2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
41 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
47 int ddir, bytes, bucket;
49 ddir = rq_data_dir(rq);
50 bytes = blk_rq_bytes(rq);
52 bucket = ddir + 2*(ilog2(bytes) - 9);
56 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
63 * Check if any of the ctx's have pending work in this hardware queue
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 return !list_empty_careful(&hctx->dispatch) ||
68 sbitmap_any_bit_set(&hctx->ctx_map) ||
69 blk_mq_sched_has_work(hctx);
73 * Mark this ctx as having pending work in this hardware queue
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76 struct blk_mq_ctx *ctx)
78 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
79 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
82 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
83 struct blk_mq_ctx *ctx)
85 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
89 struct hd_struct *part;
90 unsigned int *inflight;
93 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
94 struct request *rq, void *priv,
97 struct mq_inflight *mi = priv;
100 * index[0] counts the specific partition that was asked for. index[1]
101 * counts the ones that are active on the whole device, so increment
102 * that if mi->part is indeed a partition, and not a whole device.
104 if (rq->part == mi->part)
106 if (mi->part->partno)
110 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
111 unsigned int inflight[2])
113 struct mq_inflight mi = { .part = part, .inflight = inflight, };
115 inflight[0] = inflight[1] = 0;
116 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
120 struct request *rq, void *priv,
123 struct mq_inflight *mi = priv;
125 if (rq->part == mi->part)
126 mi->inflight[rq_data_dir(rq)]++;
129 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
130 unsigned int inflight[2])
132 struct mq_inflight mi = { .part = part, .inflight = inflight, };
134 inflight[0] = inflight[1] = 0;
135 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
138 void blk_freeze_queue_start(struct request_queue *q)
142 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
143 if (freeze_depth == 1) {
144 percpu_ref_kill(&q->q_usage_counter);
146 blk_mq_run_hw_queues(q, false);
149 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
151 void blk_mq_freeze_queue_wait(struct request_queue *q)
153 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
155 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
157 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
158 unsigned long timeout)
160 return wait_event_timeout(q->mq_freeze_wq,
161 percpu_ref_is_zero(&q->q_usage_counter),
164 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
167 * Guarantee no request is in use, so we can change any data structure of
168 * the queue afterward.
170 void blk_freeze_queue(struct request_queue *q)
173 * In the !blk_mq case we are only calling this to kill the
174 * q_usage_counter, otherwise this increases the freeze depth
175 * and waits for it to return to zero. For this reason there is
176 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
177 * exported to drivers as the only user for unfreeze is blk_mq.
179 blk_freeze_queue_start(q);
180 blk_mq_freeze_queue_wait(q);
183 void blk_mq_freeze_queue(struct request_queue *q)
186 * ...just an alias to keep freeze and unfreeze actions balanced
187 * in the blk_mq_* namespace
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
193 void blk_mq_unfreeze_queue(struct request_queue *q)
197 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
198 WARN_ON_ONCE(freeze_depth < 0);
200 percpu_ref_resurrect(&q->q_usage_counter);
201 wake_up_all(&q->mq_freeze_wq);
204 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
207 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
208 * mpt3sas driver such that this function can be removed.
210 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
212 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
214 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
217 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
220 * Note: this function does not prevent that the struct request end_io()
221 * callback function is invoked. Once this function is returned, we make
222 * sure no dispatch can happen until the queue is unquiesced via
223 * blk_mq_unquiesce_queue().
225 void blk_mq_quiesce_queue(struct request_queue *q)
227 struct blk_mq_hw_ctx *hctx;
231 blk_mq_quiesce_queue_nowait(q);
233 queue_for_each_hw_ctx(q, hctx, i) {
234 if (hctx->flags & BLK_MQ_F_BLOCKING)
235 synchronize_srcu(hctx->srcu);
242 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
245 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
248 * This function recovers queue into the state before quiescing
249 * which is done by blk_mq_quiesce_queue.
251 void blk_mq_unquiesce_queue(struct request_queue *q)
253 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
255 /* dispatch requests which are inserted during quiescing */
256 blk_mq_run_hw_queues(q, true);
258 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
260 void blk_mq_wake_waiters(struct request_queue *q)
262 struct blk_mq_hw_ctx *hctx;
265 queue_for_each_hw_ctx(q, hctx, i)
266 if (blk_mq_hw_queue_mapped(hctx))
267 blk_mq_tag_wakeup_all(hctx->tags, true);
270 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
272 return blk_mq_has_free_tags(hctx->tags);
274 EXPORT_SYMBOL(blk_mq_can_queue);
276 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
277 unsigned int tag, unsigned int op)
279 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
280 struct request *rq = tags->static_rqs[tag];
281 req_flags_t rq_flags = 0;
283 if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 rq->internal_tag = tag;
287 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
288 rq_flags = RQF_MQ_INFLIGHT;
289 atomic_inc(&data->hctx->nr_active);
292 rq->internal_tag = -1;
293 data->hctx->tags->rqs[rq->tag] = rq;
296 /* csd/requeue_work/fifo_time is initialized before use */
298 rq->mq_ctx = data->ctx;
299 rq->rq_flags = rq_flags;
302 if (data->flags & BLK_MQ_REQ_PREEMPT)
303 rq->rq_flags |= RQF_PREEMPT;
304 if (blk_queue_io_stat(data->q))
305 rq->rq_flags |= RQF_IO_STAT;
306 INIT_LIST_HEAD(&rq->queuelist);
307 INIT_HLIST_NODE(&rq->hash);
308 RB_CLEAR_NODE(&rq->rb_node);
311 rq->start_time_ns = ktime_get_ns();
312 rq->io_start_time_ns = 0;
313 rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315 rq->nr_integrity_segments = 0;
318 /* tag was already set */
322 INIT_LIST_HEAD(&rq->timeout_list);
326 rq->end_io_data = NULL;
329 data->ctx->rq_dispatched[op_is_sync(op)]++;
330 refcount_set(&rq->ref, 1);
334 static struct request *blk_mq_get_request(struct request_queue *q,
335 struct bio *bio, unsigned int op,
336 struct blk_mq_alloc_data *data)
338 struct elevator_queue *e = q->elevator;
341 bool put_ctx_on_error = false;
343 blk_queue_enter_live(q);
345 if (likely(!data->ctx)) {
346 data->ctx = blk_mq_get_ctx(q);
347 put_ctx_on_error = true;
349 if (likely(!data->hctx))
350 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
352 data->flags |= BLK_MQ_REQ_NOWAIT;
355 data->flags |= BLK_MQ_REQ_INTERNAL;
358 * Flush requests are special and go directly to the
359 * dispatch list. Don't include reserved tags in the
360 * limiting, as it isn't useful.
362 if (!op_is_flush(op) && e->type->ops.limit_depth &&
363 !(data->flags & BLK_MQ_REQ_RESERVED))
364 e->type->ops.limit_depth(op, data);
366 blk_mq_tag_busy(data->hctx);
369 tag = blk_mq_get_tag(data);
370 if (tag == BLK_MQ_TAG_FAIL) {
371 if (put_ctx_on_error) {
372 blk_mq_put_ctx(data->ctx);
379 rq = blk_mq_rq_ctx_init(data, tag, op);
380 if (!op_is_flush(op)) {
382 if (e && e->type->ops.prepare_request) {
383 if (e->type->icq_cache && rq_ioc(bio))
384 blk_mq_sched_assign_ioc(rq, bio);
386 e->type->ops.prepare_request(rq, bio);
387 rq->rq_flags |= RQF_ELVPRIV;
390 data->hctx->queued++;
394 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
395 blk_mq_req_flags_t flags)
397 struct blk_mq_alloc_data alloc_data = { .flags = flags };
401 ret = blk_queue_enter(q, flags);
405 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
409 return ERR_PTR(-EWOULDBLOCK);
411 blk_mq_put_ctx(alloc_data.ctx);
414 rq->__sector = (sector_t) -1;
415 rq->bio = rq->biotail = NULL;
418 EXPORT_SYMBOL(blk_mq_alloc_request);
420 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
421 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
423 struct blk_mq_alloc_data alloc_data = { .flags = flags };
429 * If the tag allocator sleeps we could get an allocation for a
430 * different hardware context. No need to complicate the low level
431 * allocator for this for the rare use case of a command tied to
434 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
435 return ERR_PTR(-EINVAL);
437 if (hctx_idx >= q->nr_hw_queues)
438 return ERR_PTR(-EIO);
440 ret = blk_queue_enter(q, flags);
445 * Check if the hardware context is actually mapped to anything.
446 * If not tell the caller that it should skip this queue.
