]> Git Repo - linux.git/blob - net/core/dev.c
Merge branch '40GbE' of git://git.kernel.org/pub/scm/linux/kernel/git/tnguy/next...
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <[email protected]>
8  *                              Mark Evans, <[email protected]>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <[email protected]>
12  *              Alan Cox <[email protected]>
13  *              David Hinds <[email protected]>
14  *              Alexey Kuznetsov <[email protected]>
15  *              Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151
152 #include "net-sysfs.h"
153
154 #define MAX_GRO_SKBS 8
155
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163 static struct list_head offload_base __read_mostly;
164
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167                                          struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169                                            struct net_device *dev,
170                                            struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194
195 static DEFINE_MUTEX(ifalias_mutex);
196
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203 static DECLARE_RWSEM(devnet_rename_sem);
204
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207         while (++net->dev_base_seq == 0)
208                 ;
209 }
210
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226         spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233         spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238                                                        const char *name)
239 {
240         struct netdev_name_node *name_node;
241
242         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243         if (!name_node)
244                 return NULL;
245         INIT_HLIST_NODE(&name_node->hlist);
246         name_node->dev = dev;
247         name_node->name = name;
248         return name_node;
249 }
250
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254         struct netdev_name_node *name_node;
255
256         name_node = netdev_name_node_alloc(dev, dev->name);
257         if (!name_node)
258                 return NULL;
259         INIT_LIST_HEAD(&name_node->list);
260         return name_node;
261 }
262
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265         kfree(name_node);
266 }
267
268 static void netdev_name_node_add(struct net *net,
269                                  struct netdev_name_node *name_node)
270 {
271         hlist_add_head_rcu(&name_node->hlist,
272                            dev_name_hash(net, name_node->name));
273 }
274
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277         hlist_del_rcu(&name_node->hlist);
278 }
279
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281                                                         const char *name)
282 {
283         struct hlist_head *head = dev_name_hash(net, name);
284         struct netdev_name_node *name_node;
285
286         hlist_for_each_entry(name_node, head, hlist)
287                 if (!strcmp(name_node->name, name))
288                         return name_node;
289         return NULL;
290 }
291
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293                                                             const char *name)
294 {
295         struct hlist_head *head = dev_name_hash(net, name);
296         struct netdev_name_node *name_node;
297
298         hlist_for_each_entry_rcu(name_node, head, hlist)
299                 if (!strcmp(name_node->name, name))
300                         return name_node;
301         return NULL;
302 }
303
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306         struct netdev_name_node *name_node;
307         struct net *net = dev_net(dev);
308
309         name_node = netdev_name_node_lookup(net, name);
310         if (name_node)
311                 return -EEXIST;
312         name_node = netdev_name_node_alloc(dev, name);
313         if (!name_node)
314                 return -ENOMEM;
315         netdev_name_node_add(net, name_node);
316         /* The node that holds dev->name acts as a head of per-device list. */
317         list_add_tail(&name_node->list, &dev->name_node->list);
318
319         return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325         list_del(&name_node->list);
326         netdev_name_node_del(name_node);
327         kfree(name_node->name);
328         netdev_name_node_free(name_node);
329 }
330
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333         struct netdev_name_node *name_node;
334         struct net *net = dev_net(dev);
335
336         name_node = netdev_name_node_lookup(net, name);
337         if (!name_node)
338                 return -ENOENT;
339         /* lookup might have found our primary name or a name belonging
340          * to another device.
341          */
342         if (name_node == dev->name_node || name_node->dev != dev)
343                 return -EINVAL;
344
345         __netdev_name_node_alt_destroy(name_node);
346
347         return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353         struct netdev_name_node *name_node, *tmp;
354
355         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356                 __netdev_name_node_alt_destroy(name_node);
357 }
358
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362         struct net *net = dev_net(dev);
363
364         ASSERT_RTNL();
365
366         write_lock_bh(&dev_base_lock);
367         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368         netdev_name_node_add(net, dev->name_node);
369         hlist_add_head_rcu(&dev->index_hlist,
370                            dev_index_hash(net, dev->ifindex));
371         write_unlock_bh(&dev_base_lock);
372
373         dev_base_seq_inc(net);
374 }
375
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381         ASSERT_RTNL();
382
383         /* Unlink dev from the device chain */
384         write_lock_bh(&dev_base_lock);
385         list_del_rcu(&dev->dev_list);
386         netdev_name_node_del(dev->name_node);
387         hlist_del_rcu(&dev->index_hlist);
388         write_unlock_bh(&dev_base_lock);
389
390         dev_base_seq_inc(dev_net(dev));
391 }
392
393 /*
394  *      Our notifier list
395  */
396
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398
399 /*
400  *      Device drivers call our routines to queue packets here. We empty the
401  *      queue in the local softnet handler.
402  */
403
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429 static const char *const netdev_lock_name[] = {
430         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451         int i;
452
453         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454                 if (netdev_lock_type[i] == dev_type)
455                         return i;
456         /* the last key is used by default */
457         return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461                                                  unsigned short dev_type)
462 {
463         int i;
464
465         i = netdev_lock_pos(dev_type);
466         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467                                    netdev_lock_name[i]);
468 }
469
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472         int i;
473
474         i = netdev_lock_pos(dev->type);
475         lockdep_set_class_and_name(&dev->addr_list_lock,
476                                    &netdev_addr_lock_key[i],
477                                    netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481                                                  unsigned short dev_type)
482 {
483 }
484
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489
490 /*******************************************************************************
491  *
492  *              Protocol management and registration routines
493  *
494  *******************************************************************************/
495
496
497 /*
498  *      Add a protocol ID to the list. Now that the input handler is
499  *      smarter we can dispense with all the messy stuff that used to be
500  *      here.
501  *
502  *      BEWARE!!! Protocol handlers, mangling input packets,
503  *      MUST BE last in hash buckets and checking protocol handlers
504  *      MUST start from promiscuous ptype_all chain in net_bh.
505  *      It is true now, do not change it.
506  *      Explanation follows: if protocol handler, mangling packet, will
507  *      be the first on list, it is not able to sense, that packet
508  *      is cloned and should be copied-on-write, so that it will
509  *      change it and subsequent readers will get broken packet.
510  *                                                      --ANK (980803)
511  */
512
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515         if (pt->type == htons(ETH_P_ALL))
516                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517         else
518                 return pt->dev ? &pt->dev->ptype_specific :
519                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521
522 /**
523  *      dev_add_pack - add packet handler
524  *      @pt: packet type declaration
525  *
526  *      Add a protocol handler to the networking stack. The passed &packet_type
527  *      is linked into kernel lists and may not be freed until it has been
528  *      removed from the kernel lists.
529  *
530  *      This call does not sleep therefore it can not
531  *      guarantee all CPU's that are in middle of receiving packets
532  *      will see the new packet type (until the next received packet).
533  */
534
535 void dev_add_pack(struct packet_type *pt)
536 {
537         struct list_head *head = ptype_head(pt);
538
539         spin_lock(&ptype_lock);
540         list_add_rcu(&pt->list, head);
541         spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544
545 /**
546  *      __dev_remove_pack        - remove packet handler
547  *      @pt: packet type declaration
548  *
549  *      Remove a protocol handler that was previously added to the kernel
550  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *      from the kernel lists and can be freed or reused once this function
552  *      returns.
553  *
554  *      The packet type might still be in use by receivers
555  *      and must not be freed until after all the CPU's have gone
556  *      through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561         struct packet_type *pt1;
562
563         spin_lock(&ptype_lock);
564
565         list_for_each_entry(pt1, head, list) {
566                 if (pt == pt1) {
567                         list_del_rcu(&pt->list);
568                         goto out;
569                 }
570         }
571
572         pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574         spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577
578 /**
579  *      dev_remove_pack  - remove packet handler
580  *      @pt: packet type declaration
581  *
582  *      Remove a protocol handler that was previously added to the kernel
583  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *      from the kernel lists and can be freed or reused once this function
585  *      returns.
586  *
587  *      This call sleeps to guarantee that no CPU is looking at the packet
588  *      type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592         __dev_remove_pack(pt);
593
594         synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597
598
599 /**
600  *      dev_add_offload - register offload handlers
601  *      @po: protocol offload declaration
602  *
603  *      Add protocol offload handlers to the networking stack. The passed
604  *      &proto_offload is linked into kernel lists and may not be freed until
605  *      it has been removed from the kernel lists.
606  *
607  *      This call does not sleep therefore it can not
608  *      guarantee all CPU's that are in middle of receiving packets
609  *      will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613         struct packet_offload *elem;
614
615         spin_lock(&offload_lock);
616         list_for_each_entry(elem, &offload_base, list) {
617                 if (po->priority < elem->priority)
618                         break;
619         }
620         list_add_rcu(&po->list, elem->list.prev);
621         spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624
625 /**
626  *      __dev_remove_offload     - remove offload handler
627  *      @po: packet offload declaration
628  *
629  *      Remove a protocol offload handler that was previously added to the
630  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *      is removed from the kernel lists and can be freed or reused once this
632  *      function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *      and must not be freed until after all the CPU's have gone
636  *      through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640         struct list_head *head = &offload_base;
641         struct packet_offload *po1;
642
643         spin_lock(&offload_lock);
644
645         list_for_each_entry(po1, head, list) {
646                 if (po == po1) {
647                         list_del_rcu(&po->list);
648                         goto out;
649                 }
650         }
651
652         pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654         spin_unlock(&offload_lock);
655 }
656
657 /**
658  *      dev_remove_offload       - remove packet offload handler
659  *      @po: packet offload declaration
660  *
661  *      Remove a packet offload handler that was previously added to the kernel
662  *      offload handlers by dev_add_offload(). The passed &offload_type is
663  *      removed from the kernel lists and can be freed or reused once this
664  *      function returns.
665  *
666  *      This call sleeps to guarantee that no CPU is looking at the packet
667  *      type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671         __dev_remove_offload(po);
672
673         synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676
677 /******************************************************************************
678  *
679  *                    Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686 /**
687  *      netdev_boot_setup_add   - add new setup entry
688  *      @name: name of the device
689  *      @map: configured settings for the device
690  *
691  *      Adds new setup entry to the dev_boot_setup list.  The function
692  *      returns 0 on error and 1 on success.  This is a generic routine to
693  *      all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697         struct netdev_boot_setup *s;
698         int i;
699
700         s = dev_boot_setup;
701         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703                         memset(s[i].name, 0, sizeof(s[i].name));
704                         strlcpy(s[i].name, name, IFNAMSIZ);
705                         memcpy(&s[i].map, map, sizeof(s[i].map));
706                         break;
707                 }
708         }
709
710         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712
713 /**
714  * netdev_boot_setup_check      - check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724         struct netdev_boot_setup *s = dev_boot_setup;
725         int i;
726
727         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729                     !strcmp(dev->name, s[i].name)) {
730                         dev->irq = s[i].map.irq;
731                         dev->base_addr = s[i].map.base_addr;
732                         dev->mem_start = s[i].map.mem_start;
733                         dev->mem_end = s[i].map.mem_end;
734                         return 1;
735                 }
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742 /**
743  * netdev_boot_base     - get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754         const struct netdev_boot_setup *s = dev_boot_setup;
755         char name[IFNAMSIZ];
756         int i;
757
758         sprintf(name, "%s%d", prefix, unit);
759
760         /*
761          * If device already registered then return base of 1
762          * to indicate not to probe for this interface
763          */
764         if (__dev_get_by_name(&init_net, name))
765                 return 1;
766
767         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768                 if (!strcmp(name, s[i].name))
769                         return s[i].map.base_addr;
770         return 0;
771 }
772
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778         int ints[5];
779         struct ifmap map;
780
781         str = get_options(str, ARRAY_SIZE(ints), ints);
782         if (!str || !*str)
783                 return 0;
784
785         /* Save settings */
786         memset(&map, 0, sizeof(map));
787         if (ints[0] > 0)
788                 map.irq = ints[1];
789         if (ints[0] > 1)
790                 map.base_addr = ints[2];
791         if (ints[0] > 2)
792                 map.mem_start = ints[3];
793         if (ints[0] > 3)
794                 map.mem_end = ints[4];
795
796         /* Add new entry to the list */
797         return netdev_boot_setup_add(str, &map);
798 }
799
800 __setup("netdev=", netdev_boot_setup);
801
802 /*******************************************************************************
803  *
804  *                          Device Interface Subroutines
805  *
806  *******************************************************************************/
807
808 /**
809  *      dev_get_iflink  - get 'iflink' value of a interface
810  *      @dev: targeted interface
811  *
812  *      Indicates the ifindex the interface is linked to.
813  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815
816 int dev_get_iflink(const struct net_device *dev)
817 {
818         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819                 return dev->netdev_ops->ndo_get_iflink(dev);
820
821         return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824
825 /**
826  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *      @dev: targeted interface
828  *      @skb: The packet.
829  *
830  *      For better visibility of tunnel traffic OVS needs to retrieve
831  *      egress tunnel information for a packet. Following API allows
832  *      user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836         struct ip_tunnel_info *info;
837
838         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839                 return -EINVAL;
840
841         info = skb_tunnel_info_unclone(skb);
842         if (!info)
843                 return -ENOMEM;
844         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845                 return -EINVAL;
846
847         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851 /**
852  *      __dev_get_by_name       - find a device by its name
853  *      @net: the applicable net namespace
854  *      @name: name to find
855  *
856  *      Find an interface by name. Must be called under RTNL semaphore
857  *      or @dev_base_lock. If the name is found a pointer to the device
858  *      is returned. If the name is not found then %NULL is returned. The
859  *      reference counters are not incremented so the caller must be
860  *      careful with locks.
861  */
862
863 struct net_device *__dev_get_by_name(struct net *net, const char *name)
864 {
865         struct netdev_name_node *node_name;
866
867         node_name = netdev_name_node_lookup(net, name);
868         return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(__dev_get_by_name);
871
872 /**
873  * dev_get_by_name_rcu  - find a device by its name
874  * @net: the applicable net namespace
875  * @name: name to find
876  *
877  * Find an interface by name.
878  * If the name is found a pointer to the device is returned.
879  * If the name is not found then %NULL is returned.
880  * The reference counters are not incremented so the caller must be
881  * careful with locks. The caller must hold RCU lock.
882  */
883
884 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
885 {
886         struct netdev_name_node *node_name;
887
888         node_name = netdev_name_node_lookup_rcu(net, name);
889         return node_name ? node_name->dev : NULL;
890 }
891 EXPORT_SYMBOL(dev_get_by_name_rcu);
892
893 /**
894  *      dev_get_by_name         - find a device by its name
895  *      @net: the applicable net namespace
896  *      @name: name to find
897  *
898  *      Find an interface by name. This can be called from any
899  *      context and does its own locking. The returned handle has
900  *      the usage count incremented and the caller must use dev_put() to
901  *      release it when it is no longer needed. %NULL is returned if no
902  *      matching device is found.
903  */
904
905 struct net_device *dev_get_by_name(struct net *net, const char *name)
906 {
907         struct net_device *dev;
908
909         rcu_read_lock();
910         dev = dev_get_by_name_rcu(net, name);
911         if (dev)
912                 dev_hold(dev);
913         rcu_read_unlock();
914         return dev;
915 }
916 EXPORT_SYMBOL(dev_get_by_name);
917
918 /**
919  *      __dev_get_by_index - find a device by its ifindex
920  *      @net: the applicable net namespace
921  *      @ifindex: index of device
922  *
923  *      Search for an interface by index. Returns %NULL if the device
924  *      is not found or a pointer to the device. The device has not
925  *      had its reference counter increased so the caller must be careful
926  *      about locking. The caller must hold either the RTNL semaphore
927  *      or @dev_base_lock.
928  */
929
930 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
931 {
932         struct net_device *dev;
933         struct hlist_head *head = dev_index_hash(net, ifindex);
934
935         hlist_for_each_entry(dev, head, index_hlist)
936                 if (dev->ifindex == ifindex)
937                         return dev;
938
939         return NULL;
940 }
941 EXPORT_SYMBOL(__dev_get_by_index);
942
943 /**
944  *      dev_get_by_index_rcu - find a device by its ifindex
945  *      @net: the applicable net namespace
946  *      @ifindex: index of device
947  *
948  *      Search for an interface by index. Returns %NULL if the device
949  *      is not found or a pointer to the device. The device has not
950  *      had its reference counter increased so the caller must be careful
951  *      about locking. The caller must hold RCU lock.
952  */
953
954 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
955 {
956         struct net_device *dev;
957         struct hlist_head *head = dev_index_hash(net, ifindex);
958
959         hlist_for_each_entry_rcu(dev, head, index_hlist)
960                 if (dev->ifindex == ifindex)
961                         return dev;
962
963         return NULL;
964 }
965 EXPORT_SYMBOL(dev_get_by_index_rcu);
966
967
968 /**
969  *      dev_get_by_index - find a device by its ifindex
970  *      @net: the applicable net namespace
971  *      @ifindex: index of device
972  *
973  *      Search for an interface by index. Returns NULL if the device
974  *      is not found or a pointer to the device. The device returned has
975  *      had a reference added and the pointer is safe until the user calls
976  *      dev_put to indicate they have finished with it.
977  */
978
979 struct net_device *dev_get_by_index(struct net *net, int ifindex)
980 {
981         struct net_device *dev;
982
983         rcu_read_lock();
984         dev = dev_get_by_index_rcu(net, ifindex);
985         if (dev)
986                 dev_hold(dev);
987         rcu_read_unlock();
988         return dev;
989 }
990 EXPORT_SYMBOL(dev_get_by_index);
991
992 /**
993  *      dev_get_by_napi_id - find a device by napi_id
994  *      @napi_id: ID of the NAPI struct
995  *
996  *      Search for an interface by NAPI ID. Returns %NULL if the device
997  *      is not found or a pointer to the device. The device has not had
998  *      its reference counter increased so the caller must be careful
999  *      about locking. The caller must hold RCU lock.
1000  */
1001
1002 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1003 {
1004         struct napi_struct *napi;
1005
1006         WARN_ON_ONCE(!rcu_read_lock_held());
1007
1008         if (napi_id < MIN_NAPI_ID)
1009                 return NULL;
1010
1011         napi = napi_by_id(napi_id);
1012
1013         return napi ? napi->dev : NULL;
1014 }
1015 EXPORT_SYMBOL(dev_get_by_napi_id);
1016
1017 /**
1018  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1019  *      @net: network namespace
1020  *      @name: a pointer to the buffer where the name will be stored.
1021  *      @ifindex: the ifindex of the interface to get the name from.
1022  */
1023 int netdev_get_name(struct net *net, char *name, int ifindex)
1024 {
1025         struct net_device *dev;
1026         int ret;
1027
1028         down_read(&devnet_rename_sem);
1029         rcu_read_lock();
1030
1031         dev = dev_get_by_index_rcu(net, ifindex);
1032         if (!dev) {
1033                 ret = -ENODEV;
1034                 goto out;
1035         }
1036
1037         strcpy(name, dev->name);
1038
1039         ret = 0;
1040 out:
1041         rcu_read_unlock();
1042         up_read(&devnet_rename_sem);
1043         return ret;
1044 }
1045
1046 /**
1047  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1048  *      @net: the applicable net namespace
1049  *      @type: media type of device
1050  *      @ha: hardware address
1051  *
1052  *      Search for an interface by MAC address. Returns NULL if the device
1053  *      is not found or a pointer to the device.
1054  *      The caller must hold RCU or RTNL.
1055  *      The returned device has not had its ref count increased
1056  *      and the caller must therefore be careful about locking
1057  *
1058  */
1059
1060 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1061                                        const char *ha)
1062 {
1063         struct net_device *dev;
1064
1065         for_each_netdev_rcu(net, dev)
1066                 if (dev->type == type &&
1067                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1068                         return dev;
1069
1070         return NULL;
1071 }
1072 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1073
1074 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1075 {
1076         struct net_device *dev, *ret = NULL;
1077
1078         rcu_read_lock();
1079         for_each_netdev_rcu(net, dev)
1080                 if (dev->type == type) {
1081                         dev_hold(dev);
1082                         ret = dev;
1083                         break;
1084                 }
1085         rcu_read_unlock();
1086         return ret;
1087 }
1088 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089
1090 /**
1091  *      __dev_get_by_flags - find any device with given flags
1092  *      @net: the applicable net namespace
1093  *      @if_flags: IFF_* values
1094  *      @mask: bitmask of bits in if_flags to check
1095  *
1096  *      Search for any interface with the given flags. Returns NULL if a device
1097  *      is not found or a pointer to the device. Must be called inside
1098  *      rtnl_lock(), and result refcount is unchanged.
1099  */
1100
1101 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102                                       unsigned short mask)
1103 {
1104         struct net_device *dev, *ret;
1105
1106         ASSERT_RTNL();
1107
1108         ret = NULL;
1109         for_each_netdev(net, dev) {
1110                 if (((dev->flags ^ if_flags) & mask) == 0) {
1111                         ret = dev;
1112                         break;
1113                 }
1114         }
1115         return ret;
1116 }
1117 EXPORT_SYMBOL(__dev_get_by_flags);
1118
1119 /**
1120  *      dev_valid_name - check if name is okay for network device
1121  *      @name: name string
1122  *
1123  *      Network device names need to be valid file names to
1124  *      allow sysfs to work.  We also disallow any kind of
1125  *      whitespace.
1126  */
1127 bool dev_valid_name(const char *name)
1128 {
1129         if (*name == '\0')
1130                 return false;
1131         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1132                 return false;
1133         if (!strcmp(name, ".") || !strcmp(name, ".."))
1134                 return false;
1135
1136         while (*name) {
1137                 if (*name == '/' || *name == ':' || isspace(*name))
1138                         return false;
1139                 name++;
1140         }
1141         return true;
1142 }
1143 EXPORT_SYMBOL(dev_valid_name);
1144
1145 /**
1146  *      __dev_alloc_name - allocate a name for a device
1147  *      @net: network namespace to allocate the device name in
1148  *      @name: name format string
1149  *      @buf:  scratch buffer and result name string
1150  *
1151  *      Passed a format string - eg "lt%d" it will try and find a suitable
1152  *      id. It scans list of devices to build up a free map, then chooses
1153  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1154  *      while allocating the name and adding the device in order to avoid
1155  *      duplicates.
1156  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157  *      Returns the number of the unit assigned or a negative errno code.
1158  */
1159
1160 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1161 {
1162         int i = 0;
1163         const char *p;
1164         const int max_netdevices = 8*PAGE_SIZE;
1165         unsigned long *inuse;
1166         struct net_device *d;
1167
1168         if (!dev_valid_name(name))
1169                 return -EINVAL;
1170
1171         p = strchr(name, '%');
1172         if (p) {
1173                 /*
1174                  * Verify the string as this thing may have come from
1175                  * the user.  There must be either one "%d" and no other "%"
1176                  * characters.
1177                  */
1178                 if (p[1] != 'd' || strchr(p + 2, '%'))
1179                         return -EINVAL;
1180
1181                 /* Use one page as a bit array of possible slots */
1182                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1183                 if (!inuse)
1184                         return -ENOMEM;
1185
1186                 for_each_netdev(net, d) {
1187                         if (!sscanf(d->name, name, &i))
1188                                 continue;
1189                         if (i < 0 || i >= max_netdevices)
1190                                 continue;
1191
1192                         /*  avoid cases where sscanf is not exact inverse of printf */
1193                         snprintf(buf, IFNAMSIZ, name, i);
1194                         if (!strncmp(buf, d->name, IFNAMSIZ))
1195                                 set_bit(i, inuse);
1196                 }
1197
1198                 i = find_first_zero_bit(inuse, max_netdevices);
1199                 free_page((unsigned long) inuse);
1200         }
1201
1202         snprintf(buf, IFNAMSIZ, name, i);
1203         if (!__dev_get_by_name(net, buf))
1204                 return i;
1205
1206         /* It is possible to run out of possible slots
1207          * when the name is long and there isn't enough space left
1208          * for the digits, or if all bits are used.
1209          */
1210         return -ENFILE;
1211 }
1212
1213 static int dev_alloc_name_ns(struct net *net,
1214                              struct net_device *dev,
1215                              const char *name)
1216 {
1217         char buf[IFNAMSIZ];
1218         int ret;
1219
1220         BUG_ON(!net);
1221         ret = __dev_alloc_name(net, name, buf);
1222         if (ret >= 0)
1223                 strlcpy(dev->name, buf, IFNAMSIZ);
1224         return ret;
1225 }
1226
1227 /**
1228  *      dev_alloc_name - allocate a name for a device
1229  *      @dev: device
1230  *      @name: name format string
1231  *
1232  *      Passed a format string - eg "lt%d" it will try and find a suitable
1233  *      id. It scans list of devices to build up a free map, then chooses
1234  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1235  *      while allocating the name and adding the device in order to avoid
1236  *      duplicates.
1237  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1238  *      Returns the number of the unit assigned or a negative errno code.
1239  */
1240
1241 int dev_alloc_name(struct net_device *dev, const char *name)
1242 {
1243         return dev_alloc_name_ns(dev_net(dev), dev, name);
1244 }
1245 EXPORT_SYMBOL(dev_alloc_name);
1246
1247 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1248                               const char *name)
1249 {
1250         BUG_ON(!net);
1251
1252         if (!dev_valid_name(name))
1253                 return -EINVAL;
1254
1255         if (strchr(name, '%'))
1256                 return dev_alloc_name_ns(net, dev, name);
1257         else if (__dev_get_by_name(net, name))
1258                 return -EEXIST;
1259         else if (dev->name != name)
1260                 strlcpy(dev->name, name, IFNAMSIZ);
1261
1262         return 0;
1263 }
1264
1265 /**
1266  *      dev_change_name - change name of a device
1267  *      @dev: device
1268  *      @newname: name (or format string) must be at least IFNAMSIZ
1269  *
1270  *      Change name of a device, can pass format strings "eth%d".
1271  *      for wildcarding.
1272  */
1273 int dev_change_name(struct net_device *dev, const char *newname)
1274 {
1275         unsigned char old_assign_type;
1276         char oldname[IFNAMSIZ];
1277         int err = 0;
1278         int ret;
1279         struct net *net;
1280
1281         ASSERT_RTNL();
1282         BUG_ON(!dev_net(dev));
1283
1284         net = dev_net(dev);
1285
1286         /* Some auto-enslaved devices e.g. failover slaves are
1287          * special, as userspace might rename the device after
1288          * the interface had been brought up and running since
1289          * the point kernel initiated auto-enslavement. Allow
1290          * live name change even when these slave devices are
1291          * up and running.
1292          *
1293          * Typically, users of these auto-enslaving devices
1294          * don't actually care about slave name change, as
1295          * they are supposed to operate on master interface
1296          * directly.
1297          */
1298         if (dev->flags & IFF_UP &&
1299             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1300                 return -EBUSY;
1301
1302         down_write(&devnet_rename_sem);
1303
1304         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1305                 up_write(&devnet_rename_sem);
1306                 return 0;
1307         }
1308
1309         memcpy(oldname, dev->name, IFNAMSIZ);
1310
1311         err = dev_get_valid_name(net, dev, newname);
1312         if (err < 0) {
1313                 up_write(&devnet_rename_sem);
1314                 return err;
1315         }
1316
1317         if (oldname[0] && !strchr(oldname, '%'))
1318                 netdev_info(dev, "renamed from %s\n", oldname);
1319
1320         old_assign_type = dev->name_assign_type;
1321         dev->name_assign_type = NET_NAME_RENAMED;
1322
1323 rollback:
1324         ret = device_rename(&dev->dev, dev->name);
1325         if (ret) {
1326                 memcpy(dev->name, oldname, IFNAMSIZ);
1327                 dev->name_assign_type = old_assign_type;
1328                 up_write(&devnet_rename_sem);
1329                 return ret;
1330         }
1331
1332         up_write(&devnet_rename_sem);
1333
1334         netdev_adjacent_rename_links(dev, oldname);
1335
1336         write_lock_bh(&dev_base_lock);
1337         netdev_name_node_del(dev->name_node);
1338         write_unlock_bh(&dev_base_lock);
1339
1340         synchronize_rcu();
1341
1342         write_lock_bh(&dev_base_lock);
1343         netdev_name_node_add(net, dev->name_node);
1344         write_unlock_bh(&dev_base_lock);
1345
1346         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1347         ret = notifier_to_errno(ret);
1348
1349         if (ret) {
1350                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1351                 if (err >= 0) {
1352                         err = ret;
1353                         down_write(&devnet_rename_sem);
1354                         memcpy(dev->name, oldname, IFNAMSIZ);
1355                         memcpy(oldname, newname, IFNAMSIZ);
1356                         dev->name_assign_type = old_assign_type;
1357                         old_assign_type = NET_NAME_RENAMED;
1358                         goto rollback;
1359                 } else {
1360                         pr_err("%s: name change rollback failed: %d\n",
1361                                dev->name, ret);
1362                 }
1363         }
1364
1365         return err;
1366 }
1367
1368 /**
1369  *      dev_set_alias - change ifalias of a device
1370  *      @dev: device
1371  *      @alias: name up to IFALIASZ
1372  *      @len: limit of bytes to copy from info
1373  *
1374  *      Set ifalias for a device,
1375  */
1376 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1377 {
1378         struct dev_ifalias *new_alias = NULL;
1379
1380         if (len >= IFALIASZ)
1381                 return -EINVAL;
1382
1383         if (len) {
1384                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1385                 if (!new_alias)
1386                         return -ENOMEM;
1387
1388                 memcpy(new_alias->ifalias, alias, len);
1389                 new_alias->ifalias[len] = 0;
1390         }
1391
1392         mutex_lock(&ifalias_mutex);
1393         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1394                                         mutex_is_locked(&ifalias_mutex));
1395         mutex_unlock(&ifalias_mutex);
1396
1397         if (new_alias)
1398                 kfree_rcu(new_alias, rcuhead);
1399
1400         return len;
1401 }
1402 EXPORT_SYMBOL(dev_set_alias);
1403
1404 /**
1405  *      dev_get_alias - get ifalias of a device
1406  *      @dev: device
1407  *      @name: buffer to store name of ifalias
1408  *      @len: size of buffer
1409  *
1410  *      get ifalias for a device.  Caller must make sure dev cannot go
1411  *      away,  e.g. rcu read lock or own a reference count to device.
1412  */
1413 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1414 {
1415         const struct dev_ifalias *alias;
1416         int ret = 0;
1417
1418         rcu_read_lock();
1419         alias = rcu_dereference(dev->ifalias);
1420         if (alias)
1421                 ret = snprintf(name, len, "%s", alias->ifalias);
1422         rcu_read_unlock();
1423
1424         return ret;
1425 }
1426
1427 /**
1428  *      netdev_features_change - device changes features
1429  *      @dev: device to cause notification
1430  *
1431  *      Called to indicate a device has changed features.
1432  */
1433 void netdev_features_change(struct net_device *dev)
1434 {
1435         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1436 }
1437 EXPORT_SYMBOL(netdev_features_change);
1438
1439 /**
1440  *      netdev_state_change - device changes state
1441  *      @dev: device to cause notification
1442  *
1443  *      Called to indicate a device has changed state. This function calls
1444  *      the notifier chains for netdev_chain and sends a NEWLINK message
1445  *      to the routing socket.
1446  */
1447 void netdev_state_change(struct net_device *dev)
1448 {
1449         if (dev->flags & IFF_UP) {
1450                 struct netdev_notifier_change_info change_info = {
1451                         .info.dev = dev,
1452                 };
1453
1454                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1455                                               &change_info.info);
1456                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1457         }
1458 }
1459 EXPORT_SYMBOL(netdev_state_change);
1460
1461 /**
1462  * __netdev_notify_peers - notify network peers about existence of @dev,
1463  * to be called when rtnl lock is already held.
1464  * @dev: network device
1465  *
1466  * Generate traffic such that interested network peers are aware of
1467  * @dev, such as by generating a gratuitous ARP. This may be used when
1468  * a device wants to inform the rest of the network about some sort of
1469  * reconfiguration such as a failover event or virtual machine
1470  * migration.
1471  */
1472 void __netdev_notify_peers(struct net_device *dev)
1473 {
1474         ASSERT_RTNL();
1475         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1476         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1477 }
1478 EXPORT_SYMBOL(__netdev_notify_peers);
1479
1480 /**
1481  * netdev_notify_peers - notify network peers about existence of @dev
1482  * @dev: network device
1483  *
1484  * Generate traffic such that interested network peers are aware of
1485  * @dev, such as by generating a gratuitous ARP. This may be used when
1486  * a device wants to inform the rest of the network about some sort of
1487  * reconfiguration such as a failover event or virtual machine
1488  * migration.
1489  */
1490 void netdev_notify_peers(struct net_device *dev)
1491 {
1492         rtnl_lock();
1493         __netdev_notify_peers(dev);
1494         rtnl_unlock();
1495 }
1496 EXPORT_SYMBOL(netdev_notify_peers);
1497
1498 static int napi_threaded_poll(void *data);
1499
1500 static int napi_kthread_create(struct napi_struct *n)
1501 {
1502         int err = 0;
1503
1504         /* Create and wake up the kthread once to put it in
1505          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1506          * warning and work with loadavg.
1507          */
1508         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1509                                 n->dev->name, n->napi_id);
1510         if (IS_ERR(n->thread)) {
1511                 err = PTR_ERR(n->thread);
1512                 pr_err("kthread_run failed with err %d\n", err);
1513                 n->thread = NULL;
1514         }
1515
1516         return err;
1517 }
1518
1519 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521         const struct net_device_ops *ops = dev->netdev_ops;
1522         int ret;
1523
1524         ASSERT_RTNL();
1525
1526         if (!netif_device_present(dev)) {
1527                 /* may be detached because parent is runtime-suspended */
1528                 if (dev->dev.parent)
1529                         pm_runtime_resume(dev->dev.parent);
1530                 if (!netif_device_present(dev))
1531                         return -ENODEV;
1532         }
1533
1534         /* Block netpoll from trying to do any rx path servicing.
1535          * If we don't do this there is a chance ndo_poll_controller
1536          * or ndo_poll may be running while we open the device
1537          */
1538         netpoll_poll_disable(dev);
1539
1540         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1541         ret = notifier_to_errno(ret);
1542         if (ret)
1543                 return ret;
1544
1545         set_bit(__LINK_STATE_START, &dev->state);
1546
1547         if (ops->ndo_validate_addr)
1548                 ret = ops->ndo_validate_addr(dev);
1549
1550         if (!ret && ops->ndo_open)
1551                 ret = ops->ndo_open(dev);
1552
1553         netpoll_poll_enable(dev);
1554
1555         if (ret)
1556                 clear_bit(__LINK_STATE_START, &dev->state);
1557         else {
1558                 dev->flags |= IFF_UP;
1559                 dev_set_rx_mode(dev);
1560                 dev_activate(dev);
1561                 add_device_randomness(dev->dev_addr, dev->addr_len);
1562         }
1563
1564         return ret;
1565 }
1566
1567 /**
1568  *      dev_open        - prepare an interface for use.
1569  *      @dev: device to open
1570  *      @extack: netlink extended ack
1571  *
1572  *      Takes a device from down to up state. The device's private open
1573  *      function is invoked and then the multicast lists are loaded. Finally
1574  *      the device is moved into the up state and a %NETDEV_UP message is
1575  *      sent to the netdev notifier chain.
1576  *
1577  *      Calling this function on an active interface is a nop. On a failure
1578  *      a negative errno code is returned.
1579  */
1580 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1581 {
1582         int ret;
1583
1584         if (dev->flags & IFF_UP)
1585                 return 0;
1586
1587         ret = __dev_open(dev, extack);
1588         if (ret < 0)
1589                 return ret;
1590
1591         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1592         call_netdevice_notifiers(NETDEV_UP, dev);
1593
1594         return ret;
1595 }
1596 EXPORT_SYMBOL(dev_open);
1597
1598 static void __dev_close_many(struct list_head *head)
1599 {
1600         struct net_device *dev;
1601
1602         ASSERT_RTNL();
1603         might_sleep();
1604
1605         list_for_each_entry(dev, head, close_list) {
1606                 /* Temporarily disable netpoll until the interface is down */
1607                 netpoll_poll_disable(dev);
1608
1609                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1610
1611                 clear_bit(__LINK_STATE_START, &dev->state);
1612
1613                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1614                  * can be even on different cpu. So just clear netif_running().
1615                  *
1616                  * dev->stop() will invoke napi_disable() on all of it's
1617                  * napi_struct instances on this device.
1618                  */
1619                 smp_mb__after_atomic(); /* Commit netif_running(). */
1620         }
1621
1622         dev_deactivate_many(head);
1623
1624         list_for_each_entry(dev, head, close_list) {
1625                 const struct net_device_ops *ops = dev->netdev_ops;
1626
1627                 /*
1628                  *      Call the device specific close. This cannot fail.
1629                  *      Only if device is UP
1630                  *
1631                  *      We allow it to be called even after a DETACH hot-plug
1632                  *      event.
1633                  */
1634                 if (ops->ndo_stop)
1635                         ops->ndo_stop(dev);
1636
1637                 dev->flags &= ~IFF_UP;
1638                 netpoll_poll_enable(dev);
1639         }
1640 }
1641
1642 static void __dev_close(struct net_device *dev)
1643 {
1644         LIST_HEAD(single);
1645
1646         list_add(&dev->close_list, &single);
1647         __dev_close_many(&single);
1648         list_del(&single);
1649 }
1650
1651 void dev_close_many(struct list_head *head, bool unlink)
1652 {
1653         struct net_device *dev, *tmp;
1654
1655         /* Remove the devices that don't need to be closed */
1656         list_for_each_entry_safe(dev, tmp, head, close_list)
1657                 if (!(dev->flags & IFF_UP))
1658                         list_del_init(&dev->close_list);
1659
1660         __dev_close_many(head);
1661
1662         list_for_each_entry_safe(dev, tmp, head, close_list) {
1663                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1664                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1665                 if (unlink)
1666                         list_del_init(&dev->close_list);
1667         }
1668 }
1669 EXPORT_SYMBOL(dev_close_many);
1670
1671 /**
1672  *      dev_close - shutdown an interface.
1673  *      @dev: device to shutdown
1674  *
1675  *      This function moves an active device into down state. A
1676  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1677  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1678  *      chain.
1679  */
1680 void dev_close(struct net_device *dev)
1681 {
1682         if (dev->flags & IFF_UP) {
1683                 LIST_HEAD(single);
1684
1685                 list_add(&dev->close_list, &single);
1686                 dev_close_many(&single, true);
1687                 list_del(&single);
1688         }
1689 }
1690 EXPORT_SYMBOL(dev_close);
1691
1692
1693 /**
1694  *      dev_disable_lro - disable Large Receive Offload on a device
1695  *      @dev: device
1696  *
1697  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1698  *      called under RTNL.  This is needed if received packets may be
1699  *      forwarded to another interface.
1700  */
1701 void dev_disable_lro(struct net_device *dev)
1702 {
1703         struct net_device *lower_dev;
1704         struct list_head *iter;
1705
1706         dev->wanted_features &= ~NETIF_F_LRO;
1707         netdev_update_features(dev);
1708
1709         if (unlikely(dev->features & NETIF_F_LRO))
1710                 netdev_WARN(dev, "failed to disable LRO!\n");
1711
1712         netdev_for_each_lower_dev(dev, lower_dev, iter)
1713                 dev_disable_lro(lower_dev);
1714 }
1715 EXPORT_SYMBOL(dev_disable_lro);
1716
1717 /**
1718  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1719  *      @dev: device
1720  *
1721  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1722  *      called under RTNL.  This is needed if Generic XDP is installed on
1723  *      the device.
