->sport = dh->dccph_sport;
3781 ad->u.net->dport = dh->dccph_dport;
3785 /* includes fragments */
3795 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3796 char **_addrp, int src, u8 *proto)
3801 switch (ad->u.net->family) {
3803 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3806 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3807 &ad->u.net->v4info.daddr);
3810 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3812 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3815 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3816 &ad->u.net->v6info.daddr);
3826 "SELinux: failure in selinux_parse_skb(),"
3827 " unable to parse packet\n");
3837 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3839 * @family: protocol family
3840 * @sid: the packet's peer label SID
3843 * Check the various different forms of network peer labeling and determine
3844 * the peer label/SID for the packet; most of the magic actually occurs in
3845 * the security server function security_net_peersid_cmp(). The function
3846 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3847 * or -EACCES if @sid is invalid due to inconsistencies with the different
3851 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3858 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3861 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3865 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3866 if (unlikely(err)) {
3868 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3869 " unable to determine packet's peer label\n");
3877 * selinux_conn_sid - Determine the child socket label for a connection
3878 * @sk_sid: the parent socket's SID
3879 * @skb_sid: the packet's SID
3880 * @conn_sid: the resulting connection SID
3882 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3883 * combined with the MLS information from @skb_sid in order to create
3884 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
3885 * of @sk_sid. Returns zero on success, negative values on failure.
3888 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3892 if (skb_sid != SECSID_NULL)
3893 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
3900 /* socket security operations */
3902 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3903 u16 secclass, u32 *socksid)
3905 if (tsec->sockcreate_sid > SECSID_NULL) {
3906 *socksid = tsec->sockcreate_sid;
3910 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3914 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3916 struct sk_security_struct *sksec = sk->sk_security;
3917 struct common_audit_data ad;
3918 struct lsm_network_audit net = {0,};
3919 u32 tsid = task_sid(task);
3921 if (sksec->sid == SECINITSID_KERNEL)
3924 ad.type = LSM_AUDIT_DATA_NET;
3928 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3931 static int selinux_socket_create(int family, int type,
3932 int protocol, int kern)
3934 const struct task_security_struct *tsec = current_security();
3942 secclass = socket_type_to_security_class(family, type, protocol);
3943 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3947 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3950 static int selinux_socket_post_create(struct socket *sock, int family,
3951 int type, int protocol, int kern)
3953 const struct task_security_struct *tsec = current_security();
3954 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3955 struct sk_security_struct *sksec;
3958 isec->sclass = socket_type_to_security_class(family, type, protocol);
3961 isec->sid = SECINITSID_KERNEL;
3963 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3968 isec->initialized = 1;
3971 sksec = sock->sk->sk_security;
3972 sksec->sid = isec->sid;
3973 sksec->sclass = isec->sclass;
3974 err = selinux_netlbl_socket_post_create(sock->sk, family);
3980 /* Range of port numbers used to automatically bind.
3981 Need to determine whether we should perform a name_bind
3982 permission check between the socket and the port number. */
3984 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3986 struct sock *sk = sock->sk;
3990 err = sock_has_perm(current, sk, SOCKET__BIND);
3995 * If PF_INET or PF_INET6, check name_bind permission for the port.
3996 * Multiple address binding for SCTP is not supported yet: we just
3997 * check the first address now.
3999 family = sk->sk_family;
4000 if (family == PF_INET || family == PF_INET6) {
4002 struct sk_security_struct *sksec = sk->sk_security;
4003 struct common_audit_data ad;
4004 struct lsm_network_audit net = {0,};
4005 struct sockaddr_in *addr4 = NULL;
4006 struct sockaddr_in6 *addr6 = NULL;
4007 unsigned short snum;
4010 if (family == PF_INET) {
4011 addr4 = (struct sockaddr_in *)address;
4012 snum = ntohs(addr4->sin_port);
4013 addrp = (char *)&addr4->sin_addr.s_addr;
4015 addr6 = (struct sockaddr_in6 *)address;
4016 snum = ntohs(addr6->sin6_port);
4017 addrp = (char *)&addr6->sin6_addr.s6_addr;
4023 inet_get_local_port_range(sock_net(sk), &low, &high);
4025 if (snum < max(PROT_SOCK, low) || snum > high) {
4026 err = sel_netport_sid(sk->sk_protocol,
4030 ad.type = LSM_AUDIT_DATA_NET;
4032 ad.u.net->sport = htons(snum);
4033 ad.u.net->family = family;
4034 err = avc_has_perm(sksec->sid, sid,
4036 SOCKET__NAME_BIND, &ad);
4042 switch (sksec->sclass) {
4043 case SECCLASS_TCP_SOCKET:
4044 node_perm = TCP_SOCKET__NODE_BIND;
4047 case SECCLASS_UDP_SOCKET:
4048 node_perm = UDP_SOCKET__NODE_BIND;
4051 case SECCLASS_DCCP_SOCKET:
4052 node_perm = DCCP_SOCKET__NODE_BIND;
4056 node_perm = RAWIP_SOCKET__NODE_BIND;
4060 err = sel_netnode_sid(addrp, family, &sid);
4064 ad.type = LSM_AUDIT_DATA_NET;
4066 ad.u.net->sport = htons(snum);
4067 ad.u.net->family = family;
4069 if (family == PF_INET)
4070 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4072 ad.u.net->v6info.saddr = addr6->sin6_addr;
4074 err = avc_has_perm(sksec->sid, sid,
4075 sksec->sclass, node_perm, &ad);
4083 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4085 struct sock *sk = sock->sk;
4086 struct sk_security_struct *sksec = sk->sk_security;
4089 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4094 * If a TCP or DCCP socket, check name_connect permission for the port.