448 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
449 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
451 return ERR_PTR(-EXDEV);
453 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
454 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
456 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
460 return ERR_PTR(-EWOULDBLOCK);
464 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
466 static void __blk_mq_free_request(struct request *rq)
468 struct request_queue *q = rq->q;
469 struct blk_mq_ctx *ctx = rq->mq_ctx;
470 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
471 const int sched_tag = rq->internal_tag;
473 blk_pm_mark_last_busy(rq);
475 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
477 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
478 blk_mq_sched_restart(hctx);
482 void blk_mq_free_request(struct request *rq)
484 struct request_queue *q = rq->q;
485 struct elevator_queue *e = q->elevator;
486 struct blk_mq_ctx *ctx = rq->mq_ctx;
487 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
489 if (rq->rq_flags & RQF_ELVPRIV) {
490 if (e && e->type->ops.finish_request)
491 e->type->ops.finish_request(rq);
493 put_io_context(rq->elv.icq->ioc);
498 ctx->rq_completed[rq_is_sync(rq)]++;
499 if (rq->rq_flags & RQF_MQ_INFLIGHT)
500 atomic_dec(&hctx->nr_active);
502 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
503 laptop_io_completion(q->backing_dev_info);
507 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
508 if (refcount_dec_and_test(&rq->ref))
509 __blk_mq_free_request(rq);
511 EXPORT_SYMBOL_GPL(blk_mq_free_request);
513 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
515 u64 now = ktime_get_ns();
517 if (rq->rq_flags & RQF_STATS) {
518 blk_mq_poll_stats_start(rq->q);
519 blk_stat_add(rq, now);
522 if (rq->internal_tag != -1)
523 blk_mq_sched_completed_request(rq, now);
525 blk_account_io_done(rq, now);
528 rq_qos_done(rq->q, rq);
529 rq->end_io(rq, error);
531 if (unlikely(blk_bidi_rq(rq)))
532 blk_mq_free_request(rq->next_rq);
533 blk_mq_free_request(rq);
536 EXPORT_SYMBOL(__blk_mq_end_request);
538 void blk_mq_end_request(struct request *rq, blk_status_t error)
540 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
542 __blk_mq_end_request(rq, error);
544 EXPORT_SYMBOL(blk_mq_end_request);
546 static void __blk_mq_complete_request_remote(void *data)
548 struct request *rq = data;
550 rq->q->softirq_done_fn(rq);
553 static void __blk_mq_complete_request(struct request *rq)
555 struct blk_mq_ctx *ctx = rq->mq_ctx;
559 if (!blk_mq_mark_complete(rq))
563 * Most of single queue controllers, there is only one irq vector
564 * for handling IO completion, and the only irq's affinity is set
565 * as all possible CPUs. On most of ARCHs, this affinity means the
566 * irq is handled on one specific CPU.
568 * So complete IO reqeust in softirq context in case of single queue
569 * for not degrading IO performance by irqsoff latency.
571 if (rq->q->nr_hw_queues == 1) {
572 __blk_complete_request(rq);
576 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
577 rq->q->softirq_done_fn(rq);
582 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
583 shared = cpus_share_cache(cpu, ctx->cpu);
585 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
586 rq->csd.func = __blk_mq_complete_request_remote;
589 smp_call_function_single_async(ctx->cpu, &rq->csd);
591 rq->q->softirq_done_fn(rq);
596 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
597 __releases(hctx->srcu)
599 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
602 srcu_read_unlock(hctx->srcu, srcu_idx);
605 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
606 __acquires(hctx->srcu)
608 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
609 /* shut up gcc false positive */
613 *srcu_idx = srcu_read_lock(hctx->srcu);
617 * blk_mq_complete_request - end I/O on a request
618 * @rq: the request being processed
621 * Ends all I/O on a request. It does not handle partial completions.
622 * The actual completion happens out-of-order, through a IPI handler.
624 void blk_mq_complete_request(struct request *rq)
626 if (unlikely(blk_should_fake_timeout(rq->q)))
628 __blk_mq_complete_request(rq);
630 EXPORT_SYMBOL(blk_mq_complete_request);
632 int blk_mq_request_started(struct request *rq)
634 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
636 EXPORT_SYMBOL_GPL(blk_mq_request_started);
638 void blk_mq_start_request(struct request *rq)
640 struct request_queue *q = rq->q;
642 blk_mq_sched_started_request(rq);
644 trace_block_rq_issue(q, rq);
646 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
647 rq->io_start_time_ns = ktime_get_ns();
648 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
649 rq->throtl_size = blk_rq_sectors(rq);
651 rq->rq_flags |= RQF_STATS;
655 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
658 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
660 if (q->dma_drain_size && blk_rq_bytes(rq)) {
662 * Make sure space for the drain appears. We know we can do
663 * this because max_hw_segments has been adjusted to be one
664 * fewer than the device can handle.
666 rq->nr_phys_segments++;
669 EXPORT_SYMBOL(blk_mq_start_request);
671 static void __blk_mq_requeue_request(struct request *rq)
673 struct request_queue *q = rq->q;
675 blk_mq_put_driver_tag(rq);
677 trace_block_rq_requeue(q, rq);
678 rq_qos_requeue(q, rq);
680 if (blk_mq_request_started(rq)) {
681 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
682 rq->rq_flags &= ~RQF_TIMED_OUT;
683 if (q->dma_drain_size && blk_rq_bytes(rq))
684 rq->nr_phys_segments--;
688 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
690 __blk_mq_requeue_request(rq);
692 /* this request will be re-inserted to io scheduler queue */
693 blk_mq_sched_requeue_request(rq);
695 BUG_ON(blk_queued_rq(rq));
696 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
698 EXPORT_SYMBOL(blk_mq_requeue_request);
700 static void blk_mq_requeue_work(struct work_struct *work)
702 struct request_queue *q =
703 container_of(work, struct request_queue, requeue_work.work);
705 struct request *rq, *next;
707 spin_lock_irq(&q->requeue_lock);
708 list_splice_init(&q->requeue_list, &rq_list);
709 spin_unlock_irq(&q->requeue_lock);
711 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
712 if (!(rq->rq_flags & RQF_SOFTBARRIER))
715 rq->rq_flags &= ~RQF_SOFTBARRIER;
716 list_del_init(&rq->queuelist);
717 blk_mq_sched_insert_request(rq, true, false, false);
720 while (!list_empty(&rq_list)) {
721 rq = list_entry(rq_list.next, struct request, queuelist);
722 list_del_init(&rq->queuelist);
723 blk_mq_sched_insert_request(rq, false, false, false);
726 blk_mq_run_hw_queues(q, false);
729 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
730 bool kick_requeue_list)
732 struct request_queue *q = rq->q;
736 * We abuse this flag that is otherwise used by the I/O scheduler to
737 * request head insertion from the workqueue.
739 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
741 spin_lock_irqsave(&q->requeue_lock, flags);
743 rq->rq_flags |= RQF_SOFTBARRIER;
744 list_add(&rq->queuelist, &q->requeue_list);
746 list_add_tail(&rq->queuelist, &q->requeue_list);
748 spin_unlock_irqrestore(&q->requeue_lock, flags);
750 if (kick_requeue_list)
751 blk_mq_kick_requeue_list(q);
753 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
755 void blk_mq_kick_requeue_list(struct request_queue *q)
757 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
759 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
761 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
764 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
765 msecs_to_jiffies(msecs));
767 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
769 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
771 if (tag < tags->nr_tags) {
772 prefetch(tags->rqs[tag]);
773 return tags->rqs[tag];
778 EXPORT_SYMBOL(blk_mq_tag_to_rq);
780 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
782 req->rq_flags |= RQF_TIMED_OUT;
783 if (req->q->mq_ops->timeout) {
784 enum blk_eh_timer_return ret;
786 ret = req->q->mq_ops->timeout(req, reserved);
787 if (ret == BLK_EH_DONE)
789 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
795 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
797 unsigned long deadline;
799 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
801 if (rq->rq_flags & RQF_TIMED_OUT)
804 deadline = blk_rq_deadline(rq);
805 if (time_after_eq(jiffies, deadline))
810 else if (time_after(*next, deadline))
815 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
816 struct request *rq, void *priv, bool reserved)
818 unsigned long *next = priv;
821 * Just do a quick check if it is expired before locking the request in
822 * so we're not unnecessarilly synchronizing across CPUs.
824 if (!blk_mq_req_expired(rq, next))
828 * We have reason to believe the request may be expired. Take a
829 * reference on the request to lock this request lifetime into its
830 * currently allocated context to prevent it from being reallocated in
831 * the event the completion by-passes this timeout handler.
833 * If the reference was already released, then the driver beat the
834 * timeout handler to posting a natural completion.
836 if (!refcount_inc_not_zero(&rq->ref))
840 * The request is now locked and cannot be reallocated underneath the
841 * timeout handler's processing. Re-verify this exact request is truly
842 * expired; if it is not expired, then the request was completed and
843 * reallocated as a new request.