1724  */
1725 static void dev_disable_gro_hw(struct net_device *dev)
1726 {
1727         dev->wanted_features &= ~NETIF_F_GRO_HW;
1728         netdev_update_features(dev);
1729
1730         if (unlikely(dev->features & NETIF_F_GRO_HW))
1731                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1732 }
1733
1734 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1735 {
1736 #define N(val)                                          \
1737         case NETDEV_##val:                              \
1738                 return "NETDEV_" __stringify(val);
1739         switch (cmd) {
1740         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1741         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1742         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1743         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1744         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1745         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1746         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1747         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1748         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1749         N(PRE_CHANGEADDR)
1750         }
1751 #undef N
1752         return "UNKNOWN_NETDEV_EVENT";
1753 }
1754 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1755
1756 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1757                                    struct net_device *dev)
1758 {
1759         struct netdev_notifier_info info = {
1760                 .dev = dev,
1761         };
1762
1763         return nb->notifier_call(nb, val, &info);
1764 }
1765
1766 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1767                                              struct net_device *dev)
1768 {
1769         int err;
1770
1771         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1772         err = notifier_to_errno(err);
1773         if (err)
1774                 return err;
1775
1776         if (!(dev->flags & IFF_UP))
1777                 return 0;
1778
1779         call_netdevice_notifier(nb, NETDEV_UP, dev);
1780         return 0;
1781 }
1782
1783 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1784                                                 struct net_device *dev)
1785 {
1786         if (dev->flags & IFF_UP) {
1787                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1788                                         dev);
1789                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1790         }
1791         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1792 }
1793
1794 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1795                                                  struct net *net)
1796 {
1797         struct net_device *dev;
1798         int err;
1799
1800         for_each_netdev(net, dev) {
1801                 err = call_netdevice_register_notifiers(nb, dev);
1802                 if (err)
1803                         goto rollback;
1804         }
1805         return 0;
1806
1807 rollback:
1808         for_each_netdev_continue_reverse(net, dev)
1809                 call_netdevice_unregister_notifiers(nb, dev);
1810         return err;
1811 }
1812
1813 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1814                                                     struct net *net)
1815 {
1816         struct net_device *dev;
1817
1818         for_each_netdev(net, dev)
1819                 call_netdevice_unregister_notifiers(nb, dev);
1820 }
1821
1822 static int dev_boot_phase = 1;
1823
1824 /**
1825  * register_netdevice_notifier - register a network notifier block
1826  * @nb: notifier
1827  *
1828  * Register a notifier to be called when network device events occur.
1829  * The notifier passed is linked into the kernel structures and must
1830  * not be reused until it has been unregistered. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * When registered all registration and up events are replayed
1834  * to the new notifier to allow device to have a race free
1835  * view of the network device list.
1836  */
1837
1838 int register_netdevice_notifier(struct notifier_block *nb)
1839 {
1840         struct net *net;
1841         int err;
1842
1843         /* Close race with setup_net() and cleanup_net() */
1844         down_write(&pernet_ops_rwsem);
1845         rtnl_lock();
1846         err = raw_notifier_chain_register(&netdev_chain, nb);
1847         if (err)
1848                 goto unlock;
1849         if (dev_boot_phase)
1850                 goto unlock;
1851         for_each_net(net) {
1852                 err = call_netdevice_register_net_notifiers(nb, net);
1853                 if (err)
1854                         goto rollback;
1855         }
1856
1857 unlock:
1858         rtnl_unlock();
1859         up_write(&pernet_ops_rwsem);
1860         return err;
1861
1862 rollback:
1863         for_each_net_continue_reverse(net)
1864                 call_netdevice_unregister_net_notifiers(nb, net);
1865
1866         raw_notifier_chain_unregister(&netdev_chain, nb);
1867         goto unlock;
1868 }
1869 EXPORT_SYMBOL(register_netdevice_notifier);
1870
1871 /**
1872  * unregister_netdevice_notifier - unregister a network notifier block
1873  * @nb: notifier
1874  *
1875  * Unregister a notifier previously registered by
1876  * register_netdevice_notifier(). The notifier is unlinked into the
1877  * kernel structures and may then be reused. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * After unregistering unregister and down device events are synthesized
1881  * for all devices on the device list to the removed notifier to remove
1882  * the need for special case cleanup code.
1883  */
1884
1885 int unregister_netdevice_notifier(struct notifier_block *nb)
1886 {
1887         struct net *net;
1888         int err;
1889
1890         /* Close race with setup_net() and cleanup_net() */
1891         down_write(&pernet_ops_rwsem);
1892         rtnl_lock();
1893         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1894         if (err)
1895                 goto unlock;
1896
1897         for_each_net(net)
1898                 call_netdevice_unregister_net_notifiers(nb, net);
1899
1900 unlock:
1901         rtnl_unlock();
1902         up_write(&pernet_ops_rwsem);
1903         return err;
1904 }
1905 EXPORT_SYMBOL(unregister_netdevice_notifier);
1906
1907 static int __register_netdevice_notifier_net(struct net *net,
1908                                              struct notifier_block *nb,
1909                                              bool ignore_call_fail)
1910 {
1911         int err;
1912
1913         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1914         if (err)
1915                 return err;
1916         if (dev_boot_phase)
1917                 return 0;
1918
1919         err = call_netdevice_register_net_notifiers(nb, net);
1920         if (err && !ignore_call_fail)
1921                 goto chain_unregister;
1922
1923         return 0;
1924
1925 chain_unregister:
1926         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1927         return err;
1928 }
1929
1930 static int __unregister_netdevice_notifier_net(struct net *net,
1931                                                struct notifier_block *nb)
1932 {
1933         int err;
1934
1935         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1936         if (err)
1937                 return err;
1938
1939         call_netdevice_unregister_net_notifiers(nb, net);
1940         return 0;
1941 }
1942
1943 /**
1944  * register_netdevice_notifier_net - register a per-netns network notifier block
1945  * @net: network namespace
1946  * @nb: notifier
1947  *
1948  * Register a notifier to be called when network device events occur.
1949  * The notifier passed is linked into the kernel structures and must
1950  * not be reused until it has been unregistered. A negative errno code
1951  * is returned on a failure.
1952  *
1953  * When registered all registration and up events are replayed
1954  * to the new notifier to allow device to have a race free
1955  * view of the network device list.
1956  */
1957
1958 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1959 {
1960         int err;
1961
1962         rtnl_lock();
1963         err = __register_netdevice_notifier_net(net, nb, false);
1964         rtnl_unlock();
1965         return err;
1966 }
1967 EXPORT_SYMBOL(register_netdevice_notifier_net);
1968
1969 /**
1970  * unregister_netdevice_notifier_net - unregister a per-netns
1971  *                                     network notifier block
1972  * @net: network namespace
1973  * @nb: notifier
1974  *
1975  * Unregister a notifier previously registered by
1976  * register_netdevice_notifier(). The notifier is unlinked into the
1977  * kernel structures and may then be reused. A negative errno code
1978  * is returned on a failure.
1979  *
1980  * After unregistering unregister and down device events are synthesized
1981  * for all devices on the device list to the removed notifier to remove
1982  * the need for special case cleanup code.
1983  */
1984
1985 int unregister_netdevice_notifier_net(struct net *net,
1986                                       struct notifier_block *nb)
1987 {
1988         int err;
1989
1990         rtnl_lock();
1991         err = __unregister_netdevice_notifier_net(net, nb);
1992         rtnl_unlock();
1993         return err;
1994 }
1995 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1996
1997 int register_netdevice_notifier_dev_net(struct net_device *dev,
1998                                         struct notifier_block *nb,
1999                                         struct netdev_net_notifier *nn)
2000 {
2001         int err;
2002
2003         rtnl_lock();
2004         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2005         if (!err) {
2006                 nn->nb = nb;
2007                 list_add(&nn->list, &dev->net_notifier_list);
2008         }
2009         rtnl_unlock();
2010         return err;
2011 }
2012 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2013
2014 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2015                                           struct notifier_block *nb,
2016                                           struct netdev_net_notifier *nn)
2017 {
2018         int err;
2019
2020         rtnl_lock();
2021         list_del(&nn->list);
2022         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2023         rtnl_unlock();
2024         return err;
2025 }
2026 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2027
2028 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2029                                              struct net *net)
2030 {
2031         struct netdev_net_notifier *nn;
2032
2033         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2034                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2035                 __register_netdevice_notifier_net(net, nn->nb, true);
2036         }
2037 }
2038
2039 /**
2040  *      call_netdevice_notifiers_info - call all network notifier blocks
2041  *      @val: value passed unmodified to notifier function
2042  *      @info: notifier information data
2043  *
2044  *      Call all network notifier blocks.  Parameters and return value
2045  *      are as for raw_notifier_call_chain().
2046  */
2047
2048 static int call_netdevice_notifiers_info(unsigned long val,
2049                                          struct netdev_notifier_info *info)
2050 {
2051         struct net *net = dev_net(info->dev);
2052         int ret;
2053
2054         ASSERT_RTNL();
2055
2056         /* Run per-netns notifier block chain first, then run the global one.
2057          * Hopefully, one day, the global one is going to be removed after
2058          * all notifier block registrators get converted to be per-netns.
2059          */
2060         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2061         if (ret & NOTIFY_STOP_MASK)
2062                 return ret;
2063         return raw_notifier_call_chain(&netdev_chain, val, info);
2064 }
2065
2066 static int call_netdevice_notifiers_extack(unsigned long val,
2067                                            struct net_device *dev,
2068                                            struct netlink_ext_ack *extack)
2069 {
2070         struct netdev_notifier_info info = {
2071                 .dev = dev,
2072                 .extack = extack,
2073         };
2074
2075         return call_netdevice_notifiers_info(val, &info);
2076 }
2077
2078 /**
2079  *      call_netdevice_notifiers - call all network notifier blocks
2080  *      @val: value passed unmodified to notifier function
2081  *      @dev: net_device pointer passed unmodified to notifier function
2082  *
2083  *      Call all network notifier blocks.  Parameters and return value
2084  *      are as for raw_notifier_call_chain().
2085  */
2086
2087 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2088 {
2089         return call_netdevice_notifiers_extack(val, dev, NULL);
2090 }
2091 EXPORT_SYMBOL(call_netdevice_notifiers);
2092
2093 /**
2094  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2095  *      @val: value passed unmodified to notifier function
2096  *      @dev: net_device pointer passed unmodified to notifier function
2097  *      @arg: additional u32 argument passed to the notifier function
2098  *
2099  *      Call all network notifier blocks.  Parameters and return value
2100  *      are as for raw_notifier_call_chain().
2101  */
2102 static int call_netdevice_notifiers_mtu(unsigned long val,
2103                                         struct net_device *dev, u32 arg)
2104 {
2105         struct netdev_notifier_info_ext info = {
2106                 .info.dev = dev,
2107                 .ext.mtu = arg,
2108         };
2109
2110         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2111
2112         return call_netdevice_notifiers_info(val, &info.info);
2113 }
2114
2115 #ifdef CONFIG_NET_INGRESS
2116 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2117
2118 void net_inc_ingress_queue(void)
2119 {
2120         static_branch_inc(&ingress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2123
2124 void net_dec_ingress_queue(void)
2125 {
2126         static_branch_dec(&ingress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2129 #endif
2130
2131 #ifdef CONFIG_NET_EGRESS
2132 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2133
2134 void net_inc_egress_queue(void)
2135 {
2136         static_branch_inc(&egress_needed_key);
2137 }
2138 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2139
2140 void net_dec_egress_queue(void)
2141 {
2142         static_branch_dec(&egress_needed_key);
2143 }
2144 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2145 #endif
2146
2147 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2148 #ifdef CONFIG_JUMP_LABEL
2149 static atomic_t netstamp_needed_deferred;
2150 static atomic_t netstamp_wanted;
2151 static void netstamp_clear(struct work_struct *work)
2152 {
2153         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2154         int wanted;
2155
2156         wanted = atomic_add_return(deferred, &netstamp_wanted);
2157         if (wanted > 0)
2158                 static_branch_enable(&netstamp_needed_key);
2159         else
2160                 static_branch_disable(&netstamp_needed_key);
2161 }
2162 static DECLARE_WORK(netstamp_work, netstamp_clear);
2163 #endif
2164
2165 void net_enable_timestamp(void)
2166 {
2167 #ifdef CONFIG_JUMP_LABEL
2168         int wanted;
2169
2170         while (1) {
2171                 wanted = atomic_read(&netstamp_wanted);
2172                 if (wanted <= 0)
2173                         break;
2174                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2175                         return;
2176         }
2177         atomic_inc(&netstamp_needed_deferred);
2178         schedule_work(&netstamp_work);
2179 #else
2180         static_branch_inc(&netstamp_needed_key);
2181 #endif
2182 }
2183 EXPORT_SYMBOL(net_enable_timestamp);
2184
2185 void net_disable_timestamp(void)
2186 {
2187 #ifdef CONFIG_JUMP_LABEL
2188         int wanted;
2189
2190         while (1) {
2191                 wanted = atomic_read(&netstamp_wanted);
2192                 if (wanted <= 1)
2193                         break;
2194                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2195                         return;
2196         }
2197         atomic_dec(&netstamp_needed_deferred);
2198         schedule_work(&netstamp_work);
2199 #else
2200         static_branch_dec(&netstamp_needed_key);
2201 #endif
2202 }
2203 EXPORT_SYMBOL(net_disable_timestamp);
2204
2205 static inline void net_timestamp_set(struct sk_buff *skb)
2206 {
2207         skb->tstamp = 0;
2208         if (static_branch_unlikely(&netstamp_needed_key))
2209                 __net_timestamp(skb);
2210 }
2211
2212 #define net_timestamp_check(COND, SKB)                          \
2213         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2214                 if ((COND) && !(SKB)->tstamp)                   \
2215                         __net_timestamp(SKB);                   \
2216         }                                                       \
2217
2218 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2219 {
2220         unsigned int len;
2221
2222         if (!(dev->flags & IFF_UP))
2223                 return false;
2224
2225         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2226         if (skb->len <= len)
2227                 return true;
2228
2229         /* if TSO is enabled, we don't care about the length as the packet
2230          * could be forwarded without being segmented before
2231          */
2232         if (skb_is_gso(skb))
2233                 return true;
2234
2235         return false;
2236 }
2237 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2238
2239 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2240 {
2241         int ret = ____dev_forward_skb(dev, skb);
2242
2243         if (likely(!ret)) {
2244                 skb->protocol = eth_type_trans(skb, dev);
2245                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2246         }
2247
2248         return ret;
2249 }
2250 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2251
2252 /**
2253  * dev_forward_skb - loopback an skb to another netif
2254  *
2255  * @dev: destination network device
2256  * @skb: buffer to forward
2257  *
2258  * return values:
2259  *      NET_RX_SUCCESS  (no congestion)
2260  *      NET_RX_DROP     (packet was dropped, but freed)
2261  *
2262  * dev_forward_skb can be used for injecting an skb from the
2263  * start_xmit function of one device into the receive queue
2264  * of another device.
2265  *
2266  * The receiving device may be in another namespace, so
2267  * we have to clear all information in the skb that could
2268  * impact namespace isolation.
2269  */
2270 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2271 {
2272         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2273 }
2274 EXPORT_SYMBOL_GPL(dev_forward_skb);
2275
2276 static inline int deliver_skb(struct sk_buff *skb,
2277                               struct packet_type *pt_prev,
2278                               struct net_device *orig_dev)
2279 {
2280         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2281                 return -ENOMEM;
2282         refcount_inc(&skb->users);
2283         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2284 }
2285
2286 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2287                                           struct packet_type **pt,
2288                                           struct net_device *orig_dev,
2289                                           __be16 type,
2290                                           struct list_head *ptype_list)
2291 {
2292         struct packet_type *ptype, *pt_prev = *pt;
2293
2294         list_for_each_entry_rcu(ptype, ptype_list, list) {
2295                 if (ptype->type != type)
2296                         continue;
2297                 if (pt_prev)
2298                         deliver_skb(skb, pt_prev, orig_dev);
2299                 pt_prev = ptype;
2300         }
2301         *pt = pt_prev;
2302 }
2303
2304 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2305 {
2306         if (!ptype->af_packet_priv || !skb->sk)
2307                 return false;
2308
2309         if (ptype->id_match)
2310                 return ptype->id_match(ptype, skb->sk);
2311         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2312                 return true;
2313
2314         return false;
2315 }
2316
2317 /**
2318  * dev_nit_active - return true if any network interface taps are in use
2319  *
2320  * @dev: network device to check for the presence of taps
2321  */
2322 bool dev_nit_active(struct net_device *dev)
2323 {
2324         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2325 }
2326 EXPORT_SYMBOL_GPL(dev_nit_active);
2327
2328 /*
2329  *      Support routine. Sends outgoing frames to any network
2330  *      taps currently in use.
2331  */
2332
2333 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2334 {
2335         struct packet_type *ptype;
2336         struct sk_buff *skb2 = NULL;
2337         struct packet_type *pt_prev = NULL;
2338         struct list_head *ptype_list = &ptype_all;
2339
2340         rcu_read_lock();
2341 again:
2342         list_for_each_entry_rcu(ptype, ptype_list, list) {
2343                 if (ptype->ignore_outgoing)
2344                         continue;
2345
2346                 /* Never send packets back to the socket
2347                  * they originated from - MvS ([email protected])
2348                  */
2349                 if (skb_loop_sk(ptype, skb))
2350                         continue;
2351
2352                 if (pt_prev) {
2353                         deliver_skb(skb2, pt_prev, skb->dev);
2354                         pt_prev = ptype;
2355                         continue;
2356                 }
2357
2358                 /* need to clone skb, done only once */
2359                 skb2 = skb_clone(skb, GFP_ATOMIC);
2360                 if (!skb2)
2361                         goto out_unlock;
2362
2363                 net_timestamp_set(skb2);
2364
2365                 /* skb->nh should be correctly
2366                  * set by sender, so that the second statement is
2367                  * just protection against buggy protocols.
2368                  */
2369                 skb_reset_mac_header(skb2);
2370
2371                 if (skb_network_header(skb2) < skb2->data ||
2372                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2373                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2374                                              ntohs(skb2->protocol),
2375                                              dev->name);
2376                         skb_reset_network_header(skb2);
2377                 }
2378
2379                 skb2->transport_header = skb2->network_header;
2380                 skb2->pkt_type = PACKET_OUTGOING;
2381                 pt_prev = ptype;
2382         }
2383
2384         if (ptype_list == &ptype_all) {
2385                 ptype_list = &dev->ptype_all;
2386                 goto again;
2387         }
2388 out_unlock:
2389         if (pt_prev) {
2390                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2391                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2392                 else
2393                         kfree_skb(skb2);
2394         }
2395         rcu_read_unlock();
2396 }
2397 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2398
2399 /**
2400  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2401  * @dev: Network device
2402  * @txq: number of queues available
2403  *
2404  * If real_num_tx_queues is changed the tc mappings may no longer be
2405  * valid. To resolve this verify the tc mapping remains valid and if
2406  * not NULL the mapping. With no priorities mapping to this
2407  * offset/count pair it will no longer be used. In the worst case TC0
2408  * is invalid nothing can be done so disable priority mappings. If is
2409  * expected that drivers will fix this mapping if they can before
2410  * calling netif_set_real_num_tx_queues.
2411  */
2412 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2413 {
2414         int i;
2415         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2416
2417         /* If TC0 is invalidated disable TC mapping */
2418         if (tc->offset + tc->count > txq) {
2419                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2420                 dev->num_tc = 0;
2421                 return;
2422         }
2423
2424         /* Invalidated prio to tc mappings set to TC0 */
2425         for (i = 1; i < TC_BITMASK + 1; i++) {
2426                 int q = netdev_get_prio_tc_map(dev, i);
2427
2428                 tc = &dev->tc_to_txq[q];
2429                 if (tc->offset + tc->count > txq) {
2430                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2431                                 i, q);
2432                         netdev_set_prio_tc_map(dev, i, 0);
2433                 }
2434         }
2435 }
2436
2437 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2438 {
2439         if (dev->num_tc) {
2440                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2441                 int i;
2442
2443                 /* walk through the TCs and see if it falls into any of them */
2444                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2445                         if ((txq - tc->offset) < tc->count)
2446                                 return i;
2447                 }
2448
2449                 /* didn't find it, just return -1 to indicate no match */
2450                 return -1;
2451         }
2452
2453         return 0;
2454 }
2455 EXPORT_SYMBOL(netdev_txq_to_tc);
2456
2457 #ifdef CONFIG_XPS
2458 struct static_key xps_needed __read_mostly;
2459 EXPORT_SYMBOL(xps_needed);
2460 struct static_key xps_rxqs_needed __read_mostly;
2461 EXPORT_SYMBOL(xps_rxqs_needed);
2462 static DEFINE_MUTEX(xps_map_mutex);
2463 #define xmap_dereference(P)             \
2464         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2465
2466 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2467                              int tci, u16 index)
2468 {
2469         struct xps_map *map = NULL;
2470         int pos;
2471
2472         if (dev_maps)
2473                 map = xmap_dereference(dev_maps->attr_map[tci]);
2474         if (!map)
2475                 return false;
2476
2477         for (pos = map->len; pos--;) {
2478                 if (map->queues[pos] != index)
2479                         continue;
2480
2481                 if (map->len > 1) {
2482                         map->queues[pos] = map->queues[--map->len];
2483                         break;
2484                 }
2485
2486                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2487                 kfree_rcu(map, rcu);
2488                 return false;
2489         }
2490
2491         return true;
2492 }
2493
2494 static bool remove_xps_queue_cpu(struct net_device *dev,
2495                                  struct xps_dev_maps *dev_maps,
2496                                  int cpu, u16 offset, u16 count)
2497 {
2498         int num_tc = dev->num_tc ? : 1;
2499         bool active = false;
2500         int tci;
2501
2502         for (tci = cpu * num_tc; num_tc--; tci++) {
2503                 int i, j;
2504
2505                 for (i = count, j = offset; i--; j++) {
2506                         if (!remove_xps_queue(dev_maps, tci, j))
2507                                 break;
2508                 }
2509
2510                 active |= i < 0;
2511         }
2512
2513         return active;
2514 }
2515
2516 static void reset_xps_maps(struct net_device *dev,
2517                            struct xps_dev_maps *dev_maps,
2518                            bool is_rxqs_map)
2519 {
2520         if (is_rxqs_map) {
2521                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2522                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2523         } else {
2524                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2525         }
2526         static_key_slow_dec_cpuslocked(&xps_needed);
2527         kfree_rcu(dev_maps, rcu);
2528 }
2529
2530 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2531                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2532                            u16 offset, u16 count, bool is_rxqs_map)
2533 {
2534         bool active = false;
2535         int i, j;
2536
2537         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2538              j < nr_ids;)
2539                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2540                                                count);
2541         if (!active)
2542                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2543
2544         if (!is_rxqs_map) {
2545                 for (i = offset + (count - 1); count--; i--) {
2546                         netdev_queue_numa_node_write(
2547                                 netdev_get_tx_queue(dev, i),
2548                                 NUMA_NO_NODE);
2549                 }
2550         }
2551 }
2552
2553 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2554                                    u16 count)
2555 {
2556         const unsigned long *possible_mask = NULL;
2557         struct xps_dev_maps *dev_maps;
2558         unsigned int nr_ids;
2559
2560         if (!static_key_false(&xps_needed))
2561                 return;
2562
2563         cpus_read_lock();
2564         mutex_lock(&xps_map_mutex);
2565
2566         if (static_key_false(&xps_rxqs_needed)) {
2567                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2568                 if (dev_maps) {
2569                         nr_ids = dev->num_rx_queues;
2570                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2571                                        offset, count, true);
2572                 }
2573         }
2574
2575         dev_maps = xmap_dereference(dev->xps_cpus_map);
2576         if (!dev_maps)
2577                 goto out_no_maps;
2578
2579         if (num_possible_cpus() > 1)
2580                 possible_mask = cpumask_bits(cpu_possible_mask);
2581         nr_ids = nr_cpu_ids;
2582         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2583                        false);
2584
2585 out_no_maps:
2586         mutex_unlock(&xps_map_mutex);
2587         cpus_read_unlock();
2588 }
2589
2590 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2591 {
2592         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2593 }
2594
2595 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2596                                       u16 index, bool is_rxqs_map)
2597 {
2598         struct xps_map *new_map;
2599         int alloc_len = XPS_MIN_MAP_ALLOC;
2600         int i, pos;
2601
2602         for (pos = 0; map && pos < map->len; pos++) {
2603                 if (map->queues[pos] != index)
2604                         continue;
2605                 return map;
2606         }
2607
2608         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2609         if (map) {
2610                 if (pos < map->alloc_len)
2611                         return map;
2612
2613                 alloc_len = map->alloc_len * 2;
2614         }
2615
2616         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2617          *  map
2618          */
2619         if (is_rxqs_map)
2620                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2621         else
2622                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2623                                        cpu_to_node(attr_index));
2624         if (!new_map)
2625                 return NULL;
2626
2627         for (i = 0; i < pos; i++)
2628                 new_map->queues[i] = map->queues[i];
2629         new_map->alloc_len = alloc_len;
2630         new_map->len = pos;
2631
2632         return new_map;
2633 }
2634
2635 /* Must be called under cpus_read_lock */
2636 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2637                           u16 index, bool is_rxqs_map)
2638 {
2639         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2640         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2641         int i, j, tci, numa_node_id = -2;
2642         int maps_sz, num_tc = 1, tc = 0;
2643         struct xps_map *map, *new_map;
2644         bool active = false;
2645         unsigned int nr_ids;
2646
2647         if (dev->num_tc) {
2648                 /* Do not allow XPS on subordinate device directly */
2649                 num_tc = dev->num_tc;
2650                 if (num_tc < 0)
2651                         return -EINVAL;
2652
2653                 /* If queue belongs to subordinate dev use its map */
2654                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2655
2656                 tc = netdev_txq_to_tc(dev, index);
2657                 if (tc < 0)
2658                         return -EINVAL;
2659         }
2660
2661         mutex_lock(&xps_map_mutex);
2662         if (is_rxqs_map) {
2663                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2664                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2665                 nr_ids = dev->num_rx_queues;
2666         } else {
2667                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2668                 if (num_possible_cpus() > 1) {
2669                         online_mask = cpumask_bits(cpu_online_mask);
2670                         possible_mask = cpumask_bits(cpu_possible_mask);
2671                 }
2672                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2673                 nr_ids = nr_cpu_ids;
2674         }
2675
2676         if (maps_sz < L1_CACHE_BYTES)
2677                 maps_sz = L1_CACHE_BYTES;
2678
2679         /* allocate memory for queue storage */
2680         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2681              j < nr_ids;) {
2682                 if (!new_dev_maps)
2683                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2684                 if (!new_dev_maps) {
2685                         mutex_unlock(&xps_map_mutex);
2686                         return -ENOMEM;
2687                 }
2688
2689                 tci = j * num_tc + tc;
2690                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2691                                  NULL;
2692
2693                 map = expand_xps_map(map, j, index, is_rxqs_map);
2694                 if (!map)
2695                         goto error;
2696
2697                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2698         }
2699
2700         if (!new_dev_maps)
2701                 goto out_no_new_maps;
2702
2703         if (!dev_maps) {
2704                 /* Increment static keys at most once per type */
2705                 static_key_slow_inc_cpuslocked(&xps_needed);
2706                 if (is_rxqs_map)
2707                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2708         }
2709
2710         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2711              j < nr_ids;) {
2712                 /* copy maps belonging to foreign traffic classes */
2713                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2714                         /* fill in the new device map from the old device map */
2715                         map = xmap_dereference(dev_maps->attr_map[tci]);
2716                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2717                 }
2718
2719                 /* We need to explicitly update tci as prevous loop
2720                  * could break out early if dev_maps is NULL.
2721                  */
2722                 tci = j * num_tc + tc;
2723
2724                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2725                     netif_attr_test_online(j, online_mask, nr_ids)) {
2726                         /* add tx-queue to CPU/rx-queue maps */
2727                         int pos = 0;
2728
2729                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2730                         while ((pos < map->len) && (map->queues[pos] != index))
2731                                 pos++;
2732
2733                         if (pos == map->len)
2734                                 map->queues[map->len++] = index;
2735 #ifdef CONFIG_NUMA
2736                         if (!is_rxqs_map) {
2737                                 if (numa_node_id == -2)
2738                                         numa_node_id = cpu_to_node(j);
2739                                 else if (numa_node_id != cpu_to_node(j))
2740                                         numa_node_id = -1;
2741                         }
2742 #endif
2743                 } else if (dev_maps) {
2744                         /* fill in the new device map from the old device map */
2745                         map = xmap_dereference(dev_maps->attr_map[tci]);
2746                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2747                 }
2748
2749                 /* copy maps belonging to foreign traffic classes */
2750                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2751                         /* fill in the new device map from the old device map */
2752                         map = xmap_dereference(dev_maps->attr_map[tci]);
2753                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2754                 }
2755         }
2756
2757         if (is_rxqs_map)
2758                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2759         else
2760                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2761
2762         /* Cleanup old maps */
2763         if (!dev_maps)
2764                 goto out_no_old_maps;
2765
2766         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2767              j < nr_ids;) {
2768                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2769                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2770                         map = xmap_dereference(dev_maps->attr_map[tci]);
2771                         if (map && map != new_map)
2772                                 kfree_rcu(map, rcu);
2773                 }
2774         }
2775
2776         kfree_rcu(dev_maps, rcu);
2777
2778 out_no_old_maps:
2779         dev_maps = new_dev_maps;
2780         active = true;
2781
2782 out_no_new_maps:
2783         if (!is_rxqs_map) {
2784                 /* update Tx queue numa node */
2785                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2786                                              (numa_node_id >= 0) ?
2787                                              numa_node_id : NUMA_NO_NODE);
2788         }
2789
2790         if (!dev_maps)
2791                 goto out_no_maps;
2792
2793         /* removes tx-queue from unused CPUs/rx-queues */
2794         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2795              j < nr_ids;) {
2796                 for (i = tc, tci = j * num_tc; i--; tci++)
2797                         active |= remove_xps_queue(dev_maps, tci, index);
2798                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2799                     !netif_attr_test_online(j, online_mask, nr_ids))
2800                         active |= remove_xps_queue(dev_maps, tci, index);
2801                 for (i = num_tc - tc, tci++; --i; tci++)
2802                         active |= remove_xps_queue(dev_maps, tci, index);
2803         }
2804
2805         /* free map if not active */
2806         if (!active)
2807                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2808
2809 out_no_maps:
2810         mutex_unlock(&xps_map_mutex);
2811
2812         return 0;
2813 error:
2814         /* remove any maps that we added */
2815         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2816              j < nr_ids;) {
2817                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2818                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819                         map = dev_maps ?
2820                               xmap_dereference(dev_maps->attr_map[tci]) :
2821                               NULL;
2822                         if (new_map && new_map != map)
2823                                 kfree(new_map);
2824                 }
2825         }
2826
2827         mutex_unlock(&xps_map_mutex);
2828
2829         kfree(new_dev_maps);
2830         return -ENOMEM;
2831 }
2832 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2833
2834 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2835                         u16 index)
2836 {
2837         int ret;
2838
2839         cpus_read_lock();
2840         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2841         cpus_read_unlock();
2842
2843         return ret;
2844 }
2845 EXPORT_SYMBOL(netif_set_xps_queue);
2846
2847 #endif
2848 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2849 {
2850         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2851
2852         /* Unbind any subordinate channels */
2853         while (txq-- != &dev->_tx[0]) {
2854                 if (txq->sb_dev)
2855                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2856         }
2857 }
2858
2859 void netdev_reset_tc(struct net_device *dev)
2860 {
2861 #ifdef CONFIG_XPS
2862         netif_reset_xps_queues_gt(dev, 0);
2863 #endif
2864         netdev_unbind_all_sb_channels(dev);
2865
2866         /* Reset TC configuration of device */
2867         dev->num_tc = 0;
2868         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2869         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2870 }
2871 EXPORT_SYMBOL(netdev_reset_tc);
2872
2873 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2874 {
2875         if (tc >= dev->num_tc)
2876                 return -EINVAL;
2877
2878 #ifdef CONFIG_XPS
2879         netif_reset_xps_queues(dev, offset, count);
2880 #endif
2881         dev->tc_to_txq[tc].count = count;
2882         dev->tc_to_txq[tc].offset = offset;
2883         return 0;
2884 }
2885 EXPORT_SYMBOL(netdev_set_tc_queue);
2886
2887 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2888 {
2889         if (num_tc > TC_MAX_QUEUE)
2890                 return -EINVAL;
2891
2892 #ifdef CONFIG_XPS
2893         netif_reset_xps_queues_gt(dev, 0);
2894 #endif
2895         netdev_unbind_all_sb_channels(dev);
2896
2897         dev->num_tc = num_tc;
2898         return 0;
2899 }
2900 EXPORT_SYMBOL(netdev_set_num_tc);
2901
2902 void netdev_unbind_sb_channel(struct net_device *dev,
2903                               struct net_device *sb_dev)
2904 {
2905         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2906
2907 #ifdef CONFIG_XPS
2908         netif_reset_xps_queues_gt(sb_dev, 0);
2909 #endif
2910         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2911         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2912
2913         while (txq-- != &dev->_tx[0]) {
2914                 if (txq->sb_dev == sb_dev)
2915                         txq->sb_dev = NULL;
2916         }
2917 }
2918 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2919
2920 int netdev_bind_sb_channel_queue(struct net_device *dev,
2921                                  struct net_device *sb_dev,
2922                                  u8 tc, u16 count, u16 offset)
2923 {
2924         /* Make certain the sb_dev and dev are already configured */
2925         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2926                 return -EINVAL;
2927
2928         /* We cannot hand out queues we don't have */
2929         if ((offset + count) > dev->real_num_tx_queues)
2930                 return -EINVAL;
2931
2932         /* Record the mapping */
2933         sb_dev->tc_to_txq[tc].count = count;
2934         sb_dev->tc_to_txq[tc].offset = offset;
2935
2936         /* Provide a way for Tx queue to find the tc_to_txq map or
2937          * XPS map for itself.
2938          */
2939         while (count--)
2940                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2941
2942         return 0;
2943 }
2944 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2945
2946 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2947 {
2948         /* Do not use a multiqueue device to represent a subordinate channel */
2949         if (netif_is_multiqueue(dev))
2950                 return -ENODEV;
2951
2952         /* We allow channels 1 - 32767 to be used for subordinate channels.
2953          * Channel 0 is meant to be "native" mode and used only to represent
2954          * the main root device. We allow writing 0 to reset the device back
2955          * to normal mode after being used as a subordinate channel.
2956          */
2957         if (channel > S16_MAX)
2958                 return -EINVAL;
2959
2960         dev->num_tc = -channel;
2961
2962         return 0;
2963 }
2964 EXPORT_SYMBOL(netdev_set_sb_channel);
2965
2966 /*
2967  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2968  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2969  */
2970 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2971 {
2972         bool disabling;
2973         int rc;
2974
2975         disabling = txq < dev->real_num_tx_queues;
2976
2977         if (txq < 1 || txq > dev->num_tx_queues)
2978                 return -EINVAL;
2979
2980         if (dev->reg_state == NETREG_REGISTERED ||
2981             dev->reg_state == NETREG_UNREGISTERING) {
2982                 ASSERT_RTNL();
2983
2984                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2985                                                   txq);
2986                 if (rc)
2987                         return rc;
2988
2989                 if (dev->num_tc)
2990                         netif_setup_tc(dev, txq);
2991
2992                 dev->real_num_tx_queues = txq;
2993
2994                 if (disabling) {
2995                         synchronize_net();
2996                         qdisc_reset_all_tx_gt(dev, txq);
2997 #ifdef CONFIG_XPS
2998                         netif_reset_xps_queues_gt(dev, txq);
2999 #endif
3000                 }
3001         } else {
3002                 dev->real_num_tx_queues = txq;
3003         }
3004
3005         return 0;
3006 }
3007 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3008
3009 #ifdef CONFIG_SYSFS
3010 /**
3011  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3012  *      @dev: Network device
3013  *      @rxq: Actual number of RX queues
3014  *
3015  *      This must be called either with the rtnl_lock held or before
3016  *      registration of the net device.  Returns 0 on success, or a
3017  *      negative error code.  If called before registration, it always
3018  *      succeeds.
3019  */
3020 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3021 {
3022         int rc;
3023
3024         if (rxq < 1 || rxq > dev->num_rx_queues)
3025                 return -EINVAL;
3026
3027         if (dev->reg_state == NETREG_REGISTERED) {
3028                 ASSERT_RTNL();
3029
3030                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3031                                                   rxq);
3032                 if (rc)
3033                         return rc;
3034         }
3035
3036         dev->real_num_rx_queues = rxq;
3037         return 0;
3038 }
3039 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3040 #endif
3041
3042 /**
3043  * netif_get_num_default_rss_queues - default number of RSS queues
3044  *
3045  * This routine should set an upper limit on the number of RSS queues
3046  * used by default by multiqueue devices.
3047  */
3048 int netif_get_num_default_rss_queues(void)
3049 {
3050         return is_kdump_kernel() ?
3051                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3052 }
3053 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3054
3055 static void __netif_reschedule(struct Qdisc *q)
3056 {
3057         struct softnet_data *sd;
3058         unsigned long flags;
3059
3060         local_irq_save(flags);
3061         sd = this_cpu_ptr(&softnet_data);
3062         q->next_sched = NULL;
3063         *sd->output_queue_tailp = q;
3064         sd->output_queue_tailp = &q->next_sched;
3065         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3066         local_irq_restore(flags);
3067 }
3068
3069 void __netif_schedule(struct Qdisc *q)
3070 {
3071         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3072                 __netif_reschedule(q);
3073 }
3074 EXPORT_SYMBOL(__netif_schedule);
3075
3076 struct dev_kfree_skb_cb {
3077         enum skb_free_reason reason;
3078 };
3079
3080 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3081 {
3082         return (struct dev_kfree_skb_cb *)skb->cb;
3083 }
3084
3085 void netif_schedule_queue(struct netdev_queue *txq)
3086 {
3087         rcu_read_lock();
3088         if (!netif_xmit_stopped(txq)) {
3089                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3090
3091                 __netif_schedule(q);
3092         }
3093         rcu_read_unlock();
3094 }
3095 EXPORT_SYMBOL(netif_schedule_queue);
3096
3097 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3098 {
3099         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3100                 struct Qdisc *q;
3101
3102                 rcu_read_lock();
3103                 q = rcu_dereference(dev_queue->qdisc);
3104                 __netif_schedule(q);
3105                 rcu_read_unlock();
3106         }
3107 }
3108 EXPORT_SYMBOL(netif_tx_wake_queue);
3109
3110 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3111 {
3112         unsigned long flags;
3113
3114         if (unlikely(!skb))
3115                 return;
3116
3117         if (likely(refcount_read(&skb->users) == 1)) {
3118                 smp_rmb();
3119                 refcount_set(&skb->users, 0);
3120         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3121                 return;
3122         }
3123         get_kfree_skb_cb(skb)->reason = reason;
3124         local_irq_save(flags);
3125         skb->next = __this_cpu_read(softnet_data.completion_queue);
3126         __this_cpu_write(softnet_data.completion_queue, skb);
3127         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3128         local_irq_restore(flags);
3129 }
3130 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3131
3132 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3133 {
3134         if (in_irq() || irqs_disabled())
3135                 __dev_kfree_skb_irq(skb, reason);
3136         else
3137                 dev_kfree_skb(skb);
3138 }
3139 EXPORT_SYMBOL(__dev_kfree_skb_any);
3140
3141
3142 /**
3143  * netif_device_detach - mark device as removed
3144  * @dev: network device
3145  *
3146  * Mark device as removed from system and therefore no longer available.
3147  */
3148 void netif_device_detach(struct net_device *dev)
3149 {
3150         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3151             netif_running(dev)) {
3152                 netif_tx_stop_all_queues(dev);
3153         }
3154 }
3155 EXPORT_SYMBOL(netif_device_detach);
3156
3157 /**
3158  * netif_device_attach - mark device as attached
3159  * @dev: network device
3160  *
3161  * Mark device as attached from system and restart if needed.
3162  */
3163 void netif_device_attach(struct net_device *dev)
3164 {
3165         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3166             netif_running(dev)) {
3167                 netif_tx_wake_all_queues(dev);
3168                 __netdev_watchdog_up(dev);
3169         }
3170 }
3171 EXPORT_SYMBOL(netif_device_attach);
3172
3173 /*
3174  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3175  * to be used as a distribution range.
3176  */
3177 static u16 skb_tx_hash(const struct net_device *dev,
3178                        const struct net_device *sb_dev,
3179                        struct sk_buff *skb)
3180 {
3181         u32 hash;
3182         u16 qoffset = 0;
3183         u16 qcount = dev->real_num_tx_queues;
3184
3185         if (dev->num_tc) {
3186                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3187
3188                 qoffset = sb_dev->tc_to_txq[tc].offset;
3189                 qcount = sb_dev->tc_to_txq[tc].count;
3190         }
3191
3192         if (skb_rx_queue_recorded(skb)) {
3193                 hash = skb_get_rx_queue(skb);
3194                 if (hash >= qoffset)
3195                         hash -= qoffset;
3196                 while (unlikely(hash >= qcount))
3197                         hash -= qcount;
3198                 return hash + qoffset;
3199         }
3200
3201         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3202 }
3203
3204 static void skb_warn_bad_offload(const struct sk_buff *skb)
3205 {
3206         static const netdev_features_t null_features;
3207         struct net_device *dev = skb->dev;
3208         const char *name = "";
3209
3210         if (!net_ratelimit())
3211                 return;
3212
3213         if (dev) {
3214                 if (dev->dev.parent)
3215                         name = dev_driver_string(dev->dev.parent);
3216                 else
3217                         name = netdev_name(dev);
3218         }
3219         skb_dump(KERN_WARNING, skb, false);
3220         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3221              name, dev ? &dev->features : &null_features,
3222              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3223 }
3224
3225 /*
3226  * Invalidate hardware checksum when packet is to be mangled, and
3227  * complete checksum manually on outgoing path.
