]> Git Repo - linux.git/blob - block/blk-mq.c
block: remove request_list code
[linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
28
29 #include <trace/events/block.h>
30
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
40
41 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
42 static void blk_mq_poll_stats_start(struct request_queue *q);
43 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44
45 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 {
47         int ddir, bytes, bucket;
48
49         ddir = rq_data_dir(rq);
50         bytes = blk_rq_bytes(rq);
51
52         bucket = ddir + 2*(ilog2(bytes) - 9);
53
54         if (bucket < 0)
55                 return -1;
56         else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
57                 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58
59         return bucket;
60 }
61
62 /*
63  * Check if any of the ctx's have pending work in this hardware queue
64  */
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 {
67         return !list_empty_careful(&hctx->dispatch) ||
68                 sbitmap_any_bit_set(&hctx->ctx_map) ||
69                         blk_mq_sched_has_work(hctx);
70 }
71
72 /*
73  * Mark this ctx as having pending work in this hardware queue
74  */
75 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
76                                      struct blk_mq_ctx *ctx)
77 {
78         if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
79                 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
80 }
81
82 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
83                                       struct blk_mq_ctx *ctx)
84 {
85         sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
86 }
87
88 struct mq_inflight {
89         struct hd_struct *part;
90         unsigned int *inflight;
91 };
92
93 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
94                                   struct request *rq, void *priv,
95                                   bool reserved)
96 {
97         struct mq_inflight *mi = priv;
98
99         /*
100          * index[0] counts the specific partition that was asked for. index[1]
101          * counts the ones that are active on the whole device, so increment
102          * that if mi->part is indeed a partition, and not a whole device.
103          */
104         if (rq->part == mi->part)
105                 mi->inflight[0]++;
106         if (mi->part->partno)
107                 mi->inflight[1]++;
108 }
109
110 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
111                       unsigned int inflight[2])
112 {
113         struct mq_inflight mi = { .part = part, .inflight = inflight, };
114
115         inflight[0] = inflight[1] = 0;
116         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
117 }
118
119 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
120                                      struct request *rq, void *priv,
121                                      bool reserved)
122 {
123         struct mq_inflight *mi = priv;
124
125         if (rq->part == mi->part)
126                 mi->inflight[rq_data_dir(rq)]++;
127 }
128
129 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
130                          unsigned int inflight[2])
131 {
132         struct mq_inflight mi = { .part = part, .inflight = inflight, };
133
134         inflight[0] = inflight[1] = 0;
135         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
136 }
137
138 void blk_freeze_queue_start(struct request_queue *q)
139 {
140         int freeze_depth;
141
142         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
143         if (freeze_depth == 1) {
144                 percpu_ref_kill(&q->q_usage_counter);
145                 if (q->mq_ops)
146                         blk_mq_run_hw_queues(q, false);
147         }
148 }
149 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
150
151 void blk_mq_freeze_queue_wait(struct request_queue *q)
152 {
153         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
154 }
155 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
156
157 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
158                                      unsigned long timeout)
159 {
160         return wait_event_timeout(q->mq_freeze_wq,
161                                         percpu_ref_is_zero(&q->q_usage_counter),
162                                         timeout);
163 }
164 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
165
166 /*
167  * Guarantee no request is in use, so we can change any data structure of
168  * the queue afterward.
169  */
170 void blk_freeze_queue(struct request_queue *q)
171 {
172         /*
173          * In the !blk_mq case we are only calling this to kill the
174          * q_usage_counter, otherwise this increases the freeze depth
175          * and waits for it to return to zero.  For this reason there is
176          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
177          * exported to drivers as the only user for unfreeze is blk_mq.
178          */
179         blk_freeze_queue_start(q);
180         blk_mq_freeze_queue_wait(q);
181 }
182
183 void blk_mq_freeze_queue(struct request_queue *q)
184 {
185         /*
186          * ...just an alias to keep freeze and unfreeze actions balanced
187          * in the blk_mq_* namespace
188          */
189         blk_freeze_queue(q);
190 }
191 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
192
193 void blk_mq_unfreeze_queue(struct request_queue *q)
194 {
195         int freeze_depth;
196
197         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
198         WARN_ON_ONCE(freeze_depth < 0);
199         if (!freeze_depth) {
200                 percpu_ref_resurrect(&q->q_usage_counter);
201                 wake_up_all(&q->mq_freeze_wq);
202         }
203 }
204 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
205
206 /*
207  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
208  * mpt3sas driver such that this function can be removed.
209  */
210 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
211 {
212         blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
213 }
214 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
215
216 /**
217  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
218  * @q: request queue.
219  *
220  * Note: this function does not prevent that the struct request end_io()
221  * callback function is invoked. Once this function is returned, we make
222  * sure no dispatch can happen until the queue is unquiesced via
223  * blk_mq_unquiesce_queue().
224  */
225 void blk_mq_quiesce_queue(struct request_queue *q)
226 {
227         struct blk_mq_hw_ctx *hctx;
228         unsigned int i;
229         bool rcu = false;
230
231         blk_mq_quiesce_queue_nowait(q);
232
233         queue_for_each_hw_ctx(q, hctx, i) {
234                 if (hctx->flags & BLK_MQ_F_BLOCKING)
235                         synchronize_srcu(hctx->srcu);
236                 else
237                         rcu = true;
238         }
239         if (rcu)
240                 synchronize_rcu();
241 }
242 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
243
244 /*
245  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
246  * @q: request queue.
247  *
248  * This function recovers queue into the state before quiescing
249  * which is done by blk_mq_quiesce_queue.
250  */
251 void blk_mq_unquiesce_queue(struct request_queue *q)
252 {
253         blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
254
255         /* dispatch requests which are inserted during quiescing */
256         blk_mq_run_hw_queues(q, true);
257 }
258 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
259
260 void blk_mq_wake_waiters(struct request_queue *q)
261 {
262         struct blk_mq_hw_ctx *hctx;
263         unsigned int i;
264
265         queue_for_each_hw_ctx(q, hctx, i)
266                 if (blk_mq_hw_queue_mapped(hctx))
267                         blk_mq_tag_wakeup_all(hctx->tags, true);
268 }
269
270 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
271 {
272         return blk_mq_has_free_tags(hctx->tags);
273 }
274 EXPORT_SYMBOL(blk_mq_can_queue);
275
276 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
277                 unsigned int tag, unsigned int op)
278 {
279         struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
280         struct request *rq = tags->static_rqs[tag];
281         req_flags_t rq_flags = 0;
282
283         if (data->flags & BLK_MQ_REQ_INTERNAL) {
284                 rq->tag = -1;
285                 rq->internal_tag = tag;
286         } else {
287                 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
288                         rq_flags = RQF_MQ_INFLIGHT;
289                         atomic_inc(&data->hctx->nr_active);
290                 }
291                 rq->tag = tag;
292                 rq->internal_tag = -1;
293                 data->hctx->tags->rqs[rq->tag] = rq;
294         }
295
296         /* csd/requeue_work/fifo_time is initialized before use */
297         rq->q = data->q;
298         rq->mq_ctx = data->ctx;
299         rq->rq_flags = rq_flags;
300         rq->cpu = -1;
301         rq->cmd_flags = op;
302         if (data->flags & BLK_MQ_REQ_PREEMPT)
303                 rq->rq_flags |= RQF_PREEMPT;
304         if (blk_queue_io_stat(data->q))
305                 rq->rq_flags |= RQF_IO_STAT;
306         INIT_LIST_HEAD(&rq->queuelist);
307         INIT_HLIST_NODE(&rq->hash);
308         RB_CLEAR_NODE(&rq->rb_node);
309         rq->rq_disk = NULL;
310         rq->part = NULL;
311         rq->start_time_ns = ktime_get_ns();
312         rq->io_start_time_ns = 0;
313         rq->nr_phys_segments = 0;
314 #if defined(CONFIG_BLK_DEV_INTEGRITY)
315         rq->nr_integrity_segments = 0;
316 #endif
317         rq->special = NULL;
318         /* tag was already set */
319         rq->extra_len = 0;
320         rq->__deadline = 0;
321
322         INIT_LIST_HEAD(&rq->timeout_list);
323         rq->timeout = 0;
324
325         rq->end_io = NULL;
326         rq->end_io_data = NULL;
327         rq->next_rq = NULL;
328
329         data->ctx->rq_dispatched[op_is_sync(op)]++;
330         refcount_set(&rq->ref, 1);
331         return rq;
332 }
333
334 static struct request *blk_mq_get_request(struct request_queue *q,
335                 struct bio *bio, unsigned int op,
336                 struct blk_mq_alloc_data *data)
337 {
338         struct elevator_queue *e = q->elevator;
339         struct request *rq;
340         unsigned int tag;
341         bool put_ctx_on_error = false;
342
343         blk_queue_enter_live(q);
344         data->q = q;
345         if (likely(!data->ctx)) {
346                 data->ctx = blk_mq_get_ctx(q);
347                 put_ctx_on_error = true;
348         }
349         if (likely(!data->hctx))
350                 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
351         if (op & REQ_NOWAIT)
352                 data->flags |= BLK_MQ_REQ_NOWAIT;
353
354         if (e) {
355                 data->flags |= BLK_MQ_REQ_INTERNAL;
356
357                 /*
358                  * Flush requests are special and go directly to the
359                  * dispatch list. Don't include reserved tags in the
360                  * limiting, as it isn't useful.
361                  */
362                 if (!op_is_flush(op) && e->type->ops.limit_depth &&
363                     !(data->flags & BLK_MQ_REQ_RESERVED))
364                         e->type->ops.limit_depth(op, data);
365         } else {
366                 blk_mq_tag_busy(data->hctx);
367         }
368
369         tag = blk_mq_get_tag(data);
370         if (tag == BLK_MQ_TAG_FAIL) {
371                 if (put_ctx_on_error) {
372                         blk_mq_put_ctx(data->ctx);
373                         data->ctx = NULL;
374                 }
375                 blk_queue_exit(q);
376                 return NULL;
377         }
378
379         rq = blk_mq_rq_ctx_init(data, tag, op);
380         if (!op_is_flush(op)) {
381                 rq->elv.icq = NULL;
382                 if (e && e->type->ops.prepare_request) {
383                         if (e->type->icq_cache && rq_ioc(bio))
384                                 blk_mq_sched_assign_ioc(rq, bio);
385
386                         e->type->ops.prepare_request(rq, bio);
387                         rq->rq_flags |= RQF_ELVPRIV;
388                 }
389         }
390         data->hctx->queued++;
391         return rq;
392 }
393
394 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
395                 blk_mq_req_flags_t flags)
396 {
397         struct blk_mq_alloc_data alloc_data = { .flags = flags };
398         struct request *rq;
399         int ret;
400
401         ret = blk_queue_enter(q, flags);
402         if (ret)
403                 return ERR_PTR(ret);
404
405         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
406         blk_queue_exit(q);
407
408         if (!rq)
409                 return ERR_PTR(-EWOULDBLOCK);
410
411         blk_mq_put_ctx(alloc_data.ctx);
412
413         rq->__data_len = 0;
414         rq->__sector = (sector_t) -1;
415         rq->bio = rq->biotail = NULL;
416         return rq;
417 }
418 EXPORT_SYMBOL(blk_mq_alloc_request);
419
420 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
421         unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
422 {
423         struct blk_mq_alloc_data alloc_data = { .flags = flags };
424         struct request *rq;
425         unsigned int cpu;
426         int ret;
427
428         /*
429          * If the tag allocator sleeps we could get an allocation for a
430          * different hardware context.  No need to complicate the low level
431          * allocator for this for the rare use case of a command tied to
432          * a specific queue.
433          */
434         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
435                 return ERR_PTR(-EINVAL);
436
437         if (hctx_idx >= q->nr_hw_queues)
438                 return ERR_PTR(-EIO);
439
440         ret = blk_queue_enter(q, flags);
441         if (ret)
442                 return ERR_PTR(ret);
443
444         /*
445          * Check if the hardware context is actually mapped to anything.
446          * If not tell the caller that it should skip this queue.