845 if (blk_mq_req_expired(rq, next))
846 blk_mq_rq_timed_out(rq, reserved);
847 if (refcount_dec_and_test(&rq->ref))
848 __blk_mq_free_request(rq);
851 static void blk_mq_timeout_work(struct work_struct *work)
853 struct request_queue *q =
854 container_of(work, struct request_queue, timeout_work);
855 unsigned long next = 0;
856 struct blk_mq_hw_ctx *hctx;
859 /* A deadlock might occur if a request is stuck requiring a
860 * timeout at the same time a queue freeze is waiting
861 * completion, since the timeout code would not be able to
862 * acquire the queue reference here.
864 * That's why we don't use blk_queue_enter here; instead, we use
865 * percpu_ref_tryget directly, because we need to be able to
866 * obtain a reference even in the short window between the queue
867 * starting to freeze, by dropping the first reference in
868 * blk_freeze_queue_start, and the moment the last request is
869 * consumed, marked by the instant q_usage_counter reaches
872 if (!percpu_ref_tryget(&q->q_usage_counter))
875 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
878 mod_timer(&q->timeout, next);
881 * Request timeouts are handled as a forward rolling timer. If
882 * we end up here it means that no requests are pending and
883 * also that no request has been pending for a while. Mark
886 queue_for_each_hw_ctx(q, hctx, i) {
887 /* the hctx may be unmapped, so check it here */
888 if (blk_mq_hw_queue_mapped(hctx))
889 blk_mq_tag_idle(hctx);
895 struct flush_busy_ctx_data {
896 struct blk_mq_hw_ctx *hctx;
897 struct list_head *list;
900 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
902 struct flush_busy_ctx_data *flush_data = data;
903 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
904 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
906 spin_lock(&ctx->lock);
907 list_splice_tail_init(&ctx->rq_list, flush_data->list);
908 sbitmap_clear_bit(sb, bitnr);
909 spin_unlock(&ctx->lock);
914 * Process software queues that have been marked busy, splicing them
915 * to the for-dispatch
917 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
919 struct flush_busy_ctx_data data = {
924 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
926 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
928 struct dispatch_rq_data {
929 struct blk_mq_hw_ctx *hctx;
933 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
936 struct dispatch_rq_data *dispatch_data = data;
937 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
938 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
940 spin_lock(&ctx->lock);
941 if (!list_empty(&ctx->rq_list)) {
942 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
943 list_del_init(&dispatch_data->rq->queuelist);
944 if (list_empty(&ctx->rq_list))
945 sbitmap_clear_bit(sb, bitnr);
947 spin_unlock(&ctx->lock);
949 return !dispatch_data->rq;
952 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
953 struct blk_mq_ctx *start)
955 unsigned off = start ? start->index_hw : 0;
956 struct dispatch_rq_data data = {
961 __sbitmap_for_each_set(&hctx->ctx_map, off,
962 dispatch_rq_from_ctx, &data);
967 static inline unsigned int queued_to_index(unsigned int queued)
972 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
975 bool blk_mq_get_driver_tag(struct request *rq)
977 struct blk_mq_alloc_data data = {
979 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
980 .flags = BLK_MQ_REQ_NOWAIT,
987 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
988 data.flags |= BLK_MQ_REQ_RESERVED;
990 shared = blk_mq_tag_busy(data.hctx);
991 rq->tag = blk_mq_get_tag(&data);
994 rq->rq_flags |= RQF_MQ_INFLIGHT;
995 atomic_inc(&data.hctx->nr_active);
997 data.hctx->tags->rqs[rq->tag] = rq;
1001 return rq->tag != -1;
1004 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1005 int flags, void *key)
1007 struct blk_mq_hw_ctx *hctx;
1009 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1011 spin_lock(&hctx->dispatch_wait_lock);
1012 list_del_init(&wait->entry);
1013 spin_unlock(&hctx->dispatch_wait_lock);
1015 blk_mq_run_hw_queue(hctx, true);
1020 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1021 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1022 * restart. For both cases, take care to check the condition again after
1023 * marking us as waiting.
1025 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1028 struct wait_queue_head *wq;
1029 wait_queue_entry_t *wait;
1032 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1033 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1034 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1037 * It's possible that a tag was freed in the window between the
1038 * allocation failure and adding the hardware queue to the wait
1041 * Don't clear RESTART here, someone else could have set it.
1042 * At most this will cost an extra queue run.
1044 return blk_mq_get_driver_tag(rq);
1047 wait = &hctx->dispatch_wait;
1048 if (!list_empty_careful(&wait->entry))
1051 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1053 spin_lock_irq(&wq->lock);
1054 spin_lock(&hctx->dispatch_wait_lock);
1055 if (!list_empty(&wait->entry)) {
1056 spin_unlock(&hctx->dispatch_wait_lock);
1057 spin_unlock_irq(&wq->lock);
1061 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1062 __add_wait_queue(wq, wait);
1065 * It's possible that a tag was freed in the window between the
1066 * allocation failure and adding the hardware queue to the wait
1069 ret = blk_mq_get_driver_tag(rq);
1071 spin_unlock(&hctx->dispatch_wait_lock);
1072 spin_unlock_irq(&wq->lock);
1077 * We got a tag, remove ourselves from the wait queue to ensure
1078 * someone else gets the wakeup.
1080 list_del_init(&wait->entry);
1081 spin_unlock(&hctx->dispatch_wait_lock);
1082 spin_unlock_irq(&wq->lock);
1087 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1088 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1090 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1091 * - EWMA is one simple way to compute running average value
1092 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1093 * - take 4 as factor for avoiding to get too small(0) result, and this
1094 * factor doesn't matter because EWMA decreases exponentially
1096 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1100 if (hctx->queue->elevator)
1103 ewma = hctx->dispatch_busy;
1108 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1110 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1111 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1113 hctx->dispatch_busy = ewma;
1116 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1119 * Returns true if we did some work AND can potentially do more.
1121 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1124 struct blk_mq_hw_ctx *hctx;
1125 struct request *rq, *nxt;
1126 bool no_tag = false;
1128 blk_status_t ret = BLK_STS_OK;
1130 if (list_empty(list))
1133 WARN_ON(!list_is_singular(list) && got_budget);
1136 * Now process all the entries, sending them to the driver.
1138 errors = queued = 0;
1140 struct blk_mq_queue_data bd;
1142 rq = list_first_entry(list, struct request, queuelist);
1144 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1145 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1148 if (!blk_mq_get_driver_tag(rq)) {
1150 * The initial allocation attempt failed, so we need to
1151 * rerun the hardware queue when a tag is freed. The
1152 * waitqueue takes care of that. If the queue is run
1153 * before we add this entry back on the dispatch list,
1154 * we'll re-run it below.
1156 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1157 blk_mq_put_dispatch_budget(hctx);
1159 * For non-shared tags, the RESTART check
1162 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1168 list_del_init(&rq->queuelist);
1173 * Flag last if we have no more requests, or if we have more
1174 * but can't assign a driver tag to it.
1176 if (list_empty(list))
1179 nxt = list_first_entry(list, struct request, queuelist);
1180 bd.last = !blk_mq_get_driver_tag(nxt);
1183 ret = q->mq_ops->queue_rq(hctx, &bd);
1184 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1186 * If an I/O scheduler has been configured and we got a
1187 * driver tag for the next request already, free it
1190 if (!list_empty(list)) {
1191 nxt = list_first_entry(list, struct request, queuelist);
1192 blk_mq_put_driver_tag(nxt);
1194 list_add(&rq->queuelist, list);
1195 __blk_mq_requeue_request(rq);
1199 if (unlikely(ret != BLK_STS_OK)) {
1201 blk_mq_end_request(rq, BLK_STS_IOERR);
1206 } while (!list_empty(list));
1208 hctx->dispatched[queued_to_index(queued)]++;
1211 * Any items that need requeuing? Stuff them into hctx->dispatch,
1212 * that is where we will continue on next queue run.
1214 if (!list_empty(list)) {
1217 spin_lock(&hctx->lock);
1218 list_splice_init(list, &hctx->dispatch);
1219 spin_unlock(&hctx->lock);
1222 * If SCHED_RESTART was set by the caller of this function and
1223 * it is no longer set that means that it was cleared by another
1224 * thread and hence that a queue rerun is needed.
1226 * If 'no_tag' is set, that means that we failed getting
1227 * a driver tag with an I/O scheduler attached. If our dispatch
1228 * waitqueue is no longer active, ensure that we run the queue
1229 * AFTER adding our entries back to the list.
