1 // SPDX-License-Identifier: GPL-2.0-only
3 * fs/kernfs/dir.c - kernfs directory implementation
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
10 #include <linux/sched.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
18 #include "kernfs-internal.h"
20 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24 * will perform wakeups when releasing console_sem. Holding rename_lock
25 * will introduce deadlock if the scheduler reads the kernfs_name in the
28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */
30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
34 static bool __kernfs_active(struct kernfs_node *kn)
36 return atomic_read(&kn->active) >= 0;
39 static bool kernfs_active(struct kernfs_node *kn)
41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
42 return __kernfs_active(kn);
45 static bool kernfs_lockdep(struct kernfs_node *kn)
47 #ifdef CONFIG_DEBUG_LOCK_ALLOC
48 return kn->flags & KERNFS_LOCKDEP;
54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
57 return strlcpy(buf, "(null)", buflen);
59 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
62 /* kernfs_node_depth - compute depth from @from to @to */
63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
67 while (to->parent && to != from) {
74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
75 struct kernfs_node *b)
78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
83 da = kernfs_depth(ra->kn, a);
84 db = kernfs_depth(rb->kn, b);
95 /* worst case b and a will be the same at root */
105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
106 * where kn_from is treated as root of the path.
107 * @kn_from: kernfs node which should be treated as root for the path
108 * @kn_to: kernfs node to which path is needed
109 * @buf: buffer to copy the path into
110 * @buflen: size of @buf
112 * We need to handle couple of scenarios here:
113 * [1] when @kn_from is an ancestor of @kn_to at some level
115 * kn_to: /n1/n2/n3/n4/n5
118 * [2] when @kn_from is on a different hierarchy and we need to find common
119 * ancestor between @kn_from and @kn_to.
120 * kn_from: /n1/n2/n3/n4
124 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
125 * kn_to: /n1/n2/n3 [depth=3]
128 * [3] when @kn_to is %NULL result will be "(null)"
130 * Return: the length of the full path. If the full length is equal to or
131 * greater than @buflen, @buf contains the truncated path with the trailing
132 * '\0'. On error, -errno is returned.
134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
135 struct kernfs_node *kn_from,
136 char *buf, size_t buflen)
138 struct kernfs_node *kn, *common;
139 const char parent_str[] = "/..";
140 size_t depth_from, depth_to, len = 0;
144 return strlcpy(buf, "(null)", buflen);
147 kn_from = kernfs_root(kn_to)->kn;
149 if (kn_from == kn_to)
150 return strlcpy(buf, "/", buflen);
155 common = kernfs_common_ancestor(kn_from, kn_to);
156 if (WARN_ON(!common))
159 depth_to = kernfs_depth(common, kn_to);
160 depth_from = kernfs_depth(common, kn_from);
164 for (i = 0; i < depth_from; i++)
165 len += strlcpy(buf + len, parent_str,
166 len < buflen ? buflen - len : 0);
168 /* Calculate how many bytes we need for the rest */
169 for (i = depth_to - 1; i >= 0; i--) {
170 for (kn = kn_to, j = 0; j < i; j++)
172 len += strlcpy(buf + len, "/",
173 len < buflen ? buflen - len : 0);
174 len += strlcpy(buf + len, kn->name,
175 len < buflen ? buflen - len : 0);
182 * kernfs_name - obtain the name of a given node
183 * @kn: kernfs_node of interest
184 * @buf: buffer to copy @kn's name into
185 * @buflen: size of @buf
187 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
188 * similar to strlcpy().
190 * Fills buffer with "(null)" if @kn is %NULL.
192 * Return: the length of @kn's name and if @buf isn't long enough,
193 * it's filled up to @buflen-1 and nul terminated.
195 * This function can be called from any context.
197 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
202 spin_lock_irqsave(&kernfs_rename_lock, flags);
203 ret = kernfs_name_locked(kn, buf, buflen);
204 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
209 * kernfs_path_from_node - build path of node @to relative to @from.
210 * @from: parent kernfs_node relative to which we need to build the path
211 * @to: kernfs_node of interest
212 * @buf: buffer to copy @to's path into
213 * @buflen: size of @buf
215 * Builds @to's path relative to @from in @buf. @from and @to must
216 * be on the same kernfs-root. If @from is not parent of @to, then a relative
217 * path (which includes '..'s) as needed to reach from @from to @to is
220 * Return: the length of the full path. If the full length is equal to or
221 * greater than @buflen, @buf contains the truncated path with the trailing
222 * '\0'. On error, -errno is returned.
224 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
225 char *buf, size_t buflen)
230 spin_lock_irqsave(&kernfs_rename_lock, flags);
231 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
232 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
235 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
238 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
239 * @kn: kernfs_node of interest
241 * This function can be called from any context.
243 void pr_cont_kernfs_name(struct kernfs_node *kn)
247 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
249 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
250 pr_cont("%s", kernfs_pr_cont_buf);
252 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
256 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
257 * @kn: kernfs_node of interest
259 * This function can be called from any context.
