1 // SPDX-License-Identifier: GPL-2.0
3 * This file contains KASAN runtime code that manages shadow memory for
4 * generic and software tag-based KASAN modes.
6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
31 return kasan_check_range((unsigned long)p, size, false, _RET_IP_);
33 EXPORT_SYMBOL(__kasan_check_read);
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
37 return kasan_check_range((unsigned long)p, size, true, _RET_IP_);
39 EXPORT_SYMBOL(__kasan_check_write);
42 void *memset(void *addr, int c, size_t len)
44 if (!kasan_check_range((unsigned long)addr, len, true, _RET_IP_))
47 return __memset(addr, c, len);
50 #ifdef __HAVE_ARCH_MEMMOVE
52 void *memmove(void *dest, const void *src, size_t len)
54 if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
55 !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
58 return __memmove(dest, src, len);
63 void *memcpy(void *dest, const void *src, size_t len)
65 if (!kasan_check_range((unsigned long)src, len, false, _RET_IP_) ||
66 !kasan_check_range((unsigned long)dest, len, true, _RET_IP_))
69 return __memcpy(dest, src, len);
72 void kasan_poison(const void *addr, size_t size, u8 value)
74 void *shadow_start, *shadow_end;
77 * Perform shadow offset calculation based on untagged address, as
78 * some of the callers (e.g. kasan_poison_object_data) pass tagged
79 * addresses to this function.
81 addr = kasan_reset_tag(addr);
83 /* Skip KFENCE memory if called explicitly outside of sl*b. */
84 if (is_kfence_address(addr))
87 if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
89 if (WARN_ON(size & KASAN_GRANULE_MASK))
92 shadow_start = kasan_mem_to_shadow(addr);
93 shadow_end = kasan_mem_to_shadow(addr + size);
95 __memset(shadow_start, value, shadow_end - shadow_start);
97 EXPORT_SYMBOL(kasan_poison);
99 #ifdef CONFIG_KASAN_GENERIC
100 void kasan_poison_last_granule(const void *addr, size_t size)
102 if (size & KASAN_GRANULE_MASK) {
103 u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
104 *shadow = size & KASAN_GRANULE_MASK;
109 void kasan_unpoison(const void *addr, size_t size)
111 u8 tag = get_tag(addr);
114 * Perform shadow offset calculation based on untagged address, as
115 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
116 * addresses to this function.
118 addr = kasan_reset_tag(addr);
121 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
122 * that calls to ksize(), where size is not a multiple of machine-word
123 * size, would otherwise poison the invalid portion of the word.
125 if (is_kfence_address(addr))
128 if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
131 /* Unpoison all granules that cover the object. */
132 kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag);
134 /* Partially poison the last granule for the generic mode. */
135 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
136 kasan_poison_last_granule(addr, size);
139 #ifdef CONFIG_MEMORY_HOTPLUG
140 static bool shadow_mapped(unsigned long addr)
142 pgd_t *pgd = pgd_offset_k(addr);
150 p4d = p4d_offset(pgd, addr);
153 pud = pud_offset(p4d, addr);
158 * We can't use pud_large() or pud_huge(), the first one is
159 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
160 * pud_bad(), if pud is bad then it's bad because it's huge.
164 pmd = pmd_offset(pud, addr);
170 pte = pte_offset_kernel(pmd, addr);
171 return !pte_none(*pte);
174 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
175 unsigned long action, void *data)
177 struct memory_notify *mem_data = data;
178 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
179 unsigned long shadow_end, shadow_size;
181 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
182 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
183 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
184 shadow_size = nr_shadow_pages << PAGE_SHIFT;
185 shadow_end = shadow_start + shadow_size;
187 if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
188 WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
192 case MEM_GOING_ONLINE: {
196 * If shadow is mapped already than it must have been mapped
197 * during the boot. This could happen if we onlining previously
200 if (shadow_mapped(shadow_start))
203 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
204 shadow_end, GFP_KERNEL,
205 PAGE_KERNEL, VM_NO_GUARD,
206 pfn_to_nid(mem_data->start_pfn),
207 __builtin_return_address(0));
211 kmemleak_ignore(ret);
214 case MEM_CANCEL_ONLINE:
216 struct vm_struct *vm;
219 * shadow_start was either mapped during boot by kasan_init()
220 * or during memory online by __vmalloc_node_range().
221 * In the latter case we can use vfree() to free shadow.
222 * Non-NULL result of the find_vm_area() will tell us if
223 * that was the second case.
225 * Currently it's not possible to free shadow mapped
226 * during boot by kasan_init(). It's because the code
227 * to do that hasn't been written yet. So we'll just
230 vm = find_vm_area((void *)shadow_start);
232 vfree((void *)shadow_start);
239 static int __init kasan_memhotplug_init(void)
241 hotplug_memory_notifier(kasan_mem_notifier, 0);
246 core_initcall(kasan_memhotplug_init);
249 #ifdef CONFIG_KASAN_VMALLOC
251 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
257 if (likely(!pte_none(*ptep)))
260 page = __get_free_page(GFP_KERNEL);
264 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
265 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
267 spin_lock(&init_mm.page_table_lock);
268 if (likely(pte_none(*ptep))) {
269 set_pte_at(&init_mm, addr, ptep, pte);
272 spin_unlock(&init_mm.page_table_lock);
278 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
280 unsigned long shadow_start, shadow_end;
283 if (!is_vmalloc_or_module_addr((void *)addr))
286 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
287 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
288 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
289 shadow_end = ALIGN(shadow_end, PAGE_SIZE);
291 ret = apply_to_page_range(&init_mm, shadow_start,
292 shadow_end - shadow_start,
293 kasan_populate_vmalloc_pte, NULL);
297 flush_cache_vmap(shadow_start, shadow_end);
300 * We need to be careful about inter-cpu effects here. Consider:
303 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
306 * With compiler instrumentation, that ends up looking like this:
309 * // vmalloc() allocates memory
310 * // let a = area->addr
311 * // we reach kasan_populate_vmalloc
312 * // and call kasan_unpoison:
313 * STORE shadow(a), unpoison_val
315 * STORE shadow(a+99), unpoison_val x = LOAD p
316 * // rest of vmalloc process <data dependency>
317 * STORE p, a LOAD shadow(x+99)
319 * If there is no barrier between the end of unpoisioning the shadow
320 * and the store of the result to p, the stores could be committed
321 * in a different order by CPU#0, and CPU#1 could erroneously observe
322 * poison in the shadow.