4096 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4097 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4098 struct common_audit_data ad;
4099 struct lsm_network_audit net = {0,};
4100 struct sockaddr_in *addr4 = NULL;
4101 struct sockaddr_in6 *addr6 = NULL;
4102 unsigned short snum;
4105 if (sk->sk_family == PF_INET) {
4106 addr4 = (struct sockaddr_in *)address;
4107 if (addrlen < sizeof(struct sockaddr_in))
4109 snum = ntohs(addr4->sin_port);
4111 addr6 = (struct sockaddr_in6 *)address;
4112 if (addrlen < SIN6_LEN_RFC2133)
4114 snum = ntohs(addr6->sin6_port);
4117 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4121 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4122 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4124 ad.type = LSM_AUDIT_DATA_NET;
4126 ad.u.net->dport = htons(snum);
4127 ad.u.net->family = sk->sk_family;
4128 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4133 err = selinux_netlbl_socket_connect(sk, address);
4139 static int selinux_socket_listen(struct socket *sock, int backlog)
4141 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4144 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4147 struct inode_security_struct *isec;
4148 struct inode_security_struct *newisec;
4150 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4154 newisec = SOCK_INODE(newsock)->i_security;
4156 isec = SOCK_INODE(sock)->i_security;
4157 newisec->sclass = isec->sclass;
4158 newisec->sid = isec->sid;
4159 newisec->initialized = 1;
4164 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4167 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4170 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4171 int size, int flags)
4173 return sock_has_perm(current, sock->sk, SOCKET__READ);
4176 static int selinux_socket_getsockname(struct socket *sock)
4178 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4181 static int selinux_socket_getpeername(struct socket *sock)
4183 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4186 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4190 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4194 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4197 static int selinux_socket_getsockopt(struct socket *sock, int level,
4200 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4203 static int selinux_socket_shutdown(struct socket *sock, int how)
4205 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4208 static int selinux_socket_unix_stream_connect(struct sock *sock,
4212 struct sk_security_struct *sksec_sock = sock->sk_security;
4213 struct sk_security_struct *sksec_other = other->sk_security;
4214 struct sk_security_struct *sksec_new = newsk->sk_security;
4215 struct common_audit_data ad;
4216 struct lsm_network_audit net = {0,};
4219 ad.type = LSM_AUDIT_DATA_NET;
4221 ad.u.net->sk = other;
4223 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4224 sksec_other->sclass,
4225 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4229 /* server child socket */
4230 sksec_new->peer_sid = sksec_sock->sid;
4231 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4236 /* connecting socket */
4237 sksec_sock->peer_sid = sksec_new->sid;
4242 static int selinux_socket_unix_may_send(struct socket *sock,
4243 struct socket *other)
4245 struct sk_security_struct *ssec = sock->sk->sk_security;
4246 struct sk_security_struct *osec = other->sk->sk_security;
4247 struct common_audit_data ad;
4248 struct lsm_network_audit net = {0,};
4250 ad.type = LSM_AUDIT_DATA_NET;
4252 ad.u.net->sk = other->sk;
4254 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4258 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4260 struct common_audit_data *ad)
4266 err = sel_netif_sid(ifindex, &if_sid);
4269 err = avc_has_perm(peer_sid, if_sid,
4270 SECCLASS_NETIF, NETIF__INGRESS, ad);
4274 err = sel_netnode_sid(addrp, family, &node_sid);
4277 return avc_has_perm(peer_sid, node_sid,
4278 SECCLASS_NODE, NODE__RECVFROM, ad);
4281 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4285 struct sk_security_struct *sksec = sk->sk_security;
4286 u32 sk_sid = sksec->sid;
4287 struct common_audit_data ad;
4288 struct lsm_network_audit net = {0,};
4291 ad.type = LSM_AUDIT_DATA_NET;
4293 ad.u.net->netif = skb->skb_iif;
4294 ad.u.net->family = family;
4295 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4299 if (selinux_secmark_enabled()) {
4300 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4306 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4309 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4314 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4317 struct sk_security_struct *sksec = sk->sk_security;
4318 u16 family = sk->sk_family;
4319 u32 sk_sid = sksec->sid;
4320 struct common_audit_data ad;
4321 struct lsm_network_audit net = {0,};
4326 if (family != PF_INET && family != PF_INET6)
4329 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4330 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4333 /* If any sort of compatibility mode is enabled then handoff processing
4334 * to the selinux_sock_rcv_skb_compat() function to deal with the
4335 * special handling. We do this in an attempt to keep this function
4336 * as fast and as clean as possible. */
4337 if (!selinux_policycap_netpeer)
4338 return selinux_sock_rcv_skb_compat(sk, skb, family);
4340 secmark_active = selinux_secmark_enabled();
4341 peerlbl_active = selinux_peerlbl_enabled();
4342 if (!secmark_active && !peerlbl_active)
4345 ad.type = LSM_AUDIT_DATA_NET;
4347 ad.u.net->netif = skb->skb_iif;
4348 ad.u.net->family = family;
4349 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4353 if (peerlbl_active) {
4356 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4359 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4362 selinux_netlbl_err(skb, err, 0);
4365 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4368 selinux_netlbl_err(skb, err, 0);
4373 if (secmark_active) {
4374 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4383 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4384 int __user *optlen, unsigned len)
4389 struct sk_security_struct *sksec = sock->sk->sk_security;
4390 u32 peer_sid = SECSID_NULL;
4392 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4393 sksec->sclass == SECCLASS_TCP_SOCKET)
4394 peer_sid = sksec->peer_sid;
4395 if (peer_sid == SECSID_NULL)
4396 return -ENOPROTOOPT;
4398 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4402 if (scontext_len > len) {
4407 if (copy_to_user(optval, scontext, scontext_len))
4411 if (put_user(scontext_len, optlen))
4417 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4419 u32 peer_secid = SECSID_NULL;
4422 if (skb && skb->protocol == htons(ETH_P_IP))
4424 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4427 family = sock->sk->sk_family;
4431 if (sock && family == PF_UNIX)
4432 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4434 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4437 *secid = peer_secid;
4438 if (peer_secid == SECSID_NULL)
4443 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4445 struct sk_security_struct *sksec;
4447 sksec = kzalloc(sizeof(*sksec), priority);
4451 sksec->peer_sid = SECINITSID_UNLABELED;
4452 sksec->sid = SECINITSID_UNLABELED;
4453 selinux_netlbl_sk_security_reset(sksec);
4454 sk->sk_security = sksec;
4459 static void selinux_sk_free_security(struct sock *sk)
4461 struct sk_security_struct *sksec = sk->sk_security;
4463 sk->sk_security = NULL;
4464 selinux_netlbl_sk_security_free(sksec);
4468 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4470 struct sk_security_struct *sksec = sk->sk_security;
4471 struct sk_security_struct *newsksec = newsk->sk_security;
4473 newsksec->sid = sksec->sid;
4474 newsksec->peer_sid = sksec->peer_sid;
4475 newsksec->sclass = sksec->sclass;
4477 selinux_netlbl_sk_security_reset(newsksec);
4480 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4483 *secid = SECINITSID_ANY_SOCKET;
4485 struct sk_security_struct *sksec = sk->sk_security;
4487 *secid = sksec->sid;
4491 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4493 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4494 struct sk_security_struct *sksec = sk->sk_security;
4496 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4497 sk->sk_family == PF_UNIX)
4498 isec->sid = sksec->sid;
4499 sksec->sclass = isec->sclass;
4502 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4503 struct request_sock *req)
4505 struct sk_security_struct *sksec = sk->sk_security;
4507 u16 family = req->rsk_ops->family;
4511 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4514 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4517 req->secid = connsid;
4518 req->peer_secid = peersid;
4520 return selinux_netlbl_inet_conn_request(req, family);
4523 static void selinux_inet_csk_clone(struct sock *newsk,
4524 const struct request_sock *req)
4526 struct sk_security_struct *newsksec = newsk->sk_security;
4528 newsksec->sid = req->secid;
4529 newsksec->peer_sid = req->peer_secid;
4530 /* NOTE: Ideally, we should also get the isec->sid for the
4531 new socket in sync, but we don't have the isec available yet.
