2 * Copyright (C) 2017 Free Electrons
3 * Copyright (C) 2017 NextThing Co
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/mtd/rawnand.h>
19 #include <linux/sizes.h>
20 #include <linux/slab.h>
22 #define NAND_HYNIX_CMD_SET_PARAMS 0x36
23 #define NAND_HYNIX_CMD_APPLY_PARAMS 0x16
25 #define NAND_HYNIX_1XNM_RR_REPEAT 8
28 * struct hynix_read_retry - read-retry data
29 * @nregs: number of register to set when applying a new read-retry mode
30 * @regs: register offsets (NAND chip dependent)
31 * @values: array of values to set in registers. The array size is equal to
34 struct hynix_read_retry {
41 * struct hynix_nand - private Hynix NAND struct
42 * @nand_technology: manufacturing process expressed in picometer
43 * @read_retry: read-retry information
46 const struct hynix_read_retry *read_retry;
50 * struct hynix_read_retry_otp - structure describing how the read-retry OTP
52 * @nregs: number of hynix private registers to set before reading the reading
54 * @regs: registers that should be configured
55 * @values: values that should be set in regs
56 * @page: the address to pass to the READ_PAGE command. Depends on the NAND
58 * @size: size of the read-retry OTP section
60 struct hynix_read_retry_otp {
68 static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
73 ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
77 return !strncmp("JEDEC", jedecid, sizeof(jedecid));
80 static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
82 struct mtd_info *mtd = nand_to_mtd(chip);
85 struct nand_op_instr instrs[] = {
88 struct nand_operation op = NAND_OPERATION(instrs);
90 return nand_exec_op(chip, &op);
93 chip->cmdfunc(mtd, cmd, -1, -1);
98 static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
100 struct mtd_info *mtd = nand_to_mtd(chip);
101 u16 column = ((u16)addr << 8) | addr;
103 chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1);
104 chip->write_byte(mtd, val);
109 static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
111 struct nand_chip *chip = mtd_to_nand(mtd);
112 struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
116 values = hynix->read_retry->values +
117 (retry_mode * hynix->read_retry->nregs);
119 /* Enter 'Set Hynix Parameters' mode */
120 ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
125 * Configure the NAND in the requested read-retry mode.
126 * This is done by setting pre-defined values in internal NAND
129 * The set of registers is NAND specific, and the values are either
130 * predefined or extracted from an OTP area on the NAND (values are
131 * probably tweaked at production in this case).
133 for (i = 0; i < hynix->read_retry->nregs; i++) {
134 ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
140 /* Apply the new settings. */
141 return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
145 * hynix_get_majority - get the value that is occurring the most in a given
147 * @in: the array of values to test
148 * @repeat: the size of the in array
149 * @out: pointer used to store the output value
151 * This function implements the 'majority check' logic that is supposed to
152 * overcome the unreliability of MLC NANDs when reading the OTP area storing
153 * the read-retry parameters.
155 * It's based on a pretty simple assumption: if we repeat the same value
156 * several times and then take the one that is occurring the most, we should
157 * find the correct value.
158 * Let's hope this dummy algorithm prevents us from losing the read-retry
161 static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
163 int i, j, half = repeat / 2;
166 * We only test the first half of the in array because we must ensure
167 * that the value is at least occurring repeat / 2 times.
169 * This loop is suboptimal since we may count the occurrences of the
170 * same value several time, but we are doing that on small sets, which
171 * makes it acceptable.
