]> Git Repo - linux.git/blob - kernel/sched/cpufreq_schedutil.c
RISC-V: Fix usage of memblock_enforce_memory_limit
[linux.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <[email protected]>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15
16 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
17
18 struct sugov_tunables {
19         struct gov_attr_set     attr_set;
20         unsigned int            rate_limit_us;
21 };
22
23 struct sugov_policy {
24         struct cpufreq_policy   *policy;
25
26         struct sugov_tunables   *tunables;
27         struct list_head        tunables_hook;
28
29         raw_spinlock_t          update_lock;    /* For shared policies */
30         u64                     last_freq_update_time;
31         s64                     freq_update_delay_ns;
32         unsigned int            next_freq;
33         unsigned int            cached_raw_freq;
34
35         /* The next fields are only needed if fast switch cannot be used: */
36         struct                  irq_work irq_work;
37         struct                  kthread_work work;
38         struct                  mutex work_lock;
39         struct                  kthread_worker worker;
40         struct task_struct      *thread;
41         bool                    work_in_progress;
42
43         bool                    limits_changed;
44         bool                    need_freq_update;
45 };
46
47 struct sugov_cpu {
48         struct update_util_data update_util;
49         struct sugov_policy     *sg_policy;
50         unsigned int            cpu;
51
52         bool                    iowait_boost_pending;
53         unsigned int            iowait_boost;
54         u64                     last_update;
55
56         unsigned long           bw_dl;
57         unsigned long           max;
58
59         /* The field below is for single-CPU policies only: */
60 #ifdef CONFIG_NO_HZ_COMMON
61         unsigned long           saved_idle_calls;
62 #endif
63 };
64
65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
66
67 /************************ Governor internals ***********************/
68
69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
70 {
71         s64 delta_ns;
72
73         /*
74          * Since cpufreq_update_util() is called with rq->lock held for
75          * the @target_cpu, our per-CPU data is fully serialized.
76          *
77          * However, drivers cannot in general deal with cross-CPU
78          * requests, so while get_next_freq() will work, our
79          * sugov_update_commit() call may not for the fast switching platforms.
80          *
81          * Hence stop here for remote requests if they aren't supported
82          * by the hardware, as calculating the frequency is pointless if
83          * we cannot in fact act on it.
84          *
85          * This is needed on the slow switching platforms too to prevent CPUs
86          * going offline from leaving stale IRQ work items behind.
87          */
88         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
89                 return false;
90
91         if (unlikely(sg_policy->limits_changed)) {
92                 sg_policy->limits_changed = false;
93                 sg_policy->need_freq_update = true;
94                 return true;
95         }
96
97         delta_ns = time - sg_policy->last_freq_update_time;
98
99         return delta_ns >= sg_policy->freq_update_delay_ns;
100 }
101
102 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
103                                    unsigned int next_freq)
104 {
105         if (sg_policy->need_freq_update)
106                 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
107         else if (sg_policy->next_freq == next_freq)
108                 return false;
109
110         sg_policy->next_freq = next_freq;
111         sg_policy->last_freq_update_time = time;
112
113         return true;
114 }
115
116 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
117                               unsigned int next_freq)
118 {
119         if (sugov_update_next_freq(sg_policy, time, next_freq))
120                 cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
121 }
122
123 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
124                                   unsigned int next_freq)
125 {
126         if (!sugov_update_next_freq(sg_policy, time, next_freq))
127                 return;
128
129         if (!sg_policy->work_in_progress) {
130                 sg_policy->work_in_progress = true;
131                 irq_work_queue(&sg_policy->irq_work);
132         }
133 }
134
135 /**
136  * get_next_freq - Compute a new frequency for a given cpufreq policy.
137  * @sg_policy: schedutil policy object to compute the new frequency for.
138  * @util: Current CPU utilization.
139  * @max: CPU capacity.