4532 So we will wait until sock_graft to do it, by which
4533 time it will have been created and available. */
4535 /* We don't need to take any sort of lock here as we are the only
4536 * thread with access to newsksec */
4537 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4540 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4542 u16 family = sk->sk_family;
4543 struct sk_security_struct *sksec = sk->sk_security;
4545 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4546 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4549 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4552 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4554 skb_set_owner_w(skb, sk);
4557 static int selinux_secmark_relabel_packet(u32 sid)
4559 const struct task_security_struct *__tsec;
4562 __tsec = current_security();
4565 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4568 static void selinux_secmark_refcount_inc(void)
4570 atomic_inc(&selinux_secmark_refcount);
4573 static void selinux_secmark_refcount_dec(void)
4575 atomic_dec(&selinux_secmark_refcount);
4578 static void selinux_req_classify_flow(const struct request_sock *req,
4581 fl->flowi_secid = req->secid;
4584 static int selinux_tun_dev_alloc_security(void **security)
4586 struct tun_security_struct *tunsec;
4588 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4591 tunsec->sid = current_sid();
4597 static void selinux_tun_dev_free_security(void *security)
4602 static int selinux_tun_dev_create(void)
4604 u32 sid = current_sid();
4606 /* we aren't taking into account the "sockcreate" SID since the socket
4607 * that is being created here is not a socket in the traditional sense,
4608 * instead it is a private sock, accessible only to the kernel, and
4609 * representing a wide range of network traffic spanning multiple
4610 * connections unlike traditional sockets - check the TUN driver to
4611 * get a better understanding of why this socket is special */
4613 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4617 static int selinux_tun_dev_attach_queue(void *security)
4619 struct tun_security_struct *tunsec = security;
4621 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4622 TUN_SOCKET__ATTACH_QUEUE, NULL);
4625 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4627 struct tun_security_struct *tunsec = security;
4628 struct sk_security_struct *sksec = sk->sk_security;
4630 /* we don't currently perform any NetLabel based labeling here and it
4631 * isn't clear that we would want to do so anyway; while we could apply
4632 * labeling without the support of the TUN user the resulting labeled
4633 * traffic from the other end of the connection would almost certainly
4634 * cause confusion to the TUN user that had no idea network labeling
4635 * protocols were being used */
4637 sksec->sid = tunsec->sid;
4638 sksec->sclass = SECCLASS_TUN_SOCKET;
4643 static int selinux_tun_dev_open(void *security)
4645 struct tun_security_struct *tunsec = security;
4646 u32 sid = current_sid();
4649 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4650 TUN_SOCKET__RELABELFROM, NULL);
4653 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4654 TUN_SOCKET__RELABELTO, NULL);
4662 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4666 struct nlmsghdr *nlh;
4667 struct sk_security_struct *sksec = sk->sk_security;
4669 if (skb->len < NLMSG_HDRLEN) {
4673 nlh = nlmsg_hdr(skb);
4675 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4677 if (err == -EINVAL) {
4678 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4679 "SELinux: unrecognized netlink message"
4680 " type=%hu for sclass=%hu\n",
4681 nlh->nlmsg_type, sksec->sclass);
4682 if (!selinux_enforcing || security_get_allow_unknown())
4692 err = sock_has_perm(current, sk, perm);
4697 #ifdef CONFIG_NETFILTER
4699 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4705 struct common_audit_data ad;
4706 struct lsm_network_audit net = {0,};
4711 if (!selinux_policycap_netpeer)
4714 secmark_active = selinux_secmark_enabled();
4715 netlbl_active = netlbl_enabled();
4716 peerlbl_active = selinux_peerlbl_enabled();
4717 if (!secmark_active && !peerlbl_active)
4720 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4723 ad.type = LSM_AUDIT_DATA_NET;
4725 ad.u.net->netif = ifindex;
4726 ad.u.net->family = family;
4727 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4730 if (peerlbl_active) {
4731 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4734 selinux_netlbl_err(skb, err, 1);
4740 if (avc_has_perm(peer_sid, skb->secmark,
4741 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4745 /* we do this in the FORWARD path and not the POST_ROUTING
4746 * path because we want to make sure we apply the necessary
4747 * labeling before IPsec is applied so we can leverage AH
4749 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4755 static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4756 struct sk_buff *skb,
4757 const struct net_device *in,
4758 const struct net_device *out,
4759 int (*okfn)(struct sk_buff *))
4761 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4764 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4765 static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4766 struct sk_buff *skb,
4767 const struct net_device *in,
4768 const struct net_device *out,
4769 int (*okfn)(struct sk_buff *))
4771 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4775 static unsigned int selinux_ip_output(struct sk_buff *skb,
4781 if (!netlbl_enabled())
4784 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4785 * because we want to make sure we apply the necessary labeling
4786 * before IPsec is applied so we can leverage AH protection */
4789 struct sk_security_struct *sksec;
4791 if (sk->sk_state == TCP_LISTEN)
4792 /* if the socket is the listening state then this
4793 * packet is a SYN-ACK packet which means it needs to
4794 * be labeled based on the connection/request_sock and
4795 * not the parent socket. unfortunately, we can't
4796 * lookup the request_sock yet as it isn't queued on
4797 * the parent socket until after the SYN-ACK is sent.