261 void pr_cont_kernfs_path(struct kernfs_node *kn)
266 spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
268 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
269 sizeof(kernfs_pr_cont_buf));
275 if (sz >= sizeof(kernfs_pr_cont_buf)) {
276 pr_cont("(name too long)");
280 pr_cont("%s", kernfs_pr_cont_buf);
283 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
287 * kernfs_get_parent - determine the parent node and pin it
288 * @kn: kernfs_node of interest
290 * Determines @kn's parent, pins and returns it. This function can be
291 * called from any context.
293 * Return: parent node of @kn
295 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
297 struct kernfs_node *parent;
300 spin_lock_irqsave(&kernfs_rename_lock, flags);
303 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
309 * kernfs_name_hash - calculate hash of @ns + @name
310 * @name: Null terminated string to hash
311 * @ns: Namespace tag to hash
313 * Return: 31-bit hash of ns + name (so it fits in an off_t)
315 static unsigned int kernfs_name_hash(const char *name, const void *ns)
317 unsigned long hash = init_name_hash(ns);
318 unsigned int len = strlen(name);
320 hash = partial_name_hash(*name++, hash);
321 hash = end_name_hash(hash);
323 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
331 static int kernfs_name_compare(unsigned int hash, const char *name,
332 const void *ns, const struct kernfs_node *kn)
342 return strcmp(name, kn->name);
345 static int kernfs_sd_compare(const struct kernfs_node *left,
346 const struct kernfs_node *right)
348 return kernfs_name_compare(left->hash, left->name, left->ns, right);
352 * kernfs_link_sibling - link kernfs_node into sibling rbtree
353 * @kn: kernfs_node of interest
355 * Link @kn into its sibling rbtree which starts from
356 * @kn->parent->dir.children.
359 * kernfs_rwsem held exclusive
362 * %0 on success, -EEXIST on failure.
364 static int kernfs_link_sibling(struct kernfs_node *kn)
366 struct rb_node **node = &kn->parent->dir.children.rb_node;
367 struct rb_node *parent = NULL;
370 struct kernfs_node *pos;
373 pos = rb_to_kn(*node);
375 result = kernfs_sd_compare(kn, pos);
377 node = &pos->rb.rb_left;
379 node = &pos->rb.rb_right;
384 /* add new node and rebalance the tree */
385 rb_link_node(&kn->rb, parent, node);
386 rb_insert_color(&kn->rb, &kn->parent->dir.children);
388 /* successfully added, account subdir number */
389 if (kernfs_type(kn) == KERNFS_DIR)
390 kn->parent->dir.subdirs++;
391 kernfs_inc_rev(kn->parent);
397 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
398 * @kn: kernfs_node of interest
400 * Try to unlink @kn from its sibling rbtree which starts from
401 * kn->parent->dir.children.
403 * Return: %true if @kn was actually removed,
404 * %false if @kn wasn't on the rbtree.
407 * kernfs_rwsem held exclusive
409 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
411 if (RB_EMPTY_NODE(&kn->rb))
414 if (kernfs_type(kn) == KERNFS_DIR)
415 kn->parent->dir.subdirs--;
416 kernfs_inc_rev(kn->parent);
418 rb_erase(&kn->rb, &kn->parent->dir.children);
419 RB_CLEAR_NODE(&kn->rb);
424 * kernfs_get_active - get an active reference to kernfs_node
425 * @kn: kernfs_node to get an active reference to
427 * Get an active reference of @kn. This function is noop if @kn
431 * Pointer to @kn on success, %NULL on failure.
433 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
438 if (!atomic_inc_unless_negative(&kn->active))
441 if (kernfs_lockdep(kn))
442 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
447 * kernfs_put_active - put an active reference to kernfs_node
448 * @kn: kernfs_node to put an active reference to
450 * Put an active reference to @kn. This function is noop if @kn
453 void kernfs_put_active(struct kernfs_node *kn)
460 if (kernfs_lockdep(kn))
461 rwsem_release(&kn->dep_map, _RET_IP_);
462 v = atomic_dec_return(&kn->active);
463 if (likely(v != KN_DEACTIVATED_BIAS))
466 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
470 * kernfs_drain - drain kernfs_node
471 * @kn: kernfs_node to drain
473 * Drain existing usages and nuke all existing mmaps of @kn. Multiple
474 * removers may invoke this function concurrently on @kn and all will
475 * return after draining is complete.
477 static void kernfs_drain(struct kernfs_node *kn)
478 __releases(&kernfs_root(kn)->kernfs_rwsem)
479 __acquires(&kernfs_root(kn)->kernfs_rwsem)
481 struct kernfs_root *root = kernfs_root(kn);
483 lockdep_assert_held_write(&root->kernfs_rwsem);
484 WARN_ON_ONCE(kernfs_active(kn));
487 * Skip draining if already fully drained. This avoids draining and its
488 * lockdep annotations for nodes which have never been activated
489 * allowing embedding kernfs_remove() in create error paths without
490 * worrying about draining.