1231 * If no I/O scheduler has been configured it is possible that
1232 * the hardware queue got stopped and restarted before requests
1233 * were pushed back onto the dispatch list. Rerun the queue to
1234 * avoid starvation. Notes:
1235 * - blk_mq_run_hw_queue() checks whether or not a queue has
1236 * been stopped before rerunning a queue.
1237 * - Some but not all block drivers stop a queue before
1238 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1241 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1242 * bit is set, run queue after a delay to avoid IO stalls
1243 * that could otherwise occur if the queue is idle.
1245 needs_restart = blk_mq_sched_needs_restart(hctx);
1246 if (!needs_restart ||
1247 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1248 blk_mq_run_hw_queue(hctx, true);
1249 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1250 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1252 blk_mq_update_dispatch_busy(hctx, true);
1255 blk_mq_update_dispatch_busy(hctx, false);
1258 * If the host/device is unable to accept more work, inform the
1261 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1264 return (queued + errors) != 0;
1267 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1272 * We should be running this queue from one of the CPUs that
1275 * There are at least two related races now between setting
1276 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1277 * __blk_mq_run_hw_queue():
1279 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1280 * but later it becomes online, then this warning is harmless
1283 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1284 * but later it becomes offline, then the warning can't be
1285 * triggered, and we depend on blk-mq timeout handler to
1286 * handle dispatched requests to this hctx
1288 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1289 cpu_online(hctx->next_cpu)) {
1290 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1291 raw_smp_processor_id(),
1292 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1297 * We can't run the queue inline with ints disabled. Ensure that
1298 * we catch bad users of this early.
1300 WARN_ON_ONCE(in_interrupt());
1302 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1304 hctx_lock(hctx, &srcu_idx);
1305 blk_mq_sched_dispatch_requests(hctx);
1306 hctx_unlock(hctx, srcu_idx);
1309 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1311 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1313 if (cpu >= nr_cpu_ids)
1314 cpu = cpumask_first(hctx->cpumask);
1319 * It'd be great if the workqueue API had a way to pass
1320 * in a mask and had some smarts for more clever placement.
1321 * For now we just round-robin here, switching for every
1322 * BLK_MQ_CPU_WORK_BATCH queued items.
1324 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1327 int next_cpu = hctx->next_cpu;
1329 if (hctx->queue->nr_hw_queues == 1)
1330 return WORK_CPU_UNBOUND;
1332 if (--hctx->next_cpu_batch <= 0) {
1334 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1336 if (next_cpu >= nr_cpu_ids)
1337 next_cpu = blk_mq_first_mapped_cpu(hctx);
1338 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1342 * Do unbound schedule if we can't find a online CPU for this hctx,
1343 * and it should only happen in the path of handling CPU DEAD.
1345 if (!cpu_online(next_cpu)) {
1352 * Make sure to re-select CPU next time once after CPUs
1353 * in hctx->cpumask become online again.
1355 hctx->next_cpu = next_cpu;
1356 hctx->next_cpu_batch = 1;
1357 return WORK_CPU_UNBOUND;
1360 hctx->next_cpu = next_cpu;
1364 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1365 unsigned long msecs)
1367 if (unlikely(blk_mq_hctx_stopped(hctx)))
1370 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1371 int cpu = get_cpu();
1372 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1373 __blk_mq_run_hw_queue(hctx);
1381 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1382 msecs_to_jiffies(msecs));
1385 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1387 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1389 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1391 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1397 * When queue is quiesced, we may be switching io scheduler, or
1398 * updating nr_hw_queues, or other things, and we can't run queue
1399 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1401 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1404 hctx_lock(hctx, &srcu_idx);
1405 need_run = !blk_queue_quiesced(hctx->queue) &&
1406 blk_mq_hctx_has_pending(hctx);
1407 hctx_unlock(hctx, srcu_idx);
1410 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1416 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1418 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1420 struct blk_mq_hw_ctx *hctx;
1423 queue_for_each_hw_ctx(q, hctx, i) {
1424 if (blk_mq_hctx_stopped(hctx))
1427 blk_mq_run_hw_queue(hctx, async);
1430 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1433 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1434 * @q: request queue.
1436 * The caller is responsible for serializing this function against
1437 * blk_mq_{start,stop}_hw_queue().
1439 bool blk_mq_queue_stopped(struct request_queue *q)
1441 struct blk_mq_hw_ctx *hctx;
1444 queue_for_each_hw_ctx(q, hctx, i)
1445 if (blk_mq_hctx_stopped(hctx))
1450 EXPORT_SYMBOL(blk_mq_queue_stopped);
1453 * This function is often used for pausing .queue_rq() by driver when
1454 * there isn't enough resource or some conditions aren't satisfied, and
1455 * BLK_STS_RESOURCE is usually returned.
1457 * We do not guarantee that dispatch can be drained or blocked
1458 * after blk_mq_stop_hw_queue() returns. Please use
1459 * blk_mq_quiesce_queue() for that requirement.
1461 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1463 cancel_delayed_work(&hctx->run_work);
1465 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1467 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1470 * This function is often used for pausing .queue_rq() by driver when
1471 * there isn't enough resource or some conditions aren't satisfied, and
1472 * BLK_STS_RESOURCE is usually returned.
1474 * We do not guarantee that dispatch can be drained or blocked
1475 * after blk_mq_stop_hw_queues() returns. Please use
1476 * blk_mq_quiesce_queue() for that requirement.
1478 void blk_mq_stop_hw_queues(struct request_queue *q)
1480 struct blk_mq_hw_ctx *hctx;
1483 queue_for_each_hw_ctx(q, hctx, i)
1484 blk_mq_stop_hw_queue(hctx);
1486 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1488 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1490 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1492 blk_mq_run_hw_queue(hctx, false);
1494 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1496 void blk_mq_start_hw_queues(struct request_queue *q)
1498 struct blk_mq_hw_ctx *hctx;
1501 queue_for_each_hw_ctx(q, hctx, i)
1502 blk_mq_start_hw_queue(hctx);
1504 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1506 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1508 if (!blk_mq_hctx_stopped(hctx))
1511 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1512 blk_mq_run_hw_queue(hctx, async);
1514 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1516 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1518 struct blk_mq_hw_ctx *hctx;
1521 queue_for_each_hw_ctx(q, hctx, i)
1522 blk_mq_start_stopped_hw_queue(hctx, async);
1524 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1526 static void blk_mq_run_work_fn(struct work_struct *work)
1528 struct blk_mq_hw_ctx *hctx;
1530 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1533 * If we are stopped, don't run the queue.
1535 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1538 __blk_mq_run_hw_queue(hctx);
1541 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1545 struct blk_mq_ctx *ctx = rq->mq_ctx;
1547 lockdep_assert_held(&ctx->lock);
1549 trace_block_rq_insert(hctx->queue, rq);
1552 list_add(&rq->queuelist, &ctx->rq_list);
1554 list_add_tail(&rq->queuelist, &ctx->rq_list);
1557 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1560 struct blk_mq_ctx *ctx = rq->mq_ctx;
1562 lockdep_assert_held(&ctx->lock);
1564 __blk_mq_insert_req_list(hctx, rq, at_head);
1565 blk_mq_hctx_mark_pending(hctx, ctx);
1569 * Should only be used carefully, when the caller knows we want to
1570 * bypass a potential IO scheduler on the target device.
1572 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1574 struct blk_mq_ctx *ctx = rq->mq_ctx;
1575 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1577 spin_lock(&hctx->lock);
1578 list_add_tail(&rq->queuelist, &hctx->dispatch);
1579 spin_unlock(&hctx->lock);
1582 blk_mq_run_hw_queue(hctx, false);
1585 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1586 struct list_head *list)
1592 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1595 list_for_each_entry(rq, list, queuelist) {
1596 BUG_ON(rq->mq_ctx != ctx);
1597 trace_block_rq_insert(hctx->queue, rq);
1600 spin_lock(&ctx->lock);
1601 list_splice_tail_init(list, &ctx->rq_list);
1602 blk_mq_hctx_mark_pending(hctx, ctx);
1603 spin_unlock(&ctx->lock);
1606 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1608 struct request *rqa = container_of(a, struct request, queuelist);
1609 struct request *rqb = container_of(b, struct request, queuelist);
1611 return !(rqa->mq_ctx < rqb->mq_ctx ||
1612 (rqa->mq_ctx == rqb->mq_ctx &&
1613 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1616 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1618 struct blk_mq_ctx *this_ctx;
1619 struct request_queue *this_q;
1622 LIST_HEAD(ctx_list);
1625 list_splice_init(&plug->mq_list, &list);
1627 list_sort(NULL, &list, plug_ctx_cmp);
1633 while (!list_empty(&list)) {
1634 rq = list_entry_rq(list.next);
1635 list_del_init(&rq->queuelist);
1637 if (rq->mq_ctx != this_ctx) {
1639 trace_block_unplug(this_q, depth, !from_schedule);
1640 blk_mq_sched_insert_requests(this_q, this_ctx,
1645 this_ctx = rq->mq_ctx;
1651 list_add_tail(&rq->queuelist, &ctx_list);
1655 * If 'this_ctx' is set, we know we have entries to complete
1656 * on 'ctx_list'. Do those.