4798 * the "solution" is to simply pass the packet as-is
4799 * as any IP option based labeling should be copied
4800 * from the initial connection request (in the IP
4801 * layer). it is far from ideal, but until we get a
4802 * security label in the packet itself this is the
4803 * best we can do. */
4806 /* standard practice, label using the parent socket */
4807 sksec = sk->sk_security;
4810 sid = SECINITSID_KERNEL;
4811 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4817 static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4818 struct sk_buff *skb,
4819 const struct net_device *in,
4820 const struct net_device *out,
4821 int (*okfn)(struct sk_buff *))
4823 return selinux_ip_output(skb, PF_INET);
4826 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4830 struct sock *sk = skb->sk;
4831 struct sk_security_struct *sksec;
4832 struct common_audit_data ad;
4833 struct lsm_network_audit net = {0,};
4839 sksec = sk->sk_security;
4841 ad.type = LSM_AUDIT_DATA_NET;
4843 ad.u.net->netif = ifindex;
4844 ad.u.net->family = family;
4845 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4848 if (selinux_secmark_enabled())
4849 if (avc_has_perm(sksec->sid, skb->secmark,
4850 SECCLASS_PACKET, PACKET__SEND, &ad))
4851 return NF_DROP_ERR(-ECONNREFUSED);
4853 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4854 return NF_DROP_ERR(-ECONNREFUSED);
4859 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4865 struct common_audit_data ad;
4866 struct lsm_network_audit net = {0,};
4871 /* If any sort of compatibility mode is enabled then handoff processing
4872 * to the selinux_ip_postroute_compat() function to deal with the
4873 * special handling. We do this in an attempt to keep this function
4874 * as fast and as clean as possible. */
4875 if (!selinux_policycap_netpeer)
4876 return selinux_ip_postroute_compat(skb, ifindex, family);
4878 secmark_active = selinux_secmark_enabled();
4879 peerlbl_active = selinux_peerlbl_enabled();
4880 if (!secmark_active && !peerlbl_active)
4886 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4887 * packet transformation so allow the packet to pass without any checks
4888 * since we'll have another chance to perform access control checks
4889 * when the packet is on it's final way out.
4890 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4891 * is NULL, in this case go ahead and apply access control.
4892 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4893 * TCP listening state we cannot wait until the XFRM processing
4894 * is done as we will miss out on the SA label if we do;
4895 * unfortunately, this means more work, but it is only once per
4897 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4898 !(sk != NULL && sk->sk_state == TCP_LISTEN))
4903 /* Without an associated socket the packet is either coming
4904 * from the kernel or it is being forwarded; check the packet
4905 * to determine which and if the packet is being forwarded
4906 * query the packet directly to determine the security label. */
4908 secmark_perm = PACKET__FORWARD_OUT;
4909 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4912 secmark_perm = PACKET__SEND;
4913 peer_sid = SECINITSID_KERNEL;
4915 } else if (sk->sk_state == TCP_LISTEN) {
4916 /* Locally generated packet but the associated socket is in the
4917 * listening state which means this is a SYN-ACK packet. In
4918 * this particular case the correct security label is assigned
4919 * to the connection/request_sock but unfortunately we can't
4920 * query the request_sock as it isn't queued on the parent
4921 * socket until after the SYN-ACK packet is sent; the only
4922 * viable choice is to regenerate the label like we do in
4923 * selinux_inet_conn_request(). See also selinux_ip_output()
4924 * for similar problems. */
4926 struct sk_security_struct *sksec = sk->sk_security;
4927 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4929 /* At this point, if the returned skb peerlbl is SECSID_NULL
4930 * and the packet has been through at least one XFRM
4931 * transformation then we must be dealing with the "final"
4932 * form of labeled IPsec packet; since we've already applied
4933 * all of our access controls on this packet we can safely
4934 * pass the packet. */
4935 if (skb_sid == SECSID_NULL) {
4938 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4942 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4945 return NF_DROP_ERR(-ECONNREFUSED);
4948 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4950 secmark_perm = PACKET__SEND;
4952 /* Locally generated packet, fetch the security label from the
4953 * associated socket. */
4954 struct sk_security_struct *sksec = sk->sk_security;
4955 peer_sid = sksec->sid;
4956 secmark_perm = PACKET__SEND;
4959 ad.type = LSM_AUDIT_DATA_NET;
4961 ad.u.net->netif = ifindex;
4962 ad.u.net->family = family;
4963 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4967 if (avc_has_perm(peer_sid, skb->secmark,
4968 SECCLASS_PACKET, secmark_perm, &ad))
4969 return NF_DROP_ERR(-ECONNREFUSED);
4971 if (peerlbl_active) {
4975 if (sel_netif_sid(ifindex, &if_sid))
4977 if (avc_has_perm(peer_sid, if_sid,
4978 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4979 return NF_DROP_ERR(-ECONNREFUSED);
4981 if (sel_netnode_sid(addrp, family, &node_sid))
4983 if (avc_has_perm(peer_sid, node_sid,
4984 SECCLASS_NODE, NODE__SENDTO, &ad))
4985 return NF_DROP_ERR(-ECONNREFUSED);
4991 static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
4992 struct sk_buff *skb,
4993 const struct net_device *in,
4994 const struct net_device *out,
4995 int (*okfn)(struct sk_buff *))
4997 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