140  *
141  * If the utilization is frequency-invariant, choose the new frequency to be
142  * proportional to it, that is
143  *
144  * next_freq = C * max_freq * util / max
145  *
146  * Otherwise, approximate the would-be frequency-invariant utilization by
147  * util_raw * (curr_freq / max_freq) which leads to
148  *
149  * next_freq = C * curr_freq * util_raw / max
150  *
151  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
152  *
153  * The lowest driver-supported frequency which is equal or greater than the raw
154  * next_freq (as calculated above) is returned, subject to policy min/max and
155  * cpufreq driver limitations.
156  */
157 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
158                                   unsigned long util, unsigned long max)
159 {
160         struct cpufreq_policy *policy = sg_policy->policy;
161         unsigned int freq = arch_scale_freq_invariant() ?
162                                 policy->cpuinfo.max_freq : policy->cur;
163
164         freq = map_util_freq(util, freq, max);
165
166         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
167                 return sg_policy->next_freq;
168
169         sg_policy->cached_raw_freq = freq;
170         return cpufreq_driver_resolve_freq(policy, freq);
171 }
172
173 /*
174  * This function computes an effective utilization for the given CPU, to be
175  * used for frequency selection given the linear relation: f = u * f_max.
176  *
177  * The scheduler tracks the following metrics:
178  *
179  *   cpu_util_{cfs,rt,dl,irq}()
180  *   cpu_bw_dl()
181  *
182  * Where the cfs,rt and dl util numbers are tracked with the same metric and
183  * synchronized windows and are thus directly comparable.
184  *
185  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
186  * which excludes things like IRQ and steal-time. These latter are then accrued
187  * in the irq utilization.
188  *
189  * The DL bandwidth number otoh is not a measured metric but a value computed
190  * based on the task model parameters and gives the minimal utilization
191  * required to meet deadlines.
192  */
193 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
194                                  unsigned long max, enum schedutil_type type,
195                                  struct task_struct *p)
196 {
197         unsigned long dl_util, util, irq;
198         struct rq *rq = cpu_rq(cpu);
199
200         if (!uclamp_is_used() &&
201             type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
202                 return max;
203         }
204
205         /*
206          * Early check to see if IRQ/steal time saturates the CPU, can be
207          * because of inaccuracies in how we track these -- see
208          * update_irq_load_avg().
209          */
210         irq = cpu_util_irq(rq);
211         if (unlikely(irq >= max))
212                 return max;
213
214         /*
215          * Because the time spend on RT/DL tasks is visible as 'lost' time to
216          * CFS tasks and we use the same metric to track the effective
217          * utilization (PELT windows are synchronized) we can directly add them
218          * to obtain the CPU's actual utilization.
219          *
220          * CFS and RT utilization can be boosted or capped, depending on
221          * utilization clamp constraints requested by currently RUNNABLE
222          * tasks.
223          * When there are no CFS RUNNABLE tasks, clamps are released and
224          * frequency will be gracefully reduced with the utilization decay.
225          */
226         util = util_cfs + cpu_util_rt(rq);
227         if (type == FREQUENCY_UTIL)
228                 util = uclamp_rq_util_with(rq, util, p);
229
230         dl_util = cpu_util_dl(rq);
231
232         /*
233          * For frequency selection we do not make cpu_util_dl() a permanent part
234          * of this sum because we want to use cpu_bw_dl() later on, but we need
235          * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
236          * that we select f_max when there is no idle time.
237          *
238          * NOTE: numerical errors or stop class might cause us to not quite hit
239          * saturation when we should -- something for later.
240          */
241         if (util + dl_util >= max)
242                 return max;
243
244         /*
245          * OTOH, for energy computation we need the estimated running time, so
246          * include util_dl and ignore dl_bw.
