1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
104 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
152 #include "net-sysfs.h"
154 #define MAX_GRO_SKBS 8
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly; /* Taps */
163 static struct list_head offload_base __read_mostly;
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167 struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169 struct net_device *dev,
170 struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
195 static DEFINE_MUTEX(ifalias_mutex);
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
203 static DECLARE_RWSEM(devnet_rename_sem);
205 static inline void dev_base_seq_inc(struct net *net)
207 while (++net->dev_base_seq == 0)
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223 static inline void rps_lock(struct softnet_data *sd)
226 spin_lock(&sd->input_pkt_queue.lock);
230 static inline void rps_unlock(struct softnet_data *sd)
233 spin_unlock(&sd->input_pkt_queue.lock);
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 struct netdev_name_node *name_node;
242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 INIT_HLIST_NODE(&name_node->hlist);
246 name_node->dev = dev;
247 name_node->name = name;
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
254 struct netdev_name_node *name_node;
256 name_node = netdev_name_node_alloc(dev, dev->name);
259 INIT_LIST_HEAD(&name_node->list);
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
268 static void netdev_name_node_add(struct net *net,
269 struct netdev_name_node *name_node)
271 hlist_add_head_rcu(&name_node->hlist,
272 dev_name_hash(net, name_node->name));
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
277 hlist_del_rcu(&name_node->hlist);
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 struct hlist_head *head = dev_name_hash(net, name);
284 struct netdev_name_node *name_node;
286 hlist_for_each_entry(name_node, head, hlist)
287 if (!strcmp(name_node->name, name))
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 struct hlist_head *head = dev_name_hash(net, name);
296 struct netdev_name_node *name_node;
298 hlist_for_each_entry_rcu(name_node, head, hlist)
299 if (!strcmp(name_node->name, name))
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
306 struct netdev_name_node *name_node;
307 struct net *net = dev_net(dev);
309 name_node = netdev_name_node_lookup(net, name);
312 name_node = netdev_name_node_alloc(dev, name);
315 netdev_name_node_add(net, name_node);
316 /* The node that holds dev->name acts as a head of per-device list. */
317 list_add_tail(&name_node->list, &dev->name_node->list);
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
325 list_del(&name_node->list);
326 netdev_name_node_del(name_node);
327 kfree(name_node->name);
328 netdev_name_node_free(name_node);
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
333 struct netdev_name_node *name_node;
334 struct net *net = dev_net(dev);
336 name_node = netdev_name_node_lookup(net, name);
339 /* lookup might have found our primary name or a name belonging
342 if (name_node == dev->name_node || name_node->dev != dev)
345 __netdev_name_node_alt_destroy(name_node);
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
351 static void netdev_name_node_alt_flush(struct net_device *dev)
353 struct netdev_name_node *name_node, *tmp;
355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 __netdev_name_node_alt_destroy(name_node);
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
362 struct net *net = dev_net(dev);
366 write_lock_bh(&dev_base_lock);
367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 netdev_name_node_add(net, dev->name_node);
369 hlist_add_head_rcu(&dev->index_hlist,
370 dev_index_hash(net, dev->ifindex));
371 write_unlock_bh(&dev_base_lock);
373 dev_base_seq_inc(net);
376 /* Device list removal
377 * caller must respect a RCU grace period before freeing/reusing dev
379 static void unlist_netdevice(struct net_device *dev)
383 /* Unlink dev from the device chain */
384 write_lock_bh(&dev_base_lock);
385 list_del_rcu(&dev->dev_list);
386 netdev_name_node_del(dev->name_node);
387 hlist_del_rcu(&dev->index_hlist);
388 write_unlock_bh(&dev_base_lock);
390 dev_base_seq_inc(dev_net(dev));
397 static RAW_NOTIFIER_HEAD(netdev_chain);
400 * Device drivers call our routines to queue packets here. We empty the
401 * queue in the local softnet handler.
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
407 #ifdef CONFIG_LOCKDEP
409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410 * according to dev->type
412 static const unsigned short netdev_lock_type[] = {
413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
429 static const char *const netdev_lock_name[] = {
430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 if (netdev_lock_type[i] == dev_type)
456 /* the last key is used by default */
457 return ARRAY_SIZE(netdev_lock_type) - 1;
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 unsigned short dev_type)
465 i = netdev_lock_pos(dev_type);
466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 netdev_lock_name[i]);
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
474 i = netdev_lock_pos(dev->type);
475 lockdep_set_class_and_name(&dev->addr_list_lock,
476 &netdev_addr_lock_key[i],
477 netdev_lock_name[i]);
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 unsigned short dev_type)
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
490 /*******************************************************************************
492 * Protocol management and registration routines
494 *******************************************************************************/
498 * Add a protocol ID to the list. Now that the input handler is
499 * smarter we can dispense with all the messy stuff that used to be
502 * BEWARE!!! Protocol handlers, mangling input packets,
503 * MUST BE last in hash buckets and checking protocol handlers
504 * MUST start from promiscuous ptype_all chain in net_bh.
505 * It is true now, do not change it.
506 * Explanation follows: if protocol handler, mangling packet, will
507 * be the first on list, it is not able to sense, that packet
508 * is cloned and should be copied-on-write, so that it will
509 * change it and subsequent readers will get broken packet.
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
515 if (pt->type == htons(ETH_P_ALL))
516 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
518 return pt->dev ? &pt->dev->ptype_specific :
519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
523 * dev_add_pack - add packet handler
524 * @pt: packet type declaration
526 * Add a protocol handler to the networking stack. The passed &packet_type
527 * is linked into kernel lists and may not be freed until it has been
528 * removed from the kernel lists.
530 * This call does not sleep therefore it can not
531 * guarantee all CPU's that are in middle of receiving packets
532 * will see the new packet type (until the next received packet).
535 void dev_add_pack(struct packet_type *pt)
537 struct list_head *head = ptype_head(pt);
539 spin_lock(&ptype_lock);
540 list_add_rcu(&pt->list, head);
541 spin_unlock(&ptype_lock);
543 EXPORT_SYMBOL(dev_add_pack);
546 * __dev_remove_pack - remove packet handler
547 * @pt: packet type declaration
549 * Remove a protocol handler that was previously added to the kernel
550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
551 * from the kernel lists and can be freed or reused once this function
554 * The packet type might still be in use by receivers
555 * and must not be freed until after all the CPU's have gone
556 * through a quiescent state.
558 void __dev_remove_pack(struct packet_type *pt)
560 struct list_head *head = ptype_head(pt);
561 struct packet_type *pt1;
563 spin_lock(&ptype_lock);
565 list_for_each_entry(pt1, head, list) {
567 list_del_rcu(&pt->list);
572 pr_warn("dev_remove_pack: %p not found\n", pt);
574 spin_unlock(&ptype_lock);
576 EXPORT_SYMBOL(__dev_remove_pack);
579 * dev_remove_pack - remove packet handler
580 * @pt: packet type declaration
582 * Remove a protocol handler that was previously added to the kernel
583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
584 * from the kernel lists and can be freed or reused once this function
587 * This call sleeps to guarantee that no CPU is looking at the packet
590 void dev_remove_pack(struct packet_type *pt)
592 __dev_remove_pack(pt);
596 EXPORT_SYMBOL(dev_remove_pack);
600 * dev_add_offload - register offload handlers
601 * @po: protocol offload declaration
603 * Add protocol offload handlers to the networking stack. The passed
604 * &proto_offload is linked into kernel lists and may not be freed until
605 * it has been removed from the kernel lists.
607 * This call does not sleep therefore it can not
608 * guarantee all CPU's that are in middle of receiving packets
609 * will see the new offload handlers (until the next received packet).
611 void dev_add_offload(struct packet_offload *po)
613 struct packet_offload *elem;
615 spin_lock(&offload_lock);
616 list_for_each_entry(elem, &offload_base, list) {
617 if (po->priority < elem->priority)
620 list_add_rcu(&po->list, elem->list.prev);
621 spin_unlock(&offload_lock);
623 EXPORT_SYMBOL(dev_add_offload);
626 * __dev_remove_offload - remove offload handler
627 * @po: packet offload declaration
629 * Remove a protocol offload handler that was previously added to the
630 * kernel offload handlers by dev_add_offload(). The passed &offload_type
631 * is removed from the kernel lists and can be freed or reused once this
634 * The packet type might still be in use by receivers
635 * and must not be freed until after all the CPU's have gone
636 * through a quiescent state.
638 static void __dev_remove_offload(struct packet_offload *po)
640 struct list_head *head = &offload_base;
641 struct packet_offload *po1;
643 spin_lock(&offload_lock);
645 list_for_each_entry(po1, head, list) {
647 list_del_rcu(&po->list);
652 pr_warn("dev_remove_offload: %p not found\n", po);
654 spin_unlock(&offload_lock);
658 * dev_remove_offload - remove packet offload handler
659 * @po: packet offload declaration
661 * Remove a packet offload handler that was previously added to the kernel
662 * offload handlers by dev_add_offload(). The passed &offload_type is
663 * removed from the kernel lists and can be freed or reused once this
666 * This call sleeps to guarantee that no CPU is looking at the packet
669 void dev_remove_offload(struct packet_offload *po)
671 __dev_remove_offload(po);
675 EXPORT_SYMBOL(dev_remove_offload);
677 /******************************************************************************
679 * Device Boot-time Settings Routines
681 ******************************************************************************/
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
687 * netdev_boot_setup_add - add new setup entry
688 * @name: name of the device
689 * @map: configured settings for the device
691 * Adds new setup entry to the dev_boot_setup list. The function
692 * returns 0 on error and 1 on success. This is a generic routine to
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
697 struct netdev_boot_setup *s;
701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 memset(s[i].name, 0, sizeof(s[i].name));
704 strlcpy(s[i].name, name, IFNAMSIZ);
705 memcpy(&s[i].map, map, sizeof(s[i].map));
710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
714 * netdev_boot_setup_check - check boot time settings
715 * @dev: the netdevice
717 * Check boot time settings for the device.
718 * The found settings are set for the device to be used
719 * later in the device probing.
720 * Returns 0 if no settings found, 1 if they are.
722 int netdev_boot_setup_check(struct net_device *dev)
724 struct netdev_boot_setup *s = dev_boot_setup;
727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 !strcmp(dev->name, s[i].name)) {
730 dev->irq = s[i].map.irq;
731 dev->base_addr = s[i].map.base_addr;
732 dev->mem_start = s[i].map.mem_start;
733 dev->mem_end = s[i].map.mem_end;
739 EXPORT_SYMBOL(netdev_boot_setup_check);
743 * netdev_boot_base - get address from boot time settings
744 * @prefix: prefix for network device
745 * @unit: id for network device
747 * Check boot time settings for the base address of device.
748 * The found settings are set for the device to be used
749 * later in the device probing.
750 * Returns 0 if no settings found.
752 unsigned long netdev_boot_base(const char *prefix, int unit)
754 const struct netdev_boot_setup *s = dev_boot_setup;
758 sprintf(name, "%s%d", prefix, unit);
761 * If device already registered then return base of 1
762 * to indicate not to probe for this interface
764 if (__dev_get_by_name(&init_net, name))
767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 if (!strcmp(name, s[i].name))
769 return s[i].map.base_addr;
774 * Saves at boot time configured settings for any netdevice.
776 int __init netdev_boot_setup(char *str)
781 str = get_options(str, ARRAY_SIZE(ints), ints);
786 memset(&map, 0, sizeof(map));
790 map.base_addr = ints[2];
792 map.mem_start = ints[3];
794 map.mem_end = ints[4];
796 /* Add new entry to the list */
797 return netdev_boot_setup_add(str, &map);
800 __setup("netdev=", netdev_boot_setup);
802 /*******************************************************************************
804 * Device Interface Subroutines
806 *******************************************************************************/
809 * dev_get_iflink - get 'iflink' value of a interface
810 * @dev: targeted interface
812 * Indicates the ifindex the interface is linked to.
813 * Physical interfaces have the same 'ifindex' and 'iflink' values.
816 int dev_get_iflink(const struct net_device *dev)
818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 return dev->netdev_ops->ndo_get_iflink(dev);
823 EXPORT_SYMBOL(dev_get_iflink);
826 * dev_fill_metadata_dst - Retrieve tunnel egress information.
827 * @dev: targeted interface
830 * For better visibility of tunnel traffic OVS needs to retrieve
831 * egress tunnel information for a packet. Following API allows
832 * user to get this info.
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
836 struct ip_tunnel_info *info;
838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
841 info = skb_tunnel_info_unclone(skb);
844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
852 * __dev_get_by_name - find a device by its name
853 * @net: the applicable net namespace
854 * @name: name to find
856 * Find an interface by name. Must be called under RTNL semaphore
857 * or @dev_base_lock. If the name is found a pointer to the device
858 * is returned. If the name is not found then %NULL is returned. The
859 * reference counters are not incremented so the caller must be
860 * careful with locks.
863 struct net_device *__dev_get_by_name(struct net *net, const char *name)
865 struct netdev_name_node *node_name;
867 node_name = netdev_name_node_lookup(net, name);
868 return node_name ? node_name->dev : NULL;
870 EXPORT_SYMBOL(__dev_get_by_name);
873 * dev_get_by_name_rcu - find a device by its name
874 * @net: the applicable net namespace
875 * @name: name to find
877 * Find an interface by name.
878 * If the name is found a pointer to the device is returned.
879 * If the name is not found then %NULL is returned.
880 * The reference counters are not incremented so the caller must be
881 * careful with locks. The caller must hold RCU lock.
884 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
886 struct netdev_name_node *node_name;
888 node_name = netdev_name_node_lookup_rcu(net, name);
889 return node_name ? node_name->dev : NULL;
891 EXPORT_SYMBOL(dev_get_by_name_rcu);
894 * dev_get_by_name - find a device by its name
895 * @net: the applicable net namespace
896 * @name: name to find
898 * Find an interface by name. This can be called from any
899 * context and does its own locking. The returned handle has
900 * the usage count incremented and the caller must use dev_put() to
901 * release it when it is no longer needed. %NULL is returned if no
902 * matching device is found.
905 struct net_device *dev_get_by_name(struct net *net, const char *name)
907 struct net_device *dev;
910 dev = dev_get_by_name_rcu(net, name);
916 EXPORT_SYMBOL(dev_get_by_name);
919 * __dev_get_by_index - find a device by its ifindex
920 * @net: the applicable net namespace
921 * @ifindex: index of device
923 * Search for an interface by index. Returns %NULL if the device
924 * is not found or a pointer to the device. The device has not
925 * had its reference counter increased so the caller must be careful
926 * about locking. The caller must hold either the RTNL semaphore
930 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
932 struct net_device *dev;
933 struct hlist_head *head = dev_index_hash(net, ifindex);
935 hlist_for_each_entry(dev, head, index_hlist)
936 if (dev->ifindex == ifindex)
941 EXPORT_SYMBOL(__dev_get_by_index);
944 * dev_get_by_index_rcu - find a device by its ifindex
945 * @net: the applicable net namespace
946 * @ifindex: index of device
948 * Search for an interface by index. Returns %NULL if the device
949 * is not found or a pointer to the device. The device has not
950 * had its reference counter increased so the caller must be careful
951 * about locking. The caller must hold RCU lock.
954 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
956 struct net_device *dev;
957 struct hlist_head *head = dev_index_hash(net, ifindex);
959 hlist_for_each_entry_rcu(dev, head, index_hlist)
960 if (dev->ifindex == ifindex)
965 EXPORT_SYMBOL(dev_get_by_index_rcu);
969 * dev_get_by_index - find a device by its ifindex
970 * @net: the applicable net namespace
971 * @ifindex: index of device
973 * Search for an interface by index. Returns NULL if the device
974 * is not found or a pointer to the device. The device returned has
975 * had a reference added and the pointer is safe until the user calls
976 * dev_put to indicate they have finished with it.
979 struct net_device *dev_get_by_index(struct net *net, int ifindex)
981 struct net_device *dev;
984 dev = dev_get_by_index_rcu(net, ifindex);
990 EXPORT_SYMBOL(dev_get_by_index);
993 * dev_get_by_napi_id - find a device by napi_id
994 * @napi_id: ID of the NAPI struct
996 * Search for an interface by NAPI ID. Returns %NULL if the device
997 * is not found or a pointer to the device. The device has not had
998 * its reference counter increased so the caller must be careful
999 * about locking. The caller must hold RCU lock.
1002 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1004 struct napi_struct *napi;
1006 WARN_ON_ONCE(!rcu_read_lock_held());
1008 if (napi_id < MIN_NAPI_ID)
1011 napi = napi_by_id(napi_id);
1013 return napi ? napi->dev : NULL;
1015 EXPORT_SYMBOL(dev_get_by_napi_id);
1018 * netdev_get_name - get a netdevice name, knowing its ifindex.
1019 * @net: network namespace
1020 * @name: a pointer to the buffer where the name will be stored.
1021 * @ifindex: the ifindex of the interface to get the name from.
1023 int netdev_get_name(struct net *net, char *name, int ifindex)
1025 struct net_device *dev;
1028 down_read(&devnet_rename_sem);
1031 dev = dev_get_by_index_rcu(net, ifindex);
1037 strcpy(name, dev->name);
1042 up_read(&devnet_rename_sem);
1047 * dev_getbyhwaddr_rcu - find a device by its hardware address
1048 * @net: the applicable net namespace
1049 * @type: media type of device
1050 * @ha: hardware address
1052 * Search for an interface by MAC address. Returns NULL if the device
1053 * is not found or a pointer to the device.
1054 * The caller must hold RCU or RTNL.
1055 * The returned device has not had its ref count increased
1056 * and the caller must therefore be careful about locking
1060 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1063 struct net_device *dev;
1065 for_each_netdev_rcu(net, dev)
1066 if (dev->type == type &&
1067 !memcmp(dev->dev_addr, ha, dev->addr_len))
1072 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1074 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1076 struct net_device *dev, *ret = NULL;
1079 for_each_netdev_rcu(net, dev)
1080 if (dev->type == type) {
1088 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1091 * __dev_get_by_flags - find any device with given flags
1092 * @net: the applicable net namespace
1093 * @if_flags: IFF_* values
1094 * @mask: bitmask of bits in if_flags to check
1096 * Search for any interface with the given flags. Returns NULL if a device
1097 * is not found or a pointer to the device. Must be called inside
1098 * rtnl_lock(), and result refcount is unchanged.
1101 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102 unsigned short mask)
1104 struct net_device *dev, *ret;
1109 for_each_netdev(net, dev) {
1110 if (((dev->flags ^ if_flags) & mask) == 0) {
1117 EXPORT_SYMBOL(__dev_get_by_flags);
1120 * dev_valid_name - check if name is okay for network device
1121 * @name: name string
1123 * Network device names need to be valid file names to
1124 * allow sysfs to work. We also disallow any kind of
1127 bool dev_valid_name(const char *name)
1131 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1133 if (!strcmp(name, ".") || !strcmp(name, ".."))
1137 if (*name == '/' || *name == ':' || isspace(*name))
1143 EXPORT_SYMBOL(dev_valid_name);
1146 * __dev_alloc_name - allocate a name for a device
1147 * @net: network namespace to allocate the device name in
1148 * @name: name format string
1149 * @buf: scratch buffer and result name string
1151 * Passed a format string - eg "lt%d" it will try and find a suitable
1152 * id. It scans list of devices to build up a free map, then chooses
1153 * the first empty slot. The caller must hold the dev_base or rtnl lock
1154 * while allocating the name and adding the device in order to avoid
1156 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157 * Returns the number of the unit assigned or a negative errno code.
1160 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1164 const int max_netdevices = 8*PAGE_SIZE;
1165 unsigned long *inuse;
1166 struct net_device *d;
1168 if (!dev_valid_name(name))
1171 p = strchr(name, '%');
1174 * Verify the string as this thing may have come from
1175 * the user. There must be either one "%d" and no other "%"
1178 if (p[1] != 'd' || strchr(p + 2, '%'))
1181 /* Use one page as a bit array of possible slots */
1182 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1186 for_each_netdev(net, d) {
1187 if (!sscanf(d->name, name, &i))
1189 if (i < 0 || i >= max_netdevices)
1192 /* avoid cases where sscanf is not exact inverse of printf */
1193 snprintf(buf, IFNAMSIZ, name, i);
1194 if (!strncmp(buf, d->name, IFNAMSIZ))
1198 i = find_first_zero_bit(inuse, max_netdevices);
1199 free_page((unsigned long) inuse);
1202 snprintf(buf, IFNAMSIZ, name, i);
1203 if (!__dev_get_by_name(net, buf))
1206 /* It is possible to run out of possible slots
1207 * when the name is long and there isn't enough space left
1208 * for the digits, or if all bits are used.
1213 static int dev_alloc_name_ns(struct net *net,
1214 struct net_device *dev,
1221 ret = __dev_alloc_name(net, name, buf);
1223 strlcpy(dev->name, buf, IFNAMSIZ);
1228 * dev_alloc_name - allocate a name for a device
1230 * @name: name format string
1232 * Passed a format string - eg "lt%d" it will try and find a suitable
1233 * id. It scans list of devices to build up a free map, then chooses
1234 * the first empty slot. The caller must hold the dev_base or rtnl lock
1235 * while allocating the name and adding the device in order to avoid
1237 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1238 * Returns the number of the unit assigned or a negative errno code.
1241 int dev_alloc_name(struct net_device *dev, const char *name)
1243 return dev_alloc_name_ns(dev_net(dev), dev, name);
1245 EXPORT_SYMBOL(dev_alloc_name);
1247 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1252 if (!dev_valid_name(name))
1255 if (strchr(name, '%'))
1256 return dev_alloc_name_ns(net, dev, name);
1257 else if (__dev_get_by_name(net, name))
1259 else if (dev->name != name)
1260 strlcpy(dev->name, name, IFNAMSIZ);
1266 * dev_change_name - change name of a device
1268 * @newname: name (or format string) must be at least IFNAMSIZ
1270 * Change name of a device, can pass format strings "eth%d".
1273 int dev_change_name(struct net_device *dev, const char *newname)
1275 unsigned char old_assign_type;
1276 char oldname[IFNAMSIZ];
1282 BUG_ON(!dev_net(dev));
1286 /* Some auto-enslaved devices e.g. failover slaves are
1287 * special, as userspace might rename the device after
1288 * the interface had been brought up and running since
1289 * the point kernel initiated auto-enslavement. Allow
1290 * live name change even when these slave devices are
1293 * Typically, users of these auto-enslaving devices
1294 * don't actually care about slave name change, as
1295 * they are supposed to operate on master interface
1298 if (dev->flags & IFF_UP &&
1299 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1302 down_write(&devnet_rename_sem);
1304 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1305 up_write(&devnet_rename_sem);
1309 memcpy(oldname, dev->name, IFNAMSIZ);
1311 err = dev_get_valid_name(net, dev, newname);
1313 up_write(&devnet_rename_sem);
1317 if (oldname[0] && !strchr(oldname, '%'))
1318 netdev_info(dev, "renamed from %s\n", oldname);
1320 old_assign_type = dev->name_assign_type;
1321 dev->name_assign_type = NET_NAME_RENAMED;
1324 ret = device_rename(&dev->dev, dev->name);
1326 memcpy(dev->name, oldname, IFNAMSIZ);
1327 dev->name_assign_type = old_assign_type;
1328 up_write(&devnet_rename_sem);
1332 up_write(&devnet_rename_sem);
1334 netdev_adjacent_rename_links(dev, oldname);
1336 write_lock_bh(&dev_base_lock);
1337 netdev_name_node_del(dev->name_node);
1338 write_unlock_bh(&dev_base_lock);
1342 write_lock_bh(&dev_base_lock);
1343 netdev_name_node_add(net, dev->name_node);
1344 write_unlock_bh(&dev_base_lock);
1346 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1347 ret = notifier_to_errno(ret);
1350 /* err >= 0 after dev_alloc_name() or stores the first errno */
1353 down_write(&devnet_rename_sem);
1354 memcpy(dev->name, oldname, IFNAMSIZ);
1355 memcpy(oldname, newname, IFNAMSIZ);
1356 dev->name_assign_type = old_assign_type;
1357 old_assign_type = NET_NAME_RENAMED;
1360 pr_err("%s: name change rollback failed: %d\n",
1369 * dev_set_alias - change ifalias of a device
1371 * @alias: name up to IFALIASZ
1372 * @len: limit of bytes to copy from info
1374 * Set ifalias for a device,
1376 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1378 struct dev_ifalias *new_alias = NULL;
1380 if (len >= IFALIASZ)
1384 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1388 memcpy(new_alias->ifalias, alias, len);
1389 new_alias->ifalias[len] = 0;
1392 mutex_lock(&ifalias_mutex);
1393 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1394 mutex_is_locked(&ifalias_mutex));
1395 mutex_unlock(&ifalias_mutex);
1398 kfree_rcu(new_alias, rcuhead);
1402 EXPORT_SYMBOL(dev_set_alias);
1405 * dev_get_alias - get ifalias of a device
1407 * @name: buffer to store name of ifalias
1408 * @len: size of buffer
1410 * get ifalias for a device. Caller must make sure dev cannot go
1411 * away, e.g. rcu read lock or own a reference count to device.
1413 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1415 const struct dev_ifalias *alias;
1419 alias = rcu_dereference(dev->ifalias);
1421 ret = snprintf(name, len, "%s", alias->ifalias);
1428 * netdev_features_change - device changes features
1429 * @dev: device to cause notification
1431 * Called to indicate a device has changed features.
1433 void netdev_features_change(struct net_device *dev)
1435 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1437 EXPORT_SYMBOL(netdev_features_change);
1440 * netdev_state_change - device changes state
1441 * @dev: device to cause notification
1443 * Called to indicate a device has changed state. This function calls
1444 * the notifier chains for netdev_chain and sends a NEWLINK message
1445 * to the routing socket.
1447 void netdev_state_change(struct net_device *dev)
1449 if (dev->flags & IFF_UP) {
1450 struct netdev_notifier_change_info change_info = {
1454 call_netdevice_notifiers_info(NETDEV_CHANGE,
1456 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1459 EXPORT_SYMBOL(netdev_state_change);
1462 * __netdev_notify_peers - notify network peers about existence of @dev,
1463 * to be called when rtnl lock is already held.
1464 * @dev: network device
1466 * Generate traffic such that interested network peers are aware of
1467 * @dev, such as by generating a gratuitous ARP. This may be used when
1468 * a device wants to inform the rest of the network about some sort of
1469 * reconfiguration such as a failover event or virtual machine
1472 void __netdev_notify_peers(struct net_device *dev)
1475 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1476 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1478 EXPORT_SYMBOL(__netdev_notify_peers);
1481 * netdev_notify_peers - notify network peers about existence of @dev
1482 * @dev: network device
1484 * Generate traffic such that interested network peers are aware of
1485 * @dev, such as by generating a gratuitous ARP. This may be used when
1486 * a device wants to inform the rest of the network about some sort of
1487 * reconfiguration such as a failover event or virtual machine
1490 void netdev_notify_peers(struct net_device *dev)
1493 __netdev_notify_peers(dev);
1496 EXPORT_SYMBOL(netdev_notify_peers);
1498 static int napi_threaded_poll(void *data);
1500 static int napi_kthread_create(struct napi_struct *n)
1504 /* Create and wake up the kthread once to put it in
1505 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1506 * warning and work with loadavg.
1508 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1509 n->dev->name, n->napi_id);
1510 if (IS_ERR(n->thread)) {
1511 err = PTR_ERR(n->thread);
1512 pr_err("kthread_run failed with err %d\n", err);
1519 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1521 const struct net_device_ops *ops = dev->netdev_ops;
1526 if (!netif_device_present(dev)) {
1527 /* may be detached because parent is runtime-suspended */
1528 if (dev->dev.parent)
1529 pm_runtime_resume(dev->dev.parent);
1530 if (!netif_device_present(dev))
1534 /* Block netpoll from trying to do any rx path servicing.
1535 * If we don't do this there is a chance ndo_poll_controller
1536 * or ndo_poll may be running while we open the device
1538 netpoll_poll_disable(dev);
1540 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1541 ret = notifier_to_errno(ret);
1545 set_bit(__LINK_STATE_START, &dev->state);
1547 if (ops->ndo_validate_addr)
1548 ret = ops->ndo_validate_addr(dev);
1550 if (!ret && ops->ndo_open)
1551 ret = ops->ndo_open(dev);
1553 netpoll_poll_enable(dev);
1556 clear_bit(__LINK_STATE_START, &dev->state);
1558 dev->flags |= IFF_UP;
1559 dev_set_rx_mode(dev);
1561 add_device_randomness(dev->dev_addr, dev->addr_len);
1568 * dev_open - prepare an interface for use.
1569 * @dev: device to open
1570 * @extack: netlink extended ack
1572 * Takes a device from down to up state. The device's private open
1573 * function is invoked and then the multicast lists are loaded. Finally
1574 * the device is moved into the up state and a %NETDEV_UP message is
1575 * sent to the netdev notifier chain.
1577 * Calling this function on an active interface is a nop. On a failure
1578 * a negative errno code is returned.