5000 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5001 static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5002 struct sk_buff *skb,
5003 const struct net_device *in,
5004 const struct net_device *out,
5005 int (*okfn)(struct sk_buff *))
5007 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
5011 #endif /* CONFIG_NETFILTER */
5013 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5017 err = cap_netlink_send(sk, skb);
5021 return selinux_nlmsg_perm(sk, skb);
5024 static int ipc_alloc_security(struct task_struct *task,
5025 struct kern_ipc_perm *perm,
5028 struct ipc_security_struct *isec;
5031 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5035 sid = task_sid(task);
5036 isec->sclass = sclass;
5038 perm->security = isec;
5043 static void ipc_free_security(struct kern_ipc_perm *perm)
5045 struct ipc_security_struct *isec = perm->security;
5046 perm->security = NULL;
5050 static int msg_msg_alloc_security(struct msg_msg *msg)
5052 struct msg_security_struct *msec;
5054 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5058 msec->sid = SECINITSID_UNLABELED;
5059 msg->security = msec;
5064 static void msg_msg_free_security(struct msg_msg *msg)
5066 struct msg_security_struct *msec = msg->security;
5068 msg->security = NULL;
5072 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5075 struct ipc_security_struct *isec;
5076 struct common_audit_data ad;
5077 u32 sid = current_sid();
5079 isec = ipc_perms->security;
5081 ad.type = LSM_AUDIT_DATA_IPC;
5082 ad.u.ipc_id = ipc_perms->key;
5084 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5087 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5089 return msg_msg_alloc_security(msg);
5092 static void selinux_msg_msg_free_security(struct msg_msg *msg)
5094 msg_msg_free_security(msg);
5097 /* message queue security operations */
5098 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5100 struct ipc_security_struct *isec;
5101 struct common_audit_data ad;
5102 u32 sid = current_sid();
5105 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5109 isec = msq->q_perm.security;
5111 ad.type = LSM_AUDIT_DATA_IPC;
5112 ad.u.ipc_id = msq->q_perm.key;
5114 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5117 ipc_free_security(&msq->q_perm);
5123 static void selinux_msg_queue_free_security(struct msg_queue *msq)
5125 ipc_free_security(&msq->q_perm);
5128 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5130 struct ipc_security_struct *isec;
5131 struct common_audit_data ad;
5132 u32 sid = current_sid();
5134 isec = msq->q_perm.security;
5136 ad.type = LSM_AUDIT_DATA_IPC;
5137 ad.u.ipc_id = msq->q_perm.key;
5139 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5140 MSGQ__ASSOCIATE, &ad);
5143 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5151 /* No specific object, just general system-wide information. */
5152 return task_has_system(current, SYSTEM__IPC_INFO);
5155 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5158 perms = MSGQ__SETATTR;
5161 perms = MSGQ__DESTROY;
5167 err = ipc_has_perm(&msq->q_perm, perms);
5171 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5173 struct ipc_security_struct *isec;
5174 struct msg_security_struct *msec;
5175 struct common_audit_data ad;
5176 u32 sid = current_sid();
5179 isec = msq->q_perm.security;
5180 msec = msg->security;
5183 * First time through, need to assign label to the message
5185 if (msec->sid == SECINITSID_UNLABELED) {
5187 * Compute new sid based on current process and
5188 * message queue this message will be stored in
5190 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5196 ad.type = LSM_AUDIT_DATA_IPC;
5197 ad.u.ipc_id = msq->q_perm.key;
5199 /* Can this process write to the queue? */
5200 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5203 /* Can this process send the message */
5204 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5207 /* Can the message be put in the queue? */
5208 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5209 MSGQ__ENQUEUE, &ad);
5214 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5215 struct task_struct *target,
5216 long type, int mode)
5218 struct ipc_security_struct *isec;
5219 struct msg_security_struct *msec;
5220 struct common_audit_data ad;
5221 u32 sid = task_sid(target);
5224 isec = msq->q_perm.security;
5225 msec = msg->security;
5227 ad.type = LSM_AUDIT_DATA_IPC;
5228 ad.u.ipc_id = msq->q_perm.key;
5230 rc = avc_has_perm(sid, isec->sid,
5231 SECCLASS_MSGQ, MSGQ__READ, &ad);
5233 rc = avc_has_perm(sid, msec->sid,
5234 SECCLASS_MSG, MSG__RECEIVE, &ad);
5238 /* Shared Memory security operations */
5239 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5241 struct ipc_security_struct *isec;
5242 struct common_audit_data ad;
5243 u32 sid = current_sid();
5246 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5250 isec = shp->shm_perm.security;
5252 ad.type = LSM_AUDIT_DATA_IPC;
5253 ad.u.ipc_id = shp->shm_perm.key;
5255 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5258 ipc_free_security(&shp->shm_perm);
5264 static void selinux_shm_free_security(struct shmid_kernel *shp)
5266 ipc_free_security(&shp->shm_perm);
5269 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5271 struct ipc_security_struct *isec;
5272 struct common_audit_data ad;
5273 u32 sid = current_sid();
5275 isec = shp->shm_perm.security;
5277 ad.type = LSM_AUDIT_DATA_IPC;
5278 ad.u.ipc_id = shp->shm_perm.key;
5280 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5281 SHM__ASSOCIATE, &ad);
5284 /* Note, at this point, shp is locked down */
5285 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5293 /* No specific object, just general system-wide information. */
5294 return task_has_system(current, SYSTEM__IPC_INFO);