447          */
448         alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
449         if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
450                 blk_queue_exit(q);
451                 return ERR_PTR(-EXDEV);
452         }
453         cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
454         alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
455
456         rq = blk_mq_get_request(q, NULL, op, &alloc_data);
457         blk_queue_exit(q);
458
459         if (!rq)
460                 return ERR_PTR(-EWOULDBLOCK);
461
462         return rq;
463 }
464 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
465
466 static void __blk_mq_free_request(struct request *rq)
467 {
468         struct request_queue *q = rq->q;
469         struct blk_mq_ctx *ctx = rq->mq_ctx;
470         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
471         const int sched_tag = rq->internal_tag;
472
473         blk_pm_mark_last_busy(rq);
474         if (rq->tag != -1)
475                 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
476         if (sched_tag != -1)
477                 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
478         blk_mq_sched_restart(hctx);
479         blk_queue_exit(q);
480 }
481
482 void blk_mq_free_request(struct request *rq)
483 {
484         struct request_queue *q = rq->q;
485         struct elevator_queue *e = q->elevator;
486         struct blk_mq_ctx *ctx = rq->mq_ctx;
487         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
488
489         if (rq->rq_flags & RQF_ELVPRIV) {
490                 if (e && e->type->ops.finish_request)
491                         e->type->ops.finish_request(rq);
492                 if (rq->elv.icq) {
493                         put_io_context(rq->elv.icq->ioc);
494                         rq->elv.icq = NULL;
495                 }
496         }
497
498         ctx->rq_completed[rq_is_sync(rq)]++;
499         if (rq->rq_flags & RQF_MQ_INFLIGHT)
500                 atomic_dec(&hctx->nr_active);
501
502         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
503                 laptop_io_completion(q->backing_dev_info);
504
505         rq_qos_done(q, rq);
506
507         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
508         if (refcount_dec_and_test(&rq->ref))
509                 __blk_mq_free_request(rq);
510 }
511 EXPORT_SYMBOL_GPL(blk_mq_free_request);
512
513 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
514 {
515         u64 now = ktime_get_ns();
516
517         if (rq->rq_flags & RQF_STATS) {
518                 blk_mq_poll_stats_start(rq->q);
519                 blk_stat_add(rq, now);
520         }
521
522         if (rq->internal_tag != -1)
523                 blk_mq_sched_completed_request(rq, now);
524
525         blk_account_io_done(rq, now);
526
527         if (rq->end_io) {
528                 rq_qos_done(rq->q, rq);
529                 rq->end_io(rq, error);
530         } else {
531                 if (unlikely(blk_bidi_rq(rq)))
532                         blk_mq_free_request(rq->next_rq);
533                 blk_mq_free_request(rq);
534         }
535 }
536 EXPORT_SYMBOL(__blk_mq_end_request);
537
538 void blk_mq_end_request(struct request *rq, blk_status_t error)
539 {
540         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
541                 BUG();
542         __blk_mq_end_request(rq, error);
543 }
544 EXPORT_SYMBOL(blk_mq_end_request);
545
546 static void __blk_mq_complete_request_remote(void *data)
547 {
548         struct request *rq = data;
549
550         rq->q->softirq_done_fn(rq);
551 }
552
553 static void __blk_mq_complete_request(struct request *rq)
554 {
555         struct blk_mq_ctx *ctx = rq->mq_ctx;
556         bool shared = false;
557         int cpu;
558
559         if (!blk_mq_mark_complete(rq))
560                 return;
561
562         /*
563          * Most of single queue controllers, there is only one irq vector
564          * for handling IO completion, and the only irq's affinity is set
565          * as all possible CPUs. On most of ARCHs, this affinity means the
566          * irq is handled on one specific CPU.
567          *
568          * So complete IO reqeust in softirq context in case of single queue
569          * for not degrading IO performance by irqsoff latency.
570          */
571         if (rq->q->nr_hw_queues == 1) {
572                 __blk_complete_request(rq);
573                 return;
574         }
575
576         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
577                 rq->q->softirq_done_fn(rq);
578                 return;
579         }
580
581         cpu = get_cpu();
582         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
583                 shared = cpus_share_cache(cpu, ctx->cpu);
584
585         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
586                 rq->csd.func = __blk_mq_complete_request_remote;
587                 rq->csd.info = rq;
588                 rq->csd.flags = 0;
589                 smp_call_function_single_async(ctx->cpu, &rq->csd);
590         } else {
591                 rq->q->softirq_done_fn(rq);
592         }
593         put_cpu();
594 }
595
596 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
597         __releases(hctx->srcu)
598 {
599         if (!(hctx->flags & BLK_MQ_F_BLOCKING))
600                 rcu_read_unlock();
601         else
602                 srcu_read_unlock(hctx->srcu, srcu_idx);
603 }
604
605 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
606         __acquires(hctx->srcu)
607 {
608         if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
609                 /* shut up gcc false positive */
610                 *srcu_idx = 0;
611                 rcu_read_lock();
612         } else
613                 *srcu_idx = srcu_read_lock(hctx->srcu);
614 }
615
616 /**
617  * blk_mq_complete_request - end I/O on a request
618  * @rq:         the request being processed
619  *
620  * Description:
621  *      Ends all I/O on a request. It does not handle partial completions.
622  *      The actual completion happens out-of-order, through a IPI handler.
623  **/
624 void blk_mq_complete_request(struct request *rq)
625 {
626         if (unlikely(blk_should_fake_timeout(rq->q)))
627                 return;
628         __blk_mq_complete_request(rq);
629 }
630 EXPORT_SYMBOL(blk_mq_complete_request);
631
632 int blk_mq_request_started(struct request *rq)
633 {
634         return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
635 }
636 EXPORT_SYMBOL_GPL(blk_mq_request_started);
637
638 void blk_mq_start_request(struct request *rq)
639 {
640         struct request_queue *q = rq->q;
641
642         blk_mq_sched_started_request(rq);
643
644         trace_block_rq_issue(q, rq);
645
646         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
647                 rq->io_start_time_ns = ktime_get_ns();
648 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
649                 rq->throtl_size = blk_rq_sectors(rq);
650 #endif
651                 rq->rq_flags |= RQF_STATS;
652                 rq_qos_issue(q, rq);
653         }
654
655         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
656
657         blk_add_timer(rq);
658         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
659
660         if (q->dma_drain_size && blk_rq_bytes(rq)) {
661                 /*
662                  * Make sure space for the drain appears.  We know we can do
663                  * this because max_hw_segments has been adjusted to be one
664                  * fewer than the device can handle.
665                  */
666                 rq->nr_phys_segments++;
667         }
668 }
669 EXPORT_SYMBOL(blk_mq_start_request);
670
671 static void __blk_mq_requeue_request(struct request *rq)
672 {
673         struct request_queue *q = rq->q;
674
675         blk_mq_put_driver_tag(rq);
676
677         trace_block_rq_requeue(q, rq);
678         rq_qos_requeue(q, rq);
679
680         if (blk_mq_request_started(rq)) {
681                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
682                 rq->rq_flags &= ~RQF_TIMED_OUT;
683                 if (q->dma_drain_size && blk_rq_bytes(rq))
684                         rq->nr_phys_segments--;
685         }
686 }
687
688 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
689 {
690         __blk_mq_requeue_request(rq);
691
692         /* this request will be re-inserted to io scheduler queue */
693         blk_mq_sched_requeue_request(rq);
694
695         BUG_ON(blk_queued_rq(rq));
696         blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
697 }
698 EXPORT_SYMBOL(blk_mq_requeue_request);
699
700 static void blk_mq_requeue_work(struct work_struct *work)
701 {
702         struct request_queue *q =
703                 container_of(work, struct request_queue, requeue_work.work);
704         LIST_HEAD(rq_list);
705         struct request *rq, *next;
706
707         spin_lock_irq(&q->requeue_lock);
708         list_splice_init(&q->requeue_list, &rq_list);
709         spin_unlock_irq(&q->requeue_lock);
710
711         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
712                 if (!(rq->rq_flags & RQF_SOFTBARRIER))
713                         continue;
714
715                 rq->rq_flags &= ~RQF_SOFTBARRIER;
716                 list_del_init(&rq->queuelist);
717                 blk_mq_sched_insert_request(rq, true, false, false);
718         }
719
720         while (!list_empty(&rq_list)) {
721                 rq = list_entry(rq_list.next, struct request, queuelist);
722                 list_del_init(&rq->queuelist);
723                 blk_mq_sched_insert_request(rq, false, false, false);
724         }
725
726         blk_mq_run_hw_queues(q, false);
727 }
728
729 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
730                                 bool kick_requeue_list)
731 {
732         struct request_queue *q = rq->q;
733         unsigned long flags;
734
735         /*
736          * We abuse this flag that is otherwise used by the I/O scheduler to
737          * request head insertion from the workqueue.
738          */
739         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
740
741         spin_lock_irqsave(&q->requeue_lock, flags);
742         if (at_head) {
743                 rq->rq_flags |= RQF_SOFTBARRIER;
744                 list_add(&rq->queuelist, &q->requeue_list);
745         } else {
746                 list_add_tail(&rq->queuelist, &q->requeue_list);
747         }
748         spin_unlock_irqrestore(&q->requeue_lock, flags);
749
750         if (kick_requeue_list)
751                 blk_mq_kick_requeue_list(q);
752 }
753 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
754
755 void blk_mq_kick_requeue_list(struct request_queue *q)
756 {
757         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
758 }
759 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
760
761 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
762                                     unsigned long msecs)
763 {
764         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
765                                     msecs_to_jiffies(msecs));
766 }
767 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
768
769 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
770 {
771         if (tag < tags->nr_tags) {
772                 prefetch(tags->rqs[tag]);
773                 return tags->rqs[tag];
774         }
775
776         return NULL;
777 }
778 EXPORT_SYMBOL(blk_mq_tag_to_rq);
779
780 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
781 {
782         req->rq_flags |= RQF_TIMED_OUT;
783         if (req->q->mq_ops->timeout) {
784                 enum blk_eh_timer_return ret;
785
786                 ret = req->q->mq_ops->timeout(req, reserved);
787                 if (ret == BLK_EH_DONE)
788                         return;
789                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
790         }
791
792         blk_add_timer(req);
793 }
794
795 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
796 {
797         unsigned long deadline;
798
799         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
800                 return false;
801         if (rq->rq_flags & RQF_TIMED_OUT)
802                 return false;
803
804         deadline = blk_rq_deadline(rq);
805         if (time_after_eq(jiffies, deadline))
806                 return true;
807
808         if (*next == 0)
809                 *next = deadline;
810         else if (time_after(*next, deadline))
811                 *next = deadline;
812         return false;
813 }
814
815 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
816                 struct request *rq, void *priv, bool reserved)
817 {
818         unsigned long *next = priv;
819
820         /*
821          * Just do a quick check if it is expired before locking the request in
822          * so we're not unnecessarilly synchronizing across CPUs.
823          */
824         if (!blk_mq_req_expired(rq, next))
825                 return;
826
827         /*
828          * We have reason to believe the request may be expired. Take a
829          * reference on the request to lock this request lifetime into its
830          * currently allocated context to prevent it from being reallocated in
831          * the event the completion by-passes this timeout handler.
832          *
833          * If the reference was already released, then the driver beat the
834          * timeout handler to posting a natural completion.
835          */
836         if (!refcount_inc_not_zero(&rq->ref))
837                 return;
838
839         /*
840          * The request is now locked and cannot be reallocated underneath the
841          * timeout handler's processing. Re-verify this exact request is truly
842          * expired; if it is not expired, then the request was completed and
843          * reallocated as a new request.
844          */
845         if (blk_mq_req_expired(rq, next))
846                 blk_mq_rq_timed_out(rq, reserved);
847         if (refcount_dec_and_test(&rq->ref))
848                 __blk_mq_free_request(rq);
849 }
850
851 static void blk_mq_timeout_work(struct work_struct *work)
852 {
853         struct request_queue *q =
854                 container_of(work, struct request_queue, timeout_work);
855         unsigned long next = 0;
856         struct blk_mq_hw_ctx *hctx;
857         int i;
858
859         /* A deadlock might occur if a request is stuck requiring a
860          * timeout at the same time a queue freeze is waiting
861          * completion, since the timeout code would not be able to
862          * acquire the queue reference here.
