]> Git Repo - linux.git/blob - net/core/dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <[email protected]>
8  *                              Mark Evans, <[email protected]>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <[email protected]>
12  *              Alan Cox <[email protected]>
13  *              David Hinds <[email protected]>
14  *              Alexey Kuznetsov <[email protected]>
15  *              Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151
152 #include "net-sysfs.h"
153
154 #define MAX_GRO_SKBS 8
155
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;       /* Taps */
163 static struct list_head offload_base __read_mostly;
164
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167                                          struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169                                            struct net_device *dev,
170                                            struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194
195 static DEFINE_MUTEX(ifalias_mutex);
196
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203 static DECLARE_RWSEM(devnet_rename_sem);
204
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207         while (++net->dev_base_seq == 0)
208                 ;
209 }
210
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226         spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233         spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238                                                        const char *name)
239 {
240         struct netdev_name_node *name_node;
241
242         name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243         if (!name_node)
244                 return NULL;
245         INIT_HLIST_NODE(&name_node->hlist);
246         name_node->dev = dev;
247         name_node->name = name;
248         return name_node;
249 }
250
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254         struct netdev_name_node *name_node;
255
256         name_node = netdev_name_node_alloc(dev, dev->name);
257         if (!name_node)
258                 return NULL;
259         INIT_LIST_HEAD(&name_node->list);
260         return name_node;
261 }
262
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265         kfree(name_node);
266 }
267
268 static void netdev_name_node_add(struct net *net,
269                                  struct netdev_name_node *name_node)
270 {
271         hlist_add_head_rcu(&name_node->hlist,
272                            dev_name_hash(net, name_node->name));
273 }
274
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277         hlist_del_rcu(&name_node->hlist);
278 }
279
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281                                                         const char *name)
282 {
283         struct hlist_head *head = dev_name_hash(net, name);
284         struct netdev_name_node *name_node;
285
286         hlist_for_each_entry(name_node, head, hlist)
287                 if (!strcmp(name_node->name, name))
288                         return name_node;
289         return NULL;
290 }
291
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293                                                             const char *name)
294 {
295         struct hlist_head *head = dev_name_hash(net, name);
296         struct netdev_name_node *name_node;
297
298         hlist_for_each_entry_rcu(name_node, head, hlist)
299                 if (!strcmp(name_node->name, name))
300                         return name_node;
301         return NULL;
302 }
303
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306         struct netdev_name_node *name_node;
307         struct net *net = dev_net(dev);
308
309         name_node = netdev_name_node_lookup(net, name);
310         if (name_node)
311                 return -EEXIST;
312         name_node = netdev_name_node_alloc(dev, name);
313         if (!name_node)
314                 return -ENOMEM;
315         netdev_name_node_add(net, name_node);
316         /* The node that holds dev->name acts as a head of per-device list. */
317         list_add_tail(&name_node->list, &dev->name_node->list);
318
319         return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325         list_del(&name_node->list);
326         netdev_name_node_del(name_node);
327         kfree(name_node->name);
328         netdev_name_node_free(name_node);
329 }
330
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333         struct netdev_name_node *name_node;
334         struct net *net = dev_net(dev);
335
336         name_node = netdev_name_node_lookup(net, name);
337         if (!name_node)
338                 return -ENOENT;
339         /* lookup might have found our primary name or a name belonging
340          * to another device.
341          */
342         if (name_node == dev->name_node || name_node->dev != dev)
343                 return -EINVAL;
344
345         __netdev_name_node_alt_destroy(name_node);
346
347         return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353         struct netdev_name_node *name_node, *tmp;
354
355         list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356                 __netdev_name_node_alt_destroy(name_node);
357 }
358
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362         struct net *net = dev_net(dev);
363
364         ASSERT_RTNL();
365
366         write_lock_bh(&dev_base_lock);
367         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368         netdev_name_node_add(net, dev->name_node);
369         hlist_add_head_rcu(&dev->index_hlist,
370                            dev_index_hash(net, dev->ifindex));
371         write_unlock_bh(&dev_base_lock);
372
373         dev_base_seq_inc(net);
374 }
375
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381         ASSERT_RTNL();
382
383         /* Unlink dev from the device chain */
384         write_lock_bh(&dev_base_lock);
385         list_del_rcu(&dev->dev_list);
386         netdev_name_node_del(dev->name_node);
387         hlist_del_rcu(&dev->index_hlist);
388         write_unlock_bh(&dev_base_lock);
389
390         dev_base_seq_inc(dev_net(dev));
391 }
392
393 /*
394  *      Our notifier list
395  */
396
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398
399 /*
400  *      Device drivers call our routines to queue packets here. We empty the
401  *      queue in the local softnet handler.
402  */
403
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429 static const char *const netdev_lock_name[] = {
430         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451         int i;
452
453         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454                 if (netdev_lock_type[i] == dev_type)
455                         return i;
456         /* the last key is used by default */
457         return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461                                                  unsigned short dev_type)
462 {
463         int i;
464
465         i = netdev_lock_pos(dev_type);
466         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467                                    netdev_lock_name[i]);
468 }
469
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472         int i;
473
474         i = netdev_lock_pos(dev->type);
475         lockdep_set_class_and_name(&dev->addr_list_lock,
476                                    &netdev_addr_lock_key[i],
477                                    netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481                                                  unsigned short dev_type)
482 {
483 }
484
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489
490 /*******************************************************************************
491  *
492  *              Protocol management and registration routines
493  *
494  *******************************************************************************/
495
496
497 /*
498  *      Add a protocol ID to the list. Now that the input handler is
499  *      smarter we can dispense with all the messy stuff that used to be
500  *      here.
501  *
502  *      BEWARE!!! Protocol handlers, mangling input packets,
503  *      MUST BE last in hash buckets and checking protocol handlers
504  *      MUST start from promiscuous ptype_all chain in net_bh.
505  *      It is true now, do not change it.
506  *      Explanation follows: if protocol handler, mangling packet, will
507  *      be the first on list, it is not able to sense, that packet
508  *      is cloned and should be copied-on-write, so that it will
509  *      change it and subsequent readers will get broken packet.
510  *                                                      --ANK (980803)
511  */
512
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515         if (pt->type == htons(ETH_P_ALL))
516                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517         else
518                 return pt->dev ? &pt->dev->ptype_specific :
519                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521
522 /**
523  *      dev_add_pack - add packet handler
524  *      @pt: packet type declaration
525  *
526  *      Add a protocol handler to the networking stack. The passed &packet_type
527  *      is linked into kernel lists and may not be freed until it has been
528  *      removed from the kernel lists.
529  *
530  *      This call does not sleep therefore it can not
531  *      guarantee all CPU's that are in middle of receiving packets
532  *      will see the new packet type (until the next received packet).
533  */
534
535 void dev_add_pack(struct packet_type *pt)
536 {
537         struct list_head *head = ptype_head(pt);
538
539         spin_lock(&ptype_lock);
540         list_add_rcu(&pt->list, head);
541         spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544
545 /**
546  *      __dev_remove_pack        - remove packet handler
547  *      @pt: packet type declaration
548  *
549  *      Remove a protocol handler that was previously added to the kernel
550  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *      from the kernel lists and can be freed or reused once this function
552  *      returns.
553  *
554  *      The packet type might still be in use by receivers
555  *      and must not be freed until after all the CPU's have gone
556  *      through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560         struct list_head *head = ptype_head(pt);
561         struct packet_type *pt1;
562
563         spin_lock(&ptype_lock);
564
565         list_for_each_entry(pt1, head, list) {
566                 if (pt == pt1) {
567                         list_del_rcu(&pt->list);
568                         goto out;
569                 }
570         }
571
572         pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574         spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577
578 /**
579  *      dev_remove_pack  - remove packet handler
580  *      @pt: packet type declaration
581  *
582  *      Remove a protocol handler that was previously added to the kernel
583  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *      from the kernel lists and can be freed or reused once this function
585  *      returns.
586  *
587  *      This call sleeps to guarantee that no CPU is looking at the packet
588  *      type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592         __dev_remove_pack(pt);
593
594         synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597
598
599 /**
600  *      dev_add_offload - register offload handlers
601  *      @po: protocol offload declaration
602  *
603  *      Add protocol offload handlers to the networking stack. The passed
604  *      &proto_offload is linked into kernel lists and may not be freed until
605  *      it has been removed from the kernel lists.
606  *
607  *      This call does not sleep therefore it can not
608  *      guarantee all CPU's that are in middle of receiving packets
609  *      will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613         struct packet_offload *elem;
614
615         spin_lock(&offload_lock);
616         list_for_each_entry(elem, &offload_base, list) {
617                 if (po->priority < elem->priority)
618                         break;
619         }
620         list_add_rcu(&po->list, elem->list.prev);
621         spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624
625 /**
626  *      __dev_remove_offload     - remove offload handler
627  *      @po: packet offload declaration
628  *
629  *      Remove a protocol offload handler that was previously added to the
630  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *      is removed from the kernel lists and can be freed or reused once this
632  *      function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *      and must not be freed until after all the CPU's have gone
636  *      through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640         struct list_head *head = &offload_base;
641         struct packet_offload *po1;
642
643         spin_lock(&offload_lock);
644
645         list_for_each_entry(po1, head, list) {
646                 if (po == po1) {
647                         list_del_rcu(&po->list);
648                         goto out;
649                 }
650         }
651
652         pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654         spin_unlock(&offload_lock);
655 }
656
657 /**
658  *      dev_remove_offload       - remove packet offload handler
659  *      @po: packet offload declaration
660  *
661  *      Remove a packet offload handler that was previously added to the kernel
662  *      offload handlers by dev_add_offload(). The passed &offload_type is
663  *      removed from the kernel lists and can be freed or reused once this
664  *      function returns.
665  *
666  *      This call sleeps to guarantee that no CPU is looking at the packet
667  *      type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671         __dev_remove_offload(po);
672
673         synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676
677 /******************************************************************************
678  *
679  *                    Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686 /**
687  *      netdev_boot_setup_add   - add new setup entry
688  *      @name: name of the device
689  *      @map: configured settings for the device
690  *
691  *      Adds new setup entry to the dev_boot_setup list.  The function
692  *      returns 0 on error and 1 on success.  This is a generic routine to
693  *      all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697         struct netdev_boot_setup *s;
698         int i;
699
700         s = dev_boot_setup;
701         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703                         memset(s[i].name, 0, sizeof(s[i].name));
704                         strlcpy(s[i].name, name, IFNAMSIZ);
705                         memcpy(&s[i].map, map, sizeof(s[i].map));
706                         break;
707                 }
708         }
709
710         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712
713 /**
714  * netdev_boot_setup_check      - check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724         struct netdev_boot_setup *s = dev_boot_setup;
725         int i;
726
727         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729                     !strcmp(dev->name, s[i].name)) {
730                         dev->irq = s[i].map.irq;
731                         dev->base_addr = s[i].map.base_addr;
732                         dev->mem_start = s[i].map.mem_start;
733                         dev->mem_end = s[i].map.mem_end;
734                         return 1;
735                 }
736         }
737         return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742 /**
743  * netdev_boot_base     - get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754         const struct netdev_boot_setup *s = dev_boot_setup;
755         char name[IFNAMSIZ];
756         int i;
757
758         sprintf(name, "%s%d", prefix, unit);
759
760         /*
761          * If device already registered then return base of 1
762          * to indicate not to probe for this interface
763          */
764         if (__dev_get_by_name(&init_net, name))
765                 return 1;
766
767         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768                 if (!strcmp(name, s[i].name))
769                         return s[i].map.base_addr;
770         return 0;
771 }
772
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778         int ints[5];
779         struct ifmap map;
780
781         str = get_options(str, ARRAY_SIZE(ints), ints);
782         if (!str || !*str)
783                 return 0;
784
785         /* Save settings */
786         memset(&map, 0, sizeof(map));
787         if (ints[0] > 0)
788                 map.irq = ints[1];
789         if (ints[0] > 1)
790                 map.base_addr = ints[2];
791         if (ints[0] > 2)
792                 map.mem_start = ints[3];
793         if (ints[0] > 3)
794                 map.mem_end = ints[4];
795
796         /* Add new entry to the list */
797         return netdev_boot_setup_add(str, &map);
798 }
799
800 __setup("netdev=", netdev_boot_setup);
801
802 /*******************************************************************************
803  *
804  *                          Device Interface Subroutines
805  *
806  *******************************************************************************/
807
808 /**
809  *      dev_get_iflink  - get 'iflink' value of a interface
810  *      @dev: targeted interface
811  *
812  *      Indicates the ifindex the interface is linked to.
813  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815
816 int dev_get_iflink(const struct net_device *dev)
817 {
818         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819                 return dev->netdev_ops->ndo_get_iflink(dev);
820
821         return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824
825 /**
826  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *      @dev: targeted interface
828  *      @skb: The packet.
829  *
830  *      For better visibility of tunnel traffic OVS needs to retrieve
831  *      egress tunnel information for a packet. Following API allows
832  *      user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836         struct ip_tunnel_info *info;
837
838         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839                 return -EINVAL;
840
841         info = skb_tunnel_info_unclone(skb);
842         if (!info)
843                 return -ENOMEM;
844         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845                 return -EINVAL;
846
847         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851 /**
852  *      __dev_get_by_name       - find a device by its name
853  *      @net: the applicable net namespace
854  *      @name: name to find
855  *
856  *      Find an interface by name. Must be called under RTNL semaphore
857  *      or @dev_base_lock. If the name is found a pointer to the device
858  *      is returned. If the name is not found then %NULL is returned. The
859  *      reference counters are not incremented so the caller must be
860  *      careful with locks.
861  */
862
863 struct net_device *__dev_get_by_name(struct net *net, const char *name)
864 {
865         struct netdev_name_node *node_name;
866
867         node_name = netdev_name_node_lookup(net, name);
868         return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(__dev_get_by_name);
871
872 /**
873  * dev_get_by_name_rcu  - find a device by its name
874  * @net: the applicable net namespace
875  * @name: name to find
876  *
877  * Find an interface by name.
878  * If the name is found a pointer to the device is returned.
879  * If the name is not found then %NULL is returned.
880  * The reference counters are not incremented so the caller must be
881  * careful with locks. The caller must hold RCU lock.
882  */
883
884 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
885 {
886         struct netdev_name_node *node_name;
887
888         node_name = netdev_name_node_lookup_rcu(net, name);
889         return node_name ? node_name->dev : NULL;
890 }
891 EXPORT_SYMBOL(dev_get_by_name_rcu);
892
893 /**
894  *      dev_get_by_name         - find a device by its name
895  *      @net: the applicable net namespace
896  *      @name: name to find
897  *
898  *      Find an interface by name. This can be called from any
899  *      context and does its own locking. The returned handle has
900  *      the usage count incremented and the caller must use dev_put() to
901  *      release it when it is no longer needed. %NULL is returned if no
902  *      matching device is found.
903  */
904
905 struct net_device *dev_get_by_name(struct net *net, const char *name)
906 {
907         struct net_device *dev;
908
909         rcu_read_lock();
910         dev = dev_get_by_name_rcu(net, name);
911         if (dev)
912                 dev_hold(dev);
913         rcu_read_unlock();
914         return dev;
915 }
916 EXPORT_SYMBOL(dev_get_by_name);
917
918 /**
919  *      __dev_get_by_index - find a device by its ifindex
920  *      @net: the applicable net namespace
921  *      @ifindex: index of device
922  *
923  *      Search for an interface by index. Returns %NULL if the device
924  *      is not found or a pointer to the device. The device has not
925  *      had its reference counter increased so the caller must be careful
926  *      about locking. The caller must hold either the RTNL semaphore
927  *      or @dev_base_lock.
928  */
929
930 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
931 {
932         struct net_device *dev;
933         struct hlist_head *head = dev_index_hash(net, ifindex);
934
935         hlist_for_each_entry(dev, head, index_hlist)
936                 if (dev->ifindex == ifindex)
937                         return dev;
938
939         return NULL;
940 }
941 EXPORT_SYMBOL(__dev_get_by_index);
942
943 /**
944  *      dev_get_by_index_rcu - find a device by its ifindex
945  *      @net: the applicable net namespace
946  *      @ifindex: index of device
947  *
948  *      Search for an interface by index. Returns %NULL if the device
949  *      is not found or a pointer to the device. The device has not
950  *      had its reference counter increased so the caller must be careful
951  *      about locking. The caller must hold RCU lock.
952  */
953
954 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
955 {
956         struct net_device *dev;
957         struct hlist_head *head = dev_index_hash(net, ifindex);
958
959         hlist_for_each_entry_rcu(dev, head, index_hlist)
960                 if (dev->ifindex == ifindex)
961                         return dev;
962
963         return NULL;
964 }
965 EXPORT_SYMBOL(dev_get_by_index_rcu);
966
967
968 /**
969  *      dev_get_by_index - find a device by its ifindex
970  *      @net: the applicable net namespace
971  *      @ifindex: index of device
972  *
973  *      Search for an interface by index. Returns NULL if the device
974  *      is not found or a pointer to the device. The device returned has
975  *      had a reference added and the pointer is safe until the user calls
976  *      dev_put to indicate they have finished with it.
977  */
978
979 struct net_device *dev_get_by_index(struct net *net, int ifindex)
980 {
981         struct net_device *dev;
982
983         rcu_read_lock();
984         dev = dev_get_by_index_rcu(net, ifindex);
985         if (dev)
986                 dev_hold(dev);
987         rcu_read_unlock();
988         return dev;
989 }
990 EXPORT_SYMBOL(dev_get_by_index);
991
992 /**
993  *      dev_get_by_napi_id - find a device by napi_id
994  *      @napi_id: ID of the NAPI struct
995  *
996  *      Search for an interface by NAPI ID. Returns %NULL if the device
997  *      is not found or a pointer to the device. The device has not had
998  *      its reference counter increased so the caller must be careful
999  *      about locking. The caller must hold RCU lock.
1000  */
1001
1002 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1003 {
1004         struct napi_struct *napi;
1005
1006         WARN_ON_ONCE(!rcu_read_lock_held());
1007
1008         if (napi_id < MIN_NAPI_ID)
1009                 return NULL;
1010
1011         napi = napi_by_id(napi_id);
1012
1013         return napi ? napi->dev : NULL;
1014 }
1015 EXPORT_SYMBOL(dev_get_by_napi_id);
1016
1017 /**
1018  *      netdev_get_name - get a netdevice name, knowing its ifindex.
1019  *      @net: network namespace
1020  *      @name: a pointer to the buffer where the name will be stored.
1021  *      @ifindex: the ifindex of the interface to get the name from.
1022  */
1023 int netdev_get_name(struct net *net, char *name, int ifindex)
1024 {
1025         struct net_device *dev;
1026         int ret;
1027
1028         down_read(&devnet_rename_sem);
1029         rcu_read_lock();
1030
1031         dev = dev_get_by_index_rcu(net, ifindex);
1032         if (!dev) {
1033                 ret = -ENODEV;
1034                 goto out;
1035         }
1036
1037         strcpy(name, dev->name);
1038
1039         ret = 0;
1040 out:
1041         rcu_read_unlock();
1042         up_read(&devnet_rename_sem);
1043         return ret;
1044 }
1045
1046 /**
1047  *      dev_getbyhwaddr_rcu - find a device by its hardware address
1048  *      @net: the applicable net namespace
1049  *      @type: media type of device
1050  *      @ha: hardware address
1051  *
1052  *      Search for an interface by MAC address. Returns NULL if the device
1053  *      is not found or a pointer to the device.
1054  *      The caller must hold RCU or RTNL.
1055  *      The returned device has not had its ref count increased
1056  *      and the caller must therefore be careful about locking
1057  *
1058  */
1059
1060 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1061                                        const char *ha)
1062 {
1063         struct net_device *dev;
1064
1065         for_each_netdev_rcu(net, dev)
1066                 if (dev->type == type &&
1067                     !memcmp(dev->dev_addr, ha, dev->addr_len))
1068                         return dev;
1069
1070         return NULL;
1071 }
1072 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1073
1074 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1075 {
1076         struct net_device *dev, *ret = NULL;
1077
1078         rcu_read_lock();
1079         for_each_netdev_rcu(net, dev)
1080                 if (dev->type == type) {
1081                         dev_hold(dev);
1082                         ret = dev;
1083                         break;
1084                 }
1085         rcu_read_unlock();
1086         return ret;
1087 }
1088 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089
1090 /**
1091  *      __dev_get_by_flags - find any device with given flags
1092  *      @net: the applicable net namespace
1093  *      @if_flags: IFF_* values
1094  *      @mask: bitmask of bits in if_flags to check
1095  *
1096  *      Search for any interface with the given flags. Returns NULL if a device
1097  *      is not found or a pointer to the device. Must be called inside
1098  *      rtnl_lock(), and result refcount is unchanged.
1099  */
1100
1101 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102                                       unsigned short mask)
1103 {
1104         struct net_device *dev, *ret;
1105
1106         ASSERT_RTNL();
1107
1108         ret = NULL;
1109         for_each_netdev(net, dev) {
1110                 if (((dev->flags ^ if_flags) & mask) == 0) {
1111                         ret = dev;
1112                         break;
1113                 }
1114         }
1115         return ret;
1116 }
1117 EXPORT_SYMBOL(__dev_get_by_flags);
1118
1119 /**
1120  *      dev_valid_name - check if name is okay for network device
1121  *      @name: name string
1122  *
1123  *      Network device names need to be valid file names to
1124  *      allow sysfs to work.  We also disallow any kind of
1125  *      whitespace.
1126  */
1127 bool dev_valid_name(const char *name)
1128 {
1129         if (*name == '\0')
1130                 return false;
1131         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1132                 return false;
1133         if (!strcmp(name, ".") || !strcmp(name, ".."))
1134                 return false;
1135
1136         while (*name) {
1137                 if (*name == '/' || *name == ':' || isspace(*name))
1138                         return false;
1139                 name++;
1140         }
1141         return true;
1142 }
1143 EXPORT_SYMBOL(dev_valid_name);
1144
1145 /**
1146  *      __dev_alloc_name - allocate a name for a device
1147  *      @net: network namespace to allocate the device name in
1148  *      @name: name format string
1149  *      @buf:  scratch buffer and result name string
1150  *
1151  *      Passed a format string - eg "lt%d" it will try and find a suitable
1152  *      id. It scans list of devices to build up a free map, then chooses
1153  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1154  *      while allocating the name and adding the device in order to avoid
1155  *      duplicates.
1156  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157  *      Returns the number of the unit assigned or a negative errno code.
1158  */
1159
1160 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1161 {
1162         int i = 0;
1163         const char *p;
1164         const int max_netdevices = 8*PAGE_SIZE;
1165         unsigned long *inuse;
1166         struct net_device *d;
1167
1168         if (!dev_valid_name(name))
1169                 return -EINVAL;
1170
1171         p = strchr(name, '%');
1172         if (p) {
1173                 /*
1174                  * Verify the string as this thing may have come from
1175                  * the user.  There must be either one "%d" and no other "%"
1176                  * characters.
1177                  */
1178                 if (p[1] != 'd' || strchr(p + 2, '%'))
1179                         return -EINVAL;
1180
1181                 /* Use one page as a bit array of possible slots */
1182                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1183                 if (!inuse)
1184                         return -ENOMEM;
1185
1186                 for_each_netdev(net, d) {
1187                         if (!sscanf(d->name, name, &i))
1188                                 continue;
1189                         if (i < 0 || i >= max_netdevices)
1190                                 continue;
1191
1192                         /*  avoid cases where sscanf is not exact inverse of printf */
1193                         snprintf(buf, IFNAMSIZ, name, i);
1194                         if (!strncmp(buf, d->name, IFNAMSIZ))
1195                                 set_bit(i, inuse);
1196                 }
1197
1198                 i = find_first_zero_bit(inuse, max_netdevices);
1199                 free_page((unsigned long) inuse);
1200         }
1201
1202         snprintf(buf, IFNAMSIZ, name, i);
1203         if (!__dev_get_by_name(net, buf))
1204                 return i;
1205
1206         /* It is possible to run out of possible slots
1207          * when the name is long and there isn't enough space left
1208          * for the digits, or if all bits are used.
1209          */
1210         return -ENFILE;
1211 }
1212
1213 static int dev_alloc_name_ns(struct net *net,
1214                              struct net_device *dev,
1215                              const char *name)
1216 {
1217         char buf[IFNAMSIZ];
1218         int ret;
1219
1220         BUG_ON(!net);
1221         ret = __dev_alloc_name(net, name, buf);
1222         if (ret >= 0)
1223                 strlcpy(dev->name, buf, IFNAMSIZ);
1224         return ret;
1225 }
1226
1227 /**
1228  *      dev_alloc_name - allocate a name for a device
1229  *      @dev: device
1230  *      @name: name format string
1231  *
1232  *      Passed a format string - eg "lt%d" it will try and find a suitable
1233  *      id. It scans list of devices to build up a free map, then chooses
1234  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1235  *      while allocating the name and adding the device in order to avoid
1236  *      duplicates.
1237  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1238  *      Returns the number of the unit assigned or a negative errno code.
1239  */
1240
1241 int dev_alloc_name(struct net_device *dev, const char *name)
1242 {
1243         return dev_alloc_name_ns(dev_net(dev), dev, name);
1244 }
1245 EXPORT_SYMBOL(dev_alloc_name);
1246
1247 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1248                               const char *name)
1249 {
1250         BUG_ON(!net);
1251
1252         if (!dev_valid_name(name))
1253                 return -EINVAL;
1254
1255         if (strchr(name, '%'))
1256                 return dev_alloc_name_ns(net, dev, name);
1257         else if (__dev_get_by_name(net, name))
1258                 return -EEXIST;
1259         else if (dev->name != name)
1260                 strlcpy(dev->name, name, IFNAMSIZ);
1261
1262         return 0;
1263 }
1264
1265 /**
1266  *      dev_change_name - change name of a device
1267  *      @dev: device
1268  *      @newname: name (or format string) must be at least IFNAMSIZ
1269  *
1270  *      Change name of a device, can pass format strings "eth%d".
1271  *      for wildcarding.
1272  */
1273 int dev_change_name(struct net_device *dev, const char *newname)
1274 {
1275         unsigned char old_assign_type;
1276         char oldname[IFNAMSIZ];
1277         int err = 0;
1278         int ret;
1279         struct net *net;
1280
1281         ASSERT_RTNL();
1282         BUG_ON(!dev_net(dev));
1283
1284         net = dev_net(dev);
1285
1286         /* Some auto-enslaved devices e.g. failover slaves are
1287          * special, as userspace might rename the device after
1288          * the interface had been brought up and running since
1289          * the point kernel initiated auto-enslavement. Allow
1290          * live name change even when these slave devices are
1291          * up and running.
1292          *
1293          * Typically, users of these auto-enslaving devices
1294          * don't actually care about slave name change, as
1295          * they are supposed to operate on master interface
1296          * directly.
1297          */
1298         if (dev->flags & IFF_UP &&
1299             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1300                 return -EBUSY;
1301
1302         down_write(&devnet_rename_sem);
1303
1304         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1305                 up_write(&devnet_rename_sem);
1306                 return 0;
1307         }
1308
1309         memcpy(oldname, dev->name, IFNAMSIZ);
1310
1311         err = dev_get_valid_name(net, dev, newname);
1312         if (err < 0) {
1313                 up_write(&devnet_rename_sem);
1314                 return err;
1315         }
1316
1317         if (oldname[0] && !strchr(oldname, '%'))
1318                 netdev_info(dev, "renamed from %s\n", oldname);
1319
1320         old_assign_type = dev->name_assign_type;
1321         dev->name_assign_type = NET_NAME_RENAMED;
1322
1323 rollback:
1324         ret = device_rename(&dev->dev, dev->name);
1325         if (ret) {
1326                 memcpy(dev->name, oldname, IFNAMSIZ);
1327                 dev->name_assign_type = old_assign_type;
1328                 up_write(&devnet_rename_sem);
1329                 return ret;
1330         }
1331
1332         up_write(&devnet_rename_sem);
1333
1334         netdev_adjacent_rename_links(dev, oldname);
1335
1336         write_lock_bh(&dev_base_lock);
1337         netdev_name_node_del(dev->name_node);
1338         write_unlock_bh(&dev_base_lock);
1339
1340         synchronize_rcu();
1341
1342         write_lock_bh(&dev_base_lock);
1343         netdev_name_node_add(net, dev->name_node);
1344         write_unlock_bh(&dev_base_lock);
1345
1346         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1347         ret = notifier_to_errno(ret);
1348
1349         if (ret) {
1350                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1351                 if (err >= 0) {
1352                         err = ret;
1353                         down_write(&devnet_rename_sem);
1354                         memcpy(dev->name, oldname, IFNAMSIZ);
1355                         memcpy(oldname, newname, IFNAMSIZ);
1356                         dev->name_assign_type = old_assign_type;
1357                         old_assign_type = NET_NAME_RENAMED;
1358                         goto rollback;
1359                 } else {
1360                         pr_err("%s: name change rollback failed: %d\n",
1361                                dev->name, ret);
1362                 }
1363         }
1364
1365         return err;
1366 }
1367
1368 /**
1369  *      dev_set_alias - change ifalias of a device
1370  *      @dev: device
1371  *      @alias: name up to IFALIASZ
1372  *      @len: limit of bytes to copy from info
1373  *
1374  *      Set ifalias for a device,
1375  */
1376 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1377 {
1378         struct dev_ifalias *new_alias = NULL;
1379
1380         if (len >= IFALIASZ)
1381                 return -EINVAL;
1382
1383         if (len) {
1384                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1385                 if (!new_alias)
1386                         return -ENOMEM;
1387
1388                 memcpy(new_alias->ifalias, alias, len);
1389                 new_alias->ifalias[len] = 0;
1390         }
1391
1392         mutex_lock(&ifalias_mutex);
1393         new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1394                                         mutex_is_locked(&ifalias_mutex));
1395         mutex_unlock(&ifalias_mutex);
1396
1397         if (new_alias)
1398                 kfree_rcu(new_alias, rcuhead);
1399
1400         return len;
1401 }
1402 EXPORT_SYMBOL(dev_set_alias);
1403
1404 /**
1405  *      dev_get_alias - get ifalias of a device
1406  *      @dev: device
1407  *      @name: buffer to store name of ifalias
1408  *      @len: size of buffer
1409  *
1410  *      get ifalias for a device.  Caller must make sure dev cannot go
1411  *      away,  e.g. rcu read lock or own a reference count to device.
1412  */
1413 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1414 {
1415         const struct dev_ifalias *alias;
1416         int ret = 0;
1417
1418         rcu_read_lock();
1419         alias = rcu_dereference(dev->ifalias);
1420         if (alias)
1421                 ret = snprintf(name, len, "%s", alias->ifalias);
1422         rcu_read_unlock();
1423
1424         return ret;
1425 }
1426
1427 /**
1428  *      netdev_features_change - device changes features
1429  *      @dev: device to cause notification
1430  *
1431  *      Called to indicate a device has changed features.
1432  */
1433 void netdev_features_change(struct net_device *dev)
1434 {
1435         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1436 }
1437 EXPORT_SYMBOL(netdev_features_change);
1438
1439 /**
1440  *      netdev_state_change - device changes state
1441  *      @dev: device to cause notification
1442  *
1443  *      Called to indicate a device has changed state. This function calls
1444  *      the notifier chains for netdev_chain and sends a NEWLINK message
1445  *      to the routing socket.
1446  */
1447 void netdev_state_change(struct net_device *dev)
1448 {
1449         if (dev->flags & IFF_UP) {
1450                 struct netdev_notifier_change_info change_info = {
1451                         .info.dev = dev,
1452                 };
1453
1454                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1455                                               &change_info.info);
1456                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1457         }
1458 }
1459 EXPORT_SYMBOL(netdev_state_change);
1460
1461 /**
1462  * __netdev_notify_peers - notify network peers about existence of @dev,
1463  * to be called when rtnl lock is already held.
1464  * @dev: network device
1465  *
1466  * Generate traffic such that interested network peers are aware of
1467  * @dev, such as by generating a gratuitous ARP. This may be used when
1468  * a device wants to inform the rest of the network about some sort of
1469  * reconfiguration such as a failover event or virtual machine
1470  * migration.
1471  */
1472 void __netdev_notify_peers(struct net_device *dev)
1473 {
1474         ASSERT_RTNL();
1475         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1476         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1477 }
1478 EXPORT_SYMBOL(__netdev_notify_peers);
1479
1480 /**
1481  * netdev_notify_peers - notify network peers about existence of @dev
1482  * @dev: network device
1483  *
1484  * Generate traffic such that interested network peers are aware of
1485  * @dev, such as by generating a gratuitous ARP. This may be used when
1486  * a device wants to inform the rest of the network about some sort of
1487  * reconfiguration such as a failover event or virtual machine
1488  * migration.
1489  */
1490 void netdev_notify_peers(struct net_device *dev)
1491 {
1492         rtnl_lock();
1493         __netdev_notify_peers(dev);
1494         rtnl_unlock();
1495 }
1496 EXPORT_SYMBOL(netdev_notify_peers);
1497
1498 static int napi_threaded_poll(void *data);
1499
1500 static int napi_kthread_create(struct napi_struct *n)
1501 {
1502         int err = 0;
1503
1504         /* Create and wake up the kthread once to put it in
1505          * TASK_INTERRUPTIBLE mode to avoid the blocked task
1506          * warning and work with loadavg.
1507          */
1508         n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1509                                 n->dev->name, n->napi_id);
1510         if (IS_ERR(n->thread)) {
1511                 err = PTR_ERR(n->thread);
1512                 pr_err("kthread_run failed with err %d\n", err);
1513                 n->thread = NULL;
1514         }
1515
1516         return err;
1517 }
1518
1519 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521         const struct net_device_ops *ops = dev->netdev_ops;
1522         int ret;
1523
1524         ASSERT_RTNL();
1525
1526         if (!netif_device_present(dev)) {
1527                 /* may be detached because parent is runtime-suspended */
1528                 if (dev->dev.parent)
1529                         pm_runtime_resume(dev->dev.parent);
1530                 if (!netif_device_present(dev))
1531                         return -ENODEV;
1532         }
1533
1534         /* Block netpoll from trying to do any rx path servicing.
1535          * If we don't do this there is a chance ndo_poll_controller
1536          * or ndo_poll may be running while we open the device
1537          */
1538         netpoll_poll_disable(dev);
1539
1540         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1541         ret = notifier_to_errno(ret);
1542         if (ret)
1543                 return ret;
1544
1545         set_bit(__LINK_STATE_START, &dev->state);
1546
1547         if (ops->ndo_validate_addr)
1548                 ret = ops->ndo_validate_addr(dev);
1549
1550         if (!ret && ops->ndo_open)
1551                 ret = ops->ndo_open(dev);
1552
1553         netpoll_poll_enable(dev);
1554
1555         if (ret)
1556                 clear_bit(__LINK_STATE_START, &dev->state);
1557         else {
1558                 dev->flags |= IFF_UP;
1559                 dev_set_rx_mode(dev);
1560                 dev_activate(dev);
1561                 add_device_randomness(dev->dev_addr, dev->addr_len);
1562         }
1563
1564         return ret;
1565 }
1566
1567 /**
1568  *      dev_open        - prepare an interface for use.
1569  *      @dev: device to open
1570  *      @extack: netlink extended ack
1571  *
1572  *      Takes a device from down to up state. The device's private open
1573  *      function is invoked and then the multicast lists are loaded. Finally
1574  *      the device is moved into the up state and a %NETDEV_UP message is
1575  *      sent to the netdev notifier chain.
1576  *
1577  *      Calling this function on an active interface is a nop. On a failure
1578  *      a negative errno code is returned.
1579  */
1580 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1581 {
1582         int ret;
1583
1584         if (dev->flags & IFF_UP)
1585                 return 0;
1586
1587         ret = __dev_open(dev, extack);
1588         if (ret < 0)
1589                 return ret;
1590
1591         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1592         call_netdevice_notifiers(NETDEV_UP, dev);
1593
1594         return ret;
1595 }
1596 EXPORT_SYMBOL(dev_open);
1597
1598 static void __dev_close_many(struct list_head *head)
1599 {
1600         struct net_device *dev;
1601
1602         ASSERT_RTNL();
1603         might_sleep();
1604
1605         list_for_each_entry(dev, head, close_list) {
1606                 /* Temporarily disable netpoll until the interface is down */
1607                 netpoll_poll_disable(dev);
1608
1609                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1610
1611                 clear_bit(__LINK_STATE_START, &dev->state);
1612
1613                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1614                  * can be even on different cpu. So just clear netif_running().
1615                  *
1616                  * dev->stop() will invoke napi_disable() on all of it's
1617                  * napi_struct instances on this device.
1618                  */
1619                 smp_mb__after_atomic(); /* Commit netif_running(). */
1620         }
1621
1622         dev_deactivate_many(head);
1623
1624         list_for_each_entry(dev, head, close_list) {
1625                 const struct net_device_ops *ops = dev->netdev_ops;
1626
1627                 /*
1628                  *      Call the device specific close. This cannot fail.
1629                  *      Only if device is UP
1630                  *
1631                  *      We allow it to be called even after a DETACH hot-plug
1632                  *      event.
1633                  */
1634                 if (ops->ndo_stop)
1635                         ops->ndo_stop(dev);
1636
1637                 dev->flags &= ~IFF_UP;
1638                 netpoll_poll_enable(dev);
1639         }
1640 }
1641
1642 static void __dev_close(struct net_device *dev)
1643 {
1644         LIST_HEAD(single);
1645
1646         list_add(&dev->close_list, &single);
1647         __dev_close_many(&single);
1648         list_del(&single);
1649 }
1650
1651 void dev_close_many(struct list_head *head, bool unlink)
1652 {
1653         struct net_device *dev, *tmp;
1654
1655         /* Remove the devices that don't need to be closed */
1656         list_for_each_entry_safe(dev, tmp, head, close_list)
1657                 if (!(dev->flags & IFF_UP))
1658                         list_del_init(&dev->close_list);
1659
1660         __dev_close_many(head);
1661
1662         list_for_each_entry_safe(dev, tmp, head, close_list) {
1663                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1664                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1665                 if (unlink)
1666                         list_del_init(&dev->close_list);
1667         }
1668 }
1669 EXPORT_SYMBOL(dev_close_many);
1670
1671 /**
1672  *      dev_close - shutdown an interface.
1673  *      @dev: device to shutdown
1674  *
1675  *      This function moves an active device into down state. A
1676  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1677  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1678  *      chain.
1679  */
1680 void dev_close(struct net_device *dev)
1681 {
1682         if (dev->flags & IFF_UP) {
1683                 LIST_HEAD(single);
1684
1685                 list_add(&dev->close_list, &single);
1686                 dev_close_many(&single, true);
1687                 list_del(&single);
1688         }
1689 }
1690 EXPORT_SYMBOL(dev_close);
1691
1692
1693 /**
1694  *      dev_disable_lro - disable Large Receive Offload on a device
1695  *      @dev: device
1696  *
1697  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1698  *      called under RTNL.  This is needed if received packets may be
1699  *      forwarded to another interface.
1700  */
1701 void dev_disable_lro(struct net_device *dev)
1702 {
1703         struct net_device *lower_dev;
1704         struct list_head *iter;
1705
1706         dev->wanted_features &= ~NETIF_F_LRO;
1707         netdev_update_features(dev);
1708
1709         if (unlikely(dev->features & NETIF_F_LRO))
1710                 netdev_WARN(dev, "failed to disable LRO!\n");
1711
1712         netdev_for_each_lower_dev(dev, lower_dev, iter)
1713                 dev_disable_lro(lower_dev);
1714 }
1715 EXPORT_SYMBOL(dev_disable_lro);
1716
1717 /**
1718  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1719  *      @dev: device
1720  *
1721  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1722  *      called under RTNL.  This is needed if Generic XDP is installed on
1723  *      the device.
1724  */
1725 static void dev_disable_gro_hw(struct net_device *dev)
1726 {
1727         dev->wanted_features &= ~NETIF_F_GRO_HW;
1728         netdev_update_features(dev);
1729
1730         if (unlikely(dev->features & NETIF_F_GRO_HW))
1731                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1732 }
1733
1734 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1735 {
1736 #define N(val)                                          \
1737         case NETDEV_##val:                              \
1738                 return "NETDEV_" __stringify(val);
1739         switch (cmd) {
1740         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1741         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1742         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1743         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1744         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1745         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1746         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1747         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1748         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1749         N(PRE_CHANGEADDR)
1750         }
1751 #undef N
1752         return "UNKNOWN_NETDEV_EVENT";
1753 }
1754 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1755
1756 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1757                                    struct net_device *dev)
1758 {
1759         struct netdev_notifier_info info = {
1760                 .dev = dev,
1761         };
1762
1763         return nb->notifier_call(nb, val, &info);
1764 }
1765
1766 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1767                                              struct net_device *dev)
1768 {
1769         int err;
1770
1771         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1772         err = notifier_to_errno(err);
1773         if (err)
1774                 return err;
1775
1776         if (!(dev->flags & IFF_UP))
1777                 return 0;
1778
1779         call_netdevice_notifier(nb, NETDEV_UP, dev);
1780         return 0;
1781 }
1782
1783 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1784                                                 struct net_device *dev)
1785 {
1786         if (dev->flags & IFF_UP) {
1787                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1788                                         dev);
1789                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1790         }
1791         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1792 }
1793
1794 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1795                                                  struct net *net)
1796 {
1797         struct net_device *dev;
1798         int err;
1799
1800         for_each_netdev(net, dev) {
1801                 err = call_netdevice_register_notifiers(nb, dev);
1802                 if (err)
1803                         goto rollback;
1804         }
1805         return 0;
1806
1807 rollback:
1808         for_each_netdev_continue_reverse(net, dev)
1809                 call_netdevice_unregister_notifiers(nb, dev);
1810         return err;
1811 }
1812
1813 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1814                                                     struct net *net)
1815 {
1816         struct net_device *dev;
1817
1818         for_each_netdev(net, dev)
1819                 call_netdevice_unregister_notifiers(nb, dev);
1820 }
1821
1822 static int dev_boot_phase = 1;
1823
1824 /**
1825  * register_netdevice_notifier - register a network notifier block
1826  * @nb: notifier
1827  *
1828  * Register a notifier to be called when network device events occur.