5297 perms = SHM__GETATTR | SHM__ASSOCIATE;
5300 perms = SHM__SETATTR;
5307 perms = SHM__DESTROY;
5313 err = ipc_has_perm(&shp->shm_perm, perms);
5317 static int selinux_shm_shmat(struct shmid_kernel *shp,
5318 char __user *shmaddr, int shmflg)
5322 if (shmflg & SHM_RDONLY)
5325 perms = SHM__READ | SHM__WRITE;
5327 return ipc_has_perm(&shp->shm_perm, perms);
5330 /* Semaphore security operations */
5331 static int selinux_sem_alloc_security(struct sem_array *sma)
5333 struct ipc_security_struct *isec;
5334 struct common_audit_data ad;
5335 u32 sid = current_sid();
5338 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5342 isec = sma->sem_perm.security;
5344 ad.type = LSM_AUDIT_DATA_IPC;
5345 ad.u.ipc_id = sma->sem_perm.key;
5347 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5350 ipc_free_security(&sma->sem_perm);
5356 static void selinux_sem_free_security(struct sem_array *sma)
5358 ipc_free_security(&sma->sem_perm);
5361 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5363 struct ipc_security_struct *isec;
5364 struct common_audit_data ad;
5365 u32 sid = current_sid();
5367 isec = sma->sem_perm.security;
5369 ad.type = LSM_AUDIT_DATA_IPC;
5370 ad.u.ipc_id = sma->sem_perm.key;
5372 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5373 SEM__ASSOCIATE, &ad);
5376 /* Note, at this point, sma is locked down */
5377 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5385 /* No specific object, just general system-wide information. */
5386 return task_has_system(current, SYSTEM__IPC_INFO);
5390 perms = SEM__GETATTR;
5401 perms = SEM__DESTROY;
5404 perms = SEM__SETATTR;
5408 perms = SEM__GETATTR | SEM__ASSOCIATE;
5414 err = ipc_has_perm(&sma->sem_perm, perms);
5418 static int selinux_sem_semop(struct sem_array *sma,
5419 struct sembuf *sops, unsigned nsops, int alter)
5424 perms = SEM__READ | SEM__WRITE;
5428 return ipc_has_perm(&sma->sem_perm, perms);
5431 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5437 av |= IPC__UNIX_READ;
5439 av |= IPC__UNIX_WRITE;
5444 return ipc_has_perm(ipcp, av);
5447 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5449 struct ipc_security_struct *isec = ipcp->security;
5453 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5456 inode_doinit_with_dentry(inode, dentry);
5459 static int selinux_getprocattr(struct task_struct *p,
5460 char *name, char **value)
5462 const struct task_security_struct *__tsec;
5468 error = current_has_perm(p, PROCESS__GETATTR);
5474 __tsec = __task_cred(p)->security;
5476 if (!strcmp(name, "current"))
5478 else if (!strcmp(name, "prev"))
5480 else if (!strcmp(name, "exec"))
5481 sid = __tsec->exec_sid;
5482 else if (!strcmp(name, "fscreate"))
5483 sid = __tsec->create_sid;
5484 else if (!strcmp(name, "keycreate"))
5485 sid = __tsec->keycreate_sid;
5486 else if (!strcmp(name, "sockcreate"))
5487 sid = __tsec->sockcreate_sid;
5495 error = security_sid_to_context(sid, value, &len);
5505 static int selinux_setprocattr(struct task_struct *p,
5506 char *name, void *value, size_t size)
5508 struct task_security_struct *tsec;
5509 struct task_struct *tracer;
5516 /* SELinux only allows a process to change its own
5517 security attributes. */
5522 * Basic control over ability to set these attributes at all.
5523 * current == p, but we'll pass them separately in case the
5524 * above restriction is ever removed.
5526 if (!strcmp(name, "exec"))
5527 error = current_has_perm(p, PROCESS__SETEXEC);
5528 else if (!strcmp(name, "fscreate"))
5529 error = current_has_perm(p, PROCESS__SETFSCREATE);
5530 else if (!strcmp(name, "keycreate"))
5531 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5532 else if (!strcmp(name, "sockcreate"))
5533 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5534 else if (!strcmp(name, "current"))
5535 error = current_has_perm(p, PROCESS__SETCURRENT);
5541 /* Obtain a SID for the context, if one was specified. */
5542 if (size && str[1] && str[1] != '\n') {
5543 if (str[size-1] == '\n') {
5547 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5548 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5549 if (!capable(CAP_MAC_ADMIN)) {
5550 struct audit_buffer *ab;
5553 /* We strip a nul only if it is at the end, otherwise the
5554 * context contains a nul and we should audit that */
5555 if (str[size - 1] == '\0')
5556 audit_size = size - 1;
5559 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5560 audit_log_format(ab, "op=fscreate invalid_context=");
5561 audit_log_n_untrustedstring(ab, value, audit_size);
5566 error = security_context_to_sid_force(value, size,
5573 new = prepare_creds();
5577 /* Permission checking based on the specified context is
5578 performed during the actual operation (execve,
5579 open/mkdir/...), when we know the full context of the
5580 operation. See selinux_bprm_set_creds for the execve
5581 checks and may_create for the file creation checks. The
5582 operation will then fail if the context is not permitted. */
5583 tsec = new->security;
5584 if (!strcmp(name, "exec")) {
5585 tsec->exec_sid = sid;
5586 } else if (!strcmp(name, "fscreate")) {
5587 tsec->create_sid = sid;
5588 } else if (!strcmp(name, "keycreate")) {
5589 error = may_create_key(sid, p);
5592 tsec->keycreate_sid = sid;
5593 } else if (!strcmp(name, "sockcreate")) {
5594 tsec->sockcreate_sid = sid;
5595 } else if (!strcmp(name, "current")) {
5600 /* Only allow single threaded processes to change context */
5602 if (!current_is_single_threaded()) {
5603 error = security_bounded_transition(tsec->sid, sid);
5608 /* Check permissions for the transition. */
5609 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5610 PROCESS__DYNTRANSITION, NULL);
5614 /* Check for ptracing, and update the task SID if ok.