492 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
493 !kernfs_should_drain_open_files(kn))
496 up_write(&root->kernfs_rwsem);
498 if (kernfs_lockdep(kn)) {
499 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
500 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
501 lock_contended(&kn->dep_map, _RET_IP_);
504 wait_event(root->deactivate_waitq,
505 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
507 if (kernfs_lockdep(kn)) {
508 lock_acquired(&kn->dep_map, _RET_IP_);
509 rwsem_release(&kn->dep_map, _RET_IP_);
512 if (kernfs_should_drain_open_files(kn))
513 kernfs_drain_open_files(kn);
515 down_write(&root->kernfs_rwsem);
519 * kernfs_get - get a reference count on a kernfs_node
520 * @kn: the target kernfs_node
522 void kernfs_get(struct kernfs_node *kn)
525 WARN_ON(!atomic_read(&kn->count));
526 atomic_inc(&kn->count);
529 EXPORT_SYMBOL_GPL(kernfs_get);
532 * kernfs_put - put a reference count on a kernfs_node
533 * @kn: the target kernfs_node
535 * Put a reference count of @kn and destroy it if it reached zero.
537 void kernfs_put(struct kernfs_node *kn)
539 struct kernfs_node *parent;
540 struct kernfs_root *root;
542 if (!kn || !atomic_dec_and_test(&kn->count))
544 root = kernfs_root(kn);
547 * Moving/renaming is always done while holding reference.
548 * kn->parent won't change beneath us.
552 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
553 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
554 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
556 if (kernfs_type(kn) == KERNFS_LINK)
557 kernfs_put(kn->symlink.target_kn);
559 kfree_const(kn->name);
562 simple_xattrs_free(&kn->iattr->xattrs);
563 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
565 spin_lock(&kernfs_idr_lock);
566 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
567 spin_unlock(&kernfs_idr_lock);
568 kmem_cache_free(kernfs_node_cache, kn);
572 if (atomic_dec_and_test(&kn->count))
575 /* just released the root kn, free @root too */
576 idr_destroy(&root->ino_idr);
580 EXPORT_SYMBOL_GPL(kernfs_put);
583 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
584 * @dentry: the dentry in question
586 * Return: the kernfs_node associated with @dentry. If @dentry is not a
587 * kernfs one, %NULL is returned.
589 * While the returned kernfs_node will stay accessible as long as @dentry
590 * is accessible, the returned node can be in any state and the caller is
591 * fully responsible for determining what's accessible.
593 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
595 if (dentry->d_sb->s_op == &kernfs_sops)
596 return kernfs_dentry_node(dentry);
600 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
601 struct kernfs_node *parent,
602 const char *name, umode_t mode,
603 kuid_t uid, kgid_t gid,
606 struct kernfs_node *kn;
610 name = kstrdup_const(name, GFP_KERNEL);
614 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
618 idr_preload(GFP_KERNEL);
619 spin_lock(&kernfs_idr_lock);
620 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
621 if (ret >= 0 && ret < root->last_id_lowbits)
623 id_highbits = root->id_highbits;
624 root->last_id_lowbits = ret;
625 spin_unlock(&kernfs_idr_lock);
630 kn->id = (u64)id_highbits << 32 | ret;
632 atomic_set(&kn->count, 1);
633 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
634 RB_CLEAR_NODE(&kn->rb);
640 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
641 struct iattr iattr = {
642 .ia_valid = ATTR_UID | ATTR_GID,
647 ret = __kernfs_setattr(kn, &iattr);
653 ret = security_kernfs_init_security(parent, kn);
661 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
663 kmem_cache_free(kernfs_node_cache, kn);
669 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
670 const char *name, umode_t mode,
671 kuid_t uid, kgid_t gid,
674 struct kernfs_node *kn;
676 kn = __kernfs_new_node(kernfs_root(parent), parent,
677 name, mode, uid, gid, flags);
686 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
687 * @root: the kernfs root
688 * @id: the target node id
690 * @id's lower 32bits encode ino and upper gen. If the gen portion is
691 * zero, all generations are matched.
693 * Return: %NULL on failure,
694 * otherwise a kernfs node with reference counter incremented.
696 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
699 struct kernfs_node *kn;
700 ino_t ino = kernfs_id_ino(id);
701 u32 gen = kernfs_id_gen(id);
703 spin_lock(&kernfs_idr_lock);
705 kn = idr_find(&root->ino_idr, (u32)ino);
709 if (sizeof(ino_t) >= sizeof(u64)) {
710 /* we looked up with the low 32bits, compare the whole */
711 if (kernfs_ino(kn) != ino)
714 /* 0 matches all generations */
715 if (unlikely(gen && kernfs_gen(kn) != gen))
720 * We should fail if @kn has never been activated and guarantee success
721 * if the caller knows that @kn is active. Both can be achieved by
722 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
724 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
727 spin_unlock(&kernfs_idr_lock);
730 spin_unlock(&kernfs_idr_lock);
735 * kernfs_add_one - add kernfs_node to parent without warning
736 * @kn: kernfs_node to be added
738 * The caller must already have initialized @kn->parent. This
739 * function increments nlink of the parent's inode if @kn is a
740 * directory and link into the children list of the parent.