1829  * The notifier passed is linked into the kernel structures and must
1830  * not be reused until it has been unregistered. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * When registered all registration and up events are replayed
1834  * to the new notifier to allow device to have a race free
1835  * view of the network device list.
1836  */
1837
1838 int register_netdevice_notifier(struct notifier_block *nb)
1839 {
1840         struct net *net;
1841         int err;
1842
1843         /* Close race with setup_net() and cleanup_net() */
1844         down_write(&pernet_ops_rwsem);
1845         rtnl_lock();
1846         err = raw_notifier_chain_register(&netdev_chain, nb);
1847         if (err)
1848                 goto unlock;
1849         if (dev_boot_phase)
1850                 goto unlock;
1851         for_each_net(net) {
1852                 err = call_netdevice_register_net_notifiers(nb, net);
1853                 if (err)
1854                         goto rollback;
1855         }
1856
1857 unlock:
1858         rtnl_unlock();
1859         up_write(&pernet_ops_rwsem);
1860         return err;
1861
1862 rollback:
1863         for_each_net_continue_reverse(net)
1864                 call_netdevice_unregister_net_notifiers(nb, net);
1865
1866         raw_notifier_chain_unregister(&netdev_chain, nb);
1867         goto unlock;
1868 }
1869 EXPORT_SYMBOL(register_netdevice_notifier);
1870
1871 /**
1872  * unregister_netdevice_notifier - unregister a network notifier block
1873  * @nb: notifier
1874  *
1875  * Unregister a notifier previously registered by
1876  * register_netdevice_notifier(). The notifier is unlinked into the
1877  * kernel structures and may then be reused. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * After unregistering unregister and down device events are synthesized
1881  * for all devices on the device list to the removed notifier to remove
1882  * the need for special case cleanup code.
1883  */
1884
1885 int unregister_netdevice_notifier(struct notifier_block *nb)
1886 {
1887         struct net *net;
1888         int err;
1889
1890         /* Close race with setup_net() and cleanup_net() */
1891         down_write(&pernet_ops_rwsem);
1892         rtnl_lock();
1893         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1894         if (err)
1895                 goto unlock;
1896
1897         for_each_net(net)
1898                 call_netdevice_unregister_net_notifiers(nb, net);
1899
1900 unlock:
1901         rtnl_unlock();
1902         up_write(&pernet_ops_rwsem);
1903         return err;
1904 }
1905 EXPORT_SYMBOL(unregister_netdevice_notifier);
1906
1907 static int __register_netdevice_notifier_net(struct net *net,
1908                                              struct notifier_block *nb,
1909                                              bool ignore_call_fail)
1910 {
1911         int err;
1912
1913         err = raw_notifier_chain_register(&net->netdev_chain, nb);
1914         if (err)
1915                 return err;
1916         if (dev_boot_phase)
1917                 return 0;
1918
1919         err = call_netdevice_register_net_notifiers(nb, net);
1920         if (err && !ignore_call_fail)
1921                 goto chain_unregister;
1922
1923         return 0;
1924
1925 chain_unregister:
1926         raw_notifier_chain_unregister(&net->netdev_chain, nb);
1927         return err;
1928 }
1929
1930 static int __unregister_netdevice_notifier_net(struct net *net,
1931                                                struct notifier_block *nb)
1932 {
1933         int err;
1934
1935         err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1936         if (err)
1937                 return err;
1938
1939         call_netdevice_unregister_net_notifiers(nb, net);
1940         return 0;
1941 }
1942
1943 /**
1944  * register_netdevice_notifier_net - register a per-netns network notifier block
1945  * @net: network namespace
1946  * @nb: notifier
1947  *
1948  * Register a notifier to be called when network device events occur.
1949  * The notifier passed is linked into the kernel structures and must
1950  * not be reused until it has been unregistered. A negative errno code
1951  * is returned on a failure.
1952  *
1953  * When registered all registration and up events are replayed
1954  * to the new notifier to allow device to have a race free
1955  * view of the network device list.
1956  */
1957
1958 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1959 {
1960         int err;
1961
1962         rtnl_lock();
1963         err = __register_netdevice_notifier_net(net, nb, false);
1964         rtnl_unlock();
1965         return err;
1966 }
1967 EXPORT_SYMBOL(register_netdevice_notifier_net);
1968
1969 /**
1970  * unregister_netdevice_notifier_net - unregister a per-netns
1971  *                                     network notifier block
1972  * @net: network namespace
1973  * @nb: notifier
1974  *
1975  * Unregister a notifier previously registered by
1976  * register_netdevice_notifier(). The notifier is unlinked into the
1977  * kernel structures and may then be reused. A negative errno code
1978  * is returned on a failure.
1979  *
1980  * After unregistering unregister and down device events are synthesized
1981  * for all devices on the device list to the removed notifier to remove
1982  * the need for special case cleanup code.
1983  */
1984
1985 int unregister_netdevice_notifier_net(struct net *net,
1986                                       struct notifier_block *nb)
1987 {
1988         int err;
1989
1990         rtnl_lock();
1991         err = __unregister_netdevice_notifier_net(net, nb);
1992         rtnl_unlock();
1993         return err;
1994 }
1995 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1996
1997 int register_netdevice_notifier_dev_net(struct net_device *dev,
1998                                         struct notifier_block *nb,
1999                                         struct netdev_net_notifier *nn)
2000 {
2001         int err;
2002
2003         rtnl_lock();
2004         err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2005         if (!err) {
2006                 nn->nb = nb;
2007                 list_add(&nn->list, &dev->net_notifier_list);
2008         }
2009         rtnl_unlock();
2010         return err;
2011 }
2012 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2013
2014 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2015                                           struct notifier_block *nb,
2016                                           struct netdev_net_notifier *nn)
2017 {
2018         int err;
2019
2020         rtnl_lock();
2021         list_del(&nn->list);
2022         err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2023         rtnl_unlock();
2024         return err;
2025 }
2026 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2027
2028 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2029                                              struct net *net)
2030 {
2031         struct netdev_net_notifier *nn;
2032
2033         list_for_each_entry(nn, &dev->net_notifier_list, list) {
2034                 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2035                 __register_netdevice_notifier_net(net, nn->nb, true);
2036         }
2037 }
2038
2039 /**
2040  *      call_netdevice_notifiers_info - call all network notifier blocks
2041  *      @val: value passed unmodified to notifier function
2042  *      @info: notifier information data
2043  *
2044  *      Call all network notifier blocks.  Parameters and return value
2045  *      are as for raw_notifier_call_chain().
2046  */
2047
2048 static int call_netdevice_notifiers_info(unsigned long val,
2049                                          struct netdev_notifier_info *info)
2050 {
2051         struct net *net = dev_net(info->dev);
2052         int ret;
2053
2054         ASSERT_RTNL();
2055
2056         /* Run per-netns notifier block chain first, then run the global one.
2057          * Hopefully, one day, the global one is going to be removed after
2058          * all notifier block registrators get converted to be per-netns.
2059          */
2060         ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2061         if (ret & NOTIFY_STOP_MASK)
2062                 return ret;
2063         return raw_notifier_call_chain(&netdev_chain, val, info);
2064 }
2065
2066 static int call_netdevice_notifiers_extack(unsigned long val,
2067                                            struct net_device *dev,
2068                                            struct netlink_ext_ack *extack)
2069 {
2070         struct netdev_notifier_info info = {
2071                 .dev = dev,
2072                 .extack = extack,
2073         };
2074
2075         return call_netdevice_notifiers_info(val, &info);
2076 }
2077
2078 /**
2079  *      call_netdevice_notifiers - call all network notifier blocks
2080  *      @val: value passed unmodified to notifier function
2081  *      @dev: net_device pointer passed unmodified to notifier function
2082  *
2083  *      Call all network notifier blocks.  Parameters and return value
2084  *      are as for raw_notifier_call_chain().
2085  */
2086
2087 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2088 {
2089         return call_netdevice_notifiers_extack(val, dev, NULL);
2090 }
2091 EXPORT_SYMBOL(call_netdevice_notifiers);
2092
2093 /**
2094  *      call_netdevice_notifiers_mtu - call all network notifier blocks
2095  *      @val: value passed unmodified to notifier function
2096  *      @dev: net_device pointer passed unmodified to notifier function
2097  *      @arg: additional u32 argument passed to the notifier function
2098  *
2099  *      Call all network notifier blocks.  Parameters and return value
2100  *      are as for raw_notifier_call_chain().
2101  */
2102 static int call_netdevice_notifiers_mtu(unsigned long val,
2103                                         struct net_device *dev, u32 arg)
2104 {
2105         struct netdev_notifier_info_ext info = {
2106                 .info.dev = dev,
2107                 .ext.mtu = arg,
2108         };
2109
2110         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2111
2112         return call_netdevice_notifiers_info(val, &info.info);
2113 }
2114
2115 #ifdef CONFIG_NET_INGRESS
2116 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2117
2118 void net_inc_ingress_queue(void)
2119 {
2120         static_branch_inc(&ingress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2123
2124 void net_dec_ingress_queue(void)
2125 {
2126         static_branch_dec(&ingress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2129 #endif
2130
2131 #ifdef CONFIG_NET_EGRESS
2132 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2133
2134 void net_inc_egress_queue(void)
2135 {
2136         static_branch_inc(&egress_needed_key);
2137 }
2138 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2139
2140 void net_dec_egress_queue(void)
2141 {
2142         static_branch_dec(&egress_needed_key);
2143 }
2144 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2145 #endif
2146
2147 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2148 #ifdef CONFIG_JUMP_LABEL
2149 static atomic_t netstamp_needed_deferred;
2150 static atomic_t netstamp_wanted;
2151 static void netstamp_clear(struct work_struct *work)
2152 {
2153         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2154         int wanted;
2155
2156         wanted = atomic_add_return(deferred, &netstamp_wanted);
2157         if (wanted > 0)
2158                 static_branch_enable(&netstamp_needed_key);
2159         else
2160                 static_branch_disable(&netstamp_needed_key);
2161 }
2162 static DECLARE_WORK(netstamp_work, netstamp_clear);
2163 #endif
2164
2165 void net_enable_timestamp(void)
2166 {
2167 #ifdef CONFIG_JUMP_LABEL
2168         int wanted;
2169
2170         while (1) {
2171                 wanted = atomic_read(&netstamp_wanted);
2172                 if (wanted <= 0)
2173                         break;
2174                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2175                         return;
2176         }
2177         atomic_inc(&netstamp_needed_deferred);
2178         schedule_work(&netstamp_work);
2179 #else
2180         static_branch_inc(&netstamp_needed_key);
2181 #endif
2182 }
2183 EXPORT_SYMBOL(net_enable_timestamp);
2184
2185 void net_disable_timestamp(void)
2186 {
2187 #ifdef CONFIG_JUMP_LABEL
2188         int wanted;
2189
2190         while (1) {
2191                 wanted = atomic_read(&netstamp_wanted);
2192                 if (wanted <= 1)
2193                         break;
2194                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2195                         return;
2196         }
2197         atomic_dec(&netstamp_needed_deferred);
2198         schedule_work(&netstamp_work);
2199 #else
2200         static_branch_dec(&netstamp_needed_key);
2201 #endif
2202 }
2203 EXPORT_SYMBOL(net_disable_timestamp);
2204
2205 static inline void net_timestamp_set(struct sk_buff *skb)
2206 {
2207         skb->tstamp = 0;
2208         if (static_branch_unlikely(&netstamp_needed_key))
2209                 __net_timestamp(skb);
2210 }
2211
2212 #define net_timestamp_check(COND, SKB)                          \
2213         if (static_branch_unlikely(&netstamp_needed_key)) {     \
2214                 if ((COND) && !(SKB)->tstamp)                   \
2215                         __net_timestamp(SKB);                   \
2216         }                                                       \
2217
2218 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2219 {
2220         unsigned int len;
2221
2222         if (!(dev->flags & IFF_UP))
2223                 return false;
2224
2225         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2226         if (skb->len <= len)
2227                 return true;
2228
2229         /* if TSO is enabled, we don't care about the length as the packet
2230          * could be forwarded without being segmented before
2231          */
2232         if (skb_is_gso(skb))
2233                 return true;
2234
2235         return false;
2236 }
2237 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2238
2239 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2240 {
2241         int ret = ____dev_forward_skb(dev, skb);
2242
2243         if (likely(!ret)) {
2244                 skb->protocol = eth_type_trans(skb, dev);
2245                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2246         }
2247
2248         return ret;
2249 }
2250 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2251
2252 /**
2253  * dev_forward_skb - loopback an skb to another netif
2254  *
2255  * @dev: destination network device
2256  * @skb: buffer to forward
2257  *
2258  * return values:
2259  *      NET_RX_SUCCESS  (no congestion)
2260  *      NET_RX_DROP     (packet was dropped, but freed)
2261  *
2262  * dev_forward_skb can be used for injecting an skb from the
2263  * start_xmit function of one device into the receive queue
2264  * of another device.
2265  *
2266  * The receiving device may be in another namespace, so
2267  * we have to clear all information in the skb that could
2268  * impact namespace isolation.
2269  */
2270 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2271 {
2272         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2273 }
2274 EXPORT_SYMBOL_GPL(dev_forward_skb);
2275
2276 static inline int deliver_skb(struct sk_buff *skb,
2277                               struct packet_type *pt_prev,
2278                               struct net_device *orig_dev)
2279 {
2280         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2281                 return -ENOMEM;
2282         refcount_inc(&skb->users);
2283         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2284 }
2285
2286 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2287                                           struct packet_type **pt,
2288                                           struct net_device *orig_dev,
2289                                           __be16 type,
2290                                           struct list_head *ptype_list)
2291 {
2292         struct packet_type *ptype, *pt_prev = *pt;
2293
2294         list_for_each_entry_rcu(ptype, ptype_list, list) {
2295                 if (ptype->type != type)
2296                         continue;
2297                 if (pt_prev)
2298                         deliver_skb(skb, pt_prev, orig_dev);
2299                 pt_prev = ptype;
2300         }
2301         *pt = pt_prev;
2302 }
2303
2304 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2305 {
2306         if (!ptype->af_packet_priv || !skb->sk)
2307                 return false;
2308
2309         if (ptype->id_match)
2310                 return ptype->id_match(ptype, skb->sk);
2311         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2312                 return true;
2313
2314         return false;
2315 }
2316
2317 /**
2318  * dev_nit_active - return true if any network interface taps are in use
2319  *
2320  * @dev: network device to check for the presence of taps
2321  */
2322 bool dev_nit_active(struct net_device *dev)
2323 {
2324         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2325 }
2326 EXPORT_SYMBOL_GPL(dev_nit_active);
2327
2328 /*
2329  *      Support routine. Sends outgoing frames to any network
2330  *      taps currently in use.
2331  */
2332
2333 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2334 {
2335         struct packet_type *ptype;
2336         struct sk_buff *skb2 = NULL;
2337         struct packet_type *pt_prev = NULL;
2338         struct list_head *ptype_list = &ptype_all;
2339
2340         rcu_read_lock();
2341 again:
2342         list_for_each_entry_rcu(ptype, ptype_list, list) {
2343                 if (ptype->ignore_outgoing)
2344                         continue;
2345
2346                 /* Never send packets back to the socket
2347                  * they originated from - MvS ([email protected])
2348                  */
2349                 if (skb_loop_sk(ptype, skb))
2350                         continue;
2351
2352                 if (pt_prev) {
2353                         deliver_skb(skb2, pt_prev, skb->dev);
2354                         pt_prev = ptype;
2355                         continue;
2356                 }
2357
2358                 /* need to clone skb, done only once */
2359                 skb2 = skb_clone(skb, GFP_ATOMIC);
2360                 if (!skb2)
2361                         goto out_unlock;
2362
2363                 net_timestamp_set(skb2);
2364
2365                 /* skb->nh should be correctly
2366                  * set by sender, so that the second statement is
2367                  * just protection against buggy protocols.
2368                  */
2369                 skb_reset_mac_header(skb2);
2370
2371                 if (skb_network_header(skb2) < skb2->data ||
2372                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2373                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2374                                              ntohs(skb2->protocol),
2375                                              dev->name);
2376                         skb_reset_network_header(skb2);
2377                 }
2378
2379                 skb2->transport_header = skb2->network_header;
2380                 skb2->pkt_type = PACKET_OUTGOING;
2381                 pt_prev = ptype;
2382         }
2383
2384         if (ptype_list == &ptype_all) {
2385                 ptype_list = &dev->ptype_all;
2386                 goto again;
2387         }
2388 out_unlock:
2389         if (pt_prev) {
2390                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2391                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2392                 else
2393                         kfree_skb(skb2);
2394         }
2395         rcu_read_unlock();
2396 }
2397 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2398
2399 /**
2400  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2401  * @dev: Network device
2402  * @txq: number of queues available
2403  *
2404  * If real_num_tx_queues is changed the tc mappings may no longer be
2405  * valid. To resolve this verify the tc mapping remains valid and if
2406  * not NULL the mapping. With no priorities mapping to this
2407  * offset/count pair it will no longer be used. In the worst case TC0
2408  * is invalid nothing can be done so disable priority mappings. If is
2409  * expected that drivers will fix this mapping if they can before
2410  * calling netif_set_real_num_tx_queues.
2411  */
2412 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2413 {
2414         int i;
2415         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2416
2417         /* If TC0 is invalidated disable TC mapping */
2418         if (tc->offset + tc->count > txq) {
2419                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2420                 dev->num_tc = 0;
2421                 return;
2422         }
2423
2424         /* Invalidated prio to tc mappings set to TC0 */
2425         for (i = 1; i < TC_BITMASK + 1; i++) {
2426                 int q = netdev_get_prio_tc_map(dev, i);
2427
2428                 tc = &dev->tc_to_txq[q];
2429                 if (tc->offset + tc->count > txq) {
2430                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2431                                 i, q);
2432                         netdev_set_prio_tc_map(dev, i, 0);
2433                 }
2434         }
2435 }
2436
2437 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2438 {
2439         if (dev->num_tc) {
2440                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2441                 int i;
2442
2443                 /* walk through the TCs and see if it falls into any of them */
2444                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2445                         if ((txq - tc->offset) < tc->count)
2446                                 return i;
2447                 }
2448
2449                 /* didn't find it, just return -1 to indicate no match */
2450                 return -1;
2451         }
2452
2453         return 0;
2454 }
2455 EXPORT_SYMBOL(netdev_txq_to_tc);
2456
2457 #ifdef CONFIG_XPS
2458 struct static_key xps_needed __read_mostly;
2459 EXPORT_SYMBOL(xps_needed);
2460 struct static_key xps_rxqs_needed __read_mostly;
2461 EXPORT_SYMBOL(xps_rxqs_needed);
2462 static DEFINE_MUTEX(xps_map_mutex);
2463 #define xmap_dereference(P)             \
2464         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2465
2466 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2467                              int tci, u16 index)
2468 {
2469         struct xps_map *map = NULL;
2470         int pos;
2471
2472         if (dev_maps)
2473                 map = xmap_dereference(dev_maps->attr_map[tci]);
2474         if (!map)
2475                 return false;
2476
2477         for (pos = map->len; pos--;) {
2478                 if (map->queues[pos] != index)
2479                         continue;
2480
2481                 if (map->len > 1) {
2482                         map->queues[pos] = map->queues[--map->len];
2483                         break;
2484                 }
2485
2486                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2487                 kfree_rcu(map, rcu);
2488                 return false;
2489         }
2490
2491         return true;
2492 }
2493
2494 static bool remove_xps_queue_cpu(struct net_device *dev,
2495                                  struct xps_dev_maps *dev_maps,
2496                                  int cpu, u16 offset, u16 count)
2497 {
2498         int num_tc = dev->num_tc ? : 1;
2499         bool active = false;
2500         int tci;
2501
2502         for (tci = cpu * num_tc; num_tc--; tci++) {
2503                 int i, j;
2504
2505                 for (i = count, j = offset; i--; j++) {
2506                         if (!remove_xps_queue(dev_maps, tci, j))
2507                                 break;
2508                 }
2509
2510                 active |= i < 0;
2511         }
2512
2513         return active;
2514 }
2515
2516 static void reset_xps_maps(struct net_device *dev,
2517                            struct xps_dev_maps *dev_maps,
2518                            bool is_rxqs_map)
2519 {
2520         if (is_rxqs_map) {
2521                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2522                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2523         } else {
2524                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2525         }
2526         static_key_slow_dec_cpuslocked(&xps_needed);
2527         kfree_rcu(dev_maps, rcu);
2528 }
2529
2530 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2531                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2532                            u16 offset, u16 count, bool is_rxqs_map)
2533 {
2534         bool active = false;
2535         int i, j;
2536
2537         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2538              j < nr_ids;)
2539                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2540                                                count);
2541         if (!active)
2542                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2543
2544         if (!is_rxqs_map) {
2545                 for (i = offset + (count - 1); count--; i--) {
2546                         netdev_queue_numa_node_write(
2547                                 netdev_get_tx_queue(dev, i),
2548                                 NUMA_NO_NODE);
2549                 }
2550         }
2551 }
2552
2553 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2554                                    u16 count)
2555 {
2556         const unsigned long *possible_mask = NULL;
2557         struct xps_dev_maps *dev_maps;
2558         unsigned int nr_ids;
2559
2560         if (!static_key_false(&xps_needed))
2561                 return;
2562
2563         cpus_read_lock();
2564         mutex_lock(&xps_map_mutex);
2565
2566         if (static_key_false(&xps_rxqs_needed)) {
2567                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2568                 if (dev_maps) {
2569                         nr_ids = dev->num_rx_queues;
2570                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2571                                        offset, count, true);
2572                 }
2573         }
2574
2575         dev_maps = xmap_dereference(dev->xps_cpus_map);
2576         if (!dev_maps)
2577                 goto out_no_maps;
2578
2579         if (num_possible_cpus() > 1)
2580                 possible_mask = cpumask_bits(cpu_possible_mask);
2581         nr_ids = nr_cpu_ids;
2582         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2583                        false);
2584
2585 out_no_maps:
2586         mutex_unlock(&xps_map_mutex);
2587         cpus_read_unlock();
2588 }
2589
2590 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2591 {
2592         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2593 }
2594
2595 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2596                                       u16 index, bool is_rxqs_map)
2597 {
2598         struct xps_map *new_map;
2599         int alloc_len = XPS_MIN_MAP_ALLOC;
2600         int i, pos;
2601
2602         for (pos = 0; map && pos < map->len; pos++) {
2603                 if (map->queues[pos] != index)
2604                         continue;
2605                 return map;
2606         }
2607
2608         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2609         if (map) {
2610                 if (pos < map->alloc_len)
2611                         return map;
2612
2613                 alloc_len = map->alloc_len * 2;
2614         }
2615
2616         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2617          *  map
2618          */
2619         if (is_rxqs_map)
2620                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2621         else
2622                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2623                                        cpu_to_node(attr_index));
2624         if (!new_map)
2625                 return NULL;
2626
2627         for (i = 0; i < pos; i++)
2628                 new_map->queues[i] = map->queues[i];
2629         new_map->alloc_len = alloc_len;
2630         new_map->len = pos;
2631
2632         return new_map;
2633 }
2634
2635 /* Must be called under cpus_read_lock */
2636 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2637                           u16 index, bool is_rxqs_map)
2638 {
2639         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2640         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2641         int i, j, tci, numa_node_id = -2;
2642         int maps_sz, num_tc = 1, tc = 0;
2643         struct xps_map *map, *new_map;
2644         bool active = false;
2645         unsigned int nr_ids;
2646
2647         if (dev->num_tc) {
2648                 /* Do not allow XPS on subordinate device directly */
2649                 num_tc = dev->num_tc;
2650                 if (num_tc < 0)
2651                         return -EINVAL;
2652
2653                 /* If queue belongs to subordinate dev use its map */
2654                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2655
2656                 tc = netdev_txq_to_tc(dev, index);
2657                 if (tc < 0)
2658                         return -EINVAL;
2659         }
2660
2661         mutex_lock(&xps_map_mutex);
2662         if (is_rxqs_map) {
2663                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2664                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2665                 nr_ids = dev->num_rx_queues;
2666         } else {
2667                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2668                 if (num_possible_cpus() > 1) {
2669                         online_mask = cpumask_bits(cpu_online_mask);
2670                         possible_mask = cpumask_bits(cpu_possible_mask);
2671                 }
2672                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2673                 nr_ids = nr_cpu_ids;
2674         }
2675
2676         if (maps_sz < L1_CACHE_BYTES)
2677                 maps_sz = L1_CACHE_BYTES;
2678
2679         /* allocate memory for queue storage */
2680         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2681              j < nr_ids;) {
2682                 if (!new_dev_maps)
2683                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2684                 if (!new_dev_maps) {
2685                         mutex_unlock(&xps_map_mutex);
2686                         return -ENOMEM;
2687                 }
2688
2689                 tci = j * num_tc + tc;
2690                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2691                                  NULL;
2692
2693                 map = expand_xps_map(map, j, index, is_rxqs_map);
2694                 if (!map)
2695                         goto error;
2696
2697                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2698         }
2699
2700         if (!new_dev_maps)
2701                 goto out_no_new_maps;
2702
2703         if (!dev_maps) {
2704                 /* Increment static keys at most once per type */
2705                 static_key_slow_inc_cpuslocked(&xps_needed);
2706                 if (is_rxqs_map)
2707                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2708         }
2709
2710         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2711              j < nr_ids;) {
2712                 /* copy maps belonging to foreign traffic classes */
2713                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2714                         /* fill in the new device map from the old device map */
2715                         map = xmap_dereference(dev_maps->attr_map[tci]);
2716                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2717                 }
2718
2719                 /* We need to explicitly update tci as prevous loop
2720                  * could break out early if dev_maps is NULL.
2721                  */
2722                 tci = j * num_tc + tc;
2723
2724                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2725                     netif_attr_test_online(j, online_mask, nr_ids)) {
2726                         /* add tx-queue to CPU/rx-queue maps */
2727                         int pos = 0;
2728
2729                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2730                         while ((pos < map->len) && (map->queues[pos] != index))
2731                                 pos++;
2732
2733                         if (pos == map->len)
2734                                 map->queues[map->len++] = index;
2735 #ifdef CONFIG_NUMA
2736                         if (!is_rxqs_map) {
2737                                 if (numa_node_id == -2)
2738                                         numa_node_id = cpu_to_node(j);
2739                                 else if (numa_node_id != cpu_to_node(j))
2740                                         numa_node_id = -1;
2741                         }
2742 #endif
2743                 } else if (dev_maps) {
2744                         /* fill in the new device map from the old device map */
2745                         map = xmap_dereference(dev_maps->attr_map[tci]);
2746                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2747                 }
2748
2749                 /* copy maps belonging to foreign traffic classes */
2750                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2751                         /* fill in the new device map from the old device map */
2752                         map = xmap_dereference(dev_maps->attr_map[tci]);
2753                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2754                 }
2755         }
2756
2757         if (is_rxqs_map)
2758                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2759         else
2760                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2761
2762         /* Cleanup old maps */
2763         if (!dev_maps)
2764                 goto out_no_old_maps;
2765
2766         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2767              j < nr_ids;) {
2768                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2769                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2770                         map = xmap_dereference(dev_maps->attr_map[tci]);
2771                         if (map && map != new_map)
2772                                 kfree_rcu(map, rcu);
2773                 }
2774         }
2775
2776         kfree_rcu(dev_maps, rcu);
2777
2778 out_no_old_maps:
2779         dev_maps = new_dev_maps;
2780         active = true;
2781
2782 out_no_new_maps:
2783         if (!is_rxqs_map) {
2784                 /* update Tx queue numa node */
2785                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2786                                              (numa_node_id >= 0) ?
2787                                              numa_node_id : NUMA_NO_NODE);
2788         }
2789
2790         if (!dev_maps)
2791                 goto out_no_maps;
2792
2793         /* removes tx-queue from unused CPUs/rx-queues */
2794         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2795              j < nr_ids;) {
2796                 for (i = tc, tci = j * num_tc; i--; tci++)
2797                         active |= remove_xps_queue(dev_maps, tci, index);
2798                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2799                     !netif_attr_test_online(j, online_mask, nr_ids))
2800                         active |= remove_xps_queue(dev_maps, tci, index);
2801                 for (i = num_tc - tc, tci++; --i; tci++)
2802                         active |= remove_xps_queue(dev_maps, tci, index);
2803         }
2804
2805         /* free map if not active */
2806         if (!active)
2807                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2808
2809 out_no_maps:
2810         mutex_unlock(&xps_map_mutex);
2811
2812         return 0;
2813 error:
2814         /* remove any maps that we added */
2815         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2816              j < nr_ids;) {
2817                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2818                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819                         map = dev_maps ?
2820                               xmap_dereference(dev_maps->attr_map[tci]) :
2821                               NULL;
2822                         if (new_map && new_map != map)
2823                                 kfree(new_map);
2824                 }
2825         }
2826
2827         mutex_unlock(&xps_map_mutex);
2828
2829         kfree(new_dev_maps);
2830         return -ENOMEM;
2831 }
2832 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2833
2834 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2835                         u16 index)
2836 {
2837         int ret;
2838
2839         cpus_read_lock();
2840         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2841         cpus_read_unlock();
2842
2843         return ret;
2844 }
2845 EXPORT_SYMBOL(netif_set_xps_queue);
2846
2847 #endif
2848 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2849 {
2850         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2851
2852         /* Unbind any subordinate channels */
2853         while (txq-- != &dev->_tx[0]) {
2854                 if (txq->sb_dev)
2855                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2856         }
2857 }
2858
2859 void netdev_reset_tc(struct net_device *dev)
2860 {
2861 #ifdef CONFIG_XPS
2862         netif_reset_xps_queues_gt(dev, 0);
2863 #endif
2864         netdev_unbind_all_sb_channels(dev);
2865
2866         /* Reset TC configuration of device */
2867         dev->num_tc = 0;
2868         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2869         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2870 }
2871 EXPORT_SYMBOL(netdev_reset_tc);
2872
2873 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2874 {
2875         if (tc >= dev->num_tc)
2876                 return -EINVAL;
2877
2878 #ifdef CONFIG_XPS
2879         netif_reset_xps_queues(dev, offset, count);
2880 #endif
2881         dev->tc_to_txq[tc].count = count;
2882         dev->tc_to_txq[tc].offset = offset;
2883         return 0;
2884 }
2885 EXPORT_SYMBOL(netdev_set_tc_queue);
2886
2887 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2888 {
2889         if (num_tc > TC_MAX_QUEUE)
2890                 return -EINVAL;
2891
2892 #ifdef CONFIG_XPS
2893         netif_reset_xps_queues_gt(dev, 0);
2894 #endif
2895         netdev_unbind_all_sb_channels(dev);
2896
2897         dev->num_tc = num_tc;
2898         return 0;
2899 }
2900 EXPORT_SYMBOL(netdev_set_num_tc);
2901
2902 void netdev_unbind_sb_channel(struct net_device *dev,
2903                               struct net_device *sb_dev)
2904 {
2905         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2906
2907 #ifdef CONFIG_XPS
2908         netif_reset_xps_queues_gt(sb_dev, 0);
2909 #endif
2910         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2911         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2912
2913         while (txq-- != &dev->_tx[0]) {
2914                 if (txq->sb_dev == sb_dev)
2915                         txq->sb_dev = NULL;
2916         }
2917 }
2918 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2919
2920 int netdev_bind_sb_channel_queue(struct net_device *dev,
2921                                  struct net_device *sb_dev,
2922                                  u8 tc, u16 count, u16 offset)
2923 {
2924         /* Make certain the sb_dev and dev are already configured */
2925         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2926                 return -EINVAL;
2927
2928         /* We cannot hand out queues we don't have */
2929         if ((offset + count) > dev->real_num_tx_queues)
2930                 return -EINVAL;
2931
2932         /* Record the mapping */
2933         sb_dev->tc_to_txq[tc].count = count;
2934         sb_dev->tc_to_txq[tc].offset = offset;
2935
2936         /* Provide a way for Tx queue to find the tc_to_txq map or
2937          * XPS map for itself.
2938          */
2939         while (count--)
2940                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2941
2942         return 0;
2943 }
2944 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2945
2946 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2947 {
2948         /* Do not use a multiqueue device to represent a subordinate channel */
2949         if (netif_is_multiqueue(dev))
2950                 return -ENODEV;
2951
2952         /* We allow channels 1 - 32767 to be used for subordinate channels.
2953          * Channel 0 is meant to be "native" mode and used only to represent
2954          * the main root device. We allow writing 0 to reset the device back
2955          * to normal mode after being used as a subordinate channel.
2956          */
2957         if (channel > S16_MAX)
2958                 return -EINVAL;
2959
2960         dev->num_tc = -channel;
2961
2962         return 0;
2963 }
2964 EXPORT_SYMBOL(netdev_set_sb_channel);
2965
2966 /*
2967  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2968  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2969  */
2970 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2971 {
2972         bool disabling;
2973         int rc;
2974
2975         disabling = txq < dev->real_num_tx_queues;
2976
2977         if (txq < 1 || txq > dev->num_tx_queues)
2978                 return -EINVAL;
2979
2980         if (dev->reg_state == NETREG_REGISTERED ||
2981             dev->reg_state == NETREG_UNREGISTERING) {
2982                 ASSERT_RTNL();
2983
2984                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2985                                                   txq);
2986                 if (rc)
2987                         return rc;
2988
2989                 if (dev->num_tc)
2990                         netif_setup_tc(dev, txq);
2991
2992                 dev->real_num_tx_queues = txq;
2993
2994                 if (disabling) {
2995                         synchronize_net();
2996                         qdisc_reset_all_tx_gt(dev, txq);
2997 #ifdef CONFIG_XPS
2998                         netif_reset_xps_queues_gt(dev, txq);
2999 #endif
3000                 }
3001         } else {
3002                 dev->real_num_tx_queues = txq;
3003         }
3004
3005         return 0;
3006 }
3007 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3008
3009 #ifdef CONFIG_SYSFS
3010 /**
3011  *      netif_set_real_num_rx_queues - set actual number of RX queues used
3012  *      @dev: Network device
3013  *      @rxq: Actual number of RX queues
3014  *
3015  *      This must be called either with the rtnl_lock held or before
3016  *      registration of the net device.  Returns 0 on success, or a
3017  *      negative error code.  If called before registration, it always
3018  *      succeeds.
3019  */
3020 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3021 {
3022         int rc;
3023
3024         if (rxq < 1 || rxq > dev->num_rx_queues)
3025                 return -EINVAL;
3026
3027         if (dev->reg_state == NETREG_REGISTERED) {
3028                 ASSERT_RTNL();
3029
3030                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3031                                                   rxq);
3032                 if (rc)
3033                         return rc;
3034         }
3035
3036         dev->real_num_rx_queues = rxq;
3037         return 0;
3038 }
3039 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3040 #endif
3041
3042 /**
3043  * netif_get_num_default_rss_queues - default number of RSS queues
3044  *
3045  * This routine should set an upper limit on the number of RSS queues
3046  * used by default by multiqueue devices.
3047  */
3048 int netif_get_num_default_rss_queues(void)
3049 {
3050         return is_kdump_kernel() ?
3051                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3052 }
3053 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3054
3055 static void __netif_reschedule(struct Qdisc *q)
3056 {
3057         struct softnet_data *sd;
3058         unsigned long flags;
3059
3060         local_irq_save(flags);
3061         sd = this_cpu_ptr(&softnet_data);
3062         q->next_sched = NULL;
3063         *sd->output_queue_tailp = q;
3064         sd->output_queue_tailp = &q->next_sched;
3065         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3066         local_irq_restore(flags);
3067 }
3068
3069 void __netif_schedule(struct Qdisc *q)
3070 {
3071         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3072                 __netif_reschedule(q);
3073 }
3074 EXPORT_SYMBOL(__netif_schedule);
3075
3076 struct dev_kfree_skb_cb {
3077         enum skb_free_reason reason;
3078 };
3079
3080 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3081 {
3082         return (struct dev_kfree_skb_cb *)skb->cb;
3083 }
3084
3085 void netif_schedule_queue(struct netdev_queue *txq)
3086 {
3087         rcu_read_lock();
3088         if (!netif_xmit_stopped(txq)) {
3089                 struct Qdisc *q = rcu_dereference(txq->qdisc);
3090
3091                 __netif_schedule(q);
3092         }
3093         rcu_read_unlock();
3094 }
3095 EXPORT_SYMBOL(netif_schedule_queue);
3096
3097 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3098 {
3099         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3100                 struct Qdisc *q;
3101
3102                 rcu_read_lock();
3103                 q = rcu_dereference(dev_queue->qdisc);
3104                 __netif_schedule(q);
3105                 rcu_read_unlock();
3106         }
3107 }
3108 EXPORT_SYMBOL(netif_tx_wake_queue);
3109
3110 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3111 {
3112         unsigned long flags;
3113
3114         if (unlikely(!skb))
3115                 return;
3116
3117         if (likely(refcount_read(&skb->users) == 1)) {
3118                 smp_rmb();
3119                 refcount_set(&skb->users, 0);
3120         } else if (likely(!refcount_dec_and_test(&skb->users))) {
3121                 return;
3122         }
3123         get_kfree_skb_cb(skb)->reason = reason;
3124         local_irq_save(flags);
3125         skb->next = __this_cpu_read(softnet_data.completion_queue);
3126         __this_cpu_write(softnet_data.completion_queue, skb);
3127         raise_softirq_irqoff(NET_TX_SOFTIRQ);
3128         local_irq_restore(flags);
3129 }
3130 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3131
3132 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3133 {
3134         if (in_irq() || irqs_disabled())
3135                 __dev_kfree_skb_irq(skb, reason);
3136         else
3137                 dev_kfree_skb(skb);
3138 }
3139 EXPORT_SYMBOL(__dev_kfree_skb_any);
3140
3141
3142 /**
3143  * netif_device_detach - mark device as removed
3144  * @dev: network device
3145  *
3146  * Mark device as removed from system and therefore no longer available.
3147  */
3148 void netif_device_detach(struct net_device *dev)
3149 {
3150         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3151             netif_running(dev)) {
3152                 netif_tx_stop_all_queues(dev);
3153         }
3154 }
3155 EXPORT_SYMBOL(netif_device_detach);
3156
3157 /**
3158  * netif_device_attach - mark device as attached
3159  * @dev: network device
3160  *
3161  * Mark device as attached from system and restart if needed.
3162  */
3163 void netif_device_attach(struct net_device *dev)
3164 {
3165         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3166             netif_running(dev)) {
3167                 netif_tx_wake_all_queues(dev);
3168                 __netdev_watchdog_up(dev);
3169         }
3170 }
3171 EXPORT_SYMBOL(netif_device_attach);
3172
3173 /*
3174  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3175  * to be used as a distribution range.
3176  */
3177 static u16 skb_tx_hash(const struct net_device *dev,
3178                        const struct net_device *sb_dev,
3179                        struct sk_buff *skb)
3180 {
3181         u32 hash;
3182         u16 qoffset = 0;
3183         u16 qcount = dev->real_num_tx_queues;
3184
3185         if (dev->num_tc) {
3186                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3187
3188                 qoffset = sb_dev->tc_to_txq[tc].offset;
3189                 qcount = sb_dev->tc_to_txq[tc].count;
3190         }
3191
3192         if (skb_rx_queue_recorded(skb)) {
3193                 hash = skb_get_rx_queue(skb);
3194                 if (hash >= qoffset)
3195                         hash -= qoffset;
3196                 while (unlikely(hash >= qcount))
3197                         hash -= qcount;
3198                 return hash + qoffset;
3199         }
3200
3201         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3202 }
3203
3204 static void skb_warn_bad_offload(const struct sk_buff *skb)
3205 {
3206         static const netdev_features_t null_features;
3207         struct net_device *dev = skb->dev;
3208         const char *name = "";
3209
3210         if (!net_ratelimit())
3211                 return;
3212
3213         if (dev) {
3214                 if (dev->dev.parent)
3215                         name = dev_driver_string(dev->dev.parent);
3216                 else
3217                         name = netdev_name(dev);
3218         }
3219         skb_dump(KERN_WARNING, skb, false);
3220         WARN(1, "%s: caps=(%pNF, %pNF)\n",
3221              name, dev ? &dev->features : &null_features,
3222              skb->sk ? &skb->sk->sk_route_caps : &null_features);
3223 }
3224
3225 /*
3226  * Invalidate hardware checksum when packet is to be mangled, and
3227  * complete checksum manually on outgoing path.