3228  */
3229 int skb_checksum_help(struct sk_buff *skb)
3230 {
3231         __wsum csum;
3232         int ret = 0, offset;
3233
3234         if (skb->ip_summed == CHECKSUM_COMPLETE)
3235                 goto out_set_summed;
3236
3237         if (unlikely(skb_is_gso(skb))) {
3238                 skb_warn_bad_offload(skb);
3239                 return -EINVAL;
3240         }
3241
3242         /* Before computing a checksum, we should make sure no frag could
3243          * be modified by an external entity : checksum could be wrong.
3244          */
3245         if (skb_has_shared_frag(skb)) {
3246                 ret = __skb_linearize(skb);
3247                 if (ret)
3248                         goto out;
3249         }
3250
3251         offset = skb_checksum_start_offset(skb);
3252         BUG_ON(offset >= skb_headlen(skb));
3253         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3254
3255         offset += skb->csum_offset;
3256         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3257
3258         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3259         if (ret)
3260                 goto out;
3261
3262         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3263 out_set_summed:
3264         skb->ip_summed = CHECKSUM_NONE;
3265 out:
3266         return ret;
3267 }
3268 EXPORT_SYMBOL(skb_checksum_help);
3269
3270 int skb_crc32c_csum_help(struct sk_buff *skb)
3271 {
3272         __le32 crc32c_csum;
3273         int ret = 0, offset, start;
3274
3275         if (skb->ip_summed != CHECKSUM_PARTIAL)
3276                 goto out;
3277
3278         if (unlikely(skb_is_gso(skb)))
3279                 goto out;
3280
3281         /* Before computing a checksum, we should make sure no frag could
3282          * be modified by an external entity : checksum could be wrong.
3283          */
3284         if (unlikely(skb_has_shared_frag(skb))) {
3285                 ret = __skb_linearize(skb);
3286                 if (ret)
3287                         goto out;
3288         }
3289         start = skb_checksum_start_offset(skb);
3290         offset = start + offsetof(struct sctphdr, checksum);
3291         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3292                 ret = -EINVAL;
3293                 goto out;
3294         }
3295
3296         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3297         if (ret)
3298                 goto out;
3299
3300         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3301                                                   skb->len - start, ~(__u32)0,
3302                                                   crc32c_csum_stub));
3303         *(__le32 *)(skb->data + offset) = crc32c_csum;
3304         skb->ip_summed = CHECKSUM_NONE;
3305         skb->csum_not_inet = 0;
3306 out:
3307         return ret;
3308 }
3309
3310 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3311 {
3312         __be16 type = skb->protocol;
3313
3314         /* Tunnel gso handlers can set protocol to ethernet. */
3315         if (type == htons(ETH_P_TEB)) {
3316                 struct ethhdr *eth;
3317
3318                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3319                         return 0;
3320
3321                 eth = (struct ethhdr *)skb->data;
3322                 type = eth->h_proto;
3323         }
3324
3325         return __vlan_get_protocol(skb, type, depth);
3326 }
3327
3328 /**
3329  *      skb_mac_gso_segment - mac layer segmentation handler.
3330  *      @skb: buffer to segment
3331  *      @features: features for the output path (see dev->features)
3332  */
3333 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3334                                     netdev_features_t features)
3335 {
3336         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3337         struct packet_offload *ptype;
3338         int vlan_depth = skb->mac_len;
3339         __be16 type = skb_network_protocol(skb, &vlan_depth);
3340
3341         if (unlikely(!type))
3342                 return ERR_PTR(-EINVAL);
3343
3344         __skb_pull(skb, vlan_depth);
3345
3346         rcu_read_lock();
3347         list_for_each_entry_rcu(ptype, &offload_base, list) {
3348                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3349                         segs = ptype->callbacks.gso_segment(skb, features);
3350                         break;
3351                 }
3352         }
3353         rcu_read_unlock();
3354
3355         __skb_push(skb, skb->data - skb_mac_header(skb));
3356
3357         return segs;
3358 }
3359 EXPORT_SYMBOL(skb_mac_gso_segment);
3360
3361
3362 /* openvswitch calls this on rx path, so we need a different check.
3363  */
3364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3365 {
3366         if (tx_path)
3367                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3368                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3369
3370         return skb->ip_summed == CHECKSUM_NONE;
3371 }
3372
3373 /**
3374  *      __skb_gso_segment - Perform segmentation on skb.
3375  *      @skb: buffer to segment
3376  *      @features: features for the output path (see dev->features)
3377  *      @tx_path: whether it is called in TX path
3378  *
3379  *      This function segments the given skb and returns a list of segments.
3380  *
3381  *      It may return NULL if the skb requires no segmentation.  This is
3382  *      only possible when GSO is used for verifying header integrity.
3383  *
3384  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3385  */
3386 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3387                                   netdev_features_t features, bool tx_path)
3388 {
3389         struct sk_buff *segs;
3390
3391         if (unlikely(skb_needs_check(skb, tx_path))) {
3392                 int err;
3393
3394                 /* We're going to init ->check field in TCP or UDP header */
3395                 err = skb_cow_head(skb, 0);
3396                 if (err < 0)
3397                         return ERR_PTR(err);
3398         }
3399
3400         /* Only report GSO partial support if it will enable us to
3401          * support segmentation on this frame without needing additional
3402          * work.
3403          */
3404         if (features & NETIF_F_GSO_PARTIAL) {
3405                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3406                 struct net_device *dev = skb->dev;
3407
3408                 partial_features |= dev->features & dev->gso_partial_features;
3409                 if (!skb_gso_ok(skb, features | partial_features))
3410                         features &= ~NETIF_F_GSO_PARTIAL;
3411         }
3412
3413         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3414                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3415
3416         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3417         SKB_GSO_CB(skb)->encap_level = 0;
3418
3419         skb_reset_mac_header(skb);
3420         skb_reset_mac_len(skb);
3421
3422         segs = skb_mac_gso_segment(skb, features);
3423
3424         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3425                 skb_warn_bad_offload(skb);
3426
3427         return segs;
3428 }
3429 EXPORT_SYMBOL(__skb_gso_segment);
3430
3431 /* Take action when hardware reception checksum errors are detected. */
3432 #ifdef CONFIG_BUG
3433 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3434 {
3435         if (net_ratelimit()) {
3436                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3437                 skb_dump(KERN_ERR, skb, true);
3438                 dump_stack();
3439         }
3440 }
3441 EXPORT_SYMBOL(netdev_rx_csum_fault);
3442 #endif
3443
3444 /* XXX: check that highmem exists at all on the given machine. */
3445 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3446 {
3447 #ifdef CONFIG_HIGHMEM
3448         int i;
3449
3450         if (!(dev->features & NETIF_F_HIGHDMA)) {
3451                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3452                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3453
3454                         if (PageHighMem(skb_frag_page(frag)))
3455                                 return 1;
3456                 }
3457         }
3458 #endif
3459         return 0;
3460 }
3461
3462 /* If MPLS offload request, verify we are testing hardware MPLS features
3463  * instead of standard features for the netdev.
3464  */
3465 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3466 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3467                                            netdev_features_t features,
3468                                            __be16 type)
3469 {
3470         if (eth_p_mpls(type))
3471                 features &= skb->dev->mpls_features;
3472
3473         return features;
3474 }
3475 #else
3476 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3477                                            netdev_features_t features,
3478                                            __be16 type)
3479 {
3480         return features;
3481 }
3482 #endif
3483
3484 static netdev_features_t harmonize_features(struct sk_buff *skb,
3485         netdev_features_t features)
3486 {
3487         __be16 type;
3488
3489         type = skb_network_protocol(skb, NULL);
3490         features = net_mpls_features(skb, features, type);
3491
3492         if (skb->ip_summed != CHECKSUM_NONE &&
3493             !can_checksum_protocol(features, type)) {
3494                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3495         }
3496         if (illegal_highdma(skb->dev, skb))
3497                 features &= ~NETIF_F_SG;
3498
3499         return features;
3500 }
3501
3502 netdev_features_t passthru_features_check(struct sk_buff *skb,
3503                                           struct net_device *dev,
3504                                           netdev_features_t features)
3505 {
3506         return features;
3507 }
3508 EXPORT_SYMBOL(passthru_features_check);
3509
3510 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3511                                              struct net_device *dev,
3512                                              netdev_features_t features)
3513 {
3514         return vlan_features_check(skb, features);
3515 }
3516
3517 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3518                                             struct net_device *dev,
3519                                             netdev_features_t features)
3520 {
3521         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3522
3523         if (gso_segs > dev->gso_max_segs)
3524                 return features & ~NETIF_F_GSO_MASK;
3525
3526         if (!skb_shinfo(skb)->gso_type) {
3527                 skb_warn_bad_offload(skb);
3528                 return features & ~NETIF_F_GSO_MASK;
3529         }
3530
3531         /* Support for GSO partial features requires software
3532          * intervention before we can actually process the packets
3533          * so we need to strip support for any partial features now
3534          * and we can pull them back in after we have partially
3535          * segmented the frame.
3536          */
3537         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3538                 features &= ~dev->gso_partial_features;
3539
3540         /* Make sure to clear the IPv4 ID mangling feature if the
3541          * IPv4 header has the potential to be fragmented.
3542          */
3543         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3544                 struct iphdr *iph = skb->encapsulation ?
3545                                     inner_ip_hdr(skb) : ip_hdr(skb);
3546
3547                 if (!(iph->frag_off & htons(IP_DF)))
3548                         features &= ~NETIF_F_TSO_MANGLEID;
3549         }
3550
3551         return features;
3552 }
3553
3554 netdev_features_t netif_skb_features(struct sk_buff *skb)
3555 {
3556         struct net_device *dev = skb->dev;
3557         netdev_features_t features = dev->features;
3558
3559         if (skb_is_gso(skb))
3560                 features = gso_features_check(skb, dev, features);
3561
3562         /* If encapsulation offload request, verify we are testing
3563          * hardware encapsulation features instead of standard
3564          * features for the netdev
3565          */
3566         if (skb->encapsulation)
3567                 features &= dev->hw_enc_features;
3568
3569         if (skb_vlan_tagged(skb))
3570                 features = netdev_intersect_features(features,
3571                                                      dev->vlan_features |
3572                                                      NETIF_F_HW_VLAN_CTAG_TX |
3573                                                      NETIF_F_HW_VLAN_STAG_TX);
3574
3575         if (dev->netdev_ops->ndo_features_check)
3576                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3577                                                                 features);
3578         else
3579                 features &= dflt_features_check(skb, dev, features);
3580
3581         return harmonize_features(skb, features);
3582 }
3583 EXPORT_SYMBOL(netif_skb_features);
3584
3585 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3586                     struct netdev_queue *txq, bool more)
3587 {
3588         unsigned int len;
3589         int rc;
3590
3591         if (dev_nit_active(dev))
3592                 dev_queue_xmit_nit(skb, dev);
3593
3594         len = skb->len;
3595         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3596         trace_net_dev_start_xmit(skb, dev);
3597         rc = netdev_start_xmit(skb, dev, txq, more);
3598         trace_net_dev_xmit(skb, rc, dev, len);
3599
3600         return rc;
3601 }
3602
3603 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3604                                     struct netdev_queue *txq, int *ret)
3605 {
3606         struct sk_buff *skb = first;
3607         int rc = NETDEV_TX_OK;
3608
3609         while (skb) {
3610                 struct sk_buff *next = skb->next;
3611
3612                 skb_mark_not_on_list(skb);
3613                 rc = xmit_one(skb, dev, txq, next != NULL);
3614                 if (unlikely(!dev_xmit_complete(rc))) {
3615                         skb->next = next;
3616                         goto out;
3617                 }
3618
3619                 skb = next;
3620                 if (netif_tx_queue_stopped(txq) && skb) {
3621                         rc = NETDEV_TX_BUSY;
3622                         break;
3623                 }
3624         }
3625
3626 out:
3627         *ret = rc;
3628         return skb;
3629 }
3630
3631 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3632                                           netdev_features_t features)
3633 {
3634         if (skb_vlan_tag_present(skb) &&
3635             !vlan_hw_offload_capable(features, skb->vlan_proto))
3636                 skb = __vlan_hwaccel_push_inside(skb);
3637         return skb;
3638 }
3639
3640 int skb_csum_hwoffload_help(struct sk_buff *skb,
3641                             const netdev_features_t features)
3642 {
3643         if (unlikely(skb_csum_is_sctp(skb)))
3644                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3645                         skb_crc32c_csum_help(skb);
3646
3647         if (features & NETIF_F_HW_CSUM)
3648                 return 0;
3649
3650         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3651                 switch (skb->csum_offset) {
3652                 case offsetof(struct tcphdr, check):
3653                 case offsetof(struct udphdr, check):
3654                         return 0;
3655                 }
3656         }
3657
3658         return skb_checksum_help(skb);
3659 }
3660 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3661
3662 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3663 {
3664         netdev_features_t features;
3665
3666         features = netif_skb_features(skb);
3667         skb = validate_xmit_vlan(skb, features);
3668         if (unlikely(!skb))
3669                 goto out_null;
3670
3671         skb = sk_validate_xmit_skb(skb, dev);
3672         if (unlikely(!skb))
3673                 goto out_null;
3674
3675         if (netif_needs_gso(skb, features)) {
3676                 struct sk_buff *segs;
3677
3678                 segs = skb_gso_segment(skb, features);
3679                 if (IS_ERR(segs)) {
3680                         goto out_kfree_skb;
3681                 } else if (segs) {
3682                         consume_skb(skb);
3683                         skb = segs;
3684                 }
3685         } else {
3686                 if (skb_needs_linearize(skb, features) &&
3687                     __skb_linearize(skb))
3688                         goto out_kfree_skb;
3689
3690                 /* If packet is not checksummed and device does not
3691                  * support checksumming for this protocol, complete
3692                  * checksumming here.
3693                  */
3694                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3695                         if (skb->encapsulation)
3696                                 skb_set_inner_transport_header(skb,
3697                                                                skb_checksum_start_offset(skb));
3698                         else
3699                                 skb_set_transport_header(skb,
3700                                                          skb_checksum_start_offset(skb));
3701                         if (skb_csum_hwoffload_help(skb, features))
3702                                 goto out_kfree_skb;
3703                 }
3704         }
3705
3706         skb = validate_xmit_xfrm(skb, features, again);
3707
3708         return skb;
3709
3710 out_kfree_skb:
3711         kfree_skb(skb);
3712 out_null:
3713         atomic_long_inc(&dev->tx_dropped);
3714         return NULL;
3715 }
3716
3717 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3718 {
3719         struct sk_buff *next, *head = NULL, *tail;
3720
3721         for (; skb != NULL; skb = next) {
3722                 next = skb->next;
3723                 skb_mark_not_on_list(skb);
3724
3725                 /* in case skb wont be segmented, point to itself */
3726                 skb->prev = skb;
3727
3728                 skb = validate_xmit_skb(skb, dev, again);
3729                 if (!skb)
3730                         continue;
3731
3732                 if (!head)
3733                         head = skb;
3734                 else
3735                         tail->next = skb;
3736                 /* If skb was segmented, skb->prev points to
3737                  * the last segment. If not, it still contains skb.
3738                  */
3739                 tail = skb->prev;
3740         }
3741         return head;
3742 }
3743 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3744
3745 static void qdisc_pkt_len_init(struct sk_buff *skb)
3746 {
3747         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3748
3749         qdisc_skb_cb(skb)->pkt_len = skb->len;
3750
3751         /* To get more precise estimation of bytes sent on wire,
3752          * we add to pkt_len the headers size of all segments
3753          */
3754         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3755                 unsigned int hdr_len;
3756                 u16 gso_segs = shinfo->gso_segs;
3757
3758                 /* mac layer + network layer */
3759                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3760
3761                 /* + transport layer */
3762                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3763                         const struct tcphdr *th;
3764                         struct tcphdr _tcphdr;
3765
3766                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3767                                                 sizeof(_tcphdr), &_tcphdr);
3768                         if (likely(th))
3769                                 hdr_len += __tcp_hdrlen(th);
3770                 } else {
3771                         struct udphdr _udphdr;
3772
3773                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3774                                                sizeof(_udphdr), &_udphdr))
3775                                 hdr_len += sizeof(struct udphdr);
3776                 }
3777
3778                 if (shinfo->gso_type & SKB_GSO_DODGY)
3779                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3780                                                 shinfo->gso_size);
3781
3782                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3783         }
3784 }
3785
3786 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3787                                  struct net_device *dev,
3788                                  struct netdev_queue *txq)
3789 {
3790         spinlock_t *root_lock = qdisc_lock(q);
3791         struct sk_buff *to_free = NULL;
3792         bool contended;
3793         int rc;
3794
3795         qdisc_calculate_pkt_len(skb, q);
3796
3797         if (q->flags & TCQ_F_NOLOCK) {
3798                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3799                 qdisc_run(q);
3800
3801                 if (unlikely(to_free))
3802                         kfree_skb_list(to_free);
3803                 return rc;
3804         }
3805
3806         /*
3807          * Heuristic to force contended enqueues to serialize on a
3808          * separate lock before trying to get qdisc main lock.
3809          * This permits qdisc->running owner to get the lock more
3810          * often and dequeue packets faster.
3811          */
3812         contended = qdisc_is_running(q);
3813         if (unlikely(contended))
3814                 spin_lock(&q->busylock);
3815
3816         spin_lock(root_lock);
3817         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3818                 __qdisc_drop(skb, &to_free);
3819                 rc = NET_XMIT_DROP;
3820         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3821                    qdisc_run_begin(q)) {
3822                 /*
3823                  * This is a work-conserving queue; there are no old skbs
3824                  * waiting to be sent out; and the qdisc is not running -
3825                  * xmit the skb directly.
3826                  */
3827
3828                 qdisc_bstats_update(q, skb);
3829
3830                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3831                         if (unlikely(contended)) {
3832                                 spin_unlock(&q->busylock);
3833                                 contended = false;
3834                         }
3835                         __qdisc_run(q);
3836                 }
3837
3838                 qdisc_run_end(q);
3839                 rc = NET_XMIT_SUCCESS;
3840         } else {
3841                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3842                 if (qdisc_run_begin(q)) {
3843                         if (unlikely(contended)) {
3844                                 spin_unlock(&q->busylock);
3845                                 contended = false;
3846                         }
3847                         __qdisc_run(q);
3848                         qdisc_run_end(q);
3849                 }
3850         }
3851         spin_unlock(root_lock);
3852         if (unlikely(to_free))
3853                 kfree_skb_list(to_free);
3854         if (unlikely(contended))
3855                 spin_unlock(&q->busylock);
3856         return rc;
3857 }
3858
3859 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3860 static void skb_update_prio(struct sk_buff *skb)
3861 {
3862         const struct netprio_map *map;
3863         const struct sock *sk;
3864         unsigned int prioidx;
3865
3866         if (skb->priority)
3867                 return;
3868         map = rcu_dereference_bh(skb->dev->priomap);
3869         if (!map)
3870                 return;
3871         sk = skb_to_full_sk(skb);
3872         if (!sk)
3873                 return;
3874
3875         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3876
3877         if (prioidx < map->priomap_len)
3878                 skb->priority = map->priomap[prioidx];
3879 }
3880 #else
3881 #define skb_update_prio(skb)
3882 #endif
3883
3884 /**
3885  *      dev_loopback_xmit - loop back @skb
3886  *      @net: network namespace this loopback is happening in
3887  *      @sk:  sk needed to be a netfilter okfn
3888  *      @skb: buffer to transmit
3889  */
3890 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3891 {
3892         skb_reset_mac_header(skb);
3893         __skb_pull(skb, skb_network_offset(skb));
3894         skb->pkt_type = PACKET_LOOPBACK;
3895         skb->ip_summed = CHECKSUM_UNNECESSARY;
3896         WARN_ON(!skb_dst(skb));
3897         skb_dst_force(skb);
3898         netif_rx_ni(skb);
3899         return 0;
3900 }
3901 EXPORT_SYMBOL(dev_loopback_xmit);
3902
3903 #ifdef CONFIG_NET_EGRESS
3904 static struct sk_buff *
3905 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3906 {
3907         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3908         struct tcf_result cl_res;
3909
3910         if (!miniq)
3911                 return skb;
3912
3913         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3914         qdisc_skb_cb(skb)->mru = 0;
3915         qdisc_skb_cb(skb)->post_ct = false;
3916         mini_qdisc_bstats_cpu_update(miniq, skb);
3917
3918         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3919         case TC_ACT_OK:
3920         case TC_ACT_RECLASSIFY:
3921                 skb->tc_index = TC_H_MIN(cl_res.classid);
3922                 break;
3923         case TC_ACT_SHOT:
3924                 mini_qdisc_qstats_cpu_drop(miniq);
3925                 *ret = NET_XMIT_DROP;
3926                 kfree_skb(skb);
3927                 return NULL;
3928         case TC_ACT_STOLEN:
3929         case TC_ACT_QUEUED:
3930         case TC_ACT_TRAP:
3931                 *ret = NET_XMIT_SUCCESS;
3932                 consume_skb(skb);
3933                 return NULL;
3934         case TC_ACT_REDIRECT:
3935                 /* No need to push/pop skb's mac_header here on egress! */
3936                 skb_do_redirect(skb);
3937                 *ret = NET_XMIT_SUCCESS;
3938                 return NULL;
3939         default:
3940                 break;
3941         }
3942
3943         return skb;
3944 }
3945 #endif /* CONFIG_NET_EGRESS */
3946
3947 #ifdef CONFIG_XPS
3948 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3949                                struct xps_dev_maps *dev_maps, unsigned int tci)
3950 {
3951         struct xps_map *map;
3952         int queue_index = -1;
3953
3954         if (dev->num_tc) {
3955                 tci *= dev->num_tc;
3956                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3957         }
3958
3959         map = rcu_dereference(dev_maps->attr_map[tci]);
3960         if (map) {
3961                 if (map->len == 1)
3962                         queue_index = map->queues[0];
3963                 else
3964                         queue_index = map->queues[reciprocal_scale(
3965                                                 skb_get_hash(skb), map->len)];
3966                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3967                         queue_index = -1;
3968         }
3969         return queue_index;
3970 }
3971 #endif
3972
3973 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3974                          struct sk_buff *skb)
3975 {
3976 #ifdef CONFIG_XPS
3977         struct xps_dev_maps *dev_maps;
3978         struct sock *sk = skb->sk;
3979         int queue_index = -1;
3980
3981         if (!static_key_false(&xps_needed))
3982                 return -1;
3983
3984         rcu_read_lock();
3985         if (!static_key_false(&xps_rxqs_needed))
3986                 goto get_cpus_map;
3987
3988         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3989         if (dev_maps) {
3990                 int tci = sk_rx_queue_get(sk);
3991
3992                 if (tci >= 0 && tci < dev->num_rx_queues)
3993                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3994                                                           tci);
3995         }
3996
3997 get_cpus_map:
3998         if (queue_index < 0) {
3999                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
4000                 if (dev_maps) {
4001                         unsigned int tci = skb->sender_cpu - 1;
4002
4003                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4004                                                           tci);
4005                 }
4006         }
4007         rcu_read_unlock();
4008
4009         return queue_index;
4010 #else
4011         return -1;
4012 #endif
4013 }
4014
4015 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4016                      struct net_device *sb_dev)
4017 {
4018         return 0;
4019 }
4020 EXPORT_SYMBOL(dev_pick_tx_zero);
4021
4022 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4023                        struct net_device *sb_dev)
4024 {
4025         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4026 }
4027 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4028
4029 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4030                      struct net_device *sb_dev)
4031 {
4032         struct sock *sk = skb->sk;
4033         int queue_index = sk_tx_queue_get(sk);
4034
4035         sb_dev = sb_dev ? : dev;
4036
4037         if (queue_index < 0 || skb->ooo_okay ||
4038             queue_index >= dev->real_num_tx_queues) {
4039                 int new_index = get_xps_queue(dev, sb_dev, skb);
4040
4041                 if (new_index < 0)
4042                         new_index = skb_tx_hash(dev, sb_dev, skb);
4043
4044                 if (queue_index != new_index && sk &&
4045                     sk_fullsock(sk) &&
4046                     rcu_access_pointer(sk->sk_dst_cache))
4047                         sk_tx_queue_set(sk, new_index);
4048
4049                 queue_index = new_index;
4050         }
4051
4052         return queue_index;
4053 }
4054 EXPORT_SYMBOL(netdev_pick_tx);
4055
4056 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4057                                          struct sk_buff *skb,
4058                                          struct net_device *sb_dev)
4059 {
4060         int queue_index = 0;
4061
4062 #ifdef CONFIG_XPS
4063         u32 sender_cpu = skb->sender_cpu - 1;
4064
4065         if (sender_cpu >= (u32)NR_CPUS)
4066                 skb->sender_cpu = raw_smp_processor_id() + 1;
4067 #endif
4068
4069         if (dev->real_num_tx_queues != 1) {
4070                 const struct net_device_ops *ops = dev->netdev_ops;
4071
4072                 if (ops->ndo_select_queue)
4073                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4074                 else
4075                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4076
4077                 queue_index = netdev_cap_txqueue(dev, queue_index);
4078         }
4079
4080         skb_set_queue_mapping(skb, queue_index);
4081         return netdev_get_tx_queue(dev, queue_index);
4082 }
4083
4084 /**
4085  *      __dev_queue_xmit - transmit a buffer
4086  *      @skb: buffer to transmit
4087  *      @sb_dev: suboordinate device used for L2 forwarding offload
4088  *
4089  *      Queue a buffer for transmission to a network device. The caller must
4090  *      have set the device and priority and built the buffer before calling
4091  *      this function. The function can be called from an interrupt.
4092  *
4093  *      A negative errno code is returned on a failure. A success does not
4094  *      guarantee the frame will be transmitted as it may be dropped due
4095  *      to congestion or traffic shaping.
4096  *
4097  * -----------------------------------------------------------------------------------
4098  *      I notice this method can also return errors from the queue disciplines,
4099  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4100  *      be positive.
4101  *
4102  *      Regardless of the return value, the skb is consumed, so it is currently
4103  *      difficult to retry a send to this method.  (You can bump the ref count
4104  *      before sending to hold a reference for retry if you are careful.)
4105  *
4106  *      When calling this method, interrupts MUST be enabled.  This is because
4107  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4108  *          --BLG
4109  */
4110 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4111 {
4112         struct net_device *dev = skb->dev;
4113         struct netdev_queue *txq;
4114         struct Qdisc *q;
4115         int rc = -ENOMEM;
4116         bool again = false;
4117
4118         skb_reset_mac_header(skb);
4119
4120         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4121                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4122
4123         /* Disable soft irqs for various locks below. Also
4124          * stops preemption for RCU.
4125          */
4126         rcu_read_lock_bh();
4127
4128         skb_update_prio(skb);
4129
4130         qdisc_pkt_len_init(skb);
4131 #ifdef CONFIG_NET_CLS_ACT
4132         skb->tc_at_ingress = 0;
4133 # ifdef CONFIG_NET_EGRESS
4134         if (static_branch_unlikely(&egress_needed_key)) {
4135                 skb = sch_handle_egress(skb, &rc, dev);
4136                 if (!skb)
4137                         goto out;
4138         }
4139 # endif
4140 #endif
4141         /* If device/qdisc don't need skb->dst, release it right now while
4142          * its hot in this cpu cache.
4143          */
4144         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4145                 skb_dst_drop(skb);
4146         else
4147                 skb_dst_force(skb);
4148
4149         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4150         q = rcu_dereference_bh(txq->qdisc);
4151
4152         trace_net_dev_queue(skb);
4153         if (q->enqueue) {
4154                 rc = __dev_xmit_skb(skb, q, dev, txq);
4155                 goto out;
4156         }
4157
4158         /* The device has no queue. Common case for software devices:
4159          * loopback, all the sorts of tunnels...
4160
4161          * Really, it is unlikely that netif_tx_lock protection is necessary
4162          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4163          * counters.)
4164          * However, it is possible, that they rely on protection
4165          * made by us here.
4166
4167          * Check this and shot the lock. It is not prone from deadlocks.
4168          *Either shot noqueue qdisc, it is even simpler 8)
4169          */
4170         if (dev->flags & IFF_UP) {
4171                 int cpu = smp_processor_id(); /* ok because BHs are off */
4172
4173                 if (txq->xmit_lock_owner != cpu) {
4174                         if (dev_xmit_recursion())
4175                                 goto recursion_alert;
4176
4177                         skb = validate_xmit_skb(skb, dev, &again);
4178                         if (!skb)
4179                                 goto out;
4180
4181                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4182                         HARD_TX_LOCK(dev, txq, cpu);
4183
4184                         if (!netif_xmit_stopped(txq)) {
4185                                 dev_xmit_recursion_inc();
4186                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4187                                 dev_xmit_recursion_dec();
4188                                 if (dev_xmit_complete(rc)) {
4189                                         HARD_TX_UNLOCK(dev, txq);
4190                                         goto out;
4191                                 }
4192                         }
4193                         HARD_TX_UNLOCK(dev, txq);
4194                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4195                                              dev->name);
4196                 } else {
4197                         /* Recursion is detected! It is possible,
4198                          * unfortunately
4199                          */
4200 recursion_alert:
4201                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4202                                              dev->name);
4203                 }
4204         }
4205
4206         rc = -ENETDOWN;
4207         rcu_read_unlock_bh();
4208
4209         atomic_long_inc(&dev->tx_dropped);
4210         kfree_skb_list(skb);
4211         return rc;
4212 out:
4213         rcu_read_unlock_bh();
4214         return rc;
4215 }
4216
4217 int dev_queue_xmit(struct sk_buff *skb)
4218 {
4219         return __dev_queue_xmit(skb, NULL);
4220 }
4221 EXPORT_SYMBOL(dev_queue_xmit);
4222
4223 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4224 {
4225         return __dev_queue_xmit(skb, sb_dev);
4226 }
4227 EXPORT_SYMBOL(dev_queue_xmit_accel);
4228
4229 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4230 {
4231         struct net_device *dev = skb->dev;
4232         struct sk_buff *orig_skb = skb;
4233         struct netdev_queue *txq;
4234         int ret = NETDEV_TX_BUSY;
4235         bool again = false;
4236
4237         if (unlikely(!netif_running(dev) ||
4238                      !netif_carrier_ok(dev)))
4239                 goto drop;
4240
4241         skb = validate_xmit_skb_list(skb, dev, &again);
4242         if (skb != orig_skb)
4243                 goto drop;
4244
4245         skb_set_queue_mapping(skb, queue_id);
4246         txq = skb_get_tx_queue(dev, skb);
4247         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4248
4249         local_bh_disable();
4250
4251         dev_xmit_recursion_inc();
4252         HARD_TX_LOCK(dev, txq, smp_processor_id());
4253         if (!netif_xmit_frozen_or_drv_stopped(txq))
4254                 ret = netdev_start_xmit(skb, dev, txq, false);
4255         HARD_TX_UNLOCK(dev, txq);
4256         dev_xmit_recursion_dec();
4257
4258         local_bh_enable();
4259         return ret;
4260 drop:
4261         atomic_long_inc(&dev->tx_dropped);
4262         kfree_skb_list(skb);
4263         return NET_XMIT_DROP;
4264 }
4265 EXPORT_SYMBOL(__dev_direct_xmit);
4266
4267 /*************************************************************************
4268  *                      Receiver routines
4269  *************************************************************************/
4270
4271 int netdev_max_backlog __read_mostly = 1000;
4272 EXPORT_SYMBOL(netdev_max_backlog);
4273
4274 int netdev_tstamp_prequeue __read_mostly = 1;
4275 int netdev_budget __read_mostly = 300;
4276 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4277 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4278 int weight_p __read_mostly = 64;           /* old backlog weight */
4279 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4280 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4281 int dev_rx_weight __read_mostly = 64;
4282 int dev_tx_weight __read_mostly = 64;
4283 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4284 int gro_normal_batch __read_mostly = 8;
4285
4286 /* Called with irq disabled */
4287 static inline void ____napi_schedule(struct softnet_data *sd,
4288                                      struct napi_struct *napi)
4289 {
4290         struct task_struct *thread;
4291
4292         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4293                 /* Paired with smp_mb__before_atomic() in
4294                  * napi_enable()/dev_set_threaded().
4295                  * Use READ_ONCE() to guarantee a complete
4296                  * read on napi->thread. Only call
4297                  * wake_up_process() when it's not NULL.
4298                  */
4299                 thread = READ_ONCE(napi->thread);
4300                 if (thread) {
4301                         wake_up_process(thread);
4302                         return;
4303                 }
4304         }
4305
4306         list_add_tail(&napi->poll_list, &sd->poll_list);
4307         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4308 }
4309
4310 #ifdef CONFIG_RPS
4311
4312 /* One global table that all flow-based protocols share. */
4313 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4314 EXPORT_SYMBOL(rps_sock_flow_table);
4315 u32 rps_cpu_mask __read_mostly;
4316 EXPORT_SYMBOL(rps_cpu_mask);
4317
4318 struct static_key_false rps_needed __read_mostly;
4319 EXPORT_SYMBOL(rps_needed);
4320 struct static_key_false rfs_needed __read_mostly;
4321 EXPORT_SYMBOL(rfs_needed);
4322
4323 static struct rps_dev_flow *
4324 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4325             struct rps_dev_flow *rflow, u16 next_cpu)
4326 {
4327         if (next_cpu < nr_cpu_ids) {
4328 #ifdef CONFIG_RFS_ACCEL
4329                 struct netdev_rx_queue *rxqueue;
4330                 struct rps_dev_flow_table *flow_table;
4331                 struct rps_dev_flow *old_rflow;
4332                 u32 flow_id;
4333                 u16 rxq_index;
4334                 int rc;
4335
4336                 /* Should we steer this flow to a different hardware queue? */
4337                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4338                     !(dev->features & NETIF_F_NTUPLE))
4339                         goto out;
4340                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4341                 if (rxq_index == skb_get_rx_queue(skb))
4342                         goto out;
4343
4344                 rxqueue = dev->_rx + rxq_index;
4345                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4346                 if (!flow_table)
4347                         goto out;
4348                 flow_id = skb_get_hash(skb) & flow_table->mask;
4349                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4350                                                         rxq_index, flow_id);
4351                 if (rc < 0)
4352                         goto out;
4353                 old_rflow = rflow;
4354                 rflow = &flow_table->flows[flow_id];
4355                 rflow->filter = rc;
4356                 if (old_rflow->filter == rflow->filter)
4357                         old_rflow->filter = RPS_NO_FILTER;
4358         out:
4359 #endif
4360                 rflow->last_qtail =
4361                         per_cpu(softnet_data, next_cpu).input_queue_head;
4362         }
4363
4364         rflow->cpu = next_cpu;
4365         return rflow;
4366 }
4367
4368 /*
4369  * get_rps_cpu is called from netif_receive_skb and returns the target
4370  * CPU from the RPS map of the receiving queue for a given skb.
4371  * rcu_read_lock must be held on entry.
4372  */
4373 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4374                        struct rps_dev_flow **rflowp)
4375 {
4376         const struct rps_sock_flow_table *sock_flow_table;
4377         struct netdev_rx_queue *rxqueue = dev->_rx;
4378         struct rps_dev_flow_table *flow_table;
4379         struct rps_map *map;
4380         int cpu = -1;
4381         u32 tcpu;
4382         u32 hash;
4383
4384         if (skb_rx_queue_recorded(skb)) {
4385                 u16 index = skb_get_rx_queue(skb);
4386
4387                 if (unlikely(index >= dev->real_num_rx_queues)) {
4388                         WARN_ONCE(dev->real_num_rx_queues > 1,
4389                                   "%s received packet on queue %u, but number "
4390                                   "of RX queues is %u\n",
4391                                   dev->name, index, dev->real_num_rx_queues);
4392                         goto done;
4393                 }
4394                 rxqueue += index;
4395         }
4396
4397         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4398
4399         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4400         map = rcu_dereference(rxqueue->rps_map);
4401         if (!flow_table && !map)
4402                 goto done;
4403
4404         skb_reset_network_header(skb);
4405         hash = skb_get_hash(skb);
4406         if (!hash)
4407                 goto done;
4408
4409         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4410         if (flow_table && sock_flow_table) {
4411                 struct rps_dev_flow *rflow;
4412                 u32 next_cpu;
4413                 u32 ident;
4414
4415                 /* First check into global flow table if there is a match */
4416                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4417                 if ((ident ^ hash) & ~rps_cpu_mask)
4418                         goto try_rps;
4419
4420                 next_cpu = ident & rps_cpu_mask;
4421
4422                 /* OK, now we know there is a match,
4423                  * we can look at the local (per receive queue) flow table
4424                  */
4425                 rflow = &flow_table->flows[hash & flow_table->mask];
4426                 tcpu = rflow->cpu;
4427
4428                 /*
4429                  * If the desired CPU (where last recvmsg was done) is
4430                  * different from current CPU (one in the rx-queue flow
4431                  * table entry), switch if one of the following holds:
4432                  *   - Current CPU is unset (>= nr_cpu_ids).
4433                  *   - Current CPU is offline.
4434                  *   - The current CPU's queue tail has advanced beyond the
4435                  *     last packet that was enqueued using this table entry.
4436                  *     This guarantees that all previous packets for the flow
4437                  *     have been dequeued, thus preserving in order delivery.
4438                  */
4439                 if (unlikely(tcpu != next_cpu) &&
4440                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4441                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4442                       rflow->last_qtail)) >= 0)) {
4443                         tcpu = next_cpu;
4444                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4445                 }
4446
4447                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4448                         *rflowp = rflow;
4449                         cpu = tcpu;
4450                         goto done;
4451                 }
4452         }
4453
4454 try_rps:
4455
4456         if (map) {
4457                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4458                 if (cpu_online(tcpu)) {
4459                         cpu = tcpu;
4460                         goto done;
4461                 }
4462         }
4463
4464 done:
4465         return cpu;
4466 }
4467
4468 #ifdef CONFIG_RFS_ACCEL
4469
4470 /**
4471  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4472  * @dev: Device on which the filter was set
4473  * @rxq_index: RX queue index
4474  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4475  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4476  *
4477  * Drivers that implement ndo_rx_flow_steer() should periodically call
4478  * this function for each installed filter and remove the filters for
4479  * which it returns %true.
4480  */
4481 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4482                          u32 flow_id, u16 filter_id)
4483 {
4484         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4485         struct rps_dev_flow_table *flow_table;
4486         struct rps_dev_flow *rflow;
4487         bool expire = true;
4488         unsigned int cpu;
4489
4490         rcu_read_lock();
4491         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4492         if (flow_table && flow_id <= flow_table->mask) {
4493                 rflow = &flow_table->flows[flow_id];
4494                 cpu = READ_ONCE(rflow->cpu);
4495                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4496                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4497                            rflow->last_qtail) <
4498                      (int)(10 * flow_table->mask)))
4499                         expire = false;
4500         }
4501         rcu_read_unlock();
4502         return expire;
4503 }
4504 EXPORT_SYMBOL(rps_may_expire_flow);
4505
4506 #endif /* CONFIG_RFS_ACCEL */
4507
4508 /* Called from hardirq (IPI) context */
4509 static void rps_trigger_softirq(void *data)
4510 {
4511         struct softnet_data *sd = data;
4512
4513         ____napi_schedule(sd, &sd->backlog);
4514         sd->received_rps++;
4515 }
4516
4517 #endif /* CONFIG_RPS */
4518
4519 /*
4520  * Check if this softnet_data structure is another cpu one
4521  * If yes, queue it to our IPI list and return 1
4522  * If no, return 0
4523  */
4524 static int rps_ipi_queued(struct softnet_data *sd)
4525 {
4526 #ifdef CONFIG_RPS
4527         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4528
4529         if (sd != mysd) {
4530                 sd->rps_ipi_next = mysd->rps_ipi_list;
4531                 mysd->rps_ipi_list = sd;
4532
4533                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4534                 return 1;
4535         }
4536 #endif /* CONFIG_RPS */
4537         return 0;
4538 }
4539
4540 #ifdef CONFIG_NET_FLOW_LIMIT
4541 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4542 #endif
4543
4544 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4545 {
4546 #ifdef CONFIG_NET_FLOW_LIMIT
4547         struct sd_flow_limit *fl;
4548         struct softnet_data *sd;
4549         unsigned int old_flow, new_flow;
4550
4551         if (qlen < (netdev_max_backlog >> 1))
4552                 return false;
4553
4554         sd = this_cpu_ptr(&softnet_data);
4555
4556         rcu_read_lock();
4557         fl = rcu_dereference(sd->flow_limit);
4558         if (fl) {
4559                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4560                 old_flow = fl->history[fl->history_head];
4561                 fl->history[fl->history_head] = new_flow;
4562
4563                 fl->history_head++;
4564                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4565
4566                 if (likely(fl->buckets[old_flow]))
4567                         fl->buckets[old_flow]--;
4568
4569                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4570                         fl->count++;
4571                         rcu_read_unlock();
4572                         return true;
4573                 }
4574         }
4575         rcu_read_unlock();
4576 #endif
4577         return false;
4578 }
4579
4580 /*
4581  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4582  * queue (may be a remote CPU queue).
