1 // SPDX-License-Identifier: GPL-2.0-only
3 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
5 * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
6 * This is from the implementation of CUBIC TCP in
7 * Sangtae Ha, Injong Rhee and Lisong Xu,
8 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
9 * in ACM SIGOPS Operating System Review, July 2008.
11 * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
13 * CUBIC integrates a new slow start algorithm, called HyStart.
14 * The details of HyStart are presented in
15 * Sangtae Ha and Injong Rhee,
16 * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
18 * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
20 * All testing results are available from:
21 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
23 * Unless CUBIC is enabled and congestion window is large
24 * this behaves the same as the original Reno.
28 #include <linux/btf.h>
29 #include <linux/btf_ids.h>
30 #include <linux/module.h>
31 #include <linux/math64.h>
34 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
35 * max_cwnd = snd_cwnd * beta
37 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
39 /* Two methods of hybrid slow start */
40 #define HYSTART_ACK_TRAIN 0x1
41 #define HYSTART_DELAY 0x2
43 /* Number of delay samples for detecting the increase of delay */
44 #define HYSTART_MIN_SAMPLES 8
45 #define HYSTART_DELAY_MIN (4000U) /* 4 ms */
46 #define HYSTART_DELAY_MAX (16000U) /* 16 ms */
47 #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
49 static int fast_convergence __read_mostly = 1;
50 static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
51 static int initial_ssthresh __read_mostly;
52 static int bic_scale __read_mostly = 41;
53 static int tcp_friendliness __read_mostly = 1;
55 static int hystart __read_mostly = 1;
56 static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
57 static int hystart_low_window __read_mostly = 16;
58 static int hystart_ack_delta_us __read_mostly = 2000;
60 static u32 cube_rtt_scale __read_mostly;
61 static u32 beta_scale __read_mostly;
62 static u64 cube_factor __read_mostly;
64 /* Note parameters that are used for precomputing scale factors are read-only */
65 module_param(fast_convergence, int, 0644);
66 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
67 module_param(beta, int, 0644);
68 MODULE_PARM_DESC(beta, "beta for multiplicative increase");
69 module_param(initial_ssthresh, int, 0644);
70 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
71 module_param(bic_scale, int, 0444);
72 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
73 module_param(tcp_friendliness, int, 0644);
74 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
75 module_param(hystart, int, 0644);
76 MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
77 module_param(hystart_detect, int, 0644);
78 MODULE_PARM_DESC(hystart_detect, "hybrid slow start detection mechanisms"
79 " 1: packet-train 2: delay 3: both packet-train and delay");
80 module_param(hystart_low_window, int, 0644);
81 MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
82 module_param(hystart_ack_delta_us, int, 0644);
83 MODULE_PARM_DESC(hystart_ack_delta_us, "spacing between ack's indicating train (usecs)");
85 /* BIC TCP Parameters */
87 u32 cnt; /* increase cwnd by 1 after ACKs */
88 u32 last_max_cwnd; /* last maximum snd_cwnd */
89 u32 last_cwnd; /* the last snd_cwnd */
90 u32 last_time; /* time when updated last_cwnd */
91 u32 bic_origin_point;/* origin point of bic function */
92 u32 bic_K; /* time to origin point
93 from the beginning of the current epoch */
94 u32 delay_min; /* min delay (usec) */
95 u32 epoch_start; /* beginning of an epoch */
96 u32 ack_cnt; /* number of acks */
97 u32 tcp_cwnd; /* estimated tcp cwnd */
99 u8 sample_cnt; /* number of samples to decide curr_rtt */
100 u8 found; /* the exit point is found? */
101 u32 round_start; /* beginning of each round */
102 u32 end_seq; /* end_seq of the round */
103 u32 last_ack; /* last time when the ACK spacing is close */
104 u32 curr_rtt; /* the minimum rtt of current round */
107 static inline void bictcp_reset(struct bictcp *ca)
109 memset(ca, 0, offsetof(struct bictcp, unused));
113 static inline u32 bictcp_clock_us(const struct sock *sk)
115 return tcp_sk(sk)->tcp_mstamp;
118 static inline void bictcp_hystart_reset(struct sock *sk)
120 struct tcp_sock *tp = tcp_sk(sk);
121 struct bictcp *ca = inet_csk_ca(sk);
123 ca->round_start = ca->last_ack = bictcp_clock_us(sk);
124 ca->end_seq = tp->snd_nxt;
129 static void cubictcp_init(struct sock *sk)
131 struct bictcp *ca = inet_csk_ca(sk);
136 bictcp_hystart_reset(sk);
138 if (!hystart && initial_ssthresh)
139 tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
142 static void cubictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event)
144 if (event == CA_EVENT_TX_START) {
145 struct bictcp *ca = inet_csk_ca(sk);
146 u32 now = tcp_jiffies32;
149 delta = now - tcp_sk(sk)->lsndtime;
151 /* We were application limited (idle) for a while.