3228  */
3229 int skb_checksum_help(struct sk_buff *skb)
3230 {
3231         __wsum csum;
3232         int ret = 0, offset;
3233
3234         if (skb->ip_summed == CHECKSUM_COMPLETE)
3235                 goto out_set_summed;
3236
3237         if (unlikely(skb_is_gso(skb))) {
3238                 skb_warn_bad_offload(skb);
3239                 return -EINVAL;
3240         }
3241
3242         /* Before computing a checksum, we should make sure no frag could
3243          * be modified by an external entity : checksum could be wrong.
3244          */
3245         if (skb_has_shared_frag(skb)) {
3246                 ret = __skb_linearize(skb);
3247                 if (ret)
3248                         goto out;
3249         }
3250
3251         offset = skb_checksum_start_offset(skb);
3252         BUG_ON(offset >= skb_headlen(skb));
3253         csum = skb_checksum(skb, offset, skb->len - offset, 0);
3254
3255         offset += skb->csum_offset;
3256         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3257
3258         ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3259         if (ret)
3260                 goto out;
3261
3262         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3263 out_set_summed:
3264         skb->ip_summed = CHECKSUM_NONE;
3265 out:
3266         return ret;
3267 }
3268 EXPORT_SYMBOL(skb_checksum_help);
3269
3270 int skb_crc32c_csum_help(struct sk_buff *skb)
3271 {
3272         __le32 crc32c_csum;
3273         int ret = 0, offset, start;
3274
3275         if (skb->ip_summed != CHECKSUM_PARTIAL)
3276                 goto out;
3277
3278         if (unlikely(skb_is_gso(skb)))
3279                 goto out;
3280
3281         /* Before computing a checksum, we should make sure no frag could
3282          * be modified by an external entity : checksum could be wrong.
3283          */
3284         if (unlikely(skb_has_shared_frag(skb))) {
3285                 ret = __skb_linearize(skb);
3286                 if (ret)
3287                         goto out;
3288         }
3289         start = skb_checksum_start_offset(skb);
3290         offset = start + offsetof(struct sctphdr, checksum);
3291         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3292                 ret = -EINVAL;
3293                 goto out;
3294         }
3295
3296         ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3297         if (ret)
3298                 goto out;
3299
3300         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3301                                                   skb->len - start, ~(__u32)0,
3302                                                   crc32c_csum_stub));
3303         *(__le32 *)(skb->data + offset) = crc32c_csum;
3304         skb->ip_summed = CHECKSUM_NONE;
3305         skb->csum_not_inet = 0;
3306 out:
3307         return ret;
3308 }
3309
3310 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3311 {
3312         __be16 type = skb->protocol;
3313
3314         /* Tunnel gso handlers can set protocol to ethernet. */
3315         if (type == htons(ETH_P_TEB)) {
3316                 struct ethhdr *eth;
3317
3318                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3319                         return 0;
3320
3321                 eth = (struct ethhdr *)skb->data;
3322                 type = eth->h_proto;
3323         }
3324
3325         return __vlan_get_protocol(skb, type, depth);
3326 }
3327
3328 /**
3329  *      skb_mac_gso_segment - mac layer segmentation handler.
3330  *      @skb: buffer to segment
3331  *      @features: features for the output path (see dev->features)
3332  */
3333 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3334                                     netdev_features_t features)
3335 {
3336         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3337         struct packet_offload *ptype;
3338         int vlan_depth = skb->mac_len;
3339         __be16 type = skb_network_protocol(skb, &vlan_depth);
3340
3341         if (unlikely(!type))
3342                 return ERR_PTR(-EINVAL);
3343
3344         __skb_pull(skb, vlan_depth);
3345
3346         rcu_read_lock();
3347         list_for_each_entry_rcu(ptype, &offload_base, list) {
3348                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3349                         segs = ptype->callbacks.gso_segment(skb, features);
3350                         break;
3351                 }
3352         }
3353         rcu_read_unlock();
3354
3355         __skb_push(skb, skb->data - skb_mac_header(skb));
3356
3357         return segs;
3358 }
3359 EXPORT_SYMBOL(skb_mac_gso_segment);
3360
3361
3362 /* openvswitch calls this on rx path, so we need a different check.
3363  */
3364 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3365 {
3366         if (tx_path)
3367                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3368                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3369
3370         return skb->ip_summed == CHECKSUM_NONE;
3371 }
3372
3373 /**
3374  *      __skb_gso_segment - Perform segmentation on skb.
3375  *      @skb: buffer to segment
3376  *      @features: features for the output path (see dev->features)
3377  *      @tx_path: whether it is called in TX path
3378  *
3379  *      This function segments the given skb and returns a list of segments.
3380  *
3381  *      It may return NULL if the skb requires no segmentation.  This is
3382  *      only possible when GSO is used for verifying header integrity.
3383  *
3384  *      Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3385  */
3386 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3387                                   netdev_features_t features, bool tx_path)
3388 {
3389         struct sk_buff *segs;
3390
3391         if (unlikely(skb_needs_check(skb, tx_path))) {
3392                 int err;
3393
3394                 /* We're going to init ->check field in TCP or UDP header */
3395                 err = skb_cow_head(skb, 0);
3396                 if (err < 0)
3397                         return ERR_PTR(err);
3398         }
3399
3400         /* Only report GSO partial support if it will enable us to
3401          * support segmentation on this frame without needing additional
3402          * work.
3403          */
3404         if (features & NETIF_F_GSO_PARTIAL) {
3405                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3406                 struct net_device *dev = skb->dev;
3407
3408                 partial_features |= dev->features & dev->gso_partial_features;
3409                 if (!skb_gso_ok(skb, features | partial_features))
3410                         features &= ~NETIF_F_GSO_PARTIAL;
3411         }
3412
3413         BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3414                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3415
3416         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3417         SKB_GSO_CB(skb)->encap_level = 0;
3418
3419         skb_reset_mac_header(skb);
3420         skb_reset_mac_len(skb);
3421
3422         segs = skb_mac_gso_segment(skb, features);
3423
3424         if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3425                 skb_warn_bad_offload(skb);
3426
3427         return segs;
3428 }
3429 EXPORT_SYMBOL(__skb_gso_segment);
3430
3431 /* Take action when hardware reception checksum errors are detected. */
3432 #ifdef CONFIG_BUG
3433 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3434 {
3435         if (net_ratelimit()) {
3436                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3437                 skb_dump(KERN_ERR, skb, true);
3438                 dump_stack();
3439         }
3440 }
3441 EXPORT_SYMBOL(netdev_rx_csum_fault);
3442 #endif
3443
3444 /* XXX: check that highmem exists at all on the given machine. */
3445 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3446 {
3447 #ifdef CONFIG_HIGHMEM
3448         int i;
3449
3450         if (!(dev->features & NETIF_F_HIGHDMA)) {
3451                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3452                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3453
3454                         if (PageHighMem(skb_frag_page(frag)))
3455                                 return 1;
3456                 }
3457         }
3458 #endif
3459         return 0;
3460 }
3461
3462 /* If MPLS offload request, verify we are testing hardware MPLS features
3463  * instead of standard features for the netdev.
3464  */
3465 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3466 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3467                                            netdev_features_t features,
3468                                            __be16 type)
3469 {
3470         if (eth_p_mpls(type))
3471                 features &= skb->dev->mpls_features;
3472
3473         return features;
3474 }
3475 #else
3476 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3477                                            netdev_features_t features,
3478                                            __be16 type)
3479 {
3480         return features;
3481 }
3482 #endif
3483
3484 static netdev_features_t harmonize_features(struct sk_buff *skb,
3485         netdev_features_t features)
3486 {
3487         __be16 type;
3488
3489         type = skb_network_protocol(skb, NULL);
3490         features = net_mpls_features(skb, features, type);
3491
3492         if (skb->ip_summed != CHECKSUM_NONE &&
3493             !can_checksum_protocol(features, type)) {
3494                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3495         }
3496         if (illegal_highdma(skb->dev, skb))
3497                 features &= ~NETIF_F_SG;
3498
3499         return features;
3500 }
3501
3502 netdev_features_t passthru_features_check(struct sk_buff *skb,
3503                                           struct net_device *dev,
3504                                           netdev_features_t features)
3505 {
3506         return features;
3507 }
3508 EXPORT_SYMBOL(passthru_features_check);
3509
3510 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3511                                              struct net_device *dev,
3512                                              netdev_features_t features)
3513 {
3514         return vlan_features_check(skb, features);
3515 }
3516
3517 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3518                                             struct net_device *dev,
3519                                             netdev_features_t features)
3520 {
3521         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3522
3523         if (gso_segs > dev->gso_max_segs)
3524                 return features & ~NETIF_F_GSO_MASK;
3525
3526         if (!skb_shinfo(skb)->gso_type) {
3527                 skb_warn_bad_offload(skb);
3528                 return features & ~NETIF_F_GSO_MASK;
3529         }
3530
3531         /* Support for GSO partial features requires software
3532          * intervention before we can actually process the packets
3533          * so we need to strip support for any partial features now
3534          * and we can pull them back in after we have partially
3535          * segmented the frame.
3536          */
3537         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3538                 features &= ~dev->gso_partial_features;
3539
3540         /* Make sure to clear the IPv4 ID mangling feature if the
3541          * IPv4 header has the potential to be fragmented.
3542          */
3543         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3544                 struct iphdr *iph = skb->encapsulation ?
3545                                     inner_ip_hdr(skb) : ip_hdr(skb);
3546
3547                 if (!(iph->frag_off & htons(IP_DF)))
3548                         features &= ~NETIF_F_TSO_MANGLEID;
3549         }
3550
3551         return features;
3552 }
3553
3554 netdev_features_t netif_skb_features(struct sk_buff *skb)
3555 {
3556         struct net_device *dev = skb->dev;
3557         netdev_features_t features = dev->features;
3558
3559         if (skb_is_gso(skb))
3560                 features = gso_features_check(skb, dev, features);
3561
3562         /* If encapsulation offload request, verify we are testing
3563          * hardware encapsulation features instead of standard
3564          * features for the netdev
3565          */
3566         if (skb->encapsulation)
3567                 features &= dev->hw_enc_features;
3568
3569         if (skb_vlan_tagged(skb))
3570                 features = netdev_intersect_features(features,
3571                                                      dev->vlan_features |
3572                                                      NETIF_F_HW_VLAN_CTAG_TX |
3573                                                      NETIF_F_HW_VLAN_STAG_TX);
3574
3575         if (dev->netdev_ops->ndo_features_check)
3576                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3577                                                                 features);
3578         else
3579                 features &= dflt_features_check(skb, dev, features);
3580
3581         return harmonize_features(skb, features);
3582 }
3583 EXPORT_SYMBOL(netif_skb_features);
3584
3585 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3586                     struct netdev_queue *txq, bool more)
3587 {
3588         unsigned int len;
3589         int rc;
3590
3591         if (dev_nit_active(dev))
3592                 dev_queue_xmit_nit(skb, dev);
3593
3594         len = skb->len;
3595         PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3596         trace_net_dev_start_xmit(skb, dev);
3597         rc = netdev_start_xmit(skb, dev, txq, more);
3598         trace_net_dev_xmit(skb, rc, dev, len);
3599
3600         return rc;
3601 }
3602
3603 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3604                                     struct netdev_queue *txq, int *ret)
3605 {
3606         struct sk_buff *skb = first;
3607         int rc = NETDEV_TX_OK;
3608
3609         while (skb) {
3610                 struct sk_buff *next = skb->next;
3611
3612                 skb_mark_not_on_list(skb);
3613                 rc = xmit_one(skb, dev, txq, next != NULL);
3614                 if (unlikely(!dev_xmit_complete(rc))) {
3615                         skb->next = next;
3616                         goto out;
3617                 }
3618
3619                 skb = next;
3620                 if (netif_tx_queue_stopped(txq) && skb) {
3621                         rc = NETDEV_TX_BUSY;
3622                         break;
3623                 }
3624         }
3625
3626 out:
3627         *ret = rc;
3628         return skb;
3629 }
3630
3631 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3632                                           netdev_features_t features)
3633 {
3634         if (skb_vlan_tag_present(skb) &&
3635             !vlan_hw_offload_capable(features, skb->vlan_proto))
3636                 skb = __vlan_hwaccel_push_inside(skb);
3637         return skb;
3638 }
3639
3640 int skb_csum_hwoffload_help(struct sk_buff *skb,
3641                             const netdev_features_t features)
3642 {
3643         if (unlikely(skb_csum_is_sctp(skb)))
3644                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3645                         skb_crc32c_csum_help(skb);
3646
3647         if (features & NETIF_F_HW_CSUM)
3648                 return 0;
3649
3650         if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3651                 switch (skb->csum_offset) {
3652                 case offsetof(struct tcphdr, check):
3653                 case offsetof(struct udphdr, check):
3654                         return 0;
3655                 }
3656         }
3657
3658         return skb_checksum_help(skb);
3659 }
3660 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3661
3662 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3663 {
3664         netdev_features_t features;
3665
3666         features = netif_skb_features(skb);
3667         skb = validate_xmit_vlan(skb, features);
3668         if (unlikely(!skb))
3669                 goto out_null;
3670
3671         skb = sk_validate_xmit_skb(skb, dev);
3672         if (unlikely(!skb))
3673                 goto out_null;
3674
3675         if (netif_needs_gso(skb, features)) {
3676                 struct sk_buff *segs;
3677
3678                 segs = skb_gso_segment(skb, features);
3679                 if (IS_ERR(segs)) {
3680                         goto out_kfree_skb;
3681                 } else if (segs) {
3682                         consume_skb(skb);
3683                         skb = segs;
3684                 }
3685         } else {
3686                 if (skb_needs_linearize(skb, features) &&
3687                     __skb_linearize(skb))
3688                         goto out_kfree_skb;
3689
3690                 /* If packet is not checksummed and device does not
3691                  * support checksumming for this protocol, complete
3692                  * checksumming here.
3693                  */
3694                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3695                         if (skb->encapsulation)
3696                                 skb_set_inner_transport_header(skb,
3697                                                                skb_checksum_start_offset(skb));
3698                         else
3699                                 skb_set_transport_header(skb,
3700                                                          skb_checksum_start_offset(skb));
3701                         if (skb_csum_hwoffload_help(skb, features))
3702                                 goto out_kfree_skb;
3703                 }
3704         }
3705
3706         skb = validate_xmit_xfrm(skb, features, again);
3707
3708         return skb;
3709
3710 out_kfree_skb:
3711         kfree_skb(skb);
3712 out_null:
3713         atomic_long_inc(&dev->tx_dropped);
3714         return NULL;
3715 }
3716
3717 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3718 {
3719         struct sk_buff *next, *head = NULL, *tail;
3720
3721         for (; skb != NULL; skb = next) {
3722                 next = skb->next;
3723                 skb_mark_not_on_list(skb);
3724
3725                 /* in case skb wont be segmented, point to itself */
3726                 skb->prev = skb;
3727
3728                 skb = validate_xmit_skb(skb, dev, again);
3729                 if (!skb)
3730                         continue;
3731
3732                 if (!head)
3733                         head = skb;
3734                 else
3735                         tail->next = skb;
3736                 /* If skb was segmented, skb->prev points to
3737                  * the last segment. If not, it still contains skb.
3738                  */
3739                 tail = skb->prev;
3740         }
3741         return head;
3742 }
3743 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3744
3745 static void qdisc_pkt_len_init(struct sk_buff *skb)
3746 {
3747         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3748
3749         qdisc_skb_cb(skb)->pkt_len = skb->len;
3750
3751         /* To get more precise estimation of bytes sent on wire,
3752          * we add to pkt_len the headers size of all segments
3753          */
3754         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3755                 unsigned int hdr_len;
3756                 u16 gso_segs = shinfo->gso_segs;
3757
3758                 /* mac layer + network layer */
3759                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3760
3761                 /* + transport layer */
3762                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3763                         const struct tcphdr *th;
3764                         struct tcphdr _tcphdr;
3765
3766                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3767                                                 sizeof(_tcphdr), &_tcphdr);
3768                         if (likely(th))
3769                                 hdr_len += __tcp_hdrlen(th);
3770                 } else {
3771                         struct udphdr _udphdr;
3772
3773                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3774                                                sizeof(_udphdr), &_udphdr))
3775                                 hdr_len += sizeof(struct udphdr);
3776                 }
3777
3778                 if (shinfo->gso_type & SKB_GSO_DODGY)
3779                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3780                                                 shinfo->gso_size);
3781
3782                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3783         }
3784 }
3785
3786 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3787                                  struct net_device *dev,
3788                                  struct netdev_queue *txq)
3789 {
3790         spinlock_t *root_lock = qdisc_lock(q);
3791         struct sk_buff *to_free = NULL;
3792         bool contended;
3793         int rc;
3794
3795         qdisc_calculate_pkt_len(skb, q);
3796
3797         if (q->flags & TCQ_F_NOLOCK) {
3798                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3799                 qdisc_run(q);
3800
3801                 if (unlikely(to_free))
3802                         kfree_skb_list(to_free);
3803                 return rc;
3804         }
3805
3806         /*
3807          * Heuristic to force contended enqueues to serialize on a
3808          * separate lock before trying to get qdisc main lock.
3809          * This permits qdisc->running owner to get the lock more
3810          * often and dequeue packets faster.
3811          */
3812         contended = qdisc_is_running(q);
3813         if (unlikely(contended))
3814                 spin_lock(&q->busylock);
3815
3816         spin_lock(root_lock);
3817         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3818                 __qdisc_drop(skb, &to_free);
3819                 rc = NET_XMIT_DROP;
3820         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3821                    qdisc_run_begin(q)) {
3822                 /*
3823                  * This is a work-conserving queue; there are no old skbs
3824                  * waiting to be sent out; and the qdisc is not running -
3825                  * xmit the skb directly.
3826                  */
3827
3828                 qdisc_bstats_update(q, skb);
3829
3830                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3831                         if (unlikely(contended)) {
3832                                 spin_unlock(&q->busylock);
3833                                 contended = false;
3834                         }
3835                         __qdisc_run(q);
3836                 }
3837
3838                 qdisc_run_end(q);
3839                 rc = NET_XMIT_SUCCESS;
3840         } else {
3841                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3842                 if (qdisc_run_begin(q)) {
3843                         if (unlikely(contended)) {
3844                                 spin_unlock(&q->busylock);
3845                                 contended = false;
3846                         }
3847                         __qdisc_run(q);
3848                         qdisc_run_end(q);
3849                 }
3850         }
3851         spin_unlock(root_lock);
3852         if (unlikely(to_free))
3853                 kfree_skb_list(to_free);
3854         if (unlikely(contended))
3855                 spin_unlock(&q->busylock);
3856         return rc;
3857 }
3858
3859 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3860 static void skb_update_prio(struct sk_buff *skb)
3861 {
3862         const struct netprio_map *map;
3863         const struct sock *sk;
3864         unsigned int prioidx;
3865
3866         if (skb->priority)
3867                 return;
3868         map = rcu_dereference_bh(skb->dev->priomap);
3869         if (!map)
3870                 return;
3871         sk = skb_to_full_sk(skb);
3872         if (!sk)
3873                 return;
3874
3875         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3876
3877         if (prioidx < map->priomap_len)
3878                 skb->priority = map->priomap[prioidx];
3879 }
3880 #else
3881 #define skb_update_prio(skb)
3882 #endif
3883
3884 /**
3885  *      dev_loopback_xmit - loop back @skb
3886  *      @net: network namespace this loopback is happening in
3887  *      @sk:  sk needed to be a netfilter okfn
3888  *      @skb: buffer to transmit
3889  */
3890 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3891 {
3892         skb_reset_mac_header(skb);
3893         __skb_pull(skb, skb_network_offset(skb));
3894         skb->pkt_type = PACKET_LOOPBACK;
3895         skb->ip_summed = CHECKSUM_UNNECESSARY;
3896         WARN_ON(!skb_dst(skb));
3897         skb_dst_force(skb);
3898         netif_rx_ni(skb);
3899         return 0;
3900 }
3901 EXPORT_SYMBOL(dev_loopback_xmit);
3902
3903 #ifdef CONFIG_NET_EGRESS
3904 static struct sk_buff *
3905 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3906 {
3907         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3908         struct tcf_result cl_res;
3909
3910         if (!miniq)
3911                 return skb;
3912
3913         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3914         qdisc_skb_cb(skb)->mru = 0;
3915         qdisc_skb_cb(skb)->post_ct = false;
3916         mini_qdisc_bstats_cpu_update(miniq, skb);
3917
3918         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3919         case TC_ACT_OK:
3920         case TC_ACT_RECLASSIFY:
3921                 skb->tc_index = TC_H_MIN(cl_res.classid);
3922                 break;
3923         case TC_ACT_SHOT:
3924                 mini_qdisc_qstats_cpu_drop(miniq);
3925                 *ret = NET_XMIT_DROP;
3926                 kfree_skb(skb);
3927                 return NULL;
3928         case TC_ACT_STOLEN:
3929         case TC_ACT_QUEUED:
3930         case TC_ACT_TRAP:
3931                 *ret = NET_XMIT_SUCCESS;
3932                 consume_skb(skb);
3933                 return NULL;
3934         case TC_ACT_REDIRECT:
3935                 /* No need to push/pop skb's mac_header here on egress! */
3936                 skb_do_redirect(skb);
3937                 *ret = NET_XMIT_SUCCESS;
3938                 return NULL;
3939         default:
3940                 break;
3941         }
3942
3943         return skb;
3944 }
3945 #endif /* CONFIG_NET_EGRESS */
3946
3947 #ifdef CONFIG_XPS
3948 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3949                                struct xps_dev_maps *dev_maps, unsigned int tci)
3950 {
3951         struct xps_map *map;
3952         int queue_index = -1;
3953
3954         if (dev->num_tc) {
3955                 tci *= dev->num_tc;
3956                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3957         }
3958
3959         map = rcu_dereference(dev_maps->attr_map[tci]);
3960         if (map) {
3961                 if (map->len == 1)
3962                         queue_index = map->queues[0];
3963                 else
3964                         queue_index = map->queues[reciprocal_scale(
3965                                                 skb_get_hash(skb), map->len)];
3966                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3967                         queue_index = -1;
3968         }
3969         return queue_index;
3970 }
3971 #endif
3972
3973 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3974                          struct sk_buff *skb)
3975 {
3976 #ifdef CONFIG_XPS
3977         struct xps_dev_maps *dev_maps;
3978         struct sock *sk = skb->sk;
3979         int queue_index = -1;
3980
3981         if (!static_key_false(&xps_needed))
3982                 return -1;
3983
3984         rcu_read_lock();
3985         if (!static_key_false(&xps_rxqs_needed))
3986                 goto get_cpus_map;
3987
3988         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3989         if (dev_maps) {
3990                 int tci = sk_rx_queue_get(sk);
3991
3992                 if (tci >= 0 && tci < dev->num_rx_queues)
3993                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3994                                                           tci);
3995         }
3996
3997 get_cpus_map:
3998         if (queue_index < 0) {
3999                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
4000                 if (dev_maps) {
4001                         unsigned int tci = skb->sender_cpu - 1;
4002
4003                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4004                                                           tci);
4005                 }
4006         }
4007         rcu_read_unlock();
4008
4009         return queue_index;
4010 #else
4011         return -1;
4012 #endif
4013 }
4014
4015 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4016                      struct net_device *sb_dev)
4017 {
4018         return 0;
4019 }
4020 EXPORT_SYMBOL(dev_pick_tx_zero);
4021
4022 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4023                        struct net_device *sb_dev)
4024 {
4025         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4026 }
4027 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4028
4029 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4030                      struct net_device *sb_dev)
4031 {
4032         struct sock *sk = skb->sk;
4033         int queue_index = sk_tx_queue_get(sk);
4034
4035         sb_dev = sb_dev ? : dev;
4036
4037         if (queue_index < 0 || skb->ooo_okay ||
4038             queue_index >= dev->real_num_tx_queues) {
4039                 int new_index = get_xps_queue(dev, sb_dev, skb);
4040
4041                 if (new_index < 0)
4042                         new_index = skb_tx_hash(dev, sb_dev, skb);
4043
4044                 if (queue_index != new_index && sk &&
4045                     sk_fullsock(sk) &&
4046                     rcu_access_pointer(sk->sk_dst_cache))
4047                         sk_tx_queue_set(sk, new_index);
4048
4049                 queue_index = new_index;
4050         }
4051
4052         return queue_index;
4053 }
4054 EXPORT_SYMBOL(netdev_pick_tx);
4055
4056 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4057                                          struct sk_buff *skb,
4058                                          struct net_device *sb_dev)
4059 {
4060         int queue_index = 0;
4061
4062 #ifdef CONFIG_XPS
4063         u32 sender_cpu = skb->sender_cpu - 1;
4064
4065         if (sender_cpu >= (u32)NR_CPUS)
4066                 skb->sender_cpu = raw_smp_processor_id() + 1;
4067 #endif
4068
4069         if (dev->real_num_tx_queues != 1) {
4070                 const struct net_device_ops *ops = dev->netdev_ops;
4071
4072                 if (ops->ndo_select_queue)
4073                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4074                 else
4075                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
4076
4077                 queue_index = netdev_cap_txqueue(dev, queue_index);
4078         }
4079
4080         skb_set_queue_mapping(skb, queue_index);
4081         return netdev_get_tx_queue(dev, queue_index);
4082 }
4083
4084 /**
4085  *      __dev_queue_xmit - transmit a buffer
4086  *      @skb: buffer to transmit
4087  *      @sb_dev: suboordinate device used for L2 forwarding offload
4088  *
4089  *      Queue a buffer for transmission to a network device. The caller must
4090  *      have set the device and priority and built the buffer before calling
4091  *      this function. The function can be called from an interrupt.
4092  *
4093  *      A negative errno code is returned on a failure. A success does not
4094  *      guarantee the frame will be transmitted as it may be dropped due
4095  *      to congestion or traffic shaping.
4096  *
4097  * -----------------------------------------------------------------------------------
4098  *      I notice this method can also return errors from the queue disciplines,
4099  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4100  *      be positive.
4101  *
4102  *      Regardless of the return value, the skb is consumed, so it is currently
4103  *      difficult to retry a send to this method.  (You can bump the ref count
4104  *      before sending to hold a reference for retry if you are careful.)
4105  *
4106  *      When calling this method, interrupts MUST be enabled.  This is because
4107  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4108  *          --BLG
4109  */
4110 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4111 {
4112         struct net_device *dev = skb->dev;
4113         struct netdev_queue *txq;
4114         struct Qdisc *q;
4115         int rc = -ENOMEM;
4116         bool again = false;
4117
4118         skb_reset_mac_header(skb);
4119
4120         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4121                 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4122
4123         /* Disable soft irqs for various locks below. Also
4124          * stops preemption for RCU.
4125          */
4126         rcu_read_lock_bh();
4127
4128         skb_update_prio(skb);
4129
4130         qdisc_pkt_len_init(skb);
4131 #ifdef CONFIG_NET_CLS_ACT
4132         skb->tc_at_ingress = 0;
4133 # ifdef CONFIG_NET_EGRESS
4134         if (static_branch_unlikely(&egress_needed_key)) {
4135                 skb = sch_handle_egress(skb, &rc, dev);
4136                 if (!skb)
4137                         goto out;
4138         }
4139 # endif
4140 #endif
4141         /* If device/qdisc don't need skb->dst, release it right now while
4142          * its hot in this cpu cache.
4143          */
4144         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4145                 skb_dst_drop(skb);
4146         else
4147                 skb_dst_force(skb);
4148
4149         txq = netdev_core_pick_tx(dev, skb, sb_dev);
4150         q = rcu_dereference_bh(txq->qdisc);
4151
4152         trace_net_dev_queue(skb);
4153         if (q->enqueue) {
4154                 rc = __dev_xmit_skb(skb, q, dev, txq);
4155                 goto out;
4156         }
4157
4158         /* The device has no queue. Common case for software devices:
4159          * loopback, all the sorts of tunnels...
4160
4161          * Really, it is unlikely that netif_tx_lock protection is necessary
4162          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4163          * counters.)
4164          * However, it is possible, that they rely on protection
4165          * made by us here.
4166
4167          * Check this and shot the lock. It is not prone from deadlocks.
4168          *Either shot noqueue qdisc, it is even simpler 8)
4169          */
4170         if (dev->flags & IFF_UP) {
4171                 int cpu = smp_processor_id(); /* ok because BHs are off */
4172
4173                 if (txq->xmit_lock_owner != cpu) {
4174                         if (dev_xmit_recursion())
4175                                 goto recursion_alert;
4176
4177                         skb = validate_xmit_skb(skb, dev, &again);
4178                         if (!skb)
4179                                 goto out;
4180
4181                         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4182                         HARD_TX_LOCK(dev, txq, cpu);
4183
4184                         if (!netif_xmit_stopped(txq)) {
4185                                 dev_xmit_recursion_inc();
4186                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4187                                 dev_xmit_recursion_dec();
4188                                 if (dev_xmit_complete(rc)) {
4189                                         HARD_TX_UNLOCK(dev, txq);
4190                                         goto out;
4191                                 }
4192                         }
4193                         HARD_TX_UNLOCK(dev, txq);
4194                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4195                                              dev->name);
4196                 } else {
4197                         /* Recursion is detected! It is possible,
4198                          * unfortunately
4199                          */
4200 recursion_alert:
4201                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4202                                              dev->name);
4203                 }
4204         }
4205
4206         rc = -ENETDOWN;
4207         rcu_read_unlock_bh();
4208
4209         atomic_long_inc(&dev->tx_dropped);
4210         kfree_skb_list(skb);
4211         return rc;
4212 out:
4213         rcu_read_unlock_bh();
4214         return rc;
4215 }
4216
4217 int dev_queue_xmit(struct sk_buff *skb)
4218 {
4219         return __dev_queue_xmit(skb, NULL);
4220 }
4221 EXPORT_SYMBOL(dev_queue_xmit);
4222
4223 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4224 {
4225         return __dev_queue_xmit(skb, sb_dev);
4226 }
4227 EXPORT_SYMBOL(dev_queue_xmit_accel);
4228
4229 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4230 {
4231         struct net_device *dev = skb->dev;
4232         struct sk_buff *orig_skb = skb;
4233         struct netdev_queue *txq;
4234         int ret = NETDEV_TX_BUSY;
4235         bool again = false;
4236
4237         if (unlikely(!netif_running(dev) ||
4238                      !netif_carrier_ok(dev)))
4239                 goto drop;
4240
4241         skb = validate_xmit_skb_list(skb, dev, &again);
4242         if (skb != orig_skb)
4243                 goto drop;
4244
4245         skb_set_queue_mapping(skb, queue_id);
4246         txq = skb_get_tx_queue(dev, skb);
4247         PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4248
4249         local_bh_disable();
4250
4251         dev_xmit_recursion_inc();
4252         HARD_TX_LOCK(dev, txq, smp_processor_id());
4253         if (!netif_xmit_frozen_or_drv_stopped(txq))
4254                 ret = netdev_start_xmit(skb, dev, txq, false);
4255         HARD_TX_UNLOCK(dev, txq);
4256         dev_xmit_recursion_dec();
4257
4258         local_bh_enable();
4259         return ret;
4260 drop:
4261         atomic_long_inc(&dev->tx_dropped);
4262         kfree_skb_list(skb);
4263         return NET_XMIT_DROP;
4264 }
4265 EXPORT_SYMBOL(__dev_direct_xmit);
4266
4267 /*************************************************************************
4268  *                      Receiver routines
4269  *************************************************************************/
4270
4271 int netdev_max_backlog __read_mostly = 1000;
4272 EXPORT_SYMBOL(netdev_max_backlog);
4273
4274 int netdev_tstamp_prequeue __read_mostly = 1;
4275 int netdev_budget __read_mostly = 300;
4276 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4277 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4278 int weight_p __read_mostly = 64;           /* old backlog weight */
4279 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4280 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4281 int dev_rx_weight __read_mostly = 64;
4282 int dev_tx_weight __read_mostly = 64;
4283 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4284 int gro_normal_batch __read_mostly = 8;
4285
4286 /* Called with irq disabled */
4287 static inline void ____napi_schedule(struct softnet_data *sd,
4288                                      struct napi_struct *napi)
4289 {
4290         struct task_struct *thread;
4291
4292         if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4293                 /* Paired with smp_mb__before_atomic() in
4294                  * napi_enable()/dev_set_threaded().
4295                  * Use READ_ONCE() to guarantee a complete
4296                  * read on napi->thread. Only call
4297                  * wake_up_process() when it's not NULL.
4298                  */
4299                 thread = READ_ONCE(napi->thread);
4300                 if (thread) {
4301                         wake_up_process(thread);
4302                         return;
4303                 }
4304         }
4305
4306         list_add_tail(&napi->poll_list, &sd->poll_list);
4307         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4308 }
4309
4310 #ifdef CONFIG_RPS
4311
4312 /* One global table that all flow-based protocols share. */
4313 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4314 EXPORT_SYMBOL(rps_sock_flow_table);
4315 u32 rps_cpu_mask __read_mostly;
4316 EXPORT_SYMBOL(rps_cpu_mask);
4317
4318 struct static_key_false rps_needed __read_mostly;
4319 EXPORT_SYMBOL(rps_needed);
4320 struct static_key_false rfs_needed __read_mostly;
4321 EXPORT_SYMBOL(rfs_needed);
4322
4323 static struct rps_dev_flow *
4324 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4325             struct rps_dev_flow *rflow, u16 next_cpu)
4326 {
4327         if (next_cpu < nr_cpu_ids) {
4328 #ifdef CONFIG_RFS_ACCEL
4329                 struct netdev_rx_queue *rxqueue;
4330                 struct rps_dev_flow_table *flow_table;
4331                 struct rps_dev_flow *old_rflow;
4332                 u32 flow_id;
4333                 u16 rxq_index;
4334                 int rc;
4335
4336                 /* Should we steer this flow to a different hardware queue? */
4337                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4338                     !(dev->features & NETIF_F_NTUPLE))
4339                         goto out;
4340                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4341                 if (rxq_index == skb_get_rx_queue(skb))
4342                         goto out;
4343
4344                 rxqueue = dev->_rx + rxq_index;
4345                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4346                 if (!flow_table)
4347                         goto out;
4348                 flow_id = skb_get_hash(skb) & flow_table->mask;
4349                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4350                                                         rxq_index, flow_id);
4351                 if (rc < 0)
4352                         goto out;
4353                 old_rflow = rflow;
4354                 rflow = &flow_table->flows[flow_id];
4355                 rflow->filter = rc;
4356                 if (old_rflow->filter == rflow->filter)
4357                         old_rflow->filter = RPS_NO_FILTER;
4358         out:
4359 #endif
4360                 rflow->last_qtail =
4361                         per_cpu(softnet_data, next_cpu).input_queue_head;
4362         }
4363
4364         rflow->cpu = next_cpu;
4365         return rflow;
4366 }
4367
4368 /*
4369  * get_rps_cpu is called from netif_receive_skb and returns the target
4370  * CPU from the RPS map of the receiving queue for a given skb.
4371  * rcu_read_lock must be held on entry.
4372  */
4373 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4374                        struct rps_dev_flow **rflowp)
4375 {
4376         const struct rps_sock_flow_table *sock_flow_table;
4377         struct netdev_rx_queue *rxqueue = dev->_rx;
4378         struct rps_dev_flow_table *flow_table;
4379         struct rps_map *map;
4380         int cpu = -1;
4381         u32 tcpu;
4382         u32 hash;
4383
4384         if (skb_rx_queue_recorded(skb)) {
4385                 u16 index = skb_get_rx_queue(skb);
4386
4387                 if (unlikely(index >= dev->real_num_rx_queues)) {
4388                         WARN_ONCE(dev->real_num_rx_queues > 1,
4389                                   "%s received packet on queue %u, but number "
4390                                   "of RX queues is %u\n",
4391                                   dev->name, index, dev->real_num_rx_queues);
4392                         goto done;
4393                 }
4394                 rxqueue += index;
4395         }
4396
4397         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4398
4399         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4400         map = rcu_dereference(rxqueue->rps_map);
4401         if (!flow_table && !map)
4402                 goto done;
4403
4404         skb_reset_network_header(skb);
4405         hash = skb_get_hash(skb);
4406         if (!hash)
4407                 goto done;
4408
4409         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4410         if (flow_table && sock_flow_table) {
4411                 struct rps_dev_flow *rflow;
4412                 u32 next_cpu;
4413                 u32 ident;
4414
4415                 /* First check into global flow table if there is a match */
4416                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4417                 if ((ident ^ hash) & ~rps_cpu_mask)
4418                         goto try_rps;
4419
4420                 next_cpu = ident & rps_cpu_mask;
4421
4422                 /* OK, now we know there is a match,
4423                  * we can look at the local (per receive queue) flow table
4424                  */
4425                 rflow = &flow_table->flows[hash & flow_table->mask];
4426                 tcpu = rflow->cpu;
4427
4428                 /*
4429                  * If the desired CPU (where last recvmsg was done) is
4430                  * different from current CPU (one in the rx-queue flow
4431                  * table entry), switch if one of the following holds:
4432                  *   - Current CPU is unset (>= nr_cpu_ids).
4433                  *   - Current CPU is offline.
4434                  *   - The current CPU's queue tail has advanced beyond the
4435                  *     last packet that was enqueued using this table entry.
4436                  *     This guarantees that all previous packets for the flow
4437                  *     have been dequeued, thus preserving in order delivery.
4438                  */
4439                 if (unlikely(tcpu != next_cpu) &&
4440                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4441                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4442                       rflow->last_qtail)) >= 0)) {
4443                         tcpu = next_cpu;
4444                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4445                 }
4446
4447                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4448                         *rflowp = rflow;
4449                         cpu = tcpu;
4450                         goto done;
4451                 }
4452         }
4453
4454 try_rps:
4455
4456         if (map) {
4457                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4458                 if (cpu_online(tcpu)) {
4459                         cpu = tcpu;
4460                         goto done;
4461                 }
4462         }
4463
4464 done:
4465         return cpu;
4466 }
4467
4468 #ifdef CONFIG_RFS_ACCEL
4469
4470 /**
4471  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4472  * @dev: Device on which the filter was set
4473  * @rxq_index: RX queue index
4474  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4475  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4476  *
4477  * Drivers that implement ndo_rx_flow_steer() should periodically call
4478  * this function for each installed filter and remove the filters for
4479  * which it returns %true.
4480  */
4481 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4482                          u32 flow_id, u16 filter_id)
4483 {
4484         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4485         struct rps_dev_flow_table *flow_table;
4486         struct rps_dev_flow *rflow;
4487         bool expire = true;
4488         unsigned int cpu;
4489
4490         rcu_read_lock();
4491         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4492         if (flow_table && flow_id <= flow_table->mask) {
4493                 rflow = &flow_table->flows[flow_id];
4494                 cpu = READ_ONCE(rflow->cpu);
4495                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4496                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4497                            rflow->last_qtail) <
4498                      (int)(10 * flow_table->mask)))
4499                         expire = false;
4500         }
4501         rcu_read_unlock();
4502         return expire;
4503 }
4504 EXPORT_SYMBOL(rps_may_expire_flow);
4505
4506 #endif /* CONFIG_RFS_ACCEL */
4507
4508 /* Called from hardirq (IPI) context */
4509 static void rps_trigger_softirq(void *data)
4510 {
4511         struct softnet_data *sd = data;
4512
4513         ____napi_schedule(sd, &sd->backlog);
4514         sd->received_rps++;
4515 }
4516
4517 #endif /* CONFIG_RPS */
4518
4519 /*
4520  * Check if this softnet_data structure is another cpu one
4521  * If yes, queue it to our IPI list and return 1
4522  * If no, return 0
4523  */
4524 static int rps_ipi_queued(struct softnet_data *sd)
4525 {
4526 #ifdef CONFIG_RPS
4527         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4528
4529         if (sd != mysd) {
4530                 sd->rps_ipi_next = mysd->rps_ipi_list;
4531                 mysd->rps_ipi_list = sd;
4532
4533                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4534                 return 1;
4535         }
4536 #endif /* CONFIG_RPS */
4537         return 0;
4538 }
4539
4540 #ifdef CONFIG_NET_FLOW_LIMIT
4541 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4542 #endif
4543
4544 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4545 {
4546 #ifdef CONFIG_NET_FLOW_LIMIT
4547         struct sd_flow_limit *fl;
4548         struct softnet_data *sd;
4549         unsigned int old_flow, new_flow;
4550
4551         if (qlen < (netdev_max_backlog >> 1))
4552                 return false;
4553
4554         sd = this_cpu_ptr(&softnet_data);
4555
4556         rcu_read_lock();
4557         fl = rcu_dereference(sd->flow_limit);
4558         if (fl) {
4559                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4560                 old_flow = fl->history[fl->history_head];
4561                 fl->history[fl->history_head] = new_flow;
4562
4563                 fl->history_head++;
4564                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4565
4566                 if (likely(fl->buckets[old_flow]))
4567                         fl->buckets[old_flow]--;
4568
4569                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4570                         fl->count++;
4571                         rcu_read_unlock();
4572                         return true;
4573                 }
4574         }
4575         rcu_read_unlock();
4576 #endif
4577         return false;
4578 }
4579
4580 /*
4581  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4582  * queue (may be a remote CPU queue).