743 * %0 on success, -EEXIST if entry with the given name already
746 int kernfs_add_one(struct kernfs_node *kn)
748 struct kernfs_node *parent = kn->parent;
749 struct kernfs_root *root = kernfs_root(parent);
750 struct kernfs_iattrs *ps_iattr;
754 down_write(&root->kernfs_rwsem);
757 has_ns = kernfs_ns_enabled(parent);
758 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
759 has_ns ? "required" : "invalid", parent->name, kn->name))
762 if (kernfs_type(parent) != KERNFS_DIR)
766 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
769 kn->hash = kernfs_name_hash(kn->name, kn->ns);
771 ret = kernfs_link_sibling(kn);
775 /* Update timestamps on the parent */
776 ps_iattr = parent->iattr;
778 ktime_get_real_ts64(&ps_iattr->ia_ctime);
779 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
782 up_write(&root->kernfs_rwsem);
785 * Activate the new node unless CREATE_DEACTIVATED is requested.
786 * If not activated here, the kernfs user is responsible for
787 * activating the node with kernfs_activate(). A node which hasn't
788 * been activated is not visible to userland and its removal won't
789 * trigger deactivation.
791 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
796 up_write(&root->kernfs_rwsem);
801 * kernfs_find_ns - find kernfs_node with the given name
802 * @parent: kernfs_node to search under
803 * @name: name to look for
804 * @ns: the namespace tag to use
806 * Look for kernfs_node with name @name under @parent.
808 * Return: pointer to the found kernfs_node on success, %NULL on failure.
810 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
811 const unsigned char *name,
814 struct rb_node *node = parent->dir.children.rb_node;
815 bool has_ns = kernfs_ns_enabled(parent);
818 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
820 if (has_ns != (bool)ns) {
821 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
822 has_ns ? "required" : "invalid", parent->name, name);
826 hash = kernfs_name_hash(name, ns);
828 struct kernfs_node *kn;
832 result = kernfs_name_compare(hash, name, ns, kn);
834 node = node->rb_left;
836 node = node->rb_right;
843 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
844 const unsigned char *path,
850 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
852 spin_lock_irq(&kernfs_pr_cont_lock);
854 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
856 if (len >= sizeof(kernfs_pr_cont_buf)) {
857 spin_unlock_irq(&kernfs_pr_cont_lock);
861 p = kernfs_pr_cont_buf;
863 while ((name = strsep(&p, "/")) && parent) {
866 parent = kernfs_find_ns(parent, name, ns);
869 spin_unlock_irq(&kernfs_pr_cont_lock);
875 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
876 * @parent: kernfs_node to search under
877 * @name: name to look for
878 * @ns: the namespace tag to use
880 * Look for kernfs_node with name @name under @parent and get a reference
881 * if found. This function may sleep.
883 * Return: pointer to the found kernfs_node on success, %NULL on failure.
885 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
886 const char *name, const void *ns)
888 struct kernfs_node *kn;
889 struct kernfs_root *root = kernfs_root(parent);
891 down_read(&root->kernfs_rwsem);
892 kn = kernfs_find_ns(parent, name, ns);
894 up_read(&root->kernfs_rwsem);
898 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
901 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
902 * @parent: kernfs_node to search under
903 * @path: path to look for
904 * @ns: the namespace tag to use
906 * Look for kernfs_node with path @path under @parent and get a reference
907 * if found. This function may sleep.
909 * Return: pointer to the found kernfs_node on success, %NULL on failure.
911 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
912 const char *path, const void *ns)
914 struct kernfs_node *kn;
915 struct kernfs_root *root = kernfs_root(parent);
917 down_read(&root->kernfs_rwsem);
918 kn = kernfs_walk_ns(parent, path, ns);
920 up_read(&root->kernfs_rwsem);
926 * kernfs_create_root - create a new kernfs hierarchy
927 * @scops: optional syscall operations for the hierarchy
928 * @flags: KERNFS_ROOT_* flags
929 * @priv: opaque data associated with the new directory
931 * Return: the root of the new hierarchy on success, ERR_PTR() value on
934 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
935 unsigned int flags, void *priv)
937 struct kernfs_root *root;
938 struct kernfs_node *kn;
940 root = kzalloc(sizeof(*root), GFP_KERNEL);
942 return ERR_PTR(-ENOMEM);
944 idr_init(&root->ino_idr);
945 init_rwsem(&root->kernfs_rwsem);
946 INIT_LIST_HEAD(&root->supers);
949 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
950 * High bits generation. The starting value for both ino and
951 * genenration is 1. Initialize upper 32bit allocation
954 if (sizeof(ino_t) >= sizeof(u64))
955 root->id_highbits = 0;
957 root->id_highbits = 1;
959 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
960 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
963 idr_destroy(&root->ino_idr);
965 return ERR_PTR(-ENOMEM);
971 root->syscall_ops = scops;
974 init_waitqueue_head(&root->deactivate_waitq);
976 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
983 * kernfs_destroy_root - destroy a kernfs hierarchy
984 * @root: root of the hierarchy to destroy
986 * Destroy the hierarchy anchored at @root by removing all existing
987 * directories and destroying @root.
