]> Git Repo - linux.git/blob - drivers/staging/rtlwifi/efuse.c
ring-buffer: Redefine the unimplemented RINGBUF_TYPE_TIME_STAMP
[linux.git] / drivers / staging / rtlwifi / efuse.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2009-2012  Realtek Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in the
15  * file called LICENSE.
16  *
17  * Contact Information:
18  * wlanfae <[email protected]>
19  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
20  * Hsinchu 300, Taiwan.
21  *
22  * Larry Finger <[email protected]>
23  *
24  *****************************************************************************/
25 #include "wifi.h"
26 #include "efuse.h"
27 #include "pci.h"
28 #include <linux/export.h>
29
30 static const u8 MAX_PGPKT_SIZE = 9;
31 static const u8 PGPKT_DATA_SIZE = 8;
32 static const int EFUSE_MAX_SIZE = 512;
33
34 #define START_ADDRESS           0x1000
35 #define REG_MCUFWDL             0x0080
36
37 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
38         {0, 0, 0, 2},
39         {0, 1, 0, 2},
40         {0, 2, 0, 2},
41         {1, 0, 0, 1},
42         {1, 0, 1, 1},
43         {1, 1, 0, 1},
44         {1, 1, 1, 3},
45         {1, 3, 0, 17},
46         {3, 3, 1, 48},
47         {10, 0, 0, 6},
48         {10, 3, 0, 1},
49         {10, 3, 1, 1},
50         {11, 0, 0, 28}
51 };
52
53 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
54                                     u8 *value);
55 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
56                                     u16 *value);
57 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
58                                     u32 *value);
59 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
60                                      u8 value);
61 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
62                                      u16 value);
63 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
64                                      u32 value);
65 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
66                                 u8 data);
67 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
68 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
69                                 u8 *data);
70 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
71                                  u8 word_en, u8 *data);
72 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
73                                         u8 *targetdata);
74 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
75                                   u16 efuse_addr, u8 word_en, u8 *data);
76 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
77 static u8 efuse_calculate_word_cnts(u8 word_en);
78
79 void efuse_initialize(struct ieee80211_hw *hw)
80 {
81         struct rtl_priv *rtlpriv = rtl_priv(hw);
82         u8 bytetemp;
83         u8 temp;
84
85         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
86         temp = bytetemp | 0x20;
87         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
88
89         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
90         temp = bytetemp & 0xFE;
91         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
92
93         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
94         temp = bytetemp | 0x80;
95         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
96
97         rtl_write_byte(rtlpriv, 0x2F8, 0x3);
98
99         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
100 }
101
102 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
103 {
104         struct rtl_priv *rtlpriv = rtl_priv(hw);
105         u8 data;
106         u8 bytetemp;
107         u8 temp;
108         u32 k = 0;
109         const u32 efuse_len =
110                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
111
112         if (address < efuse_len) {
113                 temp = address & 0xFF;
114                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
115                                temp);
116                 bytetemp = rtl_read_byte(rtlpriv,
117                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
118                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
119                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
120                                temp);
121
122                 bytetemp = rtl_read_byte(rtlpriv,
123                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
124                 temp = bytetemp & 0x7F;
125                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
126                                temp);
127
128                 bytetemp = rtl_read_byte(rtlpriv,
129                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
130                 while (!(bytetemp & 0x80)) {
131                         bytetemp =
132                            rtl_read_byte(rtlpriv,
133                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
134                         k++;
135                         if (k == 1000) {
136                                 k = 0;
137                                 break;
138                         }
139                 }
140                 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
141                 return data;
142         }
143         return 0xFF;
144 }
145
146 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
147 {
148         struct rtl_priv *rtlpriv = rtl_priv(hw);
149         u8 bytetemp;
150         u8 temp;
151         u32 k = 0;
152         const u32 efuse_len =
153                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
154
155         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
156                  address, value);
157
158         if (address < efuse_len) {
159                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
160
161                 temp = address & 0xFF;
162                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
163                                temp);
164                 bytetemp = rtl_read_byte(rtlpriv,
165                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
166
167                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
168                 rtl_write_byte(rtlpriv,
169                                rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
170
171                 bytetemp = rtl_read_byte(rtlpriv,
172                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
173                 temp = bytetemp | 0x80;
174                 rtl_write_byte(rtlpriv,
175                                rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
176
177                 bytetemp = rtl_read_byte(rtlpriv,
178                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
179
180                 while (bytetemp & 0x80) {
181                         bytetemp =
182                             rtl_read_byte(rtlpriv,
183                                           rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
184                         k++;
185                         if (k == 100) {
186                                 k = 0;
187                                 break;