4583  */
4584 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4585                               unsigned int *qtail)
4586 {
4587         struct softnet_data *sd;
4588         unsigned long flags;
4589         unsigned int qlen;
4590
4591         sd = &per_cpu(softnet_data, cpu);
4592
4593         local_irq_save(flags);
4594
4595         rps_lock(sd);
4596         if (!netif_running(skb->dev))
4597                 goto drop;
4598         qlen = skb_queue_len(&sd->input_pkt_queue);
4599         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4600                 if (qlen) {
4601 enqueue:
4602                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4603                         input_queue_tail_incr_save(sd, qtail);
4604                         rps_unlock(sd);
4605                         local_irq_restore(flags);
4606                         return NET_RX_SUCCESS;
4607                 }
4608
4609                 /* Schedule NAPI for backlog device
4610                  * We can use non atomic operation since we own the queue lock
4611                  */
4612                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4613                         if (!rps_ipi_queued(sd))
4614                                 ____napi_schedule(sd, &sd->backlog);
4615                 }
4616                 goto enqueue;
4617         }
4618
4619 drop:
4620         sd->dropped++;
4621         rps_unlock(sd);
4622
4623         local_irq_restore(flags);
4624
4625         atomic_long_inc(&skb->dev->rx_dropped);
4626         kfree_skb(skb);
4627         return NET_RX_DROP;
4628 }
4629
4630 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4631 {
4632         struct net_device *dev = skb->dev;
4633         struct netdev_rx_queue *rxqueue;
4634
4635         rxqueue = dev->_rx;
4636
4637         if (skb_rx_queue_recorded(skb)) {
4638                 u16 index = skb_get_rx_queue(skb);
4639
4640                 if (unlikely(index >= dev->real_num_rx_queues)) {
4641                         WARN_ONCE(dev->real_num_rx_queues > 1,
4642                                   "%s received packet on queue %u, but number "
4643                                   "of RX queues is %u\n",
4644                                   dev->name, index, dev->real_num_rx_queues);
4645
4646                         return rxqueue; /* Return first rxqueue */
4647                 }
4648                 rxqueue += index;
4649         }
4650         return rxqueue;
4651 }
4652
4653 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4654                                      struct xdp_buff *xdp,
4655                                      struct bpf_prog *xdp_prog)
4656 {
4657         void *orig_data, *orig_data_end, *hard_start;
4658         struct netdev_rx_queue *rxqueue;
4659         u32 metalen, act = XDP_DROP;
4660         u32 mac_len, frame_sz;
4661         __be16 orig_eth_type;
4662         struct ethhdr *eth;
4663         bool orig_bcast;
4664         int off;
4665
4666         /* Reinjected packets coming from act_mirred or similar should
4667          * not get XDP generic processing.
4668          */
4669         if (skb_is_redirected(skb))
4670                 return XDP_PASS;
4671
4672         /* XDP packets must be linear and must have sufficient headroom
4673          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4674          * native XDP provides, thus we need to do it here as well.
4675          */
4676         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4677             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4678                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4679                 int troom = skb->tail + skb->data_len - skb->end;
4680
4681                 /* In case we have to go down the path and also linearize,
4682                  * then lets do the pskb_expand_head() work just once here.
4683                  */
4684                 if (pskb_expand_head(skb,
4685                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4686                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4687                         goto do_drop;
4688                 if (skb_linearize(skb))
4689                         goto do_drop;
4690         }
4691
4692         /* The XDP program wants to see the packet starting at the MAC
4693          * header.
4694          */
4695         mac_len = skb->data - skb_mac_header(skb);
4696         hard_start = skb->data - skb_headroom(skb);
4697
4698         /* SKB "head" area always have tailroom for skb_shared_info */
4699         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4700         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4701
4702         rxqueue = netif_get_rxqueue(skb);
4703         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4704         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4705                          skb_headlen(skb) + mac_len, true);
4706
4707         orig_data_end = xdp->data_end;
4708         orig_data = xdp->data;
4709         eth = (struct ethhdr *)xdp->data;
4710         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4711         orig_eth_type = eth->h_proto;
4712
4713         act = bpf_prog_run_xdp(xdp_prog, xdp);
4714
4715         /* check if bpf_xdp_adjust_head was used */
4716         off = xdp->data - orig_data;
4717         if (off) {
4718                 if (off > 0)
4719                         __skb_pull(skb, off);
4720                 else if (off < 0)
4721                         __skb_push(skb, -off);
4722
4723                 skb->mac_header += off;
4724                 skb_reset_network_header(skb);
4725         }
4726
4727         /* check if bpf_xdp_adjust_tail was used */
4728         off = xdp->data_end - orig_data_end;
4729         if (off != 0) {
4730                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4731                 skb->len += off; /* positive on grow, negative on shrink */
4732         }
4733
4734         /* check if XDP changed eth hdr such SKB needs update */
4735         eth = (struct ethhdr *)xdp->data;
4736         if ((orig_eth_type != eth->h_proto) ||
4737             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4738                 __skb_push(skb, ETH_HLEN);
4739                 skb->protocol = eth_type_trans(skb, skb->dev);
4740         }
4741
4742         switch (act) {
4743         case XDP_REDIRECT:
4744         case XDP_TX:
4745                 __skb_push(skb, mac_len);
4746                 break;
4747         case XDP_PASS:
4748                 metalen = xdp->data - xdp->data_meta;
4749                 if (metalen)
4750                         skb_metadata_set(skb, metalen);
4751                 break;
4752         default:
4753                 bpf_warn_invalid_xdp_action(act);
4754                 fallthrough;
4755         case XDP_ABORTED:
4756                 trace_xdp_exception(skb->dev, xdp_prog, act);
4757                 fallthrough;
4758         case XDP_DROP:
4759         do_drop:
4760                 kfree_skb(skb);
4761                 break;
4762         }
4763
4764         return act;
4765 }
4766
4767 /* When doing generic XDP we have to bypass the qdisc layer and the
4768  * network taps in order to match in-driver-XDP behavior.
4769  */
4770 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4771 {
4772         struct net_device *dev = skb->dev;
4773         struct netdev_queue *txq;
4774         bool free_skb = true;
4775         int cpu, rc;
4776
4777         txq = netdev_core_pick_tx(dev, skb, NULL);
4778         cpu = smp_processor_id();
4779         HARD_TX_LOCK(dev, txq, cpu);
4780         if (!netif_xmit_stopped(txq)) {
4781                 rc = netdev_start_xmit(skb, dev, txq, 0);
4782                 if (dev_xmit_complete(rc))
4783                         free_skb = false;
4784         }
4785         HARD_TX_UNLOCK(dev, txq);
4786         if (free_skb) {
4787                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4788                 kfree_skb(skb);
4789         }
4790 }
4791
4792 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4793
4794 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4795 {
4796         if (xdp_prog) {
4797                 struct xdp_buff xdp;
4798                 u32 act;
4799                 int err;
4800
4801                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4802                 if (act != XDP_PASS) {
4803                         switch (act) {
4804                         case XDP_REDIRECT:
4805                                 err = xdp_do_generic_redirect(skb->dev, skb,
4806                                                               &xdp, xdp_prog);
4807                                 if (err)
4808                                         goto out_redir;
4809                                 break;
4810                         case XDP_TX:
4811                                 generic_xdp_tx(skb, xdp_prog);
4812                                 break;
4813                         }
4814                         return XDP_DROP;
4815                 }
4816         }
4817         return XDP_PASS;
4818 out_redir:
4819         kfree_skb(skb);
4820         return XDP_DROP;
4821 }
4822 EXPORT_SYMBOL_GPL(do_xdp_generic);
4823
4824 static int netif_rx_internal(struct sk_buff *skb)
4825 {
4826         int ret;
4827
4828         net_timestamp_check(netdev_tstamp_prequeue, skb);
4829
4830         trace_netif_rx(skb);
4831
4832 #ifdef CONFIG_RPS
4833         if (static_branch_unlikely(&rps_needed)) {
4834                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4835                 int cpu;
4836
4837                 preempt_disable();
4838                 rcu_read_lock();
4839
4840                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4841                 if (cpu < 0)
4842                         cpu = smp_processor_id();
4843
4844                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4845
4846                 rcu_read_unlock();
4847                 preempt_enable();
4848         } else
4849 #endif
4850         {
4851                 unsigned int qtail;
4852
4853                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4854                 put_cpu();
4855         }
4856         return ret;
4857 }
4858
4859 /**
4860  *      netif_rx        -       post buffer to the network code
4861  *      @skb: buffer to post
4862  *
4863  *      This function receives a packet from a device driver and queues it for
4864  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4865  *      may be dropped during processing for congestion control or by the
4866  *      protocol layers.
4867  *
4868  *      return values:
4869  *      NET_RX_SUCCESS  (no congestion)
4870  *      NET_RX_DROP     (packet was dropped)
4871  *
4872  */
4873
4874 int netif_rx(struct sk_buff *skb)
4875 {
4876         int ret;
4877
4878         trace_netif_rx_entry(skb);
4879
4880         ret = netif_rx_internal(skb);
4881         trace_netif_rx_exit(ret);
4882
4883         return ret;
4884 }
4885 EXPORT_SYMBOL(netif_rx);
4886
4887 int netif_rx_ni(struct sk_buff *skb)
4888 {
4889         int err;
4890
4891         trace_netif_rx_ni_entry(skb);
4892
4893         preempt_disable();
4894         err = netif_rx_internal(skb);
4895         if (local_softirq_pending())
4896                 do_softirq();
4897         preempt_enable();
4898         trace_netif_rx_ni_exit(err);
4899
4900         return err;
4901 }
4902 EXPORT_SYMBOL(netif_rx_ni);
4903
4904 int netif_rx_any_context(struct sk_buff *skb)
4905 {
4906         /*
4907          * If invoked from contexts which do not invoke bottom half
4908          * processing either at return from interrupt or when softrqs are
4909          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4910          * directly.
4911          */
4912         if (in_interrupt())
4913                 return netif_rx(skb);
4914         else
4915                 return netif_rx_ni(skb);
4916 }
4917 EXPORT_SYMBOL(netif_rx_any_context);
4918
4919 static __latent_entropy void net_tx_action(struct softirq_action *h)
4920 {
4921         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4922
4923         if (sd->completion_queue) {
4924                 struct sk_buff *clist;
4925
4926                 local_irq_disable();
4927                 clist = sd->completion_queue;
4928                 sd->completion_queue = NULL;
4929                 local_irq_enable();
4930
4931                 while (clist) {
4932                         struct sk_buff *skb = clist;
4933
4934                         clist = clist->next;
4935
4936                         WARN_ON(refcount_read(&skb->users));
4937                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4938                                 trace_consume_skb(skb);
4939                         else
4940                                 trace_kfree_skb(skb, net_tx_action);
4941
4942                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4943                                 __kfree_skb(skb);
4944                         else
4945                                 __kfree_skb_defer(skb);
4946                 }
4947
4948                 __kfree_skb_flush();
4949         }
4950
4951         if (sd->output_queue) {
4952                 struct Qdisc *head;
4953
4954                 local_irq_disable();
4955                 head = sd->output_queue;
4956                 sd->output_queue = NULL;
4957                 sd->output_queue_tailp = &sd->output_queue;
4958                 local_irq_enable();
4959
4960                 while (head) {
4961                         struct Qdisc *q = head;
4962                         spinlock_t *root_lock = NULL;
4963
4964                         head = head->next_sched;
4965
4966                         if (!(q->flags & TCQ_F_NOLOCK)) {
4967                                 root_lock = qdisc_lock(q);
4968                                 spin_lock(root_lock);
4969                         }
4970                         /* We need to make sure head->next_sched is read
4971                          * before clearing __QDISC_STATE_SCHED
4972                          */
4973                         smp_mb__before_atomic();
4974                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4975                         qdisc_run(q);
4976                         if (root_lock)
4977                                 spin_unlock(root_lock);
4978                 }
4979         }
4980
4981         xfrm_dev_backlog(sd);
4982 }
4983
4984 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4985 /* This hook is defined here for ATM LANE */
4986 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4987                              unsigned char *addr) __read_mostly;
4988 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4989 #endif
4990
4991 static inline struct sk_buff *
4992 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4993                    struct net_device *orig_dev, bool *another)
4994 {
4995 #ifdef CONFIG_NET_CLS_ACT
4996         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4997         struct tcf_result cl_res;
4998
4999         /* If there's at least one ingress present somewhere (so
5000          * we get here via enabled static key), remaining devices
5001          * that are not configured with an ingress qdisc will bail
5002          * out here.
5003          */
5004         if (!miniq)
5005                 return skb;
5006
5007         if (*pt_prev) {
5008                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5009                 *pt_prev = NULL;
5010         }
5011
5012         qdisc_skb_cb(skb)->pkt_len = skb->len;
5013         qdisc_skb_cb(skb)->mru = 0;
5014         qdisc_skb_cb(skb)->post_ct = false;
5015         skb->tc_at_ingress = 1;
5016         mini_qdisc_bstats_cpu_update(miniq, skb);
5017
5018         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5019                                      &cl_res, false)) {
5020         case TC_ACT_OK:
5021         case TC_ACT_RECLASSIFY:
5022                 skb->tc_index = TC_H_MIN(cl_res.classid);
5023                 break;
5024         case TC_ACT_SHOT:
5025                 mini_qdisc_qstats_cpu_drop(miniq);
5026                 kfree_skb(skb);
5027                 return NULL;
5028         case TC_ACT_STOLEN:
5029         case TC_ACT_QUEUED:
5030         case TC_ACT_TRAP:
5031                 consume_skb(skb);
5032                 return NULL;
5033         case TC_ACT_REDIRECT:
5034                 /* skb_mac_header check was done by cls/act_bpf, so
5035                  * we can safely push the L2 header back before
5036                  * redirecting to another netdev
5037                  */
5038                 __skb_push(skb, skb->mac_len);
5039                 if (skb_do_redirect(skb) == -EAGAIN) {
5040                         __skb_pull(skb, skb->mac_len);
5041                         *another = true;
5042                         break;
5043                 }
5044                 return NULL;
5045         case TC_ACT_CONSUMED:
5046                 return NULL;
5047         default:
5048                 break;
5049         }
5050 #endif /* CONFIG_NET_CLS_ACT */
5051         return skb;
5052 }
5053
5054 /**
5055  *      netdev_is_rx_handler_busy - check if receive handler is registered
5056  *      @dev: device to check
5057  *
5058  *      Check if a receive handler is already registered for a given device.
5059  *      Return true if there one.
5060  *
5061  *      The caller must hold the rtnl_mutex.
5062  */
5063 bool netdev_is_rx_handler_busy(struct net_device *dev)
5064 {
5065         ASSERT_RTNL();
5066         return dev && rtnl_dereference(dev->rx_handler);
5067 }
5068 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5069
5070 /**
5071  *      netdev_rx_handler_register - register receive handler
5072  *      @dev: device to register a handler for
5073  *      @rx_handler: receive handler to register
5074  *      @rx_handler_data: data pointer that is used by rx handler
5075  *
5076  *      Register a receive handler for a device. This handler will then be
5077  *      called from __netif_receive_skb. A negative errno code is returned
5078  *      on a failure.
5079  *
5080  *      The caller must hold the rtnl_mutex.
5081  *
5082  *      For a general description of rx_handler, see enum rx_handler_result.
5083  */
5084 int netdev_rx_handler_register(struct net_device *dev,
5085                                rx_handler_func_t *rx_handler,
5086                                void *rx_handler_data)
5087 {
5088         if (netdev_is_rx_handler_busy(dev))
5089                 return -EBUSY;
5090
5091         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5092                 return -EINVAL;
5093
5094         /* Note: rx_handler_data must be set before rx_handler */
5095         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5096         rcu_assign_pointer(dev->rx_handler, rx_handler);
5097
5098         return 0;
5099 }
5100 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5101
5102 /**
5103  *      netdev_rx_handler_unregister - unregister receive handler
5104  *      @dev: device to unregister a handler from
5105  *
5106  *      Unregister a receive handler from a device.
5107  *
5108  *      The caller must hold the rtnl_mutex.
5109  */
5110 void netdev_rx_handler_unregister(struct net_device *dev)
5111 {
5112
5113         ASSERT_RTNL();
5114         RCU_INIT_POINTER(dev->rx_handler, NULL);
5115         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5116          * section has a guarantee to see a non NULL rx_handler_data
5117          * as well.
5118          */
5119         synchronize_net();
5120         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5121 }
5122 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5123
5124 /*
5125  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5126  * the special handling of PFMEMALLOC skbs.
5127  */
5128 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5129 {
5130         switch (skb->protocol) {
5131         case htons(ETH_P_ARP):
5132         case htons(ETH_P_IP):
5133         case htons(ETH_P_IPV6):
5134         case htons(ETH_P_8021Q):
5135         case htons(ETH_P_8021AD):
5136                 return true;
5137         default:
5138                 return false;
5139         }
5140 }
5141
5142 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5143                              int *ret, struct net_device *orig_dev)
5144 {
5145         if (nf_hook_ingress_active(skb)) {
5146                 int ingress_retval;
5147
5148                 if (*pt_prev) {
5149                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5150                         *pt_prev = NULL;
5151                 }
5152
5153                 rcu_read_lock();
5154                 ingress_retval = nf_hook_ingress(skb);
5155                 rcu_read_unlock();
5156                 return ingress_retval;
5157         }
5158         return 0;
5159 }
5160
5161 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5162                                     struct packet_type **ppt_prev)
5163 {
5164         struct packet_type *ptype, *pt_prev;
5165         rx_handler_func_t *rx_handler;
5166         struct sk_buff *skb = *pskb;
5167         struct net_device *orig_dev;
5168         bool deliver_exact = false;
5169         int ret = NET_RX_DROP;
5170         __be16 type;
5171
5172         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5173
5174         trace_netif_receive_skb(skb);
5175
5176         orig_dev = skb->dev;
5177
5178         skb_reset_network_header(skb);
5179         if (!skb_transport_header_was_set(skb))
5180                 skb_reset_transport_header(skb);
5181         skb_reset_mac_len(skb);
5182
5183         pt_prev = NULL;
5184
5185 another_round:
5186         skb->skb_iif = skb->dev->ifindex;
5187
5188         __this_cpu_inc(softnet_data.processed);
5189
5190         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5191                 int ret2;
5192
5193                 preempt_disable();
5194                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5195                 preempt_enable();
5196
5197                 if (ret2 != XDP_PASS) {
5198                         ret = NET_RX_DROP;
5199                         goto out;
5200                 }
5201                 skb_reset_mac_len(skb);
5202         }
5203
5204         if (eth_type_vlan(skb->protocol)) {
5205                 skb = skb_vlan_untag(skb);
5206                 if (unlikely(!skb))
5207                         goto out;
5208         }
5209
5210         if (skb_skip_tc_classify(skb))
5211                 goto skip_classify;
5212
5213         if (pfmemalloc)
5214                 goto skip_taps;
5215
5216         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5217                 if (pt_prev)
5218                         ret = deliver_skb(skb, pt_prev, orig_dev);
5219                 pt_prev = ptype;
5220         }
5221
5222         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5223                 if (pt_prev)
5224                         ret = deliver_skb(skb, pt_prev, orig_dev);
5225                 pt_prev = ptype;
5226         }
5227
5228 skip_taps:
5229 #ifdef CONFIG_NET_INGRESS
5230         if (static_branch_unlikely(&ingress_needed_key)) {
5231                 bool another = false;
5232
5233                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5234                                          &another);
5235                 if (another)
5236                         goto another_round;
5237                 if (!skb)
5238                         goto out;
5239
5240                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5241                         goto out;
5242         }
5243 #endif
5244         skb_reset_redirect(skb);
5245 skip_classify:
5246         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5247                 goto drop;
5248
5249         if (skb_vlan_tag_present(skb)) {
5250                 if (pt_prev) {
5251                         ret = deliver_skb(skb, pt_prev, orig_dev);
5252                         pt_prev = NULL;
5253                 }
5254                 if (vlan_do_receive(&skb))
5255                         goto another_round;
5256                 else if (unlikely(!skb))
5257                         goto out;
5258         }
5259
5260         rx_handler = rcu_dereference(skb->dev->rx_handler);
5261         if (rx_handler) {
5262                 if (pt_prev) {
5263                         ret = deliver_skb(skb, pt_prev, orig_dev);
5264                         pt_prev = NULL;
5265                 }
5266                 switch (rx_handler(&skb)) {
5267                 case RX_HANDLER_CONSUMED:
5268                         ret = NET_RX_SUCCESS;
5269                         goto out;
5270                 case RX_HANDLER_ANOTHER:
5271                         goto another_round;
5272                 case RX_HANDLER_EXACT:
5273                         deliver_exact = true;
5274                 case RX_HANDLER_PASS:
5275                         break;
5276                 default:
5277                         BUG();
5278                 }
5279         }
5280
5281         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5282 check_vlan_id:
5283                 if (skb_vlan_tag_get_id(skb)) {
5284                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5285                          * find vlan device.
5286                          */
5287                         skb->pkt_type = PACKET_OTHERHOST;
5288                 } else if (eth_type_vlan(skb->protocol)) {
5289                         /* Outer header is 802.1P with vlan 0, inner header is
5290                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5291                          * not find vlan dev for vlan id 0.
5292                          */
5293                         __vlan_hwaccel_clear_tag(skb);
5294                         skb = skb_vlan_untag(skb);
5295                         if (unlikely(!skb))
5296                                 goto out;
5297                         if (vlan_do_receive(&skb))
5298                                 /* After stripping off 802.1P header with vlan 0
5299                                  * vlan dev is found for inner header.
5300                                  */
5301                                 goto another_round;
5302                         else if (unlikely(!skb))
5303                                 goto out;
5304                         else
5305                                 /* We have stripped outer 802.1P vlan 0 header.
5306                                  * But could not find vlan dev.
5307                                  * check again for vlan id to set OTHERHOST.
5308                                  */
5309                                 goto check_vlan_id;
5310                 }
5311                 /* Note: we might in the future use prio bits
5312                  * and set skb->priority like in vlan_do_receive()
5313                  * For the time being, just ignore Priority Code Point
5314                  */
5315                 __vlan_hwaccel_clear_tag(skb);
5316         }
5317
5318         type = skb->protocol;
5319
5320         /* deliver only exact match when indicated */
5321         if (likely(!deliver_exact)) {
5322                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5323                                        &ptype_base[ntohs(type) &
5324                                                    PTYPE_HASH_MASK]);
5325         }
5326
5327         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5328                                &orig_dev->ptype_specific);
5329
5330         if (unlikely(skb->dev != orig_dev)) {
5331                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5332                                        &skb->dev->ptype_specific);
5333         }
5334
5335         if (pt_prev) {
5336                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5337                         goto drop;
5338                 *ppt_prev = pt_prev;
5339         } else {
5340 drop:
5341                 if (!deliver_exact)
5342                         atomic_long_inc(&skb->dev->rx_dropped);
5343                 else
5344                         atomic_long_inc(&skb->dev->rx_nohandler);
5345                 kfree_skb(skb);
5346                 /* Jamal, now you will not able to escape explaining
5347                  * me how you were going to use this. :-)
5348                  */
5349                 ret = NET_RX_DROP;
5350         }
5351
5352 out:
5353         /* The invariant here is that if *ppt_prev is not NULL
5354          * then skb should also be non-NULL.
5355          *
5356          * Apparently *ppt_prev assignment above holds this invariant due to
5357          * skb dereferencing near it.
5358          */
5359         *pskb = skb;
5360         return ret;
5361 }
5362
5363 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5364 {
5365         struct net_device *orig_dev = skb->dev;
5366         struct packet_type *pt_prev = NULL;
5367         int ret;
5368
5369         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5370         if (pt_prev)
5371                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5372                                          skb->dev, pt_prev, orig_dev);
5373         return ret;
5374 }
5375
5376 /**
5377  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5378  *      @skb: buffer to process
5379  *
5380  *      More direct receive version of netif_receive_skb().  It should
5381  *      only be used by callers that have a need to skip RPS and Generic XDP.
5382  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5383  *
5384  *      This function may only be called from softirq context and interrupts
5385  *      should be enabled.
5386  *
5387  *      Return values (usually ignored):
5388  *      NET_RX_SUCCESS: no congestion
5389  *      NET_RX_DROP: packet was dropped
5390  */
5391 int netif_receive_skb_core(struct sk_buff *skb)
5392 {
5393         int ret;
5394
5395         rcu_read_lock();
5396         ret = __netif_receive_skb_one_core(skb, false);
5397         rcu_read_unlock();
5398
5399         return ret;
5400 }
5401 EXPORT_SYMBOL(netif_receive_skb_core);
5402
5403 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5404                                                   struct packet_type *pt_prev,
5405                                                   struct net_device *orig_dev)
5406 {
5407         struct sk_buff *skb, *next;
5408
5409         if (!pt_prev)
5410                 return;
5411         if (list_empty(head))
5412                 return;
5413         if (pt_prev->list_func != NULL)
5414                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5415                                    ip_list_rcv, head, pt_prev, orig_dev);
5416         else
5417                 list_for_each_entry_safe(skb, next, head, list) {
5418                         skb_list_del_init(skb);
5419                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5420                 }
5421 }
5422
5423 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5424 {
5425         /* Fast-path assumptions:
5426          * - There is no RX handler.
5427          * - Only one packet_type matches.
5428          * If either of these fails, we will end up doing some per-packet
5429          * processing in-line, then handling the 'last ptype' for the whole
5430          * sublist.  This can't cause out-of-order delivery to any single ptype,
5431          * because the 'last ptype' must be constant across the sublist, and all
5432          * other ptypes are handled per-packet.
5433          */
5434         /* Current (common) ptype of sublist */
5435         struct packet_type *pt_curr = NULL;
5436         /* Current (common) orig_dev of sublist */
5437         struct net_device *od_curr = NULL;
5438         struct list_head sublist;
5439         struct sk_buff *skb, *next;
5440
5441         INIT_LIST_HEAD(&sublist);
5442         list_for_each_entry_safe(skb, next, head, list) {
5443                 struct net_device *orig_dev = skb->dev;
5444                 struct packet_type *pt_prev = NULL;
5445
5446                 skb_list_del_init(skb);
5447                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5448                 if (!pt_prev)
5449                         continue;
5450                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5451                         /* dispatch old sublist */
5452                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5453                         /* start new sublist */
5454                         INIT_LIST_HEAD(&sublist);
5455                         pt_curr = pt_prev;
5456                         od_curr = orig_dev;
5457                 }
5458                 list_add_tail(&skb->list, &sublist);
5459         }
5460
5461         /* dispatch final sublist */
5462         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5463 }
5464
5465 static int __netif_receive_skb(struct sk_buff *skb)
5466 {
5467         int ret;
5468
5469         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5470                 unsigned int noreclaim_flag;
5471
5472                 /*
5473                  * PFMEMALLOC skbs are special, they should
5474                  * - be delivered to SOCK_MEMALLOC sockets only
5475                  * - stay away from userspace
5476                  * - have bounded memory usage
5477                  *
5478                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5479                  * context down to all allocation sites.
5480                  */
5481                 noreclaim_flag = memalloc_noreclaim_save();
5482                 ret = __netif_receive_skb_one_core(skb, true);
5483                 memalloc_noreclaim_restore(noreclaim_flag);
5484         } else
5485                 ret = __netif_receive_skb_one_core(skb, false);
5486
5487         return ret;
5488 }
5489
5490 static void __netif_receive_skb_list(struct list_head *head)
5491 {
5492         unsigned long noreclaim_flag = 0;
5493         struct sk_buff *skb, *next;
5494         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5495
5496         list_for_each_entry_safe(skb, next, head, list) {
5497                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5498                         struct list_head sublist;
5499
5500                         /* Handle the previous sublist */
5501                         list_cut_before(&sublist, head, &skb->list);
5502                         if (!list_empty(&sublist))
5503                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5504                         pfmemalloc = !pfmemalloc;
5505                         /* See comments in __netif_receive_skb */
5506                         if (pfmemalloc)
5507                                 noreclaim_flag = memalloc_noreclaim_save();
5508                         else
5509                                 memalloc_noreclaim_restore(noreclaim_flag);
5510                 }
5511         }
5512         /* Handle the remaining sublist */
5513         if (!list_empty(head))
5514                 __netif_receive_skb_list_core(head, pfmemalloc);
5515         /* Restore pflags */
5516         if (pfmemalloc)
5517                 memalloc_noreclaim_restore(noreclaim_flag);
5518 }
5519
5520 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5521 {
5522         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5523         struct bpf_prog *new = xdp->prog;
5524         int ret = 0;
5525
5526         if (new) {
5527                 u32 i;
5528
5529                 mutex_lock(&new->aux->used_maps_mutex);
5530
5531                 /* generic XDP does not work with DEVMAPs that can
5532                  * have a bpf_prog installed on an entry
5533                  */
5534                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5535                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5536                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5537                                 mutex_unlock(&new->aux->used_maps_mutex);
5538                                 return -EINVAL;
5539                         }
5540                 }
5541
5542                 mutex_unlock(&new->aux->used_maps_mutex);
5543         }
5544
5545         switch (xdp->command) {
5546         case XDP_SETUP_PROG:
5547                 rcu_assign_pointer(dev->xdp_prog, new);
5548                 if (old)
5549                         bpf_prog_put(old);
5550
5551                 if (old && !new) {
5552                         static_branch_dec(&generic_xdp_needed_key);
5553                 } else if (new && !old) {
5554                         static_branch_inc(&generic_xdp_needed_key);
5555                         dev_disable_lro(dev);
5556                         dev_disable_gro_hw(dev);
5557                 }
5558                 break;
5559
5560         default:
5561                 ret = -EINVAL;
5562                 break;
5563         }
5564
5565         return ret;
5566 }
5567
5568 static int netif_receive_skb_internal(struct sk_buff *skb)
5569 {
5570         int ret;
5571
5572         net_timestamp_check(netdev_tstamp_prequeue, skb);
5573
5574         if (skb_defer_rx_timestamp(skb))
5575                 return NET_RX_SUCCESS;
5576
5577         rcu_read_lock();
5578 #ifdef CONFIG_RPS
5579         if (static_branch_unlikely(&rps_needed)) {
5580                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5581                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5582
5583                 if (cpu >= 0) {
5584                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5585                         rcu_read_unlock();
5586                         return ret;
5587                 }
5588         }
5589 #endif
5590         ret = __netif_receive_skb(skb);
5591         rcu_read_unlock();
5592         return ret;
5593 }
5594
5595 static void netif_receive_skb_list_internal(struct list_head *head)
5596 {
5597         struct sk_buff *skb, *next;
5598         struct list_head sublist;
5599
5600         INIT_LIST_HEAD(&sublist);
5601         list_for_each_entry_safe(skb, next, head, list) {
5602                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5603                 skb_list_del_init(skb);
5604                 if (!skb_defer_rx_timestamp(skb))
5605                         list_add_tail(&skb->list, &sublist);
5606         }
5607         list_splice_init(&sublist, head);
5608
5609         rcu_read_lock();
5610 #ifdef CONFIG_RPS
5611         if (static_branch_unlikely(&rps_needed)) {
5612                 list_for_each_entry_safe(skb, next, head, list) {
5613                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5614                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5615
5616                         if (cpu >= 0) {
5617                                 /* Will be handled, remove from list */
5618                                 skb_list_del_init(skb);
5619                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5620                         }
5621                 }
5622         }
5623 #endif
5624         __netif_receive_skb_list(head);
5625         rcu_read_unlock();
5626 }
5627
5628 /**
5629  *      netif_receive_skb - process receive buffer from network
5630  *      @skb: buffer to process
5631  *
5632  *      netif_receive_skb() is the main receive data processing function.
5633  *      It always succeeds. The buffer may be dropped during processing
5634  *      for congestion control or by the protocol layers.
5635  *
5636  *      This function may only be called from softirq context and interrupts
5637  *      should be enabled.
5638  *
5639  *      Return values (usually ignored):
5640  *      NET_RX_SUCCESS: no congestion
5641  *      NET_RX_DROP: packet was dropped
5642  */
5643 int netif_receive_skb(struct sk_buff *skb)
5644 {
5645         int ret;
5646
5647         trace_netif_receive_skb_entry(skb);
5648
5649         ret = netif_receive_skb_internal(skb);
5650         trace_netif_receive_skb_exit(ret);
5651
5652         return ret;
5653 }
5654 EXPORT_SYMBOL(netif_receive_skb);
5655
5656 /**
5657  *      netif_receive_skb_list - process many receive buffers from network
5658  *      @head: list of skbs to process.
5659  *
5660  *      Since return value of netif_receive_skb() is normally ignored, and
5661  *      wouldn't be meaningful for a list, this function returns void.
5662  *
5663  *      This function may only be called from softirq context and interrupts
5664  *      should be enabled.
5665  */
5666 void netif_receive_skb_list(struct list_head *head)
5667 {
5668         struct sk_buff *skb;
5669
5670         if (list_empty(head))
5671                 return;
5672         if (trace_netif_receive_skb_list_entry_enabled()) {
5673                 list_for_each_entry(skb, head, list)
5674                         trace_netif_receive_skb_list_entry(skb);
5675         }
5676         netif_receive_skb_list_internal(head);
5677         trace_netif_receive_skb_list_exit(0);
5678 }
5679 EXPORT_SYMBOL(netif_receive_skb_list);
5680
5681 static DEFINE_PER_CPU(struct work_struct, flush_works);
5682
5683 /* Network device is going away, flush any packets still pending */
5684 static void flush_backlog(struct work_struct *work)
5685 {
5686         struct sk_buff *skb, *tmp;
5687         struct softnet_data *sd;
5688
5689         local_bh_disable();
5690         sd = this_cpu_ptr(&softnet_data);
5691
5692         local_irq_disable();
5693         rps_lock(sd);
5694         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5695                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5696                         __skb_unlink(skb, &sd->input_pkt_queue);
5697                         dev_kfree_skb_irq(skb);
5698                         input_queue_head_incr(sd);
5699                 }
5700         }
5701         rps_unlock(sd);
5702         local_irq_enable();
5703
5704         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5705                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5706                         __skb_unlink(skb, &sd->process_queue);
5707                         kfree_skb(skb);
5708                         input_queue_head_incr(sd);
5709                 }
5710         }
5711         local_bh_enable();
5712 }
5713
5714 static bool flush_required(int cpu)
5715 {
5716 #if IS_ENABLED(CONFIG_RPS)
5717         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5718         bool do_flush;
5719
5720         local_irq_disable();
5721         rps_lock(sd);
5722
5723         /* as insertion into process_queue happens with the rps lock held,
5724          * process_queue access may race only with dequeue
5725          */
5726         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5727                    !skb_queue_empty_lockless(&sd->process_queue);
5728         rps_unlock(sd);
5729         local_irq_enable();
5730
5731         return do_flush;
5732 #endif
5733         /* without RPS we can't safely check input_pkt_queue: during a
5734          * concurrent remote skb_queue_splice() we can detect as empty both
5735          * input_pkt_queue and process_queue even if the latter could end-up
5736          * containing a lot of packets.
5737          */
5738         return true;
5739 }
5740
5741 static void flush_all_backlogs(void)
5742 {
5743         static cpumask_t flush_cpus;
5744         unsigned int cpu;
5745
5746         /* since we are under rtnl lock protection we can use static data
5747          * for the cpumask and avoid allocating on stack the possibly
5748          * large mask
5749          */
5750         ASSERT_RTNL();
5751
5752         get_online_cpus();
5753
5754         cpumask_clear(&flush_cpus);
5755         for_each_online_cpu(cpu) {
5756                 if (flush_required(cpu)) {
5757                         queue_work_on(cpu, system_highpri_wq,
5758                                       per_cpu_ptr(&flush_works, cpu));
5759                         cpumask_set_cpu(cpu, &flush_cpus);
5760                 }
5761         }
5762
5763         /* we can have in flight packet[s] on the cpus we are not flushing,
5764          * synchronize_net() in unregister_netdevice_many() will take care of
5765          * them
5766          */
5767         for_each_cpu(cpu, &flush_cpus)
5768                 flush_work(per_cpu_ptr(&flush_works, cpu));
5769
5770         put_online_cpus();
5771 }
5772
5773 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5774 static void gro_normal_list(struct napi_struct *napi)
5775 {
5776         if (!napi->rx_count)
5777                 return;
5778         netif_receive_skb_list_internal(&napi->rx_list);
5779         INIT_LIST_HEAD(&napi->rx_list);
5780         napi->rx_count = 0;
5781 }
5782
5783 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5784  * pass the whole batch up to the stack.
5785  */
5786 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5787 {
5788         list_add_tail(&skb->list, &napi->rx_list);
5789         if (++napi->rx_count >= gro_normal_batch)
5790                 gro_normal_list(napi);
5791 }
5792
5793 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5794 {
5795         struct packet_offload *ptype;
5796         __be16 type = skb->protocol;
5797         struct list_head *head = &offload_base;
5798         int err = -ENOENT;
5799
5800         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5801
5802         if (NAPI_GRO_CB(skb)->count == 1) {
5803                 skb_shinfo(skb)->gso_size = 0;
5804                 goto out;
5805         }
5806
5807         rcu_read_lock();
5808         list_for_each_entry_rcu(ptype, head, list) {
5809                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5810                         continue;
5811
5812                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5813                                          ipv6_gro_complete, inet_gro_complete,
5814                                          skb, 0);
5815                 break;
5816         }
5817         rcu_read_unlock();
5818
5819         if (err) {
5820                 WARN_ON(&ptype->list == head);
5821                 kfree_skb(skb);
5822                 return NET_RX_SUCCESS;
5823         }
5824
5825 out:
5826         gro_normal_one(napi, skb);
5827         return NET_RX_SUCCESS;
5828 }
5829
5830 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5831                                    bool flush_old)
5832 {
5833         struct list_head *head = &napi->gro_hash[index].list;
5834         struct sk_buff *skb, *p;
5835
5836         list_for_each_entry_safe_reverse(skb, p, head, list) {
5837                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5838                         return;
5839                 skb_list_del_init(skb);
5840                 napi_gro_complete(napi, skb);
5841                 napi->gro_hash[index].count--;
5842         }
5843
5844         if (!napi->gro_hash[index].count)
5845                 __clear_bit(index, &napi->gro_bitmask);
5846 }
5847
5848 /* napi->gro_hash[].list contains packets ordered by age.
5849  * youngest packets at the head of it.
5850  * Complete skbs in reverse order to reduce latencies.