1580 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1584 if (dev->flags & IFF_UP)
1587 ret = __dev_open(dev, extack);
1591 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1592 call_netdevice_notifiers(NETDEV_UP, dev);
1596 EXPORT_SYMBOL(dev_open);
1598 static void __dev_close_many(struct list_head *head)
1600 struct net_device *dev;
1605 list_for_each_entry(dev, head, close_list) {
1606 /* Temporarily disable netpoll until the interface is down */
1607 netpoll_poll_disable(dev);
1609 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1611 clear_bit(__LINK_STATE_START, &dev->state);
1613 /* Synchronize to scheduled poll. We cannot touch poll list, it
1614 * can be even on different cpu. So just clear netif_running().
1616 * dev->stop() will invoke napi_disable() on all of it's
1617 * napi_struct instances on this device.
1619 smp_mb__after_atomic(); /* Commit netif_running(). */
1622 dev_deactivate_many(head);
1624 list_for_each_entry(dev, head, close_list) {
1625 const struct net_device_ops *ops = dev->netdev_ops;
1628 * Call the device specific close. This cannot fail.
1629 * Only if device is UP
1631 * We allow it to be called even after a DETACH hot-plug
1637 dev->flags &= ~IFF_UP;
1638 netpoll_poll_enable(dev);
1642 static void __dev_close(struct net_device *dev)
1646 list_add(&dev->close_list, &single);
1647 __dev_close_many(&single);
1651 void dev_close_many(struct list_head *head, bool unlink)
1653 struct net_device *dev, *tmp;
1655 /* Remove the devices that don't need to be closed */
1656 list_for_each_entry_safe(dev, tmp, head, close_list)
1657 if (!(dev->flags & IFF_UP))
1658 list_del_init(&dev->close_list);
1660 __dev_close_many(head);
1662 list_for_each_entry_safe(dev, tmp, head, close_list) {
1663 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1664 call_netdevice_notifiers(NETDEV_DOWN, dev);
1666 list_del_init(&dev->close_list);
1669 EXPORT_SYMBOL(dev_close_many);
1672 * dev_close - shutdown an interface.
1673 * @dev: device to shutdown
1675 * This function moves an active device into down state. A
1676 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1677 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1680 void dev_close(struct net_device *dev)
1682 if (dev->flags & IFF_UP) {
1685 list_add(&dev->close_list, &single);
1686 dev_close_many(&single, true);
1690 EXPORT_SYMBOL(dev_close);
1694 * dev_disable_lro - disable Large Receive Offload on a device
1697 * Disable Large Receive Offload (LRO) on a net device. Must be
1698 * called under RTNL. This is needed if received packets may be
1699 * forwarded to another interface.
1701 void dev_disable_lro(struct net_device *dev)
1703 struct net_device *lower_dev;
1704 struct list_head *iter;
1706 dev->wanted_features &= ~NETIF_F_LRO;
1707 netdev_update_features(dev);
1709 if (unlikely(dev->features & NETIF_F_LRO))
1710 netdev_WARN(dev, "failed to disable LRO!\n");
1712 netdev_for_each_lower_dev(dev, lower_dev, iter)
1713 dev_disable_lro(lower_dev);
1715 EXPORT_SYMBOL(dev_disable_lro);
1718 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1721 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1722 * called under RTNL. This is needed if Generic XDP is installed on
1725 static void dev_disable_gro_hw(struct net_device *dev)
1727 dev->wanted_features &= ~NETIF_F_GRO_HW;
1728 netdev_update_features(dev);
1730 if (unlikely(dev->features & NETIF_F_GRO_HW))
1731 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1734 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1737 case NETDEV_##val: \
1738 return "NETDEV_" __stringify(val);
1740 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1741 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1742 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1743 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1744 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1745 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1746 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1747 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1748 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1752 return "UNKNOWN_NETDEV_EVENT";
1754 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1756 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1757 struct net_device *dev)
1759 struct netdev_notifier_info info = {
1763 return nb->notifier_call(nb, val, &info);
1766 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1767 struct net_device *dev)
1771 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1772 err = notifier_to_errno(err);
1776 if (!(dev->flags & IFF_UP))
1779 call_netdevice_notifier(nb, NETDEV_UP, dev);
1783 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1784 struct net_device *dev)
1786 if (dev->flags & IFF_UP) {
1787 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1789 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1791 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1794 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1797 struct net_device *dev;
1800 for_each_netdev(net, dev) {
1801 err = call_netdevice_register_notifiers(nb, dev);
1808 for_each_netdev_continue_reverse(net, dev)
1809 call_netdevice_unregister_notifiers(nb, dev);
1813 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1816 struct net_device *dev;
1818 for_each_netdev(net, dev)
1819 call_netdevice_unregister_notifiers(nb, dev);
1822 static int dev_boot_phase = 1;
1825 * register_netdevice_notifier - register a network notifier block
1828 * Register a notifier to be called when network device events occur.
1829 * The notifier passed is linked into the kernel structures and must
1830 * not be reused until it has been unregistered. A negative errno code
1831 * is returned on a failure.
1833 * When registered all registration and up events are replayed
1834 * to the new notifier to allow device to have a race free
1835 * view of the network device list.
1838 int register_netdevice_notifier(struct notifier_block *nb)
1843 /* Close race with setup_net() and cleanup_net() */
1844 down_write(&pernet_ops_rwsem);
1846 err = raw_notifier_chain_register(&netdev_chain, nb);
1852 err = call_netdevice_register_net_notifiers(nb, net);
1859 up_write(&pernet_ops_rwsem);
1863 for_each_net_continue_reverse(net)
1864 call_netdevice_unregister_net_notifiers(nb, net);
1866 raw_notifier_chain_unregister(&netdev_chain, nb);
1869 EXPORT_SYMBOL(register_netdevice_notifier);
1872 * unregister_netdevice_notifier - unregister a network notifier block
1875 * Unregister a notifier previously registered by
1876 * register_netdevice_notifier(). The notifier is unlinked into the
1877 * kernel structures and may then be reused. A negative errno code
1878 * is returned on a failure.
1880 * After unregistering unregister and down device events are synthesized
1881 * for all devices on the device list to the removed notifier to remove
1882 * the need for special case cleanup code.
1885 int unregister_netdevice_notifier(struct notifier_block *nb)
1890 /* Close race with setup_net() and cleanup_net() */
1891 down_write(&pernet_ops_rwsem);
1893 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1898 call_netdevice_unregister_net_notifiers(nb, net);
1902 up_write(&pernet_ops_rwsem);
1905 EXPORT_SYMBOL(unregister_netdevice_notifier);
1907 static int __register_netdevice_notifier_net(struct net *net,
1908 struct notifier_block *nb,
1909 bool ignore_call_fail)
1913 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1919 err = call_netdevice_register_net_notifiers(nb, net);
1920 if (err && !ignore_call_fail)
1921 goto chain_unregister;
1926 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1930 static int __unregister_netdevice_notifier_net(struct net *net,
1931 struct notifier_block *nb)
1935 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1939 call_netdevice_unregister_net_notifiers(nb, net);
1944 * register_netdevice_notifier_net - register a per-netns network notifier block
1945 * @net: network namespace
1948 * Register a notifier to be called when network device events occur.
1949 * The notifier passed is linked into the kernel structures and must
1950 * not be reused until it has been unregistered. A negative errno code
1951 * is returned on a failure.
1953 * When registered all registration and up events are replayed
1954 * to the new notifier to allow device to have a race free
1955 * view of the network device list.
1958 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1963 err = __register_netdevice_notifier_net(net, nb, false);
1967 EXPORT_SYMBOL(register_netdevice_notifier_net);
1970 * unregister_netdevice_notifier_net - unregister a per-netns
1971 * network notifier block
1972 * @net: network namespace
1975 * Unregister a notifier previously registered by
1976 * register_netdevice_notifier(). The notifier is unlinked into the
1977 * kernel structures and may then be reused. A negative errno code
1978 * is returned on a failure.
1980 * After unregistering unregister and down device events are synthesized
1981 * for all devices on the device list to the removed notifier to remove
1982 * the need for special case cleanup code.
1985 int unregister_netdevice_notifier_net(struct net *net,
1986 struct notifier_block *nb)
1991 err = __unregister_netdevice_notifier_net(net, nb);
1995 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1997 int register_netdevice_notifier_dev_net(struct net_device *dev,
1998 struct notifier_block *nb,
1999 struct netdev_net_notifier *nn)
2004 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2007 list_add(&nn->list, &dev->net_notifier_list);
2012 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2014 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2015 struct notifier_block *nb,
2016 struct netdev_net_notifier *nn)
2021 list_del(&nn->list);
2022 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2026 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2028 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2031 struct netdev_net_notifier *nn;
2033 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2034 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2035 __register_netdevice_notifier_net(net, nn->nb, true);
2040 * call_netdevice_notifiers_info - call all network notifier blocks
2041 * @val: value passed unmodified to notifier function
2042 * @info: notifier information data
2044 * Call all network notifier blocks. Parameters and return value
2045 * are as for raw_notifier_call_chain().
2048 static int call_netdevice_notifiers_info(unsigned long val,
2049 struct netdev_notifier_info *info)
2051 struct net *net = dev_net(info->dev);
2056 /* Run per-netns notifier block chain first, then run the global one.
2057 * Hopefully, one day, the global one is going to be removed after
2058 * all notifier block registrators get converted to be per-netns.
2060 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2061 if (ret & NOTIFY_STOP_MASK)
2063 return raw_notifier_call_chain(&netdev_chain, val, info);
2066 static int call_netdevice_notifiers_extack(unsigned long val,
2067 struct net_device *dev,
2068 struct netlink_ext_ack *extack)
2070 struct netdev_notifier_info info = {
2075 return call_netdevice_notifiers_info(val, &info);
2079 * call_netdevice_notifiers - call all network notifier blocks
2080 * @val: value passed unmodified to notifier function
2081 * @dev: net_device pointer passed unmodified to notifier function
2083 * Call all network notifier blocks. Parameters and return value
2084 * are as for raw_notifier_call_chain().
2087 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2089 return call_netdevice_notifiers_extack(val, dev, NULL);
2091 EXPORT_SYMBOL(call_netdevice_notifiers);
2094 * call_netdevice_notifiers_mtu - call all network notifier blocks
2095 * @val: value passed unmodified to notifier function
2096 * @dev: net_device pointer passed unmodified to notifier function
2097 * @arg: additional u32 argument passed to the notifier function
2099 * Call all network notifier blocks. Parameters and return value
2100 * are as for raw_notifier_call_chain().
2102 static int call_netdevice_notifiers_mtu(unsigned long val,
2103 struct net_device *dev, u32 arg)
2105 struct netdev_notifier_info_ext info = {
2110 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2112 return call_netdevice_notifiers_info(val, &info.info);
2115 #ifdef CONFIG_NET_INGRESS
2116 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2118 void net_inc_ingress_queue(void)
2120 static_branch_inc(&ingress_needed_key);
2122 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2124 void net_dec_ingress_queue(void)
2126 static_branch_dec(&ingress_needed_key);
2128 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2131 #ifdef CONFIG_NET_EGRESS
2132 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2134 void net_inc_egress_queue(void)
2136 static_branch_inc(&egress_needed_key);
2138 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2140 void net_dec_egress_queue(void)
2142 static_branch_dec(&egress_needed_key);
2144 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2147 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2148 #ifdef CONFIG_JUMP_LABEL
2149 static atomic_t netstamp_needed_deferred;
2150 static atomic_t netstamp_wanted;
2151 static void netstamp_clear(struct work_struct *work)
2153 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2156 wanted = atomic_add_return(deferred, &netstamp_wanted);
2158 static_branch_enable(&netstamp_needed_key);
2160 static_branch_disable(&netstamp_needed_key);
2162 static DECLARE_WORK(netstamp_work, netstamp_clear);
2165 void net_enable_timestamp(void)
2167 #ifdef CONFIG_JUMP_LABEL
2171 wanted = atomic_read(&netstamp_wanted);
2174 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2177 atomic_inc(&netstamp_needed_deferred);
2178 schedule_work(&netstamp_work);
2180 static_branch_inc(&netstamp_needed_key);
2183 EXPORT_SYMBOL(net_enable_timestamp);
2185 void net_disable_timestamp(void)
2187 #ifdef CONFIG_JUMP_LABEL
2191 wanted = atomic_read(&netstamp_wanted);
2194 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2197 atomic_dec(&netstamp_needed_deferred);
2198 schedule_work(&netstamp_work);
2200 static_branch_dec(&netstamp_needed_key);
2203 EXPORT_SYMBOL(net_disable_timestamp);
2205 static inline void net_timestamp_set(struct sk_buff *skb)
2208 if (static_branch_unlikely(&netstamp_needed_key))
2209 __net_timestamp(skb);
2212 #define net_timestamp_check(COND, SKB) \
2213 if (static_branch_unlikely(&netstamp_needed_key)) { \
2214 if ((COND) && !(SKB)->tstamp) \
2215 __net_timestamp(SKB); \
2218 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2222 if (!(dev->flags & IFF_UP))
2225 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2226 if (skb->len <= len)
2229 /* if TSO is enabled, we don't care about the length as the packet
2230 * could be forwarded without being segmented before
2232 if (skb_is_gso(skb))
2237 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2239 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2241 int ret = ____dev_forward_skb(dev, skb);
2244 skb->protocol = eth_type_trans(skb, dev);
2245 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2250 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2253 * dev_forward_skb - loopback an skb to another netif
2255 * @dev: destination network device
2256 * @skb: buffer to forward
2259 * NET_RX_SUCCESS (no congestion)
2260 * NET_RX_DROP (packet was dropped, but freed)
2262 * dev_forward_skb can be used for injecting an skb from the
2263 * start_xmit function of one device into the receive queue
2264 * of another device.
2266 * The receiving device may be in another namespace, so
2267 * we have to clear all information in the skb that could
2268 * impact namespace isolation.
2270 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2272 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2274 EXPORT_SYMBOL_GPL(dev_forward_skb);
2276 static inline int deliver_skb(struct sk_buff *skb,
2277 struct packet_type *pt_prev,
2278 struct net_device *orig_dev)
2280 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2282 refcount_inc(&skb->users);
2283 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2286 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2287 struct packet_type **pt,
2288 struct net_device *orig_dev,
2290 struct list_head *ptype_list)
2292 struct packet_type *ptype, *pt_prev = *pt;
2294 list_for_each_entry_rcu(ptype, ptype_list, list) {
2295 if (ptype->type != type)
2298 deliver_skb(skb, pt_prev, orig_dev);
2304 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2306 if (!ptype->af_packet_priv || !skb->sk)
2309 if (ptype->id_match)
2310 return ptype->id_match(ptype, skb->sk);
2311 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2318 * dev_nit_active - return true if any network interface taps are in use
2320 * @dev: network device to check for the presence of taps
2322 bool dev_nit_active(struct net_device *dev)
2324 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2326 EXPORT_SYMBOL_GPL(dev_nit_active);
2329 * Support routine. Sends outgoing frames to any network
2330 * taps currently in use.
2333 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2335 struct packet_type *ptype;
2336 struct sk_buff *skb2 = NULL;
2337 struct packet_type *pt_prev = NULL;
2338 struct list_head *ptype_list = &ptype_all;
2342 list_for_each_entry_rcu(ptype, ptype_list, list) {
2343 if (ptype->ignore_outgoing)
2346 /* Never send packets back to the socket
2349 if (skb_loop_sk(ptype, skb))
2353 deliver_skb(skb2, pt_prev, skb->dev);
2358 /* need to clone skb, done only once */
2359 skb2 = skb_clone(skb, GFP_ATOMIC);
2363 net_timestamp_set(skb2);
2365 /* skb->nh should be correctly
2366 * set by sender, so that the second statement is
2367 * just protection against buggy protocols.
2369 skb_reset_mac_header(skb2);
2371 if (skb_network_header(skb2) < skb2->data ||
2372 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2373 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2374 ntohs(skb2->protocol),
2376 skb_reset_network_header(skb2);
2379 skb2->transport_header = skb2->network_header;
2380 skb2->pkt_type = PACKET_OUTGOING;
2384 if (ptype_list == &ptype_all) {
2385 ptype_list = &dev->ptype_all;
2390 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2391 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2397 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2400 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2401 * @dev: Network device
2402 * @txq: number of queues available
2404 * If real_num_tx_queues is changed the tc mappings may no longer be
2405 * valid. To resolve this verify the tc mapping remains valid and if
2406 * not NULL the mapping. With no priorities mapping to this
2407 * offset/count pair it will no longer be used. In the worst case TC0
2408 * is invalid nothing can be done so disable priority mappings. If is
2409 * expected that drivers will fix this mapping if they can before
2410 * calling netif_set_real_num_tx_queues.
2412 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2415 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2417 /* If TC0 is invalidated disable TC mapping */
2418 if (tc->offset + tc->count > txq) {
2419 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2424 /* Invalidated prio to tc mappings set to TC0 */
2425 for (i = 1; i < TC_BITMASK + 1; i++) {
2426 int q = netdev_get_prio_tc_map(dev, i);
2428 tc = &dev->tc_to_txq[q];
2429 if (tc->offset + tc->count > txq) {
2430 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2432 netdev_set_prio_tc_map(dev, i, 0);
2437 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2440 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2443 /* walk through the TCs and see if it falls into any of them */
2444 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2445 if ((txq - tc->offset) < tc->count)
2449 /* didn't find it, just return -1 to indicate no match */
2455 EXPORT_SYMBOL(netdev_txq_to_tc);
2458 struct static_key xps_needed __read_mostly;
2459 EXPORT_SYMBOL(xps_needed);
2460 struct static_key xps_rxqs_needed __read_mostly;
2461 EXPORT_SYMBOL(xps_rxqs_needed);
2462 static DEFINE_MUTEX(xps_map_mutex);
2463 #define xmap_dereference(P) \
2464 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2466 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2469 struct xps_map *map = NULL;
2473 map = xmap_dereference(dev_maps->attr_map[tci]);
2477 for (pos = map->len; pos--;) {
2478 if (map->queues[pos] != index)
2482 map->queues[pos] = map->queues[--map->len];
2486 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2487 kfree_rcu(map, rcu);
2494 static bool remove_xps_queue_cpu(struct net_device *dev,
2495 struct xps_dev_maps *dev_maps,
2496 int cpu, u16 offset, u16 count)
2498 int num_tc = dev->num_tc ? : 1;
2499 bool active = false;
2502 for (tci = cpu * num_tc; num_tc--; tci++) {
2505 for (i = count, j = offset; i--; j++) {
2506 if (!remove_xps_queue(dev_maps, tci, j))
2516 static void reset_xps_maps(struct net_device *dev,
2517 struct xps_dev_maps *dev_maps,
2521 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2522 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2524 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2526 static_key_slow_dec_cpuslocked(&xps_needed);
2527 kfree_rcu(dev_maps, rcu);
2530 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2531 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2532 u16 offset, u16 count, bool is_rxqs_map)
2534 bool active = false;
2537 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2539 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2542 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2545 for (i = offset + (count - 1); count--; i--) {
2546 netdev_queue_numa_node_write(
2547 netdev_get_tx_queue(dev, i),
2553 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2556 const unsigned long *possible_mask = NULL;
2557 struct xps_dev_maps *dev_maps;
2558 unsigned int nr_ids;
2560 if (!static_key_false(&xps_needed))
2564 mutex_lock(&xps_map_mutex);
2566 if (static_key_false(&xps_rxqs_needed)) {
2567 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2569 nr_ids = dev->num_rx_queues;
2570 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2571 offset, count, true);
2575 dev_maps = xmap_dereference(dev->xps_cpus_map);
2579 if (num_possible_cpus() > 1)
2580 possible_mask = cpumask_bits(cpu_possible_mask);
2581 nr_ids = nr_cpu_ids;
2582 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2586 mutex_unlock(&xps_map_mutex);
2590 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2592 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2595 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2596 u16 index, bool is_rxqs_map)
2598 struct xps_map *new_map;
2599 int alloc_len = XPS_MIN_MAP_ALLOC;
2602 for (pos = 0; map && pos < map->len; pos++) {
2603 if (map->queues[pos] != index)
2608 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2610 if (pos < map->alloc_len)
2613 alloc_len = map->alloc_len * 2;
2616 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2620 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2622 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2623 cpu_to_node(attr_index));
2627 for (i = 0; i < pos; i++)
2628 new_map->queues[i] = map->queues[i];
2629 new_map->alloc_len = alloc_len;
2635 /* Must be called under cpus_read_lock */
2636 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2637 u16 index, bool is_rxqs_map)
2639 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2640 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2641 int i, j, tci, numa_node_id = -2;
2642 int maps_sz, num_tc = 1, tc = 0;
2643 struct xps_map *map, *new_map;
2644 bool active = false;
2645 unsigned int nr_ids;
2648 /* Do not allow XPS on subordinate device directly */
2649 num_tc = dev->num_tc;
2653 /* If queue belongs to subordinate dev use its map */
2654 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2656 tc = netdev_txq_to_tc(dev, index);
2661 mutex_lock(&xps_map_mutex);
2663 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2664 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2665 nr_ids = dev->num_rx_queues;
2667 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2668 if (num_possible_cpus() > 1) {
2669 online_mask = cpumask_bits(cpu_online_mask);
2670 possible_mask = cpumask_bits(cpu_possible_mask);
2672 dev_maps = xmap_dereference(dev->xps_cpus_map);
2673 nr_ids = nr_cpu_ids;
2676 if (maps_sz < L1_CACHE_BYTES)
2677 maps_sz = L1_CACHE_BYTES;
2679 /* allocate memory for queue storage */
2680 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2683 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2684 if (!new_dev_maps) {
2685 mutex_unlock(&xps_map_mutex);
2689 tci = j * num_tc + tc;
2690 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2693 map = expand_xps_map(map, j, index, is_rxqs_map);
2697 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2701 goto out_no_new_maps;
2704 /* Increment static keys at most once per type */
2705 static_key_slow_inc_cpuslocked(&xps_needed);
2707 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2710 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2712 /* copy maps belonging to foreign traffic classes */
2713 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2714 /* fill in the new device map from the old device map */
2715 map = xmap_dereference(dev_maps->attr_map[tci]);
2716 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2719 /* We need to explicitly update tci as prevous loop
2720 * could break out early if dev_maps is NULL.
2722 tci = j * num_tc + tc;
2724 if (netif_attr_test_mask(j, mask, nr_ids) &&
2725 netif_attr_test_online(j, online_mask, nr_ids)) {
2726 /* add tx-queue to CPU/rx-queue maps */
2729 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2730 while ((pos < map->len) && (map->queues[pos] != index))
2733 if (pos == map->len)
2734 map->queues[map->len++] = index;
2737 if (numa_node_id == -2)
2738 numa_node_id = cpu_to_node(j);
2739 else if (numa_node_id != cpu_to_node(j))
2743 } else if (dev_maps) {
2744 /* fill in the new device map from the old device map */
2745 map = xmap_dereference(dev_maps->attr_map[tci]);
2746 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2749 /* copy maps belonging to foreign traffic classes */
2750 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2751 /* fill in the new device map from the old device map */
2752 map = xmap_dereference(dev_maps->attr_map[tci]);
2753 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2758 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2760 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2762 /* Cleanup old maps */
2764 goto out_no_old_maps;
2766 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2768 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2769 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2770 map = xmap_dereference(dev_maps->attr_map[tci]);
2771 if (map && map != new_map)
2772 kfree_rcu(map, rcu);
2776 kfree_rcu(dev_maps, rcu);
2779 dev_maps = new_dev_maps;
2784 /* update Tx queue numa node */
2785 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2786 (numa_node_id >= 0) ?
2787 numa_node_id : NUMA_NO_NODE);
2793 /* removes tx-queue from unused CPUs/rx-queues */
2794 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2796 for (i = tc, tci = j * num_tc; i--; tci++)
2797 active |= remove_xps_queue(dev_maps, tci, index);
2798 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2799 !netif_attr_test_online(j, online_mask, nr_ids))
2800 active |= remove_xps_queue(dev_maps, tci, index);
2801 for (i = num_tc - tc, tci++; --i; tci++)
2802 active |= remove_xps_queue(dev_maps, tci, index);
2805 /* free map if not active */
2807 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2810 mutex_unlock(&xps_map_mutex);
2814 /* remove any maps that we added */
2815 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2817 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2818 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2820 xmap_dereference(dev_maps->attr_map[tci]) :
2822 if (new_map && new_map != map)
2827 mutex_unlock(&xps_map_mutex);
2829 kfree(new_dev_maps);
2832 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2834 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2840 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2845 EXPORT_SYMBOL(netif_set_xps_queue);
2848 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2850 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2852 /* Unbind any subordinate channels */
2853 while (txq-- != &dev->_tx[0]) {
2855 netdev_unbind_sb_channel(dev, txq->sb_dev);
2859 void netdev_reset_tc(struct net_device *dev)
2862 netif_reset_xps_queues_gt(dev, 0);
2864 netdev_unbind_all_sb_channels(dev);
2866 /* Reset TC configuration of device */
2868 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2869 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2871 EXPORT_SYMBOL(netdev_reset_tc);
2873 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2875 if (tc >= dev->num_tc)
2879 netif_reset_xps_queues(dev, offset, count);
2881 dev->tc_to_txq[tc].count = count;
2882 dev->tc_to_txq[tc].offset = offset;
2885 EXPORT_SYMBOL(netdev_set_tc_queue);
2887 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2889 if (num_tc > TC_MAX_QUEUE)
2893 netif_reset_xps_queues_gt(dev, 0);
2895 netdev_unbind_all_sb_channels(dev);
2897 dev->num_tc = num_tc;
2900 EXPORT_SYMBOL(netdev_set_num_tc);
2902 void netdev_unbind_sb_channel(struct net_device *dev,
2903 struct net_device *sb_dev)
2905 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908 netif_reset_xps_queues_gt(sb_dev, 0);
2910 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2911 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2913 while (txq-- != &dev->_tx[0]) {
2914 if (txq->sb_dev == sb_dev)
2918 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2920 int netdev_bind_sb_channel_queue(struct net_device *dev,
2921 struct net_device *sb_dev,
2922 u8 tc, u16 count, u16 offset)
2924 /* Make certain the sb_dev and dev are already configured */
2925 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2928 /* We cannot hand out queues we don't have */
2929 if ((offset + count) > dev->real_num_tx_queues)
2932 /* Record the mapping */
2933 sb_dev->tc_to_txq[tc].count = count;
2934 sb_dev->tc_to_txq[tc].offset = offset;
2936 /* Provide a way for Tx queue to find the tc_to_txq map or
2937 * XPS map for itself.
2940 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2944 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2946 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2948 /* Do not use a multiqueue device to represent a subordinate channel */
2949 if (netif_is_multiqueue(dev))
2952 /* We allow channels 1 - 32767 to be used for subordinate channels.
2953 * Channel 0 is meant to be "native" mode and used only to represent
2954 * the main root device. We allow writing 0 to reset the device back
2955 * to normal mode after being used as a subordinate channel.
2957 if (channel > S16_MAX)
2960 dev->num_tc = -channel;
2964 EXPORT_SYMBOL(netdev_set_sb_channel);
2967 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2968 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2970 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2975 disabling = txq < dev->real_num_tx_queues;
2977 if (txq < 1 || txq > dev->num_tx_queues)
2980 if (dev->reg_state == NETREG_REGISTERED ||
2981 dev->reg_state == NETREG_UNREGISTERING) {
2984 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2990 netif_setup_tc(dev, txq);
2992 dev->real_num_tx_queues = txq;
2996 qdisc_reset_all_tx_gt(dev, txq);
2998 netif_reset_xps_queues_gt(dev, txq);
3002 dev->real_num_tx_queues = txq;
3007 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3011 * netif_set_real_num_rx_queues - set actual number of RX queues used
3012 * @dev: Network device
3013 * @rxq: Actual number of RX queues
3015 * This must be called either with the rtnl_lock held or before
3016 * registration of the net device. Returns 0 on success, or a
3017 * negative error code. If called before registration, it always
3020 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3024 if (rxq < 1 || rxq > dev->num_rx_queues)
3027 if (dev->reg_state == NETREG_REGISTERED) {
3030 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3036 dev->real_num_rx_queues = rxq;
3039 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3043 * netif_get_num_default_rss_queues - default number of RSS queues
3045 * This routine should set an upper limit on the number of RSS queues
3046 * used by default by multiqueue devices.
3048 int netif_get_num_default_rss_queues(void)
3050 return is_kdump_kernel() ?
3051 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3053 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3055 static void __netif_reschedule(struct Qdisc *q)
3057 struct softnet_data *sd;
3058 unsigned long flags;
3060 local_irq_save(flags);
3061 sd = this_cpu_ptr(&softnet_data);
3062 q->next_sched = NULL;
3063 *sd->output_queue_tailp = q;
3064 sd->output_queue_tailp = &q->next_sched;
3065 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3066 local_irq_restore(flags);
3069 void __netif_schedule(struct Qdisc *q)
3071 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3072 __netif_reschedule(q);
3074 EXPORT_SYMBOL(__netif_schedule);
3076 struct dev_kfree_skb_cb {
3077 enum skb_free_reason reason;
3080 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3082 return (struct dev_kfree_skb_cb *)skb->cb;
3085 void netif_schedule_queue(struct netdev_queue *txq)
3088 if (!netif_xmit_stopped(txq)) {
3089 struct Qdisc *q = rcu_dereference(txq->qdisc);
3091 __netif_schedule(q);
3095 EXPORT_SYMBOL(netif_schedule_queue);
3097 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3099 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3103 q = rcu_dereference(dev_queue->qdisc);
3104 __netif_schedule(q);
3108 EXPORT_SYMBOL(netif_tx_wake_queue);
3110 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3112 unsigned long flags;
3117 if (likely(refcount_read(&skb->users) == 1)) {
3119 refcount_set(&skb->users, 0);
3120 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3123 get_kfree_skb_cb(skb)->reason = reason;
3124 local_irq_save(flags);
3125 skb->next = __this_cpu_read(softnet_data.completion_queue);
3126 __this_cpu_write(softnet_data.completion_queue, skb);
3127 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3128 local_irq_restore(flags);
3130 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3132 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3134 if (in_irq() || irqs_disabled())
3135 __dev_kfree_skb_irq(skb, reason);
3139 EXPORT_SYMBOL(__dev_kfree_skb_any);
3143 * netif_device_detach - mark device as removed
3144 * @dev: network device
3146 * Mark device as removed from system and therefore no longer available.
