1 /* SPDX-License-Identifier: GPL-2.0+ */
3 * Read-Copy Update mechanism for mutual exclusion
5 * Copyright IBM Corporation, 2001
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
33 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a) (*(long *)(&(a)))
37 /* Exported common interfaces */
38 void call_rcu(struct rcu_head *head, rcu_callback_t func);
39 void rcu_barrier_tasks(void);
40 void rcu_barrier_tasks_rude(void);
41 void synchronize_rcu(void);
43 #ifdef CONFIG_PREEMPT_RCU
45 void __rcu_read_lock(void);
46 void __rcu_read_unlock(void);
49 * Defined as a macro as it is a very low level header included from
50 * areas that don't even know about current. This gives the rcu_read_lock()
51 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
52 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
54 #define rcu_preempt_depth() (current->rcu_read_lock_nesting)
56 #else /* #ifdef CONFIG_PREEMPT_RCU */
58 #ifdef CONFIG_TINY_RCU
59 #define rcu_read_unlock_strict() do { } while (0)
61 void rcu_read_unlock_strict(void);
64 static inline void __rcu_read_lock(void)
69 static inline void __rcu_read_unlock(void)
72 rcu_read_unlock_strict();
75 static inline int rcu_preempt_depth(void)
80 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
82 /* Internal to kernel */
84 extern int rcu_scheduler_active __read_mostly;
85 void rcu_sched_clock_irq(int user);
86 void rcu_report_dead(unsigned int cpu);
87 void rcutree_migrate_callbacks(int cpu);
89 #ifdef CONFIG_RCU_STALL_COMMON
90 void rcu_sysrq_start(void);
91 void rcu_sysrq_end(void);
92 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
93 static inline void rcu_sysrq_start(void) { }
94 static inline void rcu_sysrq_end(void) { }
95 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
97 #ifdef CONFIG_NO_HZ_FULL
98 void rcu_user_enter(void);
99 void rcu_user_exit(void);
101 static inline void rcu_user_enter(void) { }
102 static inline void rcu_user_exit(void) { }
103 #endif /* CONFIG_NO_HZ_FULL */
105 #ifdef CONFIG_RCU_NOCB_CPU
106 void rcu_init_nohz(void);
107 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
108 static inline void rcu_init_nohz(void) { }
109 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
112 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
113 * @a: Code that RCU needs to pay attention to.
115 * RCU read-side critical sections are forbidden in the inner idle loop,
116 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
117 * will happily ignore any such read-side critical sections. However,
118 * things like powertop need tracepoints in the inner idle loop.
120 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
121 * will tell RCU that it needs to pay attention, invoke its argument
122 * (in this example, calling the do_something_with_RCU() function),
123 * and then tell RCU to go back to ignoring this CPU. It is permissible
124 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
125 * on the order of a million or so, even on 32-bit systems). It is
126 * not legal to block within RCU_NONIDLE(), nor is it permissible to
127 * transfer control either into or out of RCU_NONIDLE()'s statement.
129 #define RCU_NONIDLE(a) \
131 rcu_irq_enter_irqson(); \
132 do { a; } while (0); \
133 rcu_irq_exit_irqson(); \
137 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
138 * This is a macro rather than an inline function to avoid #include hell.