5851  */
5852 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5853 {
5854         unsigned long bitmask = napi->gro_bitmask;
5855         unsigned int i, base = ~0U;
5856
5857         while ((i = ffs(bitmask)) != 0) {
5858                 bitmask >>= i;
5859                 base += i;
5860                 __napi_gro_flush_chain(napi, base, flush_old);
5861         }
5862 }
5863 EXPORT_SYMBOL(napi_gro_flush);
5864
5865 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5866                                           struct sk_buff *skb)
5867 {
5868         unsigned int maclen = skb->dev->hard_header_len;
5869         u32 hash = skb_get_hash_raw(skb);
5870         struct list_head *head;
5871         struct sk_buff *p;
5872
5873         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5874         list_for_each_entry(p, head, list) {
5875                 unsigned long diffs;
5876
5877                 NAPI_GRO_CB(p)->flush = 0;
5878
5879                 if (hash != skb_get_hash_raw(p)) {
5880                         NAPI_GRO_CB(p)->same_flow = 0;
5881                         continue;
5882                 }
5883
5884                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5885                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5886                 if (skb_vlan_tag_present(p))
5887                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5888                 diffs |= skb_metadata_dst_cmp(p, skb);
5889                 diffs |= skb_metadata_differs(p, skb);
5890                 if (maclen == ETH_HLEN)
5891                         diffs |= compare_ether_header(skb_mac_header(p),
5892                                                       skb_mac_header(skb));
5893                 else if (!diffs)
5894                         diffs = memcmp(skb_mac_header(p),
5895                                        skb_mac_header(skb),
5896                                        maclen);
5897                 NAPI_GRO_CB(p)->same_flow = !diffs;
5898         }
5899
5900         return head;
5901 }
5902
5903 static void skb_gro_reset_offset(struct sk_buff *skb)
5904 {
5905         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5906         const skb_frag_t *frag0 = &pinfo->frags[0];
5907
5908         NAPI_GRO_CB(skb)->data_offset = 0;
5909         NAPI_GRO_CB(skb)->frag0 = NULL;
5910         NAPI_GRO_CB(skb)->frag0_len = 0;
5911
5912         if (!skb_headlen(skb) && pinfo->nr_frags &&
5913             !PageHighMem(skb_frag_page(frag0))) {
5914                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5915                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5916                                                     skb_frag_size(frag0),
5917                                                     skb->end - skb->tail);
5918         }
5919 }
5920
5921 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5922 {
5923         struct skb_shared_info *pinfo = skb_shinfo(skb);
5924
5925         BUG_ON(skb->end - skb->tail < grow);
5926
5927         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5928
5929         skb->data_len -= grow;
5930         skb->tail += grow;
5931
5932         skb_frag_off_add(&pinfo->frags[0], grow);
5933         skb_frag_size_sub(&pinfo->frags[0], grow);
5934
5935         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5936                 skb_frag_unref(skb, 0);
5937                 memmove(pinfo->frags, pinfo->frags + 1,
5938                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5939         }
5940 }
5941
5942 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5943 {
5944         struct sk_buff *oldest;
5945
5946         oldest = list_last_entry(head, struct sk_buff, list);
5947
5948         /* We are called with head length >= MAX_GRO_SKBS, so this is
5949          * impossible.
5950          */
5951         if (WARN_ON_ONCE(!oldest))
5952                 return;
5953
5954         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5955          * SKB to the chain.
5956          */
5957         skb_list_del_init(oldest);
5958         napi_gro_complete(napi, oldest);
5959 }
5960
5961 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5962 {
5963         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5964         struct list_head *head = &offload_base;
5965         struct packet_offload *ptype;
5966         __be16 type = skb->protocol;
5967         struct list_head *gro_head;
5968         struct sk_buff *pp = NULL;
5969         enum gro_result ret;
5970         int same_flow;
5971         int grow;
5972
5973         if (netif_elide_gro(skb->dev))
5974                 goto normal;
5975
5976         gro_head = gro_list_prepare(napi, skb);
5977
5978         rcu_read_lock();
5979         list_for_each_entry_rcu(ptype, head, list) {
5980                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5981                         continue;
5982
5983                 skb_set_network_header(skb, skb_gro_offset(skb));
5984                 skb_reset_mac_len(skb);
5985                 NAPI_GRO_CB(skb)->same_flow = 0;
5986                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5987                 NAPI_GRO_CB(skb)->free = 0;
5988                 NAPI_GRO_CB(skb)->encap_mark = 0;
5989                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5990                 NAPI_GRO_CB(skb)->is_fou = 0;
5991                 NAPI_GRO_CB(skb)->is_atomic = 1;
5992                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5993
5994                 /* Setup for GRO checksum validation */
5995                 switch (skb->ip_summed) {
5996                 case CHECKSUM_COMPLETE:
5997                         NAPI_GRO_CB(skb)->csum = skb->csum;
5998                         NAPI_GRO_CB(skb)->csum_valid = 1;
5999                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6000                         break;
6001                 case CHECKSUM_UNNECESSARY:
6002                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6003                         NAPI_GRO_CB(skb)->csum_valid = 0;
6004                         break;
6005                 default:
6006                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6007                         NAPI_GRO_CB(skb)->csum_valid = 0;
6008                 }
6009
6010                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6011                                         ipv6_gro_receive, inet_gro_receive,
6012                                         gro_head, skb);
6013                 break;
6014         }
6015         rcu_read_unlock();
6016
6017         if (&ptype->list == head)
6018                 goto normal;
6019
6020         if (PTR_ERR(pp) == -EINPROGRESS) {
6021                 ret = GRO_CONSUMED;
6022                 goto ok;
6023         }
6024
6025         same_flow = NAPI_GRO_CB(skb)->same_flow;
6026         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6027
6028         if (pp) {
6029                 skb_list_del_init(pp);
6030                 napi_gro_complete(napi, pp);
6031                 napi->gro_hash[hash].count--;
6032         }
6033
6034         if (same_flow)
6035                 goto ok;
6036
6037         if (NAPI_GRO_CB(skb)->flush)
6038                 goto normal;
6039
6040         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6041                 gro_flush_oldest(napi, gro_head);
6042         } else {
6043                 napi->gro_hash[hash].count++;
6044         }
6045         NAPI_GRO_CB(skb)->count = 1;
6046         NAPI_GRO_CB(skb)->age = jiffies;
6047         NAPI_GRO_CB(skb)->last = skb;
6048         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6049         list_add(&skb->list, gro_head);
6050         ret = GRO_HELD;
6051
6052 pull:
6053         grow = skb_gro_offset(skb) - skb_headlen(skb);
6054         if (grow > 0)
6055                 gro_pull_from_frag0(skb, grow);
6056 ok:
6057         if (napi->gro_hash[hash].count) {
6058                 if (!test_bit(hash, &napi->gro_bitmask))
6059                         __set_bit(hash, &napi->gro_bitmask);
6060         } else if (test_bit(hash, &napi->gro_bitmask)) {
6061                 __clear_bit(hash, &napi->gro_bitmask);
6062         }
6063
6064         return ret;
6065
6066 normal:
6067         ret = GRO_NORMAL;
6068         goto pull;
6069 }
6070
6071 struct packet_offload *gro_find_receive_by_type(__be16 type)
6072 {
6073         struct list_head *offload_head = &offload_base;
6074         struct packet_offload *ptype;
6075
6076         list_for_each_entry_rcu(ptype, offload_head, list) {
6077                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6078                         continue;
6079                 return ptype;
6080         }
6081         return NULL;
6082 }
6083 EXPORT_SYMBOL(gro_find_receive_by_type);
6084
6085 struct packet_offload *gro_find_complete_by_type(__be16 type)
6086 {
6087         struct list_head *offload_head = &offload_base;
6088         struct packet_offload *ptype;
6089
6090         list_for_each_entry_rcu(ptype, offload_head, list) {
6091                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6092                         continue;
6093                 return ptype;
6094         }
6095         return NULL;
6096 }
6097 EXPORT_SYMBOL(gro_find_complete_by_type);
6098
6099 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6100 {
6101         skb_dst_drop(skb);
6102         skb_ext_put(skb);
6103         kmem_cache_free(skbuff_head_cache, skb);
6104 }
6105
6106 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6107                                     struct sk_buff *skb,
6108                                     gro_result_t ret)
6109 {
6110         switch (ret) {
6111         case GRO_NORMAL:
6112                 gro_normal_one(napi, skb);
6113                 break;
6114
6115         case GRO_MERGED_FREE:
6116                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6117                         napi_skb_free_stolen_head(skb);
6118                 else
6119                         __kfree_skb(skb);
6120                 break;
6121
6122         case GRO_HELD:
6123         case GRO_MERGED:
6124         case GRO_CONSUMED:
6125                 break;
6126         }
6127
6128         return ret;
6129 }
6130
6131 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6132 {
6133         gro_result_t ret;
6134
6135         skb_mark_napi_id(skb, napi);
6136         trace_napi_gro_receive_entry(skb);
6137
6138         skb_gro_reset_offset(skb);
6139
6140         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6141         trace_napi_gro_receive_exit(ret);
6142
6143         return ret;
6144 }
6145 EXPORT_SYMBOL(napi_gro_receive);
6146
6147 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6148 {
6149         if (unlikely(skb->pfmemalloc)) {
6150                 consume_skb(skb);
6151                 return;
6152         }
6153         __skb_pull(skb, skb_headlen(skb));
6154         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6155         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6156         __vlan_hwaccel_clear_tag(skb);
6157         skb->dev = napi->dev;
6158         skb->skb_iif = 0;
6159
6160         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6161         skb->pkt_type = PACKET_HOST;
6162
6163         skb->encapsulation = 0;
6164         skb_shinfo(skb)->gso_type = 0;
6165         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6166         skb_ext_reset(skb);
6167
6168         napi->skb = skb;
6169 }
6170
6171 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6172 {
6173         struct sk_buff *skb = napi->skb;
6174
6175         if (!skb) {
6176                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6177                 if (skb) {
6178                         napi->skb = skb;
6179                         skb_mark_napi_id(skb, napi);
6180                 }
6181         }
6182         return skb;
6183 }
6184 EXPORT_SYMBOL(napi_get_frags);
6185
6186 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6187                                       struct sk_buff *skb,
6188                                       gro_result_t ret)
6189 {
6190         switch (ret) {
6191         case GRO_NORMAL:
6192         case GRO_HELD:
6193                 __skb_push(skb, ETH_HLEN);
6194                 skb->protocol = eth_type_trans(skb, skb->dev);
6195                 if (ret == GRO_NORMAL)
6196                         gro_normal_one(napi, skb);
6197                 break;
6198
6199         case GRO_MERGED_FREE:
6200                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6201                         napi_skb_free_stolen_head(skb);
6202                 else
6203                         napi_reuse_skb(napi, skb);
6204                 break;
6205
6206         case GRO_MERGED:
6207         case GRO_CONSUMED:
6208                 break;
6209         }
6210
6211         return ret;
6212 }
6213
6214 /* Upper GRO stack assumes network header starts at gro_offset=0
6215  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6216  * We copy ethernet header into skb->data to have a common layout.
6217  */
6218 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6219 {
6220         struct sk_buff *skb = napi->skb;
6221         const struct ethhdr *eth;
6222         unsigned int hlen = sizeof(*eth);
6223
6224         napi->skb = NULL;
6225
6226         skb_reset_mac_header(skb);
6227         skb_gro_reset_offset(skb);
6228
6229         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6230                 eth = skb_gro_header_slow(skb, hlen, 0);
6231                 if (unlikely(!eth)) {
6232                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6233                                              __func__, napi->dev->name);
6234                         napi_reuse_skb(napi, skb);
6235                         return NULL;
6236                 }
6237         } else {
6238                 eth = (const struct ethhdr *)skb->data;
6239                 gro_pull_from_frag0(skb, hlen);
6240                 NAPI_GRO_CB(skb)->frag0 += hlen;
6241                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6242         }
6243         __skb_pull(skb, hlen);
6244
6245         /*
6246          * This works because the only protocols we care about don't require
6247          * special handling.
6248          * We'll fix it up properly in napi_frags_finish()
6249          */
6250         skb->protocol = eth->h_proto;
6251
6252         return skb;
6253 }
6254
6255 gro_result_t napi_gro_frags(struct napi_struct *napi)
6256 {
6257         gro_result_t ret;
6258         struct sk_buff *skb = napi_frags_skb(napi);
6259
6260         trace_napi_gro_frags_entry(skb);
6261
6262         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6263         trace_napi_gro_frags_exit(ret);
6264
6265         return ret;
6266 }
6267 EXPORT_SYMBOL(napi_gro_frags);
6268
6269 /* Compute the checksum from gro_offset and return the folded value
6270  * after adding in any pseudo checksum.
6271  */
6272 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6273 {
6274         __wsum wsum;
6275         __sum16 sum;
6276
6277         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6278
6279         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6280         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6281         /* See comments in __skb_checksum_complete(). */
6282         if (likely(!sum)) {
6283                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6284                     !skb->csum_complete_sw)
6285                         netdev_rx_csum_fault(skb->dev, skb);
6286         }
6287
6288         NAPI_GRO_CB(skb)->csum = wsum;
6289         NAPI_GRO_CB(skb)->csum_valid = 1;
6290
6291         return sum;
6292 }
6293 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6294
6295 static void net_rps_send_ipi(struct softnet_data *remsd)
6296 {
6297 #ifdef CONFIG_RPS
6298         while (remsd) {
6299                 struct softnet_data *next = remsd->rps_ipi_next;
6300
6301                 if (cpu_online(remsd->cpu))
6302                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6303                 remsd = next;
6304         }
6305 #endif
6306 }
6307
6308 /*
6309  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6310  * Note: called with local irq disabled, but exits with local irq enabled.
6311  */
6312 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6313 {
6314 #ifdef CONFIG_RPS
6315         struct softnet_data *remsd = sd->rps_ipi_list;
6316
6317         if (remsd) {
6318                 sd->rps_ipi_list = NULL;
6319
6320                 local_irq_enable();
6321
6322                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6323                 net_rps_send_ipi(remsd);
6324         } else
6325 #endif
6326                 local_irq_enable();
6327 }
6328
6329 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6330 {
6331 #ifdef CONFIG_RPS
6332         return sd->rps_ipi_list != NULL;
6333 #else
6334         return false;
6335 #endif
6336 }
6337
6338 static int process_backlog(struct napi_struct *napi, int quota)
6339 {
6340         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6341         bool again = true;
6342         int work = 0;
6343
6344         /* Check if we have pending ipi, its better to send them now,
6345          * not waiting net_rx_action() end.
6346          */
6347         if (sd_has_rps_ipi_waiting(sd)) {
6348                 local_irq_disable();
6349                 net_rps_action_and_irq_enable(sd);
6350         }
6351
6352         napi->weight = dev_rx_weight;
6353         while (again) {
6354                 struct sk_buff *skb;
6355
6356                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6357                         rcu_read_lock();
6358                         __netif_receive_skb(skb);
6359                         rcu_read_unlock();
6360                         input_queue_head_incr(sd);
6361                         if (++work >= quota)
6362                                 return work;
6363
6364                 }
6365
6366                 local_irq_disable();
6367                 rps_lock(sd);
6368                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6369                         /*
6370                          * Inline a custom version of __napi_complete().
6371                          * only current cpu owns and manipulates this napi,
6372                          * and NAPI_STATE_SCHED is the only possible flag set
6373                          * on backlog.
6374                          * We can use a plain write instead of clear_bit(),
6375                          * and we dont need an smp_mb() memory barrier.
6376                          */
6377                         napi->state = 0;
6378                         again = false;
6379                 } else {
6380                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6381                                                    &sd->process_queue);
6382                 }
6383                 rps_unlock(sd);
6384                 local_irq_enable();
6385         }
6386
6387         return work;
6388 }
6389
6390 /**
6391  * __napi_schedule - schedule for receive
6392  * @n: entry to schedule
6393  *
6394  * The entry's receive function will be scheduled to run.
6395  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6396  */
6397 void __napi_schedule(struct napi_struct *n)
6398 {
6399         unsigned long flags;
6400
6401         local_irq_save(flags);
6402         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6403         local_irq_restore(flags);
6404 }
6405 EXPORT_SYMBOL(__napi_schedule);
6406
6407 /**
6408  *      napi_schedule_prep - check if napi can be scheduled
6409  *      @n: napi context
6410  *
6411  * Test if NAPI routine is already running, and if not mark
6412  * it as running.  This is used as a condition variable to
6413  * insure only one NAPI poll instance runs.  We also make
6414  * sure there is no pending NAPI disable.
6415  */
6416 bool napi_schedule_prep(struct napi_struct *n)
6417 {
6418         unsigned long val, new;
6419
6420         do {
6421                 val = READ_ONCE(n->state);
6422                 if (unlikely(val & NAPIF_STATE_DISABLE))
6423                         return false;
6424                 new = val | NAPIF_STATE_SCHED;
6425
6426                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6427                  * This was suggested by Alexander Duyck, as compiler
6428                  * emits better code than :
6429                  * if (val & NAPIF_STATE_SCHED)
6430                  *     new |= NAPIF_STATE_MISSED;
6431                  */
6432                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6433                                                    NAPIF_STATE_MISSED;
6434         } while (cmpxchg(&n->state, val, new) != val);
6435
6436         return !(val & NAPIF_STATE_SCHED);
6437 }
6438 EXPORT_SYMBOL(napi_schedule_prep);
6439
6440 /**
6441  * __napi_schedule_irqoff - schedule for receive
6442  * @n: entry to schedule
6443  *
6444  * Variant of __napi_schedule() assuming hard irqs are masked
6445  */
6446 void __napi_schedule_irqoff(struct napi_struct *n)
6447 {
6448         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6449 }
6450 EXPORT_SYMBOL(__napi_schedule_irqoff);
6451
6452 bool napi_complete_done(struct napi_struct *n, int work_done)
6453 {
6454         unsigned long flags, val, new, timeout = 0;
6455         bool ret = true;
6456
6457         /*
6458          * 1) Don't let napi dequeue from the cpu poll list
6459          *    just in case its running on a different cpu.
6460          * 2) If we are busy polling, do nothing here, we have
6461          *    the guarantee we will be called later.
6462          */
6463         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6464                                  NAPIF_STATE_IN_BUSY_POLL)))
6465                 return false;
6466
6467         if (work_done) {
6468                 if (n->gro_bitmask)
6469                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6470                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6471         }
6472         if (n->defer_hard_irqs_count > 0) {
6473                 n->defer_hard_irqs_count--;
6474                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6475                 if (timeout)
6476                         ret = false;
6477         }
6478         if (n->gro_bitmask) {
6479                 /* When the NAPI instance uses a timeout and keeps postponing
6480                  * it, we need to bound somehow the time packets are kept in
6481                  * the GRO layer
6482                  */
6483                 napi_gro_flush(n, !!timeout);
6484         }
6485
6486         gro_normal_list(n);
6487
6488         if (unlikely(!list_empty(&n->poll_list))) {
6489                 /* If n->poll_list is not empty, we need to mask irqs */
6490                 local_irq_save(flags);
6491                 list_del_init(&n->poll_list);
6492                 local_irq_restore(flags);
6493         }
6494
6495         do {
6496                 val = READ_ONCE(n->state);
6497
6498                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6499
6500                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6501                               NAPIF_STATE_PREFER_BUSY_POLL);
6502
6503                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6504                  * because we will call napi->poll() one more time.
6505                  * This C code was suggested by Alexander Duyck to help gcc.
6506                  */
6507                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6508                                                     NAPIF_STATE_SCHED;
6509         } while (cmpxchg(&n->state, val, new) != val);
6510
6511         if (unlikely(val & NAPIF_STATE_MISSED)) {
6512                 __napi_schedule(n);
6513                 return false;
6514         }
6515
6516         if (timeout)
6517                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6518                               HRTIMER_MODE_REL_PINNED);
6519         return ret;
6520 }
6521 EXPORT_SYMBOL(napi_complete_done);
6522
6523 /* must be called under rcu_read_lock(), as we dont take a reference */
6524 static struct napi_struct *napi_by_id(unsigned int napi_id)
6525 {
6526         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6527         struct napi_struct *napi;
6528
6529         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6530                 if (napi->napi_id == napi_id)
6531                         return napi;
6532
6533         return NULL;
6534 }
6535
6536 #if defined(CONFIG_NET_RX_BUSY_POLL)
6537
6538 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6539 {
6540         if (!skip_schedule) {
6541                 gro_normal_list(napi);
6542                 __napi_schedule(napi);
6543                 return;
6544         }
6545
6546         if (napi->gro_bitmask) {
6547                 /* flush too old packets
6548                  * If HZ < 1000, flush all packets.
6549                  */
6550                 napi_gro_flush(napi, HZ >= 1000);
6551         }
6552
6553         gro_normal_list(napi);
6554         clear_bit(NAPI_STATE_SCHED, &napi->state);
6555 }
6556
6557 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6558                            u16 budget)
6559 {
6560         bool skip_schedule = false;
6561         unsigned long timeout;
6562         int rc;
6563
6564         /* Busy polling means there is a high chance device driver hard irq
6565          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6566          * set in napi_schedule_prep().
6567          * Since we are about to call napi->poll() once more, we can safely
6568          * clear NAPI_STATE_MISSED.
6569          *
6570          * Note: x86 could use a single "lock and ..." instruction
6571          * to perform these two clear_bit()
6572          */
6573         clear_bit(NAPI_STATE_MISSED, &napi->state);
6574         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6575
6576         local_bh_disable();
6577
6578         if (prefer_busy_poll) {
6579                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6580                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6581                 if (napi->defer_hard_irqs_count && timeout) {
6582                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6583                         skip_schedule = true;
6584                 }
6585         }
6586
6587         /* All we really want here is to re-enable device interrupts.
6588          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6589          */
6590         rc = napi->poll(napi, budget);
6591         /* We can't gro_normal_list() here, because napi->poll() might have
6592          * rearmed the napi (napi_complete_done()) in which case it could
6593          * already be running on another CPU.
6594          */
6595         trace_napi_poll(napi, rc, budget);
6596         netpoll_poll_unlock(have_poll_lock);
6597         if (rc == budget)
6598                 __busy_poll_stop(napi, skip_schedule);
6599         local_bh_enable();
6600 }
6601
6602 void napi_busy_loop(unsigned int napi_id,
6603                     bool (*loop_end)(void *, unsigned long),
6604                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6605 {
6606         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6607         int (*napi_poll)(struct napi_struct *napi, int budget);
6608         void *have_poll_lock = NULL;
6609         struct napi_struct *napi;
6610
6611 restart:
6612         napi_poll = NULL;
6613
6614         rcu_read_lock();
6615
6616         napi = napi_by_id(napi_id);
6617         if (!napi)
6618                 goto out;
6619
6620         preempt_disable();
6621         for (;;) {
6622                 int work = 0;
6623
6624                 local_bh_disable();
6625                 if (!napi_poll) {
6626                         unsigned long val = READ_ONCE(napi->state);
6627
6628                         /* If multiple threads are competing for this napi,
6629                          * we avoid dirtying napi->state as much as we can.
6630                          */
6631                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6632                                    NAPIF_STATE_IN_BUSY_POLL)) {
6633                                 if (prefer_busy_poll)
6634                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6635                                 goto count;
6636                         }
6637                         if (cmpxchg(&napi->state, val,
6638                                     val | NAPIF_STATE_IN_BUSY_POLL |
6639                                           NAPIF_STATE_SCHED) != val) {
6640                                 if (prefer_busy_poll)
6641                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6642                                 goto count;
6643                         }
6644                         have_poll_lock = netpoll_poll_lock(napi);
6645                         napi_poll = napi->poll;
6646                 }
6647                 work = napi_poll(napi, budget);
6648                 trace_napi_poll(napi, work, budget);
6649                 gro_normal_list(napi);
6650 count:
6651                 if (work > 0)
6652                         __NET_ADD_STATS(dev_net(napi->dev),
6653                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6654                 local_bh_enable();
6655
6656                 if (!loop_end || loop_end(loop_end_arg, start_time))
6657                         break;
6658
6659                 if (unlikely(need_resched())) {
6660                         if (napi_poll)
6661                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6662                         preempt_enable();
6663                         rcu_read_unlock();
6664                         cond_resched();
6665                         if (loop_end(loop_end_arg, start_time))
6666                                 return;
6667                         goto restart;
6668                 }
6669                 cpu_relax();
6670         }
6671         if (napi_poll)
6672                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6673         preempt_enable();
6674 out:
6675         rcu_read_unlock();
6676 }
6677 EXPORT_SYMBOL(napi_busy_loop);
6678
6679 #endif /* CONFIG_NET_RX_BUSY_POLL */
6680
6681 static void napi_hash_add(struct napi_struct *napi)
6682 {
6683         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6684                 return;
6685
6686         spin_lock(&napi_hash_lock);
6687
6688         /* 0..NR_CPUS range is reserved for sender_cpu use */
6689         do {
6690                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6691                         napi_gen_id = MIN_NAPI_ID;
6692         } while (napi_by_id(napi_gen_id));
6693         napi->napi_id = napi_gen_id;
6694
6695         hlist_add_head_rcu(&napi->napi_hash_node,
6696                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6697
6698         spin_unlock(&napi_hash_lock);
6699 }
6700
6701 /* Warning : caller is responsible to make sure rcu grace period
6702  * is respected before freeing memory containing @napi
6703  */
6704 static void napi_hash_del(struct napi_struct *napi)
6705 {
6706         spin_lock(&napi_hash_lock);
6707
6708         hlist_del_init_rcu(&napi->napi_hash_node);
6709
6710         spin_unlock(&napi_hash_lock);
6711 }
6712
6713 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6714 {
6715         struct napi_struct *napi;
6716
6717         napi = container_of(timer, struct napi_struct, timer);
6718
6719         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6720          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6721          */
6722         if (!napi_disable_pending(napi) &&
6723             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6724                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6725                 __napi_schedule_irqoff(napi);
6726         }
6727
6728         return HRTIMER_NORESTART;
6729 }
6730
6731 static void init_gro_hash(struct napi_struct *napi)
6732 {
6733         int i;
6734
6735         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6736                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6737                 napi->gro_hash[i].count = 0;
6738         }
6739         napi->gro_bitmask = 0;
6740 }
6741
6742 int dev_set_threaded(struct net_device *dev, bool threaded)
6743 {
6744         struct napi_struct *napi;
6745         int err = 0;
6746
6747         if (dev->threaded == threaded)
6748                 return 0;
6749
6750         if (threaded) {
6751                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6752                         if (!napi->thread) {
6753                                 err = napi_kthread_create(napi);
6754                                 if (err) {
6755                                         threaded = false;
6756                                         break;
6757                                 }
6758                         }
6759                 }
6760         }
6761
6762         dev->threaded = threaded;
6763
6764         /* Make sure kthread is created before THREADED bit
6765          * is set.
6766          */
6767         smp_mb__before_atomic();
6768
6769         /* Setting/unsetting threaded mode on a napi might not immediately
6770          * take effect, if the current napi instance is actively being
6771          * polled. In this case, the switch between threaded mode and
6772          * softirq mode will happen in the next round of napi_schedule().
6773          * This should not cause hiccups/stalls to the live traffic.
6774          */
6775         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6776                 if (threaded)
6777                         set_bit(NAPI_STATE_THREADED, &napi->state);
6778                 else
6779                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6780         }
6781
6782         return err;
6783 }
6784
6785 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6786                     int (*poll)(struct napi_struct *, int), int weight)
6787 {
6788         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6789                 return;
6790
6791         INIT_LIST_HEAD(&napi->poll_list);
6792         INIT_HLIST_NODE(&napi->napi_hash_node);
6793         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6794         napi->timer.function = napi_watchdog;
6795         init_gro_hash(napi);
6796         napi->skb = NULL;
6797         INIT_LIST_HEAD(&napi->rx_list);
6798         napi->rx_count = 0;
6799         napi->poll = poll;
6800         if (weight > NAPI_POLL_WEIGHT)
6801                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6802                                 weight);
6803         napi->weight = weight;
6804         napi->dev = dev;
6805 #ifdef CONFIG_NETPOLL
6806         napi->poll_owner = -1;
6807 #endif
6808         set_bit(NAPI_STATE_SCHED, &napi->state);
6809         set_bit(NAPI_STATE_NPSVC, &napi->state);
6810         list_add_rcu(&napi->dev_list, &dev->napi_list);
6811         napi_hash_add(napi);
6812         /* Create kthread for this napi if dev->threaded is set.
6813          * Clear dev->threaded if kthread creation failed so that
6814          * threaded mode will not be enabled in napi_enable().
6815          */
6816         if (dev->threaded && napi_kthread_create(napi))
6817                 dev->threaded = 0;
6818 }
6819 EXPORT_SYMBOL(netif_napi_add);
6820
6821 void napi_disable(struct napi_struct *n)
6822 {
6823         might_sleep();
6824         set_bit(NAPI_STATE_DISABLE, &n->state);
6825
6826         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6827                 msleep(1);
6828         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6829                 msleep(1);
6830
6831         hrtimer_cancel(&n->timer);
6832
6833         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6834         clear_bit(NAPI_STATE_DISABLE, &n->state);
6835         clear_bit(NAPI_STATE_THREADED, &n->state);
6836 }
6837 EXPORT_SYMBOL(napi_disable);
6838
6839 /**
6840  *      napi_enable - enable NAPI scheduling
6841  *      @n: NAPI context
6842  *
6843  * Resume NAPI from being scheduled on this context.
6844  * Must be paired with napi_disable.
6845  */
6846 void napi_enable(struct napi_struct *n)
6847 {
6848         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6849         smp_mb__before_atomic();
6850         clear_bit(NAPI_STATE_SCHED, &n->state);
6851         clear_bit(NAPI_STATE_NPSVC, &n->state);
6852         if (n->dev->threaded && n->thread)
6853                 set_bit(NAPI_STATE_THREADED, &n->state);
6854 }
6855 EXPORT_SYMBOL(napi_enable);
6856
6857 static void flush_gro_hash(struct napi_struct *napi)
6858 {
6859         int i;
6860
6861         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6862                 struct sk_buff *skb, *n;
6863
6864                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6865                         kfree_skb(skb);
6866                 napi->gro_hash[i].count = 0;
6867         }
6868 }
6869
6870 /* Must be called in process context */
6871 void __netif_napi_del(struct napi_struct *napi)
6872 {
6873         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6874                 return;
6875
6876         napi_hash_del(napi);
6877         list_del_rcu(&napi->dev_list);
6878         napi_free_frags(napi);
6879
6880         flush_gro_hash(napi);
6881         napi->gro_bitmask = 0;
6882
6883         if (napi->thread) {
6884                 kthread_stop(napi->thread);
6885                 napi->thread = NULL;
6886         }
6887 }
6888 EXPORT_SYMBOL(__netif_napi_del);
6889
6890 static int __napi_poll(struct napi_struct *n, bool *repoll)
6891 {
6892         int work, weight;
6893
6894         weight = n->weight;
6895
6896         /* This NAPI_STATE_SCHED test is for avoiding a race
6897          * with netpoll's poll_napi().  Only the entity which
6898          * obtains the lock and sees NAPI_STATE_SCHED set will
6899          * actually make the ->poll() call.  Therefore we avoid
6900          * accidentally calling ->poll() when NAPI is not scheduled.
6901          */
6902         work = 0;
6903         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6904                 work = n->poll(n, weight);
6905                 trace_napi_poll(n, work, weight);
6906         }
6907
6908         if (unlikely(work > weight))
6909                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6910                             n->poll, work, weight);
6911
6912         if (likely(work < weight))
6913                 return work;
6914
6915         /* Drivers must not modify the NAPI state if they
6916          * consume the entire weight.  In such cases this code
6917          * still "owns" the NAPI instance and therefore can
6918          * move the instance around on the list at-will.
6919          */
6920         if (unlikely(napi_disable_pending(n))) {
6921                 napi_complete(n);
6922                 return work;
6923         }
6924
6925         /* The NAPI context has more processing work, but busy-polling
6926          * is preferred. Exit early.
6927          */
6928         if (napi_prefer_busy_poll(n)) {
6929                 if (napi_complete_done(n, work)) {
6930                         /* If timeout is not set, we need to make sure
6931                          * that the NAPI is re-scheduled.
6932                          */
6933                         napi_schedule(n);
6934                 }
6935                 return work;
6936         }
6937
6938         if (n->gro_bitmask) {
6939                 /* flush too old packets
6940                  * If HZ < 1000, flush all packets.
6941                  */
6942                 napi_gro_flush(n, HZ >= 1000);
6943         }
6944
6945         gro_normal_list(n);
6946
6947         /* Some drivers may have called napi_schedule
6948          * prior to exhausting their budget.
6949          */
6950         if (unlikely(!list_empty(&n->poll_list))) {
6951                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6952                              n->dev ? n->dev->name : "backlog");
6953                 return work;
6954         }
6955
6956         *repoll = true;
6957
6958         return work;
6959 }
6960
6961 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6962 {
6963         bool do_repoll = false;
6964         void *have;
6965         int work;
6966
6967         list_del_init(&n->poll_list);
6968
6969         have = netpoll_poll_lock(n);
6970
6971         work = __napi_poll(n, &do_repoll);
6972
6973         if (do_repoll)
6974                 list_add_tail(&n->poll_list, repoll);
6975
6976         netpoll_poll_unlock(have);
6977
6978         return work;
6979 }
6980
6981 static int napi_thread_wait(struct napi_struct *napi)
6982 {
6983         set_current_state(TASK_INTERRUPTIBLE);
6984
6985         while (!kthread_should_stop() && !napi_disable_pending(napi)) {
6986                 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
6987                         WARN_ON(!list_empty(&napi->poll_list));
6988                         __set_current_state(TASK_RUNNING);
6989                         return 0;
6990                 }
6991
6992                 schedule();
6993                 set_current_state(TASK_INTERRUPTIBLE);
6994         }
6995         __set_current_state(TASK_RUNNING);
6996         return -1;
6997 }
6998
6999 static int napi_threaded_poll(void *data)
7000 {
7001         struct napi_struct *napi = data;
7002         void *have;
7003
7004         while (!napi_thread_wait(napi)) {
7005                 for (;;) {
7006                         bool repoll = false;
7007
7008                         local_bh_disable();
7009
7010                         have = netpoll_poll_lock(napi);
7011                         __napi_poll(napi, &repoll);
7012                         netpoll_poll_unlock(have);
7013
7014                         __kfree_skb_flush();
7015                         local_bh_enable();
7016
7017                         if (!repoll)
7018                                 break;
7019
7020                         cond_resched();
7021                 }
7022         }
7023         return 0;
7024 }
7025
7026 static __latent_entropy void net_rx_action(struct softirq_action *h)
7027 {
7028         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7029         unsigned long time_limit = jiffies +
7030                 usecs_to_jiffies(netdev_budget_usecs);
7031         int budget = netdev_budget;
7032         LIST_HEAD(list);
7033         LIST_HEAD(repoll);
7034
7035         local_irq_disable();
7036         list_splice_init(&sd->poll_list, &list);
7037         local_irq_enable();
7038
7039         for (;;) {
7040                 struct napi_struct *n;
7041
7042                 if (list_empty(&list)) {
7043                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7044                                 goto out;
7045                         break;
7046                 }
7047
7048                 n = list_first_entry(&list, struct napi_struct, poll_list);
7049                 budget -= napi_poll(n, &repoll);
7050
7051                 /* If softirq window is exhausted then punt.
7052                  * Allow this to run for 2 jiffies since which will allow
7053                  * an average latency of 1.5/HZ.
7054                  */
7055                 if (unlikely(budget <= 0 ||
7056                              time_after_eq(jiffies, time_limit))) {
7057                         sd->time_squeeze++;
7058                         break;
7059                 }
7060         }
7061
7062         local_irq_disable();
7063
7064         list_splice_tail_init(&sd->poll_list, &list);
7065         list_splice_tail(&repoll, &list);
7066         list_splice(&list, &sd->poll_list);
7067         if (!list_empty(&sd->poll_list))
7068                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7069
7070         net_rps_action_and_irq_enable(sd);
7071 out:
7072         __kfree_skb_flush();
7073 }
7074
7075 struct netdev_adjacent {
7076         struct net_device *dev;
7077
7078         /* upper master flag, there can only be one master device per list */
7079         bool master;
7080
7081         /* lookup ignore flag */
7082         bool ignore;
7083
7084         /* counter for the number of times this device was added to us */
7085         u16 ref_nr;
7086
7087         /* private field for the users */
7088         void *private;
7089
7090         struct list_head list;
7091         struct rcu_head rcu;
7092 };
7093
7094 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7095                                                  struct list_head *adj_list)
7096 {
7097         struct netdev_adjacent *adj;
7098
7099         list_for_each_entry(adj, adj_list, list) {
7100                 if (adj->dev == adj_dev)
7101                         return adj;
7102         }
7103         return NULL;
7104 }
7105
7106 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7107                                     struct netdev_nested_priv *priv)
7108 {
7109         struct net_device *dev = (struct net_device *)priv->data;
7110
7111         return upper_dev == dev;
7112 }
7113
7114 /**
7115  * netdev_has_upper_dev - Check if device is linked to an upper device
7116  * @dev: device
7117  * @upper_dev: upper device to check
7118  *
7119  * Find out if a device is linked to specified upper device and return true
7120  * in case it is. Note that this checks only immediate upper device,
7121  * not through a complete stack of devices. The caller must hold the RTNL lock.
7122  */
7123 bool netdev_has_upper_dev(struct net_device *dev,
7124                           struct net_device *upper_dev)
7125 {
7126         struct netdev_nested_priv priv = {
7127                 .data = (void *)upper_dev,
7128         };
7129
7130         ASSERT_RTNL();
7131
7132         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7133                                              &priv);
7134 }
7135 EXPORT_SYMBOL(netdev_has_upper_dev);
7136
7137 /**
7138  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7139  * @dev: device
7140  * @upper_dev: upper device to check
7141  *
7142  * Find out if a device is linked to specified upper device and return true
7143  * in case it is. Note that this checks the entire upper device chain.
7144  * The caller must hold rcu lock.
7145  */
7146
7147 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7148                                   struct net_device *upper_dev)
7149 {
7150         struct netdev_nested_priv priv = {
7151                 .data = (void *)upper_dev,
7152         };
7153
7154         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7155                                                &priv);
7156 }
7157 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7158
7159 /**
7160  * netdev_has_any_upper_dev - Check if device is linked to some device
7161  * @dev: device
7162  *
7163  * Find out if a device is linked to an upper device and return true in case
7164  * it is. The caller must hold the RTNL lock.
7165  */
7166 bool netdev_has_any_upper_dev(struct net_device *dev)
7167 {
7168         ASSERT_RTNL();
7169
7170         return !list_empty(&dev->adj_list.upper);
7171 }
7172 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7173
7174 /**
7175  * netdev_master_upper_dev_get - Get master upper device
7176  * @dev: device
7177  *
7178  * Find a master upper device and return pointer to it or NULL in case
7179  * it's not there. The caller must hold the RTNL lock.
7180  */
7181 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7182 {
7183         struct netdev_adjacent *upper;
7184
7185         ASSERT_RTNL();
7186
7187         if (list_empty(&dev->adj_list.upper))
7188                 return NULL;
7189
7190         upper = list_first_entry(&dev->adj_list.upper,
7191                                  struct netdev_adjacent, list);
7192         if (likely(upper->master))
7193                 return upper->dev;
7194         return NULL;
7195 }
7196 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7197
7198 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7199 {
7200         struct netdev_adjacent *upper;
7201
7202         ASSERT_RTNL();
7203
7204         if (list_empty(&dev->adj_list.upper))
7205                 return NULL;
7206
7207         upper = list_first_entry(&dev->adj_list.upper,
7208                                  struct netdev_adjacent, list);
7209         if (likely(upper->master) && !upper->ignore)
7210                 return upper->dev;
7211         return NULL;
7212 }
7213
7214 /**
7215  * netdev_has_any_lower_dev - Check if device is linked to some device
7216  * @dev: device
7217  *
7218  * Find out if a device is linked to a lower device and return true in case
7219  * it is. The caller must hold the RTNL lock.
7220  */
7221 static bool netdev_has_any_lower_dev(struct net_device *dev)
7222 {
7223         ASSERT_RTNL();
7224
7225         return !list_empty(&dev->adj_list.lower);
7226 }
7227
7228 void *netdev_adjacent_get_private(struct list_head *adj_list)
7229 {
7230         struct netdev_adjacent *adj;
7231
7232         adj = list_entry(adj_list, struct netdev_adjacent, list);
7233
7234         return adj->private;
7235 }
7236 EXPORT_SYMBOL(netdev_adjacent_get_private);
7237
7238 /**
7239  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7240  * @dev: device
7241  * @iter: list_head ** of the current position
7242  *
7243  * Gets the next device from the dev's upper list, starting from iter
7244  * position. The caller must hold RCU read lock.