4583  */
4584 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4585                               unsigned int *qtail)
4586 {
4587         struct softnet_data *sd;
4588         unsigned long flags;
4589         unsigned int qlen;
4590
4591         sd = &per_cpu(softnet_data, cpu);
4592
4593         local_irq_save(flags);
4594
4595         rps_lock(sd);
4596         if (!netif_running(skb->dev))
4597                 goto drop;
4598         qlen = skb_queue_len(&sd->input_pkt_queue);
4599         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4600                 if (qlen) {
4601 enqueue:
4602                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4603                         input_queue_tail_incr_save(sd, qtail);
4604                         rps_unlock(sd);
4605                         local_irq_restore(flags);
4606                         return NET_RX_SUCCESS;
4607                 }
4608
4609                 /* Schedule NAPI for backlog device
4610                  * We can use non atomic operation since we own the queue lock
4611                  */
4612                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4613                         if (!rps_ipi_queued(sd))
4614                                 ____napi_schedule(sd, &sd->backlog);
4615                 }
4616                 goto enqueue;
4617         }
4618
4619 drop:
4620         sd->dropped++;
4621         rps_unlock(sd);
4622
4623         local_irq_restore(flags);
4624
4625         atomic_long_inc(&skb->dev->rx_dropped);
4626         kfree_skb(skb);
4627         return NET_RX_DROP;
4628 }
4629
4630 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4631 {
4632         struct net_device *dev = skb->dev;
4633         struct netdev_rx_queue *rxqueue;
4634
4635         rxqueue = dev->_rx;
4636
4637         if (skb_rx_queue_recorded(skb)) {
4638                 u16 index = skb_get_rx_queue(skb);
4639
4640                 if (unlikely(index >= dev->real_num_rx_queues)) {
4641                         WARN_ONCE(dev->real_num_rx_queues > 1,
4642                                   "%s received packet on queue %u, but number "
4643                                   "of RX queues is %u\n",
4644                                   dev->name, index, dev->real_num_rx_queues);
4645
4646                         return rxqueue; /* Return first rxqueue */
4647                 }
4648                 rxqueue += index;
4649         }
4650         return rxqueue;
4651 }
4652
4653 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4654                                      struct xdp_buff *xdp,
4655                                      struct bpf_prog *xdp_prog)
4656 {
4657         void *orig_data, *orig_data_end, *hard_start;
4658         struct netdev_rx_queue *rxqueue;
4659         u32 metalen, act = XDP_DROP;
4660         u32 mac_len, frame_sz;
4661         __be16 orig_eth_type;
4662         struct ethhdr *eth;
4663         bool orig_bcast;
4664         int off;
4665
4666         /* Reinjected packets coming from act_mirred or similar should
4667          * not get XDP generic processing.
4668          */
4669         if (skb_is_redirected(skb))
4670                 return XDP_PASS;
4671
4672         /* XDP packets must be linear and must have sufficient headroom
4673          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4674          * native XDP provides, thus we need to do it here as well.
4675          */
4676         if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4677             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4678                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4679                 int troom = skb->tail + skb->data_len - skb->end;
4680
4681                 /* In case we have to go down the path and also linearize,
4682                  * then lets do the pskb_expand_head() work just once here.
4683                  */
4684                 if (pskb_expand_head(skb,
4685                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4686                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4687                         goto do_drop;
4688                 if (skb_linearize(skb))
4689                         goto do_drop;
4690         }
4691
4692         /* The XDP program wants to see the packet starting at the MAC
4693          * header.
4694          */
4695         mac_len = skb->data - skb_mac_header(skb);
4696         hard_start = skb->data - skb_headroom(skb);
4697
4698         /* SKB "head" area always have tailroom for skb_shared_info */
4699         frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4700         frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4701
4702         rxqueue = netif_get_rxqueue(skb);
4703         xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4704         xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4705                          skb_headlen(skb) + mac_len, true);
4706
4707         orig_data_end = xdp->data_end;
4708         orig_data = xdp->data;
4709         eth = (struct ethhdr *)xdp->data;
4710         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4711         orig_eth_type = eth->h_proto;
4712
4713         act = bpf_prog_run_xdp(xdp_prog, xdp);
4714
4715         /* check if bpf_xdp_adjust_head was used */
4716         off = xdp->data - orig_data;
4717         if (off) {
4718                 if (off > 0)
4719                         __skb_pull(skb, off);
4720                 else if (off < 0)
4721                         __skb_push(skb, -off);
4722
4723                 skb->mac_header += off;
4724                 skb_reset_network_header(skb);
4725         }
4726
4727         /* check if bpf_xdp_adjust_tail was used */
4728         off = xdp->data_end - orig_data_end;
4729         if (off != 0) {
4730                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4731                 skb->len += off; /* positive on grow, negative on shrink */
4732         }
4733
4734         /* check if XDP changed eth hdr such SKB needs update */
4735         eth = (struct ethhdr *)xdp->data;
4736         if ((orig_eth_type != eth->h_proto) ||
4737             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4738                 __skb_push(skb, ETH_HLEN);
4739                 skb->protocol = eth_type_trans(skb, skb->dev);
4740         }
4741
4742         switch (act) {
4743         case XDP_REDIRECT:
4744         case XDP_TX:
4745                 __skb_push(skb, mac_len);
4746                 break;
4747         case XDP_PASS:
4748                 metalen = xdp->data - xdp->data_meta;
4749                 if (metalen)
4750                         skb_metadata_set(skb, metalen);
4751                 break;
4752         default:
4753                 bpf_warn_invalid_xdp_action(act);
4754                 fallthrough;
4755         case XDP_ABORTED:
4756                 trace_xdp_exception(skb->dev, xdp_prog, act);
4757                 fallthrough;
4758         case XDP_DROP:
4759         do_drop:
4760                 kfree_skb(skb);
4761                 break;
4762         }
4763
4764         return act;
4765 }
4766
4767 /* When doing generic XDP we have to bypass the qdisc layer and the
4768  * network taps in order to match in-driver-XDP behavior.
4769  */
4770 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4771 {
4772         struct net_device *dev = skb->dev;
4773         struct netdev_queue *txq;
4774         bool free_skb = true;
4775         int cpu, rc;
4776
4777         txq = netdev_core_pick_tx(dev, skb, NULL);
4778         cpu = smp_processor_id();
4779         HARD_TX_LOCK(dev, txq, cpu);
4780         if (!netif_xmit_stopped(txq)) {
4781                 rc = netdev_start_xmit(skb, dev, txq, 0);
4782                 if (dev_xmit_complete(rc))
4783                         free_skb = false;
4784         }
4785         HARD_TX_UNLOCK(dev, txq);
4786         if (free_skb) {
4787                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4788                 kfree_skb(skb);
4789         }
4790 }
4791
4792 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4793
4794 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4795 {
4796         if (xdp_prog) {
4797                 struct xdp_buff xdp;
4798                 u32 act;
4799                 int err;
4800
4801                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4802                 if (act != XDP_PASS) {
4803                         switch (act) {
4804                         case XDP_REDIRECT:
4805                                 err = xdp_do_generic_redirect(skb->dev, skb,
4806                                                               &xdp, xdp_prog);
4807                                 if (err)
4808                                         goto out_redir;
4809                                 break;
4810                         case XDP_TX:
4811                                 generic_xdp_tx(skb, xdp_prog);
4812                                 break;
4813                         }
4814                         return XDP_DROP;
4815                 }
4816         }
4817         return XDP_PASS;
4818 out_redir:
4819         kfree_skb(skb);
4820         return XDP_DROP;
4821 }
4822 EXPORT_SYMBOL_GPL(do_xdp_generic);
4823
4824 static int netif_rx_internal(struct sk_buff *skb)
4825 {
4826         int ret;
4827
4828         net_timestamp_check(netdev_tstamp_prequeue, skb);
4829
4830         trace_netif_rx(skb);
4831
4832 #ifdef CONFIG_RPS
4833         if (static_branch_unlikely(&rps_needed)) {
4834                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4835                 int cpu;
4836
4837                 preempt_disable();
4838                 rcu_read_lock();
4839
4840                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4841                 if (cpu < 0)
4842                         cpu = smp_processor_id();
4843
4844                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4845
4846                 rcu_read_unlock();
4847                 preempt_enable();
4848         } else
4849 #endif
4850         {
4851                 unsigned int qtail;
4852
4853                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4854                 put_cpu();
4855         }
4856         return ret;
4857 }
4858
4859 /**
4860  *      netif_rx        -       post buffer to the network code
4861  *      @skb: buffer to post
4862  *
4863  *      This function receives a packet from a device driver and queues it for
4864  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4865  *      may be dropped during processing for congestion control or by the
4866  *      protocol layers.
4867  *
4868  *      return values:
4869  *      NET_RX_SUCCESS  (no congestion)
4870  *      NET_RX_DROP     (packet was dropped)
4871  *
4872  */
4873
4874 int netif_rx(struct sk_buff *skb)
4875 {
4876         int ret;
4877
4878         trace_netif_rx_entry(skb);
4879
4880         ret = netif_rx_internal(skb);
4881         trace_netif_rx_exit(ret);
4882
4883         return ret;
4884 }
4885 EXPORT_SYMBOL(netif_rx);
4886
4887 int netif_rx_ni(struct sk_buff *skb)
4888 {
4889         int err;
4890
4891         trace_netif_rx_ni_entry(skb);
4892
4893         preempt_disable();
4894         err = netif_rx_internal(skb);
4895         if (local_softirq_pending())
4896                 do_softirq();
4897         preempt_enable();
4898         trace_netif_rx_ni_exit(err);
4899
4900         return err;
4901 }
4902 EXPORT_SYMBOL(netif_rx_ni);
4903
4904 int netif_rx_any_context(struct sk_buff *skb)
4905 {
4906         /*
4907          * If invoked from contexts which do not invoke bottom half
4908          * processing either at return from interrupt or when softrqs are
4909          * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4910          * directly.
4911          */
4912         if (in_interrupt())
4913                 return netif_rx(skb);
4914         else
4915                 return netif_rx_ni(skb);
4916 }
4917 EXPORT_SYMBOL(netif_rx_any_context);
4918
4919 static __latent_entropy void net_tx_action(struct softirq_action *h)
4920 {
4921         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4922
4923         if (sd->completion_queue) {
4924                 struct sk_buff *clist;
4925
4926                 local_irq_disable();
4927                 clist = sd->completion_queue;
4928                 sd->completion_queue = NULL;
4929                 local_irq_enable();
4930
4931                 while (clist) {
4932                         struct sk_buff *skb = clist;
4933
4934                         clist = clist->next;
4935
4936                         WARN_ON(refcount_read(&skb->users));
4937                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4938                                 trace_consume_skb(skb);
4939                         else
4940                                 trace_kfree_skb(skb, net_tx_action);
4941
4942                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4943                                 __kfree_skb(skb);
4944                         else
4945                                 __kfree_skb_defer(skb);
4946                 }
4947
4948                 __kfree_skb_flush();
4949         }
4950
4951         if (sd->output_queue) {
4952                 struct Qdisc *head;
4953
4954                 local_irq_disable();
4955                 head = sd->output_queue;
4956                 sd->output_queue = NULL;
4957                 sd->output_queue_tailp = &sd->output_queue;
4958                 local_irq_enable();
4959
4960                 while (head) {
4961                         struct Qdisc *q = head;
4962                         spinlock_t *root_lock = NULL;
4963
4964                         head = head->next_sched;
4965
4966                         if (!(q->flags & TCQ_F_NOLOCK)) {
4967                                 root_lock = qdisc_lock(q);
4968                                 spin_lock(root_lock);
4969                         }
4970                         /* We need to make sure head->next_sched is read
4971                          * before clearing __QDISC_STATE_SCHED
4972                          */
4973                         smp_mb__before_atomic();
4974                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4975                         qdisc_run(q);
4976                         if (root_lock)
4977                                 spin_unlock(root_lock);
4978                 }
4979         }
4980
4981         xfrm_dev_backlog(sd);
4982 }
4983
4984 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4985 /* This hook is defined here for ATM LANE */
4986 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4987                              unsigned char *addr) __read_mostly;
4988 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4989 #endif
4990
4991 static inline struct sk_buff *
4992 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4993                    struct net_device *orig_dev, bool *another)
4994 {
4995 #ifdef CONFIG_NET_CLS_ACT
4996         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4997         struct tcf_result cl_res;
4998
4999         /* If there's at least one ingress present somewhere (so
5000          * we get here via enabled static key), remaining devices
5001          * that are not configured with an ingress qdisc will bail
5002          * out here.
5003          */
5004         if (!miniq)
5005                 return skb;
5006
5007         if (*pt_prev) {
5008                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5009                 *pt_prev = NULL;
5010         }
5011
5012         qdisc_skb_cb(skb)->pkt_len = skb->len;
5013         qdisc_skb_cb(skb)->mru = 0;
5014         qdisc_skb_cb(skb)->post_ct = false;
5015         skb->tc_at_ingress = 1;
5016         mini_qdisc_bstats_cpu_update(miniq, skb);
5017
5018         switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5019                                      &cl_res, false)) {
5020         case TC_ACT_OK:
5021         case TC_ACT_RECLASSIFY:
5022                 skb->tc_index = TC_H_MIN(cl_res.classid);
5023                 break;
5024         case TC_ACT_SHOT:
5025                 mini_qdisc_qstats_cpu_drop(miniq);
5026                 kfree_skb(skb);
5027                 return NULL;
5028         case TC_ACT_STOLEN:
5029         case TC_ACT_QUEUED:
5030         case TC_ACT_TRAP:
5031                 consume_skb(skb);
5032                 return NULL;
5033         case TC_ACT_REDIRECT:
5034                 /* skb_mac_header check was done by cls/act_bpf, so
5035                  * we can safely push the L2 header back before
5036                  * redirecting to another netdev
5037                  */
5038                 __skb_push(skb, skb->mac_len);
5039                 if (skb_do_redirect(skb) == -EAGAIN) {
5040                         __skb_pull(skb, skb->mac_len);
5041                         *another = true;
5042                         break;
5043                 }
5044                 return NULL;
5045         case TC_ACT_CONSUMED:
5046                 return NULL;
5047         default:
5048                 break;
5049         }
5050 #endif /* CONFIG_NET_CLS_ACT */
5051         return skb;
5052 }
5053
5054 /**
5055  *      netdev_is_rx_handler_busy - check if receive handler is registered
5056  *      @dev: device to check
5057  *
5058  *      Check if a receive handler is already registered for a given device.
5059  *      Return true if there one.
5060  *
5061  *      The caller must hold the rtnl_mutex.
5062  */
5063 bool netdev_is_rx_handler_busy(struct net_device *dev)
5064 {
5065         ASSERT_RTNL();
5066         return dev && rtnl_dereference(dev->rx_handler);
5067 }
5068 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5069
5070 /**
5071  *      netdev_rx_handler_register - register receive handler
5072  *      @dev: device to register a handler for
5073  *      @rx_handler: receive handler to register
5074  *      @rx_handler_data: data pointer that is used by rx handler
5075  *
5076  *      Register a receive handler for a device. This handler will then be
5077  *      called from __netif_receive_skb. A negative errno code is returned
5078  *      on a failure.
5079  *
5080  *      The caller must hold the rtnl_mutex.
5081  *
5082  *      For a general description of rx_handler, see enum rx_handler_result.
5083  */
5084 int netdev_rx_handler_register(struct net_device *dev,
5085                                rx_handler_func_t *rx_handler,
5086                                void *rx_handler_data)
5087 {
5088         if (netdev_is_rx_handler_busy(dev))
5089                 return -EBUSY;
5090
5091         if (dev->priv_flags & IFF_NO_RX_HANDLER)
5092                 return -EINVAL;
5093
5094         /* Note: rx_handler_data must be set before rx_handler */
5095         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5096         rcu_assign_pointer(dev->rx_handler, rx_handler);
5097
5098         return 0;
5099 }
5100 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5101
5102 /**
5103  *      netdev_rx_handler_unregister - unregister receive handler
5104  *      @dev: device to unregister a handler from
5105  *
5106  *      Unregister a receive handler from a device.
5107  *
5108  *      The caller must hold the rtnl_mutex.
5109  */
5110 void netdev_rx_handler_unregister(struct net_device *dev)
5111 {
5112
5113         ASSERT_RTNL();
5114         RCU_INIT_POINTER(dev->rx_handler, NULL);
5115         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5116          * section has a guarantee to see a non NULL rx_handler_data
5117          * as well.
5118          */
5119         synchronize_net();
5120         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5121 }
5122 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5123
5124 /*
5125  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5126  * the special handling of PFMEMALLOC skbs.
5127  */
5128 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5129 {
5130         switch (skb->protocol) {
5131         case htons(ETH_P_ARP):
5132         case htons(ETH_P_IP):
5133         case htons(ETH_P_IPV6):
5134         case htons(ETH_P_8021Q):
5135         case htons(ETH_P_8021AD):
5136                 return true;
5137         default:
5138                 return false;
5139         }
5140 }
5141
5142 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5143                              int *ret, struct net_device *orig_dev)
5144 {
5145         if (nf_hook_ingress_active(skb)) {
5146                 int ingress_retval;
5147
5148                 if (*pt_prev) {
5149                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
5150                         *pt_prev = NULL;
5151                 }
5152
5153                 rcu_read_lock();
5154                 ingress_retval = nf_hook_ingress(skb);
5155                 rcu_read_unlock();
5156                 return ingress_retval;
5157         }
5158         return 0;
5159 }
5160
5161 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5162                                     struct packet_type **ppt_prev)
5163 {
5164         struct packet_type *ptype, *pt_prev;
5165         rx_handler_func_t *rx_handler;
5166         struct sk_buff *skb = *pskb;
5167         struct net_device *orig_dev;
5168         bool deliver_exact = false;
5169         int ret = NET_RX_DROP;
5170         __be16 type;
5171
5172         net_timestamp_check(!netdev_tstamp_prequeue, skb);
5173
5174         trace_netif_receive_skb(skb);
5175
5176         orig_dev = skb->dev;
5177
5178         skb_reset_network_header(skb);
5179         if (!skb_transport_header_was_set(skb))
5180                 skb_reset_transport_header(skb);
5181         skb_reset_mac_len(skb);
5182
5183         pt_prev = NULL;
5184
5185 another_round:
5186         skb->skb_iif = skb->dev->ifindex;
5187
5188         __this_cpu_inc(softnet_data.processed);
5189
5190         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5191                 int ret2;
5192
5193                 preempt_disable();
5194                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5195                 preempt_enable();
5196
5197                 if (ret2 != XDP_PASS) {
5198                         ret = NET_RX_DROP;
5199                         goto out;
5200                 }
5201                 skb_reset_mac_len(skb);
5202         }
5203
5204         if (eth_type_vlan(skb->protocol)) {
5205                 skb = skb_vlan_untag(skb);
5206                 if (unlikely(!skb))
5207                         goto out;
5208         }
5209
5210         if (skb_skip_tc_classify(skb))
5211                 goto skip_classify;
5212
5213         if (pfmemalloc)
5214                 goto skip_taps;
5215
5216         list_for_each_entry_rcu(ptype, &ptype_all, list) {
5217                 if (pt_prev)
5218                         ret = deliver_skb(skb, pt_prev, orig_dev);
5219                 pt_prev = ptype;
5220         }
5221
5222         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5223                 if (pt_prev)
5224                         ret = deliver_skb(skb, pt_prev, orig_dev);
5225                 pt_prev = ptype;
5226         }
5227
5228 skip_taps:
5229 #ifdef CONFIG_NET_INGRESS
5230         if (static_branch_unlikely(&ingress_needed_key)) {
5231                 bool another = false;
5232
5233                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5234                                          &another);
5235                 if (another)
5236                         goto another_round;
5237                 if (!skb)
5238                         goto out;
5239
5240                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5241                         goto out;
5242         }
5243 #endif
5244         skb_reset_redirect(skb);
5245 skip_classify:
5246         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5247                 goto drop;
5248
5249         if (skb_vlan_tag_present(skb)) {
5250                 if (pt_prev) {
5251                         ret = deliver_skb(skb, pt_prev, orig_dev);
5252                         pt_prev = NULL;
5253                 }
5254                 if (vlan_do_receive(&skb))
5255                         goto another_round;
5256                 else if (unlikely(!skb))
5257                         goto out;
5258         }
5259
5260         rx_handler = rcu_dereference(skb->dev->rx_handler);
5261         if (rx_handler) {
5262                 if (pt_prev) {
5263                         ret = deliver_skb(skb, pt_prev, orig_dev);
5264                         pt_prev = NULL;
5265                 }
5266                 switch (rx_handler(&skb)) {
5267                 case RX_HANDLER_CONSUMED:
5268                         ret = NET_RX_SUCCESS;
5269                         goto out;
5270                 case RX_HANDLER_ANOTHER:
5271                         goto another_round;
5272                 case RX_HANDLER_EXACT:
5273                         deliver_exact = true;
5274                 case RX_HANDLER_PASS:
5275                         break;
5276                 default:
5277                         BUG();
5278                 }
5279         }
5280
5281         if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5282 check_vlan_id:
5283                 if (skb_vlan_tag_get_id(skb)) {
5284                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
5285                          * find vlan device.
5286                          */
5287                         skb->pkt_type = PACKET_OTHERHOST;
5288                 } else if (eth_type_vlan(skb->protocol)) {
5289                         /* Outer header is 802.1P with vlan 0, inner header is
5290                          * 802.1Q or 802.1AD and vlan_do_receive() above could
5291                          * not find vlan dev for vlan id 0.
5292                          */
5293                         __vlan_hwaccel_clear_tag(skb);
5294                         skb = skb_vlan_untag(skb);
5295                         if (unlikely(!skb))
5296                                 goto out;
5297                         if (vlan_do_receive(&skb))
5298                                 /* After stripping off 802.1P header with vlan 0
5299                                  * vlan dev is found for inner header.
5300                                  */
5301                                 goto another_round;
5302                         else if (unlikely(!skb))
5303                                 goto out;
5304                         else
5305                                 /* We have stripped outer 802.1P vlan 0 header.
5306                                  * But could not find vlan dev.
5307                                  * check again for vlan id to set OTHERHOST.
5308                                  */
5309                                 goto check_vlan_id;
5310                 }
5311                 /* Note: we might in the future use prio bits
5312                  * and set skb->priority like in vlan_do_receive()
5313                  * For the time being, just ignore Priority Code Point
5314                  */
5315                 __vlan_hwaccel_clear_tag(skb);
5316         }
5317
5318         type = skb->protocol;
5319
5320         /* deliver only exact match when indicated */
5321         if (likely(!deliver_exact)) {
5322                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5323                                        &ptype_base[ntohs(type) &
5324                                                    PTYPE_HASH_MASK]);
5325         }
5326
5327         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5328                                &orig_dev->ptype_specific);
5329
5330         if (unlikely(skb->dev != orig_dev)) {
5331                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5332                                        &skb->dev->ptype_specific);
5333         }
5334
5335         if (pt_prev) {
5336                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5337                         goto drop;
5338                 *ppt_prev = pt_prev;
5339         } else {
5340 drop:
5341                 if (!deliver_exact)
5342                         atomic_long_inc(&skb->dev->rx_dropped);
5343                 else
5344                         atomic_long_inc(&skb->dev->rx_nohandler);
5345                 kfree_skb(skb);
5346                 /* Jamal, now you will not able to escape explaining
5347                  * me how you were going to use this. :-)
5348                  */
5349                 ret = NET_RX_DROP;
5350         }
5351
5352 out:
5353         /* The invariant here is that if *ppt_prev is not NULL
5354          * then skb should also be non-NULL.
5355          *
5356          * Apparently *ppt_prev assignment above holds this invariant due to
5357          * skb dereferencing near it.
5358          */
5359         *pskb = skb;
5360         return ret;
5361 }
5362
5363 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5364 {
5365         struct net_device *orig_dev = skb->dev;
5366         struct packet_type *pt_prev = NULL;
5367         int ret;
5368
5369         ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5370         if (pt_prev)
5371                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5372                                          skb->dev, pt_prev, orig_dev);
5373         return ret;
5374 }
5375
5376 /**
5377  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5378  *      @skb: buffer to process
5379  *
5380  *      More direct receive version of netif_receive_skb().  It should
5381  *      only be used by callers that have a need to skip RPS and Generic XDP.
5382  *      Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5383  *
5384  *      This function may only be called from softirq context and interrupts
5385  *      should be enabled.
5386  *
5387  *      Return values (usually ignored):
5388  *      NET_RX_SUCCESS: no congestion
5389  *      NET_RX_DROP: packet was dropped
5390  */
5391 int netif_receive_skb_core(struct sk_buff *skb)
5392 {
5393         int ret;
5394
5395         rcu_read_lock();
5396         ret = __netif_receive_skb_one_core(skb, false);
5397         rcu_read_unlock();
5398
5399         return ret;
5400 }
5401 EXPORT_SYMBOL(netif_receive_skb_core);
5402
5403 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5404                                                   struct packet_type *pt_prev,
5405                                                   struct net_device *orig_dev)
5406 {
5407         struct sk_buff *skb, *next;
5408
5409         if (!pt_prev)
5410                 return;
5411         if (list_empty(head))
5412                 return;
5413         if (pt_prev->list_func != NULL)
5414                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5415                                    ip_list_rcv, head, pt_prev, orig_dev);
5416         else
5417                 list_for_each_entry_safe(skb, next, head, list) {
5418                         skb_list_del_init(skb);
5419                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5420                 }
5421 }
5422
5423 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5424 {
5425         /* Fast-path assumptions:
5426          * - There is no RX handler.
5427          * - Only one packet_type matches.
5428          * If either of these fails, we will end up doing some per-packet
5429          * processing in-line, then handling the 'last ptype' for the whole
5430          * sublist.  This can't cause out-of-order delivery to any single ptype,
5431          * because the 'last ptype' must be constant across the sublist, and all
5432          * other ptypes are handled per-packet.
5433          */
5434         /* Current (common) ptype of sublist */
5435         struct packet_type *pt_curr = NULL;
5436         /* Current (common) orig_dev of sublist */
5437         struct net_device *od_curr = NULL;
5438         struct list_head sublist;
5439         struct sk_buff *skb, *next;
5440
5441         INIT_LIST_HEAD(&sublist);
5442         list_for_each_entry_safe(skb, next, head, list) {
5443                 struct net_device *orig_dev = skb->dev;
5444                 struct packet_type *pt_prev = NULL;
5445
5446                 skb_list_del_init(skb);
5447                 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5448                 if (!pt_prev)
5449                         continue;
5450                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5451                         /* dispatch old sublist */
5452                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5453                         /* start new sublist */
5454                         INIT_LIST_HEAD(&sublist);
5455                         pt_curr = pt_prev;
5456                         od_curr = orig_dev;
5457                 }
5458                 list_add_tail(&skb->list, &sublist);
5459         }
5460
5461         /* dispatch final sublist */
5462         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5463 }
5464
5465 static int __netif_receive_skb(struct sk_buff *skb)
5466 {
5467         int ret;
5468
5469         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5470                 unsigned int noreclaim_flag;
5471
5472                 /*
5473                  * PFMEMALLOC skbs are special, they should
5474                  * - be delivered to SOCK_MEMALLOC sockets only
5475                  * - stay away from userspace
5476                  * - have bounded memory usage
5477                  *
5478                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5479                  * context down to all allocation sites.
5480                  */
5481                 noreclaim_flag = memalloc_noreclaim_save();
5482                 ret = __netif_receive_skb_one_core(skb, true);
5483                 memalloc_noreclaim_restore(noreclaim_flag);
5484         } else
5485                 ret = __netif_receive_skb_one_core(skb, false);
5486
5487         return ret;
5488 }
5489
5490 static void __netif_receive_skb_list(struct list_head *head)
5491 {
5492         unsigned long noreclaim_flag = 0;
5493         struct sk_buff *skb, *next;
5494         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5495
5496         list_for_each_entry_safe(skb, next, head, list) {
5497                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5498                         struct list_head sublist;
5499
5500                         /* Handle the previous sublist */
5501                         list_cut_before(&sublist, head, &skb->list);
5502                         if (!list_empty(&sublist))
5503                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5504                         pfmemalloc = !pfmemalloc;
5505                         /* See comments in __netif_receive_skb */
5506                         if (pfmemalloc)
5507                                 noreclaim_flag = memalloc_noreclaim_save();
5508                         else
5509                                 memalloc_noreclaim_restore(noreclaim_flag);
5510                 }
5511         }
5512         /* Handle the remaining sublist */
5513         if (!list_empty(head))
5514                 __netif_receive_skb_list_core(head, pfmemalloc);
5515         /* Restore pflags */
5516         if (pfmemalloc)
5517                 memalloc_noreclaim_restore(noreclaim_flag);
5518 }
5519
5520 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5521 {
5522         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5523         struct bpf_prog *new = xdp->prog;
5524         int ret = 0;
5525
5526         if (new) {
5527                 u32 i;
5528
5529                 mutex_lock(&new->aux->used_maps_mutex);
5530
5531                 /* generic XDP does not work with DEVMAPs that can
5532                  * have a bpf_prog installed on an entry
5533                  */
5534                 for (i = 0; i < new->aux->used_map_cnt; i++) {
5535                         if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5536                             cpu_map_prog_allowed(new->aux->used_maps[i])) {
5537                                 mutex_unlock(&new->aux->used_maps_mutex);
5538                                 return -EINVAL;
5539                         }
5540                 }
5541
5542                 mutex_unlock(&new->aux->used_maps_mutex);
5543         }
5544
5545         switch (xdp->command) {
5546         case XDP_SETUP_PROG:
5547                 rcu_assign_pointer(dev->xdp_prog, new);
5548                 if (old)
5549                         bpf_prog_put(old);
5550
5551                 if (old && !new) {
5552                         static_branch_dec(&generic_xdp_needed_key);
5553                 } else if (new && !old) {
5554                         static_branch_inc(&generic_xdp_needed_key);
5555                         dev_disable_lro(dev);
5556                         dev_disable_gro_hw(dev);
5557                 }
5558                 break;
5559
5560         default:
5561                 ret = -EINVAL;
5562                 break;
5563         }
5564
5565         return ret;
5566 }
5567
5568 static int netif_receive_skb_internal(struct sk_buff *skb)
5569 {
5570         int ret;
5571
5572         net_timestamp_check(netdev_tstamp_prequeue, skb);
5573
5574         if (skb_defer_rx_timestamp(skb))
5575                 return NET_RX_SUCCESS;
5576
5577         rcu_read_lock();
5578 #ifdef CONFIG_RPS
5579         if (static_branch_unlikely(&rps_needed)) {
5580                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5581                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5582
5583                 if (cpu >= 0) {
5584                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5585                         rcu_read_unlock();
5586                         return ret;
5587                 }
5588         }
5589 #endif
5590         ret = __netif_receive_skb(skb);
5591         rcu_read_unlock();
5592         return ret;
5593 }
5594
5595 static void netif_receive_skb_list_internal(struct list_head *head)
5596 {
5597         struct sk_buff *skb, *next;
5598         struct list_head sublist;
5599
5600         INIT_LIST_HEAD(&sublist);
5601         list_for_each_entry_safe(skb, next, head, list) {
5602                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5603                 skb_list_del_init(skb);
5604                 if (!skb_defer_rx_timestamp(skb))
5605                         list_add_tail(&skb->list, &sublist);
5606         }
5607         list_splice_init(&sublist, head);
5608
5609         rcu_read_lock();
5610 #ifdef CONFIG_RPS
5611         if (static_branch_unlikely(&rps_needed)) {
5612                 list_for_each_entry_safe(skb, next, head, list) {
5613                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5614                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5615
5616                         if (cpu >= 0) {
5617                                 /* Will be handled, remove from list */
5618                                 skb_list_del_init(skb);
5619                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5620                         }
5621                 }
5622         }
5623 #endif
5624         __netif_receive_skb_list(head);
5625         rcu_read_unlock();
5626 }
5627
5628 /**
5629  *      netif_receive_skb - process receive buffer from network
5630  *      @skb: buffer to process
5631  *
5632  *      netif_receive_skb() is the main receive data processing function.
5633  *      It always succeeds. The buffer may be dropped during processing
5634  *      for congestion control or by the protocol layers.
5635  *
5636  *      This function may only be called from softirq context and interrupts
5637  *      should be enabled.
5638  *
5639  *      Return values (usually ignored):
5640  *      NET_RX_SUCCESS: no congestion
5641  *      NET_RX_DROP: packet was dropped
5642  */
5643 int netif_receive_skb(struct sk_buff *skb)
5644 {
5645         int ret;
5646
5647         trace_netif_receive_skb_entry(skb);
5648
5649         ret = netif_receive_skb_internal(skb);
5650         trace_netif_receive_skb_exit(ret);
5651
5652         return ret;
5653 }
5654 EXPORT_SYMBOL(netif_receive_skb);
5655
5656 /**
5657  *      netif_receive_skb_list - process many receive buffers from network
5658  *      @head: list of skbs to process.
5659  *
5660  *      Since return value of netif_receive_skb() is normally ignored, and
5661  *      wouldn't be meaningful for a list, this function returns void.
5662  *
5663  *      This function may only be called from softirq context and interrupts
5664  *      should be enabled.
5665  */
5666 void netif_receive_skb_list(struct list_head *head)
5667 {
5668         struct sk_buff *skb;
5669
5670         if (list_empty(head))
5671                 return;
5672         if (trace_netif_receive_skb_list_entry_enabled()) {
5673                 list_for_each_entry(skb, head, list)
5674                         trace_netif_receive_skb_list_entry(skb);
5675         }
5676         netif_receive_skb_list_internal(head);
5677         trace_netif_receive_skb_list_exit(0);
5678 }
5679 EXPORT_SYMBOL(netif_receive_skb_list);
5680
5681 static DEFINE_PER_CPU(struct work_struct, flush_works);
5682
5683 /* Network device is going away, flush any packets still pending */
5684 static void flush_backlog(struct work_struct *work)
5685 {
5686         struct sk_buff *skb, *tmp;
5687         struct softnet_data *sd;
5688
5689         local_bh_disable();
5690         sd = this_cpu_ptr(&softnet_data);
5691
5692         local_irq_disable();
5693         rps_lock(sd);
5694         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5695                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5696                         __skb_unlink(skb, &sd->input_pkt_queue);
5697                         dev_kfree_skb_irq(skb);
5698                         input_queue_head_incr(sd);
5699                 }
5700         }
5701         rps_unlock(sd);
5702         local_irq_enable();
5703
5704         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5705                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5706                         __skb_unlink(skb, &sd->process_queue);
5707                         kfree_skb(skb);
5708                         input_queue_head_incr(sd);
5709                 }
5710         }
5711         local_bh_enable();
5712 }
5713
5714 static bool flush_required(int cpu)
5715 {
5716 #if IS_ENABLED(CONFIG_RPS)
5717         struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5718         bool do_flush;
5719
5720         local_irq_disable();
5721         rps_lock(sd);
5722
5723         /* as insertion into process_queue happens with the rps lock held,
5724          * process_queue access may race only with dequeue
5725          */
5726         do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5727                    !skb_queue_empty_lockless(&sd->process_queue);
5728         rps_unlock(sd);
5729         local_irq_enable();
5730
5731         return do_flush;
5732 #endif
5733         /* without RPS we can't safely check input_pkt_queue: during a
5734          * concurrent remote skb_queue_splice() we can detect as empty both
5735          * input_pkt_queue and process_queue even if the latter could end-up
5736          * containing a lot of packets.
5737          */
5738         return true;
5739 }
5740
5741 static void flush_all_backlogs(void)
5742 {
5743         static cpumask_t flush_cpus;
5744         unsigned int cpu;
5745
5746         /* since we are under rtnl lock protection we can use static data
5747          * for the cpumask and avoid allocating on stack the possibly
5748          * large mask
5749          */
5750         ASSERT_RTNL();
5751
5752         get_online_cpus();
5753
5754         cpumask_clear(&flush_cpus);
5755         for_each_online_cpu(cpu) {
5756                 if (flush_required(cpu)) {
5757                         queue_work_on(cpu, system_highpri_wq,
5758                                       per_cpu_ptr(&flush_works, cpu));
5759                         cpumask_set_cpu(cpu, &flush_cpus);
5760                 }
5761         }
5762
5763         /* we can have in flight packet[s] on the cpus we are not flushing,
5764          * synchronize_net() in unregister_netdevice_many() will take care of
5765          * them
5766          */
5767         for_each_cpu(cpu, &flush_cpus)
5768                 flush_work(per_cpu_ptr(&flush_works, cpu));
5769
5770         put_online_cpus();
5771 }
5772
5773 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5774 static void gro_normal_list(struct napi_struct *napi)
5775 {
5776         if (!napi->rx_count)
5777                 return;
5778         netif_receive_skb_list_internal(&napi->rx_list);
5779         INIT_LIST_HEAD(&napi->rx_list);
5780         napi->rx_count = 0;
5781 }
5782
5783 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5784  * pass the whole batch up to the stack.
5785  */
5786 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5787 {
5788         list_add_tail(&skb->list, &napi->rx_list);
5789         napi->rx_count += segs;
5790         if (napi->rx_count >= gro_normal_batch)
5791                 gro_normal_list(napi);
5792 }
5793
5794 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5795 {
5796         struct packet_offload *ptype;
5797         __be16 type = skb->protocol;
5798         struct list_head *head = &offload_base;
5799         int err = -ENOENT;
5800
5801         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5802
5803         if (NAPI_GRO_CB(skb)->count == 1) {
5804                 skb_shinfo(skb)->gso_size = 0;
5805                 goto out;
5806         }
5807
5808         rcu_read_lock();
5809         list_for_each_entry_rcu(ptype, head, list) {
5810                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5811                         continue;
5812
5813                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5814                                          ipv6_gro_complete, inet_gro_complete,
5815                                          skb, 0);
5816                 break;
5817         }
5818         rcu_read_unlock();
5819
5820         if (err) {
5821                 WARN_ON(&ptype->list == head);
5822                 kfree_skb(skb);
5823                 return NET_RX_SUCCESS;
5824         }
5825
5826 out:
5827         gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5828         return NET_RX_SUCCESS;
5829 }
5830
5831 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5832                                    bool flush_old)
5833 {
5834         struct list_head *head = &napi->gro_hash[index].list;
5835         struct sk_buff *skb, *p;
5836
5837         list_for_each_entry_safe_reverse(skb, p, head, list) {
5838                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5839                         return;
5840                 skb_list_del_init(skb);
5841                 napi_gro_complete(napi, skb);
5842                 napi->gro_hash[index].count--;
5843         }
5844
5845         if (!napi->gro_hash[index].count)
5846                 __clear_bit(index, &napi->gro_bitmask);
5847 }
5848
5849 /* napi->gro_hash[].list contains packets ordered by age.
5850  * youngest packets at the head of it.
5851  * Complete skbs in reverse order to reduce latencies.
5852  */
5853 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5854 {
5855         unsigned long bitmask = napi->gro_bitmask;
5856         unsigned int i, base = ~0U;
5857
5858         while ((i = ffs(bitmask)) != 0) {
5859                 bitmask >>= i;
5860                 base += i;
5861                 __napi_gro_flush_chain(napi, base, flush_old);
5862         }
5863 }
5864 EXPORT_SYMBOL(napi_gro_flush);
5865
5866 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5867                                           struct sk_buff *skb)
5868 {
5869         unsigned int maclen = skb->dev->hard_header_len;
5870         u32 hash = skb_get_hash_raw(skb);
5871         struct list_head *head;
5872         struct sk_buff *p;
5873
5874         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5875         list_for_each_entry(p, head, list) {
5876                 unsigned long diffs;
5877
5878                 NAPI_GRO_CB(p)->flush = 0;
5879
5880                 if (hash != skb_get_hash_raw(p)) {
5881                         NAPI_GRO_CB(p)->same_flow = 0;
5882                         continue;
5883                 }
5884
5885                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5886                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5887                 if (skb_vlan_tag_present(p))
5888                         diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5889                 diffs |= skb_metadata_dst_cmp(p, skb);
5890                 diffs |= skb_metadata_differs(p, skb);
5891                 if (maclen == ETH_HLEN)
5892                         diffs |= compare_ether_header(skb_mac_header(p),
5893                                                       skb_mac_header(skb));
5894                 else if (!diffs)
5895                         diffs = memcmp(skb_mac_header(p),
5896                                        skb_mac_header(skb),
5897                                        maclen);
5898                 NAPI_GRO_CB(p)->same_flow = !diffs;
5899         }
5900
5901         return head;
5902 }
5903
5904 static void skb_gro_reset_offset(struct sk_buff *skb)
5905 {
5906         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5907         const skb_frag_t *frag0 = &pinfo->frags[0];
5908
5909         NAPI_GRO_CB(skb)->data_offset = 0;
5910         NAPI_GRO_CB(skb)->frag0 = NULL;
5911         NAPI_GRO_CB(skb)->frag0_len = 0;
5912
5913         if (!skb_headlen(skb) && pinfo->nr_frags &&
5914             !PageHighMem(skb_frag_page(frag0))) {
5915                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5916                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5917                                                     skb_frag_size(frag0),
5918                                                     skb->end - skb->tail);
5919         }
5920 }
5921
5922 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5923 {
5924         struct skb_shared_info *pinfo = skb_shinfo(skb);
5925
5926         BUG_ON(skb->end - skb->tail < grow);
5927
5928         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5929
5930         skb->data_len -= grow;
5931         skb->tail += grow;
5932
5933         skb_frag_off_add(&pinfo->frags[0], grow);
5934         skb_frag_size_sub(&pinfo->frags[0], grow);
5935
5936         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5937                 skb_frag_unref(skb, 0);
5938                 memmove(pinfo->frags, pinfo->frags + 1,
5939                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5940         }
5941 }
5942
5943 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5944 {
5945         struct sk_buff *oldest;
5946
5947         oldest = list_last_entry(head, struct sk_buff, list);
5948
5949         /* We are called with head length >= MAX_GRO_SKBS, so this is
5950          * impossible.