152 * Shift epoch_start to keep cwnd growth to cubic curve.
154 if (ca->epoch_start && delta > 0) {
155 ca->epoch_start += delta;
156 if (after(ca->epoch_start, now))
157 ca->epoch_start = now;
163 /* calculate the cubic root of x using a table lookup followed by one
164 * Newton-Raphson iteration.
167 static u32 cubic_root(u64 a)
171 * cbrt(x) MSB values for x MSB values in [0..63].
172 * Precomputed then refined by hand - Willy Tarreau
175 * v = cbrt(x << 18) - 1
176 * cbrt(x) = (v[x] + 10) >> 6
178 static const u8 v[] = {
179 /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
180 /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
181 /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
182 /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
183 /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
184 /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
185 /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
186 /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
192 return ((u32)v[(u32)a] + 35) >> 6;
195 b = ((b * 84) >> 8) - 1;
196 shift = (a >> (b * 3));
198 x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
201 * Newton-Raphson iteration
203 * x = ( 2 * x + a / x ) / 3
206 x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
207 x = ((x * 341) >> 10);
212 * Compute congestion window to use.
214 static inline void bictcp_update(struct bictcp *ca, u32 cwnd, u32 acked)
216 u32 delta, bic_target, max_cnt;
219 ca->ack_cnt += acked; /* count the number of ACKed packets */
221 if (ca->last_cwnd == cwnd &&
222 (s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32)
225 /* The CUBIC function can update ca->cnt at most once per jiffy.
226 * On all cwnd reduction events, ca->epoch_start is set to 0,
227 * which will force a recalculation of ca->cnt.
229 if (ca->epoch_start && tcp_jiffies32 == ca->last_time)
230 goto tcp_friendliness;
232 ca->last_cwnd = cwnd;
233 ca->last_time = tcp_jiffies32;
235 if (ca->epoch_start == 0) {
236 ca->epoch_start = tcp_jiffies32; /* record beginning */
237 ca->ack_cnt = acked; /* start counting */
238 ca->tcp_cwnd = cwnd; /* syn with cubic */
240 if (ca->last_max_cwnd <= cwnd) {
242 ca->bic_origin_point = cwnd;
244 /* Compute new K based on
245 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
247 ca->bic_K = cubic_root(cube_factor
248 * (ca->last_max_cwnd - cwnd));
249 ca->bic_origin_point = ca->last_max_cwnd;
253 /* cubic function - calc*/
254 /* calculate c * time^3 / rtt,
255 * while considering overflow in calculation of time^3
256 * (so time^3 is done by using 64 bit)
257 * and without the support of division of 64bit numbers
258 * (so all divisions are done by using 32 bit)
259 * also NOTE the unit of those veriables
260 * time = (t - K) / 2^bictcp_HZ
261 * c = bic_scale >> 10
262 * rtt = (srtt >> 3) / HZ
263 * !!! The following code does not have overflow problems,
264 * if the cwnd < 1 million packets !!!
267 t = (s32)(tcp_jiffies32 - ca->epoch_start);
268 t += usecs_to_jiffies(ca->delay_min);
269 /* change the unit from HZ to bictcp_HZ */
273 if (t < ca->bic_K) /* t - K */
274 offs = ca->bic_K - t;
276 offs = t - ca->bic_K;
278 /* c/rtt * (t-K)^3 */
279 delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
280 if (t < ca->bic_K) /* below origin*/
281 bic_target = ca->bic_origin_point - delta;
282 else /* above origin*/
283 bic_target = ca->bic_origin_point + delta;
285 /* cubic function - calc bictcp_cnt*/
286 if (bic_target > cwnd) {
287 ca->cnt = cwnd / (bic_target - cwnd);
289 ca->cnt = 100 * cwnd; /* very small increment*/
293 * The initial growth of cubic function may be too conservative
294 * when the available bandwidth is still unknown.