5615 Otherwise, leave SID unchanged and fail. */
5618 tracer = ptrace_parent(p);
5620 ptsid = task_sid(tracer);
5624 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5625 PROCESS__PTRACE, NULL);
5644 static int selinux_ismaclabel(const char *name)
5646 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5649 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5651 return security_sid_to_context(secid, secdata, seclen);
5654 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5656 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5659 static void selinux_release_secctx(char *secdata, u32 seclen)
5665 * called with inode->i_mutex locked
5667 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5669 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5673 * called with inode->i_mutex locked
5675 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5677 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5680 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5683 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5692 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5693 unsigned long flags)
5695 const struct task_security_struct *tsec;
5696 struct key_security_struct *ksec;
5698 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5702 tsec = cred->security;
5703 if (tsec->keycreate_sid)
5704 ksec->sid = tsec->keycreate_sid;
5706 ksec->sid = tsec->sid;
5712 static void selinux_key_free(struct key *k)
5714 struct key_security_struct *ksec = k->security;
5720 static int selinux_key_permission(key_ref_t key_ref,
5721 const struct cred *cred,
5725 struct key_security_struct *ksec;
5728 /* if no specific permissions are requested, we skip the
5729 permission check. No serious, additional covert channels
5730 appear to be created. */
5734 sid = cred_sid(cred);
5736 key = key_ref_to_ptr(key_ref);
5737 ksec = key->security;
5739 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5742 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5744 struct key_security_struct *ksec = key->security;
5745 char *context = NULL;
5749 rc = security_sid_to_context(ksec->sid, &context, &len);
5758 static struct security_operations selinux_ops = {
5761 .ptrace_access_check = selinux_ptrace_access_check,
5762 .ptrace_traceme = selinux_ptrace_traceme,
5763 .capget = selinux_capget,
5764 .capset = selinux_capset,
5765 .capable = selinux_capable,
5766 .quotactl = selinux_quotactl,
5767 .quota_on = selinux_quota_on,
5768 .syslog = selinux_syslog,
5769 .vm_enough_memory = selinux_vm_enough_memory,
5771 .netlink_send = selinux_netlink_send,
5773 .bprm_set_creds = selinux_bprm_set_creds,
5774 .bprm_committing_creds = selinux_bprm_committing_creds,
5775 .bprm_committed_creds = selinux_bprm_committed_creds,
5776 .bprm_secureexec = selinux_bprm_secureexec,
5778 .sb_alloc_security = selinux_sb_alloc_security,
5779 .sb_free_security = selinux_sb_free_security,
5780 .sb_copy_data = selinux_sb_copy_data,
5781 .sb_remount = selinux_sb_remount,
5782 .sb_kern_mount = selinux_sb_kern_mount,
5783 .sb_show_options = selinux_sb_show_options,
5784 .sb_statfs = selinux_sb_statfs,
5785 .sb_mount = selinux_mount,
5786 .sb_umount = selinux_umount,
5787 .sb_set_mnt_opts = selinux_set_mnt_opts,
5788 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5789 .sb_parse_opts_str = selinux_parse_opts_str,
5791 .dentry_init_security = selinux_dentry_init_security,
5793 .inode_alloc_security = selinux_inode_alloc_security,
5794 .inode_free_security = selinux_inode_free_security,
5795 .inode_init_security = selinux_inode_init_security,
5796 .inode_create = selinux_inode_create,
5797 .inode_link = selinux_inode_link,
5798 .inode_unlink = selinux_inode_unlink,
5799 .inode_symlink = selinux_inode_symlink,
5800 .inode_mkdir = selinux_inode_mkdir,
5801 .inode_rmdir = selinux_inode_rmdir,
5802 .inode_mknod = selinux_inode_mknod,
5803 .inode_rename = selinux_inode_rename,
5804 .inode_readlink = selinux_inode_readlink,
5805 .inode_follow_link = selinux_inode_follow_link,
5806 .inode_permission = selinux_inode_permission,
5807 .inode_setattr = selinux_inode_setattr,
5808 .inode_getattr = selinux_inode_getattr,
5809 .inode_setxattr = selinux_inode_setxattr,
5810 .inode_post_setxattr = selinux_inode_post_setxattr,
5811 .inode_getxattr = selinux_inode_getxattr,
5812 .inode_listxattr = selinux_inode_listxattr,
5813 .inode_removexattr = selinux_inode_removexattr,
5814 .inode_getsecurity = selinux_inode_getsecurity,
5815 .inode_setsecurity = selinux_inode_setsecurity,
5816 .inode_listsecurity = selinux_inode_listsecurity,
5817 .inode_getsecid = selinux_inode_getsecid,
5819 .file_permission = selinux_file_permission,
5820 .file_alloc_security = selinux_file_alloc_security,
5821 .file_free_security = selinux_file_free_security,
5822 .file_ioctl = selinux_file_ioctl,
5823 .mmap_file = selinux_mmap_file,
5824 .mmap_addr = selinux_mmap_addr,
5825 .file_mprotect = selinux_file_mprotect,
5826 .file_lock = selinux_file_lock,
5827 .file_fcntl = selinux_file_fcntl,
5828 .file_set_fowner = selinux_file_set_fowner,
5829 .file_send_sigiotask = selinux_file_send_sigiotask,
5830 .file_receive = selinux_file_receive,
5832 .file_open = selinux_file_open,
5834 .task_create = selinux_task_create,
5835 .cred_alloc_blank = selinux_cred_alloc_blank,
5836 .cred_free = selinux_cred_free,
5837 .cred_prepare = selinux_cred_prepare,
5838 .cred_transfer = selinux_cred_transfer,
5839 .kernel_act_as = selinux_kernel_act_as,
5840 .kernel_create_files_as = selinux_kernel_create_files_as,
5841 .kernel_module_request = selinux_kernel_module_request,
5842 .task_setpgid = selinux_task_setpgid,
5843 .task_getpgid = selinux_task_getpgid,
5844 .task_getsid = selinux_task_getsid,
5845 .task_getsecid = selinux_task_getsecid,
5846 .task_setnice = selinux_task_setnice,
5847 .task_setioprio = selinux_task_setioprio,
5848 .task_getioprio = selinux_task_getioprio,
5849 .task_setrlimit = selinux_task_setrlimit,
5850 .task_setscheduler = selinux_task_setscheduler,
5851 .task_getscheduler = selinux_task_getscheduler,
5852 .task_movememory = selinux_task_movememory,
5853 .task_kill = selinux_task_kill,
5854 .task_wait = selinux_task_wait,
5855 .task_to_inode = selinux_task_to_inode,
5857 .ipc_permission = selinux_ipc_permission,
5858 .ipc_getsecid = selinux_ipc_getsecid,
5860 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5861 .msg_msg_free_security = selinux_msg_msg_free_security,
5863 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5864 .msg_queue_free_security = selinux_msg_queue_free_security,
5865 .msg_queue_associate = selinux_msg_queue_associate,
5866 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5867 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5868 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5870 .shm_alloc_security = selinux_shm_alloc_security,
5871 .shm_free_security = selinux_shm_free_security,
5872 .shm_associate = selinux_shm_associate,
5873 .shm_shmctl = selinux_shm_shmctl,
5874 .shm_shmat = selinux_shm_shmat,
5876 .sem_alloc_security = selinux_sem_alloc_security,
5877 .sem_free_security = selinux_sem_free_security,
5878 .sem_associate = selinux_sem_associate,
5879 .sem_semctl = selinux_sem_semctl,