5951          */
5952         if (WARN_ON_ONCE(!oldest))
5953                 return;
5954
5955         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5956          * SKB to the chain.
5957          */
5958         skb_list_del_init(oldest);
5959         napi_gro_complete(napi, oldest);
5960 }
5961
5962 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5963 {
5964         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5965         struct list_head *head = &offload_base;
5966         struct packet_offload *ptype;
5967         __be16 type = skb->protocol;
5968         struct list_head *gro_head;
5969         struct sk_buff *pp = NULL;
5970         enum gro_result ret;
5971         int same_flow;
5972         int grow;
5973
5974         if (netif_elide_gro(skb->dev))
5975                 goto normal;
5976
5977         gro_head = gro_list_prepare(napi, skb);
5978
5979         rcu_read_lock();
5980         list_for_each_entry_rcu(ptype, head, list) {
5981                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5982                         continue;
5983
5984                 skb_set_network_header(skb, skb_gro_offset(skb));
5985                 skb_reset_mac_len(skb);
5986                 NAPI_GRO_CB(skb)->same_flow = 0;
5987                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5988                 NAPI_GRO_CB(skb)->free = 0;
5989                 NAPI_GRO_CB(skb)->encap_mark = 0;
5990                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5991                 NAPI_GRO_CB(skb)->is_fou = 0;
5992                 NAPI_GRO_CB(skb)->is_atomic = 1;
5993                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5994
5995                 /* Setup for GRO checksum validation */
5996                 switch (skb->ip_summed) {
5997                 case CHECKSUM_COMPLETE:
5998                         NAPI_GRO_CB(skb)->csum = skb->csum;
5999                         NAPI_GRO_CB(skb)->csum_valid = 1;
6000                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6001                         break;
6002                 case CHECKSUM_UNNECESSARY:
6003                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6004                         NAPI_GRO_CB(skb)->csum_valid = 0;
6005                         break;
6006                 default:
6007                         NAPI_GRO_CB(skb)->csum_cnt = 0;
6008                         NAPI_GRO_CB(skb)->csum_valid = 0;
6009                 }
6010
6011                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6012                                         ipv6_gro_receive, inet_gro_receive,
6013                                         gro_head, skb);
6014                 break;
6015         }
6016         rcu_read_unlock();
6017
6018         if (&ptype->list == head)
6019                 goto normal;
6020
6021         if (PTR_ERR(pp) == -EINPROGRESS) {
6022                 ret = GRO_CONSUMED;
6023                 goto ok;
6024         }
6025
6026         same_flow = NAPI_GRO_CB(skb)->same_flow;
6027         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6028
6029         if (pp) {
6030                 skb_list_del_init(pp);
6031                 napi_gro_complete(napi, pp);
6032                 napi->gro_hash[hash].count--;
6033         }
6034
6035         if (same_flow)
6036                 goto ok;
6037
6038         if (NAPI_GRO_CB(skb)->flush)
6039                 goto normal;
6040
6041         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6042                 gro_flush_oldest(napi, gro_head);
6043         } else {
6044                 napi->gro_hash[hash].count++;
6045         }
6046         NAPI_GRO_CB(skb)->count = 1;
6047         NAPI_GRO_CB(skb)->age = jiffies;
6048         NAPI_GRO_CB(skb)->last = skb;
6049         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6050         list_add(&skb->list, gro_head);
6051         ret = GRO_HELD;
6052
6053 pull:
6054         grow = skb_gro_offset(skb) - skb_headlen(skb);
6055         if (grow > 0)
6056                 gro_pull_from_frag0(skb, grow);
6057 ok:
6058         if (napi->gro_hash[hash].count) {
6059                 if (!test_bit(hash, &napi->gro_bitmask))
6060                         __set_bit(hash, &napi->gro_bitmask);
6061         } else if (test_bit(hash, &napi->gro_bitmask)) {
6062                 __clear_bit(hash, &napi->gro_bitmask);
6063         }
6064
6065         return ret;
6066
6067 normal:
6068         ret = GRO_NORMAL;
6069         goto pull;
6070 }
6071
6072 struct packet_offload *gro_find_receive_by_type(__be16 type)
6073 {
6074         struct list_head *offload_head = &offload_base;
6075         struct packet_offload *ptype;
6076
6077         list_for_each_entry_rcu(ptype, offload_head, list) {
6078                 if (ptype->type != type || !ptype->callbacks.gro_receive)
6079                         continue;
6080                 return ptype;
6081         }
6082         return NULL;
6083 }
6084 EXPORT_SYMBOL(gro_find_receive_by_type);
6085
6086 struct packet_offload *gro_find_complete_by_type(__be16 type)
6087 {
6088         struct list_head *offload_head = &offload_base;
6089         struct packet_offload *ptype;
6090
6091         list_for_each_entry_rcu(ptype, offload_head, list) {
6092                 if (ptype->type != type || !ptype->callbacks.gro_complete)
6093                         continue;
6094                 return ptype;
6095         }
6096         return NULL;
6097 }
6098 EXPORT_SYMBOL(gro_find_complete_by_type);
6099
6100 static void napi_skb_free_stolen_head(struct sk_buff *skb)
6101 {
6102         skb_dst_drop(skb);
6103         skb_ext_put(skb);
6104         kmem_cache_free(skbuff_head_cache, skb);
6105 }
6106
6107 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6108                                     struct sk_buff *skb,
6109                                     gro_result_t ret)
6110 {
6111         switch (ret) {
6112         case GRO_NORMAL:
6113                 gro_normal_one(napi, skb, 1);
6114                 break;
6115
6116         case GRO_MERGED_FREE:
6117                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6118                         napi_skb_free_stolen_head(skb);
6119                 else
6120                         __kfree_skb(skb);
6121                 break;
6122
6123         case GRO_HELD:
6124         case GRO_MERGED:
6125         case GRO_CONSUMED:
6126                 break;
6127         }
6128
6129         return ret;
6130 }
6131
6132 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6133 {
6134         gro_result_t ret;
6135
6136         skb_mark_napi_id(skb, napi);
6137         trace_napi_gro_receive_entry(skb);
6138
6139         skb_gro_reset_offset(skb);
6140
6141         ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6142         trace_napi_gro_receive_exit(ret);
6143
6144         return ret;
6145 }
6146 EXPORT_SYMBOL(napi_gro_receive);
6147
6148 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6149 {
6150         if (unlikely(skb->pfmemalloc)) {
6151                 consume_skb(skb);
6152                 return;
6153         }
6154         __skb_pull(skb, skb_headlen(skb));
6155         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6156         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6157         __vlan_hwaccel_clear_tag(skb);
6158         skb->dev = napi->dev;
6159         skb->skb_iif = 0;
6160
6161         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6162         skb->pkt_type = PACKET_HOST;
6163
6164         skb->encapsulation = 0;
6165         skb_shinfo(skb)->gso_type = 0;
6166         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6167         skb_ext_reset(skb);
6168
6169         napi->skb = skb;
6170 }
6171
6172 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6173 {
6174         struct sk_buff *skb = napi->skb;
6175
6176         if (!skb) {
6177                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6178                 if (skb) {
6179                         napi->skb = skb;
6180                         skb_mark_napi_id(skb, napi);
6181                 }
6182         }
6183         return skb;
6184 }
6185 EXPORT_SYMBOL(napi_get_frags);
6186
6187 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6188                                       struct sk_buff *skb,
6189                                       gro_result_t ret)
6190 {
6191         switch (ret) {
6192         case GRO_NORMAL:
6193         case GRO_HELD:
6194                 __skb_push(skb, ETH_HLEN);
6195                 skb->protocol = eth_type_trans(skb, skb->dev);
6196                 if (ret == GRO_NORMAL)
6197                         gro_normal_one(napi, skb, 1);
6198                 break;
6199
6200         case GRO_MERGED_FREE:
6201                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6202                         napi_skb_free_stolen_head(skb);
6203                 else
6204                         napi_reuse_skb(napi, skb);
6205                 break;
6206
6207         case GRO_MERGED:
6208         case GRO_CONSUMED:
6209                 break;
6210         }
6211
6212         return ret;
6213 }
6214
6215 /* Upper GRO stack assumes network header starts at gro_offset=0
6216  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6217  * We copy ethernet header into skb->data to have a common layout.
6218  */
6219 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6220 {
6221         struct sk_buff *skb = napi->skb;
6222         const struct ethhdr *eth;
6223         unsigned int hlen = sizeof(*eth);
6224
6225         napi->skb = NULL;
6226
6227         skb_reset_mac_header(skb);
6228         skb_gro_reset_offset(skb);
6229
6230         if (unlikely(skb_gro_header_hard(skb, hlen))) {
6231                 eth = skb_gro_header_slow(skb, hlen, 0);
6232                 if (unlikely(!eth)) {
6233                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6234                                              __func__, napi->dev->name);
6235                         napi_reuse_skb(napi, skb);
6236                         return NULL;
6237                 }
6238         } else {
6239                 eth = (const struct ethhdr *)skb->data;
6240                 gro_pull_from_frag0(skb, hlen);
6241                 NAPI_GRO_CB(skb)->frag0 += hlen;
6242                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6243         }
6244         __skb_pull(skb, hlen);
6245
6246         /*
6247          * This works because the only protocols we care about don't require
6248          * special handling.
6249          * We'll fix it up properly in napi_frags_finish()
6250          */
6251         skb->protocol = eth->h_proto;
6252
6253         return skb;
6254 }
6255
6256 gro_result_t napi_gro_frags(struct napi_struct *napi)
6257 {
6258         gro_result_t ret;
6259         struct sk_buff *skb = napi_frags_skb(napi);
6260
6261         trace_napi_gro_frags_entry(skb);
6262
6263         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6264         trace_napi_gro_frags_exit(ret);
6265
6266         return ret;
6267 }
6268 EXPORT_SYMBOL(napi_gro_frags);
6269
6270 /* Compute the checksum from gro_offset and return the folded value
6271  * after adding in any pseudo checksum.
6272  */
6273 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6274 {
6275         __wsum wsum;
6276         __sum16 sum;
6277
6278         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6279
6280         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6281         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6282         /* See comments in __skb_checksum_complete(). */
6283         if (likely(!sum)) {
6284                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6285                     !skb->csum_complete_sw)
6286                         netdev_rx_csum_fault(skb->dev, skb);
6287         }
6288
6289         NAPI_GRO_CB(skb)->csum = wsum;
6290         NAPI_GRO_CB(skb)->csum_valid = 1;
6291
6292         return sum;
6293 }
6294 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6295
6296 static void net_rps_send_ipi(struct softnet_data *remsd)
6297 {
6298 #ifdef CONFIG_RPS
6299         while (remsd) {
6300                 struct softnet_data *next = remsd->rps_ipi_next;
6301
6302                 if (cpu_online(remsd->cpu))
6303                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
6304                 remsd = next;
6305         }
6306 #endif
6307 }
6308
6309 /*
6310  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6311  * Note: called with local irq disabled, but exits with local irq enabled.
6312  */
6313 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6314 {
6315 #ifdef CONFIG_RPS
6316         struct softnet_data *remsd = sd->rps_ipi_list;
6317
6318         if (remsd) {
6319                 sd->rps_ipi_list = NULL;
6320
6321                 local_irq_enable();
6322
6323                 /* Send pending IPI's to kick RPS processing on remote cpus. */
6324                 net_rps_send_ipi(remsd);
6325         } else
6326 #endif
6327                 local_irq_enable();
6328 }
6329
6330 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6331 {
6332 #ifdef CONFIG_RPS
6333         return sd->rps_ipi_list != NULL;
6334 #else
6335         return false;
6336 #endif
6337 }
6338
6339 static int process_backlog(struct napi_struct *napi, int quota)
6340 {
6341         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6342         bool again = true;
6343         int work = 0;
6344
6345         /* Check if we have pending ipi, its better to send them now,
6346          * not waiting net_rx_action() end.
6347          */
6348         if (sd_has_rps_ipi_waiting(sd)) {
6349                 local_irq_disable();
6350                 net_rps_action_and_irq_enable(sd);
6351         }
6352
6353         napi->weight = dev_rx_weight;
6354         while (again) {
6355                 struct sk_buff *skb;
6356
6357                 while ((skb = __skb_dequeue(&sd->process_queue))) {
6358                         rcu_read_lock();
6359                         __netif_receive_skb(skb);
6360                         rcu_read_unlock();
6361                         input_queue_head_incr(sd);
6362                         if (++work >= quota)
6363                                 return work;
6364
6365                 }
6366
6367                 local_irq_disable();
6368                 rps_lock(sd);
6369                 if (skb_queue_empty(&sd->input_pkt_queue)) {
6370                         /*
6371                          * Inline a custom version of __napi_complete().
6372                          * only current cpu owns and manipulates this napi,
6373                          * and NAPI_STATE_SCHED is the only possible flag set
6374                          * on backlog.
6375                          * We can use a plain write instead of clear_bit(),
6376                          * and we dont need an smp_mb() memory barrier.
6377                          */
6378                         napi->state = 0;
6379                         again = false;
6380                 } else {
6381                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
6382                                                    &sd->process_queue);
6383                 }
6384                 rps_unlock(sd);
6385                 local_irq_enable();
6386         }
6387
6388         return work;
6389 }
6390
6391 /**
6392  * __napi_schedule - schedule for receive
6393  * @n: entry to schedule
6394  *
6395  * The entry's receive function will be scheduled to run.
6396  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6397  */
6398 void __napi_schedule(struct napi_struct *n)
6399 {
6400         unsigned long flags;
6401
6402         local_irq_save(flags);
6403         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6404         local_irq_restore(flags);
6405 }
6406 EXPORT_SYMBOL(__napi_schedule);
6407
6408 /**
6409  *      napi_schedule_prep - check if napi can be scheduled
6410  *      @n: napi context
6411  *
6412  * Test if NAPI routine is already running, and if not mark
6413  * it as running.  This is used as a condition variable to
6414  * insure only one NAPI poll instance runs.  We also make
6415  * sure there is no pending NAPI disable.
6416  */
6417 bool napi_schedule_prep(struct napi_struct *n)
6418 {
6419         unsigned long val, new;
6420
6421         do {
6422                 val = READ_ONCE(n->state);
6423                 if (unlikely(val & NAPIF_STATE_DISABLE))
6424                         return false;
6425                 new = val | NAPIF_STATE_SCHED;
6426
6427                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6428                  * This was suggested by Alexander Duyck, as compiler
6429                  * emits better code than :
6430                  * if (val & NAPIF_STATE_SCHED)
6431                  *     new |= NAPIF_STATE_MISSED;
6432                  */
6433                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6434                                                    NAPIF_STATE_MISSED;
6435         } while (cmpxchg(&n->state, val, new) != val);
6436
6437         return !(val & NAPIF_STATE_SCHED);
6438 }
6439 EXPORT_SYMBOL(napi_schedule_prep);
6440
6441 /**
6442  * __napi_schedule_irqoff - schedule for receive
6443  * @n: entry to schedule
6444  *
6445  * Variant of __napi_schedule() assuming hard irqs are masked
6446  */
6447 void __napi_schedule_irqoff(struct napi_struct *n)
6448 {
6449         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6450 }
6451 EXPORT_SYMBOL(__napi_schedule_irqoff);
6452
6453 bool napi_complete_done(struct napi_struct *n, int work_done)
6454 {
6455         unsigned long flags, val, new, timeout = 0;
6456         bool ret = true;
6457
6458         /*
6459          * 1) Don't let napi dequeue from the cpu poll list
6460          *    just in case its running on a different cpu.
6461          * 2) If we are busy polling, do nothing here, we have
6462          *    the guarantee we will be called later.
6463          */
6464         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6465                                  NAPIF_STATE_IN_BUSY_POLL)))
6466                 return false;
6467
6468         if (work_done) {
6469                 if (n->gro_bitmask)
6470                         timeout = READ_ONCE(n->dev->gro_flush_timeout);
6471                 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6472         }
6473         if (n->defer_hard_irqs_count > 0) {
6474                 n->defer_hard_irqs_count--;
6475                 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6476                 if (timeout)
6477                         ret = false;
6478         }
6479         if (n->gro_bitmask) {
6480                 /* When the NAPI instance uses a timeout and keeps postponing
6481                  * it, we need to bound somehow the time packets are kept in
6482                  * the GRO layer
6483                  */
6484                 napi_gro_flush(n, !!timeout);
6485         }
6486
6487         gro_normal_list(n);
6488
6489         if (unlikely(!list_empty(&n->poll_list))) {
6490                 /* If n->poll_list is not empty, we need to mask irqs */
6491                 local_irq_save(flags);
6492                 list_del_init(&n->poll_list);
6493                 local_irq_restore(flags);
6494         }
6495
6496         do {
6497                 val = READ_ONCE(n->state);
6498
6499                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6500
6501                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6502                               NAPIF_STATE_PREFER_BUSY_POLL);
6503
6504                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6505                  * because we will call napi->poll() one more time.
6506                  * This C code was suggested by Alexander Duyck to help gcc.
6507                  */
6508                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6509                                                     NAPIF_STATE_SCHED;
6510         } while (cmpxchg(&n->state, val, new) != val);
6511
6512         if (unlikely(val & NAPIF_STATE_MISSED)) {
6513                 __napi_schedule(n);
6514                 return false;
6515         }
6516
6517         if (timeout)
6518                 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6519                               HRTIMER_MODE_REL_PINNED);
6520         return ret;
6521 }
6522 EXPORT_SYMBOL(napi_complete_done);
6523
6524 /* must be called under rcu_read_lock(), as we dont take a reference */
6525 static struct napi_struct *napi_by_id(unsigned int napi_id)
6526 {
6527         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6528         struct napi_struct *napi;
6529
6530         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6531                 if (napi->napi_id == napi_id)
6532                         return napi;
6533
6534         return NULL;
6535 }
6536
6537 #if defined(CONFIG_NET_RX_BUSY_POLL)
6538
6539 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6540 {
6541         if (!skip_schedule) {
6542                 gro_normal_list(napi);
6543                 __napi_schedule(napi);
6544                 return;
6545         }
6546
6547         if (napi->gro_bitmask) {
6548                 /* flush too old packets
6549                  * If HZ < 1000, flush all packets.
6550                  */
6551                 napi_gro_flush(napi, HZ >= 1000);
6552         }
6553
6554         gro_normal_list(napi);
6555         clear_bit(NAPI_STATE_SCHED, &napi->state);
6556 }
6557
6558 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6559                            u16 budget)
6560 {
6561         bool skip_schedule = false;
6562         unsigned long timeout;
6563         int rc;
6564
6565         /* Busy polling means there is a high chance device driver hard irq
6566          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6567          * set in napi_schedule_prep().
6568          * Since we are about to call napi->poll() once more, we can safely
6569          * clear NAPI_STATE_MISSED.
6570          *
6571          * Note: x86 could use a single "lock and ..." instruction
6572          * to perform these two clear_bit()
6573          */
6574         clear_bit(NAPI_STATE_MISSED, &napi->state);
6575         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6576
6577         local_bh_disable();
6578
6579         if (prefer_busy_poll) {
6580                 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6581                 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6582                 if (napi->defer_hard_irqs_count && timeout) {
6583                         hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6584                         skip_schedule = true;
6585                 }
6586         }
6587
6588         /* All we really want here is to re-enable device interrupts.
6589          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6590          */
6591         rc = napi->poll(napi, budget);
6592         /* We can't gro_normal_list() here, because napi->poll() might have
6593          * rearmed the napi (napi_complete_done()) in which case it could
6594          * already be running on another CPU.
6595          */
6596         trace_napi_poll(napi, rc, budget);
6597         netpoll_poll_unlock(have_poll_lock);
6598         if (rc == budget)
6599                 __busy_poll_stop(napi, skip_schedule);
6600         local_bh_enable();
6601 }
6602
6603 void napi_busy_loop(unsigned int napi_id,
6604                     bool (*loop_end)(void *, unsigned long),
6605                     void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6606 {
6607         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6608         int (*napi_poll)(struct napi_struct *napi, int budget);
6609         void *have_poll_lock = NULL;
6610         struct napi_struct *napi;
6611
6612 restart:
6613         napi_poll = NULL;
6614
6615         rcu_read_lock();
6616
6617         napi = napi_by_id(napi_id);
6618         if (!napi)
6619                 goto out;
6620
6621         preempt_disable();
6622         for (;;) {
6623                 int work = 0;
6624
6625                 local_bh_disable();
6626                 if (!napi_poll) {
6627                         unsigned long val = READ_ONCE(napi->state);
6628
6629                         /* If multiple threads are competing for this napi,
6630                          * we avoid dirtying napi->state as much as we can.
6631                          */
6632                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6633                                    NAPIF_STATE_IN_BUSY_POLL)) {
6634                                 if (prefer_busy_poll)
6635                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6636                                 goto count;
6637                         }
6638                         if (cmpxchg(&napi->state, val,
6639                                     val | NAPIF_STATE_IN_BUSY_POLL |
6640                                           NAPIF_STATE_SCHED) != val) {
6641                                 if (prefer_busy_poll)
6642                                         set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6643                                 goto count;
6644                         }
6645                         have_poll_lock = netpoll_poll_lock(napi);
6646                         napi_poll = napi->poll;
6647                 }
6648                 work = napi_poll(napi, budget);
6649                 trace_napi_poll(napi, work, budget);
6650                 gro_normal_list(napi);
6651 count:
6652                 if (work > 0)
6653                         __NET_ADD_STATS(dev_net(napi->dev),
6654                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6655                 local_bh_enable();
6656
6657                 if (!loop_end || loop_end(loop_end_arg, start_time))
6658                         break;
6659
6660                 if (unlikely(need_resched())) {
6661                         if (napi_poll)
6662                                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6663                         preempt_enable();
6664                         rcu_read_unlock();
6665                         cond_resched();
6666                         if (loop_end(loop_end_arg, start_time))
6667                                 return;
6668                         goto restart;
6669                 }
6670                 cpu_relax();
6671         }
6672         if (napi_poll)
6673                 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6674         preempt_enable();
6675 out:
6676         rcu_read_unlock();
6677 }
6678 EXPORT_SYMBOL(napi_busy_loop);
6679
6680 #endif /* CONFIG_NET_RX_BUSY_POLL */
6681
6682 static void napi_hash_add(struct napi_struct *napi)
6683 {
6684         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6685                 return;
6686
6687         spin_lock(&napi_hash_lock);
6688
6689         /* 0..NR_CPUS range is reserved for sender_cpu use */
6690         do {
6691                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6692                         napi_gen_id = MIN_NAPI_ID;
6693         } while (napi_by_id(napi_gen_id));
6694         napi->napi_id = napi_gen_id;
6695
6696         hlist_add_head_rcu(&napi->napi_hash_node,
6697                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6698
6699         spin_unlock(&napi_hash_lock);
6700 }
6701
6702 /* Warning : caller is responsible to make sure rcu grace period
6703  * is respected before freeing memory containing @napi
6704  */
6705 static void napi_hash_del(struct napi_struct *napi)
6706 {
6707         spin_lock(&napi_hash_lock);
6708
6709         hlist_del_init_rcu(&napi->napi_hash_node);
6710
6711         spin_unlock(&napi_hash_lock);
6712 }
6713
6714 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6715 {
6716         struct napi_struct *napi;
6717
6718         napi = container_of(timer, struct napi_struct, timer);
6719
6720         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6721          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6722          */
6723         if (!napi_disable_pending(napi) &&
6724             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6725                 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6726                 __napi_schedule_irqoff(napi);
6727         }
6728
6729         return HRTIMER_NORESTART;
6730 }
6731
6732 static void init_gro_hash(struct napi_struct *napi)
6733 {
6734         int i;
6735
6736         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6737                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6738                 napi->gro_hash[i].count = 0;
6739         }
6740         napi->gro_bitmask = 0;
6741 }
6742
6743 int dev_set_threaded(struct net_device *dev, bool threaded)
6744 {
6745         struct napi_struct *napi;
6746         int err = 0;
6747
6748         if (dev->threaded == threaded)
6749                 return 0;
6750
6751         if (threaded) {
6752                 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6753                         if (!napi->thread) {
6754                                 err = napi_kthread_create(napi);
6755                                 if (err) {
6756                                         threaded = false;
6757                                         break;
6758                                 }
6759                         }
6760                 }
6761         }
6762
6763         dev->threaded = threaded;
6764
6765         /* Make sure kthread is created before THREADED bit
6766          * is set.
6767          */
6768         smp_mb__before_atomic();
6769
6770         /* Setting/unsetting threaded mode on a napi might not immediately
6771          * take effect, if the current napi instance is actively being
6772          * polled. In this case, the switch between threaded mode and
6773          * softirq mode will happen in the next round of napi_schedule().
6774          * This should not cause hiccups/stalls to the live traffic.
6775          */
6776         list_for_each_entry(napi, &dev->napi_list, dev_list) {
6777                 if (threaded)
6778                         set_bit(NAPI_STATE_THREADED, &napi->state);
6779                 else
6780                         clear_bit(NAPI_STATE_THREADED, &napi->state);
6781         }
6782
6783         return err;
6784 }
6785
6786 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6787                     int (*poll)(struct napi_struct *, int), int weight)
6788 {
6789         if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6790                 return;
6791
6792         INIT_LIST_HEAD(&napi->poll_list);
6793         INIT_HLIST_NODE(&napi->napi_hash_node);
6794         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6795         napi->timer.function = napi_watchdog;
6796         init_gro_hash(napi);
6797         napi->skb = NULL;
6798         INIT_LIST_HEAD(&napi->rx_list);
6799         napi->rx_count = 0;
6800         napi->poll = poll;
6801         if (weight > NAPI_POLL_WEIGHT)
6802                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6803                                 weight);
6804         napi->weight = weight;
6805         napi->dev = dev;
6806 #ifdef CONFIG_NETPOLL
6807         napi->poll_owner = -1;
6808 #endif
6809         set_bit(NAPI_STATE_SCHED, &napi->state);
6810         set_bit(NAPI_STATE_NPSVC, &napi->state);
6811         list_add_rcu(&napi->dev_list, &dev->napi_list);
6812         napi_hash_add(napi);
6813         /* Create kthread for this napi if dev->threaded is set.
6814          * Clear dev->threaded if kthread creation failed so that
6815          * threaded mode will not be enabled in napi_enable().
6816          */
6817         if (dev->threaded && napi_kthread_create(napi))
6818                 dev->threaded = 0;
6819 }
6820 EXPORT_SYMBOL(netif_napi_add);
6821
6822 void napi_disable(struct napi_struct *n)
6823 {
6824         might_sleep();
6825         set_bit(NAPI_STATE_DISABLE, &n->state);
6826
6827         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6828                 msleep(1);
6829         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6830                 msleep(1);
6831
6832         hrtimer_cancel(&n->timer);
6833
6834         clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6835         clear_bit(NAPI_STATE_DISABLE, &n->state);
6836         clear_bit(NAPI_STATE_THREADED, &n->state);
6837 }
6838 EXPORT_SYMBOL(napi_disable);
6839
6840 /**
6841  *      napi_enable - enable NAPI scheduling
6842  *      @n: NAPI context
6843  *
6844  * Resume NAPI from being scheduled on this context.
6845  * Must be paired with napi_disable.
6846  */
6847 void napi_enable(struct napi_struct *n)
6848 {
6849         BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6850         smp_mb__before_atomic();
6851         clear_bit(NAPI_STATE_SCHED, &n->state);
6852         clear_bit(NAPI_STATE_NPSVC, &n->state);
6853         if (n->dev->threaded && n->thread)
6854                 set_bit(NAPI_STATE_THREADED, &n->state);
6855 }
6856 EXPORT_SYMBOL(napi_enable);
6857
6858 static void flush_gro_hash(struct napi_struct *napi)
6859 {
6860         int i;
6861
6862         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6863                 struct sk_buff *skb, *n;
6864
6865                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6866                         kfree_skb(skb);
6867                 napi->gro_hash[i].count = 0;
6868         }
6869 }
6870
6871 /* Must be called in process context */
6872 void __netif_napi_del(struct napi_struct *napi)
6873 {
6874         if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6875                 return;
6876
6877         napi_hash_del(napi);
6878         list_del_rcu(&napi->dev_list);
6879         napi_free_frags(napi);
6880
6881         flush_gro_hash(napi);
6882         napi->gro_bitmask = 0;
6883
6884         if (napi->thread) {
6885                 kthread_stop(napi->thread);
6886                 napi->thread = NULL;
6887         }
6888 }
6889 EXPORT_SYMBOL(__netif_napi_del);
6890
6891 static int __napi_poll(struct napi_struct *n, bool *repoll)
6892 {
6893         int work, weight;
6894
6895         weight = n->weight;
6896
6897         /* This NAPI_STATE_SCHED test is for avoiding a race
6898          * with netpoll's poll_napi().  Only the entity which
6899          * obtains the lock and sees NAPI_STATE_SCHED set will
6900          * actually make the ->poll() call.  Therefore we avoid
6901          * accidentally calling ->poll() when NAPI is not scheduled.
6902          */
6903         work = 0;
6904         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6905                 work = n->poll(n, weight);
6906                 trace_napi_poll(n, work, weight);
6907         }
6908
6909         if (unlikely(work > weight))
6910                 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6911                             n->poll, work, weight);
6912
6913         if (likely(work < weight))
6914                 return work;
6915
6916         /* Drivers must not modify the NAPI state if they
6917          * consume the entire weight.  In such cases this code
6918          * still "owns" the NAPI instance and therefore can
6919          * move the instance around on the list at-will.
6920          */
6921         if (unlikely(napi_disable_pending(n))) {
6922                 napi_complete(n);
6923                 return work;
6924         }
6925
6926         /* The NAPI context has more processing work, but busy-polling
6927          * is preferred. Exit early.
6928          */
6929         if (napi_prefer_busy_poll(n)) {
6930                 if (napi_complete_done(n, work)) {
6931                         /* If timeout is not set, we need to make sure
6932                          * that the NAPI is re-scheduled.
6933                          */
6934                         napi_schedule(n);
6935                 }
6936                 return work;
6937         }
6938
6939         if (n->gro_bitmask) {
6940                 /* flush too old packets
6941                  * If HZ < 1000, flush all packets.
6942                  */
6943                 napi_gro_flush(n, HZ >= 1000);
6944         }
6945
6946         gro_normal_list(n);
6947
6948         /* Some drivers may have called napi_schedule
6949          * prior to exhausting their budget.
6950          */
6951         if (unlikely(!list_empty(&n->poll_list))) {
6952                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6953                              n->dev ? n->dev->name : "backlog");
6954                 return work;
6955         }
6956
6957         *repoll = true;
6958
6959         return work;
6960 }
6961
6962 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6963 {
6964         bool do_repoll = false;
6965         void *have;
6966         int work;
6967
6968         list_del_init(&n->poll_list);
6969
6970         have = netpoll_poll_lock(n);
6971
6972         work = __napi_poll(n, &do_repoll);
6973
6974         if (do_repoll)
6975                 list_add_tail(&n->poll_list, repoll);
6976
6977         netpoll_poll_unlock(have);
6978
6979         return work;
6980 }
6981
6982 static int napi_thread_wait(struct napi_struct *napi)
6983 {
6984         set_current_state(TASK_INTERRUPTIBLE);
6985
6986         while (!kthread_should_stop() && !napi_disable_pending(napi)) {
6987                 if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
6988                         WARN_ON(!list_empty(&napi->poll_list));
6989                         __set_current_state(TASK_RUNNING);
6990                         return 0;
6991                 }
6992
6993                 schedule();
6994                 set_current_state(TASK_INTERRUPTIBLE);
6995         }
6996         __set_current_state(TASK_RUNNING);
6997         return -1;
6998 }
6999
7000 static int napi_threaded_poll(void *data)
7001 {
7002         struct napi_struct *napi = data;
7003         void *have;
7004
7005         while (!napi_thread_wait(napi)) {
7006                 for (;;) {
7007                         bool repoll = false;
7008
7009                         local_bh_disable();
7010
7011                         have = netpoll_poll_lock(napi);
7012                         __napi_poll(napi, &repoll);
7013                         netpoll_poll_unlock(have);
7014
7015                         __kfree_skb_flush();
7016                         local_bh_enable();
7017
7018                         if (!repoll)
7019                                 break;
7020
7021                         cond_resched();
7022                 }
7023         }
7024         return 0;
7025 }
7026
7027 static __latent_entropy void net_rx_action(struct softirq_action *h)
7028 {
7029         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7030         unsigned long time_limit = jiffies +
7031                 usecs_to_jiffies(netdev_budget_usecs);
7032         int budget = netdev_budget;
7033         LIST_HEAD(list);
7034         LIST_HEAD(repoll);
7035
7036         local_irq_disable();
7037         list_splice_init(&sd->poll_list, &list);
7038         local_irq_enable();
7039
7040         for (;;) {
7041                 struct napi_struct *n;
7042
7043                 if (list_empty(&list)) {
7044                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7045                                 goto out;
7046                         break;
7047                 }
7048
7049                 n = list_first_entry(&list, struct napi_struct, poll_list);
7050                 budget -= napi_poll(n, &repoll);
7051
7052                 /* If softirq window is exhausted then punt.
7053                  * Allow this to run for 2 jiffies since which will allow
7054                  * an average latency of 1.5/HZ.
7055                  */
7056                 if (unlikely(budget <= 0 ||
7057                              time_after_eq(jiffies, time_limit))) {
7058                         sd->time_squeeze++;
7059                         break;
7060                 }
7061         }
7062
7063         local_irq_disable();
7064
7065         list_splice_tail_init(&sd->poll_list, &list);
7066         list_splice_tail(&repoll, &list);
7067         list_splice(&list, &sd->poll_list);
7068         if (!list_empty(&sd->poll_list))
7069                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7070
7071         net_rps_action_and_irq_enable(sd);
7072 out:
7073         __kfree_skb_flush();
7074 }
7075
7076 struct netdev_adjacent {
7077         struct net_device *dev;
7078
7079         /* upper master flag, there can only be one master device per list */
7080         bool master;
7081
7082         /* lookup ignore flag */
7083         bool ignore;
7084
7085         /* counter for the number of times this device was added to us */
7086         u16 ref_nr;
7087
7088         /* private field for the users */
7089         void *private;
7090
7091         struct list_head list;
7092         struct rcu_head rcu;
7093 };
7094
7095 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7096                                                  struct list_head *adj_list)
7097 {
7098         struct netdev_adjacent *adj;
7099
7100         list_for_each_entry(adj, adj_list, list) {
7101                 if (adj->dev == adj_dev)
7102                         return adj;
7103         }
7104         return NULL;
7105 }
7106
7107 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7108                                     struct netdev_nested_priv *priv)
7109 {
7110         struct net_device *dev = (struct net_device *)priv->data;
7111
7112         return upper_dev == dev;
7113 }
7114
7115 /**
7116  * netdev_has_upper_dev - Check if device is linked to an upper device
7117  * @dev: device
7118  * @upper_dev: upper device to check
7119  *
7120  * Find out if a device is linked to specified upper device and return true
7121  * in case it is. Note that this checks only immediate upper device,
7122  * not through a complete stack of devices. The caller must hold the RTNL lock.
7123  */
7124 bool netdev_has_upper_dev(struct net_device *dev,
7125                           struct net_device *upper_dev)
7126 {
7127         struct netdev_nested_priv priv = {
7128                 .data = (void *)upper_dev,
7129         };
7130
7131         ASSERT_RTNL();
7132
7133         return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7134                                              &priv);
7135 }
7136 EXPORT_SYMBOL(netdev_has_upper_dev);
7137
7138 /**
7139  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7140  * @dev: device
7141  * @upper_dev: upper device to check
7142  *
7143  * Find out if a device is linked to specified upper device and return true
7144  * in case it is. Note that this checks the entire upper device chain.
7145  * The caller must hold rcu lock.
7146  */
7147
7148 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7149                                   struct net_device *upper_dev)
7150 {
7151         struct netdev_nested_priv priv = {
7152                 .data = (void *)upper_dev,
7153         };
7154
7155         return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7156                                                &priv);
7157 }
7158 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7159
7160 /**
7161  * netdev_has_any_upper_dev - Check if device is linked to some device
7162  * @dev: device
7163  *
7164  * Find out if a device is linked to an upper device and return true in case
7165  * it is. The caller must hold the RTNL lock.
7166  */
7167 bool netdev_has_any_upper_dev(struct net_device *dev)
7168 {
7169         ASSERT_RTNL();
7170
7171         return !list_empty(&dev->adj_list.upper);
7172 }
7173 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7174
7175 /**
7176  * netdev_master_upper_dev_get - Get master upper device
7177  * @dev: device
7178  *
7179  * Find a master upper device and return pointer to it or NULL in case
7180  * it's not there. The caller must hold the RTNL lock.
7181  */
7182 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7183 {
7184         struct netdev_adjacent *upper;
7185
7186         ASSERT_RTNL();
7187
7188         if (list_empty(&dev->adj_list.upper))
7189                 return NULL;
7190
7191         upper = list_first_entry(&dev->adj_list.upper,
7192                                  struct netdev_adjacent, list);
7193         if (likely(upper->master))
7194                 return upper->dev;
7195         return NULL;
7196 }
7197 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7198
7199 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7200 {
7201         struct netdev_adjacent *upper;
7202
7203         ASSERT_RTNL();
7204
7205         if (list_empty(&dev->adj_list.upper))
7206                 return NULL;
7207
7208         upper = list_first_entry(&dev->adj_list.upper,
7209                                  struct netdev_adjacent, list);
7210         if (likely(upper->master) && !upper->ignore)
7211                 return upper->dev;
7212         return NULL;
7213 }
7214
7215 /**
7216  * netdev_has_any_lower_dev - Check if device is linked to some device
7217  * @dev: device
7218  *
7219  * Find out if a device is linked to a lower device and return true in case
7220  * it is. The caller must hold the RTNL lock.
7221  */
7222 static bool netdev_has_any_lower_dev(struct net_device *dev)
7223 {
7224         ASSERT_RTNL();
7225
7226         return !list_empty(&dev->adj_list.lower);
7227 }
7228
7229 void *netdev_adjacent_get_private(struct list_head *adj_list)
7230 {
7231         struct netdev_adjacent *adj;
7232
7233         adj = list_entry(adj_list, struct netdev_adjacent, list);
7234
7235         return adj->private;
7236 }
7237 EXPORT_SYMBOL(netdev_adjacent_get_private);
7238
7239 /**
7240  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7241  * @dev: device
7242  * @iter: list_head ** of the current position
7243  *
7244  * Gets the next device from the dev's upper list, starting from iter
7245  * position. The caller must hold RCU read lock.