188                         }
189                 }
190         }
191 }
192
193 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
194 {
195         struct rtl_priv *rtlpriv = rtl_priv(hw);
196         u32 value32;
197         u8 readbyte;
198         u16 retry;
199
200         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
201                        (_offset & 0xff));
202         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
203         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
204                        ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
205
206         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
207         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
208                        (readbyte & 0x7f));
209
210         retry = 0;
211         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
212         while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
213                 value32 = rtl_read_dword(rtlpriv,
214                                          rtlpriv->cfg->maps[EFUSE_CTRL]);
215                 retry++;
216         }
217
218         udelay(50);
219         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
220
221         *pbuf = (u8)(value32 & 0xff);
222 }
223
224 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
225 {
226         struct rtl_priv *rtlpriv = rtl_priv(hw);
227         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
228         u8 *efuse_tbl;
229         u8 rtemp8[1];
230         u16 efuse_addr = 0;
231         u8 offset, wren;
232         u8 u1temp = 0;
233         u16 i;
234         u16 j;
235         const u16 efuse_max_section =
236                 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
237         const u32 efuse_len =
238                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
239         u16 **efuse_word;
240         u16 efuse_utilized = 0;
241         u8 efuse_usage;
242
243         if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
244                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
245                          "%s(): Invalid offset(%#x) with read bytes(%#x)!!\n",
246                          __func__, _offset, _size_byte);
247                 return;
248         }
249
250         /* allocate memory for efuse_tbl and efuse_word */
251         efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE] *
252                             sizeof(u8), GFP_ATOMIC);
253         if (!efuse_tbl)
254                 return;
255         efuse_word = kcalloc(EFUSE_MAX_WORD_UNIT, sizeof(u16 *), GFP_ATOMIC);
256         if (!efuse_word)
257                 goto out;
258         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
259                 efuse_word[i] = kcalloc(efuse_max_section, sizeof(u16), GFP_ATOMIC);
260                 if (!efuse_word[i])
261                         goto done;
262         }
263
264         for (i = 0; i < efuse_max_section; i++)
265                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
266                         efuse_word[j][i] = 0xFFFF;
267
268         read_efuse_byte(hw, efuse_addr, rtemp8);
269         if (*rtemp8 != 0xFF) {
270                 efuse_utilized++;
271                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
272                         "Addr=%d\n", efuse_addr);
273                 efuse_addr++;
274         }
275
276         while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
277                 /*  Check PG header for section num.  */
278                 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
279                         u1temp = ((*rtemp8 & 0xE0) >> 5);
280                         read_efuse_byte(hw, efuse_addr, rtemp8);
281
282                         if ((*rtemp8 & 0x0F) == 0x0F) {
283                                 efuse_addr++;
284                                 read_efuse_byte(hw, efuse_addr, rtemp8);
285
286                                 if (*rtemp8 != 0xFF &&
287                                     (efuse_addr < efuse_len)) {
288                                         efuse_addr++;
289                                 }
290                                 continue;
291                         } else {
292                                 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
293                                 wren = (*rtemp8 & 0x0F);
294                                 efuse_addr++;
295                         }
296                 } else {
297                         offset = ((*rtemp8 >> 4) & 0x0f);
298                         wren = (*rtemp8 & 0x0f);
299                 }
300
301                 if (offset < efuse_max_section) {
302                         RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
303                                 "offset-%d Worden=%x\n", offset, wren);
304
305                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
306                                 if (!(wren & 0x01)) {
307                                         RTPRINT(rtlpriv, FEEPROM,
308                                                 EFUSE_READ_ALL,
309                                                 "Addr=%d\n", efuse_addr);
310
311                                         read_efuse_byte(hw, efuse_addr, rtemp8);
312                                         efuse_addr++;
313                                         efuse_utilized++;
314                                         efuse_word[i][offset] =
315                                                          (*rtemp8 & 0xff);
316
317                                         if (efuse_addr >= efuse_len)
318                                                 break;
319
320                                         RTPRINT(rtlpriv, FEEPROM,
321                                                 EFUSE_READ_ALL,
322                                                 "Addr=%d\n", efuse_addr);
323
324                                         read_efuse_byte(hw, efuse_addr, rtemp8);
325                                         efuse_addr++;
326                                         efuse_utilized++;
327                                         efuse_word[i][offset] |=
328                                             (((u16)*rtemp8 << 8) & 0xff00);
329
330                                         if (efuse_addr >= efuse_len)
331                                                 break;
332                                 }
333
334                                 wren >>= 1;
335                         }
336                 }
337
338                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
339                         "Addr=%d\n", efuse_addr);
340                 read_efuse_byte(hw, efuse_addr, rtemp8);
341                 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
342                         efuse_utilized++;
343                         efuse_addr++;
344                 }
345         }
346
347         for (i = 0; i < efuse_max_section; i++) {
348                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
349                         efuse_tbl[(i * 8) + (j * 2)] =
350                             (efuse_word[j][i] & 0xff);