140 #ifdef CONFIG_TASKS_RCU_GENERIC
142 # ifdef CONFIG_TASKS_RCU
143 # define rcu_tasks_classic_qs(t, preempt) \
145 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
146 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
148 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
149 void synchronize_rcu_tasks(void);
151 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
152 # define call_rcu_tasks call_rcu
153 # define synchronize_rcu_tasks synchronize_rcu
156 # ifdef CONFIG_TASKS_RCU_TRACE
157 # define rcu_tasks_trace_qs(t) \
159 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \
160 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \
161 smp_store_release(&(t)->trc_reader_checked, true); \
162 smp_mb(); /* Readers partitioned by store. */ \
166 # define rcu_tasks_trace_qs(t) do { } while (0)
169 #define rcu_tasks_qs(t, preempt) \
171 rcu_tasks_classic_qs((t), (preempt)); \
172 rcu_tasks_trace_qs((t)); \
175 # ifdef CONFIG_TASKS_RUDE_RCU
176 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
177 void synchronize_rcu_tasks_rude(void);
180 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
181 void exit_tasks_rcu_start(void);
182 void exit_tasks_rcu_finish(void);
183 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
184 #define rcu_tasks_qs(t, preempt) do { } while (0)
185 #define rcu_note_voluntary_context_switch(t) do { } while (0)
186 #define call_rcu_tasks call_rcu
187 #define synchronize_rcu_tasks synchronize_rcu
188 static inline void exit_tasks_rcu_start(void) { }
189 static inline void exit_tasks_rcu_finish(void) { }
190 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
193 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
195 * This macro resembles cond_resched(), except that it is defined to
196 * report potential quiescent states to RCU-tasks even if the cond_resched()
197 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
199 #define cond_resched_tasks_rcu_qs() \
201 rcu_tasks_qs(current, false); \
206 * Infrastructure to implement the synchronize_() primitives in
207 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
210 #if defined(CONFIG_TREE_RCU)
211 #include <linux/rcutree.h>
212 #elif defined(CONFIG_TINY_RCU)
213 #include <linux/rcutiny.h>
215 #error "Unknown RCU implementation specified to kernel configuration"
219 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
220 * are needed for dynamic initialization and destruction of rcu_head
221 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
222 * dynamic initialization and destruction of statically allocated rcu_head
223 * structures. However, rcu_head structures allocated dynamically in the
224 * heap don't need any initialization.
226 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
227 void init_rcu_head(struct rcu_head *head);
228 void destroy_rcu_head(struct rcu_head *head);
229 void init_rcu_head_on_stack(struct rcu_head *head);
230 void destroy_rcu_head_on_stack(struct rcu_head *head);
231 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
232 static inline void init_rcu_head(struct rcu_head *head) { }
233 static inline void destroy_rcu_head(struct rcu_head *head) { }
234 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
235 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
236 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
238 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
239 bool rcu_lockdep_current_cpu_online(void);
240 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
241 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
242 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
244 extern struct lockdep_map rcu_lock_map;
245 extern struct lockdep_map rcu_bh_lock_map;
246 extern struct lockdep_map rcu_sched_lock_map;
247 extern struct lockdep_map rcu_callback_map;
249 #ifdef CONFIG_DEBUG_LOCK_ALLOC
251 static inline void rcu_lock_acquire(struct lockdep_map *map)
253 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
256 static inline void rcu_lock_release(struct lockdep_map *map)
258 lock_release(map, _THIS_IP_);
261 int debug_lockdep_rcu_enabled(void);
262 int rcu_read_lock_held(void);
263 int rcu_read_lock_bh_held(void);
264 int rcu_read_lock_sched_held(void);
265 int rcu_read_lock_any_held(void);
267 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
269 # define rcu_lock_acquire(a) do { } while (0)
270 # define rcu_lock_release(a) do { } while (0)
272 static inline int rcu_read_lock_held(void)
277 static inline int rcu_read_lock_bh_held(void)
282 static inline int rcu_read_lock_sched_held(void)
284 return !preemptible();
287 static inline int rcu_read_lock_any_held(void)
289 return !preemptible();
292 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
294 #ifdef CONFIG_PROVE_RCU
297 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
298 * @c: condition to check
299 * @s: informative message
301 #define RCU_LOCKDEP_WARN(c, s) \
303 static bool __section(".data.unlikely") __warned; \
304 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \
306 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
310 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
311 static inline void rcu_preempt_sleep_check(void)
313 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
314 "Illegal context switch in RCU read-side critical section");
316 #else /* #ifdef CONFIG_PROVE_RCU */
317 static inline void rcu_preempt_sleep_check(void) { }
318 #endif /* #else #ifdef CONFIG_PROVE_RCU */
320 #define rcu_sleep_check() \
322 rcu_preempt_sleep_check(); \
323 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
324 "Illegal context switch in RCU-bh read-side critical section"); \
325 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
326 "Illegal context switch in RCU-sched read-side critical section"); \
329 #else /* #ifdef CONFIG_PROVE_RCU */
331 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
332 #define rcu_sleep_check() do { } while (0)
334 #endif /* #else #ifdef CONFIG_PROVE_RCU */
337 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
338 * and rcu_assign_pointer(). Some of these could be folded into their
339 * callers, but they are left separate in order to ease introduction of
340 * multiple pointers markings to match different RCU implementations
341 * (e.g., __srcu), should this make sense in the future.