3148 void netif_device_detach(struct net_device *dev)
3150 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3151 netif_running(dev)) {
3152 netif_tx_stop_all_queues(dev);
3155 EXPORT_SYMBOL(netif_device_detach);
3158 * netif_device_attach - mark device as attached
3159 * @dev: network device
3161 * Mark device as attached from system and restart if needed.
3163 void netif_device_attach(struct net_device *dev)
3165 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3166 netif_running(dev)) {
3167 netif_tx_wake_all_queues(dev);
3168 __netdev_watchdog_up(dev);
3171 EXPORT_SYMBOL(netif_device_attach);
3174 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3175 * to be used as a distribution range.
3177 static u16 skb_tx_hash(const struct net_device *dev,
3178 const struct net_device *sb_dev,
3179 struct sk_buff *skb)
3183 u16 qcount = dev->real_num_tx_queues;
3186 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3188 qoffset = sb_dev->tc_to_txq[tc].offset;
3189 qcount = sb_dev->tc_to_txq[tc].count;
3192 if (skb_rx_queue_recorded(skb)) {
3193 hash = skb_get_rx_queue(skb);
3194 if (hash >= qoffset)
3196 while (unlikely(hash >= qcount))
3198 return hash + qoffset;
3201 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3204 static void skb_warn_bad_offload(const struct sk_buff *skb)
3206 static const netdev_features_t null_features;
3207 struct net_device *dev = skb->dev;
3208 const char *name = "";
3210 if (!net_ratelimit())
3214 if (dev->dev.parent)
3215 name = dev_driver_string(dev->dev.parent);
3217 name = netdev_name(dev);
3219 skb_dump(KERN_WARNING, skb, false);
3220 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3221 name, dev ? &dev->features : &null_features,
3222 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3226 * Invalidate hardware checksum when packet is to be mangled, and
3227 * complete checksum manually on outgoing path.
3229 int skb_checksum_help(struct sk_buff *skb)
3232 int ret = 0, offset;
3234 if (skb->ip_summed == CHECKSUM_COMPLETE)
3235 goto out_set_summed;
3237 if (unlikely(skb_is_gso(skb))) {
3238 skb_warn_bad_offload(skb);
3242 /* Before computing a checksum, we should make sure no frag could
3243 * be modified by an external entity : checksum could be wrong.
3245 if (skb_has_shared_frag(skb)) {
3246 ret = __skb_linearize(skb);
3251 offset = skb_checksum_start_offset(skb);
3252 BUG_ON(offset >= skb_headlen(skb));
3253 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3255 offset += skb->csum_offset;
3256 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3258 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3262 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3264 skb->ip_summed = CHECKSUM_NONE;
3268 EXPORT_SYMBOL(skb_checksum_help);
3270 int skb_crc32c_csum_help(struct sk_buff *skb)
3273 int ret = 0, offset, start;
3275 if (skb->ip_summed != CHECKSUM_PARTIAL)
3278 if (unlikely(skb_is_gso(skb)))
3281 /* Before computing a checksum, we should make sure no frag could
3282 * be modified by an external entity : checksum could be wrong.
3284 if (unlikely(skb_has_shared_frag(skb))) {
3285 ret = __skb_linearize(skb);
3289 start = skb_checksum_start_offset(skb);
3290 offset = start + offsetof(struct sctphdr, checksum);
3291 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3296 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3300 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3301 skb->len - start, ~(__u32)0,
3303 *(__le32 *)(skb->data + offset) = crc32c_csum;
3304 skb->ip_summed = CHECKSUM_NONE;
3305 skb->csum_not_inet = 0;
3310 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3312 __be16 type = skb->protocol;
3314 /* Tunnel gso handlers can set protocol to ethernet. */
3315 if (type == htons(ETH_P_TEB)) {
3318 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3321 eth = (struct ethhdr *)skb->data;
3322 type = eth->h_proto;
3325 return __vlan_get_protocol(skb, type, depth);
3329 * skb_mac_gso_segment - mac layer segmentation handler.
3330 * @skb: buffer to segment
3331 * @features: features for the output path (see dev->features)
3333 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3334 netdev_features_t features)
3336 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3337 struct packet_offload *ptype;
3338 int vlan_depth = skb->mac_len;
3339 __be16 type = skb_network_protocol(skb, &vlan_depth);
3341 if (unlikely(!type))
3342 return ERR_PTR(-EINVAL);
3344 __skb_pull(skb, vlan_depth);
3347 list_for_each_entry_rcu(ptype, &offload_base, list) {
3348 if (ptype->type == type && ptype->callbacks.gso_segment) {
3349 segs = ptype->callbacks.gso_segment(skb, features);
3355 __skb_push(skb, skb->data - skb_mac_header(skb));
3359 EXPORT_SYMBOL(skb_mac_gso_segment);
3362 /* openvswitch calls this on rx path, so we need a different check.
3364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3367 return skb->ip_summed != CHECKSUM_PARTIAL &&
3368 skb->ip_summed != CHECKSUM_UNNECESSARY;
3370 return skb->ip_summed == CHECKSUM_NONE;
3374 * __skb_gso_segment - Perform segmentation on skb.
3375 * @skb: buffer to segment
3376 * @features: features for the output path (see dev->features)
3377 * @tx_path: whether it is called in TX path
3379 * This function segments the given skb and returns a list of segments.
3381 * It may return NULL if the skb requires no segmentation. This is
3382 * only possible when GSO is used for verifying header integrity.
3384 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3386 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3387 netdev_features_t features, bool tx_path)
3389 struct sk_buff *segs;
3391 if (unlikely(skb_needs_check(skb, tx_path))) {
3394 /* We're going to init ->check field in TCP or UDP header */
3395 err = skb_cow_head(skb, 0);
3397 return ERR_PTR(err);
3400 /* Only report GSO partial support if it will enable us to
3401 * support segmentation on this frame without needing additional
3404 if (features & NETIF_F_GSO_PARTIAL) {
3405 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3406 struct net_device *dev = skb->dev;
3408 partial_features |= dev->features & dev->gso_partial_features;
3409 if (!skb_gso_ok(skb, features | partial_features))
3410 features &= ~NETIF_F_GSO_PARTIAL;
3413 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3414 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3416 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3417 SKB_GSO_CB(skb)->encap_level = 0;
3419 skb_reset_mac_header(skb);
3420 skb_reset_mac_len(skb);
3422 segs = skb_mac_gso_segment(skb, features);
3424 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3425 skb_warn_bad_offload(skb);
3429 EXPORT_SYMBOL(__skb_gso_segment);
3431 /* Take action when hardware reception checksum errors are detected. */
3433 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3435 if (net_ratelimit()) {
3436 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3437 skb_dump(KERN_ERR, skb, true);
3441 EXPORT_SYMBOL(netdev_rx_csum_fault);
3444 /* XXX: check that highmem exists at all on the given machine. */
3445 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3447 #ifdef CONFIG_HIGHMEM
3450 if (!(dev->features & NETIF_F_HIGHDMA)) {
3451 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3452 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3454 if (PageHighMem(skb_frag_page(frag)))
3462 /* If MPLS offload request, verify we are testing hardware MPLS features
3463 * instead of standard features for the netdev.
3465 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3466 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3467 netdev_features_t features,
3470 if (eth_p_mpls(type))
3471 features &= skb->dev->mpls_features;
3476 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3477 netdev_features_t features,
3484 static netdev_features_t harmonize_features(struct sk_buff *skb,
3485 netdev_features_t features)
3489 type = skb_network_protocol(skb, NULL);
3490 features = net_mpls_features(skb, features, type);
3492 if (skb->ip_summed != CHECKSUM_NONE &&
3493 !can_checksum_protocol(features, type)) {
3494 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3496 if (illegal_highdma(skb->dev, skb))
3497 features &= ~NETIF_F_SG;
3502 netdev_features_t passthru_features_check(struct sk_buff *skb,
3503 struct net_device *dev,
3504 netdev_features_t features)
3508 EXPORT_SYMBOL(passthru_features_check);
3510 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3511 struct net_device *dev,
3512 netdev_features_t features)
3514 return vlan_features_check(skb, features);
3517 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3518 struct net_device *dev,
3519 netdev_features_t features)
3521 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3523 if (gso_segs > dev->gso_max_segs)
3524 return features & ~NETIF_F_GSO_MASK;
3526 if (!skb_shinfo(skb)->gso_type) {
3527 skb_warn_bad_offload(skb);
3528 return features & ~NETIF_F_GSO_MASK;
3531 /* Support for GSO partial features requires software
3532 * intervention before we can actually process the packets
3533 * so we need to strip support for any partial features now
3534 * and we can pull them back in after we have partially
3535 * segmented the frame.
3537 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3538 features &= ~dev->gso_partial_features;
3540 /* Make sure to clear the IPv4 ID mangling feature if the
3541 * IPv4 header has the potential to be fragmented.
3543 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3544 struct iphdr *iph = skb->encapsulation ?
3545 inner_ip_hdr(skb) : ip_hdr(skb);
3547 if (!(iph->frag_off & htons(IP_DF)))
3548 features &= ~NETIF_F_TSO_MANGLEID;
3554 netdev_features_t netif_skb_features(struct sk_buff *skb)
3556 struct net_device *dev = skb->dev;
3557 netdev_features_t features = dev->features;
3559 if (skb_is_gso(skb))
3560 features = gso_features_check(skb, dev, features);
3562 /* If encapsulation offload request, verify we are testing
3563 * hardware encapsulation features instead of standard
3564 * features for the netdev
3566 if (skb->encapsulation)
3567 features &= dev->hw_enc_features;
3569 if (skb_vlan_tagged(skb))
3570 features = netdev_intersect_features(features,
3571 dev->vlan_features |
3572 NETIF_F_HW_VLAN_CTAG_TX |
3573 NETIF_F_HW_VLAN_STAG_TX);
3575 if (dev->netdev_ops->ndo_features_check)
3576 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3579 features &= dflt_features_check(skb, dev, features);
3581 return harmonize_features(skb, features);
3583 EXPORT_SYMBOL(netif_skb_features);
3585 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3586 struct netdev_queue *txq, bool more)
3591 if (dev_nit_active(dev))
3592 dev_queue_xmit_nit(skb, dev);
3595 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3596 trace_net_dev_start_xmit(skb, dev);
3597 rc = netdev_start_xmit(skb, dev, txq, more);
3598 trace_net_dev_xmit(skb, rc, dev, len);
3603 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3604 struct netdev_queue *txq, int *ret)
3606 struct sk_buff *skb = first;
3607 int rc = NETDEV_TX_OK;
3610 struct sk_buff *next = skb->next;
3612 skb_mark_not_on_list(skb);
3613 rc = xmit_one(skb, dev, txq, next != NULL);
3614 if (unlikely(!dev_xmit_complete(rc))) {
3620 if (netif_tx_queue_stopped(txq) && skb) {
3621 rc = NETDEV_TX_BUSY;
3631 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3632 netdev_features_t features)
3634 if (skb_vlan_tag_present(skb) &&
3635 !vlan_hw_offload_capable(features, skb->vlan_proto))
3636 skb = __vlan_hwaccel_push_inside(skb);
3640 int skb_csum_hwoffload_help(struct sk_buff *skb,
3641 const netdev_features_t features)
3643 if (unlikely(skb_csum_is_sctp(skb)))
3644 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3645 skb_crc32c_csum_help(skb);
3647 if (features & NETIF_F_HW_CSUM)
3650 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3651 switch (skb->csum_offset) {
3652 case offsetof(struct tcphdr, check):
3653 case offsetof(struct udphdr, check):
3658 return skb_checksum_help(skb);
3660 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3662 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3664 netdev_features_t features;
3666 features = netif_skb_features(skb);
3667 skb = validate_xmit_vlan(skb, features);
3671 skb = sk_validate_xmit_skb(skb, dev);
3675 if (netif_needs_gso(skb, features)) {
3676 struct sk_buff *segs;
3678 segs = skb_gso_segment(skb, features);
3686 if (skb_needs_linearize(skb, features) &&
3687 __skb_linearize(skb))
3690 /* If packet is not checksummed and device does not
3691 * support checksumming for this protocol, complete
3692 * checksumming here.
3694 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3695 if (skb->encapsulation)
3696 skb_set_inner_transport_header(skb,
3697 skb_checksum_start_offset(skb));
3699 skb_set_transport_header(skb,
3700 skb_checksum_start_offset(skb));
3701 if (skb_csum_hwoffload_help(skb, features))
3706 skb = validate_xmit_xfrm(skb, features, again);
3713 atomic_long_inc(&dev->tx_dropped);
3717 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3719 struct sk_buff *next, *head = NULL, *tail;
3721 for (; skb != NULL; skb = next) {
3723 skb_mark_not_on_list(skb);
3725 /* in case skb wont be segmented, point to itself */
3728 skb = validate_xmit_skb(skb, dev, again);
3736 /* If skb was segmented, skb->prev points to
3737 * the last segment. If not, it still contains skb.
3743 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3745 static void qdisc_pkt_len_init(struct sk_buff *skb)
3747 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3749 qdisc_skb_cb(skb)->pkt_len = skb->len;
3751 /* To get more precise estimation of bytes sent on wire,
3752 * we add to pkt_len the headers size of all segments
3754 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3755 unsigned int hdr_len;
3756 u16 gso_segs = shinfo->gso_segs;
3758 /* mac layer + network layer */
3759 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3761 /* + transport layer */
3762 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3763 const struct tcphdr *th;
3764 struct tcphdr _tcphdr;
3766 th = skb_header_pointer(skb, skb_transport_offset(skb),
3767 sizeof(_tcphdr), &_tcphdr);
3769 hdr_len += __tcp_hdrlen(th);
3771 struct udphdr _udphdr;
3773 if (skb_header_pointer(skb, skb_transport_offset(skb),
3774 sizeof(_udphdr), &_udphdr))
3775 hdr_len += sizeof(struct udphdr);
3778 if (shinfo->gso_type & SKB_GSO_DODGY)
3779 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3782 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3786 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3787 struct net_device *dev,
3788 struct netdev_queue *txq)
3790 spinlock_t *root_lock = qdisc_lock(q);
3791 struct sk_buff *to_free = NULL;
3795 qdisc_calculate_pkt_len(skb, q);
3797 if (q->flags & TCQ_F_NOLOCK) {
3798 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3801 if (unlikely(to_free))
3802 kfree_skb_list(to_free);
3807 * Heuristic to force contended enqueues to serialize on a
3808 * separate lock before trying to get qdisc main lock.
3809 * This permits qdisc->running owner to get the lock more
3810 * often and dequeue packets faster.
3812 contended = qdisc_is_running(q);
3813 if (unlikely(contended))
3814 spin_lock(&q->busylock);
3816 spin_lock(root_lock);
3817 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3818 __qdisc_drop(skb, &to_free);
3820 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3821 qdisc_run_begin(q)) {
3823 * This is a work-conserving queue; there are no old skbs
3824 * waiting to be sent out; and the qdisc is not running -
3825 * xmit the skb directly.
3828 qdisc_bstats_update(q, skb);
3830 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3831 if (unlikely(contended)) {
3832 spin_unlock(&q->busylock);
3839 rc = NET_XMIT_SUCCESS;
3841 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3842 if (qdisc_run_begin(q)) {
3843 if (unlikely(contended)) {
3844 spin_unlock(&q->busylock);
3851 spin_unlock(root_lock);
3852 if (unlikely(to_free))
3853 kfree_skb_list(to_free);
3854 if (unlikely(contended))
3855 spin_unlock(&q->busylock);
3859 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3860 static void skb_update_prio(struct sk_buff *skb)
3862 const struct netprio_map *map;
3863 const struct sock *sk;
3864 unsigned int prioidx;
3868 map = rcu_dereference_bh(skb->dev->priomap);
3871 sk = skb_to_full_sk(skb);
3875 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3877 if (prioidx < map->priomap_len)
3878 skb->priority = map->priomap[prioidx];
3881 #define skb_update_prio(skb)
3885 * dev_loopback_xmit - loop back @skb
3886 * @net: network namespace this loopback is happening in
3887 * @sk: sk needed to be a netfilter okfn
3888 * @skb: buffer to transmit
3890 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3892 skb_reset_mac_header(skb);
3893 __skb_pull(skb, skb_network_offset(skb));
3894 skb->pkt_type = PACKET_LOOPBACK;
3895 skb->ip_summed = CHECKSUM_UNNECESSARY;
3896 WARN_ON(!skb_dst(skb));
3901 EXPORT_SYMBOL(dev_loopback_xmit);
3903 #ifdef CONFIG_NET_EGRESS
3904 static struct sk_buff *
3905 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3907 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3908 struct tcf_result cl_res;
3913 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3914 qdisc_skb_cb(skb)->mru = 0;
3915 qdisc_skb_cb(skb)->post_ct = false;
3916 mini_qdisc_bstats_cpu_update(miniq, skb);
3918 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3920 case TC_ACT_RECLASSIFY:
3921 skb->tc_index = TC_H_MIN(cl_res.classid);
3924 mini_qdisc_qstats_cpu_drop(miniq);
3925 *ret = NET_XMIT_DROP;
3931 *ret = NET_XMIT_SUCCESS;
3934 case TC_ACT_REDIRECT:
3935 /* No need to push/pop skb's mac_header here on egress! */
3936 skb_do_redirect(skb);
3937 *ret = NET_XMIT_SUCCESS;
3945 #endif /* CONFIG_NET_EGRESS */
3948 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3949 struct xps_dev_maps *dev_maps, unsigned int tci)
3951 struct xps_map *map;
3952 int queue_index = -1;
3956 tci += netdev_get_prio_tc_map(dev, skb->priority);
3959 map = rcu_dereference(dev_maps->attr_map[tci]);
3962 queue_index = map->queues[0];
3964 queue_index = map->queues[reciprocal_scale(
3965 skb_get_hash(skb), map->len)];
3966 if (unlikely(queue_index >= dev->real_num_tx_queues))
3973 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3974 struct sk_buff *skb)
3977 struct xps_dev_maps *dev_maps;
3978 struct sock *sk = skb->sk;
3979 int queue_index = -1;
3981 if (!static_key_false(&xps_needed))
3985 if (!static_key_false(&xps_rxqs_needed))
3988 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3990 int tci = sk_rx_queue_get(sk);
3992 if (tci >= 0 && tci < dev->num_rx_queues)
3993 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3998 if (queue_index < 0) {
3999 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
4001 unsigned int tci = skb->sender_cpu - 1;
4003 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4015 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4016 struct net_device *sb_dev)
4020 EXPORT_SYMBOL(dev_pick_tx_zero);
4022 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4023 struct net_device *sb_dev)
4025 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4027 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4029 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4030 struct net_device *sb_dev)
4032 struct sock *sk = skb->sk;
4033 int queue_index = sk_tx_queue_get(sk);
4035 sb_dev = sb_dev ? : dev;
4037 if (queue_index < 0 || skb->ooo_okay ||
4038 queue_index >= dev->real_num_tx_queues) {
4039 int new_index = get_xps_queue(dev, sb_dev, skb);
4042 new_index = skb_tx_hash(dev, sb_dev, skb);
4044 if (queue_index != new_index && sk &&
4046 rcu_access_pointer(sk->sk_dst_cache))
4047 sk_tx_queue_set(sk, new_index);
4049 queue_index = new_index;
4054 EXPORT_SYMBOL(netdev_pick_tx);
4056 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4057 struct sk_buff *skb,
4058 struct net_device *sb_dev)
4060 int queue_index = 0;
4063 u32 sender_cpu = skb->sender_cpu - 1;
4065 if (sender_cpu >= (u32)NR_CPUS)
4066 skb->sender_cpu = raw_smp_processor_id() + 1;
4069 if (dev->real_num_tx_queues != 1) {
4070 const struct net_device_ops *ops = dev->netdev_ops;
4072 if (ops->ndo_select_queue)
4073 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4075 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4077 queue_index = netdev_cap_txqueue(dev, queue_index);
4080 skb_set_queue_mapping(skb, queue_index);
4081 return netdev_get_tx_queue(dev, queue_index);
4085 * __dev_queue_xmit - transmit a buffer
4086 * @skb: buffer to transmit
4087 * @sb_dev: suboordinate device used for L2 forwarding offload
4089 * Queue a buffer for transmission to a network device. The caller must
4090 * have set the device and priority and built the buffer before calling
4091 * this function. The function can be called from an interrupt.
4093 * A negative errno code is returned on a failure. A success does not
4094 * guarantee the frame will be transmitted as it may be dropped due
4095 * to congestion or traffic shaping.
4097 * -----------------------------------------------------------------------------------
4098 * I notice this method can also return errors from the queue disciplines,
4099 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4102 * Regardless of the return value, the skb is consumed, so it is currently
4103 * difficult to retry a send to this method. (You can bump the ref count
4104 * before sending to hold a reference for retry if you are careful.)
4106 * When calling this method, interrupts MUST be enabled. This is because
4107 * the BH enable code must have IRQs enabled so that it will not deadlock.
4110 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4112 struct net_device *dev = skb->dev;
4113 struct netdev_queue *txq;
4118 skb_reset_mac_header(skb);
4120 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4121 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4123 /* Disable soft irqs for various locks below. Also
4124 * stops preemption for RCU.
4128 skb_update_prio(skb);
4130 qdisc_pkt_len_init(skb);
4131 #ifdef CONFIG_NET_CLS_ACT
4132 skb->tc_at_ingress = 0;
4133 # ifdef CONFIG_NET_EGRESS
4134 if (static_branch_unlikely(&egress_needed_key)) {
4135 skb = sch_handle_egress(skb, &rc, dev);
4141 /* If device/qdisc don't need skb->dst, release it right now while
4142 * its hot in this cpu cache.
4144 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4149 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4150 q = rcu_dereference_bh(txq->qdisc);
4152 trace_net_dev_queue(skb);
4154 rc = __dev_xmit_skb(skb, q, dev, txq);
4158 /* The device has no queue. Common case for software devices:
4159 * loopback, all the sorts of tunnels...
4161 * Really, it is unlikely that netif_tx_lock protection is necessary
4162 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4164 * However, it is possible, that they rely on protection
4167 * Check this and shot the lock. It is not prone from deadlocks.
4168 *Either shot noqueue qdisc, it is even simpler 8)
4170 if (dev->flags & IFF_UP) {
4171 int cpu = smp_processor_id(); /* ok because BHs are off */
4173 if (txq->xmit_lock_owner != cpu) {
4174 if (dev_xmit_recursion())
4175 goto recursion_alert;
4177 skb = validate_xmit_skb(skb, dev, &again);
4181 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4182 HARD_TX_LOCK(dev, txq, cpu);
4184 if (!netif_xmit_stopped(txq)) {
4185 dev_xmit_recursion_inc();
4186 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4187 dev_xmit_recursion_dec();
4188 if (dev_xmit_complete(rc)) {
4189 HARD_TX_UNLOCK(dev, txq);
4193 HARD_TX_UNLOCK(dev, txq);
4194 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4197 /* Recursion is detected! It is possible,
4201 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4207 rcu_read_unlock_bh();
4209 atomic_long_inc(&dev->tx_dropped);
4210 kfree_skb_list(skb);
4213 rcu_read_unlock_bh();
4217 int dev_queue_xmit(struct sk_buff *skb)
4219 return __dev_queue_xmit(skb, NULL);
4221 EXPORT_SYMBOL(dev_queue_xmit);
4223 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4225 return __dev_queue_xmit(skb, sb_dev);
4227 EXPORT_SYMBOL(dev_queue_xmit_accel);
4229 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4231 struct net_device *dev = skb->dev;
4232 struct sk_buff *orig_skb = skb;
4233 struct netdev_queue *txq;
4234 int ret = NETDEV_TX_BUSY;
4237 if (unlikely(!netif_running(dev) ||
4238 !netif_carrier_ok(dev)))
4241 skb = validate_xmit_skb_list(skb, dev, &again);
4242 if (skb != orig_skb)
4245 skb_set_queue_mapping(skb, queue_id);
4246 txq = skb_get_tx_queue(dev, skb);
4247 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4251 dev_xmit_recursion_inc();
4252 HARD_TX_LOCK(dev, txq, smp_processor_id());
4253 if (!netif_xmit_frozen_or_drv_stopped(txq))
4254 ret = netdev_start_xmit(skb, dev, txq, false);
4255 HARD_TX_UNLOCK(dev, txq);
4256 dev_xmit_recursion_dec();
4261 atomic_long_inc(&dev->tx_dropped);
4262 kfree_skb_list(skb);
4263 return NET_XMIT_DROP;
4265 EXPORT_SYMBOL(__dev_direct_xmit);
4267 /*************************************************************************
4269 *************************************************************************/
4271 int netdev_max_backlog __read_mostly = 1000;
4272 EXPORT_SYMBOL(netdev_max_backlog);
4274 int netdev_tstamp_prequeue __read_mostly = 1;
4275 int netdev_budget __read_mostly = 300;
4276 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4277 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4278 int weight_p __read_mostly = 64; /* old backlog weight */
4279 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4280 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4281 int dev_rx_weight __read_mostly = 64;
4282 int dev_tx_weight __read_mostly = 64;
4283 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4284 int gro_normal_batch __read_mostly = 8;
4286 /* Called with irq disabled */
4287 static inline void ____napi_schedule(struct softnet_data *sd,
4288 struct napi_struct *napi)
4290 struct task_struct *thread;
4292 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4293 /* Paired with smp_mb__before_atomic() in
4294 * napi_enable()/dev_set_threaded().
4295 * Use READ_ONCE() to guarantee a complete
4296 * read on napi->thread. Only call
4297 * wake_up_process() when it's not NULL.
4299 thread = READ_ONCE(napi->thread);
4301 wake_up_process(thread);
4306 list_add_tail(&napi->poll_list, &sd->poll_list);
4307 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4312 /* One global table that all flow-based protocols share. */
4313 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4314 EXPORT_SYMBOL(rps_sock_flow_table);
4315 u32 rps_cpu_mask __read_mostly;
4316 EXPORT_SYMBOL(rps_cpu_mask);
4318 struct static_key_false rps_needed __read_mostly;
4319 EXPORT_SYMBOL(rps_needed);
4320 struct static_key_false rfs_needed __read_mostly;
4321 EXPORT_SYMBOL(rfs_needed);
4323 static struct rps_dev_flow *
4324 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4325 struct rps_dev_flow *rflow, u16 next_cpu)
4327 if (next_cpu < nr_cpu_ids) {
4328 #ifdef CONFIG_RFS_ACCEL
4329 struct netdev_rx_queue *rxqueue;
4330 struct rps_dev_flow_table *flow_table;
4331 struct rps_dev_flow *old_rflow;
4336 /* Should we steer this flow to a different hardware queue? */
4337 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4338 !(dev->features & NETIF_F_NTUPLE))
4340 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4341 if (rxq_index == skb_get_rx_queue(skb))
4344 rxqueue = dev->_rx + rxq_index;
4345 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4348 flow_id = skb_get_hash(skb) & flow_table->mask;
4349 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4350 rxq_index, flow_id);
4354 rflow = &flow_table->flows[flow_id];
4356 if (old_rflow->filter == rflow->filter)
4357 old_rflow->filter = RPS_NO_FILTER;
4361 per_cpu(softnet_data, next_cpu).input_queue_head;
4364 rflow->cpu = next_cpu;
4369 * get_rps_cpu is called from netif_receive_skb and returns the target
4370 * CPU from the RPS map of the receiving queue for a given skb.
4371 * rcu_read_lock must be held on entry.
4373 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4374 struct rps_dev_flow **rflowp)
4376 const struct rps_sock_flow_table *sock_flow_table;
4377 struct netdev_rx_queue *rxqueue = dev->_rx;
4378 struct rps_dev_flow_table *flow_table;
4379 struct rps_map *map;
4384 if (skb_rx_queue_recorded(skb)) {
4385 u16 index = skb_get_rx_queue(skb);
4387 if (unlikely(index >= dev->real_num_rx_queues)) {
4388 WARN_ONCE(dev->real_num_rx_queues > 1,
4389 "%s received packet on queue %u, but number "
4390 "of RX queues is %u\n",
4391 dev->name, index, dev->real_num_rx_queues);
4397 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4399 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4400 map = rcu_dereference(rxqueue->rps_map);
4401 if (!flow_table && !map)
4404 skb_reset_network_header(skb);
4405 hash = skb_get_hash(skb);
4409 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4410 if (flow_table && sock_flow_table) {
4411 struct rps_dev_flow *rflow;
4415 /* First check into global flow table if there is a match */
4416 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4417 if ((ident ^ hash) & ~rps_cpu_mask)
4420 next_cpu = ident & rps_cpu_mask;
4422 /* OK, now we know there is a match,
4423 * we can look at the local (per receive queue) flow table
4425 rflow = &flow_table->flows[hash & flow_table->mask];
4429 * If the desired CPU (where last recvmsg was done) is
4430 * different from current CPU (one in the rx-queue flow
4431 * table entry), switch if one of the following holds:
4432 * - Current CPU is unset (>= nr_cpu_ids).