296 if (ca->last_max_cwnd == 0 && ca->cnt > 20)
297 ca->cnt = 20; /* increase cwnd 5% per RTT */
301 if (tcp_friendliness) {
302 u32 scale = beta_scale;
304 delta = (cwnd * scale) >> 3;
305 while (ca->ack_cnt > delta) { /* update tcp cwnd */
306 ca->ack_cnt -= delta;
310 if (ca->tcp_cwnd > cwnd) { /* if bic is slower than tcp */
311 delta = ca->tcp_cwnd - cwnd;
312 max_cnt = cwnd / delta;
313 if (ca->cnt > max_cnt)
318 /* The maximum rate of cwnd increase CUBIC allows is 1 packet per
319 * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT.
321 ca->cnt = max(ca->cnt, 2U);
324 static void cubictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
326 struct tcp_sock *tp = tcp_sk(sk);
327 struct bictcp *ca = inet_csk_ca(sk);
329 if (!tcp_is_cwnd_limited(sk))
332 if (tcp_in_slow_start(tp)) {
333 if (hystart && after(ack, ca->end_seq))
334 bictcp_hystart_reset(sk);
335 acked = tcp_slow_start(tp, acked);
339 bictcp_update(ca, tp->snd_cwnd, acked);
340 tcp_cong_avoid_ai(tp, ca->cnt, acked);
343 static u32 cubictcp_recalc_ssthresh(struct sock *sk)
345 const struct tcp_sock *tp = tcp_sk(sk);
346 struct bictcp *ca = inet_csk_ca(sk);
348 ca->epoch_start = 0; /* end of epoch */
350 /* Wmax and fast convergence */
351 if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
352 ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
353 / (2 * BICTCP_BETA_SCALE);
355 ca->last_max_cwnd = tp->snd_cwnd;
357 return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
360 static void cubictcp_state(struct sock *sk, u8 new_state)
362 if (new_state == TCP_CA_Loss) {
363 bictcp_reset(inet_csk_ca(sk));
364 bictcp_hystart_reset(sk);
368 /* Account for TSO/GRO delays.
369 * Otherwise short RTT flows could get too small ssthresh, since during
370 * slow start we begin with small TSO packets and ca->delay_min would
371 * not account for long aggregation delay when TSO packets get bigger.
372 * Ideally even with a very small RTT we would like to have at least one
373 * TSO packet being sent and received by GRO, and another one in qdisc layer.
374 * We apply another 100% factor because @rate is doubled at this point.
375 * We cap the cushion to 1ms.
377 static u32 hystart_ack_delay(struct sock *sk)
381 rate = READ_ONCE(sk->sk_pacing_rate);
384 return min_t(u64, USEC_PER_MSEC,
385 div64_ul((u64)GSO_MAX_SIZE * 4 * USEC_PER_SEC, rate));
388 static void hystart_update(struct sock *sk, u32 delay)
390 struct tcp_sock *tp = tcp_sk(sk);
391 struct bictcp *ca = inet_csk_ca(sk);
394 if (hystart_detect & HYSTART_ACK_TRAIN) {
395 u32 now = bictcp_clock_us(sk);
397 /* first detection parameter - ack-train detection */
398 if ((s32)(now - ca->last_ack) <= hystart_ack_delta_us) {
401 threshold = ca->delay_min + hystart_ack_delay(sk);
403 /* Hystart ack train triggers if we get ack past
405 * Pacing might have delayed packets up to RTT/2
408 if (sk->sk_pacing_status == SK_PACING_NONE)
411 if ((s32)(now - ca->round_start) > threshold) {
413 pr_debug("hystart_ack_train (%u > %u) delay_min %u (+ ack_delay %u) cwnd %u\n",
414 now - ca->round_start, threshold,
415 ca->delay_min, hystart_ack_delay(sk), tp->snd_cwnd);
416 NET_INC_STATS(sock_net(sk),
417 LINUX_MIB_TCPHYSTARTTRAINDETECT);
418 NET_ADD_STATS(sock_net(sk),
419 LINUX_MIB_TCPHYSTARTTRAINCWND,
421 tp->snd_ssthresh = tp->snd_cwnd;
426 if (hystart_detect & HYSTART_DELAY) {