247          */
248         if (type == ENERGY_UTIL)
249                 util += dl_util;
250
251         /*
252          * There is still idle time; further improve the number by using the
253          * irq metric. Because IRQ/steal time is hidden from the task clock we
254          * need to scale the task numbers:
255          *
256          *              max - irq
257          *   U' = irq + --------- * U
258          *                 max
259          */
260         util = scale_irq_capacity(util, irq, max);
261         util += irq;
262
263         /*
264          * Bandwidth required by DEADLINE must always be granted while, for
265          * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
266          * to gracefully reduce the frequency when no tasks show up for longer
267          * periods of time.
268          *
269          * Ideally we would like to set bw_dl as min/guaranteed freq and util +
270          * bw_dl as requested freq. However, cpufreq is not yet ready for such
271          * an interface. So, we only do the latter for now.
272          */
273         if (type == FREQUENCY_UTIL)
274                 util += cpu_bw_dl(rq);
275
276         return min(max, util);
277 }
278
279 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
280 {
281         struct rq *rq = cpu_rq(sg_cpu->cpu);
282         unsigned long util = cpu_util_cfs(rq);
283         unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
284
285         sg_cpu->max = max;
286         sg_cpu->bw_dl = cpu_bw_dl(rq);
287
288         return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
289 }
290
291 /**
292  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
293  * @sg_cpu: the sugov data for the CPU to boost
294  * @time: the update time from the caller
295  * @set_iowait_boost: true if an IO boost has been requested
296  *
297  * The IO wait boost of a task is disabled after a tick since the last update
298  * of a CPU. If a new IO wait boost is requested after more then a tick, then
299  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
300  * efficiency by ignoring sporadic wakeups from IO.
301  */
302 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
303                                bool set_iowait_boost)
304 {
305         s64 delta_ns = time - sg_cpu->last_update;
306
307         /* Reset boost only if a tick has elapsed since last request */
308         if (delta_ns <= TICK_NSEC)
309                 return false;
310
311         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
312         sg_cpu->iowait_boost_pending = set_iowait_boost;
313
314         return true;
315 }
316
317 /**
318  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
319  * @sg_cpu: the sugov data for the CPU to boost
320  * @time: the update time from the caller
321  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
322  *
323  * Each time a task wakes up after an IO operation, the CPU utilization can be
324  * boosted to a certain utilization which doubles at each "frequent and
325  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
326  * of the maximum OPP.
327  *
328  * To keep doubling, an IO boost has to be requested at least once per tick,
329  * otherwise we restart from the utilization of the minimum OPP.
330  */
331 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
332                                unsigned int flags)
333 {
334         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
335
336         /* Reset boost if the CPU appears to have been idle enough */
337         if (sg_cpu->iowait_boost &&
338             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
339                 return;
340
341         /* Boost only tasks waking up after IO */
342         if (!set_iowait_boost)
343                 return;
344
345         /* Ensure boost doubles only one time at each request */
346         if (sg_cpu->iowait_boost_pending)
347                 return;
348         sg_cpu->iowait_boost_pending = true;
349
350         /* Double the boost at each request */
351         if (sg_cpu->iowait_boost) {
352                 sg_cpu->iowait_boost =
353                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
354                 return;
355         }
356
357         /* First wakeup after IO: start with minimum boost */
358         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
359 }
360
361 /**
362  * sugov_iowait_apply() - Apply the IO boost to a CPU.
363  * @sg_cpu: the sugov data for the cpu to boost
364  * @time: the update time from the caller
365  * @util: the utilization to (eventually) boost
366  * @max: the maximum value the utilization can be boosted to
367  *
368  * A CPU running a task which woken up after an IO operation can have its
369  * utilization boosted to speed up the completion of those IO operations.
370  * The IO boost value is increased each time a task wakes up from IO, in
371  * sugov_iowait_apply(), and it's instead decreased by this function,
372  * each time an increase has not been requested (!iowait_boost_pending).
373  *
374  * A CPU which also appears to have been idle for at least one tick has also
375  * its IO boost utilization reset.
376  *
377  * This mechanism is designed to boost high frequently IO waiting tasks, while
378  * being more conservative on tasks which does sporadic IO operations.