7246  */
7247 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7248                                                  struct list_head **iter)
7249 {
7250         struct netdev_adjacent *upper;
7251
7252         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7253
7254         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7255
7256         if (&upper->list == &dev->adj_list.upper)
7257                 return NULL;
7258
7259         *iter = &upper->list;
7260
7261         return upper->dev;
7262 }
7263 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7264
7265 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7266                                                   struct list_head **iter,
7267                                                   bool *ignore)
7268 {
7269         struct netdev_adjacent *upper;
7270
7271         upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7272
7273         if (&upper->list == &dev->adj_list.upper)
7274                 return NULL;
7275
7276         *iter = &upper->list;
7277         *ignore = upper->ignore;
7278
7279         return upper->dev;
7280 }
7281
7282 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7283                                                     struct list_head **iter)
7284 {
7285         struct netdev_adjacent *upper;
7286
7287         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7288
7289         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7290
7291         if (&upper->list == &dev->adj_list.upper)
7292                 return NULL;
7293
7294         *iter = &upper->list;
7295
7296         return upper->dev;
7297 }
7298
7299 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7300                                        int (*fn)(struct net_device *dev,
7301                                          struct netdev_nested_priv *priv),
7302                                        struct netdev_nested_priv *priv)
7303 {
7304         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7305         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7306         int ret, cur = 0;
7307         bool ignore;
7308
7309         now = dev;
7310         iter = &dev->adj_list.upper;
7311
7312         while (1) {
7313                 if (now != dev) {
7314                         ret = fn(now, priv);
7315                         if (ret)
7316                                 return ret;
7317                 }
7318
7319                 next = NULL;
7320                 while (1) {
7321                         udev = __netdev_next_upper_dev(now, &iter, &ignore);
7322                         if (!udev)
7323                                 break;
7324                         if (ignore)
7325                                 continue;
7326
7327                         next = udev;
7328                         niter = &udev->adj_list.upper;
7329                         dev_stack[cur] = now;
7330                         iter_stack[cur++] = iter;
7331                         break;
7332                 }
7333
7334                 if (!next) {
7335                         if (!cur)
7336                                 return 0;
7337                         next = dev_stack[--cur];
7338                         niter = iter_stack[cur];
7339                 }
7340
7341                 now = next;
7342                 iter = niter;
7343         }
7344
7345         return 0;
7346 }
7347
7348 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7349                                   int (*fn)(struct net_device *dev,
7350                                             struct netdev_nested_priv *priv),
7351                                   struct netdev_nested_priv *priv)
7352 {
7353         struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7354         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7355         int ret, cur = 0;
7356
7357         now = dev;
7358         iter = &dev->adj_list.upper;
7359
7360         while (1) {
7361                 if (now != dev) {
7362                         ret = fn(now, priv);
7363                         if (ret)
7364                                 return ret;
7365                 }
7366
7367                 next = NULL;
7368                 while (1) {
7369                         udev = netdev_next_upper_dev_rcu(now, &iter);
7370                         if (!udev)
7371                                 break;
7372
7373                         next = udev;
7374                         niter = &udev->adj_list.upper;
7375                         dev_stack[cur] = now;
7376                         iter_stack[cur++] = iter;
7377                         break;
7378                 }
7379
7380                 if (!next) {
7381                         if (!cur)
7382                                 return 0;
7383                         next = dev_stack[--cur];
7384                         niter = iter_stack[cur];
7385                 }
7386
7387                 now = next;
7388                 iter = niter;
7389         }
7390
7391         return 0;
7392 }
7393 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7394
7395 static bool __netdev_has_upper_dev(struct net_device *dev,
7396                                    struct net_device *upper_dev)
7397 {
7398         struct netdev_nested_priv priv = {
7399                 .flags = 0,
7400                 .data = (void *)upper_dev,
7401         };
7402
7403         ASSERT_RTNL();
7404
7405         return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7406                                            &priv);
7407 }
7408
7409 /**
7410  * netdev_lower_get_next_private - Get the next ->private from the
7411  *                                 lower neighbour list
7412  * @dev: device
7413  * @iter: list_head ** of the current position
7414  *
7415  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7416  * list, starting from iter position. The caller must hold either hold the
7417  * RTNL lock or its own locking that guarantees that the neighbour lower
7418  * list will remain unchanged.
7419  */
7420 void *netdev_lower_get_next_private(struct net_device *dev,
7421                                     struct list_head **iter)
7422 {
7423         struct netdev_adjacent *lower;
7424
7425         lower = list_entry(*iter, struct netdev_adjacent, list);
7426
7427         if (&lower->list == &dev->adj_list.lower)
7428                 return NULL;
7429
7430         *iter = lower->list.next;
7431
7432         return lower->private;
7433 }
7434 EXPORT_SYMBOL(netdev_lower_get_next_private);
7435
7436 /**
7437  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7438  *                                     lower neighbour list, RCU
7439  *                                     variant
7440  * @dev: device
7441  * @iter: list_head ** of the current position
7442  *
7443  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7444  * list, starting from iter position. The caller must hold RCU read lock.
7445  */
7446 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7447                                         struct list_head **iter)
7448 {
7449         struct netdev_adjacent *lower;
7450
7451         WARN_ON_ONCE(!rcu_read_lock_held());
7452
7453         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7454
7455         if (&lower->list == &dev->adj_list.lower)
7456                 return NULL;
7457
7458         *iter = &lower->list;
7459
7460         return lower->private;
7461 }
7462 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7463
7464 /**
7465  * netdev_lower_get_next - Get the next device from the lower neighbour
7466  *                         list
7467  * @dev: device
7468  * @iter: list_head ** of the current position
7469  *
7470  * Gets the next netdev_adjacent from the dev's lower neighbour
7471  * list, starting from iter position. The caller must hold RTNL lock or
7472  * its own locking that guarantees that the neighbour lower
7473  * list will remain unchanged.
7474  */
7475 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7476 {
7477         struct netdev_adjacent *lower;
7478
7479         lower = list_entry(*iter, struct netdev_adjacent, list);
7480
7481         if (&lower->list == &dev->adj_list.lower)
7482                 return NULL;
7483
7484         *iter = lower->list.next;
7485
7486         return lower->dev;
7487 }
7488 EXPORT_SYMBOL(netdev_lower_get_next);
7489
7490 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7491                                                 struct list_head **iter)
7492 {
7493         struct netdev_adjacent *lower;
7494
7495         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7496
7497         if (&lower->list == &dev->adj_list.lower)
7498                 return NULL;
7499
7500         *iter = &lower->list;
7501
7502         return lower->dev;
7503 }
7504
7505 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7506                                                   struct list_head **iter,
7507                                                   bool *ignore)
7508 {
7509         struct netdev_adjacent *lower;
7510
7511         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7512
7513         if (&lower->list == &dev->adj_list.lower)
7514                 return NULL;
7515
7516         *iter = &lower->list;
7517         *ignore = lower->ignore;
7518
7519         return lower->dev;
7520 }
7521
7522 int netdev_walk_all_lower_dev(struct net_device *dev,
7523                               int (*fn)(struct net_device *dev,
7524                                         struct netdev_nested_priv *priv),
7525                               struct netdev_nested_priv *priv)
7526 {
7527         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7528         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7529         int ret, cur = 0;
7530
7531         now = dev;
7532         iter = &dev->adj_list.lower;
7533
7534         while (1) {
7535                 if (now != dev) {
7536                         ret = fn(now, priv);
7537                         if (ret)
7538                                 return ret;
7539                 }
7540
7541                 next = NULL;
7542                 while (1) {
7543                         ldev = netdev_next_lower_dev(now, &iter);
7544                         if (!ldev)
7545                                 break;
7546
7547                         next = ldev;
7548                         niter = &ldev->adj_list.lower;
7549                         dev_stack[cur] = now;
7550                         iter_stack[cur++] = iter;
7551                         break;
7552                 }
7553
7554                 if (!next) {
7555                         if (!cur)
7556                                 return 0;
7557                         next = dev_stack[--cur];
7558                         niter = iter_stack[cur];
7559                 }
7560
7561                 now = next;
7562                 iter = niter;
7563         }
7564
7565         return 0;
7566 }
7567 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7568
7569 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7570                                        int (*fn)(struct net_device *dev,
7571                                          struct netdev_nested_priv *priv),
7572                                        struct netdev_nested_priv *priv)
7573 {
7574         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7575         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7576         int ret, cur = 0;
7577         bool ignore;
7578
7579         now = dev;
7580         iter = &dev->adj_list.lower;
7581
7582         while (1) {
7583                 if (now != dev) {
7584                         ret = fn(now, priv);
7585                         if (ret)
7586                                 return ret;
7587                 }
7588
7589                 next = NULL;
7590                 while (1) {
7591                         ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7592                         if (!ldev)
7593                                 break;
7594                         if (ignore)
7595                                 continue;
7596
7597                         next = ldev;
7598                         niter = &ldev->adj_list.lower;
7599                         dev_stack[cur] = now;
7600                         iter_stack[cur++] = iter;
7601                         break;
7602                 }
7603
7604                 if (!next) {
7605                         if (!cur)
7606                                 return 0;
7607                         next = dev_stack[--cur];
7608                         niter = iter_stack[cur];
7609                 }
7610
7611                 now = next;
7612                 iter = niter;
7613         }
7614
7615         return 0;
7616 }
7617
7618 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7619                                              struct list_head **iter)
7620 {
7621         struct netdev_adjacent *lower;
7622
7623         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7624         if (&lower->list == &dev->adj_list.lower)
7625                 return NULL;
7626
7627         *iter = &lower->list;
7628
7629         return lower->dev;
7630 }
7631 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7632
7633 static u8 __netdev_upper_depth(struct net_device *dev)
7634 {
7635         struct net_device *udev;
7636         struct list_head *iter;
7637         u8 max_depth = 0;
7638         bool ignore;
7639
7640         for (iter = &dev->adj_list.upper,
7641              udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7642              udev;
7643              udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7644                 if (ignore)
7645                         continue;
7646                 if (max_depth < udev->upper_level)
7647                         max_depth = udev->upper_level;
7648         }
7649
7650         return max_depth;
7651 }
7652
7653 static u8 __netdev_lower_depth(struct net_device *dev)
7654 {
7655         struct net_device *ldev;
7656         struct list_head *iter;
7657         u8 max_depth = 0;
7658         bool ignore;
7659
7660         for (iter = &dev->adj_list.lower,
7661              ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7662              ldev;
7663              ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7664                 if (ignore)
7665                         continue;
7666                 if (max_depth < ldev->lower_level)
7667                         max_depth = ldev->lower_level;
7668         }
7669
7670         return max_depth;
7671 }
7672
7673 static int __netdev_update_upper_level(struct net_device *dev,
7674                                        struct netdev_nested_priv *__unused)
7675 {
7676         dev->upper_level = __netdev_upper_depth(dev) + 1;
7677         return 0;
7678 }
7679
7680 static int __netdev_update_lower_level(struct net_device *dev,
7681                                        struct netdev_nested_priv *priv)
7682 {
7683         dev->lower_level = __netdev_lower_depth(dev) + 1;
7684
7685 #ifdef CONFIG_LOCKDEP
7686         if (!priv)
7687                 return 0;
7688
7689         if (priv->flags & NESTED_SYNC_IMM)
7690                 dev->nested_level = dev->lower_level - 1;
7691         if (priv->flags & NESTED_SYNC_TODO)
7692                 net_unlink_todo(dev);
7693 #endif
7694         return 0;
7695 }
7696
7697 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7698                                   int (*fn)(struct net_device *dev,
7699                                             struct netdev_nested_priv *priv),
7700                                   struct netdev_nested_priv *priv)
7701 {
7702         struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7703         struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7704         int ret, cur = 0;
7705
7706         now = dev;
7707         iter = &dev->adj_list.lower;
7708
7709         while (1) {
7710                 if (now != dev) {
7711                         ret = fn(now, priv);
7712                         if (ret)
7713                                 return ret;
7714                 }
7715
7716                 next = NULL;
7717                 while (1) {
7718                         ldev = netdev_next_lower_dev_rcu(now, &iter);
7719                         if (!ldev)
7720                                 break;
7721
7722                         next = ldev;
7723                         niter = &ldev->adj_list.lower;
7724                         dev_stack[cur] = now;
7725                         iter_stack[cur++] = iter;
7726                         break;
7727                 }
7728
7729                 if (!next) {
7730                         if (!cur)
7731                                 return 0;
7732                         next = dev_stack[--cur];
7733                         niter = iter_stack[cur];
7734                 }
7735
7736                 now = next;
7737                 iter = niter;
7738         }
7739
7740         return 0;
7741 }
7742 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7743
7744 /**
7745  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7746  *                                     lower neighbour list, RCU
7747  *                                     variant
7748  * @dev: device
7749  *
7750  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7751  * list. The caller must hold RCU read lock.
7752  */
7753 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7754 {
7755         struct netdev_adjacent *lower;
7756
7757         lower = list_first_or_null_rcu(&dev->adj_list.lower,
7758                         struct netdev_adjacent, list);
7759         if (lower)
7760                 return lower->private;
7761         return NULL;
7762 }
7763 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7764
7765 /**
7766  * netdev_master_upper_dev_get_rcu - Get master upper device
7767  * @dev: device
7768  *
7769  * Find a master upper device and return pointer to it or NULL in case
7770  * it's not there. The caller must hold the RCU read lock.
7771  */
7772 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7773 {
7774         struct netdev_adjacent *upper;
7775
7776         upper = list_first_or_null_rcu(&dev->adj_list.upper,
7777                                        struct netdev_adjacent, list);
7778         if (upper && likely(upper->master))
7779                 return upper->dev;
7780         return NULL;
7781 }
7782 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7783
7784 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7785                               struct net_device *adj_dev,
7786                               struct list_head *dev_list)
7787 {
7788         char linkname[IFNAMSIZ+7];
7789
7790         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7791                 "upper_%s" : "lower_%s", adj_dev->name);
7792         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7793                                  linkname);
7794 }
7795 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7796                                char *name,
7797                                struct list_head *dev_list)
7798 {
7799         char linkname[IFNAMSIZ+7];
7800
7801         sprintf(linkname, dev_list == &dev->adj_list.upper ?
7802                 "upper_%s" : "lower_%s", name);
7803         sysfs_remove_link(&(dev->dev.kobj), linkname);
7804 }
7805
7806 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7807                                                  struct net_device *adj_dev,
7808                                                  struct list_head *dev_list)
7809 {
7810         return (dev_list == &dev->adj_list.upper ||
7811                 dev_list == &dev->adj_list.lower) &&
7812                 net_eq(dev_net(dev), dev_net(adj_dev));
7813 }
7814
7815 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7816                                         struct net_device *adj_dev,
7817                                         struct list_head *dev_list,
7818                                         void *private, bool master)
7819 {
7820         struct netdev_adjacent *adj;
7821         int ret;
7822
7823         adj = __netdev_find_adj(adj_dev, dev_list);
7824
7825         if (adj) {
7826                 adj->ref_nr += 1;
7827                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7828                          dev->name, adj_dev->name, adj->ref_nr);
7829
7830                 return 0;
7831         }
7832
7833         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7834         if (!adj)
7835                 return -ENOMEM;
7836
7837         adj->dev = adj_dev;
7838         adj->master = master;
7839         adj->ref_nr = 1;
7840         adj->private = private;
7841         adj->ignore = false;
7842         dev_hold(adj_dev);
7843
7844         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7845                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7846
7847         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7848                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7849                 if (ret)
7850                         goto free_adj;
7851         }
7852
7853         /* Ensure that master link is always the first item in list. */
7854         if (master) {
7855                 ret = sysfs_create_link(&(dev->dev.kobj),
7856                                         &(adj_dev->dev.kobj), "master");
7857                 if (ret)
7858                         goto remove_symlinks;
7859
7860                 list_add_rcu(&adj->list, dev_list);
7861         } else {
7862                 list_add_tail_rcu(&adj->list, dev_list);
7863         }
7864
7865         return 0;
7866
7867 remove_symlinks:
7868         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7869                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7870 free_adj:
7871         kfree(adj);
7872         dev_put(adj_dev);
7873
7874         return ret;
7875 }
7876
7877 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7878                                          struct net_device *adj_dev,
7879                                          u16 ref_nr,
7880                                          struct list_head *dev_list)
7881 {
7882         struct netdev_adjacent *adj;
7883
7884         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7885                  dev->name, adj_dev->name, ref_nr);
7886
7887         adj = __netdev_find_adj(adj_dev, dev_list);
7888
7889         if (!adj) {
7890                 pr_err("Adjacency does not exist for device %s from %s\n",
7891                        dev->name, adj_dev->name);
7892                 WARN_ON(1);
7893                 return;
7894         }
7895
7896         if (adj->ref_nr > ref_nr) {
7897                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7898                          dev->name, adj_dev->name, ref_nr,
7899                          adj->ref_nr - ref_nr);
7900                 adj->ref_nr -= ref_nr;
7901                 return;
7902         }
7903
7904         if (adj->master)
7905                 sysfs_remove_link(&(dev->dev.kobj), "master");
7906
7907         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7908                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7909
7910         list_del_rcu(&adj->list);
7911         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7912                  adj_dev->name, dev->name, adj_dev->name);
7913         dev_put(adj_dev);
7914         kfree_rcu(adj, rcu);
7915 }
7916
7917 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7918                                             struct net_device *upper_dev,
7919                                             struct list_head *up_list,
7920                                             struct list_head *down_list,
7921                                             void *private, bool master)
7922 {
7923         int ret;
7924
7925         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7926                                            private, master);
7927         if (ret)
7928                 return ret;
7929
7930         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7931                                            private, false);
7932         if (ret) {
7933                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7934                 return ret;
7935         }
7936
7937         return 0;
7938 }
7939
7940 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7941                                                struct net_device *upper_dev,
7942                                                u16 ref_nr,
7943                                                struct list_head *up_list,
7944                                                struct list_head *down_list)
7945 {
7946         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7947         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7948 }
7949
7950 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7951                                                 struct net_device *upper_dev,
7952                                                 void *private, bool master)
7953 {
7954         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7955                                                 &dev->adj_list.upper,
7956                                                 &upper_dev->adj_list.lower,
7957                                                 private, master);
7958 }
7959
7960 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7961                                                    struct net_device *upper_dev)
7962 {
7963         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7964                                            &dev->adj_list.upper,
7965                                            &upper_dev->adj_list.lower);
7966 }
7967
7968 static int __netdev_upper_dev_link(struct net_device *dev,
7969                                    struct net_device *upper_dev, bool master,
7970                                    void *upper_priv, void *upper_info,
7971                                    struct netdev_nested_priv *priv,
7972                                    struct netlink_ext_ack *extack)
7973 {
7974         struct netdev_notifier_changeupper_info changeupper_info = {
7975                 .info = {
7976                         .dev = dev,
7977                         .extack = extack,
7978                 },
7979                 .upper_dev = upper_dev,
7980                 .master = master,
7981                 .linking = true,
7982                 .upper_info = upper_info,
7983         };
7984         struct net_device *master_dev;
7985         int ret = 0;
7986
7987         ASSERT_RTNL();
7988
7989         if (dev == upper_dev)
7990                 return -EBUSY;
7991
7992         /* To prevent loops, check if dev is not upper device to upper_dev. */
7993         if (__netdev_has_upper_dev(upper_dev, dev))
7994                 return -EBUSY;
7995
7996         if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7997                 return -EMLINK;
7998
7999         if (!master) {
8000                 if (__netdev_has_upper_dev(dev, upper_dev))
8001                         return -EEXIST;
8002         } else {
8003                 master_dev = __netdev_master_upper_dev_get(dev);
8004                 if (master_dev)
8005                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
8006         }
8007
8008         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8009                                             &changeupper_info.info);
8010         ret = notifier_to_errno(ret);
8011         if (ret)
8012                 return ret;
8013
8014         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8015                                                    master);
8016         if (ret)
8017                 return ret;
8018
8019         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8020                                             &changeupper_info.info);
8021         ret = notifier_to_errno(ret);
8022         if (ret)
8023                 goto rollback;
8024
8025         __netdev_update_upper_level(dev, NULL);
8026         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8027
8028         __netdev_update_lower_level(upper_dev, priv);
8029         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8030                                     priv);
8031
8032         return 0;
8033
8034 rollback:
8035         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8036
8037         return ret;
8038 }
8039
8040 /**
8041  * netdev_upper_dev_link - Add a link to the upper device
8042  * @dev: device
8043  * @upper_dev: new upper device
8044  * @extack: netlink extended ack
8045  *
8046  * Adds a link to device which is upper to this one. The caller must hold
8047  * the RTNL lock. On a failure a negative errno code is returned.
8048  * On success the reference counts are adjusted and the function
8049  * returns zero.
8050  */
8051 int netdev_upper_dev_link(struct net_device *dev,
8052                           struct net_device *upper_dev,
8053                           struct netlink_ext_ack *extack)
8054 {
8055         struct netdev_nested_priv priv = {
8056                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8057                 .data = NULL,
8058         };
8059
8060         return __netdev_upper_dev_link(dev, upper_dev, false,
8061                                        NULL, NULL, &priv, extack);
8062 }
8063 EXPORT_SYMBOL(netdev_upper_dev_link);
8064
8065 /**
8066  * netdev_master_upper_dev_link - Add a master link to the upper device
8067  * @dev: device
8068  * @upper_dev: new upper device
8069  * @upper_priv: upper device private
8070  * @upper_info: upper info to be passed down via notifier
8071  * @extack: netlink extended ack
8072  *
8073  * Adds a link to device which is upper to this one. In this case, only
8074  * one master upper device can be linked, although other non-master devices
8075  * might be linked as well. The caller must hold the RTNL lock.
8076  * On a failure a negative errno code is returned. On success the reference
8077  * counts are adjusted and the function returns zero.
8078  */
8079 int netdev_master_upper_dev_link(struct net_device *dev,
8080                                  struct net_device *upper_dev,
8081                                  void *upper_priv, void *upper_info,
8082                                  struct netlink_ext_ack *extack)
8083 {
8084         struct netdev_nested_priv priv = {
8085                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8086                 .data = NULL,
8087         };
8088
8089         return __netdev_upper_dev_link(dev, upper_dev, true,
8090                                        upper_priv, upper_info, &priv, extack);
8091 }
8092 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8093
8094 static void __netdev_upper_dev_unlink(struct net_device *dev,
8095                                       struct net_device *upper_dev,
8096                                       struct netdev_nested_priv *priv)
8097 {
8098         struct netdev_notifier_changeupper_info changeupper_info = {
8099                 .info = {
8100                         .dev = dev,
8101                 },
8102                 .upper_dev = upper_dev,
8103                 .linking = false,
8104         };
8105
8106         ASSERT_RTNL();
8107
8108         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8109
8110         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8111                                       &changeupper_info.info);
8112
8113         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8114
8115         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8116                                       &changeupper_info.info);
8117
8118         __netdev_update_upper_level(dev, NULL);
8119         __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8120
8121         __netdev_update_lower_level(upper_dev, priv);
8122         __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8123                                     priv);
8124 }
8125
8126 /**
8127  * netdev_upper_dev_unlink - Removes a link to upper device
8128  * @dev: device
8129  * @upper_dev: new upper device
8130  *
8131  * Removes a link to device which is upper to this one. The caller must hold
8132  * the RTNL lock.
8133  */
8134 void netdev_upper_dev_unlink(struct net_device *dev,
8135                              struct net_device *upper_dev)
8136 {
8137         struct netdev_nested_priv priv = {
8138                 .flags = NESTED_SYNC_TODO,
8139                 .data = NULL,
8140         };
8141
8142         __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8143 }
8144 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8145
8146 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8147                                       struct net_device *lower_dev,
8148                                       bool val)
8149 {
8150         struct netdev_adjacent *adj;
8151
8152         adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8153         if (adj)
8154                 adj->ignore = val;
8155
8156         adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8157         if (adj)
8158                 adj->ignore = val;
8159 }
8160
8161 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8162                                         struct net_device *lower_dev)
8163 {
8164         __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8165 }
8166
8167 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8168                                        struct net_device *lower_dev)
8169 {
8170         __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8171 }
8172
8173 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8174                                    struct net_device *new_dev,
8175                                    struct net_device *dev,
8176                                    struct netlink_ext_ack *extack)
8177 {
8178         struct netdev_nested_priv priv = {
8179                 .flags = 0,
8180                 .data = NULL,
8181         };
8182         int err;
8183
8184         if (!new_dev)
8185                 return 0;
8186
8187         if (old_dev && new_dev != old_dev)
8188                 netdev_adjacent_dev_disable(dev, old_dev);
8189         err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8190                                       extack);
8191         if (err) {
8192                 if (old_dev && new_dev != old_dev)
8193                         netdev_adjacent_dev_enable(dev, old_dev);
8194                 return err;
8195         }
8196
8197         return 0;
8198 }
8199 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8200
8201 void netdev_adjacent_change_commit(struct net_device *old_dev,
8202                                    struct net_device *new_dev,
8203                                    struct net_device *dev)
8204 {
8205         struct netdev_nested_priv priv = {
8206                 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8207                 .data = NULL,
8208         };
8209
8210         if (!new_dev || !old_dev)
8211                 return;
8212
8213         if (new_dev == old_dev)
8214                 return;
8215
8216         netdev_adjacent_dev_enable(dev, old_dev);
8217         __netdev_upper_dev_unlink(old_dev, dev, &priv);
8218 }
8219 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8220
8221 void netdev_adjacent_change_abort(struct net_device *old_dev,
8222                                   struct net_device *new_dev,
8223                                   struct net_device *dev)
8224 {
8225         struct netdev_nested_priv priv = {
8226                 .flags = 0,
8227                 .data = NULL,
8228         };
8229
8230         if (!new_dev)
8231                 return;
8232
8233         if (old_dev && new_dev != old_dev)
8234                 netdev_adjacent_dev_enable(dev, old_dev);
8235
8236         __netdev_upper_dev_unlink(new_dev, dev, &priv);
8237 }
8238 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8239
8240 /**
8241  * netdev_bonding_info_change - Dispatch event about slave change
8242  * @dev: device
8243  * @bonding_info: info to dispatch
8244  *
8245  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8246  * The caller must hold the RTNL lock.
8247  */
8248 void netdev_bonding_info_change(struct net_device *dev,
8249                                 struct netdev_bonding_info *bonding_info)
8250 {
8251         struct netdev_notifier_bonding_info info = {
8252                 .info.dev = dev,
8253         };
8254
8255         memcpy(&info.bonding_info, bonding_info,
8256                sizeof(struct netdev_bonding_info));
8257         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8258                                       &info.info);
8259 }
8260 EXPORT_SYMBOL(netdev_bonding_info_change);
8261
8262 /**
8263  * netdev_get_xmit_slave - Get the xmit slave of master device
8264  * @dev: device
8265  * @skb: The packet
8266  * @all_slaves: assume all the slaves are active
8267  *
8268  * The reference counters are not incremented so the caller must be
8269  * careful with locks. The caller must hold RCU lock.
8270  * %NULL is returned if no slave is found.
8271  */
8272
8273 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8274                                          struct sk_buff *skb,
8275                                          bool all_slaves)
8276 {
8277         const struct net_device_ops *ops = dev->netdev_ops;
8278
8279         if (!ops->ndo_get_xmit_slave)
8280                 return NULL;
8281         return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8282 }
8283 EXPORT_SYMBOL(netdev_get_xmit_slave);
8284
8285 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8286                                                   struct sock *sk)
8287 {
8288         const struct net_device_ops *ops = dev->netdev_ops;
8289
8290         if (!ops->ndo_sk_get_lower_dev)
8291                 return NULL;
8292         return ops->ndo_sk_get_lower_dev(dev, sk);
8293 }
8294
8295 /**
8296  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8297  * @dev: device
8298  * @sk: the socket
8299  *
8300  * %NULL is returned if no lower device is found.
8301  */
8302
8303 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8304                                             struct sock *sk)
8305 {
8306         struct net_device *lower;
8307
8308         lower = netdev_sk_get_lower_dev(dev, sk);
8309         while (lower) {
8310                 dev = lower;
8311                 lower = netdev_sk_get_lower_dev(dev, sk);
8312         }
8313
8314         return dev;
8315 }
8316 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8317
8318 static void netdev_adjacent_add_links(struct net_device *dev)
8319 {
8320         struct netdev_adjacent *iter;
8321
8322         struct net *net = dev_net(dev);
8323
8324         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8325                 if (!net_eq(net, dev_net(iter->dev)))
8326                         continue;
8327                 netdev_adjacent_sysfs_add(iter->dev, dev,
8328                                           &iter->dev->adj_list.lower);
8329                 netdev_adjacent_sysfs_add(dev, iter->dev,
8330                                           &dev->adj_list.upper);
8331         }
8332
8333         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8334                 if (!net_eq(net, dev_net(iter->dev)))
8335                         continue;
8336                 netdev_adjacent_sysfs_add(iter->dev, dev,
8337                                           &iter->dev->adj_list.upper);
8338                 netdev_adjacent_sysfs_add(dev, iter->dev,
8339                                           &dev->adj_list.lower);
8340         }
8341 }
8342
8343 static void netdev_adjacent_del_links(struct net_device *dev)
8344 {
8345         struct netdev_adjacent *iter;
8346
8347         struct net *net = dev_net(dev);
8348
8349         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8350                 if (!net_eq(net, dev_net(iter->dev)))
8351                         continue;
8352                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8353                                           &iter->dev->adj_list.lower);
8354                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8355                                           &dev->adj_list.upper);
8356         }
8357
8358         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8359                 if (!net_eq(net, dev_net(iter->dev)))
8360                         continue;
8361                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8362                                           &iter->dev->adj_list.upper);
8363                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8364                                           &dev->adj_list.lower);
8365         }
8366 }
8367
8368 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8369 {
8370         struct netdev_adjacent *iter;
8371
8372         struct net *net = dev_net(dev);
8373
8374         list_for_each_entry(iter, &dev->adj_list.upper, list) {
8375                 if (!net_eq(net, dev_net(iter->dev)))
8376                         continue;
8377                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8378                                           &iter->dev->adj_list.lower);
8379                 netdev_adjacent_sysfs_add(iter->dev, dev,
8380                                           &iter->dev->adj_list.lower);
8381         }
8382
8383         list_for_each_entry(iter, &dev->adj_list.lower, list) {
8384                 if (!net_eq(net, dev_net(iter->dev)))
8385                         continue;
8386                 netdev_adjacent_sysfs_del(iter->dev, oldname,
8387                                           &iter->dev->adj_list.upper);
8388                 netdev_adjacent_sysfs_add(iter->dev, dev,
8389                                           &iter->dev->adj_list.upper);
8390         }
8391 }
8392
8393 void *netdev_lower_dev_get_private(struct net_device *dev,
8394                                    struct net_device *lower_dev)
8395 {
8396         struct netdev_adjacent *lower;
8397
8398         if (!lower_dev)
8399                 return NULL;
8400         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8401         if (!lower)
8402                 return NULL;
8403
8404         return lower->private;
8405 }
8406 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8407
8408
8409 /**
8410  * netdev_lower_state_changed - Dispatch event about lower device state change
8411  * @lower_dev: device
8412  * @lower_state_info: state to dispatch
8413  *
8414  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8415  * The caller must hold the RTNL lock.
8416  */
8417 void netdev_lower_state_changed(struct net_device *lower_dev,
8418                                 void *lower_state_info)
8419 {
8420         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8421                 .info.dev = lower_dev,
8422         };
8423
8424         ASSERT_RTNL();
8425         changelowerstate_info.lower_state_info = lower_state_info;
8426         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8427                                       &changelowerstate_info.info);
8428 }
8429 EXPORT_SYMBOL(netdev_lower_state_changed);
8430
8431 static void dev_change_rx_flags(struct net_device *dev, int flags)
8432 {
8433         const struct net_device_ops *ops = dev->netdev_ops;
8434
8435         if (ops->ndo_change_rx_flags)
8436                 ops->ndo_change_rx_flags(dev, flags);
8437 }
8438
8439 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8440 {
8441         unsigned int old_flags = dev->flags;
8442         kuid_t uid;
8443         kgid_t gid;
8444
8445         ASSERT_RTNL();
8446
8447         dev->flags |= IFF_PROMISC;
8448         dev->promiscuity += inc;
8449         if (dev->promiscuity == 0) {
8450                 /*
8451                  * Avoid overflow.
8452                  * If inc causes overflow, untouch promisc and return error.
8453                  */
8454                 if (inc < 0)
8455                         dev->flags &= ~IFF_PROMISC;
8456                 else {
8457                         dev->promiscuity -= inc;
8458                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8459                                 dev->name);
8460                         return -EOVERFLOW;
8461                 }
8462         }
8463         if (dev->flags != old_flags) {
8464                 pr_info("device %s %s promiscuous mode\n",
8465                         dev->name,
8466                         dev->flags & IFF_PROMISC ? "entered" : "left");
8467                 if (audit_enabled) {
8468                         current_uid_gid(&uid, &gid);
8469                         audit_log(audit_context(), GFP_ATOMIC,
8470                                   AUDIT_ANOM_PROMISCUOUS,
8471                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8472                                   dev->name, (dev->flags & IFF_PROMISC),
8473                                   (old_flags & IFF_PROMISC),
8474                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
8475                                   from_kuid(&init_user_ns, uid),
8476                                   from_kgid(&init_user_ns, gid),
8477                                   audit_get_sessionid(current));
8478                 }
8479
8480                 dev_change_rx_flags(dev, IFF_PROMISC);
8481         }
8482         if (notify)
8483                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8484         return 0;
8485 }
8486
8487 /**
8488  *      dev_set_promiscuity     - update promiscuity count on a device
8489  *      @dev: device
8490  *      @inc: modifier
8491  *
8492  *      Add or remove promiscuity from a device. While the count in the device
8493  *      remains above zero the interface remains promiscuous. Once it hits zero
8494  *      the device reverts back to normal filtering operation. A negative inc
8495  *      value is used to drop promiscuity on the device.
8496  *      Return 0 if successful or a negative errno code on error.
8497  */
8498 int dev_set_promiscuity(struct net_device *dev, int inc)
8499 {
8500         unsigned int old_flags = dev->flags;
8501         int err;
8502
8503         err = __dev_set_promiscuity(dev, inc, true);
8504         if (err < 0)
8505                 return err;
8506         if (dev->flags != old_flags)
8507                 dev_set_rx_mode(dev);
8508         return err;
8509 }
8510 EXPORT_SYMBOL(dev_set_promiscuity);
8511
8512 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8513 {
8514         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8515
8516         ASSERT_RTNL();
8517
8518         dev->flags |= IFF_ALLMULTI;
8519         dev->allmulti += inc;
8520         if (dev->allmulti == 0) {
8521                 /*
8522                  * Avoid overflow.
8523                  * If inc causes overflow, untouch allmulti and return error.
8524                  */
8525                 if (inc < 0)
8526                         dev->flags &= ~IFF_ALLMULTI;
8527                 else {
8528                         dev->allmulti -= inc;
8529                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8530                                 dev->name);
8531                         return -EOVERFLOW;
8532                 }
8533         }
8534         if (dev->flags ^ old_flags) {
8535                 dev_change_rx_flags(dev, IFF_ALLMULTI);
8536                 dev_set_rx_mode(dev);
8537                 if (notify)
8538                         __dev_notify_flags(dev, old_flags,
8539                                            dev->gflags ^ old_gflags);
8540         }
8541         return 0;
8542 }
8543
8544 /**
8545  *      dev_set_allmulti        - update allmulti count on a device
8546  *      @dev: device
8547  *      @inc: modifier
8548  *
8549  *      Add or remove reception of all multicast frames to a device. While the
8550  *      count in the device remains above zero the interface remains listening
8551  *      to all interfaces. Once it hits zero the device reverts back to normal
8552  *      filtering operation. A negative @inc value is used to drop the counter
8553  *      when releasing a resource needing all multicasts.
8554  *      Return 0 if successful or a negative errno code on error.
8555  */
8556
8557 int dev_set_allmulti(struct net_device *dev, int inc)
8558 {
8559         return __dev_set_allmulti(dev, inc, true);
8560 }
8561 EXPORT_SYMBOL(dev_set_allmulti);
8562
8563 /*
8564  *      Upload unicast and multicast address lists to device and
8565  *      configure RX filtering. When the device doesn't support unicast
8566  *      filtering it is put in promiscuous mode while unicast addresses
8567  *      are present.
8568  */
8569 void __dev_set_rx_mode(struct net_device *dev)
8570 {
8571         const struct net_device_ops *ops = dev->netdev_ops;
8572
8573         /* dev_open will call this function so the list will stay sane. */
8574         if (!(dev->flags&IFF_UP))
8575                 return;
8576
8577         if (!netif_device_present(dev))
8578                 return;
8579
8580         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8581                 /* Unicast addresses changes may only happen under the rtnl,
8582                  * therefore calling __dev_set_promiscuity here is safe.
8583                  */
8584                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8585                         __dev_set_promiscuity(dev, 1, false);
8586                         dev->uc_promisc = true;
8587                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8588                         __dev_set_promiscuity(dev, -1, false);
8589                         dev->uc_promisc = false;
8590                 }
8591         }
8592
8593         if (ops->ndo_set_rx_mode)
8594                 ops->ndo_set_rx_mode(dev);
8595 }
8596
8597 void dev_set_rx_mode(struct net_device *dev)
8598 {
8599         netif_addr_lock_bh(dev);
8600         __dev_set_rx_mode(dev);
8601         netif_addr_unlock_bh(dev);
8602 }
8603
8604 /**
8605  *      dev_get_flags - get flags reported to userspace
8606  *      @dev: device
8607  *
8608  *      Get the combination of flag bits exported through APIs to userspace.
8609  */
8610 unsigned int dev_get_flags(const struct net_device *dev)
8611 {
8612         unsigned int flags;
8613
8614         flags = (dev->flags & ~(IFF_PROMISC |
8615                                 IFF_ALLMULTI |
8616                                 IFF_RUNNING |
8617                                 IFF_LOWER_UP |
8618                                 IFF_DORMANT)) |
8619                 (dev->gflags & (IFF_PROMISC |
8620                                 IFF_ALLMULTI));
8621
8622         if (netif_running(dev)) {
8623                 if (netif_oper_up(dev))
8624                         flags |= IFF_RUNNING;
8625                 if (netif_carrier_ok(dev))
8626                         flags |= IFF_LOWER_UP;
8627                 if (netif_dormant(dev))
8628                         flags |= IFF_DORMANT;
8629         }
8630
8631         return flags;
8632 }
8633 EXPORT_SYMBOL(dev_get_flags);
8634
8635 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8636                        struct netlink_ext_ack *extack)
8637 {
8638         unsigned int old_flags = dev->flags;
8639         int ret;
8640
8641         ASSERT_RTNL();
8642
8643         /*
8644          *      Set the flags on our device.
8645          */
8646
8647         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8648                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8649                                IFF_AUTOMEDIA)) |
8650                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8651                                     IFF_ALLMULTI));
8652
8653         /*
8654          *      Load in the correct multicast list now the flags have changed.
8655          */
8656
8657         if ((old_flags ^ flags) & IFF_MULTICAST)
8658                 dev_change_rx_flags(dev, IFF_MULTICAST);
8659
8660         dev_set_rx_mode(dev);
8661
8662         /*
8663          *      Have we downed the interface. We handle IFF_UP ourselves
8664          *      according to user attempts to set it, rather than blindly
8665          *      setting it.
8666          */
8667
8668         ret = 0;
8669         if ((old_flags ^ flags) & IFF_UP) {
8670                 if (old_flags & IFF_UP)
8671                         __dev_close(dev);
8672                 else
8673                         ret = __dev_open(dev, extack);
8674         }
8675
8676         if ((flags ^ dev->gflags) & IFF_PROMISC) {
8677                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8678                 unsigned int old_flags = dev->flags;
8679
8680                 dev->gflags ^= IFF_PROMISC;
8681
8682                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8683                         if (dev->flags != old_flags)
8684                                 dev_set_rx_mode(dev);
8685         }
8686
8687         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8688          * is important. Some (broken) drivers set IFF_PROMISC, when
8689          * IFF_ALLMULTI is requested not asking us and not reporting.
8690          */
8691         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8692                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8693
8694                 dev->gflags ^= IFF_ALLMULTI;
8695                 __dev_set_allmulti(dev, inc, false);
8696         }
8697
8698         return ret;
8699 }
8700
8701 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8702                         unsigned int gchanges)
8703 {
8704         unsigned int changes = dev->flags ^ old_flags;
8705
8706         if (gchanges)
8707                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8708
8709         if (changes & IFF_UP) {
8710                 if (dev->flags & IFF_UP)
8711                         call_netdevice_notifiers(NETDEV_UP, dev);
8712                 else
8713                         call_netdevice_notifiers(NETDEV_DOWN, dev);
8714         }
8715
8716         if (dev->flags & IFF_UP &&
8717             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8718                 struct netdev_notifier_change_info change_info = {
8719                         .info = {
8720                                 .dev = dev,
8721                         },
8722                         .flags_changed = changes,
8723                 };
8724
8725                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8726         }
8727 }
8728
8729 /**
8730  *      dev_change_flags - change device settings
8731  *      @dev: device
8732  *      @flags: device state flags
8733  *      @extack: netlink extended ack
8734  *
8735  *      Change settings on device based state flags. The flags are
8736  *      in the userspace exported format.
8737  */
8738 int dev_change_flags(struct net_device *dev, unsigned int flags,
8739                      struct netlink_ext_ack *extack)
8740 {
8741         int ret;
8742         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8743
8744         ret = __dev_change_flags(dev, flags, extack);
8745         if (ret < 0)
8746                 return ret;
8747
8748         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8749         __dev_notify_flags(dev, old_flags, changes);
8750         return ret;
8751 }
8752 EXPORT_SYMBOL(dev_change_flags);
8753
8754 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8755 {
8756         const struct net_device_ops *ops = dev->netdev_ops;
8757
8758         if (ops->ndo_change_mtu)
8759                 return ops->ndo_change_mtu(dev, new_mtu);
8760
8761         /* Pairs with all the lockless reads of dev->mtu in the stack */
8762         WRITE_ONCE(dev->mtu, new_mtu);
8763         return 0;
8764 }
8765 EXPORT_SYMBOL(__dev_set_mtu);
8766
8767 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8768                      struct netlink_ext_ack *extack)
8769 {
8770         /* MTU must be positive, and in range */
8771         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8772                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8773                 return -EINVAL;
8774         }
8775
8776         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8777                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8778                 return -EINVAL;
8779         }
8780         return 0;
8781 }
8782
8783 /**
8784  *      dev_set_mtu_ext - Change maximum transfer unit
8785  *      @dev: device
8786  *      @new_mtu: new transfer unit
8787  *      @extack: netlink extended ack
8788  *
8789  *      Change the maximum transfer size of the network device.