989 void kernfs_destroy_root(struct kernfs_root *root)
992 * kernfs_remove holds kernfs_rwsem from the root so the root
993 * shouldn't be freed during the operation.
995 kernfs_get(root->kn);
996 kernfs_remove(root->kn);
997 kernfs_put(root->kn); /* will also free @root */
1001 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1002 * @root: root to use to lookup
1004 * Return: @root's kernfs_node
1006 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1012 * kernfs_create_dir_ns - create a directory
1013 * @parent: parent in which to create a new directory
1014 * @name: name of the new directory
1015 * @mode: mode of the new directory
1016 * @uid: uid of the new directory
1017 * @gid: gid of the new directory
1018 * @priv: opaque data associated with the new directory
1019 * @ns: optional namespace tag of the directory
1021 * Return: the created node on success, ERR_PTR() value on failure.
1023 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1024 const char *name, umode_t mode,
1025 kuid_t uid, kgid_t gid,
1026 void *priv, const void *ns)
1028 struct kernfs_node *kn;
1032 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1033 uid, gid, KERNFS_DIR);
1035 return ERR_PTR(-ENOMEM);
1037 kn->dir.root = parent->dir.root;
1042 rc = kernfs_add_one(kn);
1051 * kernfs_create_empty_dir - create an always empty directory
1052 * @parent: parent in which to create a new directory
1053 * @name: name of the new directory
1055 * Return: the created node on success, ERR_PTR() value on failure.
1057 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1060 struct kernfs_node *kn;
1064 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1065 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1067 return ERR_PTR(-ENOMEM);
1069 kn->flags |= KERNFS_EMPTY_DIR;
1070 kn->dir.root = parent->dir.root;
1075 rc = kernfs_add_one(kn);
1083 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1085 struct kernfs_node *kn;
1086 struct kernfs_root *root;
1088 if (flags & LOOKUP_RCU)
1091 /* Negative hashed dentry? */
1092 if (d_really_is_negative(dentry)) {
1093 struct kernfs_node *parent;
1095 /* If the kernfs parent node has changed discard and
1096 * proceed to ->lookup.
1098 * There's nothing special needed here when getting the
1099 * dentry parent, even if a concurrent rename is in
1100 * progress. That's because the dentry is negative so
1101 * it can only be the target of the rename and it will
1102 * be doing a d_move() not a replace. Consequently the
1103 * dentry d_parent won't change over the d_move().
1105 * Also kernfs negative dentries transitioning from
1106 * negative to positive during revalidate won't happen
1107 * because they are invalidated on containing directory
1108 * changes and the lookup re-done so that a new positive
1109 * dentry can be properly created.
1111 root = kernfs_root_from_sb(dentry->d_sb);
1112 down_read(&root->kernfs_rwsem);
1113 parent = kernfs_dentry_node(dentry->d_parent);
1115 if (kernfs_dir_changed(parent, dentry)) {
1116 up_read(&root->kernfs_rwsem);
1120 up_read(&root->kernfs_rwsem);
1122 /* The kernfs parent node hasn't changed, leave the
1123 * dentry negative and return success.
1128 kn = kernfs_dentry_node(dentry);
1129 root = kernfs_root(kn);
1130 down_read(&root->kernfs_rwsem);
1132 /* The kernfs node has been deactivated */
1133 if (!kernfs_active(kn))
1136 /* The kernfs node has been moved? */
1137 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1140 /* The kernfs node has been renamed */
1141 if (strcmp(dentry->d_name.name, kn->name) != 0)
1144 /* The kernfs node has been moved to a different namespace */
1145 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1146 kernfs_info(dentry->d_sb)->ns != kn->ns)
1149 up_read(&root->kernfs_rwsem);
1152 up_read(&root->kernfs_rwsem);
1156 const struct dentry_operations kernfs_dops = {
1157 .d_revalidate = kernfs_dop_revalidate,
1160 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1161 struct dentry *dentry,
1164 struct kernfs_node *parent = dir->i_private;
1165 struct kernfs_node *kn;
1166 struct kernfs_root *root;
1167 struct inode *inode = NULL;
1168 const void *ns = NULL;
1170 root = kernfs_root(parent);
1171 down_read(&root->kernfs_rwsem);
1172 if (kernfs_ns_enabled(parent))
1173 ns = kernfs_info(dir->i_sb)->ns;
1175 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1176 /* attach dentry and inode */
1178 /* Inactive nodes are invisible to the VFS so don't
1179 * create a negative.
1181 if (!kernfs_active(kn)) {
1182 up_read(&root->kernfs_rwsem);
1185 inode = kernfs_get_inode(dir->i_sb, kn);
1187 inode = ERR_PTR(-ENOMEM);
1190 * Needed for negative dentry validation.
1191 * The negative dentry can be created in kernfs_iop_lookup()
1192 * or transforms from positive dentry in dentry_unlink_inode()
1193 * called from vfs_rmdir().