1659 trace_block_unplug(this_q, depth, !from_schedule);
1660 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1665 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1667 blk_init_request_from_bio(rq, bio);
1669 blk_account_io_start(rq, true);
1672 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1675 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1677 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1680 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1684 struct request_queue *q = rq->q;
1685 struct blk_mq_queue_data bd = {
1689 blk_qc_t new_cookie;
1692 new_cookie = request_to_qc_t(hctx, rq);
1695 * For OK queue, we are done. For error, caller may kill it.
1696 * Any other error (busy), just add it to our list as we
1697 * previously would have done.
1699 ret = q->mq_ops->queue_rq(hctx, &bd);
1702 blk_mq_update_dispatch_busy(hctx, false);
1703 *cookie = new_cookie;
1705 case BLK_STS_RESOURCE:
1706 case BLK_STS_DEV_RESOURCE:
1707 blk_mq_update_dispatch_busy(hctx, true);
1708 __blk_mq_requeue_request(rq);
1711 blk_mq_update_dispatch_busy(hctx, false);
1712 *cookie = BLK_QC_T_NONE;
1719 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1724 struct request_queue *q = rq->q;
1725 bool run_queue = true;
1728 * RCU or SRCU read lock is needed before checking quiesced flag.
1730 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1731 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1732 * and avoid driver to try to dispatch again.
1734 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1736 bypass_insert = false;
1740 if (q->elevator && !bypass_insert)
1743 if (!blk_mq_get_dispatch_budget(hctx))
1746 if (!blk_mq_get_driver_tag(rq)) {
1747 blk_mq_put_dispatch_budget(hctx);
1751 return __blk_mq_issue_directly(hctx, rq, cookie);
1754 return BLK_STS_RESOURCE;
1756 blk_mq_sched_insert_request(rq, false, run_queue, false);
1760 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1761 struct request *rq, blk_qc_t *cookie)
1766 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1768 hctx_lock(hctx, &srcu_idx);
1770 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1771 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1772 blk_mq_sched_insert_request(rq, false, true, false);
1773 else if (ret != BLK_STS_OK)
1774 blk_mq_end_request(rq, ret);
1776 hctx_unlock(hctx, srcu_idx);
1779 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1783 blk_qc_t unused_cookie;
1784 struct blk_mq_ctx *ctx = rq->mq_ctx;
1785 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1787 hctx_lock(hctx, &srcu_idx);
1788 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1789 hctx_unlock(hctx, srcu_idx);
1794 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1795 struct list_head *list)
1797 while (!list_empty(list)) {
1799 struct request *rq = list_first_entry(list, struct request,
1802 list_del_init(&rq->queuelist);
1803 ret = blk_mq_request_issue_directly(rq);
1804 if (ret != BLK_STS_OK) {
1805 if (ret == BLK_STS_RESOURCE ||
1806 ret == BLK_STS_DEV_RESOURCE) {
1807 list_add(&rq->queuelist, list);
1810 blk_mq_end_request(rq, ret);
1815 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1817 const int is_sync = op_is_sync(bio->bi_opf);
1818 const int is_flush_fua = op_is_flush(bio->bi_opf);
1819 struct blk_mq_alloc_data data = { .flags = 0 };
1821 unsigned int request_count = 0;
1822 struct blk_plug *plug;
1823 struct request *same_queue_rq = NULL;
1826 blk_queue_bounce(q, &bio);
1828 blk_queue_split(q, &bio);
1830 if (!bio_integrity_prep(bio))
1831 return BLK_QC_T_NONE;
1833 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1834 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1835 return BLK_QC_T_NONE;
1837 if (blk_mq_sched_bio_merge(q, bio))
1838 return BLK_QC_T_NONE;
1840 rq_qos_throttle(q, bio, NULL);
1842 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1843 if (unlikely(!rq)) {
1844 rq_qos_cleanup(q, bio);
1845 if (bio->bi_opf & REQ_NOWAIT)
1846 bio_wouldblock_error(bio);
1847 return BLK_QC_T_NONE;
1850 trace_block_getrq(q, bio, bio->bi_opf);
1852 rq_qos_track(q, rq, bio);
1854 cookie = request_to_qc_t(data.hctx, rq);
1856 plug = current->plug;
1857 if (unlikely(is_flush_fua)) {
1858 blk_mq_put_ctx(data.ctx);
1859 blk_mq_bio_to_request(rq, bio);
1861 /* bypass scheduler for flush rq */
1862 blk_insert_flush(rq);
1863 blk_mq_run_hw_queue(data.hctx, true);
1864 } else if (plug && q->nr_hw_queues == 1) {
1865 struct request *last = NULL;
1867 blk_mq_put_ctx(data.ctx);
1868 blk_mq_bio_to_request(rq, bio);
1871 * @request_count may become stale because of schedule
1872 * out, so check the list again.
1874 if (list_empty(&plug->mq_list))
1876 else if (blk_queue_nomerges(q))
1877 request_count = blk_plug_queued_count(q);
1880 trace_block_plug(q);
1882 last = list_entry_rq(plug->mq_list.prev);
1884 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1885 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1886 blk_flush_plug_list(plug, false);
1887 trace_block_plug(q);
1890 list_add_tail(&rq->queuelist, &plug->mq_list);
1891 } else if (plug && !blk_queue_nomerges(q)) {
1892 blk_mq_bio_to_request(rq, bio);
1895 * We do limited plugging. If the bio can be merged, do that.
1896 * Otherwise the existing request in the plug list will be
1897 * issued. So the plug list will have one request at most
1898 * The plug list might get flushed before this. If that happens,
1899 * the plug list is empty, and same_queue_rq is invalid.
1901 if (list_empty(&plug->mq_list))
1902 same_queue_rq = NULL;
1904 list_del_init(&same_queue_rq->queuelist);
1905 list_add_tail(&rq->queuelist, &plug->mq_list);
1907 blk_mq_put_ctx(data.ctx);
1909 if (same_queue_rq) {
1910 data.hctx = blk_mq_map_queue(q,
1911 same_queue_rq->mq_ctx->cpu);
1912 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1915 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1916 !data.hctx->dispatch_busy)) {
1917 blk_mq_put_ctx(data.ctx);
1918 blk_mq_bio_to_request(rq, bio);
1919 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1921 blk_mq_put_ctx(data.ctx);
1922 blk_mq_bio_to_request(rq, bio);
1923 blk_mq_sched_insert_request(rq, false, true, true);
1929 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1930 unsigned int hctx_idx)
1934 if (tags->rqs && set->ops->exit_request) {
1937 for (i = 0; i < tags->nr_tags; i++) {
1938 struct request *rq = tags->static_rqs[i];
1942 set->ops->exit_request(set, rq, hctx_idx);
1943 tags->static_rqs[i] = NULL;
1947 while (!list_empty(&tags->page_list)) {
1948 page = list_first_entry(&tags->page_list, struct page, lru);
1949 list_del_init(&page->lru);
1951 * Remove kmemleak object previously allocated in
1952 * blk_mq_init_rq_map().
1954 kmemleak_free(page_address(page));
1955 __free_pages(page, page->private);
1959 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1963 kfree(tags->static_rqs);
1964 tags->static_rqs = NULL;
1966 blk_mq_free_tags(tags);
1969 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1970 unsigned int hctx_idx,
1971 unsigned int nr_tags,
1972 unsigned int reserved_tags)
1974 struct blk_mq_tags *tags;
1977 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1978 if (node == NUMA_NO_NODE)
1979 node = set->numa_node;
1981 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1982 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1986 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1987 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1990 blk_mq_free_tags(tags);
1994 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1995 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1997 if (!tags->static_rqs) {
1999 blk_mq_free_tags(tags);
2006 static size_t order_to_size(unsigned int order)
2008 return (size_t)PAGE_SIZE << order;
2011 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2012 unsigned int hctx_idx, int node)
2016 if (set->ops->init_request) {
2017 ret = set->ops->init_request(set, rq, hctx_idx, node);
2022 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2026 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2027 unsigned int hctx_idx, unsigned int depth)
2029 unsigned int i, j, entries_per_page, max_order = 4;
2030 size_t rq_size, left;
2033 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2034 if (node == NUMA_NO_NODE)
2035 node = set->numa_node;
2037 INIT_LIST_HEAD(&tags->page_list);
2040 * rq_size is the size of the request plus driver payload, rounded
2041 * to the cacheline size
2043 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2045 left = rq_size * depth;
2047 for (i = 0; i < depth; ) {
2048 int this_order = max_order;
2053 while (this_order && left < order_to_size(this_order - 1))
2057 page = alloc_pages_node(node,
2058 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2064 if (order_to_size(this_order) < rq_size)
2071 page->private = this_order;
2072 list_add_tail(&page->lru, &tags->page_list);
2074 p = page_address(page);
2076 * Allow kmemleak to scan these pages as they contain pointers
2077 * to additional allocations like via ops->init_request().