5880 .sem_semop = selinux_sem_semop,
5882 .d_instantiate = selinux_d_instantiate,
5884 .getprocattr = selinux_getprocattr,
5885 .setprocattr = selinux_setprocattr,
5887 .ismaclabel = selinux_ismaclabel,
5888 .secid_to_secctx = selinux_secid_to_secctx,
5889 .secctx_to_secid = selinux_secctx_to_secid,
5890 .release_secctx = selinux_release_secctx,
5891 .inode_notifysecctx = selinux_inode_notifysecctx,
5892 .inode_setsecctx = selinux_inode_setsecctx,
5893 .inode_getsecctx = selinux_inode_getsecctx,
5895 .unix_stream_connect = selinux_socket_unix_stream_connect,
5896 .unix_may_send = selinux_socket_unix_may_send,
5898 .socket_create = selinux_socket_create,
5899 .socket_post_create = selinux_socket_post_create,
5900 .socket_bind = selinux_socket_bind,
5901 .socket_connect = selinux_socket_connect,
5902 .socket_listen = selinux_socket_listen,
5903 .socket_accept = selinux_socket_accept,
5904 .socket_sendmsg = selinux_socket_sendmsg,
5905 .socket_recvmsg = selinux_socket_recvmsg,
5906 .socket_getsockname = selinux_socket_getsockname,
5907 .socket_getpeername = selinux_socket_getpeername,
5908 .socket_getsockopt = selinux_socket_getsockopt,
5909 .socket_setsockopt = selinux_socket_setsockopt,
5910 .socket_shutdown = selinux_socket_shutdown,
5911 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5912 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5913 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5914 .sk_alloc_security = selinux_sk_alloc_security,
5915 .sk_free_security = selinux_sk_free_security,
5916 .sk_clone_security = selinux_sk_clone_security,
5917 .sk_getsecid = selinux_sk_getsecid,
5918 .sock_graft = selinux_sock_graft,
5919 .inet_conn_request = selinux_inet_conn_request,
5920 .inet_csk_clone = selinux_inet_csk_clone,
5921 .inet_conn_established = selinux_inet_conn_established,
5922 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5923 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5924 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5925 .req_classify_flow = selinux_req_classify_flow,
5926 .tun_dev_alloc_security = selinux_tun_dev_alloc_security,
5927 .tun_dev_free_security = selinux_tun_dev_free_security,
5928 .tun_dev_create = selinux_tun_dev_create,
5929 .tun_dev_attach_queue = selinux_tun_dev_attach_queue,
5930 .tun_dev_attach = selinux_tun_dev_attach,
5931 .tun_dev_open = selinux_tun_dev_open,
5932 .skb_owned_by = selinux_skb_owned_by,
5934 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5935 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5936 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5937 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5938 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5939 .xfrm_state_alloc = selinux_xfrm_state_alloc,
5940 .xfrm_state_alloc_acquire = selinux_xfrm_state_alloc_acquire,
5941 .xfrm_state_free_security = selinux_xfrm_state_free,
5942 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5943 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5944 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5945 .xfrm_decode_session = selinux_xfrm_decode_session,
5949 .key_alloc = selinux_key_alloc,
5950 .key_free = selinux_key_free,
5951 .key_permission = selinux_key_permission,
5952 .key_getsecurity = selinux_key_getsecurity,
5956 .audit_rule_init = selinux_audit_rule_init,
5957 .audit_rule_known = selinux_audit_rule_known,
5958 .audit_rule_match = selinux_audit_rule_match,
5959 .audit_rule_free = selinux_audit_rule_free,
5963 static __init int selinux_init(void)
5965 if (!security_module_enable(&selinux_ops)) {
5966 selinux_enabled = 0;
5970 if (!selinux_enabled) {
5971 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5975 printk(KERN_INFO "SELinux: Initializing.\n");
5977 /* Set the security state for the initial task. */
5978 cred_init_security();
5980 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5982 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5983 sizeof(struct inode_security_struct),
5984 0, SLAB_PANIC, NULL);
5987 if (register_security(&selinux_ops))
5988 panic("SELinux: Unable to register with kernel.\n");
5990 if (selinux_enforcing)
5991 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5993 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5998 static void delayed_superblock_init(struct super_block *sb, void *unused)
6000 superblock_doinit(sb, NULL);
6003 void selinux_complete_init(void)
6005 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6007 /* Set up any superblocks initialized prior to the policy load. */
6008 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6009 iterate_supers(delayed_superblock_init, NULL);
6012 /* SELinux requires early initialization in order to label
6013 all processes and objects when they are created. */
6014 security_initcall(selinux_init);
6016 #if defined(CONFIG_NETFILTER)
6018 static struct nf_hook_ops selinux_ipv4_ops[] = {
6020 .hook = selinux_ipv4_postroute,
6021 .owner = THIS_MODULE,
6023 .hooknum = NF_INET_POST_ROUTING,
6024 .priority = NF_IP_PRI_SELINUX_LAST,
6027 .hook = selinux_ipv4_forward,
6028 .owner = THIS_MODULE,
6030 .hooknum = NF_INET_FORWARD,
6031 .priority = NF_IP_PRI_SELINUX_FIRST,
6034 .hook = selinux_ipv4_output,
6035 .owner = THIS_MODULE,
6037 .hooknum = NF_INET_LOCAL_OUT,
6038 .priority = NF_IP_PRI_SELINUX_FIRST,
6042 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6044 static struct nf_hook_ops selinux_ipv6_ops[] = {
6046 .hook = selinux_ipv6_postroute,
6047 .owner = THIS_MODULE,
6049 .hooknum = NF_INET_POST_ROUTING,
6050 .priority = NF_IP6_PRI_SELINUX_LAST,
6053 .hook = selinux_ipv6_forward,
6054 .owner = THIS_MODULE,
6056 .hooknum = NF_INET_FORWARD,
6057 .priority = NF_IP6_PRI_SELINUX_FIRST,
6063 static int __init selinux_nf_ip_init(void)
6067 if (!selinux_enabled)
6070 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6072 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6074 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6076 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6077 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6079 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6086 __initcall(selinux_nf_ip_init);
6088 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6089 static void selinux_nf_ip_exit(void)
6091 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6093 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6094 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6095 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6100 #else /* CONFIG_NETFILTER */
6102 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6103 #define selinux_nf_ip_exit()
6106 #endif /* CONFIG_NETFILTER */
6108 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
6109 static int selinux_disabled;
6111 int selinux_disable(void)
6113 if (ss_initialized) {
6114 /* Not permitted after initial policy load. */
6118 if (selinux_disabled) {
6119 /* Only do this once. */
6123 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6125 selinux_disabled = 1;
6126 selinux_enabled = 0;
6128 reset_security_ops();
6130 /* Try to destroy the avc node cache */
6133 /* Unregister netfilter hooks. */
6134 selinux_nf_ip_exit();
6136 /* Unregister selinuxfs. */