351                         efuse_tbl[(i * 8) + ((j * 2) + 1)] =
352                             ((efuse_word[j][i] >> 8) & 0xff);
353                 }
354         }
355
356         for (i = 0; i < _size_byte; i++)
357                 pbuf[i] = efuse_tbl[_offset + i];
358
359         rtlefuse->efuse_usedbytes = efuse_utilized;
360         efuse_usage = (u8)((efuse_utilized * 100) / efuse_len);
361         rtlefuse->efuse_usedpercentage = efuse_usage;
362         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
363                                       (u8 *)&efuse_utilized);
364         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
365                                       &efuse_usage);
366 done:
367         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
368                 kfree(efuse_word[i]);
369         kfree(efuse_word);
370 out:
371         kfree(efuse_tbl);
372 }
373
374 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
375 {
376         struct rtl_priv *rtlpriv = rtl_priv(hw);
377         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
378         u8 section_idx, i, base;
379         u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
380         bool wordchanged, result = true;
381
382         for (section_idx = 0; section_idx < 16; section_idx++) {
383                 base = section_idx * 8;
384                 wordchanged = false;
385
386                 for (i = 0; i < 8; i = i + 2) {
387                         if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
388                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) ||
389                             (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i + 1] !=
390                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i +
391                                                                    1])) {
392                                 words_need++;
393                                 wordchanged = true;
394                         }
395                 }
396
397                 if (wordchanged)
398                         hdr_num++;
399         }
400
401         totalbytes = hdr_num + words_need * 2;
402         efuse_used = rtlefuse->efuse_usedbytes;
403
404         if ((totalbytes + efuse_used) >=
405             (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
406                 result = false;
407
408         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
409                  "%s(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
410                  __func__, totalbytes, hdr_num, words_need, efuse_used);
411
412         return result;
413 }
414
415 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
416                        u16 offset, u32 *value)
417 {
418         if (type == 1)
419                 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
420         else if (type == 2)
421                 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
422         else if (type == 4)
423                 efuse_shadow_read_4byte(hw, offset, value);
424 }
425
426 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
427                         u32 value)
428 {
429         if (type == 1)
430                 efuse_shadow_write_1byte(hw, offset, (u8)value);
431         else if (type == 2)
432                 efuse_shadow_write_2byte(hw, offset, (u16)value);
433         else if (type == 4)
434                 efuse_shadow_write_4byte(hw, offset, value);
435 }
436
437 bool efuse_shadow_update(struct ieee80211_hw *hw)
438 {
439         struct rtl_priv *rtlpriv = rtl_priv(hw);
440         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
441         u16 i, offset, base;
442         u8 word_en = 0x0F;
443         u8 first_pg = false;
444
445         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
446
447         if (!efuse_shadow_update_chk(hw)) {
448                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
449                 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
450                        &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
451                        rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
452
453                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
454                          "efuse out of capacity!!\n");
455                 return false;
456         }
457         efuse_power_switch(hw, true, true);
458
459         for (offset = 0; offset < 16; offset++) {
460                 word_en = 0x0F;
461                 base = offset * 8;
462
463                 for (i = 0; i < 8; i++) {
464                         if (first_pg) {
465                                 word_en &= ~(BIT(i / 2));
466
467                                 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
468                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
469                         } else {
470                                 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
471                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
472                                         word_en &= ~(BIT(i / 2));
473
474                                         rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
475                                             rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
476                                 }
477                         }
478                 }
479                 if (word_en != 0x0F) {
480                         u8 tmpdata[8];
481
482                         memcpy(tmpdata,
483                                &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
484                                8);
485                         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
486                                       "U-efuse\n", tmpdata, 8);
487
488                         if (!efuse_pg_packet_write(hw, (u8)offset, word_en,
489                                                    tmpdata)) {
490                                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
491                                          "PG section(%#x) fail!!\n", offset);
492                                 break;
493                         }
494                 }
495         }
496
497         efuse_power_switch(hw, true, false);
498         efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
499
500         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
501                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
502                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
503
504         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
505         return true;
506 }
507
508 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
509 {
510         struct rtl_priv *rtlpriv = rtl_priv(hw);
511         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
512
513         if (rtlefuse->autoload_failflag)
514                 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
515                        0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
516         else
517                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