4433 * - Current CPU is offline.
4434 * - The current CPU's queue tail has advanced beyond the
4435 * last packet that was enqueued using this table entry.
4436 * This guarantees that all previous packets for the flow
4437 * have been dequeued, thus preserving in order delivery.
4439 if (unlikely(tcpu != next_cpu) &&
4440 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4441 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4442 rflow->last_qtail)) >= 0)) {
4444 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4447 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4457 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4458 if (cpu_online(tcpu)) {
4468 #ifdef CONFIG_RFS_ACCEL
4471 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4472 * @dev: Device on which the filter was set
4473 * @rxq_index: RX queue index
4474 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4475 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4477 * Drivers that implement ndo_rx_flow_steer() should periodically call
4478 * this function for each installed filter and remove the filters for
4479 * which it returns %true.
4481 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4482 u32 flow_id, u16 filter_id)
4484 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4485 struct rps_dev_flow_table *flow_table;
4486 struct rps_dev_flow *rflow;
4491 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4492 if (flow_table && flow_id <= flow_table->mask) {
4493 rflow = &flow_table->flows[flow_id];
4494 cpu = READ_ONCE(rflow->cpu);
4495 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4496 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4497 rflow->last_qtail) <
4498 (int)(10 * flow_table->mask)))
4504 EXPORT_SYMBOL(rps_may_expire_flow);
4506 #endif /* CONFIG_RFS_ACCEL */
4508 /* Called from hardirq (IPI) context */
4509 static void rps_trigger_softirq(void *data)
4511 struct softnet_data *sd = data;
4513 ____napi_schedule(sd, &sd->backlog);
4517 #endif /* CONFIG_RPS */
4520 * Check if this softnet_data structure is another cpu one
4521 * If yes, queue it to our IPI list and return 1
4524 static int rps_ipi_queued(struct softnet_data *sd)
4527 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4530 sd->rps_ipi_next = mysd->rps_ipi_list;
4531 mysd->rps_ipi_list = sd;
4533 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4536 #endif /* CONFIG_RPS */
4540 #ifdef CONFIG_NET_FLOW_LIMIT
4541 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4544 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4546 #ifdef CONFIG_NET_FLOW_LIMIT
4547 struct sd_flow_limit *fl;
4548 struct softnet_data *sd;
4549 unsigned int old_flow, new_flow;
4551 if (qlen < (netdev_max_backlog >> 1))
4554 sd = this_cpu_ptr(&softnet_data);
4557 fl = rcu_dereference(sd->flow_limit);
4559 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4560 old_flow = fl->history[fl->history_head];
4561 fl->history[fl->history_head] = new_flow;
4564 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4566 if (likely(fl->buckets[old_flow]))
4567 fl->buckets[old_flow]--;
4569 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4581 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4582 * queue (may be a remote CPU queue).
4584 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4585 unsigned int *qtail)
4587 struct softnet_data *sd;
4588 unsigned long flags;
4591 sd = &per_cpu(softnet_data, cpu);
4593 local_irq_save(flags);
4596 if (!netif_running(skb->dev))
4598 qlen = skb_queue_len(&sd->input_pkt_queue);
4599 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4602 __skb_queue_tail(&sd->input_pkt_queue, skb);
4603 input_queue_tail_incr_save(sd, qtail);
4605 local_irq_restore(flags);
4606 return NET_RX_SUCCESS;
4609 /* Schedule NAPI for backlog device
4610 * We can use non atomic operation since we own the queue lock
4612 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4613 if (!rps_ipi_queued(sd))
4614 ____napi_schedule(sd, &sd->backlog);
4623 local_irq_restore(flags);
4625 atomic_long_inc(&skb->dev->rx_dropped);
4630 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4632 struct net_device *dev = skb->dev;
4633 struct netdev_rx_queue *rxqueue;
4637 if (skb_rx_queue_recorded(skb)) {
4638 u16 index = skb_get_rx_queue(skb);
4640 if (unlikely(index >= dev->real_num_rx_queues)) {
4641 WARN_ONCE(dev->real_num_rx_queues > 1,
4642 "%s received packet on queue %u, but number "
4643 "of RX queues is %u\n",
4644 dev->name, index, dev->real_num_rx_queues);
4646 return rxqueue; /* Return first rxqueue */
4653 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4654 struct xdp_buff *xdp,
4655 struct bpf_prog *xdp_prog)
4657 void *orig_data, *orig_data_end, *hard_start;
4658 struct netdev_rx_queue *rxqueue;
4659 u32 metalen, act = XDP_DROP;
4660 u32 mac_len, frame_sz;
4661 __be16 orig_eth_type;
4666 /* Reinjected packets coming from act_mirred or similar should
4667 * not get XDP generic processing.
4669 if (skb_is_redirected(skb))
4672 /* XDP packets must be linear and must have sufficient headroom
4673 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4674 * native XDP provides, thus we need to do it here as well.
4676 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4677 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4678 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4679 int troom = skb->tail + skb->data_len - skb->end;
4681 /* In case we have to go down the path and also linearize,
4682 * then lets do the pskb_expand_head() work just once here.
4684 if (pskb_expand_head(skb,
4685 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4686 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4688 if (skb_linearize(skb))
4692 /* The XDP program wants to see the packet starting at the MAC
4695 mac_len = skb->data - skb_mac_header(skb);
4696 hard_start = skb->data - skb_headroom(skb);
4698 /* SKB "head" area always have tailroom for skb_shared_info */
4699 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4700 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4702 rxqueue = netif_get_rxqueue(skb);
4703 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4704 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4705 skb_headlen(skb) + mac_len, true);
4707 orig_data_end = xdp->data_end;
4708 orig_data = xdp->data;
4709 eth = (struct ethhdr *)xdp->data;
4710 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4711 orig_eth_type = eth->h_proto;
4713 act = bpf_prog_run_xdp(xdp_prog, xdp);
4715 /* check if bpf_xdp_adjust_head was used */
4716 off = xdp->data - orig_data;
4719 __skb_pull(skb, off);
4721 __skb_push(skb, -off);
4723 skb->mac_header += off;
4724 skb_reset_network_header(skb);
4727 /* check if bpf_xdp_adjust_tail was used */
4728 off = xdp->data_end - orig_data_end;
4730 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4731 skb->len += off; /* positive on grow, negative on shrink */
4734 /* check if XDP changed eth hdr such SKB needs update */
4735 eth = (struct ethhdr *)xdp->data;
4736 if ((orig_eth_type != eth->h_proto) ||
4737 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4738 __skb_push(skb, ETH_HLEN);
4739 skb->protocol = eth_type_trans(skb, skb->dev);
4745 __skb_push(skb, mac_len);
4748 metalen = xdp->data - xdp->data_meta;
4750 skb_metadata_set(skb, metalen);
4753 bpf_warn_invalid_xdp_action(act);
4756 trace_xdp_exception(skb->dev, xdp_prog, act);
4767 /* When doing generic XDP we have to bypass the qdisc layer and the
4768 * network taps in order to match in-driver-XDP behavior.
4770 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4772 struct net_device *dev = skb->dev;
4773 struct netdev_queue *txq;
4774 bool free_skb = true;
4777 txq = netdev_core_pick_tx(dev, skb, NULL);
4778 cpu = smp_processor_id();
4779 HARD_TX_LOCK(dev, txq, cpu);
4780 if (!netif_xmit_stopped(txq)) {
4781 rc = netdev_start_xmit(skb, dev, txq, 0);
4782 if (dev_xmit_complete(rc))
4785 HARD_TX_UNLOCK(dev, txq);
4787 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4792 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4794 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4797 struct xdp_buff xdp;
4801 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4802 if (act != XDP_PASS) {
4805 err = xdp_do_generic_redirect(skb->dev, skb,
4811 generic_xdp_tx(skb, xdp_prog);
4822 EXPORT_SYMBOL_GPL(do_xdp_generic);
4824 static int netif_rx_internal(struct sk_buff *skb)
4828 net_timestamp_check(netdev_tstamp_prequeue, skb);
4830 trace_netif_rx(skb);
4833 if (static_branch_unlikely(&rps_needed)) {
4834 struct rps_dev_flow voidflow, *rflow = &voidflow;
4840 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4842 cpu = smp_processor_id();
4844 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4853 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4860 * netif_rx - post buffer to the network code
4861 * @skb: buffer to post
4863 * This function receives a packet from a device driver and queues it for
4864 * the upper (protocol) levels to process. It always succeeds. The buffer
4865 * may be dropped during processing for congestion control or by the
4869 * NET_RX_SUCCESS (no congestion)
4870 * NET_RX_DROP (packet was dropped)
4874 int netif_rx(struct sk_buff *skb)
4878 trace_netif_rx_entry(skb);
4880 ret = netif_rx_internal(skb);
4881 trace_netif_rx_exit(ret);
4885 EXPORT_SYMBOL(netif_rx);
4887 int netif_rx_ni(struct sk_buff *skb)
4891 trace_netif_rx_ni_entry(skb);
4894 err = netif_rx_internal(skb);
4895 if (local_softirq_pending())
4898 trace_netif_rx_ni_exit(err);
4902 EXPORT_SYMBOL(netif_rx_ni);
4904 int netif_rx_any_context(struct sk_buff *skb)
4907 * If invoked from contexts which do not invoke bottom half
4908 * processing either at return from interrupt or when softrqs are
4909 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4913 return netif_rx(skb);
4915 return netif_rx_ni(skb);
4917 EXPORT_SYMBOL(netif_rx_any_context);
4919 static __latent_entropy void net_tx_action(struct softirq_action *h)
4921 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4923 if (sd->completion_queue) {
4924 struct sk_buff *clist;
4926 local_irq_disable();
4927 clist = sd->completion_queue;
4928 sd->completion_queue = NULL;
4932 struct sk_buff *skb = clist;
4934 clist = clist->next;
4936 WARN_ON(refcount_read(&skb->users));
4937 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4938 trace_consume_skb(skb);
4940 trace_kfree_skb(skb, net_tx_action);
4942 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4945 __kfree_skb_defer(skb);
4948 __kfree_skb_flush();
4951 if (sd->output_queue) {
4954 local_irq_disable();
4955 head = sd->output_queue;
4956 sd->output_queue = NULL;
4957 sd->output_queue_tailp = &sd->output_queue;
4961 struct Qdisc *q = head;
4962 spinlock_t *root_lock = NULL;
4964 head = head->next_sched;
4966 if (!(q->flags & TCQ_F_NOLOCK)) {
4967 root_lock = qdisc_lock(q);
4968 spin_lock(root_lock);
4970 /* We need to make sure head->next_sched is read
4971 * before clearing __QDISC_STATE_SCHED
4973 smp_mb__before_atomic();
4974 clear_bit(__QDISC_STATE_SCHED, &q->state);
4977 spin_unlock(root_lock);
4981 xfrm_dev_backlog(sd);
4984 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4985 /* This hook is defined here for ATM LANE */
4986 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4987 unsigned char *addr) __read_mostly;
4988 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4991 static inline struct sk_buff *
4992 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4993 struct net_device *orig_dev, bool *another)
4995 #ifdef CONFIG_NET_CLS_ACT
4996 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4997 struct tcf_result cl_res;
4999 /* If there's at least one ingress present somewhere (so
5000 * we get here via enabled static key), remaining devices
5001 * that are not configured with an ingress qdisc will bail
5008 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5012 qdisc_skb_cb(skb)->pkt_len = skb->len;
5013 qdisc_skb_cb(skb)->mru = 0;
5014 qdisc_skb_cb(skb)->post_ct = false;
5015 skb->tc_at_ingress = 1;
5016 mini_qdisc_bstats_cpu_update(miniq, skb);
5018 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5021 case TC_ACT_RECLASSIFY:
5022 skb->tc_index = TC_H_MIN(cl_res.classid);
5025 mini_qdisc_qstats_cpu_drop(miniq);
5033 case TC_ACT_REDIRECT:
5034 /* skb_mac_header check was done by cls/act_bpf, so
5035 * we can safely push the L2 header back before
5036 * redirecting to another netdev
5038 __skb_push(skb, skb->mac_len);
5039 if (skb_do_redirect(skb) == -EAGAIN) {
5040 __skb_pull(skb, skb->mac_len);
5045 case TC_ACT_CONSUMED:
5050 #endif /* CONFIG_NET_CLS_ACT */
5055 * netdev_is_rx_handler_busy - check if receive handler is registered
5056 * @dev: device to check
5058 * Check if a receive handler is already registered for a given device.
5059 * Return true if there one.
5061 * The caller must hold the rtnl_mutex.
5063 bool netdev_is_rx_handler_busy(struct net_device *dev)
5066 return dev && rtnl_dereference(dev->rx_handler);
5068 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5071 * netdev_rx_handler_register - register receive handler
5072 * @dev: device to register a handler for
5073 * @rx_handler: receive handler to register
5074 * @rx_handler_data: data pointer that is used by rx handler
5076 * Register a receive handler for a device. This handler will then be
5077 * called from __netif_receive_skb. A negative errno code is returned
5080 * The caller must hold the rtnl_mutex.
5082 * For a general description of rx_handler, see enum rx_handler_result.
5084 int netdev_rx_handler_register(struct net_device *dev,
5085 rx_handler_func_t *rx_handler,
5086 void *rx_handler_data)
5088 if (netdev_is_rx_handler_busy(dev))
5091 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5094 /* Note: rx_handler_data must be set before rx_handler */
5095 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5096 rcu_assign_pointer(dev->rx_handler, rx_handler);
5100 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5103 * netdev_rx_handler_unregister - unregister receive handler
5104 * @dev: device to unregister a handler from
5106 * Unregister a receive handler from a device.
5108 * The caller must hold the rtnl_mutex.
5110 void netdev_rx_handler_unregister(struct net_device *dev)
5114 RCU_INIT_POINTER(dev->rx_handler, NULL);
5115 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5116 * section has a guarantee to see a non NULL rx_handler_data
5120 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5122 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5125 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5126 * the special handling of PFMEMALLOC skbs.
5128 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5130 switch (skb->protocol) {
5131 case htons(ETH_P_ARP):
5132 case htons(ETH_P_IP):
5133 case htons(ETH_P_IPV6):
5134 case htons(ETH_P_8021Q):
5135 case htons(ETH_P_8021AD):
5142 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5143 int *ret, struct net_device *orig_dev)
5145 if (nf_hook_ingress_active(skb)) {
5149 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5154 ingress_retval = nf_hook_ingress(skb);
5156 return ingress_retval;
5161 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5162 struct packet_type **ppt_prev)
5164 struct packet_type *ptype, *pt_prev;
5165 rx_handler_func_t *rx_handler;
5166 struct sk_buff *skb = *pskb;
5167 struct net_device *orig_dev;
5168 bool deliver_exact = false;
5169 int ret = NET_RX_DROP;
5172 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5174 trace_netif_receive_skb(skb);
5176 orig_dev = skb->dev;
5178 skb_reset_network_header(skb);
5179 if (!skb_transport_header_was_set(skb))
5180 skb_reset_transport_header(skb);
5181 skb_reset_mac_len(skb);
5186 skb->skb_iif = skb->dev->ifindex;
5188 __this_cpu_inc(softnet_data.processed);
5190 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5194 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5197 if (ret2 != XDP_PASS) {
5201 skb_reset_mac_len(skb);
5204 if (eth_type_vlan(skb->protocol)) {
5205 skb = skb_vlan_untag(skb);
5210 if (skb_skip_tc_classify(skb))
5216 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5218 ret = deliver_skb(skb, pt_prev, orig_dev);
5222 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5224 ret = deliver_skb(skb, pt_prev, orig_dev);
5229 #ifdef CONFIG_NET_INGRESS
5230 if (static_branch_unlikely(&ingress_needed_key)) {
5231 bool another = false;
5233 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5240 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5244 skb_reset_redirect(skb);
5246 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5249 if (skb_vlan_tag_present(skb)) {
5251 ret = deliver_skb(skb, pt_prev, orig_dev);
5254 if (vlan_do_receive(&skb))
5256 else if (unlikely(!skb))
5260 rx_handler = rcu_dereference(skb->dev->rx_handler);
5263 ret = deliver_skb(skb, pt_prev, orig_dev);
5266 switch (rx_handler(&skb)) {
5267 case RX_HANDLER_CONSUMED:
5268 ret = NET_RX_SUCCESS;
5270 case RX_HANDLER_ANOTHER:
5272 case RX_HANDLER_EXACT:
5273 deliver_exact = true;
5274 case RX_HANDLER_PASS:
5281 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5283 if (skb_vlan_tag_get_id(skb)) {
5284 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5287 skb->pkt_type = PACKET_OTHERHOST;
5288 } else if (eth_type_vlan(skb->protocol)) {
5289 /* Outer header is 802.1P with vlan 0, inner header is
5290 * 802.1Q or 802.1AD and vlan_do_receive() above could
5291 * not find vlan dev for vlan id 0.
5293 __vlan_hwaccel_clear_tag(skb);
5294 skb = skb_vlan_untag(skb);
5297 if (vlan_do_receive(&skb))
5298 /* After stripping off 802.1P header with vlan 0
5299 * vlan dev is found for inner header.
5302 else if (unlikely(!skb))
5305 /* We have stripped outer 802.1P vlan 0 header.
5306 * But could not find vlan dev.
5307 * check again for vlan id to set OTHERHOST.
5311 /* Note: we might in the future use prio bits
5312 * and set skb->priority like in vlan_do_receive()
5313 * For the time being, just ignore Priority Code Point
5315 __vlan_hwaccel_clear_tag(skb);
5318 type = skb->protocol;
5320 /* deliver only exact match when indicated */
5321 if (likely(!deliver_exact)) {
5322 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5323 &ptype_base[ntohs(type) &
5327 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5328 &orig_dev->ptype_specific);
5330 if (unlikely(skb->dev != orig_dev)) {
5331 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5332 &skb->dev->ptype_specific);
5336 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5338 *ppt_prev = pt_prev;
5342 atomic_long_inc(&skb->dev->rx_dropped);
5344 atomic_long_inc(&skb->dev->rx_nohandler);
5346 /* Jamal, now you will not able to escape explaining
5347 * me how you were going to use this. :-)
5353 /* The invariant here is that if *ppt_prev is not NULL
5354 * then skb should also be non-NULL.
5356 * Apparently *ppt_prev assignment above holds this invariant due to
5357 * skb dereferencing near it.
5363 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5365 struct net_device *orig_dev = skb->dev;
5366 struct packet_type *pt_prev = NULL;
5369 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5371 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5372 skb->dev, pt_prev, orig_dev);
5377 * netif_receive_skb_core - special purpose version of netif_receive_skb
5378 * @skb: buffer to process
5380 * More direct receive version of netif_receive_skb(). It should
5381 * only be used by callers that have a need to skip RPS and Generic XDP.
5382 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5384 * This function may only be called from softirq context and interrupts
5385 * should be enabled.
5387 * Return values (usually ignored):
5388 * NET_RX_SUCCESS: no congestion
5389 * NET_RX_DROP: packet was dropped
5391 int netif_receive_skb_core(struct sk_buff *skb)
5396 ret = __netif_receive_skb_one_core(skb, false);
5401 EXPORT_SYMBOL(netif_receive_skb_core);
5403 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5404 struct packet_type *pt_prev,
5405 struct net_device *orig_dev)
5407 struct sk_buff *skb, *next;
5411 if (list_empty(head))
5413 if (pt_prev->list_func != NULL)
5414 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5415 ip_list_rcv, head, pt_prev, orig_dev);
5417 list_for_each_entry_safe(skb, next, head, list) {
5418 skb_list_del_init(skb);
5419 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5423 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5425 /* Fast-path assumptions:
5426 * - There is no RX handler.
5427 * - Only one packet_type matches.
5428 * If either of these fails, we will end up doing some per-packet
5429 * processing in-line, then handling the 'last ptype' for the whole
5430 * sublist. This can't cause out-of-order delivery to any single ptype,
5431 * because the 'last ptype' must be constant across the sublist, and all
5432 * other ptypes are handled per-packet.
5434 /* Current (common) ptype of sublist */
5435 struct packet_type *pt_curr = NULL;
5436 /* Current (common) orig_dev of sublist */
5437 struct net_device *od_curr = NULL;
5438 struct list_head sublist;
5439 struct sk_buff *skb, *next;
5441 INIT_LIST_HEAD(&sublist);
5442 list_for_each_entry_safe(skb, next, head, list) {
5443 struct net_device *orig_dev = skb->dev;
5444 struct packet_type *pt_prev = NULL;
5446 skb_list_del_init(skb);
5447 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5450 if (pt_curr != pt_prev || od_curr != orig_dev) {
5451 /* dispatch old sublist */
5452 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5453 /* start new sublist */
5454 INIT_LIST_HEAD(&sublist);
5458 list_add_tail(&skb->list, &sublist);
5461 /* dispatch final sublist */
5462 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5465 static int __netif_receive_skb(struct sk_buff *skb)
5469 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5470 unsigned int noreclaim_flag;
5473 * PFMEMALLOC skbs are special, they should
5474 * - be delivered to SOCK_MEMALLOC sockets only
5475 * - stay away from userspace
5476 * - have bounded memory usage
5478 * Use PF_MEMALLOC as this saves us from propagating the allocation
5479 * context down to all allocation sites.
5481 noreclaim_flag = memalloc_noreclaim_save();
5482 ret = __netif_receive_skb_one_core(skb, true);
5483 memalloc_noreclaim_restore(noreclaim_flag);
5485 ret = __netif_receive_skb_one_core(skb, false);
5490 static void __netif_receive_skb_list(struct list_head *head)
5492 unsigned long noreclaim_flag = 0;
5493 struct sk_buff *skb, *next;
5494 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5496 list_for_each_entry_safe(skb, next, head, list) {
5497 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5498 struct list_head sublist;
5500 /* Handle the previous sublist */
5501 list_cut_before(&sublist, head, &skb->list);
5502 if (!list_empty(&sublist))
5503 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5504 pfmemalloc = !pfmemalloc;
5505 /* See comments in __netif_receive_skb */
5507 noreclaim_flag = memalloc_noreclaim_save();
5509 memalloc_noreclaim_restore(noreclaim_flag);
5512 /* Handle the remaining sublist */
5513 if (!list_empty(head))
5514 __netif_receive_skb_list_core(head, pfmemalloc);
5515 /* Restore pflags */
5517 memalloc_noreclaim_restore(noreclaim_flag);
5520 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5522 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5523 struct bpf_prog *new = xdp->prog;
5529 mutex_lock(&new->aux->used_maps_mutex);
5531 /* generic XDP does not work with DEVMAPs that can
5532 * have a bpf_prog installed on an entry
5534 for (i = 0; i < new->aux->used_map_cnt; i++) {
5535 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5536 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5537 mutex_unlock(&new->aux->used_maps_mutex);
5542 mutex_unlock(&new->aux->used_maps_mutex);
5545 switch (xdp->command) {
5546 case XDP_SETUP_PROG:
5547 rcu_assign_pointer(dev->xdp_prog, new);
5552 static_branch_dec(&generic_xdp_needed_key);
5553 } else if (new && !old) {
5554 static_branch_inc(&generic_xdp_needed_key);
5555 dev_disable_lro(dev);
5556 dev_disable_gro_hw(dev);
5568 static int netif_receive_skb_internal(struct sk_buff *skb)
5572 net_timestamp_check(netdev_tstamp_prequeue, skb);
5574 if (skb_defer_rx_timestamp(skb))
5575 return NET_RX_SUCCESS;
5579 if (static_branch_unlikely(&rps_needed)) {
5580 struct rps_dev_flow voidflow, *rflow = &voidflow;
5581 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5584 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5590 ret = __netif_receive_skb(skb);
5595 static void netif_receive_skb_list_internal(struct list_head *head)
5597 struct sk_buff *skb, *next;
5598 struct list_head sublist;
5600 INIT_LIST_HEAD(&sublist);
5601 list_for_each_entry_safe(skb, next, head, list) {
5602 net_timestamp_check(netdev_tstamp_prequeue, skb);
5603 skb_list_del_init(skb);
5604 if (!skb_defer_rx_timestamp(skb))
5605 list_add_tail(&skb->list, &sublist);
5607 list_splice_init(&sublist, head);
5611 if (static_branch_unlikely(&rps_needed)) {
5612 list_for_each_entry_safe(skb, next, head, list) {
5613 struct rps_dev_flow voidflow, *rflow = &voidflow;
5614 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5617 /* Will be handled, remove from list */
5618 skb_list_del_init(skb);
5619 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5624 __netif_receive_skb_list(head);
5629 * netif_receive_skb - process receive buffer from network
5630 * @skb: buffer to process
5632 * netif_receive_skb() is the main receive data processing function.
5633 * It always succeeds. The buffer may be dropped during processing
5634 * for congestion control or by the protocol layers.
5636 * This function may only be called from softirq context and interrupts
5637 * should be enabled.
5639 * Return values (usually ignored):
5640 * NET_RX_SUCCESS: no congestion
5641 * NET_RX_DROP: packet was dropped
5643 int netif_receive_skb(struct sk_buff *skb)
5647 trace_netif_receive_skb_entry(skb);
5649 ret = netif_receive_skb_internal(skb);
5650 trace_netif_receive_skb_exit(ret);
5654 EXPORT_SYMBOL(netif_receive_skb);
5657 * netif_receive_skb_list - process many receive buffers from network
5658 * @head: list of skbs to process.
5660 * Since return value of netif_receive_skb() is normally ignored, and
5661 * wouldn't be meaningful for a list, this function returns void.
5663 * This function may only be called from softirq context and interrupts
5664 * should be enabled.
5666 void netif_receive_skb_list(struct list_head *head)
5668 struct sk_buff *skb;
5670 if (list_empty(head))
5672 if (trace_netif_receive_skb_list_entry_enabled()) {
5673 list_for_each_entry(skb, head, list)
5674 trace_netif_receive_skb_list_entry(skb);
5676 netif_receive_skb_list_internal(head);
5677 trace_netif_receive_skb_list_exit(0);
5679 EXPORT_SYMBOL(netif_receive_skb_list);
5681 static DEFINE_PER_CPU(struct work_struct, flush_works);
5683 /* Network device is going away, flush any packets still pending */
5684 static void flush_backlog(struct work_struct *work)
5686 struct sk_buff *skb, *tmp;
5687 struct softnet_data *sd;
5690 sd = this_cpu_ptr(&softnet_data);
5692 local_irq_disable();
5694 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5695 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5696 __skb_unlink(skb, &sd->input_pkt_queue);
5697 dev_kfree_skb_irq(skb);
5698 input_queue_head_incr(sd);
5704 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5705 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5706 __skb_unlink(skb, &sd->process_queue);
5708 input_queue_head_incr(sd);
5714 static bool flush_required(int cpu)
5716 #if IS_ENABLED(CONFIG_RPS)
5717 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5720 local_irq_disable();
5723 /* as insertion into process_queue happens with the rps lock held,
5724 * process_queue access may race only with dequeue
5726 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5727 !skb_queue_empty_lockless(&sd->process_queue);
5733 /* without RPS we can't safely check input_pkt_queue: during a
5734 * concurrent remote skb_queue_splice() we can detect as empty both
5735 * input_pkt_queue and process_queue even if the latter could end-up
5736 * containing a lot of packets.
5741 static void flush_all_backlogs(void)
5743 static cpumask_t flush_cpus;
5746 /* since we are under rtnl lock protection we can use static data
5747 * for the cpumask and avoid allocating on stack the possibly
5754 cpumask_clear(&flush_cpus);
5755 for_each_online_cpu(cpu) {
5756 if (flush_required(cpu)) {
5757 queue_work_on(cpu, system_highpri_wq,
5758 per_cpu_ptr(&flush_works, cpu));
5759 cpumask_set_cpu(cpu, &flush_cpus);
5763 /* we can have in flight packet[s] on the cpus we are not flushing,
5764 * synchronize_net() in unregister_netdevice_many() will take care of
5767 for_each_cpu(cpu, &flush_cpus)
5768 flush_work(per_cpu_ptr(&flush_works, cpu));
5773 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5774 static void gro_normal_list(struct napi_struct *napi)
5776 if (!napi->rx_count)
5778 netif_receive_skb_list_internal(&napi->rx_list);
5779 INIT_LIST_HEAD(&napi->rx_list);
5783 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5784 * pass the whole batch up to the stack.