1196 kernfs_set_rev(parent, dentry);
1197 up_read(&root->kernfs_rwsem);
1199 /* instantiate and hash (possibly negative) dentry */
1200 return d_splice_alias(inode, dentry);
1203 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1204 struct inode *dir, struct dentry *dentry,
1207 struct kernfs_node *parent = dir->i_private;
1208 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1211 if (!scops || !scops->mkdir)
1214 if (!kernfs_get_active(parent))
1217 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1219 kernfs_put_active(parent);
1223 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1225 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1226 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1229 if (!scops || !scops->rmdir)
1232 if (!kernfs_get_active(kn))
1235 ret = scops->rmdir(kn);
1237 kernfs_put_active(kn);
1241 static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1242 struct inode *old_dir, struct dentry *old_dentry,
1243 struct inode *new_dir, struct dentry *new_dentry,
1246 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1247 struct kernfs_node *new_parent = new_dir->i_private;
1248 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1254 if (!scops || !scops->rename)
1257 if (!kernfs_get_active(kn))
1260 if (!kernfs_get_active(new_parent)) {
1261 kernfs_put_active(kn);
1265 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1267 kernfs_put_active(new_parent);
1268 kernfs_put_active(kn);
1272 const struct inode_operations kernfs_dir_iops = {
1273 .lookup = kernfs_iop_lookup,
1274 .permission = kernfs_iop_permission,
1275 .setattr = kernfs_iop_setattr,
1276 .getattr = kernfs_iop_getattr,
1277 .listxattr = kernfs_iop_listxattr,
1279 .mkdir = kernfs_iop_mkdir,
1280 .rmdir = kernfs_iop_rmdir,
1281 .rename = kernfs_iop_rename,
1284 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1286 struct kernfs_node *last;
1289 struct rb_node *rbn;
1293 if (kernfs_type(pos) != KERNFS_DIR)
1296 rbn = rb_first(&pos->dir.children);
1300 pos = rb_to_kn(rbn);
1307 * kernfs_next_descendant_post - find the next descendant for post-order walk
1308 * @pos: the current position (%NULL to initiate traversal)
1309 * @root: kernfs_node whose descendants to walk
1311 * Find the next descendant to visit for post-order traversal of @root's
1312 * descendants. @root is included in the iteration and the last node to be
1315 * Return: the next descendant to visit or %NULL when done.
1317 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1318 struct kernfs_node *root)
1320 struct rb_node *rbn;
1322 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1324 /* if first iteration, visit leftmost descendant which may be root */
1326 return kernfs_leftmost_descendant(root);
1328 /* if we visited @root, we're done */
1332 /* if there's an unvisited sibling, visit its leftmost descendant */
1333 rbn = rb_next(&pos->rb);
1335 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1337 /* no sibling left, visit parent */
1341 static void kernfs_activate_one(struct kernfs_node *kn)
1343 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1345 kn->flags |= KERNFS_ACTIVATED;
1347 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1350 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
1351 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1353 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1357 * kernfs_activate - activate a node which started deactivated
1358 * @kn: kernfs_node whose subtree is to be activated
1360 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1361 * needs to be explicitly activated. A node which hasn't been activated
1362 * isn't visible to userland and deactivation is skipped during its
1363 * removal. This is useful to construct atomic init sequences where
1364 * creation of multiple nodes should either succeed or fail atomically.
1366 * The caller is responsible for ensuring that this function is not called
1367 * after kernfs_remove*() is invoked on @kn.
1369 void kernfs_activate(struct kernfs_node *kn)
1371 struct kernfs_node *pos;
1372 struct kernfs_root *root = kernfs_root(kn);
1374 down_write(&root->kernfs_rwsem);
1377 while ((pos = kernfs_next_descendant_post(pos, kn)))
1378 kernfs_activate_one(pos);
1380 up_write(&root->kernfs_rwsem);
1384 * kernfs_show - show or hide a node
1385 * @kn: kernfs_node to show or hide
1386 * @show: whether to show or hide
1388 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1389 * ignored in future activaitons. If %true, the mark is removed and activation
1390 * state is restored. This function won't implicitly activate a new node in a
1391 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1393 * To avoid recursion complexities, directories aren't supported for now.
1395 void kernfs_show(struct kernfs_node *kn, bool show)
1397 struct kernfs_root *root = kernfs_root(kn);
1399 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1402 down_write(&root->kernfs_rwsem);
1405 kn->flags &= ~KERNFS_HIDDEN;
1406 if (kn->flags & KERNFS_ACTIVATED)
1407 kernfs_activate_one(kn);
1409 kn->flags |= KERNFS_HIDDEN;
1410 if (kernfs_active(kn))
1411 atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1415 up_write(&root->kernfs_rwsem);
1418 static void __kernfs_remove(struct kernfs_node *kn)
1420 struct kernfs_node *pos;
1422 /* Short-circuit if non-root @kn has already finished removal. */
1426 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1429 * This is for kernfs_remove_self() which plays with active ref
1432 if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1435 pr_debug("kernfs %s: removing\n", kn->name);
1437 /* prevent new usage by marking all nodes removing and deactivating */
1439 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1440 pos->flags |= KERNFS_REMOVING;
1441 if (kernfs_active(pos))
1442 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1445 /* deactivate and unlink the subtree node-by-node */
1447 pos = kernfs_leftmost_descendant(kn);
1450 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1451 * base ref could have been put by someone else by the time
1452 * the function returns. Make sure it doesn't go away
1460 * kernfs_unlink_sibling() succeeds once per node. Use it
1461 * to decide who's responsible for cleanups.