8790  */
8791 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8792                     struct netlink_ext_ack *extack)
8793 {
8794         int err, orig_mtu;
8795
8796         if (new_mtu == dev->mtu)
8797                 return 0;
8798
8799         err = dev_validate_mtu(dev, new_mtu, extack);
8800         if (err)
8801                 return err;
8802
8803         if (!netif_device_present(dev))
8804                 return -ENODEV;
8805
8806         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8807         err = notifier_to_errno(err);
8808         if (err)
8809                 return err;
8810
8811         orig_mtu = dev->mtu;
8812         err = __dev_set_mtu(dev, new_mtu);
8813
8814         if (!err) {
8815                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8816                                                    orig_mtu);
8817                 err = notifier_to_errno(err);
8818                 if (err) {
8819                         /* setting mtu back and notifying everyone again,
8820                          * so that they have a chance to revert changes.
8821                          */
8822                         __dev_set_mtu(dev, orig_mtu);
8823                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8824                                                      new_mtu);
8825                 }
8826         }
8827         return err;
8828 }
8829
8830 int dev_set_mtu(struct net_device *dev, int new_mtu)
8831 {
8832         struct netlink_ext_ack extack;
8833         int err;
8834
8835         memset(&extack, 0, sizeof(extack));
8836         err = dev_set_mtu_ext(dev, new_mtu, &extack);
8837         if (err && extack._msg)
8838                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8839         return err;
8840 }
8841 EXPORT_SYMBOL(dev_set_mtu);
8842
8843 /**
8844  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
8845  *      @dev: device
8846  *      @new_len: new tx queue length
8847  */
8848 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8849 {
8850         unsigned int orig_len = dev->tx_queue_len;
8851         int res;
8852
8853         if (new_len != (unsigned int)new_len)
8854                 return -ERANGE;
8855
8856         if (new_len != orig_len) {
8857                 dev->tx_queue_len = new_len;
8858                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8859                 res = notifier_to_errno(res);
8860                 if (res)
8861                         goto err_rollback;
8862                 res = dev_qdisc_change_tx_queue_len(dev);
8863                 if (res)
8864                         goto err_rollback;
8865         }
8866
8867         return 0;
8868
8869 err_rollback:
8870         netdev_err(dev, "refused to change device tx_queue_len\n");
8871         dev->tx_queue_len = orig_len;
8872         return res;
8873 }
8874
8875 /**
8876  *      dev_set_group - Change group this device belongs to
8877  *      @dev: device
8878  *      @new_group: group this device should belong to
8879  */
8880 void dev_set_group(struct net_device *dev, int new_group)
8881 {
8882         dev->group = new_group;
8883 }
8884 EXPORT_SYMBOL(dev_set_group);
8885
8886 /**
8887  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8888  *      @dev: device
8889  *      @addr: new address
8890  *      @extack: netlink extended ack
8891  */
8892 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8893                               struct netlink_ext_ack *extack)
8894 {
8895         struct netdev_notifier_pre_changeaddr_info info = {
8896                 .info.dev = dev,
8897                 .info.extack = extack,
8898                 .dev_addr = addr,
8899         };
8900         int rc;
8901
8902         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8903         return notifier_to_errno(rc);
8904 }
8905 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8906
8907 /**
8908  *      dev_set_mac_address - Change Media Access Control Address
8909  *      @dev: device
8910  *      @sa: new address
8911  *      @extack: netlink extended ack
8912  *
8913  *      Change the hardware (MAC) address of the device
8914  */
8915 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8916                         struct netlink_ext_ack *extack)
8917 {
8918         const struct net_device_ops *ops = dev->netdev_ops;
8919         int err;
8920
8921         if (!ops->ndo_set_mac_address)
8922                 return -EOPNOTSUPP;
8923         if (sa->sa_family != dev->type)
8924                 return -EINVAL;
8925         if (!netif_device_present(dev))
8926                 return -ENODEV;
8927         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8928         if (err)
8929                 return err;
8930         err = ops->ndo_set_mac_address(dev, sa);
8931         if (err)
8932                 return err;
8933         dev->addr_assign_type = NET_ADDR_SET;
8934         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8935         add_device_randomness(dev->dev_addr, dev->addr_len);
8936         return 0;
8937 }
8938 EXPORT_SYMBOL(dev_set_mac_address);
8939
8940 /**
8941  *      dev_change_carrier - Change device carrier
8942  *      @dev: device
8943  *      @new_carrier: new value
8944  *
8945  *      Change device carrier
8946  */
8947 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8948 {
8949         const struct net_device_ops *ops = dev->netdev_ops;
8950
8951         if (!ops->ndo_change_carrier)
8952                 return -EOPNOTSUPP;
8953         if (!netif_device_present(dev))
8954                 return -ENODEV;
8955         return ops->ndo_change_carrier(dev, new_carrier);
8956 }
8957 EXPORT_SYMBOL(dev_change_carrier);
8958
8959 /**
8960  *      dev_get_phys_port_id - Get device physical port ID
8961  *      @dev: device
8962  *      @ppid: port ID
8963  *
8964  *      Get device physical port ID
8965  */
8966 int dev_get_phys_port_id(struct net_device *dev,
8967                          struct netdev_phys_item_id *ppid)
8968 {
8969         const struct net_device_ops *ops = dev->netdev_ops;
8970
8971         if (!ops->ndo_get_phys_port_id)
8972                 return -EOPNOTSUPP;
8973         return ops->ndo_get_phys_port_id(dev, ppid);
8974 }
8975 EXPORT_SYMBOL(dev_get_phys_port_id);
8976
8977 /**
8978  *      dev_get_phys_port_name - Get device physical port name
8979  *      @dev: device
8980  *      @name: port name
8981  *      @len: limit of bytes to copy to name
8982  *
8983  *      Get device physical port name
8984  */
8985 int dev_get_phys_port_name(struct net_device *dev,
8986                            char *name, size_t len)
8987 {
8988         const struct net_device_ops *ops = dev->netdev_ops;
8989         int err;
8990
8991         if (ops->ndo_get_phys_port_name) {
8992                 err = ops->ndo_get_phys_port_name(dev, name, len);
8993                 if (err != -EOPNOTSUPP)
8994                         return err;
8995         }
8996         return devlink_compat_phys_port_name_get(dev, name, len);
8997 }
8998 EXPORT_SYMBOL(dev_get_phys_port_name);
8999
9000 /**
9001  *      dev_get_port_parent_id - Get the device's port parent identifier
9002  *      @dev: network device
9003  *      @ppid: pointer to a storage for the port's parent identifier
9004  *      @recurse: allow/disallow recursion to lower devices
9005  *
9006  *      Get the devices's port parent identifier
9007  */
9008 int dev_get_port_parent_id(struct net_device *dev,
9009                            struct netdev_phys_item_id *ppid,
9010                            bool recurse)
9011 {
9012         const struct net_device_ops *ops = dev->netdev_ops;
9013         struct netdev_phys_item_id first = { };
9014         struct net_device *lower_dev;
9015         struct list_head *iter;
9016         int err;
9017
9018         if (ops->ndo_get_port_parent_id) {
9019                 err = ops->ndo_get_port_parent_id(dev, ppid);
9020                 if (err != -EOPNOTSUPP)
9021                         return err;
9022         }
9023
9024         err = devlink_compat_switch_id_get(dev, ppid);
9025         if (!err || err != -EOPNOTSUPP)
9026                 return err;
9027
9028         if (!recurse)
9029                 return -EOPNOTSUPP;
9030
9031         netdev_for_each_lower_dev(dev, lower_dev, iter) {
9032                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9033                 if (err)
9034                         break;
9035                 if (!first.id_len)
9036                         first = *ppid;
9037                 else if (memcmp(&first, ppid, sizeof(*ppid)))
9038                         return -EOPNOTSUPP;
9039         }
9040
9041         return err;
9042 }
9043 EXPORT_SYMBOL(dev_get_port_parent_id);
9044
9045 /**
9046  *      netdev_port_same_parent_id - Indicate if two network devices have
9047  *      the same port parent identifier
9048  *      @a: first network device
9049  *      @b: second network device
9050  */
9051 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9052 {
9053         struct netdev_phys_item_id a_id = { };
9054         struct netdev_phys_item_id b_id = { };
9055
9056         if (dev_get_port_parent_id(a, &a_id, true) ||
9057             dev_get_port_parent_id(b, &b_id, true))
9058                 return false;
9059
9060         return netdev_phys_item_id_same(&a_id, &b_id);
9061 }
9062 EXPORT_SYMBOL(netdev_port_same_parent_id);
9063
9064 /**
9065  *      dev_change_proto_down - update protocol port state information
9066  *      @dev: device
9067  *      @proto_down: new value
9068  *
9069  *      This info can be used by switch drivers to set the phys state of the
9070  *      port.
9071  */
9072 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9073 {
9074         const struct net_device_ops *ops = dev->netdev_ops;
9075
9076         if (!ops->ndo_change_proto_down)
9077                 return -EOPNOTSUPP;
9078         if (!netif_device_present(dev))
9079                 return -ENODEV;
9080         return ops->ndo_change_proto_down(dev, proto_down);
9081 }
9082 EXPORT_SYMBOL(dev_change_proto_down);
9083
9084 /**
9085  *      dev_change_proto_down_generic - generic implementation for
9086  *      ndo_change_proto_down that sets carrier according to
9087  *      proto_down.
9088  *
9089  *      @dev: device
9090  *      @proto_down: new value
9091  */
9092 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9093 {
9094         if (proto_down)
9095                 netif_carrier_off(dev);
9096         else
9097                 netif_carrier_on(dev);
9098         dev->proto_down = proto_down;
9099         return 0;
9100 }
9101 EXPORT_SYMBOL(dev_change_proto_down_generic);
9102
9103 /**
9104  *      dev_change_proto_down_reason - proto down reason
9105  *
9106  *      @dev: device
9107  *      @mask: proto down mask
9108  *      @value: proto down value
9109  */
9110 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9111                                   u32 value)
9112 {
9113         int b;
9114
9115         if (!mask) {
9116                 dev->proto_down_reason = value;
9117         } else {
9118                 for_each_set_bit(b, &mask, 32) {
9119                         if (value & (1 << b))
9120                                 dev->proto_down_reason |= BIT(b);
9121                         else
9122                                 dev->proto_down_reason &= ~BIT(b);
9123                 }
9124         }
9125 }
9126 EXPORT_SYMBOL(dev_change_proto_down_reason);
9127
9128 struct bpf_xdp_link {
9129         struct bpf_link link;
9130         struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9131         int flags;
9132 };
9133
9134 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9135 {
9136         if (flags & XDP_FLAGS_HW_MODE)
9137                 return XDP_MODE_HW;
9138         if (flags & XDP_FLAGS_DRV_MODE)
9139                 return XDP_MODE_DRV;
9140         if (flags & XDP_FLAGS_SKB_MODE)
9141                 return XDP_MODE_SKB;
9142         return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9143 }
9144
9145 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9146 {
9147         switch (mode) {
9148         case XDP_MODE_SKB:
9149                 return generic_xdp_install;
9150         case XDP_MODE_DRV:
9151         case XDP_MODE_HW:
9152                 return dev->netdev_ops->ndo_bpf;
9153         default:
9154                 return NULL;
9155         }
9156 }
9157
9158 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9159                                          enum bpf_xdp_mode mode)
9160 {
9161         return dev->xdp_state[mode].link;
9162 }
9163
9164 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9165                                      enum bpf_xdp_mode mode)
9166 {
9167         struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9168
9169         if (link)
9170                 return link->link.prog;
9171         return dev->xdp_state[mode].prog;
9172 }
9173
9174 static u8 dev_xdp_prog_count(struct net_device *dev)
9175 {
9176         u8 count = 0;
9177         int i;
9178
9179         for (i = 0; i < __MAX_XDP_MODE; i++)
9180                 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9181                         count++;
9182         return count;
9183 }
9184
9185 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9186 {
9187         struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9188
9189         return prog ? prog->aux->id : 0;
9190 }
9191
9192 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9193                              struct bpf_xdp_link *link)
9194 {
9195         dev->xdp_state[mode].link = link;
9196         dev->xdp_state[mode].prog = NULL;
9197 }
9198
9199 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9200                              struct bpf_prog *prog)
9201 {
9202         dev->xdp_state[mode].link = NULL;
9203         dev->xdp_state[mode].prog = prog;
9204 }
9205
9206 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9207                            bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9208                            u32 flags, struct bpf_prog *prog)
9209 {
9210         struct netdev_bpf xdp;
9211         int err;
9212
9213         memset(&xdp, 0, sizeof(xdp));
9214         xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9215         xdp.extack = extack;
9216         xdp.flags = flags;
9217         xdp.prog = prog;
9218
9219         /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9220          * "moved" into driver), so they don't increment it on their own, but
9221          * they do decrement refcnt when program is detached or replaced.
9222          * Given net_device also owns link/prog, we need to bump refcnt here
9223          * to prevent drivers from underflowing it.
9224          */
9225         if (prog)
9226                 bpf_prog_inc(prog);
9227         err = bpf_op(dev, &xdp);
9228         if (err) {
9229                 if (prog)
9230                         bpf_prog_put(prog);
9231                 return err;
9232         }
9233
9234         if (mode != XDP_MODE_HW)
9235                 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9236
9237         return 0;
9238 }
9239
9240 static void dev_xdp_uninstall(struct net_device *dev)
9241 {
9242         struct bpf_xdp_link *link;
9243         struct bpf_prog *prog;
9244         enum bpf_xdp_mode mode;
9245         bpf_op_t bpf_op;
9246
9247         ASSERT_RTNL();
9248
9249         for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9250                 prog = dev_xdp_prog(dev, mode);
9251                 if (!prog)
9252                         continue;
9253
9254                 bpf_op = dev_xdp_bpf_op(dev, mode);
9255                 if (!bpf_op)
9256                         continue;
9257
9258                 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9259
9260                 /* auto-detach link from net device */
9261                 link = dev_xdp_link(dev, mode);
9262                 if (link)
9263                         link->dev = NULL;
9264                 else
9265                         bpf_prog_put(prog);
9266
9267                 dev_xdp_set_link(dev, mode, NULL);
9268         }
9269 }
9270
9271 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9272                           struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9273                           struct bpf_prog *old_prog, u32 flags)
9274 {
9275         unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9276         struct bpf_prog *cur_prog;
9277         enum bpf_xdp_mode mode;
9278         bpf_op_t bpf_op;
9279         int err;
9280
9281         ASSERT_RTNL();
9282
9283         /* either link or prog attachment, never both */
9284         if (link && (new_prog || old_prog))
9285                 return -EINVAL;
9286         /* link supports only XDP mode flags */
9287         if (link && (flags & ~XDP_FLAGS_MODES)) {
9288                 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9289                 return -EINVAL;
9290         }
9291         /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9292         if (num_modes > 1) {
9293                 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9294                 return -EINVAL;
9295         }
9296         /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9297         if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9298                 NL_SET_ERR_MSG(extack,
9299                                "More than one program loaded, unset mode is ambiguous");
9300                 return -EINVAL;
9301         }
9302         /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9303         if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9304                 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9305                 return -EINVAL;
9306         }
9307
9308         mode = dev_xdp_mode(dev, flags);
9309         /* can't replace attached link */
9310         if (dev_xdp_link(dev, mode)) {
9311                 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9312                 return -EBUSY;
9313         }
9314
9315         cur_prog = dev_xdp_prog(dev, mode);
9316         /* can't replace attached prog with link */
9317         if (link && cur_prog) {
9318                 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9319                 return -EBUSY;
9320         }
9321         if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9322                 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9323                 return -EEXIST;
9324         }
9325
9326         /* put effective new program into new_prog */
9327         if (link)
9328                 new_prog = link->link.prog;
9329
9330         if (new_prog) {
9331                 bool offload = mode == XDP_MODE_HW;
9332                 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9333                                                ? XDP_MODE_DRV : XDP_MODE_SKB;
9334
9335                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9336                         NL_SET_ERR_MSG(extack, "XDP program already attached");
9337                         return -EBUSY;
9338                 }
9339                 if (!offload && dev_xdp_prog(dev, other_mode)) {
9340                         NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9341                         return -EEXIST;
9342                 }
9343                 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9344                         NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9345                         return -EINVAL;
9346                 }
9347                 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9348                         NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9349                         return -EINVAL;
9350                 }
9351                 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9352                         NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9353                         return -EINVAL;
9354                 }
9355         }
9356
9357         /* don't call drivers if the effective program didn't change */
9358         if (new_prog != cur_prog) {
9359                 bpf_op = dev_xdp_bpf_op(dev, mode);
9360                 if (!bpf_op) {
9361                         NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9362                         return -EOPNOTSUPP;
9363                 }
9364
9365                 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9366                 if (err)
9367                         return err;
9368         }
9369
9370         if (link)
9371                 dev_xdp_set_link(dev, mode, link);
9372         else
9373                 dev_xdp_set_prog(dev, mode, new_prog);
9374         if (cur_prog)
9375                 bpf_prog_put(cur_prog);
9376
9377         return 0;
9378 }
9379
9380 static int dev_xdp_attach_link(struct net_device *dev,
9381                                struct netlink_ext_ack *extack,
9382                                struct bpf_xdp_link *link)
9383 {
9384         return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9385 }
9386
9387 static int dev_xdp_detach_link(struct net_device *dev,
9388                                struct netlink_ext_ack *extack,
9389                                struct bpf_xdp_link *link)
9390 {
9391         enum bpf_xdp_mode mode;
9392         bpf_op_t bpf_op;
9393
9394         ASSERT_RTNL();
9395
9396         mode = dev_xdp_mode(dev, link->flags);
9397         if (dev_xdp_link(dev, mode) != link)
9398                 return -EINVAL;
9399
9400         bpf_op = dev_xdp_bpf_op(dev, mode);
9401         WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9402         dev_xdp_set_link(dev, mode, NULL);
9403         return 0;
9404 }
9405
9406 static void bpf_xdp_link_release(struct bpf_link *link)
9407 {
9408         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9409
9410         rtnl_lock();
9411
9412         /* if racing with net_device's tear down, xdp_link->dev might be
9413          * already NULL, in which case link was already auto-detached
9414          */
9415         if (xdp_link->dev) {
9416                 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9417                 xdp_link->dev = NULL;
9418         }
9419
9420         rtnl_unlock();
9421 }
9422
9423 static int bpf_xdp_link_detach(struct bpf_link *link)
9424 {
9425         bpf_xdp_link_release(link);
9426         return 0;
9427 }
9428
9429 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9430 {
9431         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9432
9433         kfree(xdp_link);
9434 }
9435
9436 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9437                                      struct seq_file *seq)
9438 {
9439         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9440         u32 ifindex = 0;
9441
9442         rtnl_lock();
9443         if (xdp_link->dev)
9444                 ifindex = xdp_link->dev->ifindex;
9445         rtnl_unlock();
9446
9447         seq_printf(seq, "ifindex:\t%u\n", ifindex);
9448 }
9449
9450 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9451                                        struct bpf_link_info *info)
9452 {
9453         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9454         u32 ifindex = 0;
9455
9456         rtnl_lock();
9457         if (xdp_link->dev)
9458                 ifindex = xdp_link->dev->ifindex;
9459         rtnl_unlock();
9460
9461         info->xdp.ifindex = ifindex;
9462         return 0;
9463 }
9464
9465 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9466                                struct bpf_prog *old_prog)
9467 {
9468         struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9469         enum bpf_xdp_mode mode;
9470         bpf_op_t bpf_op;
9471         int err = 0;
9472
9473         rtnl_lock();
9474
9475         /* link might have been auto-released already, so fail */
9476         if (!xdp_link->dev) {
9477                 err = -ENOLINK;
9478                 goto out_unlock;
9479         }
9480
9481         if (old_prog && link->prog != old_prog) {
9482                 err = -EPERM;
9483                 goto out_unlock;
9484         }
9485         old_prog = link->prog;
9486         if (old_prog == new_prog) {
9487                 /* no-op, don't disturb drivers */
9488                 bpf_prog_put(new_prog);
9489                 goto out_unlock;
9490         }
9491
9492         mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9493         bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9494         err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9495                               xdp_link->flags, new_prog);
9496         if (err)
9497                 goto out_unlock;
9498
9499         old_prog = xchg(&link->prog, new_prog);
9500         bpf_prog_put(old_prog);
9501
9502 out_unlock:
9503         rtnl_unlock();
9504         return err;
9505 }
9506
9507 static const struct bpf_link_ops bpf_xdp_link_lops = {
9508         .release = bpf_xdp_link_release,
9509         .dealloc = bpf_xdp_link_dealloc,
9510         .detach = bpf_xdp_link_detach,
9511         .show_fdinfo = bpf_xdp_link_show_fdinfo,
9512         .fill_link_info = bpf_xdp_link_fill_link_info,
9513         .update_prog = bpf_xdp_link_update,
9514 };
9515
9516 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9517 {
9518         struct net *net = current->nsproxy->net_ns;
9519         struct bpf_link_primer link_primer;
9520         struct bpf_xdp_link *link;
9521         struct net_device *dev;
9522         int err, fd;
9523
9524         dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9525         if (!dev)
9526                 return -EINVAL;
9527
9528         link = kzalloc(sizeof(*link), GFP_USER);
9529         if (!link) {
9530                 err = -ENOMEM;
9531                 goto out_put_dev;
9532         }
9533
9534         bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9535         link->dev = dev;
9536         link->flags = attr->link_create.flags;
9537
9538         err = bpf_link_prime(&link->link, &link_primer);
9539         if (err) {
9540                 kfree(link);
9541                 goto out_put_dev;
9542         }
9543
9544         rtnl_lock();
9545         err = dev_xdp_attach_link(dev, NULL, link);
9546         rtnl_unlock();
9547
9548         if (err) {
9549                 bpf_link_cleanup(&link_primer);
9550                 goto out_put_dev;
9551         }
9552
9553         fd = bpf_link_settle(&link_primer);
9554         /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9555         dev_put(dev);
9556         return fd;
9557
9558 out_put_dev:
9559         dev_put(dev);
9560         return err;
9561 }
9562
9563 /**
9564  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
9565  *      @dev: device
9566  *      @extack: netlink extended ack
9567  *      @fd: new program fd or negative value to clear
9568  *      @expected_fd: old program fd that userspace expects to replace or clear
9569  *      @flags: xdp-related flags
9570  *
9571  *      Set or clear a bpf program for a device
9572  */
9573 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9574                       int fd, int expected_fd, u32 flags)
9575 {
9576         enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9577         struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9578         int err;
9579
9580         ASSERT_RTNL();
9581
9582         if (fd >= 0) {
9583                 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9584                                                  mode != XDP_MODE_SKB);
9585                 if (IS_ERR(new_prog))
9586                         return PTR_ERR(new_prog);
9587         }
9588
9589         if (expected_fd >= 0) {
9590                 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9591                                                  mode != XDP_MODE_SKB);
9592                 if (IS_ERR(old_prog)) {
9593                         err = PTR_ERR(old_prog);
9594                         old_prog = NULL;
9595                         goto err_out;
9596                 }
9597         }
9598
9599         err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9600
9601 err_out:
9602         if (err && new_prog)
9603                 bpf_prog_put(new_prog);
9604         if (old_prog)
9605                 bpf_prog_put(old_prog);
9606         return err;
9607 }
9608
9609 /**
9610  *      dev_new_index   -       allocate an ifindex
9611  *      @net: the applicable net namespace
9612  *
9613  *      Returns a suitable unique value for a new device interface
9614  *      number.  The caller must hold the rtnl semaphore or the
9615  *      dev_base_lock to be sure it remains unique.
9616  */
9617 static int dev_new_index(struct net *net)
9618 {
9619         int ifindex = net->ifindex;
9620
9621         for (;;) {
9622                 if (++ifindex <= 0)
9623                         ifindex = 1;
9624                 if (!__dev_get_by_index(net, ifindex))
9625                         return net->ifindex = ifindex;
9626         }
9627 }
9628
9629 /* Delayed registration/unregisteration */
9630 static LIST_HEAD(net_todo_list);
9631 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9632
9633 static void net_set_todo(struct net_device *dev)
9634 {
9635         list_add_tail(&dev->todo_list, &net_todo_list);
9636         dev_net(dev)->dev_unreg_count++;
9637 }
9638
9639 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9640         struct net_device *upper, netdev_features_t features)
9641 {
9642         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9643         netdev_features_t feature;
9644         int feature_bit;
9645
9646         for_each_netdev_feature(upper_disables, feature_bit) {
9647                 feature = __NETIF_F_BIT(feature_bit);
9648                 if (!(upper->wanted_features & feature)
9649                     && (features & feature)) {
9650                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9651                                    &feature, upper->name);
9652                         features &= ~feature;
9653                 }
9654         }
9655
9656         return features;
9657 }
9658
9659 static void netdev_sync_lower_features(struct net_device *upper,
9660         struct net_device *lower, netdev_features_t features)
9661 {
9662         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9663         netdev_features_t feature;
9664         int feature_bit;
9665
9666         for_each_netdev_feature(upper_disables, feature_bit) {
9667                 feature = __NETIF_F_BIT(feature_bit);
9668                 if (!(features & feature) && (lower->features & feature)) {
9669                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9670                                    &feature, lower->name);
9671                         lower->wanted_features &= ~feature;
9672                         __netdev_update_features(lower);
9673
9674                         if (unlikely(lower->features & feature))
9675                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9676                                             &feature, lower->name);
9677                         else
9678                                 netdev_features_change(lower);
9679                 }
9680         }
9681 }
9682
9683 static netdev_features_t netdev_fix_features(struct net_device *dev,
9684         netdev_features_t features)
9685 {
9686         /* Fix illegal checksum combinations */
9687         if ((features & NETIF_F_HW_CSUM) &&
9688             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9689                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9690                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9691         }
9692
9693         /* TSO requires that SG is present as well. */
9694         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9695                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9696                 features &= ~NETIF_F_ALL_TSO;
9697         }
9698
9699         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9700                                         !(features & NETIF_F_IP_CSUM)) {
9701                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9702                 features &= ~NETIF_F_TSO;
9703                 features &= ~NETIF_F_TSO_ECN;
9704         }
9705
9706         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9707                                          !(features & NETIF_F_IPV6_CSUM)) {
9708                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9709                 features &= ~NETIF_F_TSO6;
9710         }
9711
9712         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9713         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9714                 features &= ~NETIF_F_TSO_MANGLEID;
9715
9716         /* TSO ECN requires that TSO is present as well. */
9717         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9718                 features &= ~NETIF_F_TSO_ECN;
9719
9720         /* Software GSO depends on SG. */
9721         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9722                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9723                 features &= ~NETIF_F_GSO;
9724         }
9725
9726         /* GSO partial features require GSO partial be set */
9727         if ((features & dev->gso_partial_features) &&
9728             !(features & NETIF_F_GSO_PARTIAL)) {
9729                 netdev_dbg(dev,
9730                            "Dropping partially supported GSO features since no GSO partial.\n");
9731                 features &= ~dev->gso_partial_features;
9732         }
9733
9734         if (!(features & NETIF_F_RXCSUM)) {
9735                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9736                  * successfully merged by hardware must also have the
9737                  * checksum verified by hardware.  If the user does not
9738                  * want to enable RXCSUM, logically, we should disable GRO_HW.
9739                  */
9740                 if (features & NETIF_F_GRO_HW) {
9741                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9742                         features &= ~NETIF_F_GRO_HW;
9743                 }
9744         }
9745
9746         /* LRO/HW-GRO features cannot be combined with RX-FCS */
9747         if (features & NETIF_F_RXFCS) {
9748                 if (features & NETIF_F_LRO) {
9749                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9750                         features &= ~NETIF_F_LRO;
9751                 }
9752
9753                 if (features & NETIF_F_GRO_HW) {
9754                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9755                         features &= ~NETIF_F_GRO_HW;
9756                 }
9757         }
9758
9759         if (features & NETIF_F_HW_TLS_TX) {
9760                 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9761                         (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9762                 bool hw_csum = features & NETIF_F_HW_CSUM;
9763
9764                 if (!ip_csum && !hw_csum) {
9765                         netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9766                         features &= ~NETIF_F_HW_TLS_TX;
9767                 }
9768         }
9769
9770         if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9771                 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9772                 features &= ~NETIF_F_HW_TLS_RX;
9773         }
9774
9775         return features;
9776 }
9777
9778 int __netdev_update_features(struct net_device *dev)
9779 {
9780         struct net_device *upper, *lower;
9781         netdev_features_t features;
9782         struct list_head *iter;
9783         int err = -1;
9784
9785         ASSERT_RTNL();
9786
9787         features = netdev_get_wanted_features(dev);
9788
9789         if (dev->netdev_ops->ndo_fix_features)
9790                 features = dev->netdev_ops->ndo_fix_features(dev, features);
9791
9792         /* driver might be less strict about feature dependencies */
9793         features = netdev_fix_features(dev, features);
9794
9795         /* some features can't be enabled if they're off on an upper device */
9796         netdev_for_each_upper_dev_rcu(dev, upper, iter)
9797                 features = netdev_sync_upper_features(dev, upper, features);
9798
9799         if (dev->features == features)
9800                 goto sync_lower;
9801
9802         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9803                 &dev->features, &features);
9804
9805         if (dev->netdev_ops->ndo_set_features)
9806                 err = dev->netdev_ops->ndo_set_features(dev, features);
9807         else
9808                 err = 0;
9809
9810         if (unlikely(err < 0)) {
9811                 netdev_err(dev,
9812                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
9813                         err, &features, &dev->features);
9814                 /* return non-0 since some features might have changed and
9815                  * it's better to fire a spurious notification than miss it
9816                  */
9817                 return -1;
9818         }
9819
9820 sync_lower:
9821         /* some features must be disabled on lower devices when disabled
9822          * on an upper device (think: bonding master or bridge)
9823          */
9824         netdev_for_each_lower_dev(dev, lower, iter)
9825                 netdev_sync_lower_features(dev, lower, features);
9826
9827         if (!err) {
9828                 netdev_features_t diff = features ^ dev->features;
9829
9830                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9831                         /* udp_tunnel_{get,drop}_rx_info both need
9832                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9833                          * device, or they won't do anything.
9834                          * Thus we need to update dev->features
9835                          * *before* calling udp_tunnel_get_rx_info,
9836                          * but *after* calling udp_tunnel_drop_rx_info.
9837                          */
9838                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9839                                 dev->features = features;
9840                                 udp_tunnel_get_rx_info(dev);
9841                         } else {
9842                                 udp_tunnel_drop_rx_info(dev);
9843                         }
9844                 }
9845
9846                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9847                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9848                                 dev->features = features;
9849                                 err |= vlan_get_rx_ctag_filter_info(dev);
9850                         } else {
9851                                 vlan_drop_rx_ctag_filter_info(dev);
9852                         }
9853                 }
9854
9855                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9856                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9857                                 dev->features = features;
9858                                 err |= vlan_get_rx_stag_filter_info(dev);
9859                         } else {
9860                                 vlan_drop_rx_stag_filter_info(dev);
9861                         }
9862                 }
9863
9864                 dev->features = features;
9865         }
9866
9867         return err < 0 ? 0 : 1;
9868 }
9869
9870 /**
9871  *      netdev_update_features - recalculate device features
9872  *      @dev: the device to check
9873  *
9874  *      Recalculate dev->features set and send notifications if it
9875  *      has changed. Should be called after driver or hardware dependent
9876  *      conditions might have changed that influence the features.
9877  */
9878 void netdev_update_features(struct net_device *dev)
9879 {
9880         if (__netdev_update_features(dev))
9881                 netdev_features_change(dev);
9882 }
9883 EXPORT_SYMBOL(netdev_update_features);
9884
9885 /**
9886  *      netdev_change_features - recalculate device features
9887  *      @dev: the device to check
9888  *
9889  *      Recalculate dev->features set and send notifications even
9890  *      if they have not changed. Should be called instead of
9891  *      netdev_update_features() if also dev->vlan_features might
9892  *      have changed to allow the changes to be propagated to stacked
9893  *      VLAN devices.
9894  */
9895 void netdev_change_features(struct net_device *dev)
9896 {
9897         __netdev_update_features(dev);
9898         netdev_features_change(dev);
9899 }
9900 EXPORT_SYMBOL(netdev_change_features);
9901
9902 /**
9903  *      netif_stacked_transfer_operstate -      transfer operstate
9904  *      @rootdev: the root or lower level device to transfer state from
9905  *      @dev: the device to transfer operstate to
9906  *
9907  *      Transfer operational state from root to device. This is normally
9908  *      called when a stacking relationship exists between the root
9909  *      device and the device(a leaf device).
9910  */
9911 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9912                                         struct net_device *dev)
9913 {
9914         if (rootdev->operstate == IF_OPER_DORMANT)
9915                 netif_dormant_on(dev);
9916         else
9917                 netif_dormant_off(dev);
9918
9919         if (rootdev->operstate == IF_OPER_TESTING)
9920                 netif_testing_on(dev);
9921         else
9922                 netif_testing_off(dev);
9923
9924         if (netif_carrier_ok(rootdev))
9925                 netif_carrier_on(dev);
9926         else
9927                 netif_carrier_off(dev);
9928 }
9929 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9930
9931 static int netif_alloc_rx_queues(struct net_device *dev)
9932 {
9933         unsigned int i, count = dev->num_rx_queues;
9934         struct netdev_rx_queue *rx;
9935         size_t sz = count * sizeof(*rx);
9936         int err = 0;
9937
9938         BUG_ON(count < 1);
9939
9940         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9941         if (!rx)
9942                 return -ENOMEM;
9943
9944         dev->_rx = rx;
9945
9946         for (i = 0; i < count; i++) {
9947                 rx[i].dev = dev;
9948
9949                 /* XDP RX-queue setup */
9950                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9951                 if (err < 0)
9952                         goto err_rxq_info;
9953         }
9954         return 0;
9955
9956 err_rxq_info:
9957         /* Rollback successful reg's and free other resources */
9958         while (i--)
9959                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9960         kvfree(dev->_rx);
9961         dev->_rx = NULL;
9962         return err;
9963 }
9964
9965 static void netif_free_rx_queues(struct net_device *dev)
9966 {
9967         unsigned int i, count = dev->num_rx_queues;
9968
9969         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9970         if (!dev->_rx)
9971                 return;
9972
9973         for (i = 0; i < count; i++)
9974                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9975
9976         kvfree(dev->_rx);
9977 }
9978
9979 static void netdev_init_one_queue(struct net_device *dev,
9980                                   struct netdev_queue *queue, void *_unused)
9981 {
9982         /* Initialize queue lock */
9983         spin_lock_init(&queue->_xmit_lock);
9984         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9985         queue->xmit_lock_owner = -1;
9986         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9987         queue->dev = dev;
9988 #ifdef CONFIG_BQL
9989         dql_init(&queue->dql, HZ);
9990 #endif
9991 }
9992
9993 static void netif_free_tx_queues(struct net_device *dev)
9994 {
9995         kvfree(dev->_tx);
9996 }
9997
9998 static int netif_alloc_netdev_queues(struct net_device *dev)
9999 {
10000         unsigned int count = dev->num_tx_queues;
10001         struct netdev_queue *tx;
10002         size_t sz = count * sizeof(*tx);
10003
10004         if (count < 1 || count > 0xffff)
10005                 return -EINVAL;
10006
10007         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10008         if (!tx)
10009                 return -ENOMEM;
10010
10011         dev->_tx = tx;
10012
10013         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10014         spin_lock_init(&dev->tx_global_lock);
10015
10016         return 0;
10017 }
10018
10019 void netif_tx_stop_all_queues(struct net_device *dev)
10020 {
10021         unsigned int i;
10022
10023         for (i = 0; i < dev->num_tx_queues; i++) {
10024                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10025
10026                 netif_tx_stop_queue(txq);
10027         }
10028 }
10029 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10030
10031 /**
10032  *      register_netdevice      - register a network device
10033  *      @dev: device to register
10034  *
10035  *      Take a completed network device structure and add it to the kernel
10036  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10037  *      chain. 0 is returned on success. A negative errno code is returned
10038  *      on a failure to set up the device, or if the name is a duplicate.
10039  *
10040  *      Callers must hold the rtnl semaphore. You may want
10041  *      register_netdev() instead of this.
10042  *
10043  *      BUGS:
10044  *      The locking appears insufficient to guarantee two parallel registers
10045  *      will not get the same name.
10046  */
10047
10048 int register_netdevice(struct net_device *dev)
10049 {
10050         int ret;
10051         struct net *net = dev_net(dev);
10052
10053         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10054                      NETDEV_FEATURE_COUNT);
10055         BUG_ON(dev_boot_phase);
10056         ASSERT_RTNL();
10057
10058         might_sleep();
10059
10060         /* When net_device's are persistent, this will be fatal. */
10061         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10062         BUG_ON(!net);
10063
10064         ret = ethtool_check_ops(dev->ethtool_ops);
10065         if (ret)
10066                 return ret;
10067
10068         spin_lock_init(&dev->addr_list_lock);
10069         netdev_set_addr_lockdep_class(dev);
10070
10071         ret = dev_get_valid_name(net, dev, dev->name);
10072         if (ret < 0)
10073                 goto out;
10074
10075         ret = -ENOMEM;
10076         dev->name_node = netdev_name_node_head_alloc(dev);
10077         if (!dev->name_node)
10078                 goto out;
10079
10080         /* Init, if this function is available */
10081         if (dev->netdev_ops->ndo_init) {
10082                 ret = dev->netdev_ops->ndo_init(dev);
10083                 if (ret) {
10084                         if (ret > 0)
10085                                 ret = -EIO;
10086                         goto err_free_name;
10087                 }
10088         }
10089
10090         if (((dev->hw_features | dev->features) &
10091              NETIF_F_HW_VLAN_CTAG_FILTER) &&
10092             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10093              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10094                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10095                 ret = -EINVAL;
10096                 goto err_uninit;
10097         }
10098
10099         ret = -EBUSY;
10100         if (!dev->ifindex)
10101                 dev->ifindex = dev_new_index(net);
10102         else if (__dev_get_by_index(net, dev->ifindex))
10103                 goto err_uninit;
10104
10105         /* Transfer changeable features to wanted_features and enable
10106          * software offloads (GSO and GRO).
10107          */
10108         dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10109         dev->features |= NETIF_F_SOFT_FEATURES;
10110
10111         if (dev->udp_tunnel_nic_info) {
10112                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10113                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10114         }
10115
10116         dev->wanted_features = dev->features & dev->hw_features;
10117
10118         if (!(dev->flags & IFF_LOOPBACK))
10119                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10120
10121         /* If IPv4 TCP segmentation offload is supported we should also
10122          * allow the device to enable segmenting the frame with the option
10123          * of ignoring a static IP ID value.  This doesn't enable the
10124          * feature itself but allows the user to enable it later.
10125          */
10126         if (dev->hw_features & NETIF_F_TSO)
10127                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10128         if (dev->vlan_features & NETIF_F_TSO)
10129                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10130         if (dev->mpls_features & NETIF_F_TSO)
10131                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10132         if (dev->hw_enc_features & NETIF_F_TSO)
10133                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10134
10135         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10136          */
10137         dev->vlan_features |= NETIF_F_HIGHDMA;
10138
10139         /* Make NETIF_F_SG inheritable to tunnel devices.
10140          */
10141         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10142
10143         /* Make NETIF_F_SG inheritable to MPLS.
10144          */
10145         dev->mpls_features |= NETIF_F_SG;
10146
10147         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10148         ret = notifier_to_errno(ret);
10149         if (ret)
10150                 goto err_uninit;
10151
10152         ret = netdev_register_kobject(dev);
10153         if (ret) {
10154                 dev->reg_state = NETREG_UNREGISTERED;
10155                 goto err_uninit;
10156         }
10157         dev->reg_state = NETREG_REGISTERED;
10158
10159         __netdev_update_features(dev);
10160
10161         /*
10162          *      Default initial state at registry is that the
10163          *      device is present.
10164          */
10165
10166         set_bit(__LINK_STATE_PRESENT, &dev->state);
10167
10168         linkwatch_init_dev(dev);
10169
10170         dev_init_scheduler(dev);
10171         dev_hold(dev);
10172         list_netdevice(dev);
10173         add_device_randomness(dev->dev_addr, dev->addr_len);
10174
10175         /* If the device has permanent device address, driver should
10176          * set dev_addr and also addr_assign_type should be set to
10177          * NET_ADDR_PERM (default value).
10178          */
10179         if (dev->addr_assign_type == NET_ADDR_PERM)
10180                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10181
10182         /* Notify protocols, that a new device appeared. */
10183         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10184         ret = notifier_to_errno(ret);
10185         if (ret) {
10186                 /* Expect explicit free_netdev() on failure */
10187                 dev->needs_free_netdev = false;
10188                 unregister_netdevice_queue(dev, NULL);
10189                 goto out;
10190         }
10191         /*
10192          *      Prevent userspace races by waiting until the network
10193          *      device is fully setup before sending notifications.
10194          */
10195         if (!dev->rtnl_link_ops ||
10196             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10197                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10198
10199 out:
10200         return ret;
10201
10202 err_uninit:
10203         if (dev->netdev_ops->ndo_uninit)
10204                 dev->netdev_ops->ndo_uninit(dev);
10205         if (dev->priv_destructor)
10206                 dev->priv_destructor(dev);
10207 err_free_name:
10208         netdev_name_node_free(dev->name_node);
10209         goto out;
10210 }
10211 EXPORT_SYMBOL(register_netdevice);
10212
10213 /**
10214  *      init_dummy_netdev       - init a dummy network device for NAPI
10215  *      @dev: device to init
10216  *
10217  *      This takes a network device structure and initialize the minimum
10218  *      amount of fields so it can be used to schedule NAPI polls without
10219  *      registering a full blown interface. This is to be used by drivers
10220  *      that need to tie several hardware interfaces to a single NAPI
10221  *      poll scheduler due to HW limitations.