5786 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5788 list_add_tail(&skb->list, &napi->rx_list);
5789 if (++napi->rx_count >= gro_normal_batch)
5790 gro_normal_list(napi);
5793 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5795 struct packet_offload *ptype;
5796 __be16 type = skb->protocol;
5797 struct list_head *head = &offload_base;
5800 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5802 if (NAPI_GRO_CB(skb)->count == 1) {
5803 skb_shinfo(skb)->gso_size = 0;
5808 list_for_each_entry_rcu(ptype, head, list) {
5809 if (ptype->type != type || !ptype->callbacks.gro_complete)
5812 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5813 ipv6_gro_complete, inet_gro_complete,
5820 WARN_ON(&ptype->list == head);
5822 return NET_RX_SUCCESS;
5826 gro_normal_one(napi, skb);
5827 return NET_RX_SUCCESS;
5830 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5833 struct list_head *head = &napi->gro_hash[index].list;
5834 struct sk_buff *skb, *p;
5836 list_for_each_entry_safe_reverse(skb, p, head, list) {
5837 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5839 skb_list_del_init(skb);
5840 napi_gro_complete(napi, skb);
5841 napi->gro_hash[index].count--;
5844 if (!napi->gro_hash[index].count)
5845 __clear_bit(index, &napi->gro_bitmask);
5848 /* napi->gro_hash[].list contains packets ordered by age.
5849 * youngest packets at the head of it.
5850 * Complete skbs in reverse order to reduce latencies.
5852 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5854 unsigned long bitmask = napi->gro_bitmask;
5855 unsigned int i, base = ~0U;
5857 while ((i = ffs(bitmask)) != 0) {
5860 __napi_gro_flush_chain(napi, base, flush_old);
5863 EXPORT_SYMBOL(napi_gro_flush);
5865 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5866 struct sk_buff *skb)
5868 unsigned int maclen = skb->dev->hard_header_len;
5869 u32 hash = skb_get_hash_raw(skb);
5870 struct list_head *head;
5873 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5874 list_for_each_entry(p, head, list) {
5875 unsigned long diffs;
5877 NAPI_GRO_CB(p)->flush = 0;
5879 if (hash != skb_get_hash_raw(p)) {
5880 NAPI_GRO_CB(p)->same_flow = 0;
5884 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5885 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5886 if (skb_vlan_tag_present(p))
5887 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5888 diffs |= skb_metadata_dst_cmp(p, skb);
5889 diffs |= skb_metadata_differs(p, skb);
5890 if (maclen == ETH_HLEN)
5891 diffs |= compare_ether_header(skb_mac_header(p),
5892 skb_mac_header(skb));
5894 diffs = memcmp(skb_mac_header(p),
5895 skb_mac_header(skb),
5897 NAPI_GRO_CB(p)->same_flow = !diffs;
5903 static void skb_gro_reset_offset(struct sk_buff *skb)
5905 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5906 const skb_frag_t *frag0 = &pinfo->frags[0];
5908 NAPI_GRO_CB(skb)->data_offset = 0;
5909 NAPI_GRO_CB(skb)->frag0 = NULL;
5910 NAPI_GRO_CB(skb)->frag0_len = 0;
5912 if (!skb_headlen(skb) && pinfo->nr_frags &&
5913 !PageHighMem(skb_frag_page(frag0))) {
5914 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5915 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5916 skb_frag_size(frag0),
5917 skb->end - skb->tail);
5921 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5923 struct skb_shared_info *pinfo = skb_shinfo(skb);
5925 BUG_ON(skb->end - skb->tail < grow);
5927 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5929 skb->data_len -= grow;
5932 skb_frag_off_add(&pinfo->frags[0], grow);
5933 skb_frag_size_sub(&pinfo->frags[0], grow);
5935 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5936 skb_frag_unref(skb, 0);
5937 memmove(pinfo->frags, pinfo->frags + 1,
5938 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5942 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5944 struct sk_buff *oldest;
5946 oldest = list_last_entry(head, struct sk_buff, list);
5948 /* We are called with head length >= MAX_GRO_SKBS, so this is
5951 if (WARN_ON_ONCE(!oldest))
5954 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5957 skb_list_del_init(oldest);
5958 napi_gro_complete(napi, oldest);
5961 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5963 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5964 struct list_head *head = &offload_base;
5965 struct packet_offload *ptype;
5966 __be16 type = skb->protocol;
5967 struct list_head *gro_head;
5968 struct sk_buff *pp = NULL;
5969 enum gro_result ret;
5973 if (netif_elide_gro(skb->dev))
5976 gro_head = gro_list_prepare(napi, skb);
5979 list_for_each_entry_rcu(ptype, head, list) {
5980 if (ptype->type != type || !ptype->callbacks.gro_receive)
5983 skb_set_network_header(skb, skb_gro_offset(skb));
5984 skb_reset_mac_len(skb);
5985 NAPI_GRO_CB(skb)->same_flow = 0;
5986 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5987 NAPI_GRO_CB(skb)->free = 0;
5988 NAPI_GRO_CB(skb)->encap_mark = 0;
5989 NAPI_GRO_CB(skb)->recursion_counter = 0;
5990 NAPI_GRO_CB(skb)->is_fou = 0;
5991 NAPI_GRO_CB(skb)->is_atomic = 1;
5992 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5994 /* Setup for GRO checksum validation */
5995 switch (skb->ip_summed) {
5996 case CHECKSUM_COMPLETE:
5997 NAPI_GRO_CB(skb)->csum = skb->csum;
5998 NAPI_GRO_CB(skb)->csum_valid = 1;
5999 NAPI_GRO_CB(skb)->csum_cnt = 0;
6001 case CHECKSUM_UNNECESSARY:
6002 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6003 NAPI_GRO_CB(skb)->csum_valid = 0;
6006 NAPI_GRO_CB(skb)->csum_cnt = 0;
6007 NAPI_GRO_CB(skb)->csum_valid = 0;
6010 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6011 ipv6_gro_receive, inet_gro_receive,
6017 if (&ptype->list == head)
6020 if (PTR_ERR(pp) == -EINPROGRESS) {
6025 same_flow = NAPI_GRO_CB(skb)->same_flow;
6026 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6029 skb_list_del_init(pp);
6030 napi_gro_complete(napi, pp);
6031 napi->gro_hash[hash].count--;
6037 if (NAPI_GRO_CB(skb)->flush)
6040 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6041 gro_flush_oldest(napi, gro_head);
6043 napi->gro_hash[hash].count++;
6045 NAPI_GRO_CB(skb)->count = 1;
6046 NAPI_GRO_CB(skb)->age = jiffies;
6047 NAPI_GRO_CB(skb)->last = skb;
6048 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6049 list_add(&skb->list, gro_head);
6053 grow = skb_gro_offset(skb) - skb_headlen(skb);
6055 gro_pull_from_frag0(skb, grow);
6057 if (napi->gro_hash[hash].count) {
6058 if (!test_bit(hash, &napi->gro_bitmask))
6059 __set_bit(hash, &napi->gro_bitmask);
6060 } else if (test_bit(hash, &napi->gro_bitmask)) {
6061 __clear_bit(hash, &napi->gro_bitmask);
6071 struct packet_offload *gro_find_receive_by_type(__be16 type)
6073 struct list_head *offload_head = &offload_base;
6074 struct packet_offload *ptype;
6076 list_for_each_entry_rcu(ptype, offload_head, list) {
6077 if (ptype->type != type || !ptype->callbacks.gro_receive)
6083 EXPORT_SYMBOL(gro_find_receive_by_type);
6085 struct packet_offload *gro_find_complete_by_type(__be16 type)
6087 struct list_head *offload_head = &offload_base;
6088 struct packet_offload *ptype;
6090 list_for_each_entry_rcu(ptype, offload_head, list) {
6091 if (ptype->type != type || !ptype->callbacks.gro_complete)
6097 EXPORT_SYMBOL(gro_find_complete_by_type);
6099 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6103 kmem_cache_free(skbuff_head_cache, skb);
6106 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6107 struct sk_buff *skb,
6112 gro_normal_one(napi, skb);
6115 case GRO_MERGED_FREE:
6116 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6117 napi_skb_free_stolen_head(skb);
6131 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6135 skb_mark_napi_id(skb, napi);
6136 trace_napi_gro_receive_entry(skb);
6138 skb_gro_reset_offset(skb);
6140 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6141 trace_napi_gro_receive_exit(ret);
6145 EXPORT_SYMBOL(napi_gro_receive);
6147 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6149 if (unlikely(skb->pfmemalloc)) {
6153 __skb_pull(skb, skb_headlen(skb));
6154 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6155 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6156 __vlan_hwaccel_clear_tag(skb);
6157 skb->dev = napi->dev;
6160 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6161 skb->pkt_type = PACKET_HOST;
6163 skb->encapsulation = 0;
6164 skb_shinfo(skb)->gso_type = 0;
6165 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6171 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6173 struct sk_buff *skb = napi->skb;
6176 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6179 skb_mark_napi_id(skb, napi);
6184 EXPORT_SYMBOL(napi_get_frags);
6186 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6187 struct sk_buff *skb,
6193 __skb_push(skb, ETH_HLEN);
6194 skb->protocol = eth_type_trans(skb, skb->dev);
6195 if (ret == GRO_NORMAL)
6196 gro_normal_one(napi, skb);
6199 case GRO_MERGED_FREE:
6200 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6201 napi_skb_free_stolen_head(skb);
6203 napi_reuse_skb(napi, skb);
6214 /* Upper GRO stack assumes network header starts at gro_offset=0
6215 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6216 * We copy ethernet header into skb->data to have a common layout.
6218 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6220 struct sk_buff *skb = napi->skb;
6221 const struct ethhdr *eth;
6222 unsigned int hlen = sizeof(*eth);
6226 skb_reset_mac_header(skb);
6227 skb_gro_reset_offset(skb);
6229 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6230 eth = skb_gro_header_slow(skb, hlen, 0);
6231 if (unlikely(!eth)) {
6232 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6233 __func__, napi->dev->name);
6234 napi_reuse_skb(napi, skb);
6238 eth = (const struct ethhdr *)skb->data;
6239 gro_pull_from_frag0(skb, hlen);
6240 NAPI_GRO_CB(skb)->frag0 += hlen;
6241 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6243 __skb_pull(skb, hlen);
6246 * This works because the only protocols we care about don't require
6248 * We'll fix it up properly in napi_frags_finish()
6250 skb->protocol = eth->h_proto;
6255 gro_result_t napi_gro_frags(struct napi_struct *napi)
6258 struct sk_buff *skb = napi_frags_skb(napi);
6260 trace_napi_gro_frags_entry(skb);
6262 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6263 trace_napi_gro_frags_exit(ret);
6267 EXPORT_SYMBOL(napi_gro_frags);
6269 /* Compute the checksum from gro_offset and return the folded value
6270 * after adding in any pseudo checksum.
6272 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6277 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6279 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6280 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6281 /* See comments in __skb_checksum_complete(). */
6283 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6284 !skb->csum_complete_sw)
6285 netdev_rx_csum_fault(skb->dev, skb);
6288 NAPI_GRO_CB(skb)->csum = wsum;
6289 NAPI_GRO_CB(skb)->csum_valid = 1;
6293 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6295 static void net_rps_send_ipi(struct softnet_data *remsd)
6299 struct softnet_data *next = remsd->rps_ipi_next;
6301 if (cpu_online(remsd->cpu))
6302 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6309 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6310 * Note: called with local irq disabled, but exits with local irq enabled.
6312 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6315 struct softnet_data *remsd = sd->rps_ipi_list;
6318 sd->rps_ipi_list = NULL;
6322 /* Send pending IPI's to kick RPS processing on remote cpus. */
6323 net_rps_send_ipi(remsd);
6329 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6332 return sd->rps_ipi_list != NULL;
6338 static int process_backlog(struct napi_struct *napi, int quota)
6340 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6344 /* Check if we have pending ipi, its better to send them now,
6345 * not waiting net_rx_action() end.
6347 if (sd_has_rps_ipi_waiting(sd)) {
6348 local_irq_disable();
6349 net_rps_action_and_irq_enable(sd);
6352 napi->weight = dev_rx_weight;
6354 struct sk_buff *skb;
6356 while ((skb = __skb_dequeue(&sd->process_queue))) {
6358 __netif_receive_skb(skb);
6360 input_queue_head_incr(sd);
6361 if (++work >= quota)
6366 local_irq_disable();
6368 if (skb_queue_empty(&sd->input_pkt_queue)) {
6370 * Inline a custom version of __napi_complete().
6371 * only current cpu owns and manipulates this napi,
6372 * and NAPI_STATE_SCHED is the only possible flag set
6374 * We can use a plain write instead of clear_bit(),
6375 * and we dont need an smp_mb() memory barrier.
6380 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6381 &sd->process_queue);
6391 * __napi_schedule - schedule for receive
6392 * @n: entry to schedule
6394 * The entry's receive function will be scheduled to run.
6395 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6397 void __napi_schedule(struct napi_struct *n)
6399 unsigned long flags;
6401 local_irq_save(flags);
6402 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6403 local_irq_restore(flags);
6405 EXPORT_SYMBOL(__napi_schedule);
6408 * napi_schedule_prep - check if napi can be scheduled
6411 * Test if NAPI routine is already running, and if not mark
6412 * it as running. This is used as a condition variable to
6413 * insure only one NAPI poll instance runs. We also make
6414 * sure there is no pending NAPI disable.
6416 bool napi_schedule_prep(struct napi_struct *n)
6418 unsigned long val, new;
6421 val = READ_ONCE(n->state);
6422 if (unlikely(val & NAPIF_STATE_DISABLE))
6424 new = val | NAPIF_STATE_SCHED;
6426 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6427 * This was suggested by Alexander Duyck, as compiler
6428 * emits better code than :
6429 * if (val & NAPIF_STATE_SCHED)
6430 * new |= NAPIF_STATE_MISSED;
6432 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6434 } while (cmpxchg(&n->state, val, new) != val);
6436 return !(val & NAPIF_STATE_SCHED);
6438 EXPORT_SYMBOL(napi_schedule_prep);
6441 * __napi_schedule_irqoff - schedule for receive
6442 * @n: entry to schedule
6444 * Variant of __napi_schedule() assuming hard irqs are masked
6446 void __napi_schedule_irqoff(struct napi_struct *n)
6448 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6450 EXPORT_SYMBOL(__napi_schedule_irqoff);
6452 bool napi_complete_done(struct napi_struct *n, int work_done)
6454 unsigned long flags, val, new, timeout = 0;
6458 * 1) Don't let napi dequeue from the cpu poll list
6459 * just in case its running on a different cpu.
6460 * 2) If we are busy polling, do nothing here, we have
6461 * the guarantee we will be called later.
6463 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6464 NAPIF_STATE_IN_BUSY_POLL)))
6469 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6470 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6472 if (n->defer_hard_irqs_count > 0) {
6473 n->defer_hard_irqs_count--;
6474 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6478 if (n->gro_bitmask) {
6479 /* When the NAPI instance uses a timeout and keeps postponing
6480 * it, we need to bound somehow the time packets are kept in
6483 napi_gro_flush(n, !!timeout);
6488 if (unlikely(!list_empty(&n->poll_list))) {
6489 /* If n->poll_list is not empty, we need to mask irqs */
6490 local_irq_save(flags);
6491 list_del_init(&n->poll_list);
6492 local_irq_restore(flags);
6496 val = READ_ONCE(n->state);
6498 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6500 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6501 NAPIF_STATE_PREFER_BUSY_POLL);
6503 /* If STATE_MISSED was set, leave STATE_SCHED set,
6504 * because we will call napi->poll() one more time.
6505 * This C code was suggested by Alexander Duyck to help gcc.
6507 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6509 } while (cmpxchg(&n->state, val, new) != val);
6511 if (unlikely(val & NAPIF_STATE_MISSED)) {
6517 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6518 HRTIMER_MODE_REL_PINNED);
6521 EXPORT_SYMBOL(napi_complete_done);
6523 /* must be called under rcu_read_lock(), as we dont take a reference */
6524 static struct napi_struct *napi_by_id(unsigned int napi_id)
6526 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6527 struct napi_struct *napi;
6529 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6530 if (napi->napi_id == napi_id)
6536 #if defined(CONFIG_NET_RX_BUSY_POLL)
6538 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6540 if (!skip_schedule) {
6541 gro_normal_list(napi);
6542 __napi_schedule(napi);
6546 if (napi->gro_bitmask) {
6547 /* flush too old packets
6548 * If HZ < 1000, flush all packets.
6550 napi_gro_flush(napi, HZ >= 1000);
6553 gro_normal_list(napi);
6554 clear_bit(NAPI_STATE_SCHED, &napi->state);
6557 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6560 bool skip_schedule = false;
6561 unsigned long timeout;
6564 /* Busy polling means there is a high chance device driver hard irq
6565 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6566 * set in napi_schedule_prep().
6567 * Since we are about to call napi->poll() once more, we can safely
6568 * clear NAPI_STATE_MISSED.
6570 * Note: x86 could use a single "lock and ..." instruction
6571 * to perform these two clear_bit()
6573 clear_bit(NAPI_STATE_MISSED, &napi->state);
6574 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6578 if (prefer_busy_poll) {
6579 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6580 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6581 if (napi->defer_hard_irqs_count && timeout) {
6582 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6583 skip_schedule = true;
6587 /* All we really want here is to re-enable device interrupts.
6588 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6590 rc = napi->poll(napi, budget);
6591 /* We can't gro_normal_list() here, because napi->poll() might have
6592 * rearmed the napi (napi_complete_done()) in which case it could
6593 * already be running on another CPU.
6595 trace_napi_poll(napi, rc, budget);
6596 netpoll_poll_unlock(have_poll_lock);
6598 __busy_poll_stop(napi, skip_schedule);
6602 void napi_busy_loop(unsigned int napi_id,
6603 bool (*loop_end)(void *, unsigned long),
6604 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6606 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6607 int (*napi_poll)(struct napi_struct *napi, int budget);
6608 void *have_poll_lock = NULL;
6609 struct napi_struct *napi;
6616 napi = napi_by_id(napi_id);
6626 unsigned long val = READ_ONCE(napi->state);
6628 /* If multiple threads are competing for this napi,
6629 * we avoid dirtying napi->state as much as we can.
6631 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6632 NAPIF_STATE_IN_BUSY_POLL)) {
6633 if (prefer_busy_poll)
6634 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6637 if (cmpxchg(&napi->state, val,
6638 val | NAPIF_STATE_IN_BUSY_POLL |
6639 NAPIF_STATE_SCHED) != val) {
6640 if (prefer_busy_poll)
6641 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6644 have_poll_lock = netpoll_poll_lock(napi);
6645 napi_poll = napi->poll;
6647 work = napi_poll(napi, budget);
6648 trace_napi_poll(napi, work, budget);
6649 gro_normal_list(napi);
6652 __NET_ADD_STATS(dev_net(napi->dev),
6653 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6656 if (!loop_end || loop_end(loop_end_arg, start_time))
6659 if (unlikely(need_resched())) {
6661 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6665 if (loop_end(loop_end_arg, start_time))
6672 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6677 EXPORT_SYMBOL(napi_busy_loop);
6679 #endif /* CONFIG_NET_RX_BUSY_POLL */
6681 static void napi_hash_add(struct napi_struct *napi)
6683 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6686 spin_lock(&napi_hash_lock);
6688 /* 0..NR_CPUS range is reserved for sender_cpu use */
6690 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6691 napi_gen_id = MIN_NAPI_ID;
6692 } while (napi_by_id(napi_gen_id));
6693 napi->napi_id = napi_gen_id;
6695 hlist_add_head_rcu(&napi->napi_hash_node,
6696 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6698 spin_unlock(&napi_hash_lock);
6701 /* Warning : caller is responsible to make sure rcu grace period
6702 * is respected before freeing memory containing @napi
6704 static void napi_hash_del(struct napi_struct *napi)
6706 spin_lock(&napi_hash_lock);
6708 hlist_del_init_rcu(&napi->napi_hash_node);
6710 spin_unlock(&napi_hash_lock);
6713 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6715 struct napi_struct *napi;
6717 napi = container_of(timer, struct napi_struct, timer);
6719 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6720 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6722 if (!napi_disable_pending(napi) &&
6723 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6724 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6725 __napi_schedule_irqoff(napi);
6728 return HRTIMER_NORESTART;
6731 static void init_gro_hash(struct napi_struct *napi)
6735 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6736 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6737 napi->gro_hash[i].count = 0;
6739 napi->gro_bitmask = 0;
6742 int dev_set_threaded(struct net_device *dev, bool threaded)
6744 struct napi_struct *napi;
6747 if (dev->threaded == threaded)
6751 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6752 if (!napi->thread) {
6753 err = napi_kthread_create(napi);
6762 dev->threaded = threaded;
6764 /* Make sure kthread is created before THREADED bit
6767 smp_mb__before_atomic();
6769 /* Setting/unsetting threaded mode on a napi might not immediately
6770 * take effect, if the current napi instance is actively being
6771 * polled. In this case, the switch between threaded mode and
6772 * softirq mode will happen in the next round of napi_schedule().
6773 * This should not cause hiccups/stalls to the live traffic.
6775 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6777 set_bit(NAPI_STATE_THREADED, &napi->state);
6779 clear_bit(NAPI_STATE_THREADED, &napi->state);
6785 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6786 int (*poll)(struct napi_struct *, int), int weight)
6788 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6791 INIT_LIST_HEAD(&napi->poll_list);
6792 INIT_HLIST_NODE(&napi->napi_hash_node);
6793 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6794 napi->timer.function = napi_watchdog;
6795 init_gro_hash(napi);
6797 INIT_LIST_HEAD(&napi->rx_list);
6800 if (weight > NAPI_POLL_WEIGHT)
6801 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6803 napi->weight = weight;
6805 #ifdef CONFIG_NETPOLL
6806 napi->poll_owner = -1;
6808 set_bit(NAPI_STATE_SCHED, &napi->state);
6809 set_bit(NAPI_STATE_NPSVC, &napi->state);
6810 list_add_rcu(&napi->dev_list, &dev->napi_list);
6811 napi_hash_add(napi);
6812 /* Create kthread for this napi if dev->threaded is set.
6813 * Clear dev->threaded if kthread creation failed so that
6814 * threaded mode will not be enabled in napi_enable().
6816 if (dev->threaded && napi_kthread_create(napi))
6819 EXPORT_SYMBOL(netif_napi_add);
6821 void napi_disable(struct napi_struct *n)
6824 set_bit(NAPI_STATE_DISABLE, &n->state);
6826 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6828 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6831 hrtimer_cancel(&n->timer);
6833 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6834 clear_bit(NAPI_STATE_DISABLE, &n->state);
6835 clear_bit(NAPI_STATE_THREADED, &n->state);
6837 EXPORT_SYMBOL(napi_disable);
6840 * napi_enable - enable NAPI scheduling
6843 * Resume NAPI from being scheduled on this context.
6844 * Must be paired with napi_disable.
6846 void napi_enable(struct napi_struct *n)
6848 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6849 smp_mb__before_atomic();
6850 clear_bit(NAPI_STATE_SCHED, &n->state);
6851 clear_bit(NAPI_STATE_NPSVC, &n->state);
6852 if (n->dev->threaded && n->thread)
6853 set_bit(NAPI_STATE_THREADED, &n->state);
6855 EXPORT_SYMBOL(napi_enable);
6857 static void flush_gro_hash(struct napi_struct *napi)
6861 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6862 struct sk_buff *skb, *n;
6864 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6866 napi->gro_hash[i].count = 0;
6870 /* Must be called in process context */
6871 void __netif_napi_del(struct napi_struct *napi)
6873 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6876 napi_hash_del(napi);
6877 list_del_rcu(&napi->dev_list);
6878 napi_free_frags(napi);
6880 flush_gro_hash(napi);
6881 napi->gro_bitmask = 0;
6884 kthread_stop(napi->thread);
6885 napi->thread = NULL;
6888 EXPORT_SYMBOL(__netif_napi_del);
6890 static int __napi_poll(struct napi_struct *n, bool *repoll)
6896 /* This NAPI_STATE_SCHED test is for avoiding a race
6897 * with netpoll's poll_napi(). Only the entity which
6898 * obtains the lock and sees NAPI_STATE_SCHED set will
6899 * actually make the ->poll() call. Therefore we avoid
6900 * accidentally calling ->poll() when NAPI is not scheduled.
6903 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6904 work = n->poll(n, weight);
6905 trace_napi_poll(n, work, weight);
6908 if (unlikely(work > weight))
6909 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6910 n->poll, work, weight);
6912 if (likely(work < weight))
6915 /* Drivers must not modify the NAPI state if they
6916 * consume the entire weight. In such cases this code
6917 * still "owns" the NAPI instance and therefore can
6918 * move the instance around on the list at-will.
6920 if (unlikely(napi_disable_pending(n))) {
6925 /* The NAPI context has more processing work, but busy-polling
6926 * is preferred. Exit early.
6928 if (napi_prefer_busy_poll(n)) {
6929 if (napi_complete_done(n, work)) {
6930 /* If timeout is not set, we need to make sure
6931 * that the NAPI is re-scheduled.
6938 if (n->gro_bitmask) {
6939 /* flush too old packets
6940 * If HZ < 1000, flush all packets.
6942 napi_gro_flush(n, HZ >= 1000);
6947 /* Some drivers may have called napi_schedule
6948 * prior to exhausting their budget.
6950 if (unlikely(!list_empty(&n->poll_list))) {
6951 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6952 n->dev ? n->dev->name : "backlog");
6961 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6963 bool do_repoll = false;
6967 list_del_init(&n->poll_list);
6969 have = netpoll_poll_lock(n);
6971 work = __napi_poll(n, &do_repoll);
6974 list_add_tail(&n->poll_list, repoll);
6976 netpoll_poll_unlock(have);
6981 static int napi_thread_wait(struct napi_struct *napi)
6983 set_current_state(TASK_INTERRUPTIBLE);
6985 while (!kthread_should_stop() && !napi_disable_pending(napi)) {
6986 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
6987 WARN_ON(!list_empty(&napi->poll_list));
6988 __set_current_state(TASK_RUNNING);
6993 set_current_state(TASK_INTERRUPTIBLE);
6995 __set_current_state(TASK_RUNNING);
6999 static int napi_threaded_poll(void *data)
7001 struct napi_struct *napi = data;
7004 while (!napi_thread_wait(napi)) {
7006 bool repoll = false;
7010 have = netpoll_poll_lock(napi);
7011 __napi_poll(napi, &repoll);
7012 netpoll_poll_unlock(have);
7014 __kfree_skb_flush();
7026 static __latent_entropy void net_rx_action(struct softirq_action *h)
7028 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7029 unsigned long time_limit = jiffies +
7030 usecs_to_jiffies(netdev_budget_usecs);
7031 int budget = netdev_budget;
7035 local_irq_disable();
7036 list_splice_init(&sd->poll_list, &list);
7040 struct napi_struct *n;
7042 if (list_empty(&list)) {
7043 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7048 n = list_first_entry(&list, struct napi_struct, poll_list);
7049 budget -= napi_poll(n, &repoll);
7051 /* If softirq window is exhausted then punt.
7052 * Allow this to run for 2 jiffies since which will allow
7053 * an average latency of 1.5/HZ.
7055 if (unlikely(budget <= 0 ||
7056 time_after_eq(jiffies, time_limit))) {
7062 local_irq_disable();
7064 list_splice_tail_init(&sd->poll_list, &list);
7065 list_splice_tail(&repoll, &list);
7066 list_splice(&list, &sd->poll_list);
7067 if (!list_empty(&sd->poll_list))
7068 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7070 net_rps_action_and_irq_enable(sd);
7072 __kfree_skb_flush();
7075 struct netdev_adjacent {
7076 struct net_device *dev;
7078 /* upper master flag, there can only be one master device per list */
7081 /* lookup ignore flag */
7084 /* counter for the number of times this device was added to us */
7087 /* private field for the users */
7090 struct list_head list;
7091 struct rcu_head rcu;
7094 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7095 struct list_head *adj_list)
7097 struct netdev_adjacent *adj;
7099 list_for_each_entry(adj, adj_list, list) {
7100 if (adj->dev == adj_dev)
7106 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7107 struct netdev_nested_priv *priv)
7109 struct net_device *dev = (struct net_device *)priv->data;
7111 return upper_dev == dev;
7115 * netdev_has_upper_dev - Check if device is linked to an upper device
7117 * @upper_dev: upper device to check
7119 * Find out if a device is linked to specified upper device and return true
7120 * in case it is. Note that this checks only immediate upper device,
7121 * not through a complete stack of devices. The caller must hold the RTNL lock.
7123 bool netdev_has_upper_dev(struct net_device *dev,
7124 struct net_device *upper_dev)
7126 struct netdev_nested_priv priv = {
7127 .data = (void *)upper_dev,
7132 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7135 EXPORT_SYMBOL(netdev_has_upper_dev);
7138 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7140 * @upper_dev: upper device to check
7142 * Find out if a device is linked to specified upper device and return true
7143 * in case it is. Note that this checks the entire upper device chain.
7144 * The caller must hold rcu lock.
7147 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7148 struct net_device *upper_dev)
7150 struct netdev_nested_priv priv = {
7151 .data = (void *)upper_dev,
7154 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7157 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7160 * netdev_has_any_upper_dev - Check if device is linked to some device
7163 * Find out if a device is linked to an upper device and return true in case
7164 * it is. The caller must hold the RTNL lock.