379  */
380 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
381                                         unsigned long util, unsigned long max)
382 {
383         unsigned long boost;
384
385         /* No boost currently required */
386         if (!sg_cpu->iowait_boost)
387                 return util;
388
389         /* Reset boost if the CPU appears to have been idle enough */
390         if (sugov_iowait_reset(sg_cpu, time, false))
391                 return util;
392
393         if (!sg_cpu->iowait_boost_pending) {
394                 /*
395                  * No boost pending; reduce the boost value.
396                  */
397                 sg_cpu->iowait_boost >>= 1;
398                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
399                         sg_cpu->iowait_boost = 0;
400                         return util;
401                 }
402         }
403
404         sg_cpu->iowait_boost_pending = false;
405
406         /*
407          * @util is already in capacity scale; convert iowait_boost
408          * into the same scale so we can compare.
409          */
410         boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
411         return max(boost, util);
412 }
413
414 #ifdef CONFIG_NO_HZ_COMMON
415 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
416 {
417         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
418         bool ret = idle_calls == sg_cpu->saved_idle_calls;
419
420         sg_cpu->saved_idle_calls = idle_calls;
421         return ret;
422 }
423 #else
424 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
425 #endif /* CONFIG_NO_HZ_COMMON */
426
427 /*
428  * Make sugov_should_update_freq() ignore the rate limit when DL
429  * has increased the utilization.
430  */
431 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
432 {
433         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
434                 sg_policy->limits_changed = true;
435 }
436
437 static void sugov_update_single(struct update_util_data *hook, u64 time,
438                                 unsigned int flags)
439 {
440         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
441         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
442         unsigned long util, max;
443         unsigned int next_f;
444         unsigned int cached_freq = sg_policy->cached_raw_freq;
445
446         sugov_iowait_boost(sg_cpu, time, flags);
447         sg_cpu->last_update = time;
448
449         ignore_dl_rate_limit(sg_cpu, sg_policy);
450
451         if (!sugov_should_update_freq(sg_policy, time))
452                 return;
453
454         util = sugov_get_util(sg_cpu);
455         max = sg_cpu->max;
456         util = sugov_iowait_apply(sg_cpu, time, util, max);
457         next_f = get_next_freq(sg_policy, util, max);
458         /*
459          * Do not reduce the frequency if the CPU has not been idle
460          * recently, as the reduction is likely to be premature then.
461          */
462         if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
463                 next_f = sg_policy->next_freq;
464
465                 /* Restore cached freq as next_freq has changed */
466                 sg_policy->cached_raw_freq = cached_freq;
467         }
468
469         /*
470          * This code runs under rq->lock for the target CPU, so it won't run
471          * concurrently on two different CPUs for the same target and it is not
472          * necessary to acquire the lock in the fast switch case.
473          */
474         if (sg_policy->policy->fast_switch_enabled) {
475                 sugov_fast_switch(sg_policy, time, next_f);
476         } else {
477                 raw_spin_lock(&sg_policy->update_lock);
478                 sugov_deferred_update(sg_policy, time, next_f);
479                 raw_spin_unlock(&sg_policy->update_lock);
480         }
481 }
482
483 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
484 {
485         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
486         struct cpufreq_policy *policy = sg_policy->policy;
487         unsigned long util = 0, max = 1;
488         unsigned int j;
489
490         for_each_cpu(j, policy->cpus) {
491                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
492                 unsigned long j_util, j_max;
493
494                 j_util = sugov_get_util(j_sg_cpu);
495                 j_max = j_sg_cpu->max;
496                 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
497
498                 if (j_util * max > j_max * util) {
499                         util = j_util;
500                         max = j_max;
501                 }
502         }
503
504         return get_next_freq(sg_policy, util, max);
505 }
506
507 static void
508 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
509 {
510         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
511         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
512         unsigned int next_f;
513
514         raw_spin_lock(&sg_policy->update_lock);
515
516         sugov_iowait_boost(sg_cpu, time, flags);
517         sg_cpu->last_update = time;
518
519         ignore_dl_rate_limit(sg_cpu, sg_policy);
520
521         if (sugov_should_update_freq(sg_policy, time)) {
522                 next_f = sugov_next_freq_shared(sg_cpu, time);
523
524                 if (sg_policy->policy->fast_switch_enabled)
525                         sugov_fast_switch(sg_policy, time, next_f);
526                 else
527                         sugov_deferred_update(sg_policy, time, next_f);
528         }
529
530         raw_spin_unlock(&sg_policy->update_lock);
531 }
532
533 static void sugov_work(struct kthread_work *work)
534 {
535         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
536         unsigned int freq;
537         unsigned long flags;
538
539         /*
540          * Hold sg_policy->update_lock shortly to handle the case where:
541          * incase sg_policy->next_freq is read here, and then updated by
542          * sugov_deferred_update() just before work_in_progress is set to false
543          * here, we may miss queueing the new update.