518
519         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
520                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
521                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
522 }
523
524 void efuse_force_write_vendor_id(struct ieee80211_hw *hw)
525 {
526         u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
527
528         efuse_power_switch(hw, true, true);
529
530         efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
531
532         efuse_power_switch(hw, true, false);
533 }
534
535 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
536 {
537 }
538
539 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
540                                     u16 offset, u8 *value)
541 {
542         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
543         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
544 }
545
546 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
547                                     u16 offset, u16 *value)
548 {
549         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
550
551         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
552         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
553 }
554
555 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
556                                     u16 offset, u32 *value)
557 {
558         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
559
560         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
561         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
562         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
563         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
564 }
565
566 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
567                                      u16 offset, u8 value)
568 {
569         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
570
571         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
572 }
573
574 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
575                                      u16 offset, u16 value)
576 {
577         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
578
579         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
580         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
581 }
582
583 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
584                                      u16 offset, u32 value)
585 {
586         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
587
588         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
589             (u8)(value & 0x000000FF);
590         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
591             (u8)((value >> 8) & 0x0000FF);
592         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
593             (u8)((value >> 16) & 0x00FF);
594         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
595             (u8)((value >> 24) & 0xFF);
596 }
597
598 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
599 {
600         struct rtl_priv *rtlpriv = rtl_priv(hw);
601         u8 tmpidx = 0;
602         int result;
603
604         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
605                        (u8)(addr & 0xff));
606         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
607                        ((u8)((addr >> 8) & 0x03)) |
608                        (rtl_read_byte(rtlpriv,
609                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
610                         0xFC));
611
612         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
613
614         while (!(0x80 & rtl_read_byte(rtlpriv,
615                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
616                (tmpidx < 100)) {
617                 tmpidx++;
618         }
619
620         if (tmpidx < 100) {
621                 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
622                 result = true;
623         } else {
624                 *data = 0xff;
625                 result = false;
626         }
627         return result;
628 }
629
630 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
631 {
632         struct rtl_priv *rtlpriv = rtl_priv(hw);
633         u8 tmpidx = 0;
634
635         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
636                  "Addr = %x Data=%x\n", addr, data);
637
638         rtl_write_byte(rtlpriv,
639                        rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8)(addr & 0xff));
640         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
641                        (rtl_read_byte(rtlpriv,
642                          rtlpriv->cfg->maps[EFUSE_CTRL] +
643                          2) & 0xFC) | (u8)((addr >> 8) & 0x03));
644
645         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
646         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
647
648         while ((0x80 &
649                 rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
650                (tmpidx < 100)) {
651                 tmpidx++;
652         }
653
654         if (tmpidx < 100)
655                 return true;
656         return false;
657 }
658
659 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
660 {
661         struct rtl_priv *rtlpriv = rtl_priv(hw);
662
663         efuse_power_switch(hw, false, true);
664         read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
665         efuse_power_switch(hw, false, false);
666 }
667
668 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
669                                   u8 efuse_data, u8 offset, u8 *tmpdata,
670                                   u8 *readstate)
671 {
672         bool dataempty = true;
673         u8 hoffset;
674         u8 tmpidx;
675         u8 hworden;
676         u8 word_cnts;
677
678         hoffset = (efuse_data >> 4) & 0x0F;
679         hworden = efuse_data & 0x0F;
680         word_cnts = efuse_calculate_word_cnts(hworden);
681
682         if (hoffset == offset) {
683                 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
684                         if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
685                                                 &efuse_data)) {
686                                 tmpdata[tmpidx] = efuse_data;
687                                 if (efuse_data != 0xff)
688                                         dataempty = false;
689                         }
690                 }
691
692                 if (!dataempty) {
693                         *readstate = PG_STATE_DATA;
694                 } else {
695                         *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
696                         *readstate = PG_STATE_HEADER;
697                 }
698
699         } else {
700                 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
701                 *readstate = PG_STATE_HEADER;
702         }
703 }
704
705 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
706 {
707         u8 readstate = PG_STATE_HEADER;
708
709         bool continual = true;
710
711         u8 efuse_data, word_cnts = 0;
712         u16 efuse_addr = 0;
713         u8 tmpdata[8];