345 #define rcu_check_sparse(p, space) \
346 ((void)(((typeof(*p) space *)p) == p))
347 #else /* #ifdef __CHECKER__ */
348 #define rcu_check_sparse(p, space)
349 #endif /* #else #ifdef __CHECKER__ */
351 #define __rcu_access_pointer(p, space) \
353 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
354 rcu_check_sparse(p, space); \
355 ((typeof(*p) __force __kernel *)(_________p1)); \
357 #define __rcu_dereference_check(p, c, space) \
359 /* Dependency order vs. p above. */ \
360 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
361 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
362 rcu_check_sparse(p, space); \
363 ((typeof(*p) __force __kernel *)(________p1)); \
365 #define __rcu_dereference_protected(p, c, space) \
367 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
368 rcu_check_sparse(p, space); \
369 ((typeof(*p) __force __kernel *)(p)); \
371 #define rcu_dereference_raw(p) \
373 /* Dependency order vs. p above. */ \
374 typeof(p) ________p1 = READ_ONCE(p); \
375 ((typeof(*p) __force __kernel *)(________p1)); \
379 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
380 * @v: The value to statically initialize with.
382 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
385 * rcu_assign_pointer() - assign to RCU-protected pointer
386 * @p: pointer to assign to
387 * @v: value to assign (publish)
389 * Assigns the specified value to the specified RCU-protected
390 * pointer, ensuring that any concurrent RCU readers will see
391 * any prior initialization.
393 * Inserts memory barriers on architectures that require them
394 * (which is most of them), and also prevents the compiler from
395 * reordering the code that initializes the structure after the pointer
396 * assignment. More importantly, this call documents which pointers
397 * will be dereferenced by RCU read-side code.
399 * In some special cases, you may use RCU_INIT_POINTER() instead
400 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
401 * to the fact that it does not constrain either the CPU or the compiler.
402 * That said, using RCU_INIT_POINTER() when you should have used
403 * rcu_assign_pointer() is a very bad thing that results in
404 * impossible-to-diagnose memory corruption. So please be careful.
405 * See the RCU_INIT_POINTER() comment header for details.
407 * Note that rcu_assign_pointer() evaluates each of its arguments only
408 * once, appearances notwithstanding. One of the "extra" evaluations
409 * is in typeof() and the other visible only to sparse (__CHECKER__),
410 * neither of which actually execute the argument. As with most cpp
411 * macros, this execute-arguments-only-once property is important, so
412 * please be careful when making changes to rcu_assign_pointer() and the
413 * other macros that it invokes.
415 #define rcu_assign_pointer(p, v) \
417 uintptr_t _r_a_p__v = (uintptr_t)(v); \
418 rcu_check_sparse(p, __rcu); \
420 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
421 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
423 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
427 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
428 * @rcu_ptr: RCU pointer, whose old value is returned
429 * @ptr: regular pointer
430 * @c: the lockdep conditions under which the dereference will take place
432 * Perform a replacement, where @rcu_ptr is an RCU-annotated
433 * pointer and @c is the lockdep argument that is passed to the
434 * rcu_dereference_protected() call used to read that pointer. The old
435 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
437 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
439 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
440 rcu_assign_pointer((rcu_ptr), (ptr)); \
445 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
446 * @p: The pointer to read
448 * Return the value of the specified RCU-protected pointer, but omit the
449 * lockdep checks for being in an RCU read-side critical section. This is
450 * useful when the value of this pointer is accessed, but the pointer is
451 * not dereferenced, for example, when testing an RCU-protected pointer
452 * against NULL. Although rcu_access_pointer() may also be used in cases
453 * where update-side locks prevent the value of the pointer from changing,
454 * you should instead use rcu_dereference_protected() for this use case.