544          *
545          * Note: If a work was queued after the update_lock is released,
546          * sugov_work() will just be called again by kthread_work code; and the
547          * request will be proceed before the sugov thread sleeps.
548          */
549         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
550         freq = sg_policy->next_freq;
551         sg_policy->work_in_progress = false;
552         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
553
554         mutex_lock(&sg_policy->work_lock);
555         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
556         mutex_unlock(&sg_policy->work_lock);
557 }
558
559 static void sugov_irq_work(struct irq_work *irq_work)
560 {
561         struct sugov_policy *sg_policy;
562
563         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
564
565         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
566 }
567
568 /************************** sysfs interface ************************/
569
570 static struct sugov_tunables *global_tunables;
571 static DEFINE_MUTEX(global_tunables_lock);
572
573 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
574 {
575         return container_of(attr_set, struct sugov_tunables, attr_set);
576 }
577
578 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
579 {
580         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
581
582         return sprintf(buf, "%u\n", tunables->rate_limit_us);
583 }
584
585 static ssize_t
586 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
587 {
588         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
589         struct sugov_policy *sg_policy;
590         unsigned int rate_limit_us;
591
592         if (kstrtouint(buf, 10, &rate_limit_us))
593                 return -EINVAL;
594
595         tunables->rate_limit_us = rate_limit_us;
596
597         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
598                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
599
600         return count;
601 }
602
603 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
604
605 static struct attribute *sugov_attrs[] = {
606         &rate_limit_us.attr,
607         NULL
608 };
609 ATTRIBUTE_GROUPS(sugov);
610
611 static struct kobj_type sugov_tunables_ktype = {
612         .default_groups = sugov_groups,
613         .sysfs_ops = &governor_sysfs_ops,
614 };
615
616 /********************** cpufreq governor interface *********************/
617
618 struct cpufreq_governor schedutil_gov;
619
620 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
621 {
622         struct sugov_policy *sg_policy;
623
624         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
625         if (!sg_policy)
626                 return NULL;
627
628         sg_policy->policy = policy;
629         raw_spin_lock_init(&sg_policy->update_lock);
630         return sg_policy;
631 }
632
633 static void sugov_policy_free(struct sugov_policy *sg_policy)
634 {
635         kfree(sg_policy);
636 }
637
638 static int sugov_kthread_create(struct sugov_policy *sg_policy)
639 {
640         struct task_struct *thread;
641         struct sched_attr attr = {
642                 .size           = sizeof(struct sched_attr),
643                 .sched_policy   = SCHED_DEADLINE,
644                 .sched_flags    = SCHED_FLAG_SUGOV,
645                 .sched_nice     = 0,
646                 .sched_priority = 0,
647                 /*
648                  * Fake (unused) bandwidth; workaround to "fix"
649                  * priority inheritance.