173 for (i = 0; i < half; i++) {
177 /* Count all values that are matching the one at index i. */
178 for (j = i + 1; j < repeat; j++) {
183 /* We found a value occurring more than repeat / 2. */
193 static int hynix_read_rr_otp(struct nand_chip *chip,
194 const struct hynix_read_retry_otp *info,
199 ret = nand_reset_op(chip);
203 ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
207 for (i = 0; i < info->nregs; i++) {
208 ret = hynix_nand_reg_write_op(chip, info->regs[i],
214 ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
218 /* Sequence to enter OTP mode? */
219 ret = hynix_nand_cmd_op(chip, 0x17);
223 ret = hynix_nand_cmd_op(chip, 0x4);
227 ret = hynix_nand_cmd_op(chip, 0x19);
231 /* Now read the page */
232 ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
236 /* Put everything back to normal */
237 ret = nand_reset_op(chip);
241 ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
245 ret = hynix_nand_reg_write_op(chip, 0x38, 0);
249 ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
253 return nand_read_page_op(chip, 0, 0, NULL, 0);
256 #define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0
257 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8
258 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \
259 (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
261 static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
262 int mode, int reg, bool inv, u8 *val)
264 u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
265 int val_offs = (mode * nregs) + reg;
266 int set_size = nmodes * nregs;
269 for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
270 int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
272 tmp[i] = buf[val_offs + set_offs];
275 ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
285 static u8 hynix_1xnm_mlc_read_retry_regs[] = {
286 0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
289 static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
290 const struct hynix_read_retry_otp *info)
292 struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
293 struct hynix_read_retry *rr = NULL;
298 buf = kmalloc(info->size, GFP_KERNEL);
302 ret = hynix_read_rr_otp(chip, info, buf);
306 ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
311 ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
312 NAND_HYNIX_1XNM_RR_REPEAT,
317 rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
323 for (i = 0; i < nmodes; i++) {
324 for (j = 0; j < nregs; j++) {
325 u8 *val = rr->values + (i * nregs);
327 ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
332 ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
340 rr->regs = hynix_1xnm_mlc_read_retry_regs;
341 hynix->read_retry = rr;
342 chip->setup_read_retry = hynix_nand_setup_read_retry;
343 chip->read_retries = nmodes;
354 static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
355 static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
357 static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
359 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
360 .regs = hynix_mlc_1xnm_rr_otp_regs,
361 .values = hynix_mlc_1xnm_rr_otp_values,
366 .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
367 .regs = hynix_mlc_1xnm_rr_otp_regs,
368 .values = hynix_mlc_1xnm_rr_otp_values,
374 static int hynix_nand_rr_init(struct nand_chip *chip)
379 valid_jedecid = hynix_nand_has_valid_jedecid(chip);
382 * We only support read-retry for 1xnm NANDs, and those NANDs all
383 * expose a valid JEDEC ID.
386 u8 nand_tech = chip->id.data[5] >> 4;
388 /* 1xnm technology */
389 if (nand_tech == 4) {
390 for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
393 * FIXME: Hynix recommend to copy the
394 * read-retry OTP area into a normal page.
396 ret = hynix_mlc_1xnm_rr_init(chip,
397 hynix_mlc_1xnm_rr_otps);
405 pr_warn("failed to initialize read-retry infrastructure");
410 static void hynix_nand_extract_oobsize(struct nand_chip *chip,
413 struct mtd_info *mtd = nand_to_mtd(chip);
416 oobsize = ((chip->id.data[3] >> 2) & 0x3) |
417 ((chip->id.data[3] >> 4) & 0x4);
435 * We should never reach this case, but if that
436 * happens, this probably means Hynix decided to use
437 * a different extended ID format, and we should find
438 * a way to support it.
440 WARN(1, "Invalid OOB size");
468 * We should never reach this case, but if that
469 * happens, this probably means Hynix decided to use
470 * a different extended ID format, and we should find
471 * a way to support it.
473 WARN(1, "Invalid OOB size");
479 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
482 u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
485 /* Reference: H27UCG8T2E datasheet */
486 chip->ecc_step_ds = 1024;
490 chip->ecc_step_ds = 0;
491 chip->ecc_strength_ds = 0;
494 chip->ecc_strength_ds = 4;
497 chip->ecc_strength_ds = 24;
500 chip->ecc_strength_ds = 32;
503 chip->ecc_strength_ds = 40;
506 chip->ecc_strength_ds = 50;
509 chip->ecc_strength_ds = 60;
513 * We should never reach this case, but if that
514 * happens, this probably means Hynix decided to use
515 * a different extended ID format, and we should find
516 * a way to support it.