863          *
864          * That's why we don't use blk_queue_enter here; instead, we use
865          * percpu_ref_tryget directly, because we need to be able to
866          * obtain a reference even in the short window between the queue
867          * starting to freeze, by dropping the first reference in
868          * blk_freeze_queue_start, and the moment the last request is
869          * consumed, marked by the instant q_usage_counter reaches
870          * zero.
871          */
872         if (!percpu_ref_tryget(&q->q_usage_counter))
873                 return;
874
875         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
876
877         if (next != 0) {
878                 mod_timer(&q->timeout, next);
879         } else {
880                 /*
881                  * Request timeouts are handled as a forward rolling timer. If
882                  * we end up here it means that no requests are pending and
883                  * also that no request has been pending for a while. Mark
884                  * each hctx as idle.
885                  */
886                 queue_for_each_hw_ctx(q, hctx, i) {
887                         /* the hctx may be unmapped, so check it here */
888                         if (blk_mq_hw_queue_mapped(hctx))
889                                 blk_mq_tag_idle(hctx);
890                 }
891         }
892         blk_queue_exit(q);
893 }
894
895 struct flush_busy_ctx_data {
896         struct blk_mq_hw_ctx *hctx;
897         struct list_head *list;
898 };
899
900 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
901 {
902         struct flush_busy_ctx_data *flush_data = data;
903         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
904         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
905
906         spin_lock(&ctx->lock);
907         list_splice_tail_init(&ctx->rq_list, flush_data->list);
908         sbitmap_clear_bit(sb, bitnr);
909         spin_unlock(&ctx->lock);
910         return true;
911 }
912
913 /*
914  * Process software queues that have been marked busy, splicing them
915  * to the for-dispatch
916  */
917 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
918 {
919         struct flush_busy_ctx_data data = {
920                 .hctx = hctx,
921                 .list = list,
922         };
923
924         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
925 }
926 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
927
928 struct dispatch_rq_data {
929         struct blk_mq_hw_ctx *hctx;
930         struct request *rq;
931 };
932
933 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
934                 void *data)
935 {
936         struct dispatch_rq_data *dispatch_data = data;
937         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
938         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
939
940         spin_lock(&ctx->lock);
941         if (!list_empty(&ctx->rq_list)) {
942                 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
943                 list_del_init(&dispatch_data->rq->queuelist);
944                 if (list_empty(&ctx->rq_list))
945                         sbitmap_clear_bit(sb, bitnr);
946         }
947         spin_unlock(&ctx->lock);
948
949         return !dispatch_data->rq;
950 }
951
952 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
953                                         struct blk_mq_ctx *start)
954 {
955         unsigned off = start ? start->index_hw : 0;
956         struct dispatch_rq_data data = {
957                 .hctx = hctx,
958                 .rq   = NULL,
959         };
960
961         __sbitmap_for_each_set(&hctx->ctx_map, off,
962                                dispatch_rq_from_ctx, &data);
963
964         return data.rq;
965 }
966
967 static inline unsigned int queued_to_index(unsigned int queued)
968 {
969         if (!queued)
970                 return 0;
971
972         return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
973 }
974
975 bool blk_mq_get_driver_tag(struct request *rq)
976 {
977         struct blk_mq_alloc_data data = {
978                 .q = rq->q,
979                 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
980                 .flags = BLK_MQ_REQ_NOWAIT,
981         };
982         bool shared;
983
984         if (rq->tag != -1)
985                 goto done;
986
987         if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
988                 data.flags |= BLK_MQ_REQ_RESERVED;
989
990         shared = blk_mq_tag_busy(data.hctx);
991         rq->tag = blk_mq_get_tag(&data);
992         if (rq->tag >= 0) {
993                 if (shared) {
994                         rq->rq_flags |= RQF_MQ_INFLIGHT;
995                         atomic_inc(&data.hctx->nr_active);
996                 }
997                 data.hctx->tags->rqs[rq->tag] = rq;
998         }
999
1000 done:
1001         return rq->tag != -1;
1002 }
1003
1004 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1005                                 int flags, void *key)
1006 {
1007         struct blk_mq_hw_ctx *hctx;
1008
1009         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1010
1011         spin_lock(&hctx->dispatch_wait_lock);
1012         list_del_init(&wait->entry);
1013         spin_unlock(&hctx->dispatch_wait_lock);
1014
1015         blk_mq_run_hw_queue(hctx, true);
1016         return 1;
1017 }
1018
1019 /*
1020  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1021  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1022  * restart. For both cases, take care to check the condition again after
1023  * marking us as waiting.
1024  */
1025 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1026                                  struct request *rq)
1027 {
1028         struct wait_queue_head *wq;
1029         wait_queue_entry_t *wait;
1030         bool ret;
1031
1032         if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1033                 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1034                         set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1035
1036                 /*
1037                  * It's possible that a tag was freed in the window between the
1038                  * allocation failure and adding the hardware queue to the wait
1039                  * queue.
1040                  *
1041                  * Don't clear RESTART here, someone else could have set it.
1042                  * At most this will cost an extra queue run.
1043                  */
1044                 return blk_mq_get_driver_tag(rq);
1045         }
1046
1047         wait = &hctx->dispatch_wait;
1048         if (!list_empty_careful(&wait->entry))
1049                 return false;
1050
1051         wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1052
1053         spin_lock_irq(&wq->lock);
1054         spin_lock(&hctx->dispatch_wait_lock);
1055         if (!list_empty(&wait->entry)) {
1056                 spin_unlock(&hctx->dispatch_wait_lock);
1057                 spin_unlock_irq(&wq->lock);
1058                 return false;
1059         }
1060
1061         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1062         __add_wait_queue(wq, wait);
1063
1064         /*
1065          * It's possible that a tag was freed in the window between the
1066          * allocation failure and adding the hardware queue to the wait
1067          * queue.
1068          */
1069         ret = blk_mq_get_driver_tag(rq);
1070         if (!ret) {
1071                 spin_unlock(&hctx->dispatch_wait_lock);
1072                 spin_unlock_irq(&wq->lock);
1073                 return false;
1074         }
1075
1076         /*
1077          * We got a tag, remove ourselves from the wait queue to ensure
1078          * someone else gets the wakeup.
1079          */
1080         list_del_init(&wait->entry);
1081         spin_unlock(&hctx->dispatch_wait_lock);
1082         spin_unlock_irq(&wq->lock);
1083
1084         return true;
1085 }
1086
1087 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1088 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1089 /*
1090  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1091  * - EWMA is one simple way to compute running average value
1092  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1093  * - take 4 as factor for avoiding to get too small(0) result, and this
1094  *   factor doesn't matter because EWMA decreases exponentially
1095  */
1096 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1097 {
1098         unsigned int ewma;
1099
1100         if (hctx->queue->elevator)
1101                 return;
1102
1103         ewma = hctx->dispatch_busy;
1104
1105         if (!ewma && !busy)
1106                 return;
1107
1108         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1109         if (busy)
1110                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1111         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1112
1113         hctx->dispatch_busy = ewma;
1114 }
1115
1116 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1117
1118 /*
1119  * Returns true if we did some work AND can potentially do more.
1120  */
1121 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1122                              bool got_budget)
1123 {
1124         struct blk_mq_hw_ctx *hctx;
1125         struct request *rq, *nxt;
1126         bool no_tag = false;
1127         int errors, queued;
1128         blk_status_t ret = BLK_STS_OK;
1129
1130         if (list_empty(list))
1131                 return false;
1132
1133         WARN_ON(!list_is_singular(list) && got_budget);
1134
1135         /*
1136          * Now process all the entries, sending them to the driver.
1137          */
1138         errors = queued = 0;
1139         do {
1140                 struct blk_mq_queue_data bd;
1141
1142                 rq = list_first_entry(list, struct request, queuelist);
1143
1144                 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1145                 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1146                         break;
1147
1148                 if (!blk_mq_get_driver_tag(rq)) {
1149                         /*
1150                          * The initial allocation attempt failed, so we need to
1151                          * rerun the hardware queue when a tag is freed. The
1152                          * waitqueue takes care of that. If the queue is run
1153                          * before we add this entry back on the dispatch list,
1154                          * we'll re-run it below.
1155                          */
1156                         if (!blk_mq_mark_tag_wait(hctx, rq)) {
1157                                 blk_mq_put_dispatch_budget(hctx);
1158                                 /*
1159                                  * For non-shared tags, the RESTART check
1160                                  * will suffice.
1161                                  */
1162                                 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1163                                         no_tag = true;
1164                                 break;
1165                         }
1166                 }
1167
1168                 list_del_init(&rq->queuelist);
1169
1170                 bd.rq = rq;
1171
1172                 /*
1173                  * Flag last if we have no more requests, or if we have more
1174                  * but can't assign a driver tag to it.
1175                  */
1176                 if (list_empty(list))
1177                         bd.last = true;
1178                 else {
1179                         nxt = list_first_entry(list, struct request, queuelist);
1180                         bd.last = !blk_mq_get_driver_tag(nxt);
1181                 }
1182
1183                 ret = q->mq_ops->queue_rq(hctx, &bd);
1184                 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1185                         /*
1186                          * If an I/O scheduler has been configured and we got a
1187                          * driver tag for the next request already, free it
1188                          * again.
1189                          */
1190                         if (!list_empty(list)) {
1191                                 nxt = list_first_entry(list, struct request, queuelist);
1192                                 blk_mq_put_driver_tag(nxt);
1193                         }
1194                         list_add(&rq->queuelist, list);
1195                         __blk_mq_requeue_request(rq);
1196                         break;
1197                 }
1198
1199                 if (unlikely(ret != BLK_STS_OK)) {
1200                         errors++;
1201                         blk_mq_end_request(rq, BLK_STS_IOERR);
1202                         continue;
1203                 }
1204
1205                 queued++;
1206         } while (!list_empty(list));
1207
1208         hctx->dispatched[queued_to_index(queued)]++;
1209
1210         /*
1211          * Any items that need requeuing? Stuff them into hctx->dispatch,
1212          * that is where we will continue on next queue run.
1213          */
1214         if (!list_empty(list)) {
1215                 bool needs_restart;
1216
1217                 spin_lock(&hctx->lock);
1218                 list_splice_init(list, &hctx->dispatch);
1219                 spin_unlock(&hctx->lock);
1220
1221                 /*
1222                  * If SCHED_RESTART was set by the caller of this function and
1223                  * it is no longer set that means that it was cleared by another
1224                  * thread and hence that a queue rerun is needed.
1225                  *
1226                  * If 'no_tag' is set, that means that we failed getting
1227                  * a driver tag with an I/O scheduler attached. If our dispatch
1228                  * waitqueue is no longer active, ensure that we run the queue
1229                  * AFTER adding our entries back to the list.
1230                  *
1231                  * If no I/O scheduler has been configured it is possible that
1232                  * the hardware queue got stopped and restarted before requests
1233                  * were pushed back onto the dispatch list. Rerun the queue to
1234                  * avoid starvation. Notes:
1235                  * - blk_mq_run_hw_queue() checks whether or not a queue has
1236                  *   been stopped before rerunning a queue.
1237                  * - Some but not all block drivers stop a queue before
1238                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1239                  *   and dm-rq.
1240                  *
1241                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1242                  * bit is set, run queue after a delay to avoid IO stalls
1243                  * that could otherwise occur if the queue is idle.
1244                  */
1245                 needs_restart = blk_mq_sched_needs_restart(hctx);
1246                 if (!needs_restart ||
1247                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1248                         blk_mq_run_hw_queue(hctx, true);
1249                 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1250                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1251
1252                 blk_mq_update_dispatch_busy(hctx, true);
1253                 return false;
1254         } else
1255                 blk_mq_update_dispatch_busy(hctx, false);
1256
1257         /*
1258          * If the host/device is unable to accept more work, inform the
1259          * caller of that.
1260          */
1261         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1262                 return false;
1263
1264         return (queued + errors) != 0;
1265 }
1266
1267 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1268 {
1269         int srcu_idx;
1270
1271         /*
1272          * We should be running this queue from one of the CPUs that
1273          * are mapped to it.