650                  */
651                 .sched_runtime  =  1000000,
652                 .sched_deadline = 10000000,
653                 .sched_period   = 10000000,
654         };
655         struct cpufreq_policy *policy = sg_policy->policy;
656         int ret;
657
658         /* kthread only required for slow path */
659         if (policy->fast_switch_enabled)
660                 return 0;
661
662         kthread_init_work(&sg_policy->work, sugov_work);
663         kthread_init_worker(&sg_policy->worker);
664         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
665                                 "sugov:%d",
666                                 cpumask_first(policy->related_cpus));
667         if (IS_ERR(thread)) {
668                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
669                 return PTR_ERR(thread);
670         }
671
672         ret = sched_setattr_nocheck(thread, &attr);
673         if (ret) {
674                 kthread_stop(thread);
675                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
676                 return ret;
677         }
678
679         sg_policy->thread = thread;
680         kthread_bind_mask(thread, policy->related_cpus);
681         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
682         mutex_init(&sg_policy->work_lock);
683
684         wake_up_process(thread);
685
686         return 0;
687 }
688
689 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
690 {
691         /* kthread only required for slow path */
692         if (sg_policy->policy->fast_switch_enabled)
693                 return;
694
695         kthread_flush_worker(&sg_policy->worker);
696         kthread_stop(sg_policy->thread);
697         mutex_destroy(&sg_policy->work_lock);
698 }
699
700 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
701 {
702         struct sugov_tunables *tunables;
703
704         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
705         if (tunables) {
706                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
707                 if (!have_governor_per_policy())
708                         global_tunables = tunables;
709         }
710         return tunables;
711 }
712
713 static void sugov_tunables_free(struct sugov_tunables *tunables)
714 {
715         if (!have_governor_per_policy())
716                 global_tunables = NULL;
717
718         kfree(tunables);
719 }
720
721 static int sugov_init(struct cpufreq_policy *policy)
722 {
723         struct sugov_policy *sg_policy;
724         struct sugov_tunables *tunables;
725         int ret = 0;
726
727         /* State should be equivalent to EXIT */
728         if (policy->governor_data)
729                 return -EBUSY;
730
731         cpufreq_enable_fast_switch(policy);
732
733         sg_policy = sugov_policy_alloc(policy);
734         if (!sg_policy) {
735                 ret = -ENOMEM;
736                 goto disable_fast_switch;
737         }
738
739         ret = sugov_kthread_create(sg_policy);
740         if (ret)
741                 goto free_sg_policy;
742
743         mutex_lock(&global_tunables_lock);
744
745         if (global_tunables) {
746                 if (WARN_ON(have_governor_per_policy())) {
747                         ret = -EINVAL;
748                         goto stop_kthread;
749                 }
750                 policy->governor_data = sg_policy;
751                 sg_policy->tunables = global_tunables;
752
753                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
754                 goto out;
755         }
756
757         tunables = sugov_tunables_alloc(sg_policy);
758         if (!tunables) {
759                 ret = -ENOMEM;
760                 goto stop_kthread;
761         }
762
763         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
764
765         policy->governor_data = sg_policy;
766         sg_policy->tunables = tunables;
767
768         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
769                                    get_governor_parent_kobj(policy), "%s",
770                                    schedutil_gov.name);
771         if (ret)
772                 goto fail;
773
774 out:
775         mutex_unlock(&global_tunables_lock);
776         return 0;
777
778 fail:
779         kobject_put(&tunables->attr_set.kobj);
780         policy->governor_data = NULL;
781         sugov_tunables_free(tunables);
782
783 stop_kthread:
784         sugov_kthread_stop(sg_policy);
785         mutex_unlock(&global_tunables_lock);
786
787 free_sg_policy:
788         sugov_policy_free(sg_policy);
789
790 disable_fast_switch:
791         cpufreq_disable_fast_switch(policy);
792
793         pr_err("initialization failed (error %d)\n", ret);