7245  */
7246 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7247                                                  struct list_head **iter)
7248 {
7249         struct netdev_adjacent *upper;
7250
7251         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7252
7253         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7254
7255         if (&upper->list == &dev->adj_list.upper)
7256                 return NULL;
7257
7258         *iter = &upper->list;
7259
7260         return upper->dev;
7261 }
7262 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7263
7264 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7265                                                   struct list_head **iter,
7266                                                   bool *ignore)
7267 {
7268         struct netdev_adjacent *upper;
7269
7270         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7271
7272         if (&upper->list == &dev->adj_list.upper)
7273                 return NULL;
7274
7275         *iter = &upper->list;
7276         *ignore = upper->ignore;
7277
7278         return upper->dev;
7279 }
7280
7281 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7282                                                     struct list_head **iter)
7283 {
7284         struct netdev_adjacent *upper;
7285
7286         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7287
7288         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7289
7290         if (&upper->list == &dev->adj_list.upper)
7291                 return NULL;
7292
7293         *iter = &upper->list;
7294
7295         return upper->dev;
7296 }
7297
7298 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7299                                        int (*fn)(struct net_device *dev,
7300                                          struct netdev_nested_priv *priv),
7301                                        struct netdev_nested_priv *priv)
7302 {
7303         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7304         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7305         int ret, cur = 0;
7306         bool ignore;
7307
7308         now = dev;
7309         iter = &dev->adj_list.upper;
7310
7311         while (1) {
7312                 if (now != dev) {
7313                         ret = fn(now, priv);
7314                         if (ret)
7315                                 return ret;
7316                 }
7317
7318                 next = NULL;
7319                 while (1) {
7320                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7321                         if (!udev)
7322                                 break;
7323                         if (ignore)
7324                                 continue;
7325
7326                         next = udev;
7327                         niter = &udev->adj_list.upper;
7328                         dev_stack[cur] = now;
7329                         iter_stack[cur++] = iter;
7330                         break;
7331                 }
7332
7333                 if (!next) {
7334                         if (!cur)
7335                                 return 0;
7336                         next = dev_stack[--cur];
7337                         niter = iter_stack[cur];
7338                 }
7339
7340                 now = next;
7341                 iter = niter;
7342         }
7343
7344         return 0;
7345 }
7346
7347 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7348                                   int (*fn)(struct net_device *dev,
7349                                             struct netdev_nested_priv *priv),
7350                                   struct netdev_nested_priv *priv)
7351 {
7352         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7353         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7354         int ret, cur = 0;
7355
7356         now = dev;
7357         iter = &dev->adj_list.upper;
7358
7359         while (1) {
7360                 if (now != dev) {
7361                         ret = fn(now, priv);
7362                         if (ret)
7363                                 return ret;
7364                 }
7365
7366                 next = NULL;
7367                 while (1) {
7368                         udev = netdev_next_upper_dev_rcu(now, &iter);
7369                         if (!udev)
7370                                 break;
7371
7372                         next = udev;
7373                         niter = &udev->adj_list.upper;
7374                         dev_stack[cur] = now;
7375                         iter_stack[cur++] = iter;
7376                         break;
7377                 }
7378
7379                 if (!next) {
7380                         if (!cur)
7381                                 return 0;
7382                         next = dev_stack[--cur];
7383                         niter = iter_stack[cur];
7384                 }
7385
7386                 now = next;
7387                 iter = niter;
7388         }
7389
7390         return 0;
7391 }
7392 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7393
7394 static bool __netdev_has_upper_dev(struct net_device *dev,
7395                                    struct net_device *upper_dev)
7396 {
7397         struct netdev_nested_priv priv = {
7398                 .flags = 0,
7399                 .data = (void *)upper_dev,
7400         };
7401
7402         ASSERT_RTNL();
7403
7404         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7405                                            &priv);
7406 }
7407
7408 /**
7409  * netdev_lower_get_next_private - Get the next ->private from the
7410  *                                 lower neighbour list
7411  * @dev: device
7412  * @iter: list_head ** of the current position
7413  *
7414  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7415  * list, starting from iter position. The caller must hold either hold the
7416  * RTNL lock or its own locking that guarantees that the neighbour lower
7417  * list will remain unchanged.
7418  */
7419 void *netdev_lower_get_next_private(struct net_device *dev,
7420                                     struct list_head **iter)
7421 {
7422         struct netdev_adjacent *lower;
7423
7424         lower = list_entry(*iter, struct netdev_adjacent, list);
7425
7426         if (&lower->list == &dev->adj_list.lower)
7427                 return NULL;
7428
7429         *iter = lower->list.next;
7430
7431         return lower->private;
7432 }
7433 EXPORT_SYMBOL(netdev_lower_get_next_private);
7434
7435 /**
7436  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7437  *                                     lower neighbour list, RCU
7438  *                                     variant
7439  * @dev: device
7440  * @iter: list_head ** of the current position
7441  *
7442  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7443  * list, starting from iter position. The caller must hold RCU read lock.
7444  */
7445 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7446                                         struct list_head **iter)
7447 {
7448         struct netdev_adjacent *lower;
7449
7450         WARN_ON_ONCE(!rcu_read_lock_held());
7451
7452         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7453
7454         if (&lower->list == &dev->adj_list.lower)
7455                 return NULL;
7456
7457         *iter = &lower->list;
7458
7459         return lower->private;
7460 }
7461 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7462
7463 /**
7464  * netdev_lower_get_next - Get the next device from the lower neighbour
7465  *                         list
7466  * @dev: device
7467  * @iter: list_head ** of the current position
7468  *
7469  * Gets the next netdev_adjacent from the dev's lower neighbour
7470  * list, starting from iter position. The caller must hold RTNL lock or
7471  * its own locking that guarantees that the neighbour lower
7472  * list will remain unchanged.
7473  */
7474 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7475 {
7476         struct netdev_adjacent *lower;
7477
7478         lower = list_entry(*iter, struct netdev_adjacent, list);
7479
7480         if (&lower->list == &dev->adj_list.lower)
7481                 return NULL;
7482
7483         *iter = lower->list.next;
7484
7485         return lower->dev;
7486 }
7487 EXPORT_SYMBOL(netdev_lower_get_next);
7488
7489 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7490                                                 struct list_head **iter)
7491 {
7492         struct netdev_adjacent *lower;
7493
7494         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7495
7496         if (&lower->list == &dev->adj_list.lower)
7497                 return NULL;
7498
7499         *iter = &lower->list;
7500
7501         return lower->dev;
7502 }
7503
7504 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7505                                                   struct list_head **iter,
7506                                                   bool *ignore)
7507 {
7508         struct netdev_adjacent *lower;
7509
7510         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7511
7512         if (&lower->list == &dev->adj_list.lower)
7513                 return NULL;
7514
7515         *iter = &lower->list;
7516         *ignore = lower->ignore;
7517
7518         return lower->dev;
7519 }
7520
7521 int netdev_walk_all_lower_dev(struct net_device *dev,
7522                               int (*fn)(struct net_device *dev,
7523                                         struct netdev_nested_priv *priv),
7524                               struct netdev_nested_priv *priv)
7525 {
7526         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7527         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7528         int ret, cur = 0;
7529
7530         now = dev;
7531         iter = &dev->adj_list.lower;
7532
7533         while (1) {
7534                 if (now != dev) {
7535                         ret = fn(now, priv);
7536                         if (ret)
7537                                 return ret;
7538                 }
7539
7540                 next = NULL;
7541                 while (1) {
7542                         ldev = netdev_next_lower_dev(now, &iter);
7543                         if (!ldev)
7544                                 break;
7545
7546                         next = ldev;
7547                         niter = &ldev->adj_list.lower;
7548                         dev_stack[cur] = now;
7549                         iter_stack[cur++] = iter;
7550                         break;
7551                 }
7552
7553                 if (!next) {
7554                         if (!cur)
7555                                 return 0;
7556                         next = dev_stack[--cur];
7557                         niter = iter_stack[cur];
7558                 }
7559
7560                 now = next;
7561                 iter = niter;
7562         }
7563
7564         return 0;
7565 }
7566 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7567
7568 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7569                                        int (*fn)(struct net_device *dev,
7570                                          struct netdev_nested_priv *priv),
7571                                        struct netdev_nested_priv *priv)
7572 {
7573         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7574         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7575         int ret, cur = 0;
7576         bool ignore;
7577
7578         now = dev;
7579         iter = &dev->adj_list.lower;
7580
7581         while (1) {
7582                 if (now != dev) {
7583                         ret = fn(now, priv);
7584                         if (ret)
7585                                 return ret;
7586                 }
7587
7588                 next = NULL;
7589                 while (1) {
7590                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7591                         if (!ldev)
7592                                 break;
7593                         if (ignore)
7594                                 continue;
7595
7596                         next = ldev;
7597                         niter = &ldev->adj_list.lower;
7598                         dev_stack[cur] = now;
7599                         iter_stack[cur++] = iter;
7600                         break;
7601                 }
7602
7603                 if (!next) {
7604                         if (!cur)
7605                                 return 0;
7606                         next = dev_stack[--cur];
7607                         niter = iter_stack[cur];
7608                 }
7609
7610                 now = next;
7611                 iter = niter;
7612         }
7613
7614         return 0;
7615 }
7616
7617 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7618                                              struct list_head **iter)
7619 {
7620         struct netdev_adjacent *lower;
7621
7622         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7623         if (&lower->list == &dev->adj_list.lower)
7624                 return NULL;
7625
7626         *iter = &lower->list;
7627
7628         return lower->dev;
7629 }
7630 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7631
7632 static u8 __netdev_upper_depth(struct net_device *dev)
7633 {
7634         struct net_device *udev;
7635         struct list_head *iter;
7636         u8 max_depth = 0;
7637         bool ignore;
7638
7639         for (iter = &dev->adj_list.upper,
7640              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7641              udev;
7642              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7643                 if (ignore)
7644                         continue;
7645                 if (max_depth < udev->upper_level)
7646                         max_depth = udev->upper_level;
7647         }
7648
7649         return max_depth;
7650 }
7651
7652 static u8 __netdev_lower_depth(struct net_device *dev)
7653 {
7654         struct net_device *ldev;
7655         struct list_head *iter;
7656         u8 max_depth = 0;
7657         bool ignore;
7658
7659         for (iter = &dev->adj_list.lower,
7660              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7661              ldev;
7662              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7663                 if (ignore)
7664                         continue;
7665                 if (max_depth < ldev->lower_level)
7666                         max_depth = ldev->lower_level;
7667         }
7668
7669         return max_depth;
7670 }
7671
7672 static int __netdev_update_upper_level(struct net_device *dev,
7673                                        struct netdev_nested_priv *__unused)
7674 {
7675         dev->upper_level = __netdev_upper_depth(dev) + 1;
7676         return 0;
7677 }
7678
7679 static int __netdev_update_lower_level(struct net_device *dev,
7680                                        struct netdev_nested_priv *priv)
7681 {
7682         dev->lower_level = __netdev_lower_depth(dev) + 1;
7683
7684 #ifdef CONFIG_LOCKDEP
7685         if (!priv)
7686                 return 0;
7687
7688         if (priv->flags & NESTED_SYNC_IMM)
7689                 dev->nested_level = dev->lower_level - 1;
7690         if (priv->flags & NESTED_SYNC_TODO)
7691                 net_unlink_todo(dev);
7692 #endif
7693         return 0;
7694 }
7695
7696 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7697                                   int (*fn)(struct net_device *dev,
7698                                             struct netdev_nested_priv *priv),
7699                                   struct netdev_nested_priv *priv)
7700 {
7701         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7702         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7703         int ret, cur = 0;
7704
7705         now = dev;
7706         iter = &dev->adj_list.lower;
7707
7708         while (1) {
7709                 if (now != dev) {
7710                         ret = fn(now, priv);
7711                         if (ret)
7712                                 return ret;
7713                 }
7714
7715                 next = NULL;
7716                 while (1) {
7717                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7718                         if (!ldev)
7719                                 break;
7720
7721                         next = ldev;
7722                         niter = &ldev->adj_list.lower;
7723                         dev_stack[cur] = now;
7724                         iter_stack[cur++] = iter;
7725                         break;
7726                 }
7727
7728                 if (!next) {
7729                         if (!cur)
7730                                 return 0;
7731                         next = dev_stack[--cur];
7732                         niter = iter_stack[cur];
7733                 }
7734
7735                 now = next;
7736                 iter = niter;
7737         }
7738
7739         return 0;
7740 }
7741 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7742
7743 /**
7744  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7745  *                                     lower neighbour list, RCU
7746  *                                     variant
7747  * @dev: device
7748  *
7749  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7750  * list. The caller must hold RCU read lock.
7751  */
7752 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7753 {
7754         struct netdev_adjacent *lower;
7755
7756         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7757                         struct netdev_adjacent, list);
7758         if (lower)
7759                 return lower->private;
7760         return NULL;
7761 }
7762 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7763
7764 /**
7765  * netdev_master_upper_dev_get_rcu - Get master upper device
7766  * @dev: device
7767  *
7768  * Find a master upper device and return pointer to it or NULL in case
7769  * it's not there. The caller must hold the RCU read lock.
7770  */
7771 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7772 {
7773         struct netdev_adjacent *upper;
7774
7775         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7776                                        struct netdev_adjacent, list);
7777         if (upper && likely(upper->master))
7778                 return upper->dev;
7779         return NULL;
7780 }
7781 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7782
7783 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7784                               struct net_device *adj_dev,
7785                               struct list_head *dev_list)
7786 {
7787         char linkname[IFNAMSIZ+7];
7788
7789         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7790                 "upper_%s" : "lower_%s", adj_dev->name);
7791         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7792                                  linkname);
7793 }
7794 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7795                                char *name,
7796                                struct list_head *dev_list)
7797 {
7798         char linkname[IFNAMSIZ+7];
7799
7800         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7801                 "upper_%s" : "lower_%s", name);
7802         sysfs_remove_link(&(dev->dev.kobj), linkname);
7803 }
7804
7805 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7806                                                  struct net_device *adj_dev,
7807                                                  struct list_head *dev_list)
7808 {
7809         return (dev_list == &dev->adj_list.upper ||
7810                 dev_list == &dev->adj_list.lower) &&
7811                 net_eq(dev_net(dev), dev_net(adj_dev));
7812 }
7813
7814 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7815                                         struct net_device *adj_dev,
7816                                         struct list_head *dev_list,
7817                                         void *private, bool master)
7818 {
7819         struct netdev_adjacent *adj;
7820         int ret;
7821
7822         adj = __netdev_find_adj(adj_dev, dev_list);
7823
7824         if (adj) {
7825                 adj->ref_nr += 1;
7826                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7827                          dev->name, adj_dev->name, adj->ref_nr);
7828
7829                 return 0;
7830         }
7831
7832         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7833         if (!adj)
7834                 return -ENOMEM;
7835
7836         adj->dev = adj_dev;
7837         adj->master = master;
7838         adj->ref_nr = 1;
7839         adj->private = private;
7840         adj->ignore = false;
7841         dev_hold(adj_dev);
7842
7843         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7844                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7845
7846         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7847                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7848                 if (ret)
7849                         goto free_adj;
7850         }
7851
7852         /* Ensure that master link is always the first item in list. */
7853         if (master) {
7854                 ret = sysfs_create_link(&(dev->dev.kobj),
7855                                         &(adj_dev->dev.kobj), "master");
7856                 if (ret)
7857                         goto remove_symlinks;
7858
7859                 list_add_rcu(&adj->list, dev_list);
7860         } else {
7861                 list_add_tail_rcu(&adj->list, dev_list);
7862         }
7863
7864         return 0;
7865
7866 remove_symlinks:
7867         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7868                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7869 free_adj:
7870         kfree(adj);
7871         dev_put(adj_dev);
7872
7873         return ret;
7874 }
7875
7876 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7877                                          struct net_device *adj_dev,
7878                                          u16 ref_nr,
7879                                          struct list_head *dev_list)
7880 {
7881         struct netdev_adjacent *adj;
7882
7883         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7884                  dev->name, adj_dev->name, ref_nr);
7885
7886         adj = __netdev_find_adj(adj_dev, dev_list);
7887
7888         if (!adj) {
7889                 pr_err("Adjacency does not exist for device %s from %s\n",
7890                        dev->name, adj_dev->name);
7891                 WARN_ON(1);
7892                 return;
7893         }
7894
7895         if (adj->ref_nr > ref_nr) {
7896                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7897                          dev->name, adj_dev->name, ref_nr,
7898                          adj->ref_nr - ref_nr);
7899                 adj->ref_nr -= ref_nr;
7900                 return;
7901         }
7902
7903         if (adj->master)
7904                 sysfs_remove_link(&(dev->dev.kobj), "master");
7905
7906         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7907                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7908
7909         list_del_rcu(&adj->list);
7910         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7911                  adj_dev->name, dev->name, adj_dev->name);
7912         dev_put(adj_dev);
7913         kfree_rcu(adj, rcu);
7914 }
7915
7916 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7917                                             struct net_device *upper_dev,
7918                                             struct list_head *up_list,
7919                                             struct list_head *down_list,
7920                                             void *private, bool master)
7921 {
7922         int ret;
7923
7924         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7925                                            private, master);
7926         if (ret)
7927                 return ret;
7928
7929         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7930                                            private, false);
7931         if (ret) {
7932                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7933                 return ret;
7934         }
7935
7936         return 0;
7937 }
7938
7939 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7940                                                struct net_device *upper_dev,
7941                                                u16 ref_nr,
7942                                                struct list_head *up_list,
7943                                                struct list_head *down_list)
7944 {
7945         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7946         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7947 }
7948
7949 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7950                                                 struct net_device *upper_dev,
7951                                                 void *private, bool master)
7952 {
7953         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7954                                                 &dev->adj_list.upper,
7955                                                 &upper_dev->adj_list.lower,
7956                                                 private, master);
7957 }
7958
7959 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7960                                                    struct net_device *upper_dev)
7961 {
7962         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7963                                            &dev->adj_list.upper,
7964                                            &upper_dev->adj_list.lower);
7965 }
7966
7967 static int __netdev_upper_dev_link(struct net_device *dev,
7968                                    struct net_device *upper_dev, bool master,
7969                                    void *upper_priv, void *upper_info,
7970                                    struct netdev_nested_priv *priv,
7971                                    struct netlink_ext_ack *extack)
7972 {
7973         struct netdev_notifier_changeupper_info changeupper_info = {
7974                 .info = {
7975                         .dev = dev,
7976                         .extack = extack,
7977                 },
7978                 .upper_dev = upper_dev,
7979                 .master = master,
7980                 .linking = true,
7981                 .upper_info = upper_info,
7982         };
7983         struct net_device *master_dev;
7984         int ret = 0;
7985
7986         ASSERT_RTNL();
7987
7988         if (dev == upper_dev)
7989                 return -EBUSY;
7990
7991         /* To prevent loops, check if dev is not upper device to upper_dev. */
7992         if (__netdev_has_upper_dev(upper_dev, dev))
7993                 return -EBUSY;
7994
7995         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7996                 return -EMLINK;
7997
7998         if (!master) {
7999                 if (__netdev_has_upper_dev(dev, upper_dev))
8000                         return -EEXIST;
8001         } else {
8002                 master_dev = __netdev_master_upper_dev_get(dev);
8003                 if (master_dev)
8004                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8005         }
8006
8007         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8008                                             &changeupper_info.info);
8009         ret = notifier_to_errno(ret);
8010         if (ret)
8011                 return ret;
8012
8013         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8014                                                    master);
8015         if (ret)
8016                 return ret;
8017
8018         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8019                                             &changeupper_info.info);
8020         ret = notifier_to_errno(ret);
8021         if (ret)
8022                 goto rollback;
8023
8024         __netdev_update_upper_level(dev, NULL);
8025         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8026
8027         __netdev_update_lower_level(upper_dev, priv);
8028         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8029                                     priv);
8030
8031         return 0;
8032
8033 rollback:
8034         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8035
8036         return ret;
8037 }
8038
8039 /**
8040  * netdev_upper_dev_link - Add a link to the upper device
8041  * @dev: device
8042  * @upper_dev: new upper device
8043  * @extack: netlink extended ack
8044  *
8045  * Adds a link to device which is upper to this one. The caller must hold
8046  * the RTNL lock. On a failure a negative errno code is returned.
8047  * On success the reference counts are adjusted and the function
8048  * returns zero.
8049  */
8050 int netdev_upper_dev_link(struct net_device *dev,
8051                           struct net_device *upper_dev,
8052                           struct netlink_ext_ack *extack)
8053 {
8054         struct netdev_nested_priv priv = {
8055                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8056                 .data = NULL,
8057         };
8058
8059         return __netdev_upper_dev_link(dev, upper_dev, false,
8060                                        NULL, NULL, &priv, extack);
8061 }
8062 EXPORT_SYMBOL(netdev_upper_dev_link);
8063
8064 /**
8065  * netdev_master_upper_dev_link - Add a master link to the upper device
8066  * @dev: device
8067  * @upper_dev: new upper device
8068  * @upper_priv: upper device private
8069  * @upper_info: upper info to be passed down via notifier
8070  * @extack: netlink extended ack
8071  *
8072  * Adds a link to device which is upper to this one. In this case, only
8073  * one master upper device can be linked, although other non-master devices
8074  * might be linked as well. The caller must hold the RTNL lock.
8075  * On a failure a negative errno code is returned. On success the reference
8076  * counts are adjusted and the function returns zero.
8077  */
8078 int netdev_master_upper_dev_link(struct net_device *dev,
8079                                  struct net_device *upper_dev,
8080                                  void *upper_priv, void *upper_info,
8081                                  struct netlink_ext_ack *extack)
8082 {
8083         struct netdev_nested_priv priv = {
8084                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8085                 .data = NULL,
8086         };
8087
8088         return __netdev_upper_dev_link(dev, upper_dev, true,
8089                                        upper_priv, upper_info, &priv, extack);
8090 }
8091 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8092
8093 static void __netdev_upper_dev_unlink(struct net_device *dev,
8094                                       struct net_device *upper_dev,
8095                                       struct netdev_nested_priv *priv)
8096 {
8097         struct netdev_notifier_changeupper_info changeupper_info = {
8098                 .info = {
8099                         .dev = dev,
8100                 },
8101                 .upper_dev = upper_dev,
8102                 .linking = false,
8103         };
8104
8105         ASSERT_RTNL();
8106
8107         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8108
8109         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8110                                       &changeupper_info.info);
8111
8112         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8113
8114         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8115                                       &changeupper_info.info);
8116
8117         __netdev_update_upper_level(dev, NULL);
8118         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8119
8120         __netdev_update_lower_level(upper_dev, priv);
8121         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8122                                     priv);
8123 }
8124
8125 /**
8126  * netdev_upper_dev_unlink - Removes a link to upper device
8127  * @dev: device
8128  * @upper_dev: new upper device
8129  *
8130  * Removes a link to device which is upper to this one. The caller must hold
8131  * the RTNL lock.
8132  */
8133 void netdev_upper_dev_unlink(struct net_device *dev,
8134                              struct net_device *upper_dev)
8135 {
8136         struct netdev_nested_priv priv = {
8137                 .flags = NESTED_SYNC_TODO,
8138                 .data = NULL,
8139         };
8140
8141         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8142 }
8143 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8144
8145 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8146                                       struct net_device *lower_dev,
8147                                       bool val)
8148 {
8149         struct netdev_adjacent *adj;
8150
8151         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8152         if (adj)
8153                 adj->ignore = val;
8154
8155         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8156         if (adj)
8157                 adj->ignore = val;
8158 }
8159
8160 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8161                                         struct net_device *lower_dev)
8162 {
8163         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8164 }
8165
8166 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8167                                        struct net_device *lower_dev)
8168 {
8169         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8170 }
8171
8172 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8173                                    struct net_device *new_dev,
8174                                    struct net_device *dev,
8175                                    struct netlink_ext_ack *extack)
8176 {
8177         struct netdev_nested_priv priv = {
8178                 .flags = 0,
8179                 .data = NULL,
8180         };
8181         int err;
8182
8183         if (!new_dev)
8184                 return 0;
8185
8186         if (old_dev && new_dev != old_dev)
8187                 netdev_adjacent_dev_disable(dev, old_dev);
8188         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8189                                       extack);
8190         if (err) {
8191                 if (old_dev && new_dev != old_dev)
8192                         netdev_adjacent_dev_enable(dev, old_dev);
8193                 return err;
8194         }
8195
8196         return 0;
8197 }
8198 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8199
8200 void netdev_adjacent_change_commit(struct net_device *old_dev,
8201                                    struct net_device *new_dev,
8202                                    struct net_device *dev)
8203 {
8204         struct netdev_nested_priv priv = {
8205                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8206                 .data = NULL,
8207         };
8208
8209         if (!new_dev || !old_dev)
8210                 return;
8211
8212         if (new_dev == old_dev)
8213                 return;
8214
8215         netdev_adjacent_dev_enable(dev, old_dev);
8216         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8217 }
8218 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8219
8220 void netdev_adjacent_change_abort(struct net_device *old_dev,
8221                                   struct net_device *new_dev,
8222                                   struct net_device *dev)
8223 {
8224         struct netdev_nested_priv priv = {
8225                 .flags = 0,
8226                 .data = NULL,
8227         };
8228
8229         if (!new_dev)
8230                 return;
8231
8232         if (old_dev && new_dev != old_dev)
8233                 netdev_adjacent_dev_enable(dev, old_dev);
8234
8235         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8236 }
8237 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8238
8239 /**
8240  * netdev_bonding_info_change - Dispatch event about slave change
8241  * @dev: device
8242  * @bonding_info: info to dispatch
8243  *
8244  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8245  * The caller must hold the RTNL lock.
8246  */
8247 void netdev_bonding_info_change(struct net_device *dev,
8248                                 struct netdev_bonding_info *bonding_info)
8249 {
8250         struct netdev_notifier_bonding_info info = {
8251                 .info.dev = dev,
8252         };
8253
8254         memcpy(&info.bonding_info, bonding_info,
8255                sizeof(struct netdev_bonding_info));
8256         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8257                                       &info.info);
8258 }
8259 EXPORT_SYMBOL(netdev_bonding_info_change);
8260
8261 /**
8262  * netdev_get_xmit_slave - Get the xmit slave of master device
8263  * @dev: device
8264  * @skb: The packet
8265  * @all_slaves: assume all the slaves are active
8266  *
8267  * The reference counters are not incremented so the caller must be
8268  * careful with locks. The caller must hold RCU lock.
8269  * %NULL is returned if no slave is found.
8270  */
8271
8272 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8273                                          struct sk_buff *skb,
8274                                          bool all_slaves)
8275 {
8276         const struct net_device_ops *ops = dev->netdev_ops;
8277
8278         if (!ops->ndo_get_xmit_slave)
8279                 return NULL;
8280         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8281 }
8282 EXPORT_SYMBOL(netdev_get_xmit_slave);
8283
8284 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8285                                                   struct sock *sk)
8286 {
8287         const struct net_device_ops *ops = dev->netdev_ops;
8288
8289         if (!ops->ndo_sk_get_lower_dev)
8290                 return NULL;
8291         return ops->ndo_sk_get_lower_dev(dev, sk);
8292 }
8293
8294 /**
8295  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8296  * @dev: device
8297  * @sk: the socket
8298  *
8299  * %NULL is returned if no lower device is found.
8300  */
8301
8302 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8303                                             struct sock *sk)
8304 {
8305         struct net_device *lower;
8306
8307         lower = netdev_sk_get_lower_dev(dev, sk);
8308         while (lower) {
8309                 dev = lower;
8310                 lower = netdev_sk_get_lower_dev(dev, sk);
8311         }
8312
8313         return dev;
8314 }
8315 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8316
8317 static void netdev_adjacent_add_links(struct net_device *dev)
8318 {
8319         struct netdev_adjacent *iter;
8320
8321         struct net *net = dev_net(dev);
8322
8323         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8324                 if (!net_eq(net, dev_net(iter->dev)))
8325                         continue;
8326                 netdev_adjacent_sysfs_add(iter->dev, dev,
8327                                           &iter->dev->adj_list.lower);
8328                 netdev_adjacent_sysfs_add(dev, iter->dev,
8329                                           &dev->adj_list.upper);
8330         }
8331
8332         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8333                 if (!net_eq(net, dev_net(iter->dev)))
8334                         continue;
8335                 netdev_adjacent_sysfs_add(iter->dev, dev,
8336                                           &iter->dev->adj_list.upper);
8337                 netdev_adjacent_sysfs_add(dev, iter->dev,
8338                                           &dev->adj_list.lower);
8339         }
8340 }
8341
8342 static void netdev_adjacent_del_links(struct net_device *dev)
8343 {
8344         struct netdev_adjacent *iter;
8345
8346         struct net *net = dev_net(dev);
8347
8348         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8349                 if (!net_eq(net, dev_net(iter->dev)))
8350                         continue;
8351                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8352                                           &iter->dev->adj_list.lower);
8353                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8354                                           &dev->adj_list.upper);
8355         }
8356
8357         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8358                 if (!net_eq(net, dev_net(iter->dev)))
8359                         continue;
8360                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8361                                           &iter->dev->adj_list.upper);
8362                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8363                                           &dev->adj_list.lower);
8364         }
8365 }
8366
8367 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8368 {
8369         struct netdev_adjacent *iter;
8370
8371         struct net *net = dev_net(dev);
8372
8373         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8374                 if (!net_eq(net, dev_net(iter->dev)))
8375                         continue;
8376                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8377                                           &iter->dev->adj_list.lower);
8378                 netdev_adjacent_sysfs_add(iter->dev, dev,
8379                                           &iter->dev->adj_list.lower);
8380         }
8381
8382         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8383                 if (!net_eq(net, dev_net(iter->dev)))
8384                         continue;
8385                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8386                                           &iter->dev->adj_list.upper);
8387                 netdev_adjacent_sysfs_add(iter->dev, dev,
8388                                           &iter->dev->adj_list.upper);
8389         }
8390 }
8391
8392 void *netdev_lower_dev_get_private(struct net_device *dev,
8393                                    struct net_device *lower_dev)
8394 {
8395         struct netdev_adjacent *lower;
8396
8397         if (!lower_dev)
8398                 return NULL;
8399         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8400         if (!lower)
8401                 return NULL;
8402
8403         return lower->private;
8404 }
8405 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8406
8407
8408 /**
8409  * netdev_lower_state_changed - Dispatch event about lower device state change
8410  * @lower_dev: device
8411  * @lower_state_info: state to dispatch
8412  *
8413  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8414  * The caller must hold the RTNL lock.
8415  */
8416 void netdev_lower_state_changed(struct net_device *lower_dev,
8417                                 void *lower_state_info)
8418 {
8419         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8420                 .info.dev = lower_dev,
8421         };
8422
8423         ASSERT_RTNL();
8424         changelowerstate_info.lower_state_info = lower_state_info;
8425         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8426                                       &changelowerstate_info.info);
8427 }
8428 EXPORT_SYMBOL(netdev_lower_state_changed);
8429
8430 static void dev_change_rx_flags(struct net_device *dev, int flags)
8431 {
8432         const struct net_device_ops *ops = dev->netdev_ops;
8433
8434         if (ops->ndo_change_rx_flags)
8435                 ops->ndo_change_rx_flags(dev, flags);
8436 }
8437
8438 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8439 {
8440         unsigned int old_flags = dev->flags;
8441         kuid_t uid;
8442         kgid_t gid;
8443
8444         ASSERT_RTNL();
8445
8446         dev->flags |= IFF_PROMISC;
8447         dev->promiscuity += inc;
8448         if (dev->promiscuity == 0) {
8449                 /*
8450                  * Avoid overflow.
8451                  * If inc causes overflow, untouch promisc and return error.
8452                  */
8453                 if (inc < 0)
8454                         dev->flags &= ~IFF_PROMISC;
8455                 else {
8456                         dev->promiscuity -= inc;
8457                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8458                                 dev->name);
8459                         return -EOVERFLOW;
8460                 }
8461         }
8462         if (dev->flags != old_flags) {
8463                 pr_info("device %s %s promiscuous mode\n",
8464                         dev->name,
8465                         dev->flags & IFF_PROMISC ? "entered" : "left");
8466                 if (audit_enabled) {
8467                         current_uid_gid(&uid, &gid);
8468                         audit_log(audit_context(), GFP_ATOMIC,
8469                                   AUDIT_ANOM_PROMISCUOUS,
8470                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8471                                   dev->name, (dev->flags & IFF_PROMISC),
8472                                   (old_flags & IFF_PROMISC),
8473                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8474                                   from_kuid(&init_user_ns, uid),
8475                                   from_kgid(&init_user_ns, gid),
8476                                   audit_get_sessionid(current));
8477                 }
8478
8479                 dev_change_rx_flags(dev, IFF_PROMISC);
8480         }
8481         if (notify)
8482                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8483         return 0;
8484 }
8485
8486 /**
8487  *      dev_set_promiscuity     - update promiscuity count on a device
8488  *      @dev: device
8489  *      @inc: modifier
8490  *
8491  *      Add or remove promiscuity from a device. While the count in the device
8492  *      remains above zero the interface remains promiscuous. Once it hits zero
8493  *      the device reverts back to normal filtering operation. A negative inc
8494  *      value is used to drop promiscuity on the device.
8495  *      Return 0 if successful or a negative errno code on error.
8496  */
8497 int dev_set_promiscuity(struct net_device *dev, int inc)
8498 {
8499         unsigned int old_flags = dev->flags;
8500         int err;
8501
8502         err = __dev_set_promiscuity(dev, inc, true);
8503         if (err < 0)
8504                 return err;
8505         if (dev->flags != old_flags)
8506                 dev_set_rx_mode(dev);
8507         return err;
8508 }
8509 EXPORT_SYMBOL(dev_set_promiscuity);
8510
8511 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8512 {
8513         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8514
8515         ASSERT_RTNL();
8516
8517         dev->flags |= IFF_ALLMULTI;
8518         dev->allmulti += inc;
8519         if (dev->allmulti == 0) {
8520                 /*
8521                  * Avoid overflow.
8522                  * If inc causes overflow, untouch allmulti and return error.
8523                  */
8524                 if (inc < 0)
8525                         dev->flags &= ~IFF_ALLMULTI;
8526                 else {
8527                         dev->allmulti -= inc;
8528                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8529                                 dev->name);
8530                         return -EOVERFLOW;
8531                 }
8532         }
8533         if (dev->flags ^ old_flags) {
8534                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8535                 dev_set_rx_mode(dev);
8536                 if (notify)
8537                         __dev_notify_flags(dev, old_flags,
8538                                            dev->gflags ^ old_gflags);
8539         }
8540         return 0;
8541 }
8542
8543 /**
8544  *      dev_set_allmulti        - update allmulti count on a device
8545  *      @dev: device
8546  *      @inc: modifier
8547  *
8548  *      Add or remove reception of all multicast frames to a device. While the
8549  *      count in the device remains above zero the interface remains listening
8550  *      to all interfaces. Once it hits zero the device reverts back to normal
8551  *      filtering operation. A negative @inc value is used to drop the counter
8552  *      when releasing a resource needing all multicasts.
8553  *      Return 0 if successful or a negative errno code on error.
8554  */
8555
8556 int dev_set_allmulti(struct net_device *dev, int inc)
8557 {
8558         return __dev_set_allmulti(dev, inc, true);
8559 }
8560 EXPORT_SYMBOL(dev_set_allmulti);
8561
8562 /*
8563  *      Upload unicast and multicast address lists to device and
8564  *      configure RX filtering. When the device doesn't support unicast
8565  *      filtering it is put in promiscuous mode while unicast addresses
8566  *      are present.
8567  */
8568 void __dev_set_rx_mode(struct net_device *dev)
8569 {
8570         const struct net_device_ops *ops = dev->netdev_ops;
8571
8572         /* dev_open will call this function so the list will stay sane. */
8573         if (!(dev->flags&IFF_UP))
8574                 return;
8575
8576         if (!netif_device_present(dev))
8577                 return;
8578
8579         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8580                 /* Unicast addresses changes may only happen under the rtnl,
8581                  * therefore calling __dev_set_promiscuity here is safe.
8582                  */
8583                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8584                         __dev_set_promiscuity(dev, 1, false);
8585                         dev->uc_promisc = true;
8586                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8587                         __dev_set_promiscuity(dev, -1, false);
8588                         dev->uc_promisc = false;
8589                 }
8590         }
8591
8592         if (ops->ndo_set_rx_mode)
8593                 ops->ndo_set_rx_mode(dev);
8594 }
8595
8596 void dev_set_rx_mode(struct net_device *dev)
8597 {
8598         netif_addr_lock_bh(dev);
8599         __dev_set_rx_mode(dev);
8600         netif_addr_unlock_bh(dev);
8601 }
8602
8603 /**
8604  *      dev_get_flags - get flags reported to userspace
8605  *      @dev: device
8606  *
8607  *      Get the combination of flag bits exported through APIs to userspace.
8608  */
8609 unsigned int dev_get_flags(const struct net_device *dev)
8610 {
8611         unsigned int flags;
8612
8613         flags = (dev->flags & ~(IFF_PROMISC |
8614                                 IFF_ALLMULTI |
8615                                 IFF_RUNNING |
8616                                 IFF_LOWER_UP |
8617                                 IFF_DORMANT)) |
8618                 (dev->gflags & (IFF_PROMISC |
8619                                 IFF_ALLMULTI));
8620
8621         if (netif_running(dev)) {
8622                 if (netif_oper_up(dev))
8623                         flags |= IFF_RUNNING;
8624                 if (netif_carrier_ok(dev))
8625                         flags |= IFF_LOWER_UP;
8626                 if (netif_dormant(dev))
8627                         flags |= IFF_DORMANT;
8628         }
8629
8630         return flags;
8631 }
8632 EXPORT_SYMBOL(dev_get_flags);
8633
8634 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8635                        struct netlink_ext_ack *extack)
8636 {
8637         unsigned int old_flags = dev->flags;
8638         int ret;
8639
8640         ASSERT_RTNL();
8641
8642         /*
8643          *      Set the flags on our device.
8644          */
8645
8646         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8647                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8648                                IFF_AUTOMEDIA)) |
8649                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8650                                     IFF_ALLMULTI));
8651
8652         /*
8653          *      Load in the correct multicast list now the flags have changed.
8654          */
8655
8656         if ((old_flags ^ flags) & IFF_MULTICAST)
8657                 dev_change_rx_flags(dev, IFF_MULTICAST);
8658
8659         dev_set_rx_mode(dev);
8660
8661         /*
8662          *      Have we downed the interface. We handle IFF_UP ourselves
8663          *      according to user attempts to set it, rather than blindly
8664          *      setting it.
8665          */
8666
8667         ret = 0;
8668         if ((old_flags ^ flags) & IFF_UP) {
8669                 if (old_flags & IFF_UP)
8670                         __dev_close(dev);
8671                 else
8672                         ret = __dev_open(dev, extack);
8673         }
8674
8675         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8676                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8677                 unsigned int old_flags = dev->flags;
8678
8679                 dev->gflags ^= IFF_PROMISC;
8680
8681                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8682                         if (dev->flags != old_flags)
8683                                 dev_set_rx_mode(dev);
8684         }
8685
8686         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8687          * is important. Some (broken) drivers set IFF_PROMISC, when
8688          * IFF_ALLMULTI is requested not asking us and not reporting.
8689          */
8690         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8691                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8692
8693                 dev->gflags ^= IFF_ALLMULTI;
8694                 __dev_set_allmulti(dev, inc, false);
8695         }
8696
8697         return ret;
8698 }
8699
8700 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8701                         unsigned int gchanges)
8702 {
8703         unsigned int changes = dev->flags ^ old_flags;
8704
8705         if (gchanges)
8706                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8707
8708         if (changes & IFF_UP) {
8709                 if (dev->flags & IFF_UP)
8710                         call_netdevice_notifiers(NETDEV_UP, dev);
8711                 else
8712                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8713         }
8714
8715         if (dev->flags & IFF_UP &&
8716             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8717                 struct netdev_notifier_change_info change_info = {
8718                         .info = {
8719                                 .dev = dev,
8720                         },
8721                         .flags_changed = changes,
8722                 };
8723
8724                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8725         }
8726 }
8727
8728 /**
8729  *      dev_change_flags - change device settings
8730  *      @dev: device
8731  *      @flags: device state flags
8732  *      @extack: netlink extended ack
8733  *
8734  *      Change settings on device based state flags. The flags are
8735  *      in the userspace exported format.
8736  */
8737 int dev_change_flags(struct net_device *dev, unsigned int flags,
8738                      struct netlink_ext_ack *extack)
8739 {
8740         int ret;
8741         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8742
8743         ret = __dev_change_flags(dev, flags, extack);
8744         if (ret < 0)
8745                 return ret;
8746
8747         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8748         __dev_notify_flags(dev, old_flags, changes);
8749         return ret;
8750 }
8751 EXPORT_SYMBOL(dev_change_flags);
8752
8753 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8754 {
8755         const struct net_device_ops *ops = dev->netdev_ops;
8756
8757         if (ops->ndo_change_mtu)
8758                 return ops->ndo_change_mtu(dev, new_mtu);
8759
8760         /* Pairs with all the lockless reads of dev->mtu in the stack */
8761         WRITE_ONCE(dev->mtu, new_mtu);
8762         return 0;
8763 }
8764 EXPORT_SYMBOL(__dev_set_mtu);
8765
8766 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8767                      struct netlink_ext_ack *extack)
8768 {
8769         /* MTU must be positive, and in range */
8770         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8771                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8772                 return -EINVAL;
8773         }
8774
8775         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8776                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8777                 return -EINVAL;
8778         }
8779         return 0;
8780 }
8781
8782 /**
8783  *      dev_set_mtu_ext - Change maximum transfer unit
8784  *      @dev: device
8785  *      @new_mtu: new transfer unit
8786  *      @extack: netlink extended ack
8787  *
8788  *      Change the maximum transfer size of the network device.