2079 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2080 entries_per_page = order_to_size(this_order) / rq_size;
2081 to_do = min(entries_per_page, depth - i);
2082 left -= to_do * rq_size;
2083 for (j = 0; j < to_do; j++) {
2084 struct request *rq = p;
2086 tags->static_rqs[i] = rq;
2087 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2088 tags->static_rqs[i] = NULL;
2099 blk_mq_free_rqs(set, tags, hctx_idx);
2104 * 'cpu' is going away. splice any existing rq_list entries from this
2105 * software queue to the hw queue dispatch list, and ensure that it
2108 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2110 struct blk_mq_hw_ctx *hctx;
2111 struct blk_mq_ctx *ctx;
2114 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2115 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2117 spin_lock(&ctx->lock);
2118 if (!list_empty(&ctx->rq_list)) {
2119 list_splice_init(&ctx->rq_list, &tmp);
2120 blk_mq_hctx_clear_pending(hctx, ctx);
2122 spin_unlock(&ctx->lock);
2124 if (list_empty(&tmp))
2127 spin_lock(&hctx->lock);
2128 list_splice_tail_init(&tmp, &hctx->dispatch);
2129 spin_unlock(&hctx->lock);
2131 blk_mq_run_hw_queue(hctx, true);
2135 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2137 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2141 /* hctx->ctxs will be freed in queue's release handler */
2142 static void blk_mq_exit_hctx(struct request_queue *q,
2143 struct blk_mq_tag_set *set,
2144 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2146 if (blk_mq_hw_queue_mapped(hctx))
2147 blk_mq_tag_idle(hctx);
2149 if (set->ops->exit_request)
2150 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2152 if (set->ops->exit_hctx)
2153 set->ops->exit_hctx(hctx, hctx_idx);
2155 if (hctx->flags & BLK_MQ_F_BLOCKING)
2156 cleanup_srcu_struct(hctx->srcu);
2158 blk_mq_remove_cpuhp(hctx);
2159 blk_free_flush_queue(hctx->fq);
2160 sbitmap_free(&hctx->ctx_map);
2163 static void blk_mq_exit_hw_queues(struct request_queue *q,
2164 struct blk_mq_tag_set *set, int nr_queue)
2166 struct blk_mq_hw_ctx *hctx;
2169 queue_for_each_hw_ctx(q, hctx, i) {
2172 blk_mq_debugfs_unregister_hctx(hctx);
2173 blk_mq_exit_hctx(q, set, hctx, i);
2177 static int blk_mq_init_hctx(struct request_queue *q,
2178 struct blk_mq_tag_set *set,
2179 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2183 node = hctx->numa_node;
2184 if (node == NUMA_NO_NODE)
2185 node = hctx->numa_node = set->numa_node;
2187 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2188 spin_lock_init(&hctx->lock);
2189 INIT_LIST_HEAD(&hctx->dispatch);
2191 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2193 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2195 hctx->tags = set->tags[hctx_idx];
2198 * Allocate space for all possible cpus to avoid allocation at
2201 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2202 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2204 goto unregister_cpu_notifier;
2206 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2207 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2212 spin_lock_init(&hctx->dispatch_wait_lock);
2213 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2214 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2216 if (set->ops->init_hctx &&
2217 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2220 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2221 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2225 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2228 if (hctx->flags & BLK_MQ_F_BLOCKING)
2229 init_srcu_struct(hctx->srcu);
2236 if (set->ops->exit_hctx)
2237 set->ops->exit_hctx(hctx, hctx_idx);
2239 sbitmap_free(&hctx->ctx_map);
2242 unregister_cpu_notifier:
2243 blk_mq_remove_cpuhp(hctx);
2247 static void blk_mq_init_cpu_queues(struct request_queue *q,
2248 unsigned int nr_hw_queues)
2252 for_each_possible_cpu(i) {
2253 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2254 struct blk_mq_hw_ctx *hctx;
2257 spin_lock_init(&__ctx->lock);
2258 INIT_LIST_HEAD(&__ctx->rq_list);
2262 * Set local node, IFF we have more than one hw queue. If
2263 * not, we remain on the home node of the device
2265 hctx = blk_mq_map_queue(q, i);
2266 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2267 hctx->numa_node = local_memory_node(cpu_to_node(i));
2271 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2275 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2276 set->queue_depth, set->reserved_tags);
2277 if (!set->tags[hctx_idx])
2280 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2285 blk_mq_free_rq_map(set->tags[hctx_idx]);
2286 set->tags[hctx_idx] = NULL;
2290 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2291 unsigned int hctx_idx)
2293 if (set->tags[hctx_idx]) {
2294 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2295 blk_mq_free_rq_map(set->tags[hctx_idx]);
2296 set->tags[hctx_idx] = NULL;
2300 static void blk_mq_map_swqueue(struct request_queue *q)
2302 unsigned int i, hctx_idx;
2303 struct blk_mq_hw_ctx *hctx;
2304 struct blk_mq_ctx *ctx;
2305 struct blk_mq_tag_set *set = q->tag_set;
2308 * Avoid others reading imcomplete hctx->cpumask through sysfs
2310 mutex_lock(&q->sysfs_lock);
2312 queue_for_each_hw_ctx(q, hctx, i) {
2313 cpumask_clear(hctx->cpumask);
2315 hctx->dispatch_from = NULL;
2319 * Map software to hardware queues.
2321 * If the cpu isn't present, the cpu is mapped to first hctx.
2323 for_each_possible_cpu(i) {
2324 hctx_idx = q->mq_map[i];
2325 /* unmapped hw queue can be remapped after CPU topo changed */
2326 if (!set->tags[hctx_idx] &&
2327 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2329 * If tags initialization fail for some hctx,
2330 * that hctx won't be brought online. In this
2331 * case, remap the current ctx to hctx[0] which
2332 * is guaranteed to always have tags allocated
2337 ctx = per_cpu_ptr(q->queue_ctx, i);
2338 hctx = blk_mq_map_queue(q, i);
2340 cpumask_set_cpu(i, hctx->cpumask);
2341 ctx->index_hw = hctx->nr_ctx;
2342 hctx->ctxs[hctx->nr_ctx++] = ctx;
2345 mutex_unlock(&q->sysfs_lock);
2347 queue_for_each_hw_ctx(q, hctx, i) {
2349 * If no software queues are mapped to this hardware queue,
2350 * disable it and free the request entries.
2352 if (!hctx->nr_ctx) {
2353 /* Never unmap queue 0. We need it as a
2354 * fallback in case of a new remap fails
2357 if (i && set->tags[i])
2358 blk_mq_free_map_and_requests(set, i);
2364 hctx->tags = set->tags[i];
2365 WARN_ON(!hctx->tags);
2368 * Set the map size to the number of mapped software queues.
2369 * This is more accurate and more efficient than looping
2370 * over all possibly mapped software queues.
2372 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2375 * Initialize batch roundrobin counts
2377 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2378 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2383 * Caller needs to ensure that we're either frozen/quiesced, or that
2384 * the queue isn't live yet.
2386 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2388 struct blk_mq_hw_ctx *hctx;
2391 queue_for_each_hw_ctx(q, hctx, i) {
2393 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2395 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2399 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2402 struct request_queue *q;
2404 lockdep_assert_held(&set->tag_list_lock);
2406 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2407 blk_mq_freeze_queue(q);
2408 queue_set_hctx_shared(q, shared);
2409 blk_mq_unfreeze_queue(q);
2413 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2415 struct blk_mq_tag_set *set = q->tag_set;
2417 mutex_lock(&set->tag_list_lock);
2418 list_del_rcu(&q->tag_set_list);
2419 if (list_is_singular(&set->tag_list)) {
2420 /* just transitioned to unshared */
2421 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2422 /* update existing queue */
2423 blk_mq_update_tag_set_depth(set, false);
2425 mutex_unlock(&set->tag_list_lock);
2426 INIT_LIST_HEAD(&q->tag_set_list);
2429 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2430 struct request_queue *q)
2434 mutex_lock(&set->tag_list_lock);
2437 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2439 if (!list_empty(&set->tag_list) &&
2440 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2441 set->flags |= BLK_MQ_F_TAG_SHARED;
2442 /* update existing queue */
2443 blk_mq_update_tag_set_depth(set, true);
2445 if (set->flags & BLK_MQ_F_TAG_SHARED)
2446 queue_set_hctx_shared(q, true);
2447 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2449 mutex_unlock(&set->tag_list_lock);
2453 * It is the actual release handler for mq, but we do it from
2454 * request queue's release handler for avoiding use-after-free
2455 * and headache because q->mq_kobj shouldn't have been introduced,
2456 * but we can't group ctx/kctx kobj without it.