1274          *
1275          * There are at least two related races now between setting
1276          * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1277          * __blk_mq_run_hw_queue():
1278          *
1279          * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1280          *   but later it becomes online, then this warning is harmless
1281          *   at all
1282          *
1283          * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1284          *   but later it becomes offline, then the warning can't be
1285          *   triggered, and we depend on blk-mq timeout handler to
1286          *   handle dispatched requests to this hctx
1287          */
1288         if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1289                 cpu_online(hctx->next_cpu)) {
1290                 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1291                         raw_smp_processor_id(),
1292                         cpumask_empty(hctx->cpumask) ? "inactive": "active");
1293                 dump_stack();
1294         }
1295
1296         /*
1297          * We can't run the queue inline with ints disabled. Ensure that
1298          * we catch bad users of this early.
1299          */
1300         WARN_ON_ONCE(in_interrupt());
1301
1302         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1303
1304         hctx_lock(hctx, &srcu_idx);
1305         blk_mq_sched_dispatch_requests(hctx);
1306         hctx_unlock(hctx, srcu_idx);
1307 }
1308
1309 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1310 {
1311         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1312
1313         if (cpu >= nr_cpu_ids)
1314                 cpu = cpumask_first(hctx->cpumask);
1315         return cpu;
1316 }
1317
1318 /*
1319  * It'd be great if the workqueue API had a way to pass
1320  * in a mask and had some smarts for more clever placement.
1321  * For now we just round-robin here, switching for every
1322  * BLK_MQ_CPU_WORK_BATCH queued items.
1323  */
1324 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1325 {
1326         bool tried = false;
1327         int next_cpu = hctx->next_cpu;
1328
1329         if (hctx->queue->nr_hw_queues == 1)
1330                 return WORK_CPU_UNBOUND;
1331
1332         if (--hctx->next_cpu_batch <= 0) {
1333 select_cpu:
1334                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1335                                 cpu_online_mask);
1336                 if (next_cpu >= nr_cpu_ids)
1337                         next_cpu = blk_mq_first_mapped_cpu(hctx);
1338                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1339         }
1340
1341         /*
1342          * Do unbound schedule if we can't find a online CPU for this hctx,
1343          * and it should only happen in the path of handling CPU DEAD.
1344          */
1345         if (!cpu_online(next_cpu)) {
1346                 if (!tried) {
1347                         tried = true;
1348                         goto select_cpu;
1349                 }
1350
1351                 /*
1352                  * Make sure to re-select CPU next time once after CPUs
1353                  * in hctx->cpumask become online again.
1354                  */
1355                 hctx->next_cpu = next_cpu;
1356                 hctx->next_cpu_batch = 1;
1357                 return WORK_CPU_UNBOUND;
1358         }
1359
1360         hctx->next_cpu = next_cpu;
1361         return next_cpu;
1362 }
1363
1364 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1365                                         unsigned long msecs)
1366 {
1367         if (unlikely(blk_mq_hctx_stopped(hctx)))
1368                 return;
1369
1370         if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1371                 int cpu = get_cpu();
1372                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1373                         __blk_mq_run_hw_queue(hctx);
1374                         put_cpu();
1375                         return;
1376                 }
1377
1378                 put_cpu();
1379         }
1380
1381         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1382                                     msecs_to_jiffies(msecs));
1383 }
1384
1385 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1386 {
1387         __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1388 }
1389 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1390
1391 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1392 {
1393         int srcu_idx;
1394         bool need_run;
1395
1396         /*
1397          * When queue is quiesced, we may be switching io scheduler, or
1398          * updating nr_hw_queues, or other things, and we can't run queue
1399          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1400          *
1401          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1402          * quiesced.
1403          */
1404         hctx_lock(hctx, &srcu_idx);
1405         need_run = !blk_queue_quiesced(hctx->queue) &&
1406                 blk_mq_hctx_has_pending(hctx);
1407         hctx_unlock(hctx, srcu_idx);
1408
1409         if (need_run) {
1410                 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1411                 return true;
1412         }
1413
1414         return false;
1415 }
1416 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1417
1418 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1419 {
1420         struct blk_mq_hw_ctx *hctx;
1421         int i;
1422
1423         queue_for_each_hw_ctx(q, hctx, i) {
1424                 if (blk_mq_hctx_stopped(hctx))
1425                         continue;
1426
1427                 blk_mq_run_hw_queue(hctx, async);
1428         }
1429 }
1430 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1431
1432 /**
1433  * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1434  * @q: request queue.
1435  *
1436  * The caller is responsible for serializing this function against
1437  * blk_mq_{start,stop}_hw_queue().
1438  */
1439 bool blk_mq_queue_stopped(struct request_queue *q)
1440 {
1441         struct blk_mq_hw_ctx *hctx;
1442         int i;
1443
1444         queue_for_each_hw_ctx(q, hctx, i)
1445                 if (blk_mq_hctx_stopped(hctx))
1446                         return true;
1447
1448         return false;
1449 }
1450 EXPORT_SYMBOL(blk_mq_queue_stopped);
1451
1452 /*
1453  * This function is often used for pausing .queue_rq() by driver when
1454  * there isn't enough resource or some conditions aren't satisfied, and
1455  * BLK_STS_RESOURCE is usually returned.
1456  *
1457  * We do not guarantee that dispatch can be drained or blocked
1458  * after blk_mq_stop_hw_queue() returns. Please use
1459  * blk_mq_quiesce_queue() for that requirement.
1460  */
1461 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1462 {
1463         cancel_delayed_work(&hctx->run_work);
1464
1465         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1466 }
1467 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1468
1469 /*
1470  * This function is often used for pausing .queue_rq() by driver when
1471  * there isn't enough resource or some conditions aren't satisfied, and
1472  * BLK_STS_RESOURCE is usually returned.
1473  *
1474  * We do not guarantee that dispatch can be drained or blocked
1475  * after blk_mq_stop_hw_queues() returns. Please use
1476  * blk_mq_quiesce_queue() for that requirement.
1477  */
1478 void blk_mq_stop_hw_queues(struct request_queue *q)
1479 {
1480         struct blk_mq_hw_ctx *hctx;
1481         int i;
1482
1483         queue_for_each_hw_ctx(q, hctx, i)
1484                 blk_mq_stop_hw_queue(hctx);
1485 }
1486 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1487
1488 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1489 {
1490         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1491
1492         blk_mq_run_hw_queue(hctx, false);
1493 }
1494 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1495
1496 void blk_mq_start_hw_queues(struct request_queue *q)
1497 {
1498         struct blk_mq_hw_ctx *hctx;
1499         int i;
1500
1501         queue_for_each_hw_ctx(q, hctx, i)
1502                 blk_mq_start_hw_queue(hctx);
1503 }
1504 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1505
1506 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1507 {
1508         if (!blk_mq_hctx_stopped(hctx))
1509                 return;
1510
1511         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1512         blk_mq_run_hw_queue(hctx, async);
1513 }
1514 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1515
1516 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1517 {
1518         struct blk_mq_hw_ctx *hctx;
1519         int i;
1520
1521         queue_for_each_hw_ctx(q, hctx, i)
1522                 blk_mq_start_stopped_hw_queue(hctx, async);
1523 }
1524 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1525
1526 static void blk_mq_run_work_fn(struct work_struct *work)
1527 {
1528         struct blk_mq_hw_ctx *hctx;
1529
1530         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1531
1532         /*
1533          * If we are stopped, don't run the queue.
1534          */
1535         if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1536                 return;
1537
1538         __blk_mq_run_hw_queue(hctx);
1539 }
1540
1541 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1542                                             struct request *rq,
1543                                             bool at_head)
1544 {
1545         struct blk_mq_ctx *ctx = rq->mq_ctx;
1546
1547         lockdep_assert_held(&ctx->lock);
1548
1549         trace_block_rq_insert(hctx->queue, rq);
1550
1551         if (at_head)
1552                 list_add(&rq->queuelist, &ctx->rq_list);
1553         else
1554                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1555 }
1556
1557 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1558                              bool at_head)
1559 {
1560         struct blk_mq_ctx *ctx = rq->mq_ctx;
1561
1562         lockdep_assert_held(&ctx->lock);
1563
1564         __blk_mq_insert_req_list(hctx, rq, at_head);
1565         blk_mq_hctx_mark_pending(hctx, ctx);
1566 }
1567
1568 /*
1569  * Should only be used carefully, when the caller knows we want to
1570  * bypass a potential IO scheduler on the target device.
1571  */
1572 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1573 {
1574         struct blk_mq_ctx *ctx = rq->mq_ctx;
1575         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1576
1577         spin_lock(&hctx->lock);
1578         list_add_tail(&rq->queuelist, &hctx->dispatch);
1579         spin_unlock(&hctx->lock);
1580
1581         if (run_queue)
1582                 blk_mq_run_hw_queue(hctx, false);
1583 }
1584
1585 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1586                             struct list_head *list)
1587
1588 {
1589         struct request *rq;
1590
1591         /*
1592          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1593          * offline now
1594          */
1595         list_for_each_entry(rq, list, queuelist) {
1596                 BUG_ON(rq->mq_ctx != ctx);
1597                 trace_block_rq_insert(hctx->queue, rq);
1598         }
1599
1600         spin_lock(&ctx->lock);
1601         list_splice_tail_init(list, &ctx->rq_list);
1602         blk_mq_hctx_mark_pending(hctx, ctx);
1603         spin_unlock(&ctx->lock);
1604 }
1605
1606 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1607 {
1608         struct request *rqa = container_of(a, struct request, queuelist);
1609         struct request *rqb = container_of(b, struct request, queuelist);
1610
1611         return !(rqa->mq_ctx < rqb->mq_ctx ||
1612                  (rqa->mq_ctx == rqb->mq_ctx &&
1613                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1614 }
1615
1616 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1617 {
1618         struct blk_mq_ctx *this_ctx;
1619         struct request_queue *this_q;
1620         struct request *rq;
1621         LIST_HEAD(list);
1622         LIST_HEAD(ctx_list);
1623         unsigned int depth;
1624
1625         list_splice_init(&plug->mq_list, &list);
1626
1627         list_sort(NULL, &list, plug_ctx_cmp);
1628
1629         this_q = NULL;
1630         this_ctx = NULL;
1631         depth = 0;
1632
1633         while (!list_empty(&list)) {
1634                 rq = list_entry_rq(list.next);
1635                 list_del_init(&rq->queuelist);
1636                 BUG_ON(!rq->q);
1637                 if (rq->mq_ctx != this_ctx) {
1638                         if (this_ctx) {
1639                                 trace_block_unplug(this_q, depth, !from_schedule);
1640                                 blk_mq_sched_insert_requests(this_q, this_ctx,
1641                                                                 &ctx_list,
1642                                                                 from_schedule);
1643                         }
1644
1645                         this_ctx = rq->mq_ctx;
1646                         this_q = rq->q;
1647                         depth = 0;
1648                 }
1649
1650                 depth++;
1651                 list_add_tail(&rq->queuelist, &ctx_list);
1652         }
1653
1654         /*
1655          * If 'this_ctx' is set, we know we have entries to complete
1656          * on 'ctx_list'. Do those.
1657          */
1658         if (this_ctx) {
1659                 trace_block_unplug(this_q, depth, !from_schedule);
1660                 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1661                                                 from_schedule);
1662         }
1663 }
1664
1665 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1666 {
1667         blk_init_request_from_bio(rq, bio);
1668
1669         blk_account_io_start(rq, true);
1670 }
1671
1672 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1673 {
1674         if (rq->tag != -1)
1675                 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1676
1677         return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1678 }
1679
1680 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1681                                             struct request *rq,
1682                                             blk_qc_t *cookie)
1683 {
1684         struct request_queue *q = rq->q;
1685         struct blk_mq_queue_data bd = {
1686                 .rq = rq,
1687                 .last = true,
1688         };
1689         blk_qc_t new_cookie;
1690         blk_status_t ret;
1691
1692         new_cookie = request_to_qc_t(hctx, rq);
1693
1694         /*
1695          * For OK queue, we are done. For error, caller may kill it.