456 * It is also permissible to use rcu_access_pointer() when read-side
457 * access to the pointer was removed at least one grace period ago, as
458 * is the case in the context of the RCU callback that is freeing up
459 * the data, or after a synchronize_rcu() returns. This can be useful
460 * when tearing down multi-linked structures after a grace period
463 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
466 * rcu_dereference_check() - rcu_dereference with debug checking
467 * @p: The pointer to read, prior to dereferencing
468 * @c: The conditions under which the dereference will take place
470 * Do an rcu_dereference(), but check that the conditions under which the
471 * dereference will take place are correct. Typically the conditions
472 * indicate the various locking conditions that should be held at that
473 * point. The check should return true if the conditions are satisfied.
474 * An implicit check for being in an RCU read-side critical section
475 * (rcu_read_lock()) is included.
479 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
481 * could be used to indicate to lockdep that foo->bar may only be dereferenced
482 * if either rcu_read_lock() is held, or that the lock required to replace
483 * the bar struct at foo->bar is held.
485 * Note that the list of conditions may also include indications of when a lock
486 * need not be held, for example during initialisation or destruction of the
489 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
490 * atomic_read(&foo->usage) == 0);
492 * Inserts memory barriers on architectures that require them
493 * (currently only the Alpha), prevents the compiler from refetching
494 * (and from merging fetches), and, more importantly, documents exactly
495 * which pointers are protected by RCU and checks that the pointer is
496 * annotated as __rcu.
498 #define rcu_dereference_check(p, c) \
499 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
502 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
503 * @p: The pointer to read, prior to dereferencing
504 * @c: The conditions under which the dereference will take place
506 * This is the RCU-bh counterpart to rcu_dereference_check().
508 #define rcu_dereference_bh_check(p, c) \
509 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
512 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
513 * @p: The pointer to read, prior to dereferencing
514 * @c: The conditions under which the dereference will take place
516 * This is the RCU-sched counterpart to rcu_dereference_check().
518 #define rcu_dereference_sched_check(p, c) \
519 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
523 * The tracing infrastructure traces RCU (we want that), but unfortunately
524 * some of the RCU checks causes tracing to lock up the system.
526 * The no-tracing version of rcu_dereference_raw() must not call
527 * rcu_read_lock_held().
529 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
532 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
533 * @p: The pointer to read, prior to dereferencing
534 * @c: The conditions under which the dereference will take place
536 * Return the value of the specified RCU-protected pointer, but omit
537 * the READ_ONCE(). This is useful in cases where update-side locks
538 * prevent the value of the pointer from changing. Please note that this
539 * primitive does *not* prevent the compiler from repeating this reference
540 * or combining it with other references, so it should not be used without
541 * protection of appropriate locks.
543 * This function is only for update-side use. Using this function
544 * when protected only by rcu_read_lock() will result in infrequent
545 * but very ugly failures.
547 #define rcu_dereference_protected(p, c) \
548 __rcu_dereference_protected((p), (c), __rcu)
552 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
553 * @p: The pointer to read, prior to dereferencing
555 * This is a simple wrapper around rcu_dereference_check().
557 #define rcu_dereference(p) rcu_dereference_check(p, 0)
560 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
561 * @p: The pointer to read, prior to dereferencing
563 * Makes rcu_dereference_check() do the dirty work.
565 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
568 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
569 * @p: The pointer to read, prior to dereferencing
571 * Makes rcu_dereference_check() do the dirty work.