1463 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1464 struct kernfs_iattrs *ps_iattr =
1465 pos->parent ? pos->parent->iattr : NULL;
1467 /* update timestamps on the parent */
1469 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1470 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1477 } while (pos != kn);
1481 * kernfs_remove - remove a kernfs_node recursively
1482 * @kn: the kernfs_node to remove
1484 * Remove @kn along with all its subdirectories and files.
1486 void kernfs_remove(struct kernfs_node *kn)
1488 struct kernfs_root *root;
1493 root = kernfs_root(kn);
1495 down_write(&root->kernfs_rwsem);
1496 __kernfs_remove(kn);
1497 up_write(&root->kernfs_rwsem);
1501 * kernfs_break_active_protection - break out of active protection
1502 * @kn: the self kernfs_node
1504 * The caller must be running off of a kernfs operation which is invoked
1505 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1506 * this function must also be matched with an invocation of
1507 * kernfs_unbreak_active_protection().
1509 * This function releases the active reference of @kn the caller is
1510 * holding. Once this function is called, @kn may be removed at any point
1511 * and the caller is solely responsible for ensuring that the objects it
1512 * dereferences are accessible.
1514 void kernfs_break_active_protection(struct kernfs_node *kn)
1517 * Take out ourself out of the active ref dependency chain. If
1518 * we're called without an active ref, lockdep will complain.
1520 kernfs_put_active(kn);
1524 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1525 * @kn: the self kernfs_node
1527 * If kernfs_break_active_protection() was called, this function must be
1528 * invoked before finishing the kernfs operation. Note that while this
1529 * function restores the active reference, it doesn't and can't actually
1530 * restore the active protection - @kn may already or be in the process of
1531 * being removed. Once kernfs_break_active_protection() is invoked, that
1532 * protection is irreversibly gone for the kernfs operation instance.
1534 * While this function may be called at any point after
1535 * kernfs_break_active_protection() is invoked, its most useful location
1536 * would be right before the enclosing kernfs operation returns.
1538 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1541 * @kn->active could be in any state; however, the increment we do
1542 * here will be undone as soon as the enclosing kernfs operation
1543 * finishes and this temporary bump can't break anything. If @kn
1544 * is alive, nothing changes. If @kn is being deactivated, the
1545 * soon-to-follow put will either finish deactivation or restore
1546 * deactivated state. If @kn is already removed, the temporary
1547 * bump is guaranteed to be gone before @kn is released.
1549 atomic_inc(&kn->active);
1550 if (kernfs_lockdep(kn))
1551 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1555 * kernfs_remove_self - remove a kernfs_node from its own method
1556 * @kn: the self kernfs_node to remove
1558 * The caller must be running off of a kernfs operation which is invoked
1559 * with an active reference - e.g. one of kernfs_ops. This can be used to
1560 * implement a file operation which deletes itself.
1562 * For example, the "delete" file for a sysfs device directory can be
1563 * implemented by invoking kernfs_remove_self() on the "delete" file
1564 * itself. This function breaks the circular dependency of trying to
1565 * deactivate self while holding an active ref itself. It isn't necessary
1566 * to modify the usual removal path to use kernfs_remove_self(). The
1567 * "delete" implementation can simply invoke kernfs_remove_self() on self
1568 * before proceeding with the usual removal path. kernfs will ignore later
1569 * kernfs_remove() on self.
1571 * kernfs_remove_self() can be called multiple times concurrently on the
1572 * same kernfs_node. Only the first one actually performs removal and
1573 * returns %true. All others will wait until the kernfs operation which
1574 * won self-removal finishes and return %false. Note that the losers wait
1575 * for the completion of not only the winning kernfs_remove_self() but also
1576 * the whole kernfs_ops which won the arbitration. This can be used to
1577 * guarantee, for example, all concurrent writes to a "delete" file to
1578 * finish only after the whole operation is complete.
1580 * Return: %true if @kn is removed by this call, otherwise %false.
1582 bool kernfs_remove_self(struct kernfs_node *kn)
1585 struct kernfs_root *root = kernfs_root(kn);
1587 down_write(&root->kernfs_rwsem);
1588 kernfs_break_active_protection(kn);
1591 * SUICIDAL is used to arbitrate among competing invocations. Only
1592 * the first one will actually perform removal. When the removal
1593 * is complete, SUICIDED is set and the active ref is restored
1594 * while kernfs_rwsem for held exclusive. The ones which lost
1595 * arbitration waits for SUICIDED && drained which can happen only
1596 * after the enclosing kernfs operation which executed the winning
1597 * instance of kernfs_remove_self() finished.