714
715         if (!data)
716                 return false;
717         if (offset > 15)
718                 return false;
719
720         memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
721         memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
722
723         while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
724                 if (readstate & PG_STATE_HEADER) {
725                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
726                             (efuse_data != 0xFF))
727                                 efuse_read_data_case1(hw, &efuse_addr,
728                                                       efuse_data, offset,
729                                                       tmpdata, &readstate);
730                         else
731                                 continual = false;
732                 } else if (readstate & PG_STATE_DATA) {
733                         efuse_word_enable_data_read(0, tmpdata, data);
734                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
735                         readstate = PG_STATE_HEADER;
736                 }
737         }
738
739         if ((data[0] == 0xff) && (data[1] == 0xff) &&
740             (data[2] == 0xff) && (data[3] == 0xff) &&
741             (data[4] == 0xff) && (data[5] == 0xff) &&
742             (data[6] == 0xff) && (data[7] == 0xff))
743                 return false;
744         return true;
745 }
746
747 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
748                                    u8 efuse_data, u8 offset,
749                                    int *continual, u8 *write_state,
750                                    struct pgpkt_struct *target_pkt,
751                                    int *repeat_times, int *result, u8 word_en)
752 {
753         struct rtl_priv *rtlpriv = rtl_priv(hw);
754         struct pgpkt_struct tmp_pkt;
755         int dataempty = true;
756         u8 originaldata[8 * sizeof(u8)];
757         u8 badworden = 0x0F;
758         u8 match_word_en, tmp_word_en;
759         u8 tmpindex;
760         u8 tmp_header = efuse_data;
761         u8 tmp_word_cnts;
762
763         tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
764         tmp_pkt.word_en = tmp_header & 0x0F;
765         tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
766
767         if (tmp_pkt.offset != target_pkt->offset) {
768                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
769                 *write_state = PG_STATE_HEADER;
770         } else {
771                 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
772                         if (efuse_one_byte_read(hw,
773                                                 (*efuse_addr + 1 + tmpindex),
774                                                 &efuse_data) &&
775                             (efuse_data != 0xFF))
776                                 dataempty = false;
777                 }
778
779                 if (!dataempty) {
780                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
781                         *write_state = PG_STATE_HEADER;
782                 } else {
783                         match_word_en = 0x0F;
784                         if (!((target_pkt->word_en & BIT(0)) |
785                             (tmp_pkt.word_en & BIT(0))))
786                                 match_word_en &= (~BIT(0));
787
788                         if (!((target_pkt->word_en & BIT(1)) |
789                             (tmp_pkt.word_en & BIT(1))))
790                                 match_word_en &= (~BIT(1));
791
792                         if (!((target_pkt->word_en & BIT(2)) |
793                             (tmp_pkt.word_en & BIT(2))))
794                                 match_word_en &= (~BIT(2));
795
796                         if (!((target_pkt->word_en & BIT(3)) |
797                             (tmp_pkt.word_en & BIT(3))))
798                                 match_word_en &= (~BIT(3));
799
800                         if ((match_word_en & 0x0F) != 0x0F) {
801                                 badworden =
802                                   enable_efuse_data_write(hw,
803                                                           *efuse_addr + 1,
804                                                           tmp_pkt.word_en,
805                                                           target_pkt->data);
806
807                                 if (0x0F != (badworden & 0x0F)) {
808                                         u8 reorg_offset = offset;
809                                         u8 reorg_worden = badworden;
810
811                                         efuse_pg_packet_write(hw, reorg_offset,
812                                                               reorg_worden,
813                                                               originaldata);
814                                 }
815
816                                 tmp_word_en = 0x0F;
817                                 if ((target_pkt->word_en & BIT(0)) ^
818                                     (match_word_en & BIT(0)))
819                                         tmp_word_en &= (~BIT(0));
820
821                                 if ((target_pkt->word_en & BIT(1)) ^
822                                     (match_word_en & BIT(1)))
823                                         tmp_word_en &= (~BIT(1));
824
825                                 if ((target_pkt->word_en & BIT(2)) ^
826                                     (match_word_en & BIT(2)))
827                                         tmp_word_en &= (~BIT(2));
828
829                                 if ((target_pkt->word_en & BIT(3)) ^
830                                     (match_word_en & BIT(3)))
831                                         tmp_word_en &= (~BIT(3));
832
833                                 if ((tmp_word_en & 0x0F) != 0x0F) {
834                                         *efuse_addr =
835                                             efuse_get_current_size(hw);
836                                         target_pkt->offset = offset;
837                                         target_pkt->word_en = tmp_word_en;
838                                 } else {
839                                         *continual = false;
840                                 }
841                                 *write_state = PG_STATE_HEADER;
842                                 *repeat_times += 1;
843                                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
844                                         *continual = false;
845                                         *result = false;
846                                 }
847                         } else {
848                                 *efuse_addr += (2 * tmp_word_cnts) + 1;
849                                 target_pkt->offset = offset;
850                                 target_pkt->word_en = word_en;
851                                 *write_state = PG_STATE_HEADER;
852                         }
853                 }
854         }
855         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
856 }
857
858 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