573 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
576 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
577 * @p: The pointer to hand off
579 * This is simply an identity function, but it documents where a pointer
580 * is handed off from RCU to some other synchronization mechanism, for
581 * example, reference counting or locking. In C11, it would map to
582 * kill_dependency(). It could be used as follows::
585 * p = rcu_dereference(gp);
586 * long_lived = is_long_lived(p);
588 * if (!atomic_inc_not_zero(p->refcnt))
589 * long_lived = false;
591 * p = rcu_pointer_handoff(p);
595 #define rcu_pointer_handoff(p) (p)
598 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
600 * When synchronize_rcu() is invoked on one CPU while other CPUs
601 * are within RCU read-side critical sections, then the
602 * synchronize_rcu() is guaranteed to block until after all the other
603 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
604 * on one CPU while other CPUs are within RCU read-side critical
605 * sections, invocation of the corresponding RCU callback is deferred
606 * until after the all the other CPUs exit their critical sections.
608 * Note, however, that RCU callbacks are permitted to run concurrently
609 * with new RCU read-side critical sections. One way that this can happen
610 * is via the following sequence of events: (1) CPU 0 enters an RCU
611 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
612 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
613 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
614 * callback is invoked. This is legal, because the RCU read-side critical
615 * section that was running concurrently with the call_rcu() (and which
616 * therefore might be referencing something that the corresponding RCU
617 * callback would free up) has completed before the corresponding
618 * RCU callback is invoked.
620 * RCU read-side critical sections may be nested. Any deferred actions
621 * will be deferred until the outermost RCU read-side critical section
624 * You can avoid reading and understanding the next paragraph by
625 * following this rule: don't put anything in an rcu_read_lock() RCU
626 * read-side critical section that would block in a !PREEMPTION kernel.
627 * But if you want the full story, read on!
629 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
630 * it is illegal to block while in an RCU read-side critical section.
631 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
632 * kernel builds, RCU read-side critical sections may be preempted,
633 * but explicit blocking is illegal. Finally, in preemptible RCU
634 * implementations in real-time (with -rt patchset) kernel builds, RCU
635 * read-side critical sections may be preempted and they may also block, but
636 * only when acquiring spinlocks that are subject to priority inheritance.
638 static __always_inline void rcu_read_lock(void)
642 rcu_lock_acquire(&rcu_lock_map);
643 RCU_LOCKDEP_WARN(!rcu_is_watching(),
644 "rcu_read_lock() used illegally while idle");
648 * So where is rcu_write_lock()? It does not exist, as there is no
649 * way for writers to lock out RCU readers. This is a feature, not
650 * a bug -- this property is what provides RCU's performance benefits.
651 * Of course, writers must coordinate with each other. The normal
652 * spinlock primitives work well for this, but any other technique may be
653 * used as well. RCU does not care how the writers keep out of each
654 * others' way, as long as they do so.
658 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
660 * In most situations, rcu_read_unlock() is immune from deadlock.
661 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
662 * is responsible for deboosting, which it does via rt_mutex_unlock().
663 * Unfortunately, this function acquires the scheduler's runqueue and
664 * priority-inheritance spinlocks. This means that deadlock could result
665 * if the caller of rcu_read_unlock() already holds one of these locks or
666 * any lock that is ever acquired while holding them.
668 * That said, RCU readers are never priority boosted unless they were
669 * preempted. Therefore, one way to avoid deadlock is to make sure
670 * that preemption never happens within any RCU read-side critical
671 * section whose outermost rcu_read_unlock() is called with one of
672 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in
673 * a number of ways, for example, by invoking preempt_disable() before
674 * critical section's outermost rcu_read_lock().
676 * Given that the set of locks acquired by rt_mutex_unlock() might change
677 * at any time, a somewhat more future-proofed approach is to make sure
678 * that that preemption never happens within any RCU read-side critical
679 * section whose outermost rcu_read_unlock() is called with irqs disabled.
680 * This approach relies on the fact that rt_mutex_unlock() currently only
681 * acquires irq-disabled locks.
683 * The second of these two approaches is best in most situations,
684 * however, the first approach can also be useful, at least to those
685 * developers willing to keep abreast of the set of locks acquired by
688 * See rcu_read_lock() for more information.
690 static inline void rcu_read_unlock(void)
692 RCU_LOCKDEP_WARN(!rcu_is_watching(),
693 "rcu_read_unlock() used illegally while idle");
696 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
700 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
702 * This is equivalent of rcu_read_lock(), but also disables softirqs.