1599 if (!(kn->flags & KERNFS_SUICIDAL)) {
1600 kn->flags |= KERNFS_SUICIDAL;
1601 __kernfs_remove(kn);
1602 kn->flags |= KERNFS_SUICIDED;
1605 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1609 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1611 if ((kn->flags & KERNFS_SUICIDED) &&
1612 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1615 up_write(&root->kernfs_rwsem);
1617 down_write(&root->kernfs_rwsem);
1619 finish_wait(waitq, &wait);
1620 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1625 * This must be done while kernfs_rwsem held exclusive; otherwise,
1626 * waiting for SUICIDED && deactivated could finish prematurely.
1628 kernfs_unbreak_active_protection(kn);
1630 up_write(&root->kernfs_rwsem);
1635 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1636 * @parent: parent of the target
1637 * @name: name of the kernfs_node to remove
1638 * @ns: namespace tag of the kernfs_node to remove
1640 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1642 * Return: %0 on success, -ENOENT if such entry doesn't exist.
1644 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1647 struct kernfs_node *kn;
1648 struct kernfs_root *root;
1651 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1656 root = kernfs_root(parent);
1657 down_write(&root->kernfs_rwsem);
1659 kn = kernfs_find_ns(parent, name, ns);
1662 __kernfs_remove(kn);
1666 up_write(&root->kernfs_rwsem);
1675 * kernfs_rename_ns - move and rename a kernfs_node
1677 * @new_parent: new parent to put @sd under
1678 * @new_name: new name
1679 * @new_ns: new namespace tag
1681 * Return: %0 on success, -errno on failure.
1683 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1684 const char *new_name, const void *new_ns)
1686 struct kernfs_node *old_parent;
1687 struct kernfs_root *root;
1688 const char *old_name = NULL;
1691 /* can't move or rename root */
1695 root = kernfs_root(kn);
1696 down_write(&root->kernfs_rwsem);
1699 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1700 (new_parent->flags & KERNFS_EMPTY_DIR))
1704 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1705 (strcmp(kn->name, new_name) == 0))
1706 goto out; /* nothing to rename */
1709 if (kernfs_find_ns(new_parent, new_name, new_ns))
1712 /* rename kernfs_node */
1713 if (strcmp(kn->name, new_name) != 0) {
1715 new_name = kstrdup_const(new_name, GFP_KERNEL);
1723 * Move to the appropriate place in the appropriate directories rbtree.
1725 kernfs_unlink_sibling(kn);
1726 kernfs_get(new_parent);
1728 /* rename_lock protects ->parent and ->name accessors */
1729 spin_lock_irq(&kernfs_rename_lock);
1731 old_parent = kn->parent;
1732 kn->parent = new_parent;
1736 old_name = kn->name;
1737 kn->name = new_name;
1740 spin_unlock_irq(&kernfs_rename_lock);
1742 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1743 kernfs_link_sibling(kn);
1745 kernfs_put(old_parent);
1746 kfree_const(old_name);
1750 up_write(&root->kernfs_rwsem);
1754 /* Relationship between mode and the DT_xxx types */
1755 static inline unsigned char dt_type(struct kernfs_node *kn)
1757 return (kn->mode >> 12) & 15;
1760 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1762 kernfs_put(filp->private_data);
1766 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1767 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1770 int valid = kernfs_active(pos) &&
1771 pos->parent == parent && hash == pos->hash;
1776 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1777 struct rb_node *node = parent->dir.children.rb_node;
1779 pos = rb_to_kn(node);
1781 if (hash < pos->hash)
1782 node = node->rb_left;
1783 else if (hash > pos->hash)
1784 node = node->rb_right;
1789 /* Skip over entries which are dying/dead or in the wrong namespace */
1790 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1791 struct rb_node *node = rb_next(&pos->rb);
1795 pos = rb_to_kn(node);
1800 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1801 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1803 pos = kernfs_dir_pos(ns, parent, ino, pos);
1806 struct rb_node *node = rb_next(&pos->rb);
1810 pos = rb_to_kn(node);
1811 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1816 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1818 struct dentry *dentry = file->f_path.dentry;
1819 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1820 struct kernfs_node *pos = file->private_data;
1821 struct kernfs_root *root;
1822 const void *ns = NULL;
1824 if (!dir_emit_dots(file, ctx))
1827 root = kernfs_root(parent);
1828 down_read(&root->kernfs_rwsem);
1830 if (kernfs_ns_enabled(parent))
1831 ns = kernfs_info(dentry->d_sb)->ns;
1833 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1835 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1836 const char *name = pos->name;
1837 unsigned int type = dt_type(pos);
1838 int len = strlen(name);
1839 ino_t ino = kernfs_ino(pos);
1841 ctx->pos = pos->hash;
1842 file->private_data = pos;
1845 up_read(&root->kernfs_rwsem);
1846 if (!dir_emit(ctx, name, len, ino, type))
1848 down_read(&root->kernfs_rwsem);
1850 up_read(&root->kernfs_rwsem);
1851 file->private_data = NULL;
1856 const struct file_operations kernfs_dir_fops = {
1857 .read = generic_read_dir,
1858 .iterate_shared = kernfs_fop_readdir,
1859 .release = kernfs_dir_fop_release,
1860 .llseek = generic_file_llseek,