7166 bool netdev_has_any_upper_dev(struct net_device *dev)
7170 return !list_empty(&dev->adj_list.upper);
7172 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7175 * netdev_master_upper_dev_get - Get master upper device
7178 * Find a master upper device and return pointer to it or NULL in case
7179 * it's not there. The caller must hold the RTNL lock.
7181 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7183 struct netdev_adjacent *upper;
7187 if (list_empty(&dev->adj_list.upper))
7190 upper = list_first_entry(&dev->adj_list.upper,
7191 struct netdev_adjacent, list);
7192 if (likely(upper->master))
7196 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7198 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7200 struct netdev_adjacent *upper;
7204 if (list_empty(&dev->adj_list.upper))
7207 upper = list_first_entry(&dev->adj_list.upper,
7208 struct netdev_adjacent, list);
7209 if (likely(upper->master) && !upper->ignore)
7215 * netdev_has_any_lower_dev - Check if device is linked to some device
7218 * Find out if a device is linked to a lower device and return true in case
7219 * it is. The caller must hold the RTNL lock.
7221 static bool netdev_has_any_lower_dev(struct net_device *dev)
7225 return !list_empty(&dev->adj_list.lower);
7228 void *netdev_adjacent_get_private(struct list_head *adj_list)
7230 struct netdev_adjacent *adj;
7232 adj = list_entry(adj_list, struct netdev_adjacent, list);
7234 return adj->private;
7236 EXPORT_SYMBOL(netdev_adjacent_get_private);
7239 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7241 * @iter: list_head ** of the current position
7243 * Gets the next device from the dev's upper list, starting from iter
7244 * position. The caller must hold RCU read lock.
7246 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7247 struct list_head **iter)
7249 struct netdev_adjacent *upper;
7251 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7253 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7255 if (&upper->list == &dev->adj_list.upper)
7258 *iter = &upper->list;
7262 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7264 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7265 struct list_head **iter,
7268 struct netdev_adjacent *upper;
7270 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7272 if (&upper->list == &dev->adj_list.upper)
7275 *iter = &upper->list;
7276 *ignore = upper->ignore;
7281 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7282 struct list_head **iter)
7284 struct netdev_adjacent *upper;
7286 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7288 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7290 if (&upper->list == &dev->adj_list.upper)
7293 *iter = &upper->list;
7298 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7299 int (*fn)(struct net_device *dev,
7300 struct netdev_nested_priv *priv),
7301 struct netdev_nested_priv *priv)
7303 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7304 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7309 iter = &dev->adj_list.upper;
7313 ret = fn(now, priv);
7320 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7327 niter = &udev->adj_list.upper;
7328 dev_stack[cur] = now;
7329 iter_stack[cur++] = iter;
7336 next = dev_stack[--cur];
7337 niter = iter_stack[cur];
7347 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7348 int (*fn)(struct net_device *dev,
7349 struct netdev_nested_priv *priv),
7350 struct netdev_nested_priv *priv)
7352 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7353 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7357 iter = &dev->adj_list.upper;
7361 ret = fn(now, priv);
7368 udev = netdev_next_upper_dev_rcu(now, &iter);
7373 niter = &udev->adj_list.upper;
7374 dev_stack[cur] = now;
7375 iter_stack[cur++] = iter;
7382 next = dev_stack[--cur];
7383 niter = iter_stack[cur];
7392 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7394 static bool __netdev_has_upper_dev(struct net_device *dev,
7395 struct net_device *upper_dev)
7397 struct netdev_nested_priv priv = {
7399 .data = (void *)upper_dev,
7404 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7409 * netdev_lower_get_next_private - Get the next ->private from the
7410 * lower neighbour list
7412 * @iter: list_head ** of the current position
7414 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7415 * list, starting from iter position. The caller must hold either hold the
7416 * RTNL lock or its own locking that guarantees that the neighbour lower
7417 * list will remain unchanged.
7419 void *netdev_lower_get_next_private(struct net_device *dev,
7420 struct list_head **iter)
7422 struct netdev_adjacent *lower;
7424 lower = list_entry(*iter, struct netdev_adjacent, list);
7426 if (&lower->list == &dev->adj_list.lower)
7429 *iter = lower->list.next;
7431 return lower->private;
7433 EXPORT_SYMBOL(netdev_lower_get_next_private);
7436 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7437 * lower neighbour list, RCU
7440 * @iter: list_head ** of the current position
7442 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7443 * list, starting from iter position. The caller must hold RCU read lock.
7445 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7446 struct list_head **iter)
7448 struct netdev_adjacent *lower;
7450 WARN_ON_ONCE(!rcu_read_lock_held());
7452 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7454 if (&lower->list == &dev->adj_list.lower)
7457 *iter = &lower->list;
7459 return lower->private;
7461 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7464 * netdev_lower_get_next - Get the next device from the lower neighbour
7467 * @iter: list_head ** of the current position
7469 * Gets the next netdev_adjacent from the dev's lower neighbour
7470 * list, starting from iter position. The caller must hold RTNL lock or
7471 * its own locking that guarantees that the neighbour lower
7472 * list will remain unchanged.
7474 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7476 struct netdev_adjacent *lower;
7478 lower = list_entry(*iter, struct netdev_adjacent, list);
7480 if (&lower->list == &dev->adj_list.lower)
7483 *iter = lower->list.next;
7487 EXPORT_SYMBOL(netdev_lower_get_next);
7489 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7490 struct list_head **iter)
7492 struct netdev_adjacent *lower;
7494 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7496 if (&lower->list == &dev->adj_list.lower)
7499 *iter = &lower->list;
7504 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7505 struct list_head **iter,
7508 struct netdev_adjacent *lower;
7510 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7512 if (&lower->list == &dev->adj_list.lower)
7515 *iter = &lower->list;
7516 *ignore = lower->ignore;
7521 int netdev_walk_all_lower_dev(struct net_device *dev,
7522 int (*fn)(struct net_device *dev,
7523 struct netdev_nested_priv *priv),
7524 struct netdev_nested_priv *priv)
7526 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7527 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7531 iter = &dev->adj_list.lower;
7535 ret = fn(now, priv);
7542 ldev = netdev_next_lower_dev(now, &iter);
7547 niter = &ldev->adj_list.lower;
7548 dev_stack[cur] = now;
7549 iter_stack[cur++] = iter;
7556 next = dev_stack[--cur];
7557 niter = iter_stack[cur];
7566 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7568 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7569 int (*fn)(struct net_device *dev,
7570 struct netdev_nested_priv *priv),
7571 struct netdev_nested_priv *priv)
7573 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7574 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7579 iter = &dev->adj_list.lower;
7583 ret = fn(now, priv);
7590 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7597 niter = &ldev->adj_list.lower;
7598 dev_stack[cur] = now;
7599 iter_stack[cur++] = iter;
7606 next = dev_stack[--cur];
7607 niter = iter_stack[cur];
7617 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7618 struct list_head **iter)
7620 struct netdev_adjacent *lower;
7622 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7623 if (&lower->list == &dev->adj_list.lower)
7626 *iter = &lower->list;
7630 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7632 static u8 __netdev_upper_depth(struct net_device *dev)
7634 struct net_device *udev;
7635 struct list_head *iter;
7639 for (iter = &dev->adj_list.upper,
7640 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7642 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7645 if (max_depth < udev->upper_level)
7646 max_depth = udev->upper_level;
7652 static u8 __netdev_lower_depth(struct net_device *dev)
7654 struct net_device *ldev;
7655 struct list_head *iter;
7659 for (iter = &dev->adj_list.lower,
7660 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7662 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7665 if (max_depth < ldev->lower_level)
7666 max_depth = ldev->lower_level;
7672 static int __netdev_update_upper_level(struct net_device *dev,
7673 struct netdev_nested_priv *__unused)
7675 dev->upper_level = __netdev_upper_depth(dev) + 1;
7679 static int __netdev_update_lower_level(struct net_device *dev,
7680 struct netdev_nested_priv *priv)
7682 dev->lower_level = __netdev_lower_depth(dev) + 1;
7684 #ifdef CONFIG_LOCKDEP
7688 if (priv->flags & NESTED_SYNC_IMM)
7689 dev->nested_level = dev->lower_level - 1;
7690 if (priv->flags & NESTED_SYNC_TODO)
7691 net_unlink_todo(dev);
7696 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7697 int (*fn)(struct net_device *dev,
7698 struct netdev_nested_priv *priv),
7699 struct netdev_nested_priv *priv)
7701 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7702 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7706 iter = &dev->adj_list.lower;
7710 ret = fn(now, priv);
7717 ldev = netdev_next_lower_dev_rcu(now, &iter);
7722 niter = &ldev->adj_list.lower;
7723 dev_stack[cur] = now;
7724 iter_stack[cur++] = iter;
7731 next = dev_stack[--cur];
7732 niter = iter_stack[cur];
7741 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7744 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7745 * lower neighbour list, RCU
7749 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7750 * list. The caller must hold RCU read lock.
7752 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7754 struct netdev_adjacent *lower;
7756 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7757 struct netdev_adjacent, list);
7759 return lower->private;
7762 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7765 * netdev_master_upper_dev_get_rcu - Get master upper device
7768 * Find a master upper device and return pointer to it or NULL in case
7769 * it's not there. The caller must hold the RCU read lock.
7771 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7773 struct netdev_adjacent *upper;
7775 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7776 struct netdev_adjacent, list);
7777 if (upper && likely(upper->master))
7781 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7783 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7784 struct net_device *adj_dev,
7785 struct list_head *dev_list)
7787 char linkname[IFNAMSIZ+7];
7789 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7790 "upper_%s" : "lower_%s", adj_dev->name);
7791 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7794 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7796 struct list_head *dev_list)
7798 char linkname[IFNAMSIZ+7];
7800 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7801 "upper_%s" : "lower_%s", name);
7802 sysfs_remove_link(&(dev->dev.kobj), linkname);
7805 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7806 struct net_device *adj_dev,
7807 struct list_head *dev_list)
7809 return (dev_list == &dev->adj_list.upper ||
7810 dev_list == &dev->adj_list.lower) &&
7811 net_eq(dev_net(dev), dev_net(adj_dev));
7814 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7815 struct net_device *adj_dev,
7816 struct list_head *dev_list,
7817 void *private, bool master)
7819 struct netdev_adjacent *adj;
7822 adj = __netdev_find_adj(adj_dev, dev_list);
7826 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7827 dev->name, adj_dev->name, adj->ref_nr);
7832 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7837 adj->master = master;
7839 adj->private = private;
7840 adj->ignore = false;
7843 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7844 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7846 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7847 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7852 /* Ensure that master link is always the first item in list. */
7854 ret = sysfs_create_link(&(dev->dev.kobj),
7855 &(adj_dev->dev.kobj), "master");
7857 goto remove_symlinks;
7859 list_add_rcu(&adj->list, dev_list);
7861 list_add_tail_rcu(&adj->list, dev_list);
7867 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7868 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7876 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7877 struct net_device *adj_dev,
7879 struct list_head *dev_list)
7881 struct netdev_adjacent *adj;
7883 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7884 dev->name, adj_dev->name, ref_nr);
7886 adj = __netdev_find_adj(adj_dev, dev_list);
7889 pr_err("Adjacency does not exist for device %s from %s\n",
7890 dev->name, adj_dev->name);
7895 if (adj->ref_nr > ref_nr) {
7896 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7897 dev->name, adj_dev->name, ref_nr,
7898 adj->ref_nr - ref_nr);
7899 adj->ref_nr -= ref_nr;
7904 sysfs_remove_link(&(dev->dev.kobj), "master");
7906 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7907 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7909 list_del_rcu(&adj->list);
7910 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7911 adj_dev->name, dev->name, adj_dev->name);
7913 kfree_rcu(adj, rcu);
7916 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7917 struct net_device *upper_dev,
7918 struct list_head *up_list,
7919 struct list_head *down_list,
7920 void *private, bool master)
7924 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7929 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7932 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7939 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7940 struct net_device *upper_dev,
7942 struct list_head *up_list,
7943 struct list_head *down_list)
7945 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7946 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7949 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7950 struct net_device *upper_dev,
7951 void *private, bool master)
7953 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7954 &dev->adj_list.upper,
7955 &upper_dev->adj_list.lower,
7959 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7960 struct net_device *upper_dev)
7962 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7963 &dev->adj_list.upper,
7964 &upper_dev->adj_list.lower);
7967 static int __netdev_upper_dev_link(struct net_device *dev,
7968 struct net_device *upper_dev, bool master,
7969 void *upper_priv, void *upper_info,
7970 struct netdev_nested_priv *priv,
7971 struct netlink_ext_ack *extack)
7973 struct netdev_notifier_changeupper_info changeupper_info = {
7978 .upper_dev = upper_dev,
7981 .upper_info = upper_info,
7983 struct net_device *master_dev;
7988 if (dev == upper_dev)
7991 /* To prevent loops, check if dev is not upper device to upper_dev. */
7992 if (__netdev_has_upper_dev(upper_dev, dev))
7995 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7999 if (__netdev_has_upper_dev(dev, upper_dev))
8002 master_dev = __netdev_master_upper_dev_get(dev);
8004 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8007 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8008 &changeupper_info.info);
8009 ret = notifier_to_errno(ret);
8013 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8018 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8019 &changeupper_info.info);
8020 ret = notifier_to_errno(ret);
8024 __netdev_update_upper_level(dev, NULL);
8025 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8027 __netdev_update_lower_level(upper_dev, priv);
8028 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8034 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8040 * netdev_upper_dev_link - Add a link to the upper device
8042 * @upper_dev: new upper device
8043 * @extack: netlink extended ack
8045 * Adds a link to device which is upper to this one. The caller must hold
8046 * the RTNL lock. On a failure a negative errno code is returned.
8047 * On success the reference counts are adjusted and the function
8050 int netdev_upper_dev_link(struct net_device *dev,
8051 struct net_device *upper_dev,
8052 struct netlink_ext_ack *extack)
8054 struct netdev_nested_priv priv = {
8055 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8059 return __netdev_upper_dev_link(dev, upper_dev, false,
8060 NULL, NULL, &priv, extack);
8062 EXPORT_SYMBOL(netdev_upper_dev_link);
8065 * netdev_master_upper_dev_link - Add a master link to the upper device
8067 * @upper_dev: new upper device
8068 * @upper_priv: upper device private
8069 * @upper_info: upper info to be passed down via notifier
8070 * @extack: netlink extended ack
8072 * Adds a link to device which is upper to this one. In this case, only
8073 * one master upper device can be linked, although other non-master devices
8074 * might be linked as well. The caller must hold the RTNL lock.
8075 * On a failure a negative errno code is returned. On success the reference
8076 * counts are adjusted and the function returns zero.
8078 int netdev_master_upper_dev_link(struct net_device *dev,
8079 struct net_device *upper_dev,
8080 void *upper_priv, void *upper_info,
8081 struct netlink_ext_ack *extack)
8083 struct netdev_nested_priv priv = {
8084 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8088 return __netdev_upper_dev_link(dev, upper_dev, true,
8089 upper_priv, upper_info, &priv, extack);
8091 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8093 static void __netdev_upper_dev_unlink(struct net_device *dev,
8094 struct net_device *upper_dev,
8095 struct netdev_nested_priv *priv)
8097 struct netdev_notifier_changeupper_info changeupper_info = {
8101 .upper_dev = upper_dev,
8107 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8109 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8110 &changeupper_info.info);
8112 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8114 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8115 &changeupper_info.info);
8117 __netdev_update_upper_level(dev, NULL);
8118 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8120 __netdev_update_lower_level(upper_dev, priv);
8121 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8126 * netdev_upper_dev_unlink - Removes a link to upper device
8128 * @upper_dev: new upper device
8130 * Removes a link to device which is upper to this one. The caller must hold
8133 void netdev_upper_dev_unlink(struct net_device *dev,
8134 struct net_device *upper_dev)
8136 struct netdev_nested_priv priv = {
8137 .flags = NESTED_SYNC_TODO,
8141 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8143 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8145 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8146 struct net_device *lower_dev,
8149 struct netdev_adjacent *adj;
8151 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8155 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8160 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8161 struct net_device *lower_dev)
8163 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8166 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8167 struct net_device *lower_dev)
8169 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8172 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8173 struct net_device *new_dev,
8174 struct net_device *dev,
8175 struct netlink_ext_ack *extack)
8177 struct netdev_nested_priv priv = {
8186 if (old_dev && new_dev != old_dev)
8187 netdev_adjacent_dev_disable(dev, old_dev);
8188 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8191 if (old_dev && new_dev != old_dev)
8192 netdev_adjacent_dev_enable(dev, old_dev);
8198 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8200 void netdev_adjacent_change_commit(struct net_device *old_dev,
8201 struct net_device *new_dev,
8202 struct net_device *dev)
8204 struct netdev_nested_priv priv = {
8205 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8209 if (!new_dev || !old_dev)
8212 if (new_dev == old_dev)
8215 netdev_adjacent_dev_enable(dev, old_dev);
8216 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8218 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8220 void netdev_adjacent_change_abort(struct net_device *old_dev,
8221 struct net_device *new_dev,
8222 struct net_device *dev)
8224 struct netdev_nested_priv priv = {
8232 if (old_dev && new_dev != old_dev)
8233 netdev_adjacent_dev_enable(dev, old_dev);
8235 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8237 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8240 * netdev_bonding_info_change - Dispatch event about slave change
8242 * @bonding_info: info to dispatch
8244 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8245 * The caller must hold the RTNL lock.
8247 void netdev_bonding_info_change(struct net_device *dev,
8248 struct netdev_bonding_info *bonding_info)
8250 struct netdev_notifier_bonding_info info = {
8254 memcpy(&info.bonding_info, bonding_info,
8255 sizeof(struct netdev_bonding_info));
8256 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8259 EXPORT_SYMBOL(netdev_bonding_info_change);
8262 * netdev_get_xmit_slave - Get the xmit slave of master device
8265 * @all_slaves: assume all the slaves are active
8267 * The reference counters are not incremented so the caller must be
8268 * careful with locks. The caller must hold RCU lock.
8269 * %NULL is returned if no slave is found.
8272 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8273 struct sk_buff *skb,
8276 const struct net_device_ops *ops = dev->netdev_ops;
8278 if (!ops->ndo_get_xmit_slave)
8280 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8282 EXPORT_SYMBOL(netdev_get_xmit_slave);
8284 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8287 const struct net_device_ops *ops = dev->netdev_ops;
8289 if (!ops->ndo_sk_get_lower_dev)
8291 return ops->ndo_sk_get_lower_dev(dev, sk);
8295 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8299 * %NULL is returned if no lower device is found.
8302 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8305 struct net_device *lower;
8307 lower = netdev_sk_get_lower_dev(dev, sk);
8310 lower = netdev_sk_get_lower_dev(dev, sk);
8315 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8317 static void netdev_adjacent_add_links(struct net_device *dev)
8319 struct netdev_adjacent *iter;
8321 struct net *net = dev_net(dev);
8323 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8324 if (!net_eq(net, dev_net(iter->dev)))
8326 netdev_adjacent_sysfs_add(iter->dev, dev,
8327 &iter->dev->adj_list.lower);
8328 netdev_adjacent_sysfs_add(dev, iter->dev,
8329 &dev->adj_list.upper);
8332 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8333 if (!net_eq(net, dev_net(iter->dev)))
8335 netdev_adjacent_sysfs_add(iter->dev, dev,
8336 &iter->dev->adj_list.upper);
8337 netdev_adjacent_sysfs_add(dev, iter->dev,
8338 &dev->adj_list.lower);
8342 static void netdev_adjacent_del_links(struct net_device *dev)
8344 struct netdev_adjacent *iter;
8346 struct net *net = dev_net(dev);
8348 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8349 if (!net_eq(net, dev_net(iter->dev)))
8351 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8352 &iter->dev->adj_list.lower);
8353 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8354 &dev->adj_list.upper);
8357 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8358 if (!net_eq(net, dev_net(iter->dev)))
8360 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8361 &iter->dev->adj_list.upper);
8362 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8363 &dev->adj_list.lower);
8367 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8369 struct netdev_adjacent *iter;
8371 struct net *net = dev_net(dev);
8373 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8374 if (!net_eq(net, dev_net(iter->dev)))
8376 netdev_adjacent_sysfs_del(iter->dev, oldname,
8377 &iter->dev->adj_list.lower);
8378 netdev_adjacent_sysfs_add(iter->dev, dev,
8379 &iter->dev->adj_list.lower);
8382 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8383 if (!net_eq(net, dev_net(iter->dev)))
8385 netdev_adjacent_sysfs_del(iter->dev, oldname,
8386 &iter->dev->adj_list.upper);
8387 netdev_adjacent_sysfs_add(iter->dev, dev,
8388 &iter->dev->adj_list.upper);
8392 void *netdev_lower_dev_get_private(struct net_device *dev,
8393 struct net_device *lower_dev)
8395 struct netdev_adjacent *lower;
8399 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8403 return lower->private;
8405 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8409 * netdev_lower_state_changed - Dispatch event about lower device state change
8410 * @lower_dev: device
8411 * @lower_state_info: state to dispatch
8413 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8414 * The caller must hold the RTNL lock.
8416 void netdev_lower_state_changed(struct net_device *lower_dev,
8417 void *lower_state_info)
8419 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8420 .info.dev = lower_dev,
8424 changelowerstate_info.lower_state_info = lower_state_info;
8425 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8426 &changelowerstate_info.info);
8428 EXPORT_SYMBOL(netdev_lower_state_changed);
8430 static void dev_change_rx_flags(struct net_device *dev, int flags)
8432 const struct net_device_ops *ops = dev->netdev_ops;
8434 if (ops->ndo_change_rx_flags)
8435 ops->ndo_change_rx_flags(dev, flags);
8438 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8440 unsigned int old_flags = dev->flags;
8446 dev->flags |= IFF_PROMISC;
8447 dev->promiscuity += inc;
8448 if (dev->promiscuity == 0) {
8451 * If inc causes overflow, untouch promisc and return error.
8454 dev->flags &= ~IFF_PROMISC;
8456 dev->promiscuity -= inc;
8457 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8462 if (dev->flags != old_flags) {
8463 pr_info("device %s %s promiscuous mode\n",
8465 dev->flags & IFF_PROMISC ? "entered" : "left");
8466 if (audit_enabled) {
8467 current_uid_gid(&uid, &gid);
8468 audit_log(audit_context(), GFP_ATOMIC,
8469 AUDIT_ANOM_PROMISCUOUS,
8470 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8471 dev->name, (dev->flags & IFF_PROMISC),
8472 (old_flags & IFF_PROMISC),
8473 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8474 from_kuid(&init_user_ns, uid),
8475 from_kgid(&init_user_ns, gid),
8476 audit_get_sessionid(current));
8479 dev_change_rx_flags(dev, IFF_PROMISC);
8482 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8487 * dev_set_promiscuity - update promiscuity count on a device
8491 * Add or remove promiscuity from a device. While the count in the device
8492 * remains above zero the interface remains promiscuous. Once it hits zero
8493 * the device reverts back to normal filtering operation. A negative inc
8494 * value is used to drop promiscuity on the device.
8495 * Return 0 if successful or a negative errno code on error.
8497 int dev_set_promiscuity(struct net_device *dev, int inc)
8499 unsigned int old_flags = dev->flags;
8502 err = __dev_set_promiscuity(dev, inc, true);
8505 if (dev->flags != old_flags)
8506 dev_set_rx_mode(dev);
8509 EXPORT_SYMBOL(dev_set_promiscuity);
8511 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8513 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8517 dev->flags |= IFF_ALLMULTI;
8518 dev->allmulti += inc;
8519 if (dev->allmulti == 0) {
8522 * If inc causes overflow, untouch allmulti and return error.
8525 dev->flags &= ~IFF_ALLMULTI;
8527 dev->allmulti -= inc;
8528 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8533 if (dev->flags ^ old_flags) {
8534 dev_change_rx_flags(dev, IFF_ALLMULTI);
8535 dev_set_rx_mode(dev);
8537 __dev_notify_flags(dev, old_flags,
8538 dev->gflags ^ old_gflags);
8544 * dev_set_allmulti - update allmulti count on a device
8548 * Add or remove reception of all multicast frames to a device. While the
8549 * count in the device remains above zero the interface remains listening
8550 * to all interfaces. Once it hits zero the device reverts back to normal
8551 * filtering operation. A negative @inc value is used to drop the counter
8552 * when releasing a resource needing all multicasts.
8553 * Return 0 if successful or a negative errno code on error.
8556 int dev_set_allmulti(struct net_device *dev, int inc)
8558 return __dev_set_allmulti(dev, inc, true);
8560 EXPORT_SYMBOL(dev_set_allmulti);
8563 * Upload unicast and multicast address lists to device and
8564 * configure RX filtering. When the device doesn't support unicast
8565 * filtering it is put in promiscuous mode while unicast addresses
8568 void __dev_set_rx_mode(struct net_device *dev)
8570 const struct net_device_ops *ops = dev->netdev_ops;
8572 /* dev_open will call this function so the list will stay sane. */
8573 if (!(dev->flags&IFF_UP))
8576 if (!netif_device_present(dev))
8579 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8580 /* Unicast addresses changes may only happen under the rtnl,
8581 * therefore calling __dev_set_promiscuity here is safe.
8583 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8584 __dev_set_promiscuity(dev, 1, false);
8585 dev->uc_promisc = true;
8586 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8587 __dev_set_promiscuity(dev, -1, false);
8588 dev->uc_promisc = false;
8592 if (ops->ndo_set_rx_mode)
8593 ops->ndo_set_rx_mode(dev);
8596 void dev_set_rx_mode(struct net_device *dev)
8598 netif_addr_lock_bh(dev);
8599 __dev_set_rx_mode(dev);
8600 netif_addr_unlock_bh(dev);
8604 * dev_get_flags - get flags reported to userspace
8607 * Get the combination of flag bits exported through APIs to userspace.
8609 unsigned int dev_get_flags(const struct net_device *dev)
8613 flags = (dev->flags & ~(IFF_PROMISC |
8618 (dev->gflags & (IFF_PROMISC |
8621 if (netif_running(dev)) {
8622 if (netif_oper_up(dev))
8623 flags |= IFF_RUNNING;
8624 if (netif_carrier_ok(dev))
8625 flags |= IFF_LOWER_UP;
8626 if (netif_dormant(dev))
8627 flags |= IFF_DORMANT;
8632 EXPORT_SYMBOL(dev_get_flags);
8634 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8635 struct netlink_ext_ack *extack)
8637 unsigned int old_flags = dev->flags;
8643 * Set the flags on our device.
8646 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8647 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8649 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8653 * Load in the correct multicast list now the flags have changed.
8656 if ((old_flags ^ flags) & IFF_MULTICAST)
8657 dev_change_rx_flags(dev, IFF_MULTICAST);
8659 dev_set_rx_mode(dev);
8662 * Have we downed the interface. We handle IFF_UP ourselves
8663 * according to user attempts to set it, rather than blindly
8668 if ((old_flags ^ flags) & IFF_UP) {
8669 if (old_flags & IFF_UP)
8672 ret = __dev_open(dev, extack);
8675 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8676 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8677 unsigned int old_flags = dev->flags;
8679 dev->gflags ^= IFF_PROMISC;
8681 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8682 if (dev->flags != old_flags)
8683 dev_set_rx_mode(dev);
8686 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8687 * is important. Some (broken) drivers set IFF_PROMISC, when
8688 * IFF_ALLMULTI is requested not asking us and not reporting.
8690 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8691 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8693 dev->gflags ^= IFF_ALLMULTI;
8694 __dev_set_allmulti(dev, inc, false);
8700 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8701 unsigned int gchanges)
8703 unsigned int changes = dev->flags ^ old_flags;
8706 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8708 if (changes & IFF_UP) {
8709 if (dev->flags & IFF_UP)
8710 call_netdevice_notifiers(NETDEV_UP, dev);
8712 call_netdevice_notifiers(NETDEV_DOWN, dev);
8715 if (dev->flags & IFF_UP &&
8716 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8717 struct netdev_notifier_change_info change_info = {
8721 .flags_changed = changes,
8724 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8729 * dev_change_flags - change device settings
8731 * @flags: device state flags
8732 * @extack: netlink extended ack
8734 * Change settings on device based state flags. The flags are
8735 * in the userspace exported format.
8737 int dev_change_flags(struct net_device *dev, unsigned int flags,
8738 struct netlink_ext_ack *extack)
8741 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8743 ret = __dev_change_flags(dev, flags, extack);
8747 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8748 __dev_notify_flags(dev, old_flags, changes);
8751 EXPORT_SYMBOL(dev_change_flags);
8753 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8755 const struct net_device_ops *ops = dev->netdev_ops;
8757 if (ops->ndo_change_mtu)
8758 return ops->ndo_change_mtu(dev, new_mtu);
8760 /* Pairs with all the lockless reads of dev->mtu in the stack */
8761 WRITE_ONCE(dev->mtu, new_mtu);
8764 EXPORT_SYMBOL(__dev_set_mtu);
8766 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8767 struct netlink_ext_ack *extack)
8769 /* MTU must be positive, and in range */
8770 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8771 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8775 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8776 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8783 * dev_set_mtu_ext - Change maximum transfer unit
8785 * @new_mtu: new transfer unit
8786 * @extack: netlink extended ack
8788 * Change the maximum transfer size of the network device.