703 * Note that anything else that disables softirqs can also serve as
704 * an RCU read-side critical section.
706 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
707 * must occur in the same context, for example, it is illegal to invoke
708 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
709 * was invoked from some other task.
711 static inline void rcu_read_lock_bh(void)
715 rcu_lock_acquire(&rcu_bh_lock_map);
716 RCU_LOCKDEP_WARN(!rcu_is_watching(),
717 "rcu_read_lock_bh() used illegally while idle");
721 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
723 * See rcu_read_lock_bh() for more information.
725 static inline void rcu_read_unlock_bh(void)
727 RCU_LOCKDEP_WARN(!rcu_is_watching(),
728 "rcu_read_unlock_bh() used illegally while idle");
729 rcu_lock_release(&rcu_bh_lock_map);
735 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
737 * This is equivalent of rcu_read_lock(), but disables preemption.
738 * Read-side critical sections can also be introduced by anything else
739 * that disables preemption, including local_irq_disable() and friends.
741 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
742 * must occur in the same context, for example, it is illegal to invoke
743 * rcu_read_unlock_sched() from process context if the matching
744 * rcu_read_lock_sched() was invoked from an NMI handler.
746 static inline void rcu_read_lock_sched(void)
749 __acquire(RCU_SCHED);
750 rcu_lock_acquire(&rcu_sched_lock_map);
751 RCU_LOCKDEP_WARN(!rcu_is_watching(),
752 "rcu_read_lock_sched() used illegally while idle");
755 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
756 static inline notrace void rcu_read_lock_sched_notrace(void)
758 preempt_disable_notrace();
759 __acquire(RCU_SCHED);
763 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
765 * See rcu_read_lock_sched() for more information.
767 static inline void rcu_read_unlock_sched(void)
769 RCU_LOCKDEP_WARN(!rcu_is_watching(),
770 "rcu_read_unlock_sched() used illegally while idle");
771 rcu_lock_release(&rcu_sched_lock_map);
772 __release(RCU_SCHED);
776 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
777 static inline notrace void rcu_read_unlock_sched_notrace(void)
779 __release(RCU_SCHED);
780 preempt_enable_notrace();
784 * RCU_INIT_POINTER() - initialize an RCU protected pointer
785 * @p: The pointer to be initialized.
786 * @v: The value to initialized the pointer to.
788 * Initialize an RCU-protected pointer in special cases where readers
789 * do not need ordering constraints on the CPU or the compiler. These
792 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
793 * 2. The caller has taken whatever steps are required to prevent
794 * RCU readers from concurrently accessing this pointer *or*
795 * 3. The referenced data structure has already been exposed to
796 * readers either at compile time or via rcu_assign_pointer() *and*
798 * a. You have not made *any* reader-visible changes to
799 * this structure since then *or*
800 * b. It is OK for readers accessing this structure from its
801 * new location to see the old state of the structure. (For
802 * example, the changes were to statistical counters or to
803 * other state where exact synchronization is not required.)
805 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
806 * result in impossible-to-diagnose memory corruption. As in the structures
807 * will look OK in crash dumps, but any concurrent RCU readers might
808 * see pre-initialized values of the referenced data structure. So
809 * please be very careful how you use RCU_INIT_POINTER()!!!
811 * If you are creating an RCU-protected linked structure that is accessed
812 * by a single external-to-structure RCU-protected pointer, then you may
813 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
814 * pointers, but you must use rcu_assign_pointer() to initialize the
815 * external-to-structure pointer *after* you have completely initialized
816 * the reader-accessible portions of the linked structure.
818 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
819 * ordering guarantees for either the CPU or the compiler.
821 #define RCU_INIT_POINTER(p, v) \
823 rcu_check_sparse(p, __rcu); \
824 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
828 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
829 * @p: The pointer to be initialized.
830 * @v: The value to initialized the pointer to.
832 * GCC-style initialization for an RCU-protected pointer in a structure field.