859                                    int *continual, u8 *write_state,
860                                    struct pgpkt_struct target_pkt,
861                                    int *repeat_times, int *result)
862 {
863         struct rtl_priv *rtlpriv = rtl_priv(hw);
864         struct pgpkt_struct tmp_pkt;
865         u8 pg_header;
866         u8 tmp_header;
867         u8 originaldata[8 * sizeof(u8)];
868         u8 tmp_word_cnts;
869         u8 badworden = 0x0F;
870
871         pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
872         efuse_one_byte_write(hw, *efuse_addr, pg_header);
873         efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
874
875         if (tmp_header == pg_header) {
876                 *write_state = PG_STATE_DATA;
877         } else if (tmp_header == 0xFF) {
878                 *write_state = PG_STATE_HEADER;
879                 *repeat_times += 1;
880                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
881                         *continual = false;
882                         *result = false;
883                 }
884         } else {
885                 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
886                 tmp_pkt.word_en = tmp_header & 0x0F;
887
888                 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
889
890                 memset(originaldata, 0xff,  8 * sizeof(u8));
891
892                 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
893                         badworden = enable_efuse_data_write(hw,
894                                                             *efuse_addr + 1,
895                                                             tmp_pkt.word_en,
896                                                             originaldata);
897
898                         if (0x0F != (badworden & 0x0F)) {
899                                 u8 reorg_offset = tmp_pkt.offset;
900                                 u8 reorg_worden = badworden;
901
902                                 efuse_pg_packet_write(hw, reorg_offset,
903                                                       reorg_worden,
904                                                       originaldata);
905                                 *efuse_addr = efuse_get_current_size(hw);
906                         } else {
907                                 *efuse_addr = *efuse_addr +
908                                               (tmp_word_cnts * 2) + 1;
909                         }
910                 } else {
911                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
912                 }
913
914                 *write_state = PG_STATE_HEADER;
915                 *repeat_times += 1;
916                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
917                         *continual = false;
918                         *result = false;
919                 }
920
921                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
922                         "efuse PG_STATE_HEADER-2\n");
923         }
924 }
925
926 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
927                                  u8 offset, u8 word_en, u8 *data)
928 {
929         struct rtl_priv *rtlpriv = rtl_priv(hw);
930         struct pgpkt_struct target_pkt;
931         u8 write_state = PG_STATE_HEADER;
932         int continual = true, dataempty = true, result = true;
933         u16 efuse_addr = 0;
934         u8 efuse_data;
935         u8 target_word_cnts = 0;
936         u8 badworden = 0x0F;
937         static int repeat_times;
938
939         if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
940                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
941                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
942                         "%s error\n", __func__);
943                 return false;
944         }
945
946         target_pkt.offset = offset;
947         target_pkt.word_en = word_en;
948
949         memset(target_pkt.data, 0xFF,  8 * sizeof(u8));
950
951         efuse_word_enable_data_read(word_en, data, target_pkt.data);
952         target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
953
954         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
955
956         while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
957                rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
958                 if (write_state == PG_STATE_HEADER) {
959                         dataempty = true;
960                         badworden = 0x0F;
961                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
962                                 "efuse PG_STATE_HEADER\n");
963
964                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
965                             (efuse_data != 0xFF))
966                                 efuse_write_data_case1(hw, &efuse_addr,
967                                                        efuse_data, offset,
968                                                        &continual,
969                                                        &write_state,
970                                                        &target_pkt,
971                                                        &repeat_times, &result,
972                                                        word_en);
973                         else
974                                 efuse_write_data_case2(hw, &efuse_addr,
975                                                        &continual,
976                                                        &write_state,
977                                                        target_pkt,
978                                                        &repeat_times,
979                                                        &result);
980
981                 } else if (write_state == PG_STATE_DATA) {
982                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
983                                 "efuse PG_STATE_DATA\n");
984                         badworden = 0x0f;
985                         badworden =
986                             enable_efuse_data_write(hw, efuse_addr + 1,
987                                                     target_pkt.word_en,
988                                                     target_pkt.data);
989
990                         if ((badworden & 0x0F) == 0x0F) {
991                                 continual = false;
992                         } else {
993                                 efuse_addr =
994                                     efuse_addr + (2 * target_word_cnts) + 1;
995
996                                 target_pkt.offset = offset;
997                                 target_pkt.word_en = badworden;
998                                 target_word_cnts =
999                                     efuse_calculate_word_cnts(target_pkt.word_en);
1000                                 write_state = PG_STATE_HEADER;
1001                                 repeat_times++;
1002                                 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
1003                                         continual = false;