8790 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8791 struct netlink_ext_ack *extack)
8795 if (new_mtu == dev->mtu)
8798 err = dev_validate_mtu(dev, new_mtu, extack);
8802 if (!netif_device_present(dev))
8805 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8806 err = notifier_to_errno(err);
8810 orig_mtu = dev->mtu;
8811 err = __dev_set_mtu(dev, new_mtu);
8814 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8816 err = notifier_to_errno(err);
8818 /* setting mtu back and notifying everyone again,
8819 * so that they have a chance to revert changes.
8821 __dev_set_mtu(dev, orig_mtu);
8822 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8829 int dev_set_mtu(struct net_device *dev, int new_mtu)
8831 struct netlink_ext_ack extack;
8834 memset(&extack, 0, sizeof(extack));
8835 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8836 if (err && extack._msg)
8837 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8840 EXPORT_SYMBOL(dev_set_mtu);
8843 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8845 * @new_len: new tx queue length
8847 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8849 unsigned int orig_len = dev->tx_queue_len;
8852 if (new_len != (unsigned int)new_len)
8855 if (new_len != orig_len) {
8856 dev->tx_queue_len = new_len;
8857 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8858 res = notifier_to_errno(res);
8861 res = dev_qdisc_change_tx_queue_len(dev);
8869 netdev_err(dev, "refused to change device tx_queue_len\n");
8870 dev->tx_queue_len = orig_len;
8875 * dev_set_group - Change group this device belongs to
8877 * @new_group: group this device should belong to
8879 void dev_set_group(struct net_device *dev, int new_group)
8881 dev->group = new_group;
8883 EXPORT_SYMBOL(dev_set_group);
8886 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8888 * @addr: new address
8889 * @extack: netlink extended ack
8891 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8892 struct netlink_ext_ack *extack)
8894 struct netdev_notifier_pre_changeaddr_info info = {
8896 .info.extack = extack,
8901 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8902 return notifier_to_errno(rc);
8904 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8907 * dev_set_mac_address - Change Media Access Control Address
8910 * @extack: netlink extended ack
8912 * Change the hardware (MAC) address of the device
8914 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8915 struct netlink_ext_ack *extack)
8917 const struct net_device_ops *ops = dev->netdev_ops;
8920 if (!ops->ndo_set_mac_address)
8922 if (sa->sa_family != dev->type)
8924 if (!netif_device_present(dev))
8926 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8929 err = ops->ndo_set_mac_address(dev, sa);
8932 dev->addr_assign_type = NET_ADDR_SET;
8933 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8934 add_device_randomness(dev->dev_addr, dev->addr_len);
8937 EXPORT_SYMBOL(dev_set_mac_address);
8940 * dev_change_carrier - Change device carrier
8942 * @new_carrier: new value
8944 * Change device carrier
8946 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8948 const struct net_device_ops *ops = dev->netdev_ops;
8950 if (!ops->ndo_change_carrier)
8952 if (!netif_device_present(dev))
8954 return ops->ndo_change_carrier(dev, new_carrier);
8956 EXPORT_SYMBOL(dev_change_carrier);
8959 * dev_get_phys_port_id - Get device physical port ID
8963 * Get device physical port ID
8965 int dev_get_phys_port_id(struct net_device *dev,
8966 struct netdev_phys_item_id *ppid)
8968 const struct net_device_ops *ops = dev->netdev_ops;
8970 if (!ops->ndo_get_phys_port_id)
8972 return ops->ndo_get_phys_port_id(dev, ppid);
8974 EXPORT_SYMBOL(dev_get_phys_port_id);
8977 * dev_get_phys_port_name - Get device physical port name
8980 * @len: limit of bytes to copy to name
8982 * Get device physical port name
8984 int dev_get_phys_port_name(struct net_device *dev,
8985 char *name, size_t len)
8987 const struct net_device_ops *ops = dev->netdev_ops;
8990 if (ops->ndo_get_phys_port_name) {
8991 err = ops->ndo_get_phys_port_name(dev, name, len);
8992 if (err != -EOPNOTSUPP)
8995 return devlink_compat_phys_port_name_get(dev, name, len);
8997 EXPORT_SYMBOL(dev_get_phys_port_name);
9000 * dev_get_port_parent_id - Get the device's port parent identifier
9001 * @dev: network device
9002 * @ppid: pointer to a storage for the port's parent identifier
9003 * @recurse: allow/disallow recursion to lower devices
9005 * Get the devices's port parent identifier
9007 int dev_get_port_parent_id(struct net_device *dev,
9008 struct netdev_phys_item_id *ppid,
9011 const struct net_device_ops *ops = dev->netdev_ops;
9012 struct netdev_phys_item_id first = { };
9013 struct net_device *lower_dev;
9014 struct list_head *iter;
9017 if (ops->ndo_get_port_parent_id) {
9018 err = ops->ndo_get_port_parent_id(dev, ppid);
9019 if (err != -EOPNOTSUPP)
9023 err = devlink_compat_switch_id_get(dev, ppid);
9024 if (!err || err != -EOPNOTSUPP)
9030 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9031 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9036 else if (memcmp(&first, ppid, sizeof(*ppid)))
9042 EXPORT_SYMBOL(dev_get_port_parent_id);
9045 * netdev_port_same_parent_id - Indicate if two network devices have
9046 * the same port parent identifier
9047 * @a: first network device
9048 * @b: second network device
9050 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9052 struct netdev_phys_item_id a_id = { };
9053 struct netdev_phys_item_id b_id = { };
9055 if (dev_get_port_parent_id(a, &a_id, true) ||
9056 dev_get_port_parent_id(b, &b_id, true))
9059 return netdev_phys_item_id_same(&a_id, &b_id);
9061 EXPORT_SYMBOL(netdev_port_same_parent_id);
9064 * dev_change_proto_down - update protocol port state information
9066 * @proto_down: new value
9068 * This info can be used by switch drivers to set the phys state of the
9071 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9073 const struct net_device_ops *ops = dev->netdev_ops;
9075 if (!ops->ndo_change_proto_down)
9077 if (!netif_device_present(dev))
9079 return ops->ndo_change_proto_down(dev, proto_down);
9081 EXPORT_SYMBOL(dev_change_proto_down);
9084 * dev_change_proto_down_generic - generic implementation for
9085 * ndo_change_proto_down that sets carrier according to
9089 * @proto_down: new value
9091 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9094 netif_carrier_off(dev);
9096 netif_carrier_on(dev);
9097 dev->proto_down = proto_down;
9100 EXPORT_SYMBOL(dev_change_proto_down_generic);
9103 * dev_change_proto_down_reason - proto down reason
9106 * @mask: proto down mask
9107 * @value: proto down value
9109 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9115 dev->proto_down_reason = value;
9117 for_each_set_bit(b, &mask, 32) {
9118 if (value & (1 << b))
9119 dev->proto_down_reason |= BIT(b);
9121 dev->proto_down_reason &= ~BIT(b);
9125 EXPORT_SYMBOL(dev_change_proto_down_reason);
9127 struct bpf_xdp_link {
9128 struct bpf_link link;
9129 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9133 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9135 if (flags & XDP_FLAGS_HW_MODE)
9137 if (flags & XDP_FLAGS_DRV_MODE)
9138 return XDP_MODE_DRV;
9139 if (flags & XDP_FLAGS_SKB_MODE)
9140 return XDP_MODE_SKB;
9141 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9144 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9148 return generic_xdp_install;
9151 return dev->netdev_ops->ndo_bpf;
9157 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9158 enum bpf_xdp_mode mode)
9160 return dev->xdp_state[mode].link;
9163 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9164 enum bpf_xdp_mode mode)
9166 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9169 return link->link.prog;
9170 return dev->xdp_state[mode].prog;
9173 static u8 dev_xdp_prog_count(struct net_device *dev)
9178 for (i = 0; i < __MAX_XDP_MODE; i++)
9179 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9184 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9186 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9188 return prog ? prog->aux->id : 0;
9191 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9192 struct bpf_xdp_link *link)
9194 dev->xdp_state[mode].link = link;
9195 dev->xdp_state[mode].prog = NULL;
9198 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9199 struct bpf_prog *prog)
9201 dev->xdp_state[mode].link = NULL;
9202 dev->xdp_state[mode].prog = prog;
9205 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9206 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9207 u32 flags, struct bpf_prog *prog)
9209 struct netdev_bpf xdp;
9212 memset(&xdp, 0, sizeof(xdp));
9213 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9214 xdp.extack = extack;
9218 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9219 * "moved" into driver), so they don't increment it on their own, but
9220 * they do decrement refcnt when program is detached or replaced.
9221 * Given net_device also owns link/prog, we need to bump refcnt here
9222 * to prevent drivers from underflowing it.
9226 err = bpf_op(dev, &xdp);
9233 if (mode != XDP_MODE_HW)
9234 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9239 static void dev_xdp_uninstall(struct net_device *dev)
9241 struct bpf_xdp_link *link;
9242 struct bpf_prog *prog;
9243 enum bpf_xdp_mode mode;
9248 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9249 prog = dev_xdp_prog(dev, mode);
9253 bpf_op = dev_xdp_bpf_op(dev, mode);
9257 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9259 /* auto-detach link from net device */
9260 link = dev_xdp_link(dev, mode);
9266 dev_xdp_set_link(dev, mode, NULL);
9270 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9271 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9272 struct bpf_prog *old_prog, u32 flags)
9274 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9275 struct bpf_prog *cur_prog;
9276 enum bpf_xdp_mode mode;
9282 /* either link or prog attachment, never both */
9283 if (link && (new_prog || old_prog))
9285 /* link supports only XDP mode flags */
9286 if (link && (flags & ~XDP_FLAGS_MODES)) {
9287 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9290 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9291 if (num_modes > 1) {
9292 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9295 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9296 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9297 NL_SET_ERR_MSG(extack,
9298 "More than one program loaded, unset mode is ambiguous");
9301 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9302 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9303 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9307 mode = dev_xdp_mode(dev, flags);
9308 /* can't replace attached link */
9309 if (dev_xdp_link(dev, mode)) {
9310 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9314 cur_prog = dev_xdp_prog(dev, mode);
9315 /* can't replace attached prog with link */
9316 if (link && cur_prog) {
9317 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9320 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9321 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9325 /* put effective new program into new_prog */
9327 new_prog = link->link.prog;
9330 bool offload = mode == XDP_MODE_HW;
9331 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9332 ? XDP_MODE_DRV : XDP_MODE_SKB;
9334 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9335 NL_SET_ERR_MSG(extack, "XDP program already attached");
9338 if (!offload && dev_xdp_prog(dev, other_mode)) {
9339 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9342 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9343 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9346 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9347 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9350 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9351 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9356 /* don't call drivers if the effective program didn't change */
9357 if (new_prog != cur_prog) {
9358 bpf_op = dev_xdp_bpf_op(dev, mode);
9360 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9364 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9370 dev_xdp_set_link(dev, mode, link);
9372 dev_xdp_set_prog(dev, mode, new_prog);
9374 bpf_prog_put(cur_prog);
9379 static int dev_xdp_attach_link(struct net_device *dev,
9380 struct netlink_ext_ack *extack,
9381 struct bpf_xdp_link *link)
9383 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9386 static int dev_xdp_detach_link(struct net_device *dev,
9387 struct netlink_ext_ack *extack,
9388 struct bpf_xdp_link *link)
9390 enum bpf_xdp_mode mode;
9395 mode = dev_xdp_mode(dev, link->flags);
9396 if (dev_xdp_link(dev, mode) != link)
9399 bpf_op = dev_xdp_bpf_op(dev, mode);
9400 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9401 dev_xdp_set_link(dev, mode, NULL);
9405 static void bpf_xdp_link_release(struct bpf_link *link)
9407 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9411 /* if racing with net_device's tear down, xdp_link->dev might be
9412 * already NULL, in which case link was already auto-detached
9414 if (xdp_link->dev) {
9415 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9416 xdp_link->dev = NULL;
9422 static int bpf_xdp_link_detach(struct bpf_link *link)
9424 bpf_xdp_link_release(link);
9428 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9430 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9435 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9436 struct seq_file *seq)
9438 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9443 ifindex = xdp_link->dev->ifindex;
9446 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9449 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9450 struct bpf_link_info *info)
9452 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9457 ifindex = xdp_link->dev->ifindex;
9460 info->xdp.ifindex = ifindex;
9464 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9465 struct bpf_prog *old_prog)
9467 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9468 enum bpf_xdp_mode mode;
9474 /* link might have been auto-released already, so fail */
9475 if (!xdp_link->dev) {
9480 if (old_prog && link->prog != old_prog) {
9484 old_prog = link->prog;
9485 if (old_prog == new_prog) {
9486 /* no-op, don't disturb drivers */
9487 bpf_prog_put(new_prog);
9491 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9492 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9493 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9494 xdp_link->flags, new_prog);
9498 old_prog = xchg(&link->prog, new_prog);
9499 bpf_prog_put(old_prog);
9506 static const struct bpf_link_ops bpf_xdp_link_lops = {
9507 .release = bpf_xdp_link_release,
9508 .dealloc = bpf_xdp_link_dealloc,
9509 .detach = bpf_xdp_link_detach,
9510 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9511 .fill_link_info = bpf_xdp_link_fill_link_info,
9512 .update_prog = bpf_xdp_link_update,
9515 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9517 struct net *net = current->nsproxy->net_ns;
9518 struct bpf_link_primer link_primer;
9519 struct bpf_xdp_link *link;
9520 struct net_device *dev;
9523 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9527 link = kzalloc(sizeof(*link), GFP_USER);
9533 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9535 link->flags = attr->link_create.flags;
9537 err = bpf_link_prime(&link->link, &link_primer);
9544 err = dev_xdp_attach_link(dev, NULL, link);
9548 bpf_link_cleanup(&link_primer);
9552 fd = bpf_link_settle(&link_primer);
9553 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9563 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9565 * @extack: netlink extended ack
9566 * @fd: new program fd or negative value to clear
9567 * @expected_fd: old program fd that userspace expects to replace or clear
9568 * @flags: xdp-related flags
9570 * Set or clear a bpf program for a device
9572 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9573 int fd, int expected_fd, u32 flags)
9575 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9576 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9582 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9583 mode != XDP_MODE_SKB);
9584 if (IS_ERR(new_prog))
9585 return PTR_ERR(new_prog);
9588 if (expected_fd >= 0) {
9589 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9590 mode != XDP_MODE_SKB);
9591 if (IS_ERR(old_prog)) {
9592 err = PTR_ERR(old_prog);
9598 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9601 if (err && new_prog)
9602 bpf_prog_put(new_prog);
9604 bpf_prog_put(old_prog);
9609 * dev_new_index - allocate an ifindex
9610 * @net: the applicable net namespace
9612 * Returns a suitable unique value for a new device interface
9613 * number. The caller must hold the rtnl semaphore or the
9614 * dev_base_lock to be sure it remains unique.
9616 static int dev_new_index(struct net *net)
9618 int ifindex = net->ifindex;
9623 if (!__dev_get_by_index(net, ifindex))
9624 return net->ifindex = ifindex;
9628 /* Delayed registration/unregisteration */
9629 static LIST_HEAD(net_todo_list);
9630 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9632 static void net_set_todo(struct net_device *dev)
9634 list_add_tail(&dev->todo_list, &net_todo_list);
9635 dev_net(dev)->dev_unreg_count++;
9638 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9639 struct net_device *upper, netdev_features_t features)
9641 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9642 netdev_features_t feature;
9645 for_each_netdev_feature(upper_disables, feature_bit) {
9646 feature = __NETIF_F_BIT(feature_bit);
9647 if (!(upper->wanted_features & feature)
9648 && (features & feature)) {
9649 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9650 &feature, upper->name);
9651 features &= ~feature;
9658 static void netdev_sync_lower_features(struct net_device *upper,
9659 struct net_device *lower, netdev_features_t features)
9661 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9662 netdev_features_t feature;
9665 for_each_netdev_feature(upper_disables, feature_bit) {
9666 feature = __NETIF_F_BIT(feature_bit);
9667 if (!(features & feature) && (lower->features & feature)) {
9668 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9669 &feature, lower->name);
9670 lower->wanted_features &= ~feature;
9671 __netdev_update_features(lower);
9673 if (unlikely(lower->features & feature))
9674 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9675 &feature, lower->name);
9677 netdev_features_change(lower);
9682 static netdev_features_t netdev_fix_features(struct net_device *dev,
9683 netdev_features_t features)
9685 /* Fix illegal checksum combinations */
9686 if ((features & NETIF_F_HW_CSUM) &&
9687 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9688 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9689 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9692 /* TSO requires that SG is present as well. */
9693 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9694 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9695 features &= ~NETIF_F_ALL_TSO;
9698 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9699 !(features & NETIF_F_IP_CSUM)) {
9700 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9701 features &= ~NETIF_F_TSO;
9702 features &= ~NETIF_F_TSO_ECN;
9705 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9706 !(features & NETIF_F_IPV6_CSUM)) {
9707 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9708 features &= ~NETIF_F_TSO6;
9711 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9712 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9713 features &= ~NETIF_F_TSO_MANGLEID;
9715 /* TSO ECN requires that TSO is present as well. */
9716 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9717 features &= ~NETIF_F_TSO_ECN;
9719 /* Software GSO depends on SG. */
9720 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9721 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9722 features &= ~NETIF_F_GSO;
9725 /* GSO partial features require GSO partial be set */
9726 if ((features & dev->gso_partial_features) &&
9727 !(features & NETIF_F_GSO_PARTIAL)) {
9729 "Dropping partially supported GSO features since no GSO partial.\n");
9730 features &= ~dev->gso_partial_features;
9733 if (!(features & NETIF_F_RXCSUM)) {
9734 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9735 * successfully merged by hardware must also have the
9736 * checksum verified by hardware. If the user does not
9737 * want to enable RXCSUM, logically, we should disable GRO_HW.
9739 if (features & NETIF_F_GRO_HW) {
9740 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9741 features &= ~NETIF_F_GRO_HW;
9745 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9746 if (features & NETIF_F_RXFCS) {
9747 if (features & NETIF_F_LRO) {
9748 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9749 features &= ~NETIF_F_LRO;
9752 if (features & NETIF_F_GRO_HW) {
9753 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9754 features &= ~NETIF_F_GRO_HW;
9758 if (features & NETIF_F_HW_TLS_TX) {
9759 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9760 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9761 bool hw_csum = features & NETIF_F_HW_CSUM;
9763 if (!ip_csum && !hw_csum) {
9764 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9765 features &= ~NETIF_F_HW_TLS_TX;
9769 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9770 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9771 features &= ~NETIF_F_HW_TLS_RX;
9777 int __netdev_update_features(struct net_device *dev)
9779 struct net_device *upper, *lower;
9780 netdev_features_t features;
9781 struct list_head *iter;
9786 features = netdev_get_wanted_features(dev);
9788 if (dev->netdev_ops->ndo_fix_features)
9789 features = dev->netdev_ops->ndo_fix_features(dev, features);
9791 /* driver might be less strict about feature dependencies */
9792 features = netdev_fix_features(dev, features);
9794 /* some features can't be enabled if they're off on an upper device */
9795 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9796 features = netdev_sync_upper_features(dev, upper, features);
9798 if (dev->features == features)
9801 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9802 &dev->features, &features);
9804 if (dev->netdev_ops->ndo_set_features)
9805 err = dev->netdev_ops->ndo_set_features(dev, features);
9809 if (unlikely(err < 0)) {
9811 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9812 err, &features, &dev->features);
9813 /* return non-0 since some features might have changed and
9814 * it's better to fire a spurious notification than miss it
9820 /* some features must be disabled on lower devices when disabled
9821 * on an upper device (think: bonding master or bridge)
9823 netdev_for_each_lower_dev(dev, lower, iter)
9824 netdev_sync_lower_features(dev, lower, features);
9827 netdev_features_t diff = features ^ dev->features;
9829 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9830 /* udp_tunnel_{get,drop}_rx_info both need
9831 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9832 * device, or they won't do anything.
9833 * Thus we need to update dev->features
9834 * *before* calling udp_tunnel_get_rx_info,
9835 * but *after* calling udp_tunnel_drop_rx_info.
9837 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9838 dev->features = features;
9839 udp_tunnel_get_rx_info(dev);
9841 udp_tunnel_drop_rx_info(dev);
9845 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9846 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9847 dev->features = features;
9848 err |= vlan_get_rx_ctag_filter_info(dev);
9850 vlan_drop_rx_ctag_filter_info(dev);
9854 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9855 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9856 dev->features = features;
9857 err |= vlan_get_rx_stag_filter_info(dev);
9859 vlan_drop_rx_stag_filter_info(dev);
9863 dev->features = features;
9866 return err < 0 ? 0 : 1;
9870 * netdev_update_features - recalculate device features
9871 * @dev: the device to check
9873 * Recalculate dev->features set and send notifications if it
9874 * has changed. Should be called after driver or hardware dependent
9875 * conditions might have changed that influence the features.
9877 void netdev_update_features(struct net_device *dev)
9879 if (__netdev_update_features(dev))
9880 netdev_features_change(dev);
9882 EXPORT_SYMBOL(netdev_update_features);
9885 * netdev_change_features - recalculate device features
9886 * @dev: the device to check
9888 * Recalculate dev->features set and send notifications even
9889 * if they have not changed. Should be called instead of
9890 * netdev_update_features() if also dev->vlan_features might
9891 * have changed to allow the changes to be propagated to stacked
9894 void netdev_change_features(struct net_device *dev)
9896 __netdev_update_features(dev);
9897 netdev_features_change(dev);
9899 EXPORT_SYMBOL(netdev_change_features);
9902 * netif_stacked_transfer_operstate - transfer operstate
9903 * @rootdev: the root or lower level device to transfer state from
9904 * @dev: the device to transfer operstate to
9906 * Transfer operational state from root to device. This is normally
9907 * called when a stacking relationship exists between the root
9908 * device and the device(a leaf device).
9910 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9911 struct net_device *dev)
9913 if (rootdev->operstate == IF_OPER_DORMANT)
9914 netif_dormant_on(dev);
9916 netif_dormant_off(dev);
9918 if (rootdev->operstate == IF_OPER_TESTING)
9919 netif_testing_on(dev);
9921 netif_testing_off(dev);
9923 if (netif_carrier_ok(rootdev))
9924 netif_carrier_on(dev);
9926 netif_carrier_off(dev);
9928 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9930 static int netif_alloc_rx_queues(struct net_device *dev)
9932 unsigned int i, count = dev->num_rx_queues;
9933 struct netdev_rx_queue *rx;
9934 size_t sz = count * sizeof(*rx);
9939 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9945 for (i = 0; i < count; i++) {
9948 /* XDP RX-queue setup */
9949 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9956 /* Rollback successful reg's and free other resources */
9958 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9964 static void netif_free_rx_queues(struct net_device *dev)
9966 unsigned int i, count = dev->num_rx_queues;
9968 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9972 for (i = 0; i < count; i++)
9973 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9978 static void netdev_init_one_queue(struct net_device *dev,
9979 struct netdev_queue *queue, void *_unused)
9981 /* Initialize queue lock */
9982 spin_lock_init(&queue->_xmit_lock);
9983 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9984 queue->xmit_lock_owner = -1;
9985 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9988 dql_init(&queue->dql, HZ);
9992 static void netif_free_tx_queues(struct net_device *dev)
9997 static int netif_alloc_netdev_queues(struct net_device *dev)
9999 unsigned int count = dev->num_tx_queues;
10000 struct netdev_queue *tx;
10001 size_t sz = count * sizeof(*tx);
10003 if (count < 1 || count > 0xffff)
10006 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10012 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10013 spin_lock_init(&dev->tx_global_lock);
10018 void netif_tx_stop_all_queues(struct net_device *dev)
10022 for (i = 0; i < dev->num_tx_queues; i++) {
10023 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10025 netif_tx_stop_queue(txq);
10028 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10031 * register_netdevice - register a network device
10032 * @dev: device to register
10034 * Take a completed network device structure and add it to the kernel
10035 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10036 * chain. 0 is returned on success. A negative errno code is returned
10037 * on a failure to set up the device, or if the name is a duplicate.
10039 * Callers must hold the rtnl semaphore. You may want
10040 * register_netdev() instead of this.
10043 * The locking appears insufficient to guarantee two parallel registers
10044 * will not get the same name.
10047 int register_netdevice(struct net_device *dev)
10050 struct net *net = dev_net(dev);
10052 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10053 NETDEV_FEATURE_COUNT);
10054 BUG_ON(dev_boot_phase);
10059 /* When net_device's are persistent, this will be fatal. */
10060 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10063 ret = ethtool_check_ops(dev->ethtool_ops);
10067 spin_lock_init(&dev->addr_list_lock);
10068 netdev_set_addr_lockdep_class(dev);
10070 ret = dev_get_valid_name(net, dev, dev->name);
10075 dev->name_node = netdev_name_node_head_alloc(dev);
10076 if (!dev->name_node)
10079 /* Init, if this function is available */
10080 if (dev->netdev_ops->ndo_init) {
10081 ret = dev->netdev_ops->ndo_init(dev);
10085 goto err_free_name;
10089 if (((dev->hw_features | dev->features) &
10090 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10091 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10092 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10093 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10100 dev->ifindex = dev_new_index(net);
10101 else if (__dev_get_by_index(net, dev->ifindex))
10104 /* Transfer changeable features to wanted_features and enable
10105 * software offloads (GSO and GRO).
10107 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10108 dev->features |= NETIF_F_SOFT_FEATURES;
10110 if (dev->udp_tunnel_nic_info) {
10111 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10112 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10115 dev->wanted_features = dev->features & dev->hw_features;
10117 if (!(dev->flags & IFF_LOOPBACK))
10118 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10120 /* If IPv4 TCP segmentation offload is supported we should also
10121 * allow the device to enable segmenting the frame with the option
10122 * of ignoring a static IP ID value. This doesn't enable the
10123 * feature itself but allows the user to enable it later.
10125 if (dev->hw_features & NETIF_F_TSO)
10126 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10127 if (dev->vlan_features & NETIF_F_TSO)
10128 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10129 if (dev->mpls_features & NETIF_F_TSO)
10130 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10131 if (dev->hw_enc_features & NETIF_F_TSO)
10132 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10134 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10136 dev->vlan_features |= NETIF_F_HIGHDMA;
10138 /* Make NETIF_F_SG inheritable to tunnel devices.
10140 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10142 /* Make NETIF_F_SG inheritable to MPLS.
10144 dev->mpls_features |= NETIF_F_SG;
10146 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10147 ret = notifier_to_errno(ret);
10151 ret = netdev_register_kobject(dev);
10153 dev->reg_state = NETREG_UNREGISTERED;
10156 dev->reg_state = NETREG_REGISTERED;
10158 __netdev_update_features(dev);
10161 * Default initial state at registry is that the
10162 * device is present.
10165 set_bit(__LINK_STATE_PRESENT, &dev->state);
10167 linkwatch_init_dev(dev);
10169 dev_init_scheduler(dev);
10171 list_netdevice(dev);
10172 add_device_randomness(dev->dev_addr, dev->addr_len);
10174 /* If the device has permanent device address, driver should
10175 * set dev_addr and also addr_assign_type should be set to
10176 * NET_ADDR_PERM (default value).
10178 if (dev->addr_assign_type == NET_ADDR_PERM)
10179 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10181 /* Notify protocols, that a new device appeared. */
10182 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10183 ret = notifier_to_errno(ret);
10185 /* Expect explicit free_netdev() on failure */
10186 dev->needs_free_netdev = false;
10187 unregister_netdevice_queue(dev, NULL);
10191 * Prevent userspace races by waiting until the network
10192 * device is fully setup before sending notifications.
10194 if (!dev->rtnl_link_ops ||
10195 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10196 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10202 if (dev->netdev_ops->ndo_uninit)
10203 dev->netdev_ops->ndo_uninit(dev);
10204 if (dev->priv_destructor)
10205 dev->priv_destructor(dev);
10207 netdev_name_node_free(dev->name_node);
10210 EXPORT_SYMBOL(register_netdevice);
10213 * init_dummy_netdev - init a dummy network device for NAPI
10214 * @dev: device to init
10216 * This takes a network device structure and initialize the minimum
10217 * amount of fields so it can be used to schedule NAPI polls without
10218 * registering a full blown interface. This is to be used by drivers
10219 * that need to tie several hardware interfaces to a single NAPI
10220 * poll scheduler due to HW limitations.
10222 int init_dummy_netdev(struct net_device *dev)
10224 /* Clear everything. Note we don't initialize spinlocks
10225 * are they aren't supposed to be taken by any of the
10226 * NAPI code and this dummy netdev is supposed to be
10227 * only ever used for NAPI polls
10229 memset(dev, 0, sizeof(struct net_device));
10231 /* make sure we BUG if trying to hit standard
10232 * register/unregister code path
10234 dev->reg_state = NETREG_DUMMY;
10236 /* NAPI wants this */
10237 INIT_LIST_HEAD(&dev->napi_list);
10239 /* a dummy interface is started by default */
10240 set_bit(__LINK_STATE_PRESENT, &dev->state);
10241 set_bit(__LINK_STATE_START, &dev->state);
10243 /* napi_busy_loop stats accounting wants this */
10244 dev_net_set(dev, &init_net);
10246 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10247 * because users of this 'device' dont need to change
10253 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10257 * register_netdev - register a network device
10258 * @dev: device to register
10260 * Take a completed network device structure and add it to the kernel
10261 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10262 * chain. 0 is returned on success. A negative errno code is returned
10263 * on a failure to set up the device, or if the name is a duplicate.