794         return ret;
795 }
796
797 static void sugov_exit(struct cpufreq_policy *policy)
798 {
799         struct sugov_policy *sg_policy = policy->governor_data;
800         struct sugov_tunables *tunables = sg_policy->tunables;
801         unsigned int count;
802
803         mutex_lock(&global_tunables_lock);
804
805         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
806         policy->governor_data = NULL;
807         if (!count)
808                 sugov_tunables_free(tunables);
809
810         mutex_unlock(&global_tunables_lock);
811
812         sugov_kthread_stop(sg_policy);
813         sugov_policy_free(sg_policy);
814         cpufreq_disable_fast_switch(policy);
815 }
816
817 static int sugov_start(struct cpufreq_policy *policy)
818 {
819         struct sugov_policy *sg_policy = policy->governor_data;
820         unsigned int cpu;
821
822         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
823         sg_policy->last_freq_update_time        = 0;
824         sg_policy->next_freq                    = 0;
825         sg_policy->work_in_progress             = false;
826         sg_policy->limits_changed               = false;
827         sg_policy->cached_raw_freq              = 0;
828
829         sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
830
831         for_each_cpu(cpu, policy->cpus) {
832                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
833
834                 memset(sg_cpu, 0, sizeof(*sg_cpu));
835                 sg_cpu->cpu                     = cpu;
836                 sg_cpu->sg_policy               = sg_policy;
837         }
838
839         for_each_cpu(cpu, policy->cpus) {
840                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
841
842                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
843                                              policy_is_shared(policy) ?
844                                                         sugov_update_shared :
845                                                         sugov_update_single);
846         }
847         return 0;
848 }
849
850 static void sugov_stop(struct cpufreq_policy *policy)
851 {
852         struct sugov_policy *sg_policy = policy->governor_data;
853         unsigned int cpu;
854
855         for_each_cpu(cpu, policy->cpus)
856                 cpufreq_remove_update_util_hook(cpu);
857
858         synchronize_rcu();
859
860         if (!policy->fast_switch_enabled) {
861                 irq_work_sync(&sg_policy->irq_work);
862                 kthread_cancel_work_sync(&sg_policy->work);
863         }
864 }
865
866 static void sugov_limits(struct cpufreq_policy *policy)
867 {
868         struct sugov_policy *sg_policy = policy->governor_data;
869
870         if (!policy->fast_switch_enabled) {
871                 mutex_lock(&sg_policy->work_lock);
872                 cpufreq_policy_apply_limits(policy);
873                 mutex_unlock(&sg_policy->work_lock);
874         }
875
876         sg_policy->limits_changed = true;
877 }
878
879 struct cpufreq_governor schedutil_gov = {
880         .name                   = "schedutil",
881         .owner                  = THIS_MODULE,
882         .flags                  = CPUFREQ_GOV_DYNAMIC_SWITCHING,
883         .init                   = sugov_init,
884         .exit                   = sugov_exit,
885         .start                  = sugov_start,
886         .stop                   = sugov_stop,
887         .limits                 = sugov_limits,
888 };
889
890 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
891 struct cpufreq_governor *cpufreq_default_governor(void)
892 {
893         return &schedutil_gov;
894 }
895 #endif
896
897 cpufreq_governor_init(schedutil_gov);
898
899 #ifdef CONFIG_ENERGY_MODEL
900 static void rebuild_sd_workfn(struct work_struct *work)
901 {
902         rebuild_sched_domains_energy();
903 }
904 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
905
906 /*
907  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
908  * on governor changes to make sure the scheduler knows about it.
909  */
910 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
911                                   struct cpufreq_governor *old_gov)
912 {
913         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
914                 /*
915                  * When called from the cpufreq_register_driver() path, the
916                  * cpu_hotplug_lock is already held, so use a work item to
917                  * avoid nested locking in rebuild_sched_domains().
918                  */
919                 schedule_work(&rebuild_sd_work);
920         }
921
922 }
923 #endif
This page took 0.083859 seconds and 4 git commands to generate.