2458 void blk_mq_release(struct request_queue *q)
2460 struct blk_mq_hw_ctx *hctx;
2463 /* hctx kobj stays in hctx */
2464 queue_for_each_hw_ctx(q, hctx, i) {
2467 kobject_put(&hctx->kobj);
2472 kfree(q->queue_hw_ctx);
2475 * release .mq_kobj and sw queue's kobject now because
2476 * both share lifetime with request queue.
2478 blk_mq_sysfs_deinit(q);
2480 free_percpu(q->queue_ctx);
2483 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2485 struct request_queue *uninit_q, *q;
2487 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2489 return ERR_PTR(-ENOMEM);
2491 q = blk_mq_init_allocated_queue(set, uninit_q);
2493 blk_cleanup_queue(uninit_q);
2497 EXPORT_SYMBOL(blk_mq_init_queue);
2500 * Helper for setting up a queue with mq ops, given queue depth, and
2501 * the passed in mq ops flags.
2503 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2504 const struct blk_mq_ops *ops,
2505 unsigned int queue_depth,
2506 unsigned int set_flags)
2508 struct request_queue *q;
2511 memset(set, 0, sizeof(*set));
2513 set->nr_hw_queues = 1;
2514 set->queue_depth = queue_depth;
2515 set->numa_node = NUMA_NO_NODE;
2516 set->flags = set_flags;
2518 ret = blk_mq_alloc_tag_set(set);
2520 return ERR_PTR(ret);
2522 q = blk_mq_init_queue(set);
2524 blk_mq_free_tag_set(set);
2530 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2532 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2534 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2536 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2537 __alignof__(struct blk_mq_hw_ctx)) !=
2538 sizeof(struct blk_mq_hw_ctx));
2540 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2541 hw_ctx_size += sizeof(struct srcu_struct);
2546 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2547 struct blk_mq_tag_set *set, struct request_queue *q,
2548 int hctx_idx, int node)
2550 struct blk_mq_hw_ctx *hctx;
2552 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2553 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2558 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2559 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2565 atomic_set(&hctx->nr_active, 0);
2566 hctx->numa_node = node;
2567 hctx->queue_num = hctx_idx;
2569 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2570 free_cpumask_var(hctx->cpumask);
2574 blk_mq_hctx_kobj_init(hctx);
2579 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2580 struct request_queue *q)
2583 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2585 /* protect against switching io scheduler */
2586 mutex_lock(&q->sysfs_lock);
2587 for (i = 0; i < set->nr_hw_queues; i++) {
2589 struct blk_mq_hw_ctx *hctx;
2591 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2593 * If the hw queue has been mapped to another numa node,
2594 * we need to realloc the hctx. If allocation fails, fallback
2595 * to use the previous one.
2597 if (hctxs[i] && (hctxs[i]->numa_node == node))
2600 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2603 blk_mq_exit_hctx(q, set, hctxs[i], i);
2604 kobject_put(&hctxs[i]->kobj);
2609 pr_warn("Allocate new hctx on node %d fails,\
2610 fallback to previous one on node %d\n",
2611 node, hctxs[i]->numa_node);
2617 * Increasing nr_hw_queues fails. Free the newly allocated
2618 * hctxs and keep the previous q->nr_hw_queues.
2620 if (i != set->nr_hw_queues) {
2621 j = q->nr_hw_queues;
2625 end = q->nr_hw_queues;
2626 q->nr_hw_queues = set->nr_hw_queues;
2629 for (; j < end; j++) {
2630 struct blk_mq_hw_ctx *hctx = hctxs[j];
2634 blk_mq_free_map_and_requests(set, j);
2635 blk_mq_exit_hctx(q, set, hctx, j);
2636 kobject_put(&hctx->kobj);
2641 mutex_unlock(&q->sysfs_lock);
2644 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2645 struct request_queue *q)
2647 /* mark the queue as mq asap */
2648 q->mq_ops = set->ops;
2650 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2651 blk_mq_poll_stats_bkt,
2652 BLK_MQ_POLL_STATS_BKTS, q);
2656 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2660 /* init q->mq_kobj and sw queues' kobjects */
2661 blk_mq_sysfs_init(q);
2663 q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2664 GFP_KERNEL, set->numa_node);
2665 if (!q->queue_hw_ctx)
2668 q->mq_map = set->mq_map;
2670 blk_mq_realloc_hw_ctxs(set, q);
2671 if (!q->nr_hw_queues)
2674 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2675 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2677 q->nr_queues = nr_cpu_ids;
2679 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2681 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2682 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2684 q->sg_reserved_size = INT_MAX;
2686 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2687 INIT_LIST_HEAD(&q->requeue_list);
2688 spin_lock_init(&q->requeue_lock);
2690 blk_queue_make_request(q, blk_mq_make_request);
2691 if (q->mq_ops->poll)
2692 q->poll_fn = blk_mq_poll;
2695 * Do this after blk_queue_make_request() overrides it...
2697 q->nr_requests = set->queue_depth;
2700 * Default to classic polling
2704 if (set->ops->complete)
2705 blk_queue_softirq_done(q, set->ops->complete);
2707 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2708 blk_mq_add_queue_tag_set(set, q);
2709 blk_mq_map_swqueue(q);
2711 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2714 ret = elevator_init_mq(q);
2716 return ERR_PTR(ret);
2722 kfree(q->queue_hw_ctx);
2724 free_percpu(q->queue_ctx);
2727 return ERR_PTR(-ENOMEM);
2729 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2731 void blk_mq_free_queue(struct request_queue *q)
2733 struct blk_mq_tag_set *set = q->tag_set;
2735 blk_mq_del_queue_tag_set(q);
2736 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2739 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2743 for (i = 0; i < set->nr_hw_queues; i++)
2744 if (!__blk_mq_alloc_rq_map(set, i))
2751 blk_mq_free_rq_map(set->tags[i]);
2757 * Allocate the request maps associated with this tag_set. Note that this
2758 * may reduce the depth asked for, if memory is tight. set->queue_depth
2759 * will be updated to reflect the allocated depth.
2761 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2766 depth = set->queue_depth;
2768 err = __blk_mq_alloc_rq_maps(set);
2772 set->queue_depth >>= 1;
2773 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2777 } while (set->queue_depth);
2779 if (!set->queue_depth || err) {
2780 pr_err("blk-mq: failed to allocate request map\n");
2784 if (depth != set->queue_depth)
2785 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2786 depth, set->queue_depth);
2791 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2793 if (set->ops->map_queues) {
2795 * transport .map_queues is usually done in the following
2798 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2799 * mask = get_cpu_mask(queue)
2800 * for_each_cpu(cpu, mask)
2801 * set->mq_map[cpu] = queue;
2804 * When we need to remap, the table has to be cleared for
2805 * killing stale mapping since one CPU may not be mapped
2808 blk_mq_clear_mq_map(set);
2810 return set->ops->map_queues(set);
2812 return blk_mq_map_queues(set);
2816 * Alloc a tag set to be associated with one or more request queues.
2817 * May fail with EINVAL for various error conditions. May adjust the
2818 * requested depth down, if it's too large. In that case, the set
2819 * value will be stored in set->queue_depth.
2821 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2825 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2827 if (!set->nr_hw_queues)
2829 if (!set->queue_depth)
2831 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2834 if (!set->ops->queue_rq)
2837 if (!set->ops->get_budget ^ !set->ops->put_budget)
2840 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2841 pr_info("blk-mq: reduced tag depth to %u\n",
2843 set->queue_depth = BLK_MQ_MAX_DEPTH;
2847 * If a crashdump is active, then we are potentially in a very
2848 * memory constrained environment. Limit us to 1 queue and
2849 * 64 tags to prevent using too much memory.
2851 if (is_kdump_kernel()) {
2852 set->nr_hw_queues = 1;
2853 set->queue_depth = min(64U, set->queue_depth);
2856 * There is no use for more h/w queues than cpus.