834 #define RCU_POINTER_INITIALIZER(p, v) \
835 .p = RCU_INITIALIZER(v)
838 * Does the specified offset indicate that the corresponding rcu_head
839 * structure can be handled by kvfree_rcu()?
841 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
844 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
846 #define __kvfree_rcu(head, offset) \
848 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \
849 kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
853 * kfree_rcu() - kfree an object after a grace period.
854 * @ptr: pointer to kfree
855 * @rhf: the name of the struct rcu_head within the type of @ptr.
857 * Many rcu callbacks functions just call kfree() on the base structure.
858 * These functions are trivial, but their size adds up, and furthermore
859 * when they are used in a kernel module, that module must invoke the
860 * high-latency rcu_barrier() function at module-unload time.
862 * The kfree_rcu() function handles this issue. Rather than encoding a
863 * function address in the embedded rcu_head structure, kfree_rcu() instead
864 * encodes the offset of the rcu_head structure within the base structure.
865 * Because the functions are not allowed in the low-order 4096 bytes of
866 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
867 * If the offset is larger than 4095 bytes, a compile-time error will
868 * be generated in __kvfree_rcu(). If this error is triggered, you can
869 * either fall back to use of call_rcu() or rearrange the structure to
870 * position the rcu_head structure into the first 4096 bytes.
872 * Note that the allowable offset might decrease in the future, for example,
873 * to allow something like kmem_cache_free_rcu().
875 * The BUILD_BUG_ON check must not involve any function calls, hence the
876 * checks are done in macros here.
878 #define kfree_rcu(ptr, rhf) \
880 typeof (ptr) ___p = (ptr); \
883 __kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
887 * kvfree_rcu() - kvfree an object after a grace period.
889 * This macro consists of one or two arguments and it is
890 * based on whether an object is head-less or not. If it
891 * has a head then a semantic stays the same as it used
894 * kvfree_rcu(ptr, rhf);
896 * where @ptr is a pointer to kvfree(), @rhf is the name
897 * of the rcu_head structure within the type of @ptr.
899 * When it comes to head-less variant, only one argument
900 * is passed and that is just a pointer which has to be
901 * freed after a grace period. Therefore the semantic is
905 * where @ptr is a pointer to kvfree().
907 * Please note, head-less way of freeing is permitted to
908 * use from a context that has to follow might_sleep()
909 * annotation. Otherwise, please switch and embed the
910 * rcu_head structure within the type of @ptr.
912 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \
913 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
915 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
916 #define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf)
917 #define kvfree_rcu_arg_1(ptr) \
919 typeof(ptr) ___p = (ptr); \
922 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
926 * Place this after a lock-acquisition primitive to guarantee that
927 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
928 * if the UNLOCK and LOCK are executed by the same CPU or if the
929 * UNLOCK and LOCK operate on the same lock variable.
931 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
932 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
933 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
934 #define smp_mb__after_unlock_lock() do { } while (0)
935 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
938 /* Has the specified rcu_head structure been handed to call_rcu()? */
941 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
942 * @rhp: The rcu_head structure to initialize.
944 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
945 * given rcu_head structure has already been passed to call_rcu(), then
946 * you must also invoke this rcu_head_init() function on it just after
947 * allocating that structure. Calls to this function must not race with
948 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
950 static inline void rcu_head_init(struct rcu_head *rhp)
952 rhp->func = (rcu_callback_t)~0L;
956 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
957 * @rhp: The rcu_head structure to test.
958 * @f: The function passed to call_rcu() along with @rhp.
960 * Returns @true if the @rhp has been passed to call_rcu() with @func,
961 * and @false otherwise. Emits a warning in any other case, including
962 * the case where @rhp has already been invoked after a grace period.
963 * Calls to this function must not race with callback invocation. One way
964 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
965 * in an RCU read-side critical section that includes a read-side fetch
966 * of the pointer to the structure containing @rhp.
969 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
971 rcu_callback_t func = READ_ONCE(rhp->func);
975 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
979 /* kernel/ksysfs.c definitions */
980 extern int rcu_expedited;
981 extern int rcu_normal;
983 #endif /* __LINUX_RCUPDATE_H */