1004                                         result = false;
1005                                 }
1006                                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
1007                                         "efuse PG_STATE_HEADER-3\n");
1008                         }
1009                 }
1010         }
1011
1012         if (efuse_addr >= (EFUSE_MAX_SIZE -
1013                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1014                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1015                          "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1016         }
1017
1018         return true;
1019 }
1020
1021 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1022                                         u8 *targetdata)
1023 {
1024         if (!(word_en & BIT(0))) {
1025                 targetdata[0] = sourdata[0];
1026                 targetdata[1] = sourdata[1];
1027         }
1028
1029         if (!(word_en & BIT(1))) {
1030                 targetdata[2] = sourdata[2];
1031                 targetdata[3] = sourdata[3];
1032         }
1033
1034         if (!(word_en & BIT(2))) {
1035                 targetdata[4] = sourdata[4];
1036                 targetdata[5] = sourdata[5];
1037         }
1038
1039         if (!(word_en & BIT(3))) {
1040                 targetdata[6] = sourdata[6];
1041                 targetdata[7] = sourdata[7];
1042         }
1043 }
1044
1045 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1046                                   u16 efuse_addr, u8 word_en, u8 *data)
1047 {
1048         struct rtl_priv *rtlpriv = rtl_priv(hw);
1049         u16 tmpaddr;
1050         u16 start_addr = efuse_addr;
1051         u8 badworden = 0x0F;
1052         u8 tmpdata[8];
1053
1054         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1055         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1056                  "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1057
1058         if (!(word_en & BIT(0))) {
1059                 tmpaddr = start_addr;
1060                 efuse_one_byte_write(hw, start_addr++, data[0]);
1061                 efuse_one_byte_write(hw, start_addr++, data[1]);
1062
1063                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1064                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1065                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1066                         badworden &= (~BIT(0));
1067         }
1068
1069         if (!(word_en & BIT(1))) {
1070                 tmpaddr = start_addr;
1071                 efuse_one_byte_write(hw, start_addr++, data[2]);
1072                 efuse_one_byte_write(hw, start_addr++, data[3]);
1073
1074                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1075                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1076                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1077                         badworden &= (~BIT(1));
1078         }
1079
1080         if (!(word_en & BIT(2))) {
1081                 tmpaddr = start_addr;
1082                 efuse_one_byte_write(hw, start_addr++, data[4]);
1083                 efuse_one_byte_write(hw, start_addr++, data[5]);
1084
1085                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1086                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1087                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1088                         badworden &= (~BIT(2));
1089         }
1090
1091         if (!(word_en & BIT(3))) {
1092                 tmpaddr = start_addr;
1093                 efuse_one_byte_write(hw, start_addr++, data[6]);
1094                 efuse_one_byte_write(hw, start_addr++, data[7]);
1095
1096                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1097                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1098                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1099                         badworden &= (~BIT(3));
1100         }
1101
1102         return badworden;
1103 }
1104
1105 void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1106 {
1107         struct rtl_priv *rtlpriv = rtl_priv(hw);
1108         struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1109         u8 tempval;
1110         u16 tmpv16;
1111
1112         if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1113                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1114                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1115                         rtl_write_byte(rtlpriv,
1116                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1117                 } else {
1118                         tmpv16 =
1119                           rtl_read_word(rtlpriv,
1120                                         rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1121                         if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1122                                 tmpv16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1123                                 rtl_write_word(rtlpriv,
1124                                                rtlpriv->cfg->maps[SYS_ISO_CTRL],
1125                                                tmpv16);
1126                         }
1127                 }
1128                 tmpv16 = rtl_read_word(rtlpriv,
1129                                        rtlpriv->cfg->maps[SYS_FUNC_EN]);
1130                 if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1131                         tmpv16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1132                         rtl_write_word(rtlpriv,
1133                                        rtlpriv->cfg->maps[SYS_FUNC_EN], tmpv16);
1134                 }
1135
1136                 tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1137                 if ((!(tmpv16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1138                     (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1139                         tmpv16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1140                                    rtlpriv->cfg->maps[EFUSE_ANA8M]);
1141                         rtl_write_word(rtlpriv,
1142                                        rtlpriv->cfg->maps[SYS_CLK], tmpv16);
1143                 }
1144         }
1145
1146         if (pwrstate) {
1147                 if (write) {
1148                         tempval = rtl_read_byte(rtlpriv,
1149                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1150                                                 3);
1151
1152                         if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1153                                 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1154                                 tempval |= (VOLTAGE_V25 << 3);
1155                         } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1156                                 tempval &= 0x0F;
1157                                 tempval |= (VOLTAGE_V25 << 4);
1158                         }
1159
1160                         rtl_write_byte(rtlpriv,