2858 if (set->nr_hw_queues > nr_cpu_ids)
2859 set->nr_hw_queues = nr_cpu_ids;
2861 set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2862 GFP_KERNEL, set->numa_node);
2867 set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2868 GFP_KERNEL, set->numa_node);
2872 ret = blk_mq_update_queue_map(set);
2874 goto out_free_mq_map;
2876 ret = blk_mq_alloc_rq_maps(set);
2878 goto out_free_mq_map;
2880 mutex_init(&set->tag_list_lock);
2881 INIT_LIST_HEAD(&set->tag_list);
2893 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2895 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2899 for (i = 0; i < nr_cpu_ids; i++)
2900 blk_mq_free_map_and_requests(set, i);
2908 EXPORT_SYMBOL(blk_mq_free_tag_set);
2910 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2912 struct blk_mq_tag_set *set = q->tag_set;
2913 struct blk_mq_hw_ctx *hctx;
2919 blk_mq_freeze_queue(q);
2920 blk_mq_quiesce_queue(q);
2923 queue_for_each_hw_ctx(q, hctx, i) {
2927 * If we're using an MQ scheduler, just update the scheduler
2928 * queue depth. This is similar to what the old code would do.
2930 if (!hctx->sched_tags) {
2931 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2934 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2942 q->nr_requests = nr;
2944 blk_mq_unquiesce_queue(q);
2945 blk_mq_unfreeze_queue(q);
2951 * request_queue and elevator_type pair.
2952 * It is just used by __blk_mq_update_nr_hw_queues to cache
2953 * the elevator_type associated with a request_queue.
2955 struct blk_mq_qe_pair {
2956 struct list_head node;
2957 struct request_queue *q;
2958 struct elevator_type *type;
2962 * Cache the elevator_type in qe pair list and switch the
2963 * io scheduler to 'none'
2965 static bool blk_mq_elv_switch_none(struct list_head *head,
2966 struct request_queue *q)
2968 struct blk_mq_qe_pair *qe;
2973 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2977 INIT_LIST_HEAD(&qe->node);
2979 qe->type = q->elevator->type;
2980 list_add(&qe->node, head);
2982 mutex_lock(&q->sysfs_lock);
2984 * After elevator_switch_mq, the previous elevator_queue will be
2985 * released by elevator_release. The reference of the io scheduler
2986 * module get by elevator_get will also be put. So we need to get
2987 * a reference of the io scheduler module here to prevent it to be
2990 __module_get(qe->type->elevator_owner);
2991 elevator_switch_mq(q, NULL);
2992 mutex_unlock(&q->sysfs_lock);
2997 static void blk_mq_elv_switch_back(struct list_head *head,
2998 struct request_queue *q)
3000 struct blk_mq_qe_pair *qe;
3001 struct elevator_type *t = NULL;
3003 list_for_each_entry(qe, head, node)
3012 list_del(&qe->node);
3015 mutex_lock(&q->sysfs_lock);
3016 elevator_switch_mq(q, t);
3017 mutex_unlock(&q->sysfs_lock);
3020 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3023 struct request_queue *q;
3025 int prev_nr_hw_queues;
3027 lockdep_assert_held(&set->tag_list_lock);
3029 if (nr_hw_queues > nr_cpu_ids)
3030 nr_hw_queues = nr_cpu_ids;
3031 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3034 list_for_each_entry(q, &set->tag_list, tag_set_list)
3035 blk_mq_freeze_queue(q);
3037 * Sync with blk_mq_queue_tag_busy_iter.
3041 * Switch IO scheduler to 'none', cleaning up the data associated
3042 * with the previous scheduler. We will switch back once we are done
3043 * updating the new sw to hw queue mappings.
3045 list_for_each_entry(q, &set->tag_list, tag_set_list)
3046 if (!blk_mq_elv_switch_none(&head, q))
3049 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3050 blk_mq_debugfs_unregister_hctxs(q);
3051 blk_mq_sysfs_unregister(q);
3054 prev_nr_hw_queues = set->nr_hw_queues;
3055 set->nr_hw_queues = nr_hw_queues;
3056 blk_mq_update_queue_map(set);
3058 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3059 blk_mq_realloc_hw_ctxs(set, q);
3060 if (q->nr_hw_queues != set->nr_hw_queues) {
3061 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3062 nr_hw_queues, prev_nr_hw_queues);
3063 set->nr_hw_queues = prev_nr_hw_queues;
3064 blk_mq_map_queues(set);
3067 blk_mq_map_swqueue(q);
3070 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3071 blk_mq_sysfs_register(q);
3072 blk_mq_debugfs_register_hctxs(q);
3076 list_for_each_entry(q, &set->tag_list, tag_set_list)
3077 blk_mq_elv_switch_back(&head, q);
3079 list_for_each_entry(q, &set->tag_list, tag_set_list)
3080 blk_mq_unfreeze_queue(q);
3083 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3085 mutex_lock(&set->tag_list_lock);
3086 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3087 mutex_unlock(&set->tag_list_lock);
3089 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3091 /* Enable polling stats and return whether they were already enabled. */
3092 static bool blk_poll_stats_enable(struct request_queue *q)
3094 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3095 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3097 blk_stat_add_callback(q, q->poll_cb);
3101 static void blk_mq_poll_stats_start(struct request_queue *q)
3104 * We don't arm the callback if polling stats are not enabled or the
3105 * callback is already active.
3107 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3108 blk_stat_is_active(q->poll_cb))
3111 blk_stat_activate_msecs(q->poll_cb, 100);
3114 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3116 struct request_queue *q = cb->data;
3119 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3120 if (cb->stat[bucket].nr_samples)
3121 q->poll_stat[bucket] = cb->stat[bucket];
3125 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3126 struct blk_mq_hw_ctx *hctx,
3129 unsigned long ret = 0;
3133 * If stats collection isn't on, don't sleep but turn it on for
3136 if (!blk_poll_stats_enable(q))
3140 * As an optimistic guess, use half of the mean service time
3141 * for this type of request. We can (and should) make this smarter.
3142 * For instance, if the completion latencies are tight, we can
3143 * get closer than just half the mean. This is especially
3144 * important on devices where the completion latencies are longer
3145 * than ~10 usec. We do use the stats for the relevant IO size
3146 * if available which does lead to better estimates.
3148 bucket = blk_mq_poll_stats_bkt(rq);
3152 if (q->poll_stat[bucket].nr_samples)
3153 ret = (q->poll_stat[bucket].mean + 1) / 2;
3158 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3159 struct blk_mq_hw_ctx *hctx,
3162 struct hrtimer_sleeper hs;
3163 enum hrtimer_mode mode;
3167 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3173 * -1: don't ever hybrid sleep
3174 * 0: use half of prev avg
3175 * >0: use this specific value
3177 if (q->poll_nsec == -1)
3179 else if (q->poll_nsec > 0)
3180 nsecs = q->poll_nsec;
3182 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3187 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3190 * This will be replaced with the stats tracking code, using
3191 * 'avg_completion_time / 2' as the pre-sleep target.
3195 mode = HRTIMER_MODE_REL;
3196 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3197 hrtimer_set_expires(&hs.timer, kt);
3199 hrtimer_init_sleeper(&hs, current);
3201 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3203 set_current_state(TASK_UNINTERRUPTIBLE);
3204 hrtimer_start_expires(&hs.timer, mode);
3207 hrtimer_cancel(&hs.timer);
3208 mode = HRTIMER_MODE_ABS;
3209 } while (hs.task && !signal_pending(current));
3211 __set_current_state(TASK_RUNNING);
3212 destroy_hrtimer_on_stack(&hs.timer);
3216 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3218 struct request_queue *q = hctx->queue;
3222 * If we sleep, have the caller restart the poll loop to reset
3223 * the state. Like for the other success return cases, the
3224 * caller is responsible for checking if the IO completed. If
3225 * the IO isn't complete, we'll get called again and will go
3226 * straight to the busy poll loop.
3228 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3231 hctx->poll_considered++;
3233 state = current->state;
3234 while (!need_resched()) {
3237 hctx->poll_invoked++;
3239 ret = q->mq_ops->poll(hctx, rq->tag);
3241 hctx->poll_success++;
3242 set_current_state(TASK_RUNNING);
3246 if (signal_pending_state(state, current))
3247 set_current_state(TASK_RUNNING);
3249 if (current->state == TASK_RUNNING)
3256 __set_current_state(TASK_RUNNING);
3260 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3262 struct blk_mq_hw_ctx *hctx;
3265 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3268 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3269 if (!blk_qc_t_is_internal(cookie))
3270 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3272 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3274 * With scheduling, if the request has completed, we'll
3275 * get a NULL return here, as we clear the sched tag when
3276 * that happens. The request still remains valid, like always,
3277 * so we should be safe with just the NULL check.
3283 return __blk_mq_poll(hctx, rq);
3286 static int __init blk_mq_init(void)
3288 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3289 blk_mq_hctx_notify_dead);
3292 subsys_initcall(blk_mq_init);