1696          * Any other error (busy), just add it to our list as we
1697          * previously would have done.
1698          */
1699         ret = q->mq_ops->queue_rq(hctx, &bd);
1700         switch (ret) {
1701         case BLK_STS_OK:
1702                 blk_mq_update_dispatch_busy(hctx, false);
1703                 *cookie = new_cookie;
1704                 break;
1705         case BLK_STS_RESOURCE:
1706         case BLK_STS_DEV_RESOURCE:
1707                 blk_mq_update_dispatch_busy(hctx, true);
1708                 __blk_mq_requeue_request(rq);
1709                 break;
1710         default:
1711                 blk_mq_update_dispatch_busy(hctx, false);
1712                 *cookie = BLK_QC_T_NONE;
1713                 break;
1714         }
1715
1716         return ret;
1717 }
1718
1719 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1720                                                 struct request *rq,
1721                                                 blk_qc_t *cookie,
1722                                                 bool bypass_insert)
1723 {
1724         struct request_queue *q = rq->q;
1725         bool run_queue = true;
1726
1727         /*
1728          * RCU or SRCU read lock is needed before checking quiesced flag.
1729          *
1730          * When queue is stopped or quiesced, ignore 'bypass_insert' from
1731          * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1732          * and avoid driver to try to dispatch again.
1733          */
1734         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1735                 run_queue = false;
1736                 bypass_insert = false;
1737                 goto insert;
1738         }
1739
1740         if (q->elevator && !bypass_insert)
1741                 goto insert;
1742
1743         if (!blk_mq_get_dispatch_budget(hctx))
1744                 goto insert;
1745
1746         if (!blk_mq_get_driver_tag(rq)) {
1747                 blk_mq_put_dispatch_budget(hctx);
1748                 goto insert;
1749         }
1750
1751         return __blk_mq_issue_directly(hctx, rq, cookie);
1752 insert:
1753         if (bypass_insert)
1754                 return BLK_STS_RESOURCE;
1755
1756         blk_mq_sched_insert_request(rq, false, run_queue, false);
1757         return BLK_STS_OK;
1758 }
1759
1760 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1761                 struct request *rq, blk_qc_t *cookie)
1762 {
1763         blk_status_t ret;
1764         int srcu_idx;
1765
1766         might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1767
1768         hctx_lock(hctx, &srcu_idx);
1769
1770         ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1771         if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1772                 blk_mq_sched_insert_request(rq, false, true, false);
1773         else if (ret != BLK_STS_OK)
1774                 blk_mq_end_request(rq, ret);
1775
1776         hctx_unlock(hctx, srcu_idx);
1777 }
1778
1779 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1780 {
1781         blk_status_t ret;
1782         int srcu_idx;
1783         blk_qc_t unused_cookie;
1784         struct blk_mq_ctx *ctx = rq->mq_ctx;
1785         struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1786
1787         hctx_lock(hctx, &srcu_idx);
1788         ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1789         hctx_unlock(hctx, srcu_idx);
1790
1791         return ret;
1792 }
1793
1794 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1795                 struct list_head *list)
1796 {
1797         while (!list_empty(list)) {
1798                 blk_status_t ret;
1799                 struct request *rq = list_first_entry(list, struct request,
1800                                 queuelist);
1801
1802                 list_del_init(&rq->queuelist);
1803                 ret = blk_mq_request_issue_directly(rq);
1804                 if (ret != BLK_STS_OK) {
1805                         if (ret == BLK_STS_RESOURCE ||
1806                                         ret == BLK_STS_DEV_RESOURCE) {
1807                                 list_add(&rq->queuelist, list);
1808                                 break;
1809                         }
1810                         blk_mq_end_request(rq, ret);
1811                 }
1812         }
1813 }
1814
1815 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1816 {
1817         const int is_sync = op_is_sync(bio->bi_opf);
1818         const int is_flush_fua = op_is_flush(bio->bi_opf);
1819         struct blk_mq_alloc_data data = { .flags = 0 };
1820         struct request *rq;
1821         unsigned int request_count = 0;
1822         struct blk_plug *plug;
1823         struct request *same_queue_rq = NULL;
1824         blk_qc_t cookie;
1825
1826         blk_queue_bounce(q, &bio);
1827
1828         blk_queue_split(q, &bio);
1829
1830         if (!bio_integrity_prep(bio))
1831                 return BLK_QC_T_NONE;
1832
1833         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1834             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1835                 return BLK_QC_T_NONE;
1836
1837         if (blk_mq_sched_bio_merge(q, bio))
1838                 return BLK_QC_T_NONE;
1839
1840         rq_qos_throttle(q, bio, NULL);
1841
1842         rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1843         if (unlikely(!rq)) {
1844                 rq_qos_cleanup(q, bio);
1845                 if (bio->bi_opf & REQ_NOWAIT)
1846                         bio_wouldblock_error(bio);
1847                 return BLK_QC_T_NONE;
1848         }
1849
1850         trace_block_getrq(q, bio, bio->bi_opf);
1851
1852         rq_qos_track(q, rq, bio);
1853
1854         cookie = request_to_qc_t(data.hctx, rq);
1855
1856         plug = current->plug;
1857         if (unlikely(is_flush_fua)) {
1858                 blk_mq_put_ctx(data.ctx);
1859                 blk_mq_bio_to_request(rq, bio);
1860
1861                 /* bypass scheduler for flush rq */
1862                 blk_insert_flush(rq);
1863                 blk_mq_run_hw_queue(data.hctx, true);
1864         } else if (plug && q->nr_hw_queues == 1) {
1865                 struct request *last = NULL;
1866
1867                 blk_mq_put_ctx(data.ctx);
1868                 blk_mq_bio_to_request(rq, bio);
1869
1870                 /*
1871                  * @request_count may become stale because of schedule
1872                  * out, so check the list again.
1873                  */
1874                 if (list_empty(&plug->mq_list))
1875                         request_count = 0;
1876                 else if (blk_queue_nomerges(q))
1877                         request_count = blk_plug_queued_count(q);
1878
1879                 if (!request_count)
1880                         trace_block_plug(q);
1881                 else
1882                         last = list_entry_rq(plug->mq_list.prev);
1883
1884                 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1885                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1886                         blk_flush_plug_list(plug, false);
1887                         trace_block_plug(q);
1888                 }
1889
1890                 list_add_tail(&rq->queuelist, &plug->mq_list);
1891         } else if (plug && !blk_queue_nomerges(q)) {
1892                 blk_mq_bio_to_request(rq, bio);
1893
1894                 /*
1895                  * We do limited plugging. If the bio can be merged, do that.
1896                  * Otherwise the existing request in the plug list will be
1897                  * issued. So the plug list will have one request at most
1898                  * The plug list might get flushed before this. If that happens,
1899                  * the plug list is empty, and same_queue_rq is invalid.
1900                  */
1901                 if (list_empty(&plug->mq_list))
1902                         same_queue_rq = NULL;
1903                 if (same_queue_rq)
1904                         list_del_init(&same_queue_rq->queuelist);
1905                 list_add_tail(&rq->queuelist, &plug->mq_list);
1906
1907                 blk_mq_put_ctx(data.ctx);
1908
1909                 if (same_queue_rq) {
1910                         data.hctx = blk_mq_map_queue(q,
1911                                         same_queue_rq->mq_ctx->cpu);
1912                         blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1913                                         &cookie);
1914                 }
1915         } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1916                         !data.hctx->dispatch_busy)) {
1917                 blk_mq_put_ctx(data.ctx);
1918                 blk_mq_bio_to_request(rq, bio);
1919                 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1920         } else {
1921                 blk_mq_put_ctx(data.ctx);
1922                 blk_mq_bio_to_request(rq, bio);
1923                 blk_mq_sched_insert_request(rq, false, true, true);
1924         }
1925
1926         return cookie;
1927 }
1928
1929 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1930                      unsigned int hctx_idx)
1931 {
1932         struct page *page;
1933
1934         if (tags->rqs && set->ops->exit_request) {
1935                 int i;
1936
1937                 for (i = 0; i < tags->nr_tags; i++) {
1938                         struct request *rq = tags->static_rqs[i];
1939
1940                         if (!rq)
1941                                 continue;
1942                         set->ops->exit_request(set, rq, hctx_idx);
1943                         tags->static_rqs[i] = NULL;
1944                 }
1945         }
1946
1947         while (!list_empty(&tags->page_list)) {
1948                 page = list_first_entry(&tags->page_list, struct page, lru);
1949                 list_del_init(&page->lru);
1950                 /*
1951                  * Remove kmemleak object previously allocated in
1952                  * blk_mq_init_rq_map().
1953                  */
1954                 kmemleak_free(page_address(page));
1955                 __free_pages(page, page->private);
1956         }
1957 }
1958
1959 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1960 {
1961         kfree(tags->rqs);
1962         tags->rqs = NULL;
1963         kfree(tags->static_rqs);
1964         tags->static_rqs = NULL;
1965
1966         blk_mq_free_tags(tags);
1967 }
1968
1969 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1970                                         unsigned int hctx_idx,
1971                                         unsigned int nr_tags,
1972                                         unsigned int reserved_tags)
1973 {
1974         struct blk_mq_tags *tags;
1975         int node;
1976
1977         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1978         if (node == NUMA_NO_NODE)
1979                 node = set->numa_node;
1980
1981         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1982                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1983         if (!tags)
1984                 return NULL;
1985
1986         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1987                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1988                                  node);
1989         if (!tags->rqs) {
1990                 blk_mq_free_tags(tags);
1991                 return NULL;
1992         }
1993
1994         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1995                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1996                                         node);
1997         if (!tags->static_rqs) {
1998                 kfree(tags->rqs);
1999                 blk_mq_free_tags(tags);
2000                 return NULL;
2001         }
2002
2003         return tags;
2004 }
2005
2006 static size_t order_to_size(unsigned int order)
2007 {
2008         return (size_t)PAGE_SIZE << order;
2009 }
2010
2011 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2012                                unsigned int hctx_idx, int node)
2013 {
2014         int ret;
2015
2016         if (set->ops->init_request) {
2017                 ret = set->ops->init_request(set, rq, hctx_idx, node);
2018                 if (ret)
2019                         return ret;
2020         }
2021
2022         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2023         return 0;
2024 }
2025
2026 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2027                      unsigned int hctx_idx, unsigned int depth)
2028 {
2029         unsigned int i, j, entries_per_page, max_order = 4;
2030         size_t rq_size, left;
2031         int node;
2032
2033         node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2034         if (node == NUMA_NO_NODE)
2035                 node = set->numa_node;
2036
2037         INIT_LIST_HEAD(&tags->page_list);
2038
2039         /*
2040          * rq_size is the size of the request plus driver payload, rounded
2041          * to the cacheline size
2042          */
2043         rq_size = round_up(sizeof(struct request) + set->cmd_size,
2044                                 cache_line_size());
2045         left = rq_size * depth;
2046
2047         for (i = 0; i < depth; ) {
2048                 int this_order = max_order;
2049                 struct page *page;
2050                 int to_do;
2051                 void *p;
2052
2053                 while (this_order && left < order_to_size(this_order - 1))
2054                         this_order--;
2055
2056                 do {
2057                         page = alloc_pages_node(node,
2058                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2059                                 this_order);
2060                         if (page)
2061                                 break;
2062                         if (!this_order--)
2063                                 break;
2064                         if (order_to_size(this_order) < rq_size)
2065                                 break;
2066                 } while (1);
2067
2068                 if (!page)
2069                         goto fail;
2070
2071                 page->private = this_order;
2072                 list_add_tail(&page->lru, &tags->page_list);
2073
2074                 p = page_address(page);
2075                 /*
2076                  * Allow kmemleak to scan these pages as they contain pointers
2077                  * to additional allocations like via ops->init_request().