427 /* obtain the minimum delay of more than sampling packets */
428 if (ca->curr_rtt > delay)
429 ca->curr_rtt = delay;
430 if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
433 if (ca->curr_rtt > ca->delay_min +
434 HYSTART_DELAY_THRESH(ca->delay_min >> 3)) {
436 NET_INC_STATS(sock_net(sk),
437 LINUX_MIB_TCPHYSTARTDELAYDETECT);
438 NET_ADD_STATS(sock_net(sk),
439 LINUX_MIB_TCPHYSTARTDELAYCWND,
441 tp->snd_ssthresh = tp->snd_cwnd;
447 static void cubictcp_acked(struct sock *sk, const struct ack_sample *sample)
449 const struct tcp_sock *tp = tcp_sk(sk);
450 struct bictcp *ca = inet_csk_ca(sk);
453 /* Some calls are for duplicates without timetamps */
454 if (sample->rtt_us < 0)
457 /* Discard delay samples right after fast recovery */
458 if (ca->epoch_start && (s32)(tcp_jiffies32 - ca->epoch_start) < HZ)
461 delay = sample->rtt_us;
465 /* first time call or link delay decreases */
466 if (ca->delay_min == 0 || ca->delay_min > delay)
467 ca->delay_min = delay;
469 /* hystart triggers when cwnd is larger than some threshold */
470 if (!ca->found && tcp_in_slow_start(tp) && hystart &&
471 tp->snd_cwnd >= hystart_low_window)
472 hystart_update(sk, delay);
475 static struct tcp_congestion_ops cubictcp __read_mostly = {
476 .init = cubictcp_init,
477 .ssthresh = cubictcp_recalc_ssthresh,
478 .cong_avoid = cubictcp_cong_avoid,
479 .set_state = cubictcp_state,
480 .undo_cwnd = tcp_reno_undo_cwnd,
481 .cwnd_event = cubictcp_cwnd_event,
482 .pkts_acked = cubictcp_acked,
483 .owner = THIS_MODULE,
487 BTF_SET_START(tcp_cubic_kfunc_ids)
489 #ifdef CONFIG_DYNAMIC_FTRACE
490 BTF_ID(func, cubictcp_init)
491 BTF_ID(func, cubictcp_recalc_ssthresh)
492 BTF_ID(func, cubictcp_cong_avoid)
493 BTF_ID(func, cubictcp_state)
494 BTF_ID(func, cubictcp_cwnd_event)
495 BTF_ID(func, cubictcp_acked)
498 BTF_SET_END(tcp_cubic_kfunc_ids)
500 static DEFINE_KFUNC_BTF_ID_SET(&tcp_cubic_kfunc_ids, tcp_cubic_kfunc_btf_set);
502 static int __init cubictcp_register(void)
506 BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
508 /* Precompute a bunch of the scaling factors that are used per-packet
509 * based on SRTT of 100ms
512 beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
513 / (BICTCP_BETA_SCALE - beta);
515 cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
517 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
518 * so K = cubic_root( (wmax-cwnd)*rtt/c )
519 * the unit of K is bictcp_HZ=2^10, not HZ
521 * c = bic_scale >> 10
524 * the following code has been designed and tested for
525 * cwnd < 1 million packets
527 * HZ < 1,000,00 (corresponding to 10 nano-second)
530 /* 1/c * 2^2*bictcp_HZ * srtt */
531 cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
533 /* divide by bic_scale and by constant Srtt (100ms) */
534 do_div(cube_factor, bic_scale * 10);
536 ret = tcp_register_congestion_control(&cubictcp);
539 register_kfunc_btf_id_set(&bpf_tcp_ca_kfunc_list, &tcp_cubic_kfunc_btf_set);
543 static void __exit cubictcp_unregister(void)
545 unregister_kfunc_btf_id_set(&bpf_tcp_ca_kfunc_list, &tcp_cubic_kfunc_btf_set);
546 tcp_unregister_congestion_control(&cubictcp);
549 module_init(cubictcp_register);
550 module_exit(cubictcp_unregister);
552 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
553 MODULE_LICENSE("GPL");
554 MODULE_DESCRIPTION("CUBIC TCP");
555 MODULE_VERSION("2.3");