10222  */
10223 int init_dummy_netdev(struct net_device *dev)
10224 {
10225         /* Clear everything. Note we don't initialize spinlocks
10226          * are they aren't supposed to be taken by any of the
10227          * NAPI code and this dummy netdev is supposed to be
10228          * only ever used for NAPI polls
10229          */
10230         memset(dev, 0, sizeof(struct net_device));
10231
10232         /* make sure we BUG if trying to hit standard
10233          * register/unregister code path
10234          */
10235         dev->reg_state = NETREG_DUMMY;
10236
10237         /* NAPI wants this */
10238         INIT_LIST_HEAD(&dev->napi_list);
10239
10240         /* a dummy interface is started by default */
10241         set_bit(__LINK_STATE_PRESENT, &dev->state);
10242         set_bit(__LINK_STATE_START, &dev->state);
10243
10244         /* napi_busy_loop stats accounting wants this */
10245         dev_net_set(dev, &init_net);
10246
10247         /* Note : We dont allocate pcpu_refcnt for dummy devices,
10248          * because users of this 'device' dont need to change
10249          * its refcount.
10250          */
10251
10252         return 0;
10253 }
10254 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10255
10256
10257 /**
10258  *      register_netdev - register a network device
10259  *      @dev: device to register
10260  *
10261  *      Take a completed network device structure and add it to the kernel
10262  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10263  *      chain. 0 is returned on success. A negative errno code is returned
10264  *      on a failure to set up the device, or if the name is a duplicate.
10265  *
10266  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
10267  *      and expands the device name if you passed a format string to
10268  *      alloc_netdev.
10269  */
10270 int register_netdev(struct net_device *dev)
10271 {
10272         int err;
10273
10274         if (rtnl_lock_killable())
10275                 return -EINTR;
10276         err = register_netdevice(dev);
10277         rtnl_unlock();
10278         return err;
10279 }
10280 EXPORT_SYMBOL(register_netdev);
10281
10282 int netdev_refcnt_read(const struct net_device *dev)
10283 {
10284         int i, refcnt = 0;
10285
10286         for_each_possible_cpu(i)
10287                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10288         return refcnt;
10289 }
10290 EXPORT_SYMBOL(netdev_refcnt_read);
10291
10292 #define WAIT_REFS_MIN_MSECS 1
10293 #define WAIT_REFS_MAX_MSECS 250
10294 /**
10295  * netdev_wait_allrefs - wait until all references are gone.
10296  * @dev: target net_device
10297  *
10298  * This is called when unregistering network devices.
10299  *
10300  * Any protocol or device that holds a reference should register
10301  * for netdevice notification, and cleanup and put back the
10302  * reference if they receive an UNREGISTER event.
10303  * We can get stuck here if buggy protocols don't correctly
10304  * call dev_put.
10305  */
10306 static void netdev_wait_allrefs(struct net_device *dev)
10307 {
10308         unsigned long rebroadcast_time, warning_time;
10309         int wait = 0, refcnt;
10310
10311         linkwatch_forget_dev(dev);
10312
10313         rebroadcast_time = warning_time = jiffies;
10314         refcnt = netdev_refcnt_read(dev);
10315
10316         while (refcnt != 0) {
10317                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10318                         rtnl_lock();
10319
10320                         /* Rebroadcast unregister notification */
10321                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10322
10323                         __rtnl_unlock();
10324                         rcu_barrier();
10325                         rtnl_lock();
10326
10327                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10328                                      &dev->state)) {
10329                                 /* We must not have linkwatch events
10330                                  * pending on unregister. If this
10331                                  * happens, we simply run the queue
10332                                  * unscheduled, resulting in a noop
10333                                  * for this device.
10334                                  */
10335                                 linkwatch_run_queue();
10336                         }
10337
10338                         __rtnl_unlock();
10339
10340                         rebroadcast_time = jiffies;
10341                 }
10342
10343                 if (!wait) {
10344                         rcu_barrier();
10345                         wait = WAIT_REFS_MIN_MSECS;
10346                 } else {
10347                         msleep(wait);
10348                         wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10349                 }
10350
10351                 refcnt = netdev_refcnt_read(dev);
10352
10353                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10354                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10355                                  dev->name, refcnt);
10356                         warning_time = jiffies;
10357                 }
10358         }
10359 }
10360
10361 /* The sequence is:
10362  *
10363  *      rtnl_lock();
10364  *      ...
10365  *      register_netdevice(x1);
10366  *      register_netdevice(x2);
10367  *      ...
10368  *      unregister_netdevice(y1);
10369  *      unregister_netdevice(y2);
10370  *      ...
10371  *      rtnl_unlock();
10372  *      free_netdev(y1);
10373  *      free_netdev(y2);
10374  *
10375  * We are invoked by rtnl_unlock().
10376  * This allows us to deal with problems:
10377  * 1) We can delete sysfs objects which invoke hotplug
10378  *    without deadlocking with linkwatch via keventd.
10379  * 2) Since we run with the RTNL semaphore not held, we can sleep
10380  *    safely in order to wait for the netdev refcnt to drop to zero.
10381  *
10382  * We must not return until all unregister events added during
10383  * the interval the lock was held have been completed.
10384  */
10385 void netdev_run_todo(void)
10386 {
10387         struct list_head list;
10388 #ifdef CONFIG_LOCKDEP
10389         struct list_head unlink_list;
10390
10391         list_replace_init(&net_unlink_list, &unlink_list);
10392
10393         while (!list_empty(&unlink_list)) {
10394                 struct net_device *dev = list_first_entry(&unlink_list,
10395                                                           struct net_device,
10396                                                           unlink_list);
10397                 list_del_init(&dev->unlink_list);
10398                 dev->nested_level = dev->lower_level - 1;
10399         }
10400 #endif
10401
10402         /* Snapshot list, allow later requests */
10403         list_replace_init(&net_todo_list, &list);
10404
10405         __rtnl_unlock();
10406
10407
10408         /* Wait for rcu callbacks to finish before next phase */
10409         if (!list_empty(&list))
10410                 rcu_barrier();
10411
10412         while (!list_empty(&list)) {
10413                 struct net_device *dev
10414                         = list_first_entry(&list, struct net_device, todo_list);
10415                 list_del(&dev->todo_list);
10416
10417                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10418                         pr_err("network todo '%s' but state %d\n",
10419                                dev->name, dev->reg_state);
10420                         dump_stack();
10421                         continue;
10422                 }
10423
10424                 dev->reg_state = NETREG_UNREGISTERED;
10425
10426                 netdev_wait_allrefs(dev);
10427
10428                 /* paranoia */
10429                 BUG_ON(netdev_refcnt_read(dev));
10430                 BUG_ON(!list_empty(&dev->ptype_all));
10431                 BUG_ON(!list_empty(&dev->ptype_specific));
10432                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10433                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10434 #if IS_ENABLED(CONFIG_DECNET)
10435                 WARN_ON(dev->dn_ptr);
10436 #endif
10437                 if (dev->priv_destructor)
10438                         dev->priv_destructor(dev);
10439                 if (dev->needs_free_netdev)
10440                         free_netdev(dev);
10441
10442                 /* Report a network device has been unregistered */
10443                 rtnl_lock();
10444                 dev_net(dev)->dev_unreg_count--;
10445                 __rtnl_unlock();
10446                 wake_up(&netdev_unregistering_wq);
10447
10448                 /* Free network device */
10449                 kobject_put(&dev->dev.kobj);
10450         }
10451 }
10452
10453 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10454  * all the same fields in the same order as net_device_stats, with only
10455  * the type differing, but rtnl_link_stats64 may have additional fields
10456  * at the end for newer counters.
10457  */
10458 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10459                              const struct net_device_stats *netdev_stats)
10460 {
10461 #if BITS_PER_LONG == 64
10462         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10463         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10464         /* zero out counters that only exist in rtnl_link_stats64 */
10465         memset((char *)stats64 + sizeof(*netdev_stats), 0,
10466                sizeof(*stats64) - sizeof(*netdev_stats));
10467 #else
10468         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10469         const unsigned long *src = (const unsigned long *)netdev_stats;
10470         u64 *dst = (u64 *)stats64;
10471
10472         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10473         for (i = 0; i < n; i++)
10474                 dst[i] = src[i];
10475         /* zero out counters that only exist in rtnl_link_stats64 */
10476         memset((char *)stats64 + n * sizeof(u64), 0,
10477                sizeof(*stats64) - n * sizeof(u64));
10478 #endif
10479 }
10480 EXPORT_SYMBOL(netdev_stats_to_stats64);
10481
10482 /**
10483  *      dev_get_stats   - get network device statistics
10484  *      @dev: device to get statistics from
10485  *      @storage: place to store stats
10486  *
10487  *      Get network statistics from device. Return @storage.
10488  *      The device driver may provide its own method by setting
10489  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10490  *      otherwise the internal statistics structure is used.
10491  */
10492 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10493                                         struct rtnl_link_stats64 *storage)
10494 {
10495         const struct net_device_ops *ops = dev->netdev_ops;
10496
10497         if (ops->ndo_get_stats64) {
10498                 memset(storage, 0, sizeof(*storage));
10499                 ops->ndo_get_stats64(dev, storage);
10500         } else if (ops->ndo_get_stats) {
10501                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10502         } else {
10503                 netdev_stats_to_stats64(storage, &dev->stats);
10504         }
10505         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10506         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10507         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10508         return storage;
10509 }
10510 EXPORT_SYMBOL(dev_get_stats);
10511
10512 /**
10513  *      dev_fetch_sw_netstats - get per-cpu network device statistics
10514  *      @s: place to store stats
10515  *      @netstats: per-cpu network stats to read from
10516  *
10517  *      Read per-cpu network statistics and populate the related fields in @s.
10518  */
10519 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10520                            const struct pcpu_sw_netstats __percpu *netstats)
10521 {
10522         int cpu;
10523
10524         for_each_possible_cpu(cpu) {
10525                 const struct pcpu_sw_netstats *stats;
10526                 struct pcpu_sw_netstats tmp;
10527                 unsigned int start;
10528
10529                 stats = per_cpu_ptr(netstats, cpu);
10530                 do {
10531                         start = u64_stats_fetch_begin_irq(&stats->syncp);
10532                         tmp.rx_packets = stats->rx_packets;
10533                         tmp.rx_bytes   = stats->rx_bytes;
10534                         tmp.tx_packets = stats->tx_packets;
10535                         tmp.tx_bytes   = stats->tx_bytes;
10536                 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10537
10538                 s->rx_packets += tmp.rx_packets;
10539                 s->rx_bytes   += tmp.rx_bytes;
10540                 s->tx_packets += tmp.tx_packets;
10541                 s->tx_bytes   += tmp.tx_bytes;
10542         }
10543 }
10544 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10545
10546 /**
10547  *      dev_get_tstats64 - ndo_get_stats64 implementation
10548  *      @dev: device to get statistics from
10549  *      @s: place to store stats
10550  *
10551  *      Populate @s from dev->stats and dev->tstats. Can be used as
10552  *      ndo_get_stats64() callback.
10553  */
10554 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10555 {
10556         netdev_stats_to_stats64(s, &dev->stats);
10557         dev_fetch_sw_netstats(s, dev->tstats);
10558 }
10559 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10560
10561 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10562 {
10563         struct netdev_queue *queue = dev_ingress_queue(dev);
10564
10565 #ifdef CONFIG_NET_CLS_ACT
10566         if (queue)
10567                 return queue;
10568         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10569         if (!queue)
10570                 return NULL;
10571         netdev_init_one_queue(dev, queue, NULL);
10572         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10573         queue->qdisc_sleeping = &noop_qdisc;
10574         rcu_assign_pointer(dev->ingress_queue, queue);
10575 #endif
10576         return queue;
10577 }
10578
10579 static const struct ethtool_ops default_ethtool_ops;
10580
10581 void netdev_set_default_ethtool_ops(struct net_device *dev,
10582                                     const struct ethtool_ops *ops)
10583 {
10584         if (dev->ethtool_ops == &default_ethtool_ops)
10585                 dev->ethtool_ops = ops;
10586 }
10587 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10588
10589 void netdev_freemem(struct net_device *dev)
10590 {
10591         char *addr = (char *)dev - dev->padded;
10592
10593         kvfree(addr);
10594 }
10595
10596 /**
10597  * alloc_netdev_mqs - allocate network device
10598  * @sizeof_priv: size of private data to allocate space for
10599  * @name: device name format string
10600  * @name_assign_type: origin of device name
10601  * @setup: callback to initialize device
10602  * @txqs: the number of TX subqueues to allocate
10603  * @rxqs: the number of RX subqueues to allocate
10604  *
10605  * Allocates a struct net_device with private data area for driver use
10606  * and performs basic initialization.  Also allocates subqueue structs
10607  * for each queue on the device.
10608  */
10609 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10610                 unsigned char name_assign_type,
10611                 void (*setup)(struct net_device *),
10612                 unsigned int txqs, unsigned int rxqs)
10613 {
10614         struct net_device *dev;
10615         unsigned int alloc_size;
10616         struct net_device *p;
10617
10618         BUG_ON(strlen(name) >= sizeof(dev->name));
10619
10620         if (txqs < 1) {
10621                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10622                 return NULL;
10623         }
10624
10625         if (rxqs < 1) {
10626                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10627                 return NULL;
10628         }
10629
10630         alloc_size = sizeof(struct net_device);
10631         if (sizeof_priv) {
10632                 /* ensure 32-byte alignment of private area */
10633                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10634                 alloc_size += sizeof_priv;
10635         }
10636         /* ensure 32-byte alignment of whole construct */
10637         alloc_size += NETDEV_ALIGN - 1;
10638
10639         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10640         if (!p)
10641                 return NULL;
10642
10643         dev = PTR_ALIGN(p, NETDEV_ALIGN);
10644         dev->padded = (char *)dev - (char *)p;
10645
10646         dev->pcpu_refcnt = alloc_percpu(int);
10647         if (!dev->pcpu_refcnt)
10648                 goto free_dev;
10649
10650         if (dev_addr_init(dev))
10651                 goto free_pcpu;
10652
10653         dev_mc_init(dev);
10654         dev_uc_init(dev);
10655
10656         dev_net_set(dev, &init_net);
10657
10658         dev->gso_max_size = GSO_MAX_SIZE;
10659         dev->gso_max_segs = GSO_MAX_SEGS;
10660         dev->upper_level = 1;
10661         dev->lower_level = 1;
10662 #ifdef CONFIG_LOCKDEP
10663         dev->nested_level = 0;
10664         INIT_LIST_HEAD(&dev->unlink_list);
10665 #endif
10666
10667         INIT_LIST_HEAD(&dev->napi_list);
10668         INIT_LIST_HEAD(&dev->unreg_list);
10669         INIT_LIST_HEAD(&dev->close_list);
10670         INIT_LIST_HEAD(&dev->link_watch_list);
10671         INIT_LIST_HEAD(&dev->adj_list.upper);
10672         INIT_LIST_HEAD(&dev->adj_list.lower);
10673         INIT_LIST_HEAD(&dev->ptype_all);
10674         INIT_LIST_HEAD(&dev->ptype_specific);
10675         INIT_LIST_HEAD(&dev->net_notifier_list);
10676 #ifdef CONFIG_NET_SCHED
10677         hash_init(dev->qdisc_hash);
10678 #endif
10679         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10680         setup(dev);
10681
10682         if (!dev->tx_queue_len) {
10683                 dev->priv_flags |= IFF_NO_QUEUE;
10684                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10685         }
10686
10687         dev->num_tx_queues = txqs;
10688         dev->real_num_tx_queues = txqs;
10689         if (netif_alloc_netdev_queues(dev))
10690                 goto free_all;
10691
10692         dev->num_rx_queues = rxqs;
10693         dev->real_num_rx_queues = rxqs;
10694         if (netif_alloc_rx_queues(dev))
10695                 goto free_all;
10696
10697         strcpy(dev->name, name);
10698         dev->name_assign_type = name_assign_type;
10699         dev->group = INIT_NETDEV_GROUP;
10700         if (!dev->ethtool_ops)
10701                 dev->ethtool_ops = &default_ethtool_ops;
10702
10703         nf_hook_ingress_init(dev);
10704
10705         return dev;
10706
10707 free_all:
10708         free_netdev(dev);
10709         return NULL;
10710
10711 free_pcpu:
10712         free_percpu(dev->pcpu_refcnt);
10713 free_dev:
10714         netdev_freemem(dev);
10715         return NULL;
10716 }
10717 EXPORT_SYMBOL(alloc_netdev_mqs);
10718
10719 /**
10720  * free_netdev - free network device
10721  * @dev: device
10722  *
10723  * This function does the last stage of destroying an allocated device
10724  * interface. The reference to the device object is released. If this
10725  * is the last reference then it will be freed.Must be called in process
10726  * context.
10727  */
10728 void free_netdev(struct net_device *dev)
10729 {
10730         struct napi_struct *p, *n;
10731
10732         might_sleep();
10733
10734         /* When called immediately after register_netdevice() failed the unwind
10735          * handling may still be dismantling the device. Handle that case by
10736          * deferring the free.
10737          */
10738         if (dev->reg_state == NETREG_UNREGISTERING) {
10739                 ASSERT_RTNL();
10740                 dev->needs_free_netdev = true;
10741                 return;
10742         }
10743
10744         netif_free_tx_queues(dev);
10745         netif_free_rx_queues(dev);
10746
10747         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10748
10749         /* Flush device addresses */
10750         dev_addr_flush(dev);
10751
10752         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10753                 netif_napi_del(p);
10754
10755         free_percpu(dev->pcpu_refcnt);
10756         dev->pcpu_refcnt = NULL;
10757         free_percpu(dev->xdp_bulkq);
10758         dev->xdp_bulkq = NULL;
10759
10760         /*  Compatibility with error handling in drivers */
10761         if (dev->reg_state == NETREG_UNINITIALIZED) {
10762                 netdev_freemem(dev);
10763                 return;
10764         }
10765
10766         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10767         dev->reg_state = NETREG_RELEASED;
10768
10769         /* will free via device release */
10770         put_device(&dev->dev);
10771 }
10772 EXPORT_SYMBOL(free_netdev);
10773
10774 /**
10775  *      synchronize_net -  Synchronize with packet receive processing
10776  *
10777  *      Wait for packets currently being received to be done.
10778  *      Does not block later packets from starting.
10779  */
10780 void synchronize_net(void)
10781 {
10782         might_sleep();
10783         if (rtnl_is_locked())
10784                 synchronize_rcu_expedited();
10785         else
10786                 synchronize_rcu();
10787 }
10788 EXPORT_SYMBOL(synchronize_net);
10789
10790 /**
10791  *      unregister_netdevice_queue - remove device from the kernel
10792  *      @dev: device
10793  *      @head: list
10794  *
10795  *      This function shuts down a device interface and removes it
10796  *      from the kernel tables.
10797  *      If head not NULL, device is queued to be unregistered later.
10798  *
10799  *      Callers must hold the rtnl semaphore.  You may want
10800  *      unregister_netdev() instead of this.
10801  */
10802
10803 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10804 {
10805         ASSERT_RTNL();
10806
10807         if (head) {
10808                 list_move_tail(&dev->unreg_list, head);
10809         } else {
10810                 LIST_HEAD(single);
10811
10812                 list_add(&dev->unreg_list, &single);
10813                 unregister_netdevice_many(&single);
10814         }
10815 }
10816 EXPORT_SYMBOL(unregister_netdevice_queue);
10817
10818 /**
10819  *      unregister_netdevice_many - unregister many devices
10820  *      @head: list of devices
10821  *
10822  *  Note: As most callers use a stack allocated list_head,
10823  *  we force a list_del() to make sure stack wont be corrupted later.
10824  */
10825 void unregister_netdevice_many(struct list_head *head)
10826 {
10827         struct net_device *dev, *tmp;
10828         LIST_HEAD(close_head);
10829
10830         BUG_ON(dev_boot_phase);
10831         ASSERT_RTNL();
10832
10833         if (list_empty(head))
10834                 return;
10835
10836         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10837                 /* Some devices call without registering
10838                  * for initialization unwind. Remove those
10839                  * devices and proceed with the remaining.
10840                  */
10841                 if (dev->reg_state == NETREG_UNINITIALIZED) {
10842                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10843                                  dev->name, dev);
10844
10845                         WARN_ON(1);
10846                         list_del(&dev->unreg_list);
10847                         continue;
10848                 }
10849                 dev->dismantle = true;
10850                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10851         }
10852
10853         /* If device is running, close it first. */
10854         list_for_each_entry(dev, head, unreg_list)
10855                 list_add_tail(&dev->close_list, &close_head);
10856         dev_close_many(&close_head, true);
10857
10858         list_for_each_entry(dev, head, unreg_list) {
10859                 /* And unlink it from device chain. */
10860                 unlist_netdevice(dev);
10861
10862                 dev->reg_state = NETREG_UNREGISTERING;
10863         }
10864         flush_all_backlogs();
10865
10866         synchronize_net();
10867
10868         list_for_each_entry(dev, head, unreg_list) {
10869                 struct sk_buff *skb = NULL;
10870
10871                 /* Shutdown queueing discipline. */
10872                 dev_shutdown(dev);
10873
10874                 dev_xdp_uninstall(dev);
10875
10876                 /* Notify protocols, that we are about to destroy
10877                  * this device. They should clean all the things.
10878                  */
10879                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10880
10881                 if (!dev->rtnl_link_ops ||
10882                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10883                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10884                                                      GFP_KERNEL, NULL, 0);
10885
10886                 /*
10887                  *      Flush the unicast and multicast chains
10888                  */
10889                 dev_uc_flush(dev);
10890                 dev_mc_flush(dev);
10891
10892                 netdev_name_node_alt_flush(dev);
10893                 netdev_name_node_free(dev->name_node);
10894
10895                 if (dev->netdev_ops->ndo_uninit)
10896                         dev->netdev_ops->ndo_uninit(dev);
10897
10898                 if (skb)
10899                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10900
10901                 /* Notifier chain MUST detach us all upper devices. */
10902                 WARN_ON(netdev_has_any_upper_dev(dev));
10903                 WARN_ON(netdev_has_any_lower_dev(dev));
10904
10905                 /* Remove entries from kobject tree */
10906                 netdev_unregister_kobject(dev);
10907 #ifdef CONFIG_XPS
10908                 /* Remove XPS queueing entries */
10909                 netif_reset_xps_queues_gt(dev, 0);
10910 #endif
10911         }
10912
10913         synchronize_net();
10914
10915         list_for_each_entry(dev, head, unreg_list) {
10916                 dev_put(dev);
10917                 net_set_todo(dev);
10918         }
10919
10920         list_del(head);
10921 }
10922 EXPORT_SYMBOL(unregister_netdevice_many);
10923
10924 /**
10925  *      unregister_netdev - remove device from the kernel
10926  *      @dev: device
10927  *
10928  *      This function shuts down a device interface and removes it
10929  *      from the kernel tables.
10930  *
10931  *      This is just a wrapper for unregister_netdevice that takes
10932  *      the rtnl semaphore.  In general you want to use this and not
10933  *      unregister_netdevice.
10934  */
10935 void unregister_netdev(struct net_device *dev)
10936 {
10937         rtnl_lock();
10938         unregister_netdevice(dev);
10939         rtnl_unlock();
10940 }
10941 EXPORT_SYMBOL(unregister_netdev);
10942
10943 /**
10944  *      dev_change_net_namespace - move device to different nethost namespace
10945  *      @dev: device
10946  *      @net: network namespace
10947  *      @pat: If not NULL name pattern to try if the current device name
10948  *            is already taken in the destination network namespace.
10949  *
10950  *      This function shuts down a device interface and moves it
10951  *      to a new network namespace. On success 0 is returned, on
10952  *      a failure a netagive errno code is returned.
10953  *
10954  *      Callers must hold the rtnl semaphore.
10955  */
10956
10957 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10958 {
10959         struct net *net_old = dev_net(dev);
10960         int err, new_nsid, new_ifindex;
10961
10962         ASSERT_RTNL();
10963
10964         /* Don't allow namespace local devices to be moved. */
10965         err = -EINVAL;
10966         if (dev->features & NETIF_F_NETNS_LOCAL)
10967                 goto out;
10968
10969         /* Ensure the device has been registrered */
10970         if (dev->reg_state != NETREG_REGISTERED)
10971                 goto out;
10972
10973         /* Get out if there is nothing todo */
10974         err = 0;
10975         if (net_eq(net_old, net))
10976                 goto out;
10977
10978         /* Pick the destination device name, and ensure
10979          * we can use it in the destination network namespace.
10980          */
10981         err = -EEXIST;
10982         if (__dev_get_by_name(net, dev->name)) {
10983                 /* We get here if we can't use the current device name */
10984                 if (!pat)
10985                         goto out;
10986                 err = dev_get_valid_name(net, dev, pat);
10987                 if (err < 0)
10988                         goto out;
10989         }
10990
10991         /*
10992          * And now a mini version of register_netdevice unregister_netdevice.
10993          */
10994
10995         /* If device is running close it first. */
10996         dev_close(dev);
10997
10998         /* And unlink it from device chain */
10999         unlist_netdevice(dev);
11000
11001         synchronize_net();
11002
11003         /* Shutdown queueing discipline. */
11004         dev_shutdown(dev);
11005
11006         /* Notify protocols, that we are about to destroy
11007          * this device. They should clean all the things.
11008          *
11009          * Note that dev->reg_state stays at NETREG_REGISTERED.
11010          * This is wanted because this way 8021q and macvlan know
11011          * the device is just moving and can keep their slaves up.
11012          */
11013         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11014         rcu_barrier();
11015
11016         new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11017         /* If there is an ifindex conflict assign a new one */
11018         if (__dev_get_by_index(net, dev->ifindex))
11019                 new_ifindex = dev_new_index(net);
11020         else
11021                 new_ifindex = dev->ifindex;
11022
11023         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11024                             new_ifindex);
11025
11026         /*
11027          *      Flush the unicast and multicast chains
11028          */
11029         dev_uc_flush(dev);
11030         dev_mc_flush(dev);
11031
11032         /* Send a netdev-removed uevent to the old namespace */
11033         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11034         netdev_adjacent_del_links(dev);
11035
11036         /* Move per-net netdevice notifiers that are following the netdevice */
11037         move_netdevice_notifiers_dev_net(dev, net);
11038
11039         /* Actually switch the network namespace */
11040         dev_net_set(dev, net);
11041         dev->ifindex = new_ifindex;
11042
11043         /* Send a netdev-add uevent to the new namespace */
11044         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11045         netdev_adjacent_add_links(dev);
11046
11047         /* Fixup kobjects */
11048         err = device_rename(&dev->dev, dev->name);
11049         WARN_ON(err);
11050
11051         /* Adapt owner in case owning user namespace of target network
11052          * namespace is different from the original one.
11053          */
11054         err = netdev_change_owner(dev, net_old, net);
11055         WARN_ON(err);
11056
11057         /* Add the device back in the hashes */
11058         list_netdevice(dev);
11059
11060         /* Notify protocols, that a new device appeared. */
11061         call_netdevice_notifiers(NETDEV_REGISTER, dev);
11062
11063         /*
11064          *      Prevent userspace races by waiting until the network
11065          *      device is fully setup before sending notifications.
11066          */
11067         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11068
11069         synchronize_net();
11070         err = 0;
11071 out:
11072         return err;
11073 }
11074 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11075
11076 static int dev_cpu_dead(unsigned int oldcpu)
11077 {
11078         struct sk_buff **list_skb;
11079         struct sk_buff *skb;
11080         unsigned int cpu;
11081         struct softnet_data *sd, *oldsd, *remsd = NULL;
11082
11083         local_irq_disable();
11084         cpu = smp_processor_id();
11085         sd = &per_cpu(softnet_data, cpu);
11086         oldsd = &per_cpu(softnet_data, oldcpu);
11087
11088         /* Find end of our completion_queue. */
11089         list_skb = &sd->completion_queue;
11090         while (*list_skb)
11091                 list_skb = &(*list_skb)->next;
11092         /* Append completion queue from offline CPU. */
11093         *list_skb = oldsd->completion_queue;
11094         oldsd->completion_queue = NULL;
11095
11096         /* Append output queue from offline CPU. */
11097         if (oldsd->output_queue) {
11098                 *sd->output_queue_tailp = oldsd->output_queue;
11099                 sd->output_queue_tailp = oldsd->output_queue_tailp;
11100                 oldsd->output_queue = NULL;
11101                 oldsd->output_queue_tailp = &oldsd->output_queue;
11102         }
11103         /* Append NAPI poll list from offline CPU, with one exception :
11104          * process_backlog() must be called by cpu owning percpu backlog.
11105          * We properly handle process_queue & input_pkt_queue later.
11106          */
11107         while (!list_empty(&oldsd->poll_list)) {
11108                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11109                                                             struct napi_struct,
11110                                                             poll_list);
11111
11112                 list_del_init(&napi->poll_list);
11113                 if (napi->poll == process_backlog)
11114                         napi->state = 0;
11115                 else
11116                         ____napi_schedule(sd, napi);
11117         }
11118
11119         raise_softirq_irqoff(NET_TX_SOFTIRQ);
11120         local_irq_enable();
11121
11122 #ifdef CONFIG_RPS
11123         remsd = oldsd->rps_ipi_list;
11124         oldsd->rps_ipi_list = NULL;
11125 #endif
11126         /* send out pending IPI's on offline CPU */
11127         net_rps_send_ipi(remsd);
11128
11129         /* Process offline CPU's input_pkt_queue */
11130         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11131                 netif_rx_ni(skb);
11132                 input_queue_head_incr(oldsd);
11133         }
11134         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11135                 netif_rx_ni(skb);
11136                 input_queue_head_incr(oldsd);
11137         }
11138
11139         return 0;
11140 }
11141
11142 /**
11143  *      netdev_increment_features - increment feature set by one
11144  *      @all: current feature set
11145  *      @one: new feature set
11146  *      @mask: mask feature set
11147  *
11148  *      Computes a new feature set after adding a device with feature set
11149  *      @one to the master device with current feature set @all.  Will not
11150  *      enable anything that is off in @mask. Returns the new feature set.
11151  */
11152 netdev_features_t netdev_increment_features(netdev_features_t all,
11153         netdev_features_t one, netdev_features_t mask)
11154 {
11155         if (mask & NETIF_F_HW_CSUM)
11156                 mask |= NETIF_F_CSUM_MASK;
11157         mask |= NETIF_F_VLAN_CHALLENGED;
11158
11159         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11160         all &= one | ~NETIF_F_ALL_FOR_ALL;
11161
11162         /* If one device supports hw checksumming, set for all. */
11163         if (all & NETIF_F_HW_CSUM)
11164                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11165
11166         return all;
11167 }
11168 EXPORT_SYMBOL(netdev_increment_features);
11169
11170 static struct hlist_head * __net_init netdev_create_hash(void)
11171 {
11172         int i;
11173         struct hlist_head *hash;
11174
11175         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11176         if (hash != NULL)
11177                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11178                         INIT_HLIST_HEAD(&hash[i]);
11179
11180         return hash;
11181 }
11182
11183 /* Initialize per network namespace state */
11184 static int __net_init netdev_init(struct net *net)
11185 {
11186         BUILD_BUG_ON(GRO_HASH_BUCKETS >
11187                      8 * sizeof_field(struct napi_struct, gro_bitmask));
11188
11189         if (net != &init_net)
11190                 INIT_LIST_HEAD(&net->dev_base_head);
11191
11192         net->dev_name_head = netdev_create_hash();
11193         if (net->dev_name_head == NULL)
11194                 goto err_name;
11195
11196         net->dev_index_head = netdev_create_hash();
11197         if (net->dev_index_head == NULL)
11198                 goto err_idx;
11199
11200         RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11201
11202         return 0;
11203
11204 err_idx:
11205         kfree(net->dev_name_head);
11206 err_name:
11207         return -ENOMEM;
11208 }
11209
11210 /**
11211  *      netdev_drivername - network driver for the device
11212  *      @dev: network device
11213  *
11214  *      Determine network driver for device.
11215  */
11216 const char *netdev_drivername(const struct net_device *dev)
11217 {
11218         const struct device_driver *driver;
11219         const struct device *parent;
11220         const char *empty = "";
11221
11222         parent = dev->dev.parent;
11223         if (!parent)
11224                 return empty;
11225
11226         driver = parent->driver;
11227         if (driver && driver->name)
11228                 return driver->name;
11229         return empty;
11230 }
11231
11232 static void __netdev_printk(const char *level, const struct net_device *dev,
11233                             struct va_format *vaf)
11234 {
11235         if (dev && dev->dev.parent) {
11236                 dev_printk_emit(level[1] - '0',
11237                                 dev->dev.parent,
11238                                 "%s %s %s%s: %pV",
11239                                 dev_driver_string(dev->dev.parent),
11240                                 dev_name(dev->dev.parent),
11241                                 netdev_name(dev), netdev_reg_state(dev),
11242                                 vaf);
11243         } else if (dev) {
11244                 printk("%s%s%s: %pV",
11245                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
11246         } else {
11247                 printk("%s(NULL net_device): %pV", level, vaf);
11248         }
11249 }
11250
11251 void netdev_printk(const char *level, const struct net_device *dev,
11252                    const char *format, ...)
11253 {
11254         struct va_format vaf;
11255         va_list args;
11256
11257         va_start(args, format);
11258
11259         vaf.fmt = format;
11260         vaf.va = &args;
11261
11262         __netdev_printk(level, dev, &vaf);
11263
11264         va_end(args);
11265 }
11266 EXPORT_SYMBOL(netdev_printk);
11267
11268 #define define_netdev_printk_level(func, level)                 \
11269 void func(const struct net_device *dev, const char *fmt, ...)   \
11270 {                                                               \
11271         struct va_format vaf;                                   \
11272         va_list args;                                           \
11273                                                                 \
11274         va_start(args, fmt);                                    \
11275                                                                 \
11276         vaf.fmt = fmt;                                          \
11277         vaf.va = &args;                                         \
11278                                                                 \
11279         __netdev_printk(level, dev, &vaf);                      \
11280                                                                 \
11281         va_end(args);                                           \
11282 }                                                               \
11283 EXPORT_SYMBOL(func);
11284
11285 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11286 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11287 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11288 define_netdev_printk_level(netdev_err, KERN_ERR);
11289 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11290 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11291 define_netdev_printk_level(netdev_info, KERN_INFO);
11292
11293 static void __net_exit netdev_exit(struct net *net)
11294 {
11295         kfree(net->dev_name_head);
11296         kfree(net->dev_index_head);
11297         if (net != &init_net)
11298                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11299 }
11300
11301 static struct pernet_operations __net_initdata netdev_net_ops = {
11302         .init = netdev_init,
11303         .exit = netdev_exit,
11304 };
11305
11306 static void __net_exit default_device_exit(struct net *net)
11307 {
11308         struct net_device *dev, *aux;
11309         /*
11310          * Push all migratable network devices back to the
11311          * initial network namespace
11312          */
11313         rtnl_lock();
11314         for_each_netdev_safe(net, dev, aux) {
11315                 int err;
11316                 char fb_name[IFNAMSIZ];
11317
11318                 /* Ignore unmoveable devices (i.e. loopback) */
11319                 if (dev->features & NETIF_F_NETNS_LOCAL)
11320                         continue;
11321
11322                 /* Leave virtual devices for the generic cleanup */
11323                 if (dev->rtnl_link_ops)
11324                         continue;
11325
11326                 /* Push remaining network devices to init_net */
11327                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11328                 if (__dev_get_by_name(&init_net, fb_name))
11329                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
11330                 err = dev_change_net_namespace(dev, &init_net, fb_name);
11331                 if (err) {
11332                         pr_emerg("%s: failed to move %s to init_net: %d\n",
11333                                  __func__, dev->name, err);
11334                         BUG();
11335                 }
11336         }
11337         rtnl_unlock();
11338 }
11339
11340 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11341 {
11342         /* Return with the rtnl_lock held when there are no network
11343          * devices unregistering in any network namespace in net_list.
11344          */
11345         struct net *net;
11346         bool unregistering;
11347         DEFINE_WAIT_FUNC(wait, woken_wake_function);
11348
11349         add_wait_queue(&netdev_unregistering_wq, &wait);
11350         for (;;) {
11351                 unregistering = false;
11352                 rtnl_lock();
11353                 list_for_each_entry(net, net_list, exit_list) {
11354                         if (net->dev_unreg_count > 0) {
11355                                 unregistering = true;
11356                                 break;
11357                         }
11358                 }
11359                 if (!unregistering)
11360                         break;
11361                 __rtnl_unlock();
11362
11363                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11364         }
11365         remove_wait_queue(&netdev_unregistering_wq, &wait);
11366 }
11367
11368 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11369 {
11370         /* At exit all network devices most be removed from a network
11371          * namespace.  Do this in the reverse order of registration.
11372          * Do this across as many network namespaces as possible to
11373          * improve batching efficiency.
11374          */
11375         struct net_device *dev;
11376         struct net *net;
11377         LIST_HEAD(dev_kill_list);
11378
11379         /* To prevent network device cleanup code from dereferencing
11380          * loopback devices or network devices that have been freed
11381          * wait here for all pending unregistrations to complete,
11382          * before unregistring the loopback device and allowing the
11383          * network namespace be freed.
11384          *
11385          * The netdev todo list containing all network devices
11386          * unregistrations that happen in default_device_exit_batch
11387          * will run in the rtnl_unlock() at the end of
11388          * default_device_exit_batch.
11389          */
11390         rtnl_lock_unregistering(net_list);
11391         list_for_each_entry(net, net_list, exit_list) {
11392                 for_each_netdev_reverse(net, dev) {
11393                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11394                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11395                         else
11396                                 unregister_netdevice_queue(dev, &dev_kill_list);
11397                 }
11398         }
11399         unregister_netdevice_many(&dev_kill_list);
11400         rtnl_unlock();
11401 }
11402
11403 static struct pernet_operations __net_initdata default_device_ops = {
11404         .exit = default_device_exit,
11405         .exit_batch = default_device_exit_batch,
11406 };
11407
11408 /*
11409  *      Initialize the DEV module. At boot time this walks the device list and
11410  *      unhooks any devices that fail to initialise (normally hardware not
11411  *      present) and leaves us with a valid list of present and active devices.
11412  *
11413  */
11414
11415 /*
11416  *       This is called single threaded during boot, so no need
11417  *       to take the rtnl semaphore.
11418  */
11419 static int __init net_dev_init(void)
11420 {
11421         int i, rc = -ENOMEM;
11422
11423         BUG_ON(!dev_boot_phase);
11424
11425         if (dev_proc_init())
11426                 goto out;
11427
11428         if (netdev_kobject_init())
11429                 goto out;
11430
11431         INIT_LIST_HEAD(&ptype_all);
11432         for (i = 0; i < PTYPE_HASH_SIZE; i++)
11433                 INIT_LIST_HEAD(&ptype_base[i]);
11434
11435         INIT_LIST_HEAD(&offload_base);
11436
11437         if (register_pernet_subsys(&netdev_net_ops))
11438                 goto out;
11439
11440         /*
11441          *      Initialise the packet receive queues.
11442          */
11443
11444         for_each_possible_cpu(i) {
11445                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11446                 struct softnet_data *sd = &per_cpu(softnet_data, i);
11447
11448                 INIT_WORK(flush, flush_backlog);
11449
11450                 skb_queue_head_init(&sd->input_pkt_queue);
11451                 skb_queue_head_init(&sd->process_queue);
11452 #ifdef CONFIG_XFRM_OFFLOAD
11453                 skb_queue_head_init(&sd->xfrm_backlog);
11454 #endif
11455                 INIT_LIST_HEAD(&sd->poll_list);
11456                 sd->output_queue_tailp = &sd->output_queue;
11457 #ifdef CONFIG_RPS
11458                 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11459                 sd->cpu = i;
11460 #endif
11461
11462                 init_gro_hash(&sd->backlog);
11463                 sd->backlog.poll = process_backlog;
11464                 sd->backlog.weight = weight_p;
11465         }
11466
11467         dev_boot_phase = 0;
11468
11469         /* The loopback device is special if any other network devices
11470          * is present in a network namespace the loopback device must
11471          * be present. Since we now dynamically allocate and free the
11472          * loopback device ensure this invariant is maintained by
11473          * keeping the loopback device as the first device on the
11474          * list of network devices.  Ensuring the loopback devices
11475          * is the first device that appears and the last network device
11476          * that disappears.
11477          */
11478         if (register_pernet_device(&loopback_net_ops))
11479                 goto out;
11480
11481         if (register_pernet_device(&default_device_ops))
11482                 goto out;
11483
11484         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11485         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11486
11487         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11488                                        NULL, dev_cpu_dead);
11489         WARN_ON(rc < 0);
11490         rc = 0;
11491 out:
11492         return rc;
11493 }
11494
11495 subsys_initcall(net_dev_init);
This page took 0.691682 seconds and 4 git commands to generate.