2078                  */
2079                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2080                 entries_per_page = order_to_size(this_order) / rq_size;
2081                 to_do = min(entries_per_page, depth - i);
2082                 left -= to_do * rq_size;
2083                 for (j = 0; j < to_do; j++) {
2084                         struct request *rq = p;
2085
2086                         tags->static_rqs[i] = rq;
2087                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2088                                 tags->static_rqs[i] = NULL;
2089                                 goto fail;
2090                         }
2091
2092                         p += rq_size;
2093                         i++;
2094                 }
2095         }
2096         return 0;
2097
2098 fail:
2099         blk_mq_free_rqs(set, tags, hctx_idx);
2100         return -ENOMEM;
2101 }
2102
2103 /*
2104  * 'cpu' is going away. splice any existing rq_list entries from this
2105  * software queue to the hw queue dispatch list, and ensure that it
2106  * gets run.
2107  */
2108 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2109 {
2110         struct blk_mq_hw_ctx *hctx;
2111         struct blk_mq_ctx *ctx;
2112         LIST_HEAD(tmp);
2113
2114         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2115         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2116
2117         spin_lock(&ctx->lock);
2118         if (!list_empty(&ctx->rq_list)) {
2119                 list_splice_init(&ctx->rq_list, &tmp);
2120                 blk_mq_hctx_clear_pending(hctx, ctx);
2121         }
2122         spin_unlock(&ctx->lock);
2123
2124         if (list_empty(&tmp))
2125                 return 0;
2126
2127         spin_lock(&hctx->lock);
2128         list_splice_tail_init(&tmp, &hctx->dispatch);
2129         spin_unlock(&hctx->lock);
2130
2131         blk_mq_run_hw_queue(hctx, true);
2132         return 0;
2133 }
2134
2135 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2136 {
2137         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2138                                             &hctx->cpuhp_dead);
2139 }
2140
2141 /* hctx->ctxs will be freed in queue's release handler */
2142 static void blk_mq_exit_hctx(struct request_queue *q,
2143                 struct blk_mq_tag_set *set,
2144                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2145 {
2146         if (blk_mq_hw_queue_mapped(hctx))
2147                 blk_mq_tag_idle(hctx);
2148
2149         if (set->ops->exit_request)
2150                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2151
2152         if (set->ops->exit_hctx)
2153                 set->ops->exit_hctx(hctx, hctx_idx);
2154
2155         if (hctx->flags & BLK_MQ_F_BLOCKING)
2156                 cleanup_srcu_struct(hctx->srcu);
2157
2158         blk_mq_remove_cpuhp(hctx);
2159         blk_free_flush_queue(hctx->fq);
2160         sbitmap_free(&hctx->ctx_map);
2161 }
2162
2163 static void blk_mq_exit_hw_queues(struct request_queue *q,
2164                 struct blk_mq_tag_set *set, int nr_queue)
2165 {
2166         struct blk_mq_hw_ctx *hctx;
2167         unsigned int i;
2168
2169         queue_for_each_hw_ctx(q, hctx, i) {
2170                 if (i == nr_queue)
2171                         break;
2172                 blk_mq_debugfs_unregister_hctx(hctx);
2173                 blk_mq_exit_hctx(q, set, hctx, i);
2174         }
2175 }
2176
2177 static int blk_mq_init_hctx(struct request_queue *q,
2178                 struct blk_mq_tag_set *set,
2179                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2180 {
2181         int node;
2182
2183         node = hctx->numa_node;
2184         if (node == NUMA_NO_NODE)
2185                 node = hctx->numa_node = set->numa_node;
2186
2187         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2188         spin_lock_init(&hctx->lock);
2189         INIT_LIST_HEAD(&hctx->dispatch);
2190         hctx->queue = q;
2191         hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2192
2193         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2194
2195         hctx->tags = set->tags[hctx_idx];
2196
2197         /*
2198          * Allocate space for all possible cpus to avoid allocation at
2199          * runtime
2200          */
2201         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2202                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2203         if (!hctx->ctxs)
2204                 goto unregister_cpu_notifier;
2205
2206         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2207                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2208                 goto free_ctxs;
2209
2210         hctx->nr_ctx = 0;
2211
2212         spin_lock_init(&hctx->dispatch_wait_lock);
2213         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2214         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2215
2216         if (set->ops->init_hctx &&
2217             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2218                 goto free_bitmap;
2219
2220         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2221                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2222         if (!hctx->fq)
2223                 goto exit_hctx;
2224
2225         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2226                 goto free_fq;
2227
2228         if (hctx->flags & BLK_MQ_F_BLOCKING)
2229                 init_srcu_struct(hctx->srcu);
2230
2231         return 0;
2232
2233  free_fq:
2234         kfree(hctx->fq);
2235  exit_hctx:
2236         if (set->ops->exit_hctx)
2237                 set->ops->exit_hctx(hctx, hctx_idx);
2238  free_bitmap:
2239         sbitmap_free(&hctx->ctx_map);
2240  free_ctxs:
2241         kfree(hctx->ctxs);
2242  unregister_cpu_notifier:
2243         blk_mq_remove_cpuhp(hctx);
2244         return -1;
2245 }
2246
2247 static void blk_mq_init_cpu_queues(struct request_queue *q,
2248                                    unsigned int nr_hw_queues)
2249 {
2250         unsigned int i;
2251
2252         for_each_possible_cpu(i) {
2253                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2254                 struct blk_mq_hw_ctx *hctx;
2255
2256                 __ctx->cpu = i;
2257                 spin_lock_init(&__ctx->lock);
2258                 INIT_LIST_HEAD(&__ctx->rq_list);
2259                 __ctx->queue = q;
2260
2261                 /*
2262                  * Set local node, IFF we have more than one hw queue. If
2263                  * not, we remain on the home node of the device
2264                  */
2265                 hctx = blk_mq_map_queue(q, i);
2266                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2267                         hctx->numa_node = local_memory_node(cpu_to_node(i));
2268         }
2269 }
2270
2271 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2272 {
2273         int ret = 0;
2274
2275         set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2276                                         set->queue_depth, set->reserved_tags);
2277         if (!set->tags[hctx_idx])
2278                 return false;
2279
2280         ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2281                                 set->queue_depth);
2282         if (!ret)
2283                 return true;
2284
2285         blk_mq_free_rq_map(set->tags[hctx_idx]);
2286         set->tags[hctx_idx] = NULL;
2287         return false;
2288 }
2289
2290 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2291                                          unsigned int hctx_idx)
2292 {
2293         if (set->tags[hctx_idx]) {
2294                 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2295                 blk_mq_free_rq_map(set->tags[hctx_idx]);
2296                 set->tags[hctx_idx] = NULL;
2297         }
2298 }
2299
2300 static void blk_mq_map_swqueue(struct request_queue *q)
2301 {
2302         unsigned int i, hctx_idx;
2303         struct blk_mq_hw_ctx *hctx;
2304         struct blk_mq_ctx *ctx;
2305         struct blk_mq_tag_set *set = q->tag_set;
2306
2307         /*
2308          * Avoid others reading imcomplete hctx->cpumask through sysfs
2309          */
2310         mutex_lock(&q->sysfs_lock);
2311
2312         queue_for_each_hw_ctx(q, hctx, i) {
2313                 cpumask_clear(hctx->cpumask);
2314                 hctx->nr_ctx = 0;
2315                 hctx->dispatch_from = NULL;
2316         }
2317
2318         /*
2319          * Map software to hardware queues.
2320          *
2321          * If the cpu isn't present, the cpu is mapped to first hctx.
2322          */
2323         for_each_possible_cpu(i) {
2324                 hctx_idx = q->mq_map[i];
2325                 /* unmapped hw queue can be remapped after CPU topo changed */
2326                 if (!set->tags[hctx_idx] &&
2327                     !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2328                         /*
2329                          * If tags initialization fail for some hctx,
2330                          * that hctx won't be brought online.  In this
2331                          * case, remap the current ctx to hctx[0] which
2332                          * is guaranteed to always have tags allocated
2333                          */
2334                         q->mq_map[i] = 0;
2335                 }
2336
2337                 ctx = per_cpu_ptr(q->queue_ctx, i);
2338                 hctx = blk_mq_map_queue(q, i);
2339
2340                 cpumask_set_cpu(i, hctx->cpumask);
2341                 ctx->index_hw = hctx->nr_ctx;
2342                 hctx->ctxs[hctx->nr_ctx++] = ctx;
2343         }
2344
2345         mutex_unlock(&q->sysfs_lock);
2346
2347         queue_for_each_hw_ctx(q, hctx, i) {
2348                 /*
2349                  * If no software queues are mapped to this hardware queue,
2350                  * disable it and free the request entries.
2351                  */
2352                 if (!hctx->nr_ctx) {
2353                         /* Never unmap queue 0.  We need it as a
2354                          * fallback in case of a new remap fails
2355                          * allocation
2356                          */
2357                         if (i && set->tags[i])
2358                                 blk_mq_free_map_and_requests(set, i);
2359
2360                         hctx->tags = NULL;
2361                         continue;
2362                 }
2363
2364                 hctx->tags = set->tags[i];
2365                 WARN_ON(!hctx->tags);
2366
2367                 /*
2368                  * Set the map size to the number of mapped software queues.
2369                  * This is more accurate and more efficient than looping
2370                  * over all possibly mapped software queues.
2371                  */
2372                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2373
2374                 /*
2375                  * Initialize batch roundrobin counts
2376                  */
2377                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2378                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2379         }
2380 }
2381
2382 /*
2383  * Caller needs to ensure that we're either frozen/quiesced, or that
2384  * the queue isn't live yet.
2385  */
2386 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2387 {
2388         struct blk_mq_hw_ctx *hctx;
2389         int i;
2390
2391         queue_for_each_hw_ctx(q, hctx, i) {
2392                 if (shared)
2393                         hctx->flags |= BLK_MQ_F_TAG_SHARED;
2394                 else
2395                         hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2396         }
2397 }
2398
2399 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2400                                         bool shared)
2401 {
2402         struct request_queue *q;
2403
2404         lockdep_assert_held(&set->tag_list_lock);
2405
2406         list_for_each_entry(q, &set->tag_list, tag_set_list) {
2407                 blk_mq_freeze_queue(q);
2408                 queue_set_hctx_shared(q, shared);
2409                 blk_mq_unfreeze_queue(q);
2410         }
2411 }
2412
2413 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2414 {
2415         struct blk_mq_tag_set *set = q->tag_set;
2416
2417         mutex_lock(&set->tag_list_lock);
2418         list_del_rcu(&q->tag_set_list);
2419         if (list_is_singular(&set->tag_list)) {
2420                 /* just transitioned to unshared */
2421                 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2422                 /* update existing queue */
2423                 blk_mq_update_tag_set_depth(set, false);
2424         }
2425         mutex_unlock(&set->tag_list_lock);
2426         INIT_LIST_HEAD(&q->tag_set_list);
2427 }
2428
2429 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2430                                      struct request_queue *q)
2431 {
2432         q->tag_set = set;
2433
2434         mutex_lock(&set->tag_list_lock);
2435
2436         /*
2437          * Check to see if we're transitioning to shared (from 1 to 2 queues).
2438          */
2439         if (!list_empty(&set->tag_list) &&
2440             !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2441                 set->flags |= BLK_MQ_F_TAG_SHARED;
2442                 /* update existing queue */
2443                 blk_mq_update_tag_set_depth(set, true);
2444         }
2445         if (set->flags & BLK_MQ_F_TAG_SHARED)
2446                 queue_set_hctx_shared(q, true);
2447         list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2448
2449         mutex_unlock(&set->tag_list_lock);
2450 }
2451
2452 /*
2453  * It is the actual release handler for mq, but we do it from
2454  * request queue's release handler for avoiding use-after-free
2455  * and headache because q->mq_kobj shouldn't have been introduced,
2456  * but we can't group ctx/kctx kobj without it.
2457  */
2458 void blk_mq_release(struct request_queue *q)
2459 {
2460         struct blk_mq_hw_ctx *hctx;
2461         unsigned int i;
2462
2463         /* hctx kobj stays in hctx */
2464         queue_for_each_hw_ctx(q, hctx, i) {
2465                 if (!hctx)
2466                         continue;
2467                 kobject_put(&hctx->kobj);
2468         }
2469
2470         q->mq_map = NULL;
2471
2472         kfree(q->queue_hw_ctx);
2473
2474         /*
2475          * release .mq_kobj and sw queue's kobject now because
2476          * both share lifetime with request queue.