8789  */
8790 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8791                     struct netlink_ext_ack *extack)
8792 {
8793         int err, orig_mtu;
8794
8795         if (new_mtu == dev->mtu)
8796                 return 0;
8797
8798         err = dev_validate_mtu(dev, new_mtu, extack);
8799         if (err)
8800                 return err;
8801
8802         if (!netif_device_present(dev))
8803                 return -ENODEV;
8804
8805         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8806         err = notifier_to_errno(err);
8807         if (err)
8808                 return err;
8809
8810         orig_mtu = dev->mtu;
8811         err = __dev_set_mtu(dev, new_mtu);
8812
8813         if (!err) {
8814                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8815                                                    orig_mtu);
8816                 err = notifier_to_errno(err);
8817                 if (err) {
8818                         /* setting mtu back and notifying everyone again,
8819                          * so that they have a chance to revert changes.
8820                          */
8821                         __dev_set_mtu(dev, orig_mtu);
8822                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8823                                                      new_mtu);
8824                 }
8825         }
8826         return err;
8827 }
8828
8829 int dev_set_mtu(struct net_device *dev, int new_mtu)
8830 {
8831         struct netlink_ext_ack extack;
8832         int err;
8833
8834         memset(&extack, 0, sizeof(extack));
8835         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8836         if (err && extack._msg)
8837                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8838         return err;
8839 }
8840 EXPORT_SYMBOL(dev_set_mtu);
8841
8842 /**
8843  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8844  *      @dev: device
8845  *      @new_len: new tx queue length
8846  */
8847 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8848 {
8849         unsigned int orig_len = dev->tx_queue_len;
8850         int res;
8851
8852         if (new_len != (unsigned int)new_len)
8853                 return -ERANGE;
8854
8855         if (new_len != orig_len) {
8856                 dev->tx_queue_len = new_len;
8857                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8858                 res = notifier_to_errno(res);
8859                 if (res)
8860                         goto err_rollback;
8861                 res = dev_qdisc_change_tx_queue_len(dev);
8862                 if (res)
8863                         goto err_rollback;
8864         }
8865
8866         return 0;
8867
8868 err_rollback:
8869         netdev_err(dev, "refused to change device tx_queue_len\n");
8870         dev->tx_queue_len = orig_len;
8871         return res;
8872 }
8873
8874 /**
8875  *      dev_set_group - Change group this device belongs to
8876  *      @dev: device
8877  *      @new_group: group this device should belong to
8878  */
8879 void dev_set_group(struct net_device *dev, int new_group)
8880 {
8881         dev->group = new_group;
8882 }
8883 EXPORT_SYMBOL(dev_set_group);
8884
8885 /**
8886  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8887  *      @dev: device
8888  *      @addr: new address
8889  *      @extack: netlink extended ack
8890  */
8891 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8892                               struct netlink_ext_ack *extack)
8893 {
8894         struct netdev_notifier_pre_changeaddr_info info = {
8895                 .info.dev = dev,
8896                 .info.extack = extack,
8897                 .dev_addr = addr,
8898         };
8899         int rc;
8900
8901         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8902         return notifier_to_errno(rc);
8903 }
8904 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8905
8906 /**
8907  *      dev_set_mac_address - Change Media Access Control Address
8908  *      @dev: device
8909  *      @sa: new address
8910  *      @extack: netlink extended ack
8911  *
8912  *      Change the hardware (MAC) address of the device
8913  */
8914 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8915                         struct netlink_ext_ack *extack)
8916 {
8917         const struct net_device_ops *ops = dev->netdev_ops;
8918         int err;
8919
8920         if (!ops->ndo_set_mac_address)
8921                 return -EOPNOTSUPP;
8922         if (sa->sa_family != dev->type)
8923                 return -EINVAL;
8924         if (!netif_device_present(dev))
8925                 return -ENODEV;
8926         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8927         if (err)
8928                 return err;
8929         err = ops->ndo_set_mac_address(dev, sa);
8930         if (err)
8931                 return err;
8932         dev->addr_assign_type = NET_ADDR_SET;
8933         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8934         add_device_randomness(dev->dev_addr, dev->addr_len);
8935         return 0;
8936 }
8937 EXPORT_SYMBOL(dev_set_mac_address);
8938
8939 /**
8940  *      dev_change_carrier - Change device carrier
8941  *      @dev: device
8942  *      @new_carrier: new value
8943  *
8944  *      Change device carrier
8945  */
8946 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8947 {
8948         const struct net_device_ops *ops = dev->netdev_ops;
8949
8950         if (!ops->ndo_change_carrier)
8951                 return -EOPNOTSUPP;
8952         if (!netif_device_present(dev))
8953                 return -ENODEV;
8954         return ops->ndo_change_carrier(dev, new_carrier);
8955 }
8956 EXPORT_SYMBOL(dev_change_carrier);
8957
8958 /**
8959  *      dev_get_phys_port_id - Get device physical port ID
8960  *      @dev: device
8961  *      @ppid: port ID
8962  *
8963  *      Get device physical port ID
8964  */
8965 int dev_get_phys_port_id(struct net_device *dev,
8966                          struct netdev_phys_item_id *ppid)
8967 {
8968         const struct net_device_ops *ops = dev->netdev_ops;
8969
8970         if (!ops->ndo_get_phys_port_id)
8971                 return -EOPNOTSUPP;
8972         return ops->ndo_get_phys_port_id(dev, ppid);
8973 }
8974 EXPORT_SYMBOL(dev_get_phys_port_id);
8975
8976 /**
8977  *      dev_get_phys_port_name - Get device physical port name
8978  *      @dev: device
8979  *      @name: port name
8980  *      @len: limit of bytes to copy to name
8981  *
8982  *      Get device physical port name
8983  */
8984 int dev_get_phys_port_name(struct net_device *dev,
8985                            char *name, size_t len)
8986 {
8987         const struct net_device_ops *ops = dev->netdev_ops;
8988         int err;
8989
8990         if (ops->ndo_get_phys_port_name) {
8991                 err = ops->ndo_get_phys_port_name(dev, name, len);
8992                 if (err != -EOPNOTSUPP)
8993                         return err;
8994         }
8995         return devlink_compat_phys_port_name_get(dev, name, len);
8996 }
8997 EXPORT_SYMBOL(dev_get_phys_port_name);
8998
8999 /**
9000  *      dev_get_port_parent_id - Get the device's port parent identifier
9001  *      @dev: network device
9002  *      @ppid: pointer to a storage for the port's parent identifier
9003  *      @recurse: allow/disallow recursion to lower devices
9004  *
9005  *      Get the devices's port parent identifier
9006  */
9007 int dev_get_port_parent_id(struct net_device *dev,
9008                            struct netdev_phys_item_id *ppid,
9009                            bool recurse)
9010 {
9011         const struct net_device_ops *ops = dev->netdev_ops;
9012         struct netdev_phys_item_id first = { };
9013         struct net_device *lower_dev;
9014         struct list_head *iter;
9015         int err;
9016
9017         if (ops->ndo_get_port_parent_id) {
9018                 err = ops->ndo_get_port_parent_id(dev, ppid);
9019                 if (err != -EOPNOTSUPP)
9020                         return err;
9021         }
9022
9023         err = devlink_compat_switch_id_get(dev, ppid);
9024         if (!err || err != -EOPNOTSUPP)
9025                 return err;
9026
9027         if (!recurse)
9028                 return -EOPNOTSUPP;
9029
9030         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9031                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9032                 if (err)
9033                         break;
9034                 if (!first.id_len)
9035                         first = *ppid;
9036                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9037                         return -EOPNOTSUPP;
9038         }
9039
9040         return err;
9041 }
9042 EXPORT_SYMBOL(dev_get_port_parent_id);
9043
9044 /**
9045  *      netdev_port_same_parent_id - Indicate if two network devices have
9046  *      the same port parent identifier
9047  *      @a: first network device
9048  *      @b: second network device
9049  */
9050 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9051 {
9052         struct netdev_phys_item_id a_id = { };
9053         struct netdev_phys_item_id b_id = { };
9054
9055         if (dev_get_port_parent_id(a, &a_id, true) ||
9056             dev_get_port_parent_id(b, &b_id, true))
9057                 return false;
9058
9059         return netdev_phys_item_id_same(&a_id, &b_id);
9060 }
9061 EXPORT_SYMBOL(netdev_port_same_parent_id);
9062
9063 /**
9064  *      dev_change_proto_down - update protocol port state information
9065  *      @dev: device
9066  *      @proto_down: new value
9067  *
9068  *      This info can be used by switch drivers to set the phys state of the
9069  *      port.
9070  */
9071 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9072 {
9073         const struct net_device_ops *ops = dev->netdev_ops;
9074
9075         if (!ops->ndo_change_proto_down)
9076                 return -EOPNOTSUPP;
9077         if (!netif_device_present(dev))
9078                 return -ENODEV;
9079         return ops->ndo_change_proto_down(dev, proto_down);
9080 }
9081 EXPORT_SYMBOL(dev_change_proto_down);
9082
9083 /**
9084  *      dev_change_proto_down_generic - generic implementation for
9085  *      ndo_change_proto_down that sets carrier according to
9086  *      proto_down.
9087  *
9088  *      @dev: device
9089  *      @proto_down: new value
9090  */
9091 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9092 {
9093         if (proto_down)
9094                 netif_carrier_off(dev);
9095         else
9096                 netif_carrier_on(dev);
9097         dev->proto_down = proto_down;
9098         return 0;
9099 }
9100 EXPORT_SYMBOL(dev_change_proto_down_generic);
9101
9102 /**
9103  *      dev_change_proto_down_reason - proto down reason
9104  *
9105  *      @dev: device
9106  *      @mask: proto down mask
9107  *      @value: proto down value
9108  */
9109 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9110                                   u32 value)
9111 {
9112         int b;
9113
9114         if (!mask) {
9115                 dev->proto_down_reason = value;
9116         } else {
9117                 for_each_set_bit(b, &mask, 32) {
9118                         if (value & (1 << b))
9119                                 dev->proto_down_reason |= BIT(b);
9120                         else
9121                                 dev->proto_down_reason &= ~BIT(b);
9122                 }
9123         }
9124 }
9125 EXPORT_SYMBOL(dev_change_proto_down_reason);
9126
9127 struct bpf_xdp_link {
9128         struct bpf_link link;
9129         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9130         int flags;
9131 };
9132
9133 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9134 {
9135         if (flags & XDP_FLAGS_HW_MODE)
9136                 return XDP_MODE_HW;
9137         if (flags & XDP_FLAGS_DRV_MODE)
9138                 return XDP_MODE_DRV;
9139         if (flags & XDP_FLAGS_SKB_MODE)
9140                 return XDP_MODE_SKB;
9141         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9142 }
9143
9144 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9145 {
9146         switch (mode) {
9147         case XDP_MODE_SKB:
9148                 return generic_xdp_install;
9149         case XDP_MODE_DRV:
9150         case XDP_MODE_HW:
9151                 return dev->netdev_ops->ndo_bpf;
9152         default:
9153                 return NULL;
9154         }
9155 }
9156
9157 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9158                                          enum bpf_xdp_mode mode)
9159 {
9160         return dev->xdp_state[mode].link;
9161 }
9162
9163 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9164                                      enum bpf_xdp_mode mode)
9165 {
9166         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9167
9168         if (link)
9169                 return link->link.prog;
9170         return dev->xdp_state[mode].prog;
9171 }
9172
9173 static u8 dev_xdp_prog_count(struct net_device *dev)
9174 {
9175         u8 count = 0;
9176         int i;
9177
9178         for (i = 0; i < __MAX_XDP_MODE; i++)
9179                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9180                         count++;
9181         return count;
9182 }
9183
9184 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9185 {
9186         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9187
9188         return prog ? prog->aux->id : 0;
9189 }
9190
9191 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9192                              struct bpf_xdp_link *link)
9193 {
9194         dev->xdp_state[mode].link = link;
9195         dev->xdp_state[mode].prog = NULL;
9196 }
9197
9198 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9199                              struct bpf_prog *prog)
9200 {
9201         dev->xdp_state[mode].link = NULL;
9202         dev->xdp_state[mode].prog = prog;
9203 }
9204
9205 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9206                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9207                            u32 flags, struct bpf_prog *prog)
9208 {
9209         struct netdev_bpf xdp;
9210         int err;
9211
9212         memset(&xdp, 0, sizeof(xdp));
9213         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9214         xdp.extack = extack;
9215         xdp.flags = flags;
9216         xdp.prog = prog;
9217
9218         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9219          * "moved" into driver), so they don't increment it on their own, but
9220          * they do decrement refcnt when program is detached or replaced.
9221          * Given net_device also owns link/prog, we need to bump refcnt here
9222          * to prevent drivers from underflowing it.
9223          */
9224         if (prog)
9225                 bpf_prog_inc(prog);
9226         err = bpf_op(dev, &xdp);
9227         if (err) {
9228                 if (prog)
9229                         bpf_prog_put(prog);
9230                 return err;
9231         }
9232
9233         if (mode != XDP_MODE_HW)
9234                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9235
9236         return 0;
9237 }
9238
9239 static void dev_xdp_uninstall(struct net_device *dev)
9240 {
9241         struct bpf_xdp_link *link;
9242         struct bpf_prog *prog;
9243         enum bpf_xdp_mode mode;
9244         bpf_op_t bpf_op;
9245
9246         ASSERT_RTNL();
9247
9248         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9249                 prog = dev_xdp_prog(dev, mode);
9250                 if (!prog)
9251                         continue;
9252
9253                 bpf_op = dev_xdp_bpf_op(dev, mode);
9254                 if (!bpf_op)
9255                         continue;
9256
9257                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9258
9259                 /* auto-detach link from net device */
9260                 link = dev_xdp_link(dev, mode);
9261                 if (link)
9262                         link->dev = NULL;
9263                 else
9264                         bpf_prog_put(prog);
9265
9266                 dev_xdp_set_link(dev, mode, NULL);
9267         }
9268 }
9269
9270 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9271                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9272                           struct bpf_prog *old_prog, u32 flags)
9273 {
9274         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9275         struct bpf_prog *cur_prog;
9276         enum bpf_xdp_mode mode;
9277         bpf_op_t bpf_op;
9278         int err;
9279
9280         ASSERT_RTNL();
9281
9282         /* either link or prog attachment, never both */
9283         if (link && (new_prog || old_prog))
9284                 return -EINVAL;
9285         /* link supports only XDP mode flags */
9286         if (link && (flags & ~XDP_FLAGS_MODES)) {
9287                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9288                 return -EINVAL;
9289         }
9290         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9291         if (num_modes > 1) {
9292                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9293                 return -EINVAL;
9294         }
9295         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9296         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9297                 NL_SET_ERR_MSG(extack,
9298                                "More than one program loaded, unset mode is ambiguous");
9299                 return -EINVAL;
9300         }
9301         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9302         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9303                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9304                 return -EINVAL;
9305         }
9306
9307         mode = dev_xdp_mode(dev, flags);
9308         /* can't replace attached link */
9309         if (dev_xdp_link(dev, mode)) {
9310                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9311                 return -EBUSY;
9312         }
9313
9314         cur_prog = dev_xdp_prog(dev, mode);
9315         /* can't replace attached prog with link */
9316         if (link && cur_prog) {
9317                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9318                 return -EBUSY;
9319         }
9320         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9321                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9322                 return -EEXIST;
9323         }
9324
9325         /* put effective new program into new_prog */
9326         if (link)
9327                 new_prog = link->link.prog;
9328
9329         if (new_prog) {
9330                 bool offload = mode == XDP_MODE_HW;
9331                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9332                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9333
9334                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9335                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9336                         return -EBUSY;
9337                 }
9338                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9339                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9340                         return -EEXIST;
9341                 }
9342                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9343                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9344                         return -EINVAL;
9345                 }
9346                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9347                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9348                         return -EINVAL;
9349                 }
9350                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9351                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9352                         return -EINVAL;
9353                 }
9354         }
9355
9356         /* don't call drivers if the effective program didn't change */
9357         if (new_prog != cur_prog) {
9358                 bpf_op = dev_xdp_bpf_op(dev, mode);
9359                 if (!bpf_op) {
9360                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9361                         return -EOPNOTSUPP;
9362                 }
9363
9364                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9365                 if (err)
9366                         return err;
9367         }
9368
9369         if (link)
9370                 dev_xdp_set_link(dev, mode, link);
9371         else
9372                 dev_xdp_set_prog(dev, mode, new_prog);
9373         if (cur_prog)
9374                 bpf_prog_put(cur_prog);
9375
9376         return 0;
9377 }
9378
9379 static int dev_xdp_attach_link(struct net_device *dev,
9380                                struct netlink_ext_ack *extack,
9381                                struct bpf_xdp_link *link)
9382 {
9383         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9384 }
9385
9386 static int dev_xdp_detach_link(struct net_device *dev,
9387                                struct netlink_ext_ack *extack,
9388                                struct bpf_xdp_link *link)
9389 {
9390         enum bpf_xdp_mode mode;
9391         bpf_op_t bpf_op;
9392
9393         ASSERT_RTNL();
9394
9395         mode = dev_xdp_mode(dev, link->flags);
9396         if (dev_xdp_link(dev, mode) != link)
9397                 return -EINVAL;
9398
9399         bpf_op = dev_xdp_bpf_op(dev, mode);
9400         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9401         dev_xdp_set_link(dev, mode, NULL);
9402         return 0;
9403 }
9404
9405 static void bpf_xdp_link_release(struct bpf_link *link)
9406 {
9407         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9408
9409         rtnl_lock();
9410
9411         /* if racing with net_device's tear down, xdp_link->dev might be
9412          * already NULL, in which case link was already auto-detached
9413          */
9414         if (xdp_link->dev) {
9415                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9416                 xdp_link->dev = NULL;
9417         }
9418
9419         rtnl_unlock();
9420 }
9421
9422 static int bpf_xdp_link_detach(struct bpf_link *link)
9423 {
9424         bpf_xdp_link_release(link);
9425         return 0;
9426 }
9427
9428 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9429 {
9430         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9431
9432         kfree(xdp_link);
9433 }
9434
9435 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9436                                      struct seq_file *seq)
9437 {
9438         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9439         u32 ifindex = 0;
9440
9441         rtnl_lock();
9442         if (xdp_link->dev)
9443                 ifindex = xdp_link->dev->ifindex;
9444         rtnl_unlock();
9445
9446         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9447 }
9448
9449 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9450                                        struct bpf_link_info *info)
9451 {
9452         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9453         u32 ifindex = 0;
9454
9455         rtnl_lock();
9456         if (xdp_link->dev)
9457                 ifindex = xdp_link->dev->ifindex;
9458         rtnl_unlock();
9459
9460         info->xdp.ifindex = ifindex;
9461         return 0;
9462 }
9463
9464 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9465                                struct bpf_prog *old_prog)
9466 {
9467         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9468         enum bpf_xdp_mode mode;
9469         bpf_op_t bpf_op;
9470         int err = 0;
9471
9472         rtnl_lock();
9473
9474         /* link might have been auto-released already, so fail */
9475         if (!xdp_link->dev) {
9476                 err = -ENOLINK;
9477                 goto out_unlock;
9478         }
9479
9480         if (old_prog && link->prog != old_prog) {
9481                 err = -EPERM;
9482                 goto out_unlock;
9483         }
9484         old_prog = link->prog;
9485         if (old_prog == new_prog) {
9486                 /* no-op, don't disturb drivers */
9487                 bpf_prog_put(new_prog);
9488                 goto out_unlock;
9489         }
9490
9491         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9492         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9493         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9494                               xdp_link->flags, new_prog);
9495         if (err)
9496                 goto out_unlock;
9497
9498         old_prog = xchg(&link->prog, new_prog);
9499         bpf_prog_put(old_prog);
9500
9501 out_unlock:
9502         rtnl_unlock();
9503         return err;
9504 }
9505
9506 static const struct bpf_link_ops bpf_xdp_link_lops = {
9507         .release = bpf_xdp_link_release,
9508         .dealloc = bpf_xdp_link_dealloc,
9509         .detach = bpf_xdp_link_detach,
9510         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9511         .fill_link_info = bpf_xdp_link_fill_link_info,
9512         .update_prog = bpf_xdp_link_update,
9513 };
9514
9515 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9516 {
9517         struct net *net = current->nsproxy->net_ns;
9518         struct bpf_link_primer link_primer;
9519         struct bpf_xdp_link *link;
9520         struct net_device *dev;
9521         int err, fd;
9522
9523         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9524         if (!dev)
9525                 return -EINVAL;
9526
9527         link = kzalloc(sizeof(*link), GFP_USER);
9528         if (!link) {
9529                 err = -ENOMEM;
9530                 goto out_put_dev;
9531         }
9532
9533         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9534         link->dev = dev;
9535         link->flags = attr->link_create.flags;
9536
9537         err = bpf_link_prime(&link->link, &link_primer);
9538         if (err) {
9539                 kfree(link);
9540                 goto out_put_dev;
9541         }
9542
9543         rtnl_lock();
9544         err = dev_xdp_attach_link(dev, NULL, link);
9545         rtnl_unlock();
9546
9547         if (err) {
9548                 bpf_link_cleanup(&link_primer);
9549                 goto out_put_dev;
9550         }
9551
9552         fd = bpf_link_settle(&link_primer);
9553         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9554         dev_put(dev);
9555         return fd;
9556
9557 out_put_dev:
9558         dev_put(dev);
9559         return err;
9560 }
9561
9562 /**
9563  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9564  *      @dev: device
9565  *      @extack: netlink extended ack
9566  *      @fd: new program fd or negative value to clear
9567  *      @expected_fd: old program fd that userspace expects to replace or clear
9568  *      @flags: xdp-related flags
9569  *
9570  *      Set or clear a bpf program for a device
9571  */
9572 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9573                       int fd, int expected_fd, u32 flags)
9574 {
9575         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9576         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9577         int err;
9578
9579         ASSERT_RTNL();
9580
9581         if (fd >= 0) {
9582                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9583                                                  mode != XDP_MODE_SKB);
9584                 if (IS_ERR(new_prog))
9585                         return PTR_ERR(new_prog);
9586         }
9587
9588         if (expected_fd >= 0) {
9589                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9590                                                  mode != XDP_MODE_SKB);
9591                 if (IS_ERR(old_prog)) {
9592                         err = PTR_ERR(old_prog);
9593                         old_prog = NULL;
9594                         goto err_out;
9595                 }
9596         }
9597
9598         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9599
9600 err_out:
9601         if (err && new_prog)
9602                 bpf_prog_put(new_prog);
9603         if (old_prog)
9604                 bpf_prog_put(old_prog);
9605         return err;
9606 }
9607
9608 /**
9609  *      dev_new_index   -       allocate an ifindex
9610  *      @net: the applicable net namespace
9611  *
9612  *      Returns a suitable unique value for a new device interface
9613  *      number.  The caller must hold the rtnl semaphore or the
9614  *      dev_base_lock to be sure it remains unique.
9615  */
9616 static int dev_new_index(struct net *net)
9617 {
9618         int ifindex = net->ifindex;
9619
9620         for (;;) {
9621                 if (++ifindex <= 0)
9622                         ifindex = 1;
9623                 if (!__dev_get_by_index(net, ifindex))
9624                         return net->ifindex = ifindex;
9625         }
9626 }
9627
9628 /* Delayed registration/unregisteration */
9629 static LIST_HEAD(net_todo_list);
9630 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9631
9632 static void net_set_todo(struct net_device *dev)
9633 {
9634         list_add_tail(&dev->todo_list, &net_todo_list);
9635         dev_net(dev)->dev_unreg_count++;
9636 }
9637
9638 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9639         struct net_device *upper, netdev_features_t features)
9640 {
9641         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9642         netdev_features_t feature;
9643         int feature_bit;
9644
9645         for_each_netdev_feature(upper_disables, feature_bit) {
9646                 feature = __NETIF_F_BIT(feature_bit);
9647                 if (!(upper->wanted_features & feature)
9648                     && (features & feature)) {
9649                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9650                                    &feature, upper->name);
9651                         features &= ~feature;
9652                 }
9653         }
9654
9655         return features;
9656 }
9657
9658 static void netdev_sync_lower_features(struct net_device *upper,
9659         struct net_device *lower, netdev_features_t features)
9660 {
9661         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9662         netdev_features_t feature;
9663         int feature_bit;
9664
9665         for_each_netdev_feature(upper_disables, feature_bit) {
9666                 feature = __NETIF_F_BIT(feature_bit);
9667                 if (!(features & feature) && (lower->features & feature)) {
9668                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9669                                    &feature, lower->name);
9670                         lower->wanted_features &= ~feature;
9671                         __netdev_update_features(lower);
9672
9673                         if (unlikely(lower->features & feature))
9674                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9675                                             &feature, lower->name);
9676                         else
9677                                 netdev_features_change(lower);
9678                 }
9679         }
9680 }
9681
9682 static netdev_features_t netdev_fix_features(struct net_device *dev,
9683         netdev_features_t features)
9684 {
9685         /* Fix illegal checksum combinations */
9686         if ((features & NETIF_F_HW_CSUM) &&
9687             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9688                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9689                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9690         }
9691
9692         /* TSO requires that SG is present as well. */
9693         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9694                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9695                 features &= ~NETIF_F_ALL_TSO;
9696         }
9697
9698         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9699                                         !(features & NETIF_F_IP_CSUM)) {
9700                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9701                 features &= ~NETIF_F_TSO;
9702                 features &= ~NETIF_F_TSO_ECN;
9703         }
9704
9705         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9706                                          !(features & NETIF_F_IPV6_CSUM)) {
9707                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9708                 features &= ~NETIF_F_TSO6;
9709         }
9710
9711         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9712         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9713                 features &= ~NETIF_F_TSO_MANGLEID;
9714
9715         /* TSO ECN requires that TSO is present as well. */
9716         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9717                 features &= ~NETIF_F_TSO_ECN;
9718
9719         /* Software GSO depends on SG. */
9720         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9721                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9722                 features &= ~NETIF_F_GSO;
9723         }
9724
9725         /* GSO partial features require GSO partial be set */
9726         if ((features & dev->gso_partial_features) &&
9727             !(features & NETIF_F_GSO_PARTIAL)) {
9728                 netdev_dbg(dev,
9729                            "Dropping partially supported GSO features since no GSO partial.\n");
9730                 features &= ~dev->gso_partial_features;
9731         }
9732
9733         if (!(features & NETIF_F_RXCSUM)) {
9734                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9735                  * successfully merged by hardware must also have the
9736                  * checksum verified by hardware.  If the user does not
9737                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9738                  */
9739                 if (features & NETIF_F_GRO_HW) {
9740                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9741                         features &= ~NETIF_F_GRO_HW;
9742                 }
9743         }
9744
9745         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9746         if (features & NETIF_F_RXFCS) {
9747                 if (features & NETIF_F_LRO) {
9748                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9749                         features &= ~NETIF_F_LRO;
9750                 }
9751
9752                 if (features & NETIF_F_GRO_HW) {
9753                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9754                         features &= ~NETIF_F_GRO_HW;
9755                 }
9756         }
9757
9758         if (features & NETIF_F_HW_TLS_TX) {
9759                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9760                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9761                 bool hw_csum = features & NETIF_F_HW_CSUM;
9762
9763                 if (!ip_csum && !hw_csum) {
9764                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9765                         features &= ~NETIF_F_HW_TLS_TX;
9766                 }
9767         }
9768
9769         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9770                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9771                 features &= ~NETIF_F_HW_TLS_RX;
9772         }
9773
9774         return features;
9775 }
9776
9777 int __netdev_update_features(struct net_device *dev)
9778 {
9779         struct net_device *upper, *lower;
9780         netdev_features_t features;
9781         struct list_head *iter;
9782         int err = -1;
9783
9784         ASSERT_RTNL();
9785
9786         features = netdev_get_wanted_features(dev);
9787
9788         if (dev->netdev_ops->ndo_fix_features)
9789                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9790
9791         /* driver might be less strict about feature dependencies */
9792         features = netdev_fix_features(dev, features);
9793
9794         /* some features can't be enabled if they're off on an upper device */
9795         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9796                 features = netdev_sync_upper_features(dev, upper, features);
9797
9798         if (dev->features == features)
9799                 goto sync_lower;
9800
9801         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9802                 &dev->features, &features);
9803
9804         if (dev->netdev_ops->ndo_set_features)
9805                 err = dev->netdev_ops->ndo_set_features(dev, features);
9806         else
9807                 err = 0;
9808
9809         if (unlikely(err < 0)) {
9810                 netdev_err(dev,
9811                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9812                         err, &features, &dev->features);
9813                 /* return non-0 since some features might have changed and
9814                  * it's better to fire a spurious notification than miss it
9815                  */
9816                 return -1;
9817         }
9818
9819 sync_lower:
9820         /* some features must be disabled on lower devices when disabled
9821          * on an upper device (think: bonding master or bridge)
9822          */
9823         netdev_for_each_lower_dev(dev, lower, iter)
9824                 netdev_sync_lower_features(dev, lower, features);
9825
9826         if (!err) {
9827                 netdev_features_t diff = features ^ dev->features;
9828
9829                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9830                         /* udp_tunnel_{get,drop}_rx_info both need
9831                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9832                          * device, or they won't do anything.
9833                          * Thus we need to update dev->features
9834                          * *before* calling udp_tunnel_get_rx_info,
9835                          * but *after* calling udp_tunnel_drop_rx_info.
9836                          */
9837                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9838                                 dev->features = features;
9839                                 udp_tunnel_get_rx_info(dev);
9840                         } else {
9841                                 udp_tunnel_drop_rx_info(dev);
9842                         }
9843                 }
9844
9845                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9846                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9847                                 dev->features = features;
9848                                 err |= vlan_get_rx_ctag_filter_info(dev);
9849                         } else {
9850                                 vlan_drop_rx_ctag_filter_info(dev);
9851                         }
9852                 }
9853
9854                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9855                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9856                                 dev->features = features;
9857                                 err |= vlan_get_rx_stag_filter_info(dev);
9858                         } else {
9859                                 vlan_drop_rx_stag_filter_info(dev);
9860                         }
9861                 }
9862
9863                 dev->features = features;
9864         }
9865
9866         return err < 0 ? 0 : 1;
9867 }
9868
9869 /**
9870  *      netdev_update_features - recalculate device features
9871  *      @dev: the device to check
9872  *
9873  *      Recalculate dev->features set and send notifications if it
9874  *      has changed. Should be called after driver or hardware dependent
9875  *      conditions might have changed that influence the features.
9876  */
9877 void netdev_update_features(struct net_device *dev)
9878 {
9879         if (__netdev_update_features(dev))
9880                 netdev_features_change(dev);
9881 }
9882 EXPORT_SYMBOL(netdev_update_features);
9883
9884 /**
9885  *      netdev_change_features - recalculate device features
9886  *      @dev: the device to check
9887  *
9888  *      Recalculate dev->features set and send notifications even
9889  *      if they have not changed. Should be called instead of
9890  *      netdev_update_features() if also dev->vlan_features might
9891  *      have changed to allow the changes to be propagated to stacked
9892  *      VLAN devices.
9893  */
9894 void netdev_change_features(struct net_device *dev)
9895 {
9896         __netdev_update_features(dev);
9897         netdev_features_change(dev);
9898 }
9899 EXPORT_SYMBOL(netdev_change_features);
9900
9901 /**
9902  *      netif_stacked_transfer_operstate -      transfer operstate
9903  *      @rootdev: the root or lower level device to transfer state from
9904  *      @dev: the device to transfer operstate to
9905  *
9906  *      Transfer operational state from root to device. This is normally
9907  *      called when a stacking relationship exists between the root
9908  *      device and the device(a leaf device).
9909  */
9910 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9911                                         struct net_device *dev)
9912 {
9913         if (rootdev->operstate == IF_OPER_DORMANT)
9914                 netif_dormant_on(dev);
9915         else
9916                 netif_dormant_off(dev);
9917
9918         if (rootdev->operstate == IF_OPER_TESTING)
9919                 netif_testing_on(dev);
9920         else
9921                 netif_testing_off(dev);
9922
9923         if (netif_carrier_ok(rootdev))
9924                 netif_carrier_on(dev);
9925         else
9926                 netif_carrier_off(dev);
9927 }
9928 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9929
9930 static int netif_alloc_rx_queues(struct net_device *dev)
9931 {
9932         unsigned int i, count = dev->num_rx_queues;
9933         struct netdev_rx_queue *rx;
9934         size_t sz = count * sizeof(*rx);
9935         int err = 0;
9936
9937         BUG_ON(count < 1);
9938
9939         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9940         if (!rx)
9941                 return -ENOMEM;
9942
9943         dev->_rx = rx;
9944
9945         for (i = 0; i < count; i++) {
9946                 rx[i].dev = dev;
9947
9948                 /* XDP RX-queue setup */
9949                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9950                 if (err < 0)
9951                         goto err_rxq_info;
9952         }
9953         return 0;
9954
9955 err_rxq_info:
9956         /* Rollback successful reg's and free other resources */
9957         while (i--)
9958                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9959         kvfree(dev->_rx);
9960         dev->_rx = NULL;
9961         return err;
9962 }
9963
9964 static void netif_free_rx_queues(struct net_device *dev)
9965 {
9966         unsigned int i, count = dev->num_rx_queues;
9967
9968         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9969         if (!dev->_rx)
9970                 return;
9971
9972         for (i = 0; i < count; i++)
9973                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9974
9975         kvfree(dev->_rx);
9976 }
9977
9978 static void netdev_init_one_queue(struct net_device *dev,
9979                                   struct netdev_queue *queue, void *_unused)
9980 {
9981         /* Initialize queue lock */
9982         spin_lock_init(&queue->_xmit_lock);
9983         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9984         queue->xmit_lock_owner = -1;
9985         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9986         queue->dev = dev;
9987 #ifdef CONFIG_BQL
9988         dql_init(&queue->dql, HZ);
9989 #endif
9990 }
9991
9992 static void netif_free_tx_queues(struct net_device *dev)
9993 {
9994         kvfree(dev->_tx);
9995 }
9996
9997 static int netif_alloc_netdev_queues(struct net_device *dev)
9998 {
9999         unsigned int count = dev->num_tx_queues;
10000         struct netdev_queue *tx;
10001         size_t sz = count * sizeof(*tx);
10002
10003         if (count < 1 || count > 0xffff)
10004                 return -EINVAL;
10005
10006         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10007         if (!tx)
10008                 return -ENOMEM;
10009
10010         dev->_tx = tx;
10011
10012         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10013         spin_lock_init(&dev->tx_global_lock);
10014
10015         return 0;
10016 }
10017
10018 void netif_tx_stop_all_queues(struct net_device *dev)
10019 {
10020         unsigned int i;
10021
10022         for (i = 0; i < dev->num_tx_queues; i++) {
10023                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10024
10025                 netif_tx_stop_queue(txq);
10026         }
10027 }
10028 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10029
10030 /**
10031  *      register_netdevice      - register a network device
10032  *      @dev: device to register
10033  *
10034  *      Take a completed network device structure and add it to the kernel
10035  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10036  *      chain. 0 is returned on success. A negative errno code is returned
10037  *      on a failure to set up the device, or if the name is a duplicate.
10038  *
10039  *      Callers must hold the rtnl semaphore. You may want
10040  *      register_netdev() instead of this.
10041  *
10042  *      BUGS:
10043  *      The locking appears insufficient to guarantee two parallel registers
10044  *      will not get the same name.
10045  */
10046
10047 int register_netdevice(struct net_device *dev)
10048 {
10049         int ret;
10050         struct net *net = dev_net(dev);
10051
10052         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10053                      NETDEV_FEATURE_COUNT);
10054         BUG_ON(dev_boot_phase);
10055         ASSERT_RTNL();
10056
10057         might_sleep();
10058
10059         /* When net_device's are persistent, this will be fatal. */
10060         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10061         BUG_ON(!net);
10062
10063         ret = ethtool_check_ops(dev->ethtool_ops);
10064         if (ret)
10065                 return ret;
10066
10067         spin_lock_init(&dev->addr_list_lock);
10068         netdev_set_addr_lockdep_class(dev);
10069
10070         ret = dev_get_valid_name(net, dev, dev->name);
10071         if (ret < 0)
10072                 goto out;
10073
10074         ret = -ENOMEM;
10075         dev->name_node = netdev_name_node_head_alloc(dev);
10076         if (!dev->name_node)
10077                 goto out;
10078
10079         /* Init, if this function is available */
10080         if (dev->netdev_ops->ndo_init) {
10081                 ret = dev->netdev_ops->ndo_init(dev);
10082                 if (ret) {
10083                         if (ret > 0)
10084                                 ret = -EIO;
10085                         goto err_free_name;
10086                 }
10087         }
10088
10089         if (((dev->hw_features | dev->features) &
10090              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10091             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10092              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10093                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10094                 ret = -EINVAL;
10095                 goto err_uninit;
10096         }
10097
10098         ret = -EBUSY;
10099         if (!dev->ifindex)
10100                 dev->ifindex = dev_new_index(net);
10101         else if (__dev_get_by_index(net, dev->ifindex))
10102                 goto err_uninit;
10103
10104         /* Transfer changeable features to wanted_features and enable
10105          * software offloads (GSO and GRO).
10106          */
10107         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10108         dev->features |= NETIF_F_SOFT_FEATURES;
10109
10110         if (dev->udp_tunnel_nic_info) {
10111                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10112                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10113         }
10114
10115         dev->wanted_features = dev->features & dev->hw_features;
10116
10117         if (!(dev->flags & IFF_LOOPBACK))
10118                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10119
10120         /* If IPv4 TCP segmentation offload is supported we should also
10121          * allow the device to enable segmenting the frame with the option
10122          * of ignoring a static IP ID value.  This doesn't enable the
10123          * feature itself but allows the user to enable it later.
10124          */
10125         if (dev->hw_features & NETIF_F_TSO)
10126                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10127         if (dev->vlan_features & NETIF_F_TSO)
10128                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10129         if (dev->mpls_features & NETIF_F_TSO)
10130                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10131         if (dev->hw_enc_features & NETIF_F_TSO)
10132                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10133
10134         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10135          */
10136         dev->vlan_features |= NETIF_F_HIGHDMA;
10137
10138         /* Make NETIF_F_SG inheritable to tunnel devices.
10139          */
10140         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10141
10142         /* Make NETIF_F_SG inheritable to MPLS.
10143          */
10144         dev->mpls_features |= NETIF_F_SG;
10145
10146         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10147         ret = notifier_to_errno(ret);
10148         if (ret)
10149                 goto err_uninit;
10150
10151         ret = netdev_register_kobject(dev);
10152         if (ret) {
10153                 dev->reg_state = NETREG_UNREGISTERED;
10154                 goto err_uninit;
10155         }
10156         dev->reg_state = NETREG_REGISTERED;
10157
10158         __netdev_update_features(dev);
10159
10160         /*
10161          *      Default initial state at registry is that the
10162          *      device is present.
10163          */
10164
10165         set_bit(__LINK_STATE_PRESENT, &dev->state);
10166
10167         linkwatch_init_dev(dev);
10168
10169         dev_init_scheduler(dev);
10170         dev_hold(dev);
10171         list_netdevice(dev);
10172         add_device_randomness(dev->dev_addr, dev->addr_len);
10173
10174         /* If the device has permanent device address, driver should
10175          * set dev_addr and also addr_assign_type should be set to
10176          * NET_ADDR_PERM (default value).
10177          */
10178         if (dev->addr_assign_type == NET_ADDR_PERM)
10179                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10180
10181         /* Notify protocols, that a new device appeared. */
10182         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10183         ret = notifier_to_errno(ret);
10184         if (ret) {
10185                 /* Expect explicit free_netdev() on failure */
10186                 dev->needs_free_netdev = false;
10187                 unregister_netdevice_queue(dev, NULL);
10188                 goto out;
10189         }
10190         /*
10191          *      Prevent userspace races by waiting until the network
10192          *      device is fully setup before sending notifications.