518 WARN(1, "Invalid ECC requirements");
522 * The ECC requirements field meaning depends on the
525 u8 nand_tech = chip->id.data[5] & 0x7;
528 /* > 26nm, reference: H27UBG8T2A datasheet */
530 chip->ecc_step_ds = 512;
531 chip->ecc_strength_ds = 1 << ecc_level;
532 } else if (ecc_level < 7) {
534 chip->ecc_step_ds = 2048;
536 chip->ecc_step_ds = 1024;
537 chip->ecc_strength_ds = 24;
540 * We should never reach this case, but if that
541 * happens, this probably means Hynix decided
542 * to use a different extended ID format, and
543 * we should find a way to support it.
545 WARN(1, "Invalid ECC requirements");
548 /* <= 26nm, reference: H27UBG8T2B datasheet */
550 chip->ecc_step_ds = 0;
551 chip->ecc_strength_ds = 0;
552 } else if (ecc_level < 5) {
553 chip->ecc_step_ds = 512;
554 chip->ecc_strength_ds = 1 << (ecc_level - 1);
556 chip->ecc_step_ds = 1024;
557 chip->ecc_strength_ds = 24 +
558 (8 * (ecc_level - 5));
564 static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
569 /* We need scrambling on all TLC NANDs*/
570 if (chip->bits_per_cell > 2)
571 chip->options |= NAND_NEED_SCRAMBLING;
573 /* And on MLC NANDs with sub-3xnm process */
575 nand_tech = chip->id.data[5] >> 4;
579 chip->options |= NAND_NEED_SCRAMBLING;
581 nand_tech = chip->id.data[5] & 0x7;
585 chip->options |= NAND_NEED_SCRAMBLING;
589 static void hynix_nand_decode_id(struct nand_chip *chip)
591 struct mtd_info *mtd = nand_to_mtd(chip);
596 * Exclude all SLC NANDs from this advanced detection scheme.
597 * According to the ranges defined in several datasheets, it might
598 * appear that even SLC NANDs could fall in this extended ID scheme.
599 * If that the case rework the test to let SLC NANDs go through the
602 if (chip->id.len < 6 || nand_is_slc(chip)) {
603 nand_decode_ext_id(chip);
607 /* Extract pagesize */
608 mtd->writesize = 2048 << (chip->id.data[3] & 0x03);
610 tmp = (chip->id.data[3] >> 4) & 0x3;
612 * When bit7 is set that means we start counting at 1MiB, otherwise
613 * we start counting at 128KiB and shift this value the content of
615 * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
616 * this case the erasesize is set to 768KiB.
618 if (chip->id.data[3] & 0x80)
619 mtd->erasesize = SZ_1M << tmp;
621 mtd->erasesize = SZ_512K + SZ_256K;
623 mtd->erasesize = SZ_128K << tmp;
626 * Modern Toggle DDR NANDs have a valid JEDECID even though they are
627 * not exposing a valid JEDEC parameter table.
628 * These NANDs use a different NAND ID scheme.
630 valid_jedecid = hynix_nand_has_valid_jedecid(chip);
632 hynix_nand_extract_oobsize(chip, valid_jedecid);
633 hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
634 hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
637 static void hynix_nand_cleanup(struct nand_chip *chip)
639 struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
644 kfree(hynix->read_retry);
646 nand_set_manufacturer_data(chip, NULL);
649 static int hynix_nand_init(struct nand_chip *chip)
651 struct hynix_nand *hynix;
654 if (!nand_is_slc(chip))
655 chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
657 chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
659 hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
663 nand_set_manufacturer_data(chip, hynix);
665 ret = hynix_nand_rr_init(chip);
667 hynix_nand_cleanup(chip);
672 const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
673 .detect = hynix_nand_decode_id,
674 .init = hynix_nand_init,
675 .cleanup = hynix_nand_cleanup,