10265 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10266 * and expands the device name if you passed a format string to
10269 int register_netdev(struct net_device *dev)
10273 if (rtnl_lock_killable())
10275 err = register_netdevice(dev);
10279 EXPORT_SYMBOL(register_netdev);
10281 int netdev_refcnt_read(const struct net_device *dev)
10285 for_each_possible_cpu(i)
10286 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10289 EXPORT_SYMBOL(netdev_refcnt_read);
10291 #define WAIT_REFS_MIN_MSECS 1
10292 #define WAIT_REFS_MAX_MSECS 250
10294 * netdev_wait_allrefs - wait until all references are gone.
10295 * @dev: target net_device
10297 * This is called when unregistering network devices.
10299 * Any protocol or device that holds a reference should register
10300 * for netdevice notification, and cleanup and put back the
10301 * reference if they receive an UNREGISTER event.
10302 * We can get stuck here if buggy protocols don't correctly
10305 static void netdev_wait_allrefs(struct net_device *dev)
10307 unsigned long rebroadcast_time, warning_time;
10308 int wait = 0, refcnt;
10310 linkwatch_forget_dev(dev);
10312 rebroadcast_time = warning_time = jiffies;
10313 refcnt = netdev_refcnt_read(dev);
10315 while (refcnt != 0) {
10316 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10319 /* Rebroadcast unregister notification */
10320 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10326 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10328 /* We must not have linkwatch events
10329 * pending on unregister. If this
10330 * happens, we simply run the queue
10331 * unscheduled, resulting in a noop
10334 linkwatch_run_queue();
10339 rebroadcast_time = jiffies;
10344 wait = WAIT_REFS_MIN_MSECS;
10347 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10350 refcnt = netdev_refcnt_read(dev);
10352 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10353 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10354 dev->name, refcnt);
10355 warning_time = jiffies;
10360 /* The sequence is:
10364 * register_netdevice(x1);
10365 * register_netdevice(x2);
10367 * unregister_netdevice(y1);
10368 * unregister_netdevice(y2);
10374 * We are invoked by rtnl_unlock().
10375 * This allows us to deal with problems:
10376 * 1) We can delete sysfs objects which invoke hotplug
10377 * without deadlocking with linkwatch via keventd.
10378 * 2) Since we run with the RTNL semaphore not held, we can sleep
10379 * safely in order to wait for the netdev refcnt to drop to zero.
10381 * We must not return until all unregister events added during
10382 * the interval the lock was held have been completed.
10384 void netdev_run_todo(void)
10386 struct list_head list;
10387 #ifdef CONFIG_LOCKDEP
10388 struct list_head unlink_list;
10390 list_replace_init(&net_unlink_list, &unlink_list);
10392 while (!list_empty(&unlink_list)) {
10393 struct net_device *dev = list_first_entry(&unlink_list,
10396 list_del_init(&dev->unlink_list);
10397 dev->nested_level = dev->lower_level - 1;
10401 /* Snapshot list, allow later requests */
10402 list_replace_init(&net_todo_list, &list);
10407 /* Wait for rcu callbacks to finish before next phase */
10408 if (!list_empty(&list))
10411 while (!list_empty(&list)) {
10412 struct net_device *dev
10413 = list_first_entry(&list, struct net_device, todo_list);
10414 list_del(&dev->todo_list);
10416 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10417 pr_err("network todo '%s' but state %d\n",
10418 dev->name, dev->reg_state);
10423 dev->reg_state = NETREG_UNREGISTERED;
10425 netdev_wait_allrefs(dev);
10428 BUG_ON(netdev_refcnt_read(dev));
10429 BUG_ON(!list_empty(&dev->ptype_all));
10430 BUG_ON(!list_empty(&dev->ptype_specific));
10431 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10432 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10433 #if IS_ENABLED(CONFIG_DECNET)
10434 WARN_ON(dev->dn_ptr);
10436 if (dev->priv_destructor)
10437 dev->priv_destructor(dev);
10438 if (dev->needs_free_netdev)
10441 /* Report a network device has been unregistered */
10443 dev_net(dev)->dev_unreg_count--;
10445 wake_up(&netdev_unregistering_wq);
10447 /* Free network device */
10448 kobject_put(&dev->dev.kobj);
10452 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10453 * all the same fields in the same order as net_device_stats, with only
10454 * the type differing, but rtnl_link_stats64 may have additional fields
10455 * at the end for newer counters.
10457 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10458 const struct net_device_stats *netdev_stats)
10460 #if BITS_PER_LONG == 64
10461 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10462 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10463 /* zero out counters that only exist in rtnl_link_stats64 */
10464 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10465 sizeof(*stats64) - sizeof(*netdev_stats));
10467 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10468 const unsigned long *src = (const unsigned long *)netdev_stats;
10469 u64 *dst = (u64 *)stats64;
10471 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10472 for (i = 0; i < n; i++)
10474 /* zero out counters that only exist in rtnl_link_stats64 */
10475 memset((char *)stats64 + n * sizeof(u64), 0,
10476 sizeof(*stats64) - n * sizeof(u64));
10479 EXPORT_SYMBOL(netdev_stats_to_stats64);
10482 * dev_get_stats - get network device statistics
10483 * @dev: device to get statistics from
10484 * @storage: place to store stats
10486 * Get network statistics from device. Return @storage.
10487 * The device driver may provide its own method by setting
10488 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10489 * otherwise the internal statistics structure is used.
10491 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10492 struct rtnl_link_stats64 *storage)
10494 const struct net_device_ops *ops = dev->netdev_ops;
10496 if (ops->ndo_get_stats64) {
10497 memset(storage, 0, sizeof(*storage));
10498 ops->ndo_get_stats64(dev, storage);
10499 } else if (ops->ndo_get_stats) {
10500 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10502 netdev_stats_to_stats64(storage, &dev->stats);
10504 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10505 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10506 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10509 EXPORT_SYMBOL(dev_get_stats);
10512 * dev_fetch_sw_netstats - get per-cpu network device statistics
10513 * @s: place to store stats
10514 * @netstats: per-cpu network stats to read from
10516 * Read per-cpu network statistics and populate the related fields in @s.
10518 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10519 const struct pcpu_sw_netstats __percpu *netstats)
10523 for_each_possible_cpu(cpu) {
10524 const struct pcpu_sw_netstats *stats;
10525 struct pcpu_sw_netstats tmp;
10526 unsigned int start;
10528 stats = per_cpu_ptr(netstats, cpu);
10530 start = u64_stats_fetch_begin_irq(&stats->syncp);
10531 tmp.rx_packets = stats->rx_packets;
10532 tmp.rx_bytes = stats->rx_bytes;
10533 tmp.tx_packets = stats->tx_packets;
10534 tmp.tx_bytes = stats->tx_bytes;
10535 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10537 s->rx_packets += tmp.rx_packets;
10538 s->rx_bytes += tmp.rx_bytes;
10539 s->tx_packets += tmp.tx_packets;
10540 s->tx_bytes += tmp.tx_bytes;
10543 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10546 * dev_get_tstats64 - ndo_get_stats64 implementation
10547 * @dev: device to get statistics from
10548 * @s: place to store stats
10550 * Populate @s from dev->stats and dev->tstats. Can be used as
10551 * ndo_get_stats64() callback.
10553 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10555 netdev_stats_to_stats64(s, &dev->stats);
10556 dev_fetch_sw_netstats(s, dev->tstats);
10558 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10560 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10562 struct netdev_queue *queue = dev_ingress_queue(dev);
10564 #ifdef CONFIG_NET_CLS_ACT
10567 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10570 netdev_init_one_queue(dev, queue, NULL);
10571 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10572 queue->qdisc_sleeping = &noop_qdisc;
10573 rcu_assign_pointer(dev->ingress_queue, queue);
10578 static const struct ethtool_ops default_ethtool_ops;
10580 void netdev_set_default_ethtool_ops(struct net_device *dev,
10581 const struct ethtool_ops *ops)
10583 if (dev->ethtool_ops == &default_ethtool_ops)
10584 dev->ethtool_ops = ops;
10586 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10588 void netdev_freemem(struct net_device *dev)
10590 char *addr = (char *)dev - dev->padded;
10596 * alloc_netdev_mqs - allocate network device
10597 * @sizeof_priv: size of private data to allocate space for
10598 * @name: device name format string
10599 * @name_assign_type: origin of device name
10600 * @setup: callback to initialize device
10601 * @txqs: the number of TX subqueues to allocate
10602 * @rxqs: the number of RX subqueues to allocate
10604 * Allocates a struct net_device with private data area for driver use
10605 * and performs basic initialization. Also allocates subqueue structs
10606 * for each queue on the device.
10608 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10609 unsigned char name_assign_type,
10610 void (*setup)(struct net_device *),
10611 unsigned int txqs, unsigned int rxqs)
10613 struct net_device *dev;
10614 unsigned int alloc_size;
10615 struct net_device *p;
10617 BUG_ON(strlen(name) >= sizeof(dev->name));
10620 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10625 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10629 alloc_size = sizeof(struct net_device);
10631 /* ensure 32-byte alignment of private area */
10632 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10633 alloc_size += sizeof_priv;
10635 /* ensure 32-byte alignment of whole construct */
10636 alloc_size += NETDEV_ALIGN - 1;
10638 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10642 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10643 dev->padded = (char *)dev - (char *)p;
10645 dev->pcpu_refcnt = alloc_percpu(int);
10646 if (!dev->pcpu_refcnt)
10649 if (dev_addr_init(dev))
10655 dev_net_set(dev, &init_net);
10657 dev->gso_max_size = GSO_MAX_SIZE;
10658 dev->gso_max_segs = GSO_MAX_SEGS;
10659 dev->upper_level = 1;
10660 dev->lower_level = 1;
10661 #ifdef CONFIG_LOCKDEP
10662 dev->nested_level = 0;
10663 INIT_LIST_HEAD(&dev->unlink_list);
10666 INIT_LIST_HEAD(&dev->napi_list);
10667 INIT_LIST_HEAD(&dev->unreg_list);
10668 INIT_LIST_HEAD(&dev->close_list);
10669 INIT_LIST_HEAD(&dev->link_watch_list);
10670 INIT_LIST_HEAD(&dev->adj_list.upper);
10671 INIT_LIST_HEAD(&dev->adj_list.lower);
10672 INIT_LIST_HEAD(&dev->ptype_all);
10673 INIT_LIST_HEAD(&dev->ptype_specific);
10674 INIT_LIST_HEAD(&dev->net_notifier_list);
10675 #ifdef CONFIG_NET_SCHED
10676 hash_init(dev->qdisc_hash);
10678 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10681 if (!dev->tx_queue_len) {
10682 dev->priv_flags |= IFF_NO_QUEUE;
10683 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10686 dev->num_tx_queues = txqs;
10687 dev->real_num_tx_queues = txqs;
10688 if (netif_alloc_netdev_queues(dev))
10691 dev->num_rx_queues = rxqs;
10692 dev->real_num_rx_queues = rxqs;
10693 if (netif_alloc_rx_queues(dev))
10696 strcpy(dev->name, name);
10697 dev->name_assign_type = name_assign_type;
10698 dev->group = INIT_NETDEV_GROUP;
10699 if (!dev->ethtool_ops)
10700 dev->ethtool_ops = &default_ethtool_ops;
10702 nf_hook_ingress_init(dev);
10711 free_percpu(dev->pcpu_refcnt);
10713 netdev_freemem(dev);
10716 EXPORT_SYMBOL(alloc_netdev_mqs);
10719 * free_netdev - free network device
10722 * This function does the last stage of destroying an allocated device
10723 * interface. The reference to the device object is released. If this
10724 * is the last reference then it will be freed.Must be called in process
10727 void free_netdev(struct net_device *dev)
10729 struct napi_struct *p, *n;
10733 /* When called immediately after register_netdevice() failed the unwind
10734 * handling may still be dismantling the device. Handle that case by
10735 * deferring the free.
10737 if (dev->reg_state == NETREG_UNREGISTERING) {
10739 dev->needs_free_netdev = true;
10743 netif_free_tx_queues(dev);
10744 netif_free_rx_queues(dev);
10746 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10748 /* Flush device addresses */
10749 dev_addr_flush(dev);
10751 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10754 free_percpu(dev->pcpu_refcnt);
10755 dev->pcpu_refcnt = NULL;
10756 free_percpu(dev->xdp_bulkq);
10757 dev->xdp_bulkq = NULL;
10759 /* Compatibility with error handling in drivers */
10760 if (dev->reg_state == NETREG_UNINITIALIZED) {
10761 netdev_freemem(dev);
10765 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10766 dev->reg_state = NETREG_RELEASED;
10768 /* will free via device release */
10769 put_device(&dev->dev);
10771 EXPORT_SYMBOL(free_netdev);
10774 * synchronize_net - Synchronize with packet receive processing
10776 * Wait for packets currently being received to be done.
10777 * Does not block later packets from starting.
10779 void synchronize_net(void)
10782 if (rtnl_is_locked())
10783 synchronize_rcu_expedited();
10787 EXPORT_SYMBOL(synchronize_net);
10790 * unregister_netdevice_queue - remove device from the kernel
10794 * This function shuts down a device interface and removes it
10795 * from the kernel tables.
10796 * If head not NULL, device is queued to be unregistered later.
10798 * Callers must hold the rtnl semaphore. You may want
10799 * unregister_netdev() instead of this.
10802 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10807 list_move_tail(&dev->unreg_list, head);
10811 list_add(&dev->unreg_list, &single);
10812 unregister_netdevice_many(&single);
10815 EXPORT_SYMBOL(unregister_netdevice_queue);
10818 * unregister_netdevice_many - unregister many devices
10819 * @head: list of devices
10821 * Note: As most callers use a stack allocated list_head,
10822 * we force a list_del() to make sure stack wont be corrupted later.
10824 void unregister_netdevice_many(struct list_head *head)
10826 struct net_device *dev, *tmp;
10827 LIST_HEAD(close_head);
10829 BUG_ON(dev_boot_phase);
10832 if (list_empty(head))
10835 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10836 /* Some devices call without registering
10837 * for initialization unwind. Remove those
10838 * devices and proceed with the remaining.
10840 if (dev->reg_state == NETREG_UNINITIALIZED) {
10841 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10845 list_del(&dev->unreg_list);
10848 dev->dismantle = true;
10849 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10852 /* If device is running, close it first. */
10853 list_for_each_entry(dev, head, unreg_list)
10854 list_add_tail(&dev->close_list, &close_head);
10855 dev_close_many(&close_head, true);
10857 list_for_each_entry(dev, head, unreg_list) {
10858 /* And unlink it from device chain. */
10859 unlist_netdevice(dev);
10861 dev->reg_state = NETREG_UNREGISTERING;
10863 flush_all_backlogs();
10867 list_for_each_entry(dev, head, unreg_list) {
10868 struct sk_buff *skb = NULL;
10870 /* Shutdown queueing discipline. */
10873 dev_xdp_uninstall(dev);
10875 /* Notify protocols, that we are about to destroy
10876 * this device. They should clean all the things.
10878 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10880 if (!dev->rtnl_link_ops ||
10881 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10882 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10883 GFP_KERNEL, NULL, 0);
10886 * Flush the unicast and multicast chains
10891 netdev_name_node_alt_flush(dev);
10892 netdev_name_node_free(dev->name_node);
10894 if (dev->netdev_ops->ndo_uninit)
10895 dev->netdev_ops->ndo_uninit(dev);
10898 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10900 /* Notifier chain MUST detach us all upper devices. */
10901 WARN_ON(netdev_has_any_upper_dev(dev));
10902 WARN_ON(netdev_has_any_lower_dev(dev));
10904 /* Remove entries from kobject tree */
10905 netdev_unregister_kobject(dev);
10907 /* Remove XPS queueing entries */
10908 netif_reset_xps_queues_gt(dev, 0);
10914 list_for_each_entry(dev, head, unreg_list) {
10921 EXPORT_SYMBOL(unregister_netdevice_many);
10924 * unregister_netdev - remove device from the kernel
10927 * This function shuts down a device interface and removes it
10928 * from the kernel tables.
10930 * This is just a wrapper for unregister_netdevice that takes
10931 * the rtnl semaphore. In general you want to use this and not
10932 * unregister_netdevice.
10934 void unregister_netdev(struct net_device *dev)
10937 unregister_netdevice(dev);
10940 EXPORT_SYMBOL(unregister_netdev);
10943 * dev_change_net_namespace - move device to different nethost namespace
10945 * @net: network namespace
10946 * @pat: If not NULL name pattern to try if the current device name
10947 * is already taken in the destination network namespace.
10949 * This function shuts down a device interface and moves it
10950 * to a new network namespace. On success 0 is returned, on
10951 * a failure a netagive errno code is returned.
10953 * Callers must hold the rtnl semaphore.
10956 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10958 struct net *net_old = dev_net(dev);
10959 int err, new_nsid, new_ifindex;
10963 /* Don't allow namespace local devices to be moved. */
10965 if (dev->features & NETIF_F_NETNS_LOCAL)
10968 /* Ensure the device has been registrered */
10969 if (dev->reg_state != NETREG_REGISTERED)
10972 /* Get out if there is nothing todo */
10974 if (net_eq(net_old, net))
10977 /* Pick the destination device name, and ensure
10978 * we can use it in the destination network namespace.
10981 if (__dev_get_by_name(net, dev->name)) {
10982 /* We get here if we can't use the current device name */
10985 err = dev_get_valid_name(net, dev, pat);
10991 * And now a mini version of register_netdevice unregister_netdevice.
10994 /* If device is running close it first. */
10997 /* And unlink it from device chain */
10998 unlist_netdevice(dev);
11002 /* Shutdown queueing discipline. */
11005 /* Notify protocols, that we are about to destroy
11006 * this device. They should clean all the things.
11008 * Note that dev->reg_state stays at NETREG_REGISTERED.
11009 * This is wanted because this way 8021q and macvlan know
11010 * the device is just moving and can keep their slaves up.
11012 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11015 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11016 /* If there is an ifindex conflict assign a new one */
11017 if (__dev_get_by_index(net, dev->ifindex))
11018 new_ifindex = dev_new_index(net);
11020 new_ifindex = dev->ifindex;
11022 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11026 * Flush the unicast and multicast chains
11031 /* Send a netdev-removed uevent to the old namespace */
11032 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11033 netdev_adjacent_del_links(dev);
11035 /* Move per-net netdevice notifiers that are following the netdevice */
11036 move_netdevice_notifiers_dev_net(dev, net);
11038 /* Actually switch the network namespace */
11039 dev_net_set(dev, net);
11040 dev->ifindex = new_ifindex;
11042 /* Send a netdev-add uevent to the new namespace */
11043 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11044 netdev_adjacent_add_links(dev);
11046 /* Fixup kobjects */
11047 err = device_rename(&dev->dev, dev->name);
11050 /* Adapt owner in case owning user namespace of target network
11051 * namespace is different from the original one.
11053 err = netdev_change_owner(dev, net_old, net);
11056 /* Add the device back in the hashes */
11057 list_netdevice(dev);
11059 /* Notify protocols, that a new device appeared. */
11060 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11063 * Prevent userspace races by waiting until the network
11064 * device is fully setup before sending notifications.
11066 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11073 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11075 static int dev_cpu_dead(unsigned int oldcpu)
11077 struct sk_buff **list_skb;
11078 struct sk_buff *skb;
11080 struct softnet_data *sd, *oldsd, *remsd = NULL;
11082 local_irq_disable();
11083 cpu = smp_processor_id();
11084 sd = &per_cpu(softnet_data, cpu);
11085 oldsd = &per_cpu(softnet_data, oldcpu);
11087 /* Find end of our completion_queue. */
11088 list_skb = &sd->completion_queue;
11090 list_skb = &(*list_skb)->next;
11091 /* Append completion queue from offline CPU. */
11092 *list_skb = oldsd->completion_queue;
11093 oldsd->completion_queue = NULL;
11095 /* Append output queue from offline CPU. */
11096 if (oldsd->output_queue) {
11097 *sd->output_queue_tailp = oldsd->output_queue;
11098 sd->output_queue_tailp = oldsd->output_queue_tailp;
11099 oldsd->output_queue = NULL;
11100 oldsd->output_queue_tailp = &oldsd->output_queue;
11102 /* Append NAPI poll list from offline CPU, with one exception :
11103 * process_backlog() must be called by cpu owning percpu backlog.
11104 * We properly handle process_queue & input_pkt_queue later.
11106 while (!list_empty(&oldsd->poll_list)) {
11107 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11108 struct napi_struct,
11111 list_del_init(&napi->poll_list);
11112 if (napi->poll == process_backlog)
11115 ____napi_schedule(sd, napi);
11118 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11119 local_irq_enable();
11122 remsd = oldsd->rps_ipi_list;
11123 oldsd->rps_ipi_list = NULL;
11125 /* send out pending IPI's on offline CPU */
11126 net_rps_send_ipi(remsd);
11128 /* Process offline CPU's input_pkt_queue */
11129 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11131 input_queue_head_incr(oldsd);
11133 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11135 input_queue_head_incr(oldsd);
11142 * netdev_increment_features - increment feature set by one
11143 * @all: current feature set
11144 * @one: new feature set
11145 * @mask: mask feature set
11147 * Computes a new feature set after adding a device with feature set
11148 * @one to the master device with current feature set @all. Will not
11149 * enable anything that is off in @mask. Returns the new feature set.
11151 netdev_features_t netdev_increment_features(netdev_features_t all,
11152 netdev_features_t one, netdev_features_t mask)
11154 if (mask & NETIF_F_HW_CSUM)
11155 mask |= NETIF_F_CSUM_MASK;
11156 mask |= NETIF_F_VLAN_CHALLENGED;
11158 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11159 all &= one | ~NETIF_F_ALL_FOR_ALL;
11161 /* If one device supports hw checksumming, set for all. */
11162 if (all & NETIF_F_HW_CSUM)
11163 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11167 EXPORT_SYMBOL(netdev_increment_features);
11169 static struct hlist_head * __net_init netdev_create_hash(void)
11172 struct hlist_head *hash;
11174 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11176 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11177 INIT_HLIST_HEAD(&hash[i]);
11182 /* Initialize per network namespace state */
11183 static int __net_init netdev_init(struct net *net)
11185 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11186 8 * sizeof_field(struct napi_struct, gro_bitmask));
11188 if (net != &init_net)
11189 INIT_LIST_HEAD(&net->dev_base_head);
11191 net->dev_name_head = netdev_create_hash();
11192 if (net->dev_name_head == NULL)
11195 net->dev_index_head = netdev_create_hash();
11196 if (net->dev_index_head == NULL)
11199 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11204 kfree(net->dev_name_head);
11210 * netdev_drivername - network driver for the device
11211 * @dev: network device
11213 * Determine network driver for device.
11215 const char *netdev_drivername(const struct net_device *dev)
11217 const struct device_driver *driver;
11218 const struct device *parent;
11219 const char *empty = "";
11221 parent = dev->dev.parent;
11225 driver = parent->driver;
11226 if (driver && driver->name)
11227 return driver->name;
11231 static void __netdev_printk(const char *level, const struct net_device *dev,
11232 struct va_format *vaf)
11234 if (dev && dev->dev.parent) {
11235 dev_printk_emit(level[1] - '0',
11238 dev_driver_string(dev->dev.parent),
11239 dev_name(dev->dev.parent),
11240 netdev_name(dev), netdev_reg_state(dev),
11243 printk("%s%s%s: %pV",
11244 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11246 printk("%s(NULL net_device): %pV", level, vaf);
11250 void netdev_printk(const char *level, const struct net_device *dev,
11251 const char *format, ...)
11253 struct va_format vaf;
11256 va_start(args, format);
11261 __netdev_printk(level, dev, &vaf);
11265 EXPORT_SYMBOL(netdev_printk);
11267 #define define_netdev_printk_level(func, level) \
11268 void func(const struct net_device *dev, const char *fmt, ...) \
11270 struct va_format vaf; \
11273 va_start(args, fmt); \
11278 __netdev_printk(level, dev, &vaf); \
11282 EXPORT_SYMBOL(func);
11284 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11285 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11286 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11287 define_netdev_printk_level(netdev_err, KERN_ERR);
11288 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11289 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11290 define_netdev_printk_level(netdev_info, KERN_INFO);
11292 static void __net_exit netdev_exit(struct net *net)
11294 kfree(net->dev_name_head);
11295 kfree(net->dev_index_head);
11296 if (net != &init_net)
11297 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11300 static struct pernet_operations __net_initdata netdev_net_ops = {
11301 .init = netdev_init,
11302 .exit = netdev_exit,
11305 static void __net_exit default_device_exit(struct net *net)
11307 struct net_device *dev, *aux;
11309 * Push all migratable network devices back to the
11310 * initial network namespace
11313 for_each_netdev_safe(net, dev, aux) {
11315 char fb_name[IFNAMSIZ];
11317 /* Ignore unmoveable devices (i.e. loopback) */
11318 if (dev->features & NETIF_F_NETNS_LOCAL)
11321 /* Leave virtual devices for the generic cleanup */
11322 if (dev->rtnl_link_ops)
11325 /* Push remaining network devices to init_net */
11326 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11327 if (__dev_get_by_name(&init_net, fb_name))
11328 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11329 err = dev_change_net_namespace(dev, &init_net, fb_name);
11331 pr_emerg("%s: failed to move %s to init_net: %d\n",
11332 __func__, dev->name, err);
11339 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11341 /* Return with the rtnl_lock held when there are no network
11342 * devices unregistering in any network namespace in net_list.
11345 bool unregistering;
11346 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11348 add_wait_queue(&netdev_unregistering_wq, &wait);
11350 unregistering = false;
11352 list_for_each_entry(net, net_list, exit_list) {
11353 if (net->dev_unreg_count > 0) {
11354 unregistering = true;
11358 if (!unregistering)
11362 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11364 remove_wait_queue(&netdev_unregistering_wq, &wait);
11367 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11369 /* At exit all network devices most be removed from a network
11370 * namespace. Do this in the reverse order of registration.
11371 * Do this across as many network namespaces as possible to
11372 * improve batching efficiency.
11374 struct net_device *dev;
11376 LIST_HEAD(dev_kill_list);
11378 /* To prevent network device cleanup code from dereferencing
11379 * loopback devices or network devices that have been freed
11380 * wait here for all pending unregistrations to complete,
11381 * before unregistring the loopback device and allowing the
11382 * network namespace be freed.
11384 * The netdev todo list containing all network devices
11385 * unregistrations that happen in default_device_exit_batch
11386 * will run in the rtnl_unlock() at the end of
11387 * default_device_exit_batch.
11389 rtnl_lock_unregistering(net_list);
11390 list_for_each_entry(net, net_list, exit_list) {
11391 for_each_netdev_reverse(net, dev) {
11392 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11393 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11395 unregister_netdevice_queue(dev, &dev_kill_list);
11398 unregister_netdevice_many(&dev_kill_list);
11402 static struct pernet_operations __net_initdata default_device_ops = {
11403 .exit = default_device_exit,
11404 .exit_batch = default_device_exit_batch,
11408 * Initialize the DEV module. At boot time this walks the device list and
11409 * unhooks any devices that fail to initialise (normally hardware not
11410 * present) and leaves us with a valid list of present and active devices.
11415 * This is called single threaded during boot, so no need
11416 * to take the rtnl semaphore.
11418 static int __init net_dev_init(void)
11420 int i, rc = -ENOMEM;
11422 BUG_ON(!dev_boot_phase);
11424 if (dev_proc_init())
11427 if (netdev_kobject_init())
11430 INIT_LIST_HEAD(&ptype_all);
11431 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11432 INIT_LIST_HEAD(&ptype_base[i]);
11434 INIT_LIST_HEAD(&offload_base);
11436 if (register_pernet_subsys(&netdev_net_ops))
11440 * Initialise the packet receive queues.
11443 for_each_possible_cpu(i) {
11444 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11445 struct softnet_data *sd = &per_cpu(softnet_data, i);
11447 INIT_WORK(flush, flush_backlog);
11449 skb_queue_head_init(&sd->input_pkt_queue);
11450 skb_queue_head_init(&sd->process_queue);
11451 #ifdef CONFIG_XFRM_OFFLOAD
11452 skb_queue_head_init(&sd->xfrm_backlog);
11454 INIT_LIST_HEAD(&sd->poll_list);
11455 sd->output_queue_tailp = &sd->output_queue;
11457 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11461 init_gro_hash(&sd->backlog);
11462 sd->backlog.poll = process_backlog;
11463 sd->backlog.weight = weight_p;
11466 dev_boot_phase = 0;
11468 /* The loopback device is special if any other network devices
11469 * is present in a network namespace the loopback device must
11470 * be present. Since we now dynamically allocate and free the
11471 * loopback device ensure this invariant is maintained by
11472 * keeping the loopback device as the first device on the
11473 * list of network devices. Ensuring the loopback devices
11474 * is the first device that appears and the last network device
11477 if (register_pernet_device(&loopback_net_ops))
11480 if (register_pernet_device(&default_device_ops))
11483 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11484 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11486 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11487 NULL, dev_cpu_dead);
11494 subsys_initcall(net_dev_init);