10193          */
10194         if (!dev->rtnl_link_ops ||
10195             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10196                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10197
10198 out:
10199         return ret;
10200
10201 err_uninit:
10202         if (dev->netdev_ops->ndo_uninit)
10203                 dev->netdev_ops->ndo_uninit(dev);
10204         if (dev->priv_destructor)
10205                 dev->priv_destructor(dev);
10206 err_free_name:
10207         netdev_name_node_free(dev->name_node);
10208         goto out;
10209 }
10210 EXPORT_SYMBOL(register_netdevice);
10211
10212 /**
10213  *      init_dummy_netdev       - init a dummy network device for NAPI
10214  *      @dev: device to init
10215  *
10216  *      This takes a network device structure and initialize the minimum
10217  *      amount of fields so it can be used to schedule NAPI polls without
10218  *      registering a full blown interface. This is to be used by drivers
10219  *      that need to tie several hardware interfaces to a single NAPI
10220  *      poll scheduler due to HW limitations.
10221  */
10222 int init_dummy_netdev(struct net_device *dev)
10223 {
10224         /* Clear everything. Note we don't initialize spinlocks
10225          * are they aren't supposed to be taken by any of the
10226          * NAPI code and this dummy netdev is supposed to be
10227          * only ever used for NAPI polls
10228          */
10229         memset(dev, 0, sizeof(struct net_device));
10230
10231         /* make sure we BUG if trying to hit standard
10232          * register/unregister code path
10233          */
10234         dev->reg_state = NETREG_DUMMY;
10235
10236         /* NAPI wants this */
10237         INIT_LIST_HEAD(&dev->napi_list);
10238
10239         /* a dummy interface is started by default */
10240         set_bit(__LINK_STATE_PRESENT, &dev->state);
10241         set_bit(__LINK_STATE_START, &dev->state);
10242
10243         /* napi_busy_loop stats accounting wants this */
10244         dev_net_set(dev, &init_net);
10245
10246         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10247          * because users of this 'device' dont need to change
10248          * its refcount.
10249          */
10250
10251         return 0;
10252 }
10253 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10254
10255
10256 /**
10257  *      register_netdev - register a network device
10258  *      @dev: device to register
10259  *
10260  *      Take a completed network device structure and add it to the kernel
10261  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10262  *      chain. 0 is returned on success. A negative errno code is returned
10263  *      on a failure to set up the device, or if the name is a duplicate.
10264  *
10265  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10266  *      and expands the device name if you passed a format string to
10267  *      alloc_netdev.
10268  */
10269 int register_netdev(struct net_device *dev)
10270 {
10271         int err;
10272
10273         if (rtnl_lock_killable())
10274                 return -EINTR;
10275         err = register_netdevice(dev);
10276         rtnl_unlock();
10277         return err;
10278 }
10279 EXPORT_SYMBOL(register_netdev);
10280
10281 int netdev_refcnt_read(const struct net_device *dev)
10282 {
10283         int i, refcnt = 0;
10284
10285         for_each_possible_cpu(i)
10286                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10287         return refcnt;
10288 }
10289 EXPORT_SYMBOL(netdev_refcnt_read);
10290
10291 #define WAIT_REFS_MIN_MSECS 1
10292 #define WAIT_REFS_MAX_MSECS 250
10293 /**
10294  * netdev_wait_allrefs - wait until all references are gone.
10295  * @dev: target net_device
10296  *
10297  * This is called when unregistering network devices.
10298  *
10299  * Any protocol or device that holds a reference should register
10300  * for netdevice notification, and cleanup and put back the
10301  * reference if they receive an UNREGISTER event.
10302  * We can get stuck here if buggy protocols don't correctly
10303  * call dev_put.
10304  */
10305 static void netdev_wait_allrefs(struct net_device *dev)
10306 {
10307         unsigned long rebroadcast_time, warning_time;
10308         int wait = 0, refcnt;
10309
10310         linkwatch_forget_dev(dev);
10311
10312         rebroadcast_time = warning_time = jiffies;
10313         refcnt = netdev_refcnt_read(dev);
10314
10315         while (refcnt != 0) {
10316                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10317                         rtnl_lock();
10318
10319                         /* Rebroadcast unregister notification */
10320                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10321
10322                         __rtnl_unlock();
10323                         rcu_barrier();
10324                         rtnl_lock();
10325
10326                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10327                                      &dev->state)) {
10328                                 /* We must not have linkwatch events
10329                                  * pending on unregister. If this
10330                                  * happens, we simply run the queue
10331                                  * unscheduled, resulting in a noop
10332                                  * for this device.
10333                                  */
10334                                 linkwatch_run_queue();
10335                         }
10336
10337                         __rtnl_unlock();
10338
10339                         rebroadcast_time = jiffies;
10340                 }
10341
10342                 if (!wait) {
10343                         rcu_barrier();
10344                         wait = WAIT_REFS_MIN_MSECS;
10345                 } else {
10346                         msleep(wait);
10347                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10348                 }
10349
10350                 refcnt = netdev_refcnt_read(dev);
10351
10352                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10353                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10354                                  dev->name, refcnt);
10355                         warning_time = jiffies;
10356                 }
10357         }
10358 }
10359
10360 /* The sequence is:
10361  *
10362  *      rtnl_lock();
10363  *      ...
10364  *      register_netdevice(x1);
10365  *      register_netdevice(x2);
10366  *      ...
10367  *      unregister_netdevice(y1);
10368  *      unregister_netdevice(y2);
10369  *      ...
10370  *      rtnl_unlock();
10371  *      free_netdev(y1);
10372  *      free_netdev(y2);
10373  *
10374  * We are invoked by rtnl_unlock().
10375  * This allows us to deal with problems:
10376  * 1) We can delete sysfs objects which invoke hotplug
10377  *    without deadlocking with linkwatch via keventd.
10378  * 2) Since we run with the RTNL semaphore not held, we can sleep
10379  *    safely in order to wait for the netdev refcnt to drop to zero.
10380  *
10381  * We must not return until all unregister events added during
10382  * the interval the lock was held have been completed.
10383  */
10384 void netdev_run_todo(void)
10385 {
10386         struct list_head list;
10387 #ifdef CONFIG_LOCKDEP
10388         struct list_head unlink_list;
10389
10390         list_replace_init(&net_unlink_list, &unlink_list);
10391
10392         while (!list_empty(&unlink_list)) {
10393                 struct net_device *dev = list_first_entry(&unlink_list,
10394                                                           struct net_device,
10395                                                           unlink_list);
10396                 list_del_init(&dev->unlink_list);
10397                 dev->nested_level = dev->lower_level - 1;
10398         }
10399 #endif
10400
10401         /* Snapshot list, allow later requests */
10402         list_replace_init(&net_todo_list, &list);
10403
10404         __rtnl_unlock();
10405
10406
10407         /* Wait for rcu callbacks to finish before next phase */
10408         if (!list_empty(&list))
10409                 rcu_barrier();
10410
10411         while (!list_empty(&list)) {
10412                 struct net_device *dev
10413                         = list_first_entry(&list, struct net_device, todo_list);
10414                 list_del(&dev->todo_list);
10415
10416                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10417                         pr_err("network todo '%s' but state %d\n",
10418                                dev->name, dev->reg_state);
10419                         dump_stack();
10420                         continue;
10421                 }
10422
10423                 dev->reg_state = NETREG_UNREGISTERED;
10424
10425                 netdev_wait_allrefs(dev);
10426
10427                 /* paranoia */
10428                 BUG_ON(netdev_refcnt_read(dev));
10429                 BUG_ON(!list_empty(&dev->ptype_all));
10430                 BUG_ON(!list_empty(&dev->ptype_specific));
10431                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10432                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10433 #if IS_ENABLED(CONFIG_DECNET)
10434                 WARN_ON(dev->dn_ptr);
10435 #endif
10436                 if (dev->priv_destructor)
10437                         dev->priv_destructor(dev);
10438                 if (dev->needs_free_netdev)
10439                         free_netdev(dev);
10440
10441                 /* Report a network device has been unregistered */
10442                 rtnl_lock();
10443                 dev_net(dev)->dev_unreg_count--;
10444                 __rtnl_unlock();
10445                 wake_up(&netdev_unregistering_wq);
10446
10447                 /* Free network device */
10448                 kobject_put(&dev->dev.kobj);
10449         }
10450 }
10451
10452 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10453  * all the same fields in the same order as net_device_stats, with only
10454  * the type differing, but rtnl_link_stats64 may have additional fields
10455  * at the end for newer counters.
10456  */
10457 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10458                              const struct net_device_stats *netdev_stats)
10459 {
10460 #if BITS_PER_LONG == 64
10461         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10462         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10463         /* zero out counters that only exist in rtnl_link_stats64 */
10464         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10465                sizeof(*stats64) - sizeof(*netdev_stats));
10466 #else
10467         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10468         const unsigned long *src = (const unsigned long *)netdev_stats;
10469         u64 *dst = (u64 *)stats64;
10470
10471         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10472         for (i = 0; i < n; i++)
10473                 dst[i] = src[i];
10474         /* zero out counters that only exist in rtnl_link_stats64 */
10475         memset((char *)stats64 + n * sizeof(u64), 0,
10476                sizeof(*stats64) - n * sizeof(u64));
10477 #endif
10478 }
10479 EXPORT_SYMBOL(netdev_stats_to_stats64);
10480
10481 /**
10482  *      dev_get_stats   - get network device statistics
10483  *      @dev: device to get statistics from
10484  *      @storage: place to store stats
10485  *
10486  *      Get network statistics from device. Return @storage.
10487  *      The device driver may provide its own method by setting
10488  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10489  *      otherwise the internal statistics structure is used.
10490  */
10491 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10492                                         struct rtnl_link_stats64 *storage)
10493 {
10494         const struct net_device_ops *ops = dev->netdev_ops;
10495
10496         if (ops->ndo_get_stats64) {
10497                 memset(storage, 0, sizeof(*storage));
10498                 ops->ndo_get_stats64(dev, storage);
10499         } else if (ops->ndo_get_stats) {
10500                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10501         } else {
10502                 netdev_stats_to_stats64(storage, &dev->stats);
10503         }
10504         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10505         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10506         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10507         return storage;
10508 }
10509 EXPORT_SYMBOL(dev_get_stats);
10510
10511 /**
10512  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10513  *      @s: place to store stats
10514  *      @netstats: per-cpu network stats to read from
10515  *
10516  *      Read per-cpu network statistics and populate the related fields in @s.
10517  */
10518 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10519                            const struct pcpu_sw_netstats __percpu *netstats)
10520 {
10521         int cpu;
10522
10523         for_each_possible_cpu(cpu) {
10524                 const struct pcpu_sw_netstats *stats;
10525                 struct pcpu_sw_netstats tmp;
10526                 unsigned int start;
10527
10528                 stats = per_cpu_ptr(netstats, cpu);
10529                 do {
10530                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10531                         tmp.rx_packets = stats->rx_packets;
10532                         tmp.rx_bytes   = stats->rx_bytes;
10533                         tmp.tx_packets = stats->tx_packets;
10534                         tmp.tx_bytes   = stats->tx_bytes;
10535                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10536
10537                 s->rx_packets += tmp.rx_packets;
10538                 s->rx_bytes   += tmp.rx_bytes;
10539                 s->tx_packets += tmp.tx_packets;
10540                 s->tx_bytes   += tmp.tx_bytes;
10541         }
10542 }
10543 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10544
10545 /**
10546  *      dev_get_tstats64 - ndo_get_stats64 implementation
10547  *      @dev: device to get statistics from
10548  *      @s: place to store stats
10549  *
10550  *      Populate @s from dev->stats and dev->tstats. Can be used as
10551  *      ndo_get_stats64() callback.
10552  */
10553 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10554 {
10555         netdev_stats_to_stats64(s, &dev->stats);
10556         dev_fetch_sw_netstats(s, dev->tstats);
10557 }
10558 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10559
10560 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10561 {
10562         struct netdev_queue *queue = dev_ingress_queue(dev);
10563
10564 #ifdef CONFIG_NET_CLS_ACT
10565         if (queue)
10566                 return queue;
10567         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10568         if (!queue)
10569                 return NULL;
10570         netdev_init_one_queue(dev, queue, NULL);
10571         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10572         queue->qdisc_sleeping = &noop_qdisc;
10573         rcu_assign_pointer(dev->ingress_queue, queue);
10574 #endif
10575         return queue;
10576 }
10577
10578 static const struct ethtool_ops default_ethtool_ops;
10579
10580 void netdev_set_default_ethtool_ops(struct net_device *dev,
10581                                     const struct ethtool_ops *ops)
10582 {
10583         if (dev->ethtool_ops == &default_ethtool_ops)
10584                 dev->ethtool_ops = ops;
10585 }
10586 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10587
10588 void netdev_freemem(struct net_device *dev)
10589 {
10590         char *addr = (char *)dev - dev->padded;
10591
10592         kvfree(addr);
10593 }
10594
10595 /**
10596  * alloc_netdev_mqs - allocate network device
10597  * @sizeof_priv: size of private data to allocate space for
10598  * @name: device name format string
10599  * @name_assign_type: origin of device name
10600  * @setup: callback to initialize device
10601  * @txqs: the number of TX subqueues to allocate
10602  * @rxqs: the number of RX subqueues to allocate
10603  *
10604  * Allocates a struct net_device with private data area for driver use
10605  * and performs basic initialization.  Also allocates subqueue structs
10606  * for each queue on the device.
10607  */
10608 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10609                 unsigned char name_assign_type,
10610                 void (*setup)(struct net_device *),
10611                 unsigned int txqs, unsigned int rxqs)
10612 {
10613         struct net_device *dev;
10614         unsigned int alloc_size;
10615         struct net_device *p;
10616
10617         BUG_ON(strlen(name) >= sizeof(dev->name));
10618
10619         if (txqs < 1) {
10620                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10621                 return NULL;
10622         }
10623
10624         if (rxqs < 1) {
10625                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10626                 return NULL;
10627         }
10628
10629         alloc_size = sizeof(struct net_device);
10630         if (sizeof_priv) {
10631                 /* ensure 32-byte alignment of private area */
10632                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10633                 alloc_size += sizeof_priv;
10634         }
10635         /* ensure 32-byte alignment of whole construct */
10636         alloc_size += NETDEV_ALIGN - 1;
10637
10638         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10639         if (!p)
10640                 return NULL;
10641
10642         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10643         dev->padded = (char *)dev - (char *)p;
10644
10645         dev->pcpu_refcnt = alloc_percpu(int);
10646         if (!dev->pcpu_refcnt)
10647                 goto free_dev;
10648
10649         if (dev_addr_init(dev))
10650                 goto free_pcpu;
10651
10652         dev_mc_init(dev);
10653         dev_uc_init(dev);
10654
10655         dev_net_set(dev, &init_net);
10656
10657         dev->gso_max_size = GSO_MAX_SIZE;
10658         dev->gso_max_segs = GSO_MAX_SEGS;
10659         dev->upper_level = 1;
10660         dev->lower_level = 1;
10661 #ifdef CONFIG_LOCKDEP
10662         dev->nested_level = 0;
10663         INIT_LIST_HEAD(&dev->unlink_list);
10664 #endif
10665
10666         INIT_LIST_HEAD(&dev->napi_list);
10667         INIT_LIST_HEAD(&dev->unreg_list);
10668         INIT_LIST_HEAD(&dev->close_list);
10669         INIT_LIST_HEAD(&dev->link_watch_list);
10670         INIT_LIST_HEAD(&dev->adj_list.upper);
10671         INIT_LIST_HEAD(&dev->adj_list.lower);
10672         INIT_LIST_HEAD(&dev->ptype_all);
10673         INIT_LIST_HEAD(&dev->ptype_specific);
10674         INIT_LIST_HEAD(&dev->net_notifier_list);
10675 #ifdef CONFIG_NET_SCHED
10676         hash_init(dev->qdisc_hash);
10677 #endif
10678         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10679         setup(dev);
10680
10681         if (!dev->tx_queue_len) {
10682                 dev->priv_flags |= IFF_NO_QUEUE;
10683                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10684         }
10685
10686         dev->num_tx_queues = txqs;
10687         dev->real_num_tx_queues = txqs;
10688         if (netif_alloc_netdev_queues(dev))
10689                 goto free_all;
10690
10691         dev->num_rx_queues = rxqs;
10692         dev->real_num_rx_queues = rxqs;
10693         if (netif_alloc_rx_queues(dev))
10694                 goto free_all;
10695
10696         strcpy(dev->name, name);
10697         dev->name_assign_type = name_assign_type;
10698         dev->group = INIT_NETDEV_GROUP;
10699         if (!dev->ethtool_ops)
10700                 dev->ethtool_ops = &default_ethtool_ops;
10701
10702         nf_hook_ingress_init(dev);
10703
10704         return dev;
10705
10706 free_all:
10707         free_netdev(dev);
10708         return NULL;
10709
10710 free_pcpu:
10711         free_percpu(dev->pcpu_refcnt);
10712 free_dev:
10713         netdev_freemem(dev);
10714         return NULL;
10715 }
10716 EXPORT_SYMBOL(alloc_netdev_mqs);
10717
10718 /**
10719  * free_netdev - free network device
10720  * @dev: device
10721  *
10722  * This function does the last stage of destroying an allocated device
10723  * interface. The reference to the device object is released. If this
10724  * is the last reference then it will be freed.Must be called in process
10725  * context.
10726  */
10727 void free_netdev(struct net_device *dev)
10728 {
10729         struct napi_struct *p, *n;
10730
10731         might_sleep();
10732
10733         /* When called immediately after register_netdevice() failed the unwind
10734          * handling may still be dismantling the device. Handle that case by
10735          * deferring the free.
10736          */
10737         if (dev->reg_state == NETREG_UNREGISTERING) {
10738                 ASSERT_RTNL();
10739                 dev->needs_free_netdev = true;
10740                 return;
10741         }
10742
10743         netif_free_tx_queues(dev);
10744         netif_free_rx_queues(dev);
10745
10746         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10747
10748         /* Flush device addresses */
10749         dev_addr_flush(dev);
10750
10751         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10752                 netif_napi_del(p);
10753
10754         free_percpu(dev->pcpu_refcnt);
10755         dev->pcpu_refcnt = NULL;
10756         free_percpu(dev->xdp_bulkq);
10757         dev->xdp_bulkq = NULL;
10758
10759         /*  Compatibility with error handling in drivers */
10760         if (dev->reg_state == NETREG_UNINITIALIZED) {
10761                 netdev_freemem(dev);
10762                 return;
10763         }
10764
10765         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10766         dev->reg_state = NETREG_RELEASED;
10767
10768         /* will free via device release */
10769         put_device(&dev->dev);
10770 }
10771 EXPORT_SYMBOL(free_netdev);
10772
10773 /**
10774  *      synchronize_net -  Synchronize with packet receive processing
10775  *
10776  *      Wait for packets currently being received to be done.
10777  *      Does not block later packets from starting.
10778  */
10779 void synchronize_net(void)
10780 {
10781         might_sleep();
10782         if (rtnl_is_locked())
10783                 synchronize_rcu_expedited();
10784         else
10785                 synchronize_rcu();
10786 }
10787 EXPORT_SYMBOL(synchronize_net);
10788
10789 /**
10790  *      unregister_netdevice_queue - remove device from the kernel
10791  *      @dev: device
10792  *      @head: list
10793  *
10794  *      This function shuts down a device interface and removes it
10795  *      from the kernel tables.
10796  *      If head not NULL, device is queued to be unregistered later.
10797  *
10798  *      Callers must hold the rtnl semaphore.  You may want
10799  *      unregister_netdev() instead of this.
10800  */
10801
10802 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10803 {
10804         ASSERT_RTNL();
10805
10806         if (head) {
10807                 list_move_tail(&dev->unreg_list, head);
10808         } else {
10809                 LIST_HEAD(single);
10810
10811                 list_add(&dev->unreg_list, &single);
10812                 unregister_netdevice_many(&single);
10813         }
10814 }
10815 EXPORT_SYMBOL(unregister_netdevice_queue);
10816
10817 /**
10818  *      unregister_netdevice_many - unregister many devices
10819  *      @head: list of devices
10820  *
10821  *  Note: As most callers use a stack allocated list_head,
10822  *  we force a list_del() to make sure stack wont be corrupted later.
10823  */
10824 void unregister_netdevice_many(struct list_head *head)
10825 {
10826         struct net_device *dev, *tmp;
10827         LIST_HEAD(close_head);
10828
10829         BUG_ON(dev_boot_phase);
10830         ASSERT_RTNL();
10831
10832         if (list_empty(head))
10833                 return;
10834
10835         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10836                 /* Some devices call without registering
10837                  * for initialization unwind. Remove those
10838                  * devices and proceed with the remaining.
10839                  */
10840                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10841                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10842                                  dev->name, dev);
10843
10844                         WARN_ON(1);
10845                         list_del(&dev->unreg_list);
10846                         continue;
10847                 }
10848                 dev->dismantle = true;
10849                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10850         }
10851
10852         /* If device is running, close it first. */
10853         list_for_each_entry(dev, head, unreg_list)
10854                 list_add_tail(&dev->close_list, &close_head);
10855         dev_close_many(&close_head, true);
10856
10857         list_for_each_entry(dev, head, unreg_list) {
10858                 /* And unlink it from device chain. */
10859                 unlist_netdevice(dev);
10860
10861                 dev->reg_state = NETREG_UNREGISTERING;
10862         }
10863         flush_all_backlogs();
10864
10865         synchronize_net();
10866
10867         list_for_each_entry(dev, head, unreg_list) {
10868                 struct sk_buff *skb = NULL;
10869
10870                 /* Shutdown queueing discipline. */
10871                 dev_shutdown(dev);
10872
10873                 dev_xdp_uninstall(dev);
10874
10875                 /* Notify protocols, that we are about to destroy
10876                  * this device. They should clean all the things.
10877                  */
10878                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10879
10880                 if (!dev->rtnl_link_ops ||
10881                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10882                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10883                                                      GFP_KERNEL, NULL, 0);
10884
10885                 /*
10886                  *      Flush the unicast and multicast chains
10887                  */
10888                 dev_uc_flush(dev);
10889                 dev_mc_flush(dev);
10890
10891                 netdev_name_node_alt_flush(dev);
10892                 netdev_name_node_free(dev->name_node);
10893
10894                 if (dev->netdev_ops->ndo_uninit)
10895                         dev->netdev_ops->ndo_uninit(dev);
10896
10897                 if (skb)
10898                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10899
10900                 /* Notifier chain MUST detach us all upper devices. */
10901                 WARN_ON(netdev_has_any_upper_dev(dev));
10902                 WARN_ON(netdev_has_any_lower_dev(dev));
10903
10904                 /* Remove entries from kobject tree */
10905                 netdev_unregister_kobject(dev);
10906 #ifdef CONFIG_XPS
10907                 /* Remove XPS queueing entries */
10908                 netif_reset_xps_queues_gt(dev, 0);
10909 #endif
10910         }
10911
10912         synchronize_net();
10913
10914         list_for_each_entry(dev, head, unreg_list) {
10915                 dev_put(dev);
10916                 net_set_todo(dev);
10917         }
10918
10919         list_del(head);
10920 }
10921 EXPORT_SYMBOL(unregister_netdevice_many);
10922
10923 /**
10924  *      unregister_netdev - remove device from the kernel
10925  *      @dev: device
10926  *
10927  *      This function shuts down a device interface and removes it
10928  *      from the kernel tables.
10929  *
10930  *      This is just a wrapper for unregister_netdevice that takes
10931  *      the rtnl semaphore.  In general you want to use this and not
10932  *      unregister_netdevice.
10933  */
10934 void unregister_netdev(struct net_device *dev)
10935 {
10936         rtnl_lock();
10937         unregister_netdevice(dev);
10938         rtnl_unlock();
10939 }
10940 EXPORT_SYMBOL(unregister_netdev);
10941
10942 /**
10943  *      dev_change_net_namespace - move device to different nethost namespace
10944  *      @dev: device
10945  *      @net: network namespace
10946  *      @pat: If not NULL name pattern to try if the current device name
10947  *            is already taken in the destination network namespace.
10948  *
10949  *      This function shuts down a device interface and moves it
10950  *      to a new network namespace. On success 0 is returned, on
10951  *      a failure a netagive errno code is returned.
10952  *
10953  *      Callers must hold the rtnl semaphore.
10954  */
10955
10956 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10957 {
10958         struct net *net_old = dev_net(dev);
10959         int err, new_nsid, new_ifindex;
10960
10961         ASSERT_RTNL();
10962
10963         /* Don't allow namespace local devices to be moved. */
10964         err = -EINVAL;
10965         if (dev->features & NETIF_F_NETNS_LOCAL)
10966                 goto out;
10967
10968         /* Ensure the device has been registrered */
10969         if (dev->reg_state != NETREG_REGISTERED)
10970                 goto out;
10971
10972         /* Get out if there is nothing todo */
10973         err = 0;
10974         if (net_eq(net_old, net))
10975                 goto out;
10976
10977         /* Pick the destination device name, and ensure
10978          * we can use it in the destination network namespace.
10979          */
10980         err = -EEXIST;
10981         if (__dev_get_by_name(net, dev->name)) {
10982                 /* We get here if we can't use the current device name */
10983                 if (!pat)
10984                         goto out;
10985                 err = dev_get_valid_name(net, dev, pat);
10986                 if (err < 0)
10987                         goto out;
10988         }
10989
10990         /*
10991          * And now a mini version of register_netdevice unregister_netdevice.
10992          */
10993
10994         /* If device is running close it first. */
10995         dev_close(dev);
10996
10997         /* And unlink it from device chain */
10998         unlist_netdevice(dev);
10999
11000         synchronize_net();
11001
11002         /* Shutdown queueing discipline. */
11003         dev_shutdown(dev);
11004
11005         /* Notify protocols, that we are about to destroy
11006          * this device. They should clean all the things.
11007          *
11008          * Note that dev->reg_state stays at NETREG_REGISTERED.
11009          * This is wanted because this way 8021q and macvlan know
11010          * the device is just moving and can keep their slaves up.
11011          */
11012         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11013         rcu_barrier();
11014
11015         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11016         /* If there is an ifindex conflict assign a new one */
11017         if (__dev_get_by_index(net, dev->ifindex))
11018                 new_ifindex = dev_new_index(net);
11019         else
11020                 new_ifindex = dev->ifindex;
11021
11022         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11023                             new_ifindex);
11024
11025         /*
11026          *      Flush the unicast and multicast chains
11027          */
11028         dev_uc_flush(dev);
11029         dev_mc_flush(dev);
11030
11031         /* Send a netdev-removed uevent to the old namespace */
11032         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11033         netdev_adjacent_del_links(dev);
11034
11035         /* Move per-net netdevice notifiers that are following the netdevice */
11036         move_netdevice_notifiers_dev_net(dev, net);
11037
11038         /* Actually switch the network namespace */
11039         dev_net_set(dev, net);
11040         dev->ifindex = new_ifindex;
11041
11042         /* Send a netdev-add uevent to the new namespace */
11043         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11044         netdev_adjacent_add_links(dev);
11045
11046         /* Fixup kobjects */
11047         err = device_rename(&dev->dev, dev->name);
11048         WARN_ON(err);
11049
11050         /* Adapt owner in case owning user namespace of target network
11051          * namespace is different from the original one.
11052          */
11053         err = netdev_change_owner(dev, net_old, net);
11054         WARN_ON(err);
11055
11056         /* Add the device back in the hashes */
11057         list_netdevice(dev);
11058
11059         /* Notify protocols, that a new device appeared. */
11060         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11061
11062         /*
11063          *      Prevent userspace races by waiting until the network
11064          *      device is fully setup before sending notifications.
11065          */
11066         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11067
11068         synchronize_net();
11069         err = 0;
11070 out:
11071         return err;
11072 }
11073 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11074
11075 static int dev_cpu_dead(unsigned int oldcpu)
11076 {
11077         struct sk_buff **list_skb;
11078         struct sk_buff *skb;
11079         unsigned int cpu;
11080         struct softnet_data *sd, *oldsd, *remsd = NULL;
11081
11082         local_irq_disable();
11083         cpu = smp_processor_id();
11084         sd = &per_cpu(softnet_data, cpu);
11085         oldsd = &per_cpu(softnet_data, oldcpu);
11086
11087         /* Find end of our completion_queue. */
11088         list_skb = &sd->completion_queue;
11089         while (*list_skb)
11090                 list_skb = &(*list_skb)->next;
11091         /* Append completion queue from offline CPU. */
11092         *list_skb = oldsd->completion_queue;
11093         oldsd->completion_queue = NULL;
11094
11095         /* Append output queue from offline CPU. */
11096         if (oldsd->output_queue) {
11097                 *sd->output_queue_tailp = oldsd->output_queue;
11098                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11099                 oldsd->output_queue = NULL;
11100                 oldsd->output_queue_tailp = &oldsd->output_queue;
11101         }
11102         /* Append NAPI poll list from offline CPU, with one exception :
11103          * process_backlog() must be called by cpu owning percpu backlog.
11104          * We properly handle process_queue & input_pkt_queue later.
11105          */
11106         while (!list_empty(&oldsd->poll_list)) {
11107                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11108                                                             struct napi_struct,
11109                                                             poll_list);
11110
11111                 list_del_init(&napi->poll_list);
11112                 if (napi->poll == process_backlog)
11113                         napi->state = 0;
11114                 else
11115                         ____napi_schedule(sd, napi);
11116         }
11117
11118         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11119         local_irq_enable();
11120
11121 #ifdef CONFIG_RPS
11122         remsd = oldsd->rps_ipi_list;
11123         oldsd->rps_ipi_list = NULL;
11124 #endif
11125         /* send out pending IPI's on offline CPU */
11126         net_rps_send_ipi(remsd);
11127
11128         /* Process offline CPU's input_pkt_queue */
11129         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11130                 netif_rx_ni(skb);
11131                 input_queue_head_incr(oldsd);
11132         }
11133         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11134                 netif_rx_ni(skb);
11135                 input_queue_head_incr(oldsd);
11136         }
11137
11138         return 0;
11139 }
11140
11141 /**
11142  *      netdev_increment_features - increment feature set by one
11143  *      @all: current feature set
11144  *      @one: new feature set
11145  *      @mask: mask feature set
11146  *
11147  *      Computes a new feature set after adding a device with feature set
11148  *      @one to the master device with current feature set @all.  Will not
11149  *      enable anything that is off in @mask. Returns the new feature set.
11150  */
11151 netdev_features_t netdev_increment_features(netdev_features_t all,
11152         netdev_features_t one, netdev_features_t mask)
11153 {
11154         if (mask & NETIF_F_HW_CSUM)
11155                 mask |= NETIF_F_CSUM_MASK;
11156         mask |= NETIF_F_VLAN_CHALLENGED;
11157
11158         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11159         all &= one | ~NETIF_F_ALL_FOR_ALL;
11160
11161         /* If one device supports hw checksumming, set for all. */
11162         if (all & NETIF_F_HW_CSUM)
11163                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11164
11165         return all;
11166 }
11167 EXPORT_SYMBOL(netdev_increment_features);
11168
11169 static struct hlist_head * __net_init netdev_create_hash(void)
11170 {
11171         int i;
11172         struct hlist_head *hash;
11173
11174         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11175         if (hash != NULL)
11176                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11177                         INIT_HLIST_HEAD(&hash[i]);
11178
11179         return hash;
11180 }
11181
11182 /* Initialize per network namespace state */
11183 static int __net_init netdev_init(struct net *net)
11184 {
11185         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11186                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11187
11188         if (net != &init_net)
11189                 INIT_LIST_HEAD(&net->dev_base_head);
11190
11191         net->dev_name_head = netdev_create_hash();
11192         if (net->dev_name_head == NULL)
11193                 goto err_name;
11194
11195         net->dev_index_head = netdev_create_hash();
11196         if (net->dev_index_head == NULL)
11197                 goto err_idx;
11198
11199         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11200
11201         return 0;
11202
11203 err_idx:
11204         kfree(net->dev_name_head);
11205 err_name:
11206         return -ENOMEM;
11207 }
11208
11209 /**
11210  *      netdev_drivername - network driver for the device
11211  *      @dev: network device
11212  *
11213  *      Determine network driver for device.
11214  */
11215 const char *netdev_drivername(const struct net_device *dev)
11216 {
11217         const struct device_driver *driver;
11218         const struct device *parent;
11219         const char *empty = "";
11220
11221         parent = dev->dev.parent;
11222         if (!parent)
11223                 return empty;
11224
11225         driver = parent->driver;
11226         if (driver && driver->name)
11227                 return driver->name;
11228         return empty;
11229 }
11230
11231 static void __netdev_printk(const char *level, const struct net_device *dev,
11232                             struct va_format *vaf)
11233 {
11234         if (dev && dev->dev.parent) {
11235                 dev_printk_emit(level[1] - '0',
11236                                 dev->dev.parent,
11237                                 "%s %s %s%s: %pV",
11238                                 dev_driver_string(dev->dev.parent),
11239                                 dev_name(dev->dev.parent),
11240                                 netdev_name(dev), netdev_reg_state(dev),
11241                                 vaf);
11242         } else if (dev) {
11243                 printk("%s%s%s: %pV",
11244                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11245         } else {
11246                 printk("%s(NULL net_device): %pV", level, vaf);
11247         }
11248 }
11249
11250 void netdev_printk(const char *level, const struct net_device *dev,
11251                    const char *format, ...)
11252 {
11253         struct va_format vaf;
11254         va_list args;
11255
11256         va_start(args, format);
11257
11258         vaf.fmt = format;
11259         vaf.va = &args;
11260
11261         __netdev_printk(level, dev, &vaf);
11262
11263         va_end(args);
11264 }
11265 EXPORT_SYMBOL(netdev_printk);
11266
11267 #define define_netdev_printk_level(func, level)                 \
11268 void func(const struct net_device *dev, const char *fmt, ...)   \
11269 {                                                               \
11270         struct va_format vaf;                                   \
11271         va_list args;                                           \
11272                                                                 \
11273         va_start(args, fmt);                                    \
11274                                                                 \
11275         vaf.fmt = fmt;                                          \
11276         vaf.va = &args;                                         \
11277                                                                 \
11278         __netdev_printk(level, dev, &vaf);                      \
11279                                                                 \
11280         va_end(args);                                           \
11281 }                                                               \
11282 EXPORT_SYMBOL(func);
11283
11284 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11285 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11286 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11287 define_netdev_printk_level(netdev_err, KERN_ERR);
11288 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11289 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11290 define_netdev_printk_level(netdev_info, KERN_INFO);
11291
11292 static void __net_exit netdev_exit(struct net *net)
11293 {
11294         kfree(net->dev_name_head);
11295         kfree(net->dev_index_head);
11296         if (net != &init_net)
11297                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11298 }
11299
11300 static struct pernet_operations __net_initdata netdev_net_ops = {
11301         .init = netdev_init,
11302         .exit = netdev_exit,
11303 };
11304
11305 static void __net_exit default_device_exit(struct net *net)
11306 {
11307         struct net_device *dev, *aux;
11308         /*
11309          * Push all migratable network devices back to the
11310          * initial network namespace
11311          */
11312         rtnl_lock();
11313         for_each_netdev_safe(net, dev, aux) {
11314                 int err;
11315                 char fb_name[IFNAMSIZ];
11316
11317                 /* Ignore unmoveable devices (i.e. loopback) */
11318                 if (dev->features & NETIF_F_NETNS_LOCAL)
11319                         continue;
11320
11321                 /* Leave virtual devices for the generic cleanup */
11322                 if (dev->rtnl_link_ops)
11323                         continue;
11324
11325                 /* Push remaining network devices to init_net */
11326                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11327                 if (__dev_get_by_name(&init_net, fb_name))
11328                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11329                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11330                 if (err) {
11331                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11332                                  __func__, dev->name, err);
11333                         BUG();
11334                 }
11335         }
11336         rtnl_unlock();
11337 }
11338
11339 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11340 {
11341         /* Return with the rtnl_lock held when there are no network
11342          * devices unregistering in any network namespace in net_list.
11343          */
11344         struct net *net;
11345         bool unregistering;
11346         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11347
11348         add_wait_queue(&netdev_unregistering_wq, &wait);
11349         for (;;) {
11350                 unregistering = false;
11351                 rtnl_lock();
11352                 list_for_each_entry(net, net_list, exit_list) {
11353                         if (net->dev_unreg_count > 0) {
11354                                 unregistering = true;
11355                                 break;
11356                         }
11357                 }
11358                 if (!unregistering)
11359                         break;
11360                 __rtnl_unlock();
11361
11362                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11363         }
11364         remove_wait_queue(&netdev_unregistering_wq, &wait);
11365 }
11366
11367 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11368 {
11369         /* At exit all network devices most be removed from a network
11370          * namespace.  Do this in the reverse order of registration.
11371          * Do this across as many network namespaces as possible to
11372          * improve batching efficiency.
11373          */
11374         struct net_device *dev;
11375         struct net *net;
11376         LIST_HEAD(dev_kill_list);
11377
11378         /* To prevent network device cleanup code from dereferencing
11379          * loopback devices or network devices that have been freed
11380          * wait here for all pending unregistrations to complete,
11381          * before unregistring the loopback device and allowing the
11382          * network namespace be freed.
11383          *
11384          * The netdev todo list containing all network devices
11385          * unregistrations that happen in default_device_exit_batch
11386          * will run in the rtnl_unlock() at the end of
11387          * default_device_exit_batch.
11388          */
11389         rtnl_lock_unregistering(net_list);
11390         list_for_each_entry(net, net_list, exit_list) {
11391                 for_each_netdev_reverse(net, dev) {
11392                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11393                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11394                         else
11395                                 unregister_netdevice_queue(dev, &dev_kill_list);
11396                 }
11397         }
11398         unregister_netdevice_many(&dev_kill_list);
11399         rtnl_unlock();
11400 }
11401
11402 static struct pernet_operations __net_initdata default_device_ops = {
11403         .exit = default_device_exit,
11404         .exit_batch = default_device_exit_batch,
11405 };
11406
11407 /*
11408  *      Initialize the DEV module. At boot time this walks the device list and
11409  *      unhooks any devices that fail to initialise (normally hardware not
11410  *      present) and leaves us with a valid list of present and active devices.
11411  *
11412  */
11413
11414 /*
11415  *       This is called single threaded during boot, so no need
11416  *       to take the rtnl semaphore.
11417  */
11418 static int __init net_dev_init(void)
11419 {
11420         int i, rc = -ENOMEM;
11421
11422         BUG_ON(!dev_boot_phase);
11423
11424         if (dev_proc_init())
11425                 goto out;
11426
11427         if (netdev_kobject_init())
11428                 goto out;
11429
11430         INIT_LIST_HEAD(&ptype_all);
11431         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11432                 INIT_LIST_HEAD(&ptype_base[i]);
11433
11434         INIT_LIST_HEAD(&offload_base);
11435
11436         if (register_pernet_subsys(&netdev_net_ops))
11437                 goto out;
11438
11439         /*
11440          *      Initialise the packet receive queues.
11441          */
11442
11443         for_each_possible_cpu(i) {
11444                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11445                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11446
11447                 INIT_WORK(flush, flush_backlog);
11448
11449                 skb_queue_head_init(&sd->input_pkt_queue);
11450                 skb_queue_head_init(&sd->process_queue);
11451 #ifdef CONFIG_XFRM_OFFLOAD
11452                 skb_queue_head_init(&sd->xfrm_backlog);
11453 #endif
11454                 INIT_LIST_HEAD(&sd->poll_list);
11455                 sd->output_queue_tailp = &sd->output_queue;
11456 #ifdef CONFIG_RPS
11457                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11458                 sd->cpu = i;
11459 #endif
11460
11461                 init_gro_hash(&sd->backlog);
11462                 sd->backlog.poll = process_backlog;
11463                 sd->backlog.weight = weight_p;
11464         }
11465
11466         dev_boot_phase = 0;
11467
11468         /* The loopback device is special if any other network devices
11469          * is present in a network namespace the loopback device must
11470          * be present. Since we now dynamically allocate and free the
11471          * loopback device ensure this invariant is maintained by
11472          * keeping the loopback device as the first device on the
11473          * list of network devices.  Ensuring the loopback devices
11474          * is the first device that appears and the last network device
11475          * that disappears.
11476          */
11477         if (register_pernet_device(&loopback_net_ops))
11478                 goto out;
11479
11480         if (register_pernet_device(&default_device_ops))
11481                 goto out;
11482
11483         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11484         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11485
11486         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11487                                        NULL, dev_cpu_dead);
11488         WARN_ON(rc < 0);
11489         rc = 0;
11490 out:
11491         return rc;
11492 }
11493
11494 subsys_initcall(net_dev_init);
This page took 0.735517 seconds and 4 git commands to generate.