2477          */
2478         blk_mq_sysfs_deinit(q);
2479
2480         free_percpu(q->queue_ctx);
2481 }
2482
2483 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2484 {
2485         struct request_queue *uninit_q, *q;
2486
2487         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2488         if (!uninit_q)
2489                 return ERR_PTR(-ENOMEM);
2490
2491         q = blk_mq_init_allocated_queue(set, uninit_q);
2492         if (IS_ERR(q))
2493                 blk_cleanup_queue(uninit_q);
2494
2495         return q;
2496 }
2497 EXPORT_SYMBOL(blk_mq_init_queue);
2498
2499 /*
2500  * Helper for setting up a queue with mq ops, given queue depth, and
2501  * the passed in mq ops flags.
2502  */
2503 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2504                                            const struct blk_mq_ops *ops,
2505                                            unsigned int queue_depth,
2506                                            unsigned int set_flags)
2507 {
2508         struct request_queue *q;
2509         int ret;
2510
2511         memset(set, 0, sizeof(*set));
2512         set->ops = ops;
2513         set->nr_hw_queues = 1;
2514         set->queue_depth = queue_depth;
2515         set->numa_node = NUMA_NO_NODE;
2516         set->flags = set_flags;
2517
2518         ret = blk_mq_alloc_tag_set(set);
2519         if (ret)
2520                 return ERR_PTR(ret);
2521
2522         q = blk_mq_init_queue(set);
2523         if (IS_ERR(q)) {
2524                 blk_mq_free_tag_set(set);
2525                 return q;
2526         }
2527
2528         return q;
2529 }
2530 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2531
2532 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2533 {
2534         int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2535
2536         BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2537                            __alignof__(struct blk_mq_hw_ctx)) !=
2538                      sizeof(struct blk_mq_hw_ctx));
2539
2540         if (tag_set->flags & BLK_MQ_F_BLOCKING)
2541                 hw_ctx_size += sizeof(struct srcu_struct);
2542
2543         return hw_ctx_size;
2544 }
2545
2546 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2547                 struct blk_mq_tag_set *set, struct request_queue *q,
2548                 int hctx_idx, int node)
2549 {
2550         struct blk_mq_hw_ctx *hctx;
2551
2552         hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2553                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2554                         node);
2555         if (!hctx)
2556                 return NULL;
2557
2558         if (!zalloc_cpumask_var_node(&hctx->cpumask,
2559                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2560                                 node)) {
2561                 kfree(hctx);
2562                 return NULL;
2563         }
2564
2565         atomic_set(&hctx->nr_active, 0);
2566         hctx->numa_node = node;
2567         hctx->queue_num = hctx_idx;
2568
2569         if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2570                 free_cpumask_var(hctx->cpumask);
2571                 kfree(hctx);
2572                 return NULL;
2573         }
2574         blk_mq_hctx_kobj_init(hctx);
2575
2576         return hctx;
2577 }
2578
2579 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2580                                                 struct request_queue *q)
2581 {
2582         int i, j, end;
2583         struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2584
2585         /* protect against switching io scheduler  */
2586         mutex_lock(&q->sysfs_lock);
2587         for (i = 0; i < set->nr_hw_queues; i++) {
2588                 int node;
2589                 struct blk_mq_hw_ctx *hctx;
2590
2591                 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2592                 /*
2593                  * If the hw queue has been mapped to another numa node,
2594                  * we need to realloc the hctx. If allocation fails, fallback
2595                  * to use the previous one.
2596                  */
2597                 if (hctxs[i] && (hctxs[i]->numa_node == node))
2598                         continue;
2599
2600                 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2601                 if (hctx) {
2602                         if (hctxs[i]) {
2603                                 blk_mq_exit_hctx(q, set, hctxs[i], i);
2604                                 kobject_put(&hctxs[i]->kobj);
2605                         }
2606                         hctxs[i] = hctx;
2607                 } else {
2608                         if (hctxs[i])
2609                                 pr_warn("Allocate new hctx on node %d fails,\
2610                                                 fallback to previous one on node %d\n",
2611                                                 node, hctxs[i]->numa_node);
2612                         else
2613                                 break;
2614                 }
2615         }
2616         /*
2617          * Increasing nr_hw_queues fails. Free the newly allocated
2618          * hctxs and keep the previous q->nr_hw_queues.
2619          */
2620         if (i != set->nr_hw_queues) {
2621                 j = q->nr_hw_queues;
2622                 end = i;
2623         } else {
2624                 j = i;
2625                 end = q->nr_hw_queues;
2626                 q->nr_hw_queues = set->nr_hw_queues;
2627         }
2628
2629         for (; j < end; j++) {
2630                 struct blk_mq_hw_ctx *hctx = hctxs[j];
2631
2632                 if (hctx) {
2633                         if (hctx->tags)
2634                                 blk_mq_free_map_and_requests(set, j);
2635                         blk_mq_exit_hctx(q, set, hctx, j);
2636                         kobject_put(&hctx->kobj);
2637                         hctxs[j] = NULL;
2638
2639                 }
2640         }
2641         mutex_unlock(&q->sysfs_lock);
2642 }
2643
2644 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2645                                                   struct request_queue *q)
2646 {
2647         /* mark the queue as mq asap */
2648         q->mq_ops = set->ops;
2649
2650         q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2651                                              blk_mq_poll_stats_bkt,
2652                                              BLK_MQ_POLL_STATS_BKTS, q);
2653         if (!q->poll_cb)
2654                 goto err_exit;
2655
2656         q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2657         if (!q->queue_ctx)
2658                 goto err_exit;
2659
2660         /* init q->mq_kobj and sw queues' kobjects */
2661         blk_mq_sysfs_init(q);
2662
2663         q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2664                                                 GFP_KERNEL, set->numa_node);
2665         if (!q->queue_hw_ctx)
2666                 goto err_percpu;
2667
2668         q->mq_map = set->mq_map;
2669
2670         blk_mq_realloc_hw_ctxs(set, q);
2671         if (!q->nr_hw_queues)
2672                 goto err_hctxs;
2673
2674         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2675         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2676
2677         q->nr_queues = nr_cpu_ids;
2678
2679         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2680
2681         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2682                 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2683
2684         q->sg_reserved_size = INT_MAX;
2685
2686         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2687         INIT_LIST_HEAD(&q->requeue_list);
2688         spin_lock_init(&q->requeue_lock);
2689
2690         blk_queue_make_request(q, blk_mq_make_request);
2691         if (q->mq_ops->poll)
2692                 q->poll_fn = blk_mq_poll;
2693
2694         /*
2695          * Do this after blk_queue_make_request() overrides it...
2696          */
2697         q->nr_requests = set->queue_depth;
2698
2699         /*
2700          * Default to classic polling
2701          */
2702         q->poll_nsec = -1;
2703
2704         if (set->ops->complete)
2705                 blk_queue_softirq_done(q, set->ops->complete);
2706
2707         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2708         blk_mq_add_queue_tag_set(set, q);
2709         blk_mq_map_swqueue(q);
2710
2711         if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2712                 int ret;
2713
2714                 ret = elevator_init_mq(q);
2715                 if (ret)
2716                         return ERR_PTR(ret);
2717         }
2718
2719         return q;
2720
2721 err_hctxs:
2722         kfree(q->queue_hw_ctx);
2723 err_percpu:
2724         free_percpu(q->queue_ctx);
2725 err_exit:
2726         q->mq_ops = NULL;
2727         return ERR_PTR(-ENOMEM);
2728 }
2729 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2730
2731 void blk_mq_free_queue(struct request_queue *q)
2732 {
2733         struct blk_mq_tag_set   *set = q->tag_set;
2734
2735         blk_mq_del_queue_tag_set(q);
2736         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2737 }
2738
2739 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2740 {
2741         int i;
2742
2743         for (i = 0; i < set->nr_hw_queues; i++)
2744                 if (!__blk_mq_alloc_rq_map(set, i))
2745                         goto out_unwind;
2746
2747         return 0;
2748
2749 out_unwind:
2750         while (--i >= 0)
2751                 blk_mq_free_rq_map(set->tags[i]);
2752
2753         return -ENOMEM;
2754 }
2755
2756 /*
2757  * Allocate the request maps associated with this tag_set. Note that this
2758  * may reduce the depth asked for, if memory is tight. set->queue_depth
2759  * will be updated to reflect the allocated depth.
2760  */
2761 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2762 {
2763         unsigned int depth;
2764         int err;
2765
2766         depth = set->queue_depth;
2767         do {
2768                 err = __blk_mq_alloc_rq_maps(set);
2769                 if (!err)
2770                         break;
2771
2772                 set->queue_depth >>= 1;
2773                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2774                         err = -ENOMEM;
2775                         break;
2776                 }
2777         } while (set->queue_depth);
2778
2779         if (!set->queue_depth || err) {
2780                 pr_err("blk-mq: failed to allocate request map\n");
2781                 return -ENOMEM;
2782         }
2783
2784         if (depth != set->queue_depth)
2785                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2786                                                 depth, set->queue_depth);
2787
2788         return 0;
2789 }
2790
2791 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2792 {
2793         if (set->ops->map_queues) {
2794                 /*
2795                  * transport .map_queues is usually done in the following
2796                  * way:
2797                  *
2798                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2799                  *      mask = get_cpu_mask(queue)
2800                  *      for_each_cpu(cpu, mask)
2801                  *              set->mq_map[cpu] = queue;
2802                  * }
2803                  *
2804                  * When we need to remap, the table has to be cleared for
2805                  * killing stale mapping since one CPU may not be mapped
2806                  * to any hw queue.
2807                  */
2808                 blk_mq_clear_mq_map(set);
2809
2810                 return set->ops->map_queues(set);
2811         } else
2812                 return blk_mq_map_queues(set);
2813 }
2814
2815 /*
2816  * Alloc a tag set to be associated with one or more request queues.
2817  * May fail with EINVAL for various error conditions. May adjust the
2818  * requested depth down, if it's too large. In that case, the set
2819  * value will be stored in set->queue_depth.
2820  */
2821 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2822 {
2823         int ret;
2824
2825         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2826
2827         if (!set->nr_hw_queues)
2828                 return -EINVAL;
2829         if (!set->queue_depth)
2830                 return -EINVAL;
2831         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2832                 return -EINVAL;
2833
2834         if (!set->ops->queue_rq)
2835                 return -EINVAL;
2836
2837         if (!set->ops->get_budget ^ !set->ops->put_budget)
2838                 return -EINVAL;
2839
2840         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2841                 pr_info("blk-mq: reduced tag depth to %u\n",
2842                         BLK_MQ_MAX_DEPTH);
2843                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2844         }
2845
2846         /*
2847          * If a crashdump is active, then we are potentially in a very
2848          * memory constrained environment. Limit us to 1 queue and
2849          * 64 tags to prevent using too much memory.
2850          */
2851         if (is_kdump_kernel()) {
2852                 set->nr_hw_queues = 1;
2853                 set->queue_depth = min(64U, set->queue_depth);
2854         }
2855         /*
2856          * There is no use for more h/w queues than cpus.