1161                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1162                                        (tempval | 0x80));
1163                 }
1164
1165                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1166                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1167                                        0x03);
1168                 }
1169         } else {
1170                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1171                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1172                         rtl_write_byte(rtlpriv,
1173                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1174
1175                 if (write) {
1176                         tempval = rtl_read_byte(rtlpriv,
1177                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1178                                                 3);
1179                         rtl_write_byte(rtlpriv,
1180                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1181                                        (tempval & 0x7F));
1182                 }
1183
1184                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1185                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1186                                        0x02);
1187                 }
1188         }
1189 }
1190
1191 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1192 {
1193         int continual = true;
1194         u16 efuse_addr = 0;
1195         u8 hoffset, hworden;
1196         u8 efuse_data, word_cnts;
1197
1198         while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1199                (efuse_addr < EFUSE_MAX_SIZE)) {
1200                 if (efuse_data != 0xFF) {
1201                         hoffset = (efuse_data >> 4) & 0x0F;
1202                         hworden = efuse_data & 0x0F;
1203                         word_cnts = efuse_calculate_word_cnts(hworden);
1204                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1205                 } else {
1206                         continual = false;
1207                 }
1208         }
1209
1210         return efuse_addr;
1211 }
1212
1213 static u8 efuse_calculate_word_cnts(u8 word_en)
1214 {
1215         u8 word_cnts = 0;
1216
1217         if (!(word_en & BIT(0)))
1218                 word_cnts++;
1219         if (!(word_en & BIT(1)))
1220                 word_cnts++;
1221         if (!(word_en & BIT(2)))
1222                 word_cnts++;
1223         if (!(word_en & BIT(3)))
1224                 word_cnts++;
1225         return word_cnts;
1226 }
1227
1228 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1229                    int max_size, u8 *hwinfo, int *params)
1230 {
1231         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1232         struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1233         struct device *dev = &rtlpcipriv->dev.pdev->dev;
1234         u16 eeprom_id;
1235         u16 i, usvalue;
1236
1237         switch (rtlefuse->epromtype) {
1238         case EEPROM_BOOT_EFUSE:
1239                 rtl_efuse_shadow_map_update(hw);
1240                 break;
1241
1242         case EEPROM_93C46:
1243                 pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
1244                 return 1;
1245
1246         default:
1247                 dev_warn(dev, "no efuse data\n");
1248                 return 1;
1249         }
1250
1251         memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1252
1253         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1254                       hwinfo, max_size);
1255
1256         eeprom_id = *((u16 *)&hwinfo[0]);
1257         if (eeprom_id != params[0]) {
1258                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1259                          "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1260                 rtlefuse->autoload_failflag = true;
1261         } else {
1262                 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1263                 rtlefuse->autoload_failflag = false;
1264         }
1265
1266         if (rtlefuse->autoload_failflag)
1267                 return 1;
1268
1269         rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1270         rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1271         rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1272         rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1273         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1274                  "EEPROMId = 0x%4x\n", eeprom_id);
1275         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1276                  "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1277         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1278                  "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1279         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1280                  "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1281         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1282                  "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1283
1284         for (i = 0; i < 6; i += 2) {
1285                 usvalue = *(u16 *)&hwinfo[params[5] + i];
1286                 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1287         }
1288         RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1289
1290         rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1291         rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1292         rtlefuse->txpwr_fromeprom = true;
1293         rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1294
1295         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1296                  "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1297
1298         /* set channel plan to world wide 13 */
1299         rtlefuse->channel_plan = params[9];
1300
1301         return 0;
1302 }
1303
1304 void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
1305 {
1306         struct rtl_priv *rtlpriv = rtl_priv(hw);
1307         u8 *pu4byteptr = (u8 *)buffer;
1308         u32 i;
1309
1310         for (i = 0; i < size; i++)
1311                 rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
1312 }
1313
1314 void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
1315                        u32 size)
1316 {
1317         struct rtl_priv *rtlpriv = rtl_priv(hw);
1318         u8 value8;
1319         u8 u8page = (u8)(page & 0x07);
1320
1321         value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
1322
1323         rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
1324         rtl_fw_block_write(hw, buffer, size);
1325 }
1326
1327 void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
1328 {
1329         u32 fwlen = *pfwlen;
1330         u8 remain = (u8)(fwlen % 4);
1331
1332         remain = (remain == 0) ? 0 : (4 - remain);
1333
1334         while (remain > 0) {
1335                 pfwbuf[fwlen] = 0;
1336                 fwlen++;
1337                 remain--;
1338         }
1339
1340         *pfwlen = fwlen;
1341 }
This page took 0.113108 seconds and 4 git commands to generate.