324 * We need some sort of barrier between the stores.
326 * In the vmalloc() case, this is provided by a smp_wmb() in
327 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
328 * get_vm_area() and friends, the caller gets shadow allocated but
329 * doesn't have any pages mapped into the virtual address space that
330 * has been reserved. Mapping those pages in will involve taking and
331 * releasing a page-table lock, which will provide the barrier.
338 * Poison the shadow for a vmalloc region. Called as part of the
339 * freeing process at the time the region is freed.
341 void kasan_poison_vmalloc(const void *start, unsigned long size)
343 if (!is_vmalloc_or_module_addr(start))
346 size = round_up(size, KASAN_GRANULE_SIZE);
347 kasan_poison(start, size, KASAN_VMALLOC_INVALID);
350 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
352 if (!is_vmalloc_or_module_addr(start))
355 kasan_unpoison(start, size);
358 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
363 page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
365 spin_lock(&init_mm.page_table_lock);
367 if (likely(!pte_none(*ptep))) {
368 pte_clear(&init_mm, addr, ptep);
371 spin_unlock(&init_mm.page_table_lock);
377 * Release the backing for the vmalloc region [start, end), which
378 * lies within the free region [free_region_start, free_region_end).
380 * This can be run lazily, long after the region was freed. It runs
381 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
384 * How does this work?
385 * -------------------
387 * We have a region that is page aligned, labelled as A.
388 * That might not map onto the shadow in a way that is page-aligned:
392 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
393 * -------- -------- -------- -------- --------
396 * \-------\|/------/ |/---------------/
398 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
401 * First we align the start upwards and the end downwards, so that the
402 * shadow of the region aligns with shadow page boundaries. In the
403 * example, this gives us the shadow page (2). This is the shadow entirely
404 * covered by this allocation.
406 * Then we have the tricky bits. We want to know if we can free the
407 * partially covered shadow pages - (1) and (3) in the example. For this,
408 * we are given the start and end of the free region that contains this
409 * allocation. Extending our previous example, we could have:
411 * free_region_start free_region_end
414 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
415 * -------- -------- -------- -------- --------
418 * \-------\|/------/ |/---------------/
420 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
423 * Once again, we align the start of the free region up, and the end of
424 * the free region down so that the shadow is page aligned. So we can free
425 * page (1) - we know no allocation currently uses anything in that page,
426 * because all of it is in the vmalloc free region. But we cannot free
427 * page (3), because we can't be sure that the rest of it is unused.
429 * We only consider pages that contain part of the original region for
430 * freeing: we don't try to free other pages from the free region or we'd
431 * end up trying to free huge chunks of virtual address space.
436 * How do we know that we're not freeing a page that is simultaneously
437 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
439 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
440 * at the same time. While we run under free_vmap_area_lock, the population
443 * free_vmap_area_lock instead operates to ensure that the larger range
444 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
445 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
446 * no space identified as free will become used while we are running. This
447 * means that so long as we are careful with alignment and only free shadow
448 * pages entirely covered by the free region, we will not run in to any
449 * trouble - any simultaneous allocations will be for disjoint regions.
451 void kasan_release_vmalloc(unsigned long start, unsigned long end,
452 unsigned long free_region_start,
453 unsigned long free_region_end)
455 void *shadow_start, *shadow_end;
456 unsigned long region_start, region_end;
459 region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
460 region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
462 free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
464 if (start != region_start &&
465 free_region_start < region_start)
466 region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
468 free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
470 if (end != region_end &&
471 free_region_end > region_end)
472 region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
474 shadow_start = kasan_mem_to_shadow((void *)region_start);
475 shadow_end = kasan_mem_to_shadow((void *)region_end);
477 if (shadow_end > shadow_start) {
478 size = shadow_end - shadow_start;
479 apply_to_existing_page_range(&init_mm,
480 (unsigned long)shadow_start,
481 size, kasan_depopulate_vmalloc_pte,
483 flush_tlb_kernel_range((unsigned long)shadow_start,
484 (unsigned long)shadow_end);
488 #else /* CONFIG_KASAN_VMALLOC */
490 int kasan_module_alloc(void *addr, size_t size)
495 unsigned long shadow_start;
497 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
498 scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
499 KASAN_SHADOW_SCALE_SHIFT;
500 shadow_size = round_up(scaled_size, PAGE_SIZE);
502 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
505 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
506 shadow_start + shadow_size,
508 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
509 __builtin_return_address(0));
512 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
513 find_vm_area(addr)->flags |= VM_KASAN;
514 kmemleak_ignore(ret);
521 void kasan_free_shadow(const struct vm_struct *vm)
523 if (vm->flags & VM_KASAN)
524 vfree(kasan_mem_to_shadow(vm->addr));