2857          */
2858         if (set->nr_hw_queues > nr_cpu_ids)
2859                 set->nr_hw_queues = nr_cpu_ids;
2860
2861         set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2862                                  GFP_KERNEL, set->numa_node);
2863         if (!set->tags)
2864                 return -ENOMEM;
2865
2866         ret = -ENOMEM;
2867         set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2868                                    GFP_KERNEL, set->numa_node);
2869         if (!set->mq_map)
2870                 goto out_free_tags;
2871
2872         ret = blk_mq_update_queue_map(set);
2873         if (ret)
2874                 goto out_free_mq_map;
2875
2876         ret = blk_mq_alloc_rq_maps(set);
2877         if (ret)
2878                 goto out_free_mq_map;
2879
2880         mutex_init(&set->tag_list_lock);
2881         INIT_LIST_HEAD(&set->tag_list);
2882
2883         return 0;
2884
2885 out_free_mq_map:
2886         kfree(set->mq_map);
2887         set->mq_map = NULL;
2888 out_free_tags:
2889         kfree(set->tags);
2890         set->tags = NULL;
2891         return ret;
2892 }
2893 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2894
2895 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2896 {
2897         int i;
2898
2899         for (i = 0; i < nr_cpu_ids; i++)
2900                 blk_mq_free_map_and_requests(set, i);
2901
2902         kfree(set->mq_map);
2903         set->mq_map = NULL;
2904
2905         kfree(set->tags);
2906         set->tags = NULL;
2907 }
2908 EXPORT_SYMBOL(blk_mq_free_tag_set);
2909
2910 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2911 {
2912         struct blk_mq_tag_set *set = q->tag_set;
2913         struct blk_mq_hw_ctx *hctx;
2914         int i, ret;
2915
2916         if (!set)
2917                 return -EINVAL;
2918
2919         blk_mq_freeze_queue(q);
2920         blk_mq_quiesce_queue(q);
2921
2922         ret = 0;
2923         queue_for_each_hw_ctx(q, hctx, i) {
2924                 if (!hctx->tags)
2925                         continue;
2926                 /*
2927                  * If we're using an MQ scheduler, just update the scheduler
2928                  * queue depth. This is similar to what the old code would do.
2929                  */
2930                 if (!hctx->sched_tags) {
2931                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2932                                                         false);
2933                 } else {
2934                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2935                                                         nr, true);
2936                 }
2937                 if (ret)
2938                         break;
2939         }
2940
2941         if (!ret)
2942                 q->nr_requests = nr;
2943
2944         blk_mq_unquiesce_queue(q);
2945         blk_mq_unfreeze_queue(q);
2946
2947         return ret;
2948 }
2949
2950 /*
2951  * request_queue and elevator_type pair.
2952  * It is just used by __blk_mq_update_nr_hw_queues to cache
2953  * the elevator_type associated with a request_queue.
2954  */
2955 struct blk_mq_qe_pair {
2956         struct list_head node;
2957         struct request_queue *q;
2958         struct elevator_type *type;
2959 };
2960
2961 /*
2962  * Cache the elevator_type in qe pair list and switch the
2963  * io scheduler to 'none'
2964  */
2965 static bool blk_mq_elv_switch_none(struct list_head *head,
2966                 struct request_queue *q)
2967 {
2968         struct blk_mq_qe_pair *qe;
2969
2970         if (!q->elevator)
2971                 return true;
2972
2973         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2974         if (!qe)
2975                 return false;
2976
2977         INIT_LIST_HEAD(&qe->node);
2978         qe->q = q;
2979         qe->type = q->elevator->type;
2980         list_add(&qe->node, head);
2981
2982         mutex_lock(&q->sysfs_lock);
2983         /*
2984          * After elevator_switch_mq, the previous elevator_queue will be
2985          * released by elevator_release. The reference of the io scheduler
2986          * module get by elevator_get will also be put. So we need to get
2987          * a reference of the io scheduler module here to prevent it to be
2988          * removed.
2989          */
2990         __module_get(qe->type->elevator_owner);
2991         elevator_switch_mq(q, NULL);
2992         mutex_unlock(&q->sysfs_lock);
2993
2994         return true;
2995 }
2996
2997 static void blk_mq_elv_switch_back(struct list_head *head,
2998                 struct request_queue *q)
2999 {
3000         struct blk_mq_qe_pair *qe;
3001         struct elevator_type *t = NULL;
3002
3003         list_for_each_entry(qe, head, node)
3004                 if (qe->q == q) {
3005                         t = qe->type;
3006                         break;
3007                 }
3008
3009         if (!t)
3010                 return;
3011
3012         list_del(&qe->node);
3013         kfree(qe);
3014
3015         mutex_lock(&q->sysfs_lock);
3016         elevator_switch_mq(q, t);
3017         mutex_unlock(&q->sysfs_lock);
3018 }
3019
3020 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3021                                                         int nr_hw_queues)
3022 {
3023         struct request_queue *q;
3024         LIST_HEAD(head);
3025         int prev_nr_hw_queues;
3026
3027         lockdep_assert_held(&set->tag_list_lock);
3028
3029         if (nr_hw_queues > nr_cpu_ids)
3030                 nr_hw_queues = nr_cpu_ids;
3031         if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3032                 return;
3033
3034         list_for_each_entry(q, &set->tag_list, tag_set_list)
3035                 blk_mq_freeze_queue(q);
3036         /*
3037          * Sync with blk_mq_queue_tag_busy_iter.
3038          */
3039         synchronize_rcu();
3040         /*
3041          * Switch IO scheduler to 'none', cleaning up the data associated
3042          * with the previous scheduler. We will switch back once we are done
3043          * updating the new sw to hw queue mappings.
3044          */
3045         list_for_each_entry(q, &set->tag_list, tag_set_list)
3046                 if (!blk_mq_elv_switch_none(&head, q))
3047                         goto switch_back;
3048
3049         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3050                 blk_mq_debugfs_unregister_hctxs(q);
3051                 blk_mq_sysfs_unregister(q);
3052         }
3053
3054         prev_nr_hw_queues = set->nr_hw_queues;
3055         set->nr_hw_queues = nr_hw_queues;
3056         blk_mq_update_queue_map(set);
3057 fallback:
3058         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3059                 blk_mq_realloc_hw_ctxs(set, q);
3060                 if (q->nr_hw_queues != set->nr_hw_queues) {
3061                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3062                                         nr_hw_queues, prev_nr_hw_queues);
3063                         set->nr_hw_queues = prev_nr_hw_queues;
3064                         blk_mq_map_queues(set);
3065                         goto fallback;
3066                 }
3067                 blk_mq_map_swqueue(q);
3068         }
3069
3070         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3071                 blk_mq_sysfs_register(q);
3072                 blk_mq_debugfs_register_hctxs(q);
3073         }
3074
3075 switch_back:
3076         list_for_each_entry(q, &set->tag_list, tag_set_list)
3077                 blk_mq_elv_switch_back(&head, q);
3078
3079         list_for_each_entry(q, &set->tag_list, tag_set_list)
3080                 blk_mq_unfreeze_queue(q);
3081 }
3082
3083 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3084 {
3085         mutex_lock(&set->tag_list_lock);
3086         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3087         mutex_unlock(&set->tag_list_lock);
3088 }
3089 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3090
3091 /* Enable polling stats and return whether they were already enabled. */
3092 static bool blk_poll_stats_enable(struct request_queue *q)
3093 {
3094         if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3095             blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3096                 return true;
3097         blk_stat_add_callback(q, q->poll_cb);
3098         return false;
3099 }
3100
3101 static void blk_mq_poll_stats_start(struct request_queue *q)
3102 {
3103         /*
3104          * We don't arm the callback if polling stats are not enabled or the
3105          * callback is already active.
3106          */
3107         if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3108             blk_stat_is_active(q->poll_cb))
3109                 return;
3110
3111         blk_stat_activate_msecs(q->poll_cb, 100);
3112 }
3113
3114 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3115 {
3116         struct request_queue *q = cb->data;
3117         int bucket;
3118
3119         for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3120                 if (cb->stat[bucket].nr_samples)
3121                         q->poll_stat[bucket] = cb->stat[bucket];
3122         }
3123 }
3124
3125 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3126                                        struct blk_mq_hw_ctx *hctx,
3127                                        struct request *rq)
3128 {
3129         unsigned long ret = 0;
3130         int bucket;
3131
3132         /*
3133          * If stats collection isn't on, don't sleep but turn it on for
3134          * future users
3135          */
3136         if (!blk_poll_stats_enable(q))
3137                 return 0;
3138
3139         /*
3140          * As an optimistic guess, use half of the mean service time
3141          * for this type of request. We can (and should) make this smarter.
3142          * For instance, if the completion latencies are tight, we can
3143          * get closer than just half the mean. This is especially
3144          * important on devices where the completion latencies are longer
3145          * than ~10 usec. We do use the stats for the relevant IO size
3146          * if available which does lead to better estimates.
3147          */
3148         bucket = blk_mq_poll_stats_bkt(rq);
3149         if (bucket < 0)
3150                 return ret;
3151
3152         if (q->poll_stat[bucket].nr_samples)
3153                 ret = (q->poll_stat[bucket].mean + 1) / 2;
3154
3155         return ret;
3156 }
3157
3158 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3159                                      struct blk_mq_hw_ctx *hctx,
3160                                      struct request *rq)
3161 {
3162         struct hrtimer_sleeper hs;
3163         enum hrtimer_mode mode;
3164         unsigned int nsecs;
3165         ktime_t kt;
3166
3167         if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3168                 return false;
3169
3170         /*
3171          * poll_nsec can be:
3172          *
3173          * -1:  don't ever hybrid sleep
3174          *  0:  use half of prev avg
3175          * >0:  use this specific value
3176          */
3177         if (q->poll_nsec == -1)
3178                 return false;
3179         else if (q->poll_nsec > 0)
3180                 nsecs = q->poll_nsec;
3181         else
3182                 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3183
3184         if (!nsecs)
3185                 return false;
3186
3187         rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3188
3189         /*
3190          * This will be replaced with the stats tracking code, using
3191          * 'avg_completion_time / 2' as the pre-sleep target.
3192          */
3193         kt = nsecs;
3194
3195         mode = HRTIMER_MODE_REL;
3196         hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3197         hrtimer_set_expires(&hs.timer, kt);
3198
3199         hrtimer_init_sleeper(&hs, current);
3200         do {
3201                 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3202                         break;
3203                 set_current_state(TASK_UNINTERRUPTIBLE);
3204                 hrtimer_start_expires(&hs.timer, mode);
3205                 if (hs.task)
3206                         io_schedule();
3207                 hrtimer_cancel(&hs.timer);
3208                 mode = HRTIMER_MODE_ABS;
3209         } while (hs.task && !signal_pending(current));
3210
3211         __set_current_state(TASK_RUNNING);
3212         destroy_hrtimer_on_stack(&hs.timer);
3213         return true;
3214 }
3215
3216 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3217 {
3218         struct request_queue *q = hctx->queue;
3219         long state;
3220
3221         /*
3222          * If we sleep, have the caller restart the poll loop to reset
3223          * the state. Like for the other success return cases, the
3224          * caller is responsible for checking if the IO completed. If
3225          * the IO isn't complete, we'll get called again and will go
3226          * straight to the busy poll loop.
3227          */
3228         if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3229                 return true;
3230
3231         hctx->poll_considered++;
3232
3233         state = current->state;
3234         while (!need_resched()) {
3235                 int ret;
3236
3237                 hctx->poll_invoked++;
3238
3239                 ret = q->mq_ops->poll(hctx, rq->tag);
3240                 if (ret > 0) {
3241                         hctx->poll_success++;
3242                         set_current_state(TASK_RUNNING);
3243                         return true;
3244                 }
3245
3246                 if (signal_pending_state(state, current))
3247                         set_current_state(TASK_RUNNING);
3248
3249                 if (current->state == TASK_RUNNING)
3250                         return true;
3251                 if (ret < 0)
3252                         break;
3253                 cpu_relax();
3254         }
3255
3256         __set_current_state(TASK_RUNNING);
3257         return false;
3258 }
3259
3260 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3261 {
3262         struct blk_mq_hw_ctx *hctx;
3263         struct request *rq;
3264
3265         if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3266                 return false;
3267
3268         hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3269         if (!blk_qc_t_is_internal(cookie))
3270                 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3271         else {
3272                 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3273                 /*
3274                  * With scheduling, if the request has completed, we'll
3275                  * get a NULL return here, as we clear the sched tag when
3276                  * that happens. The request still remains valid, like always,
3277                  * so we should be safe with just the NULL check.
3278                  */
3279                 if (!rq)
3280                         return false;
3281         }
3282
3283         return __blk_mq_poll(hctx, rq);
3284 }
3285
3286 static int __init blk_mq_init(void)
3287 {
3288         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3289                                 blk_mq_hctx_notify_dead);
3290         return 0;
3291 }
3292 subsys_initcall(blk_mq_init);
This page took 0.215721 seconds and 4 git commands to generate.