2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/dma-contiguous.h>
21 #include <asm/cache.h>
22 #include <asm/cpu-type.h>
25 #include <dma-coherence.h>
27 #ifdef CONFIG_DMA_MAYBE_COHERENT
28 int coherentio = 0; /* User defined DMA coherency from command line. */
29 EXPORT_SYMBOL_GPL(coherentio);
30 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
32 static int __init setcoherentio(char *str)
35 pr_info("Hardware DMA cache coherency (command line)\n");
38 early_param("coherentio", setcoherentio);
40 static int __init setnocoherentio(char *str)
43 pr_info("Software DMA cache coherency (command line)\n");
46 early_param("nocoherentio", setnocoherentio);
49 static inline struct page *dma_addr_to_page(struct device *dev,
53 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
57 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
58 * speculatively fill random cachelines with stale data at any time,
59 * requiring an extra flush post-DMA.
61 * Warning on the terminology - Linux calls an uncached area coherent;
62 * MIPS terminology calls memory areas with hardware maintained coherency
65 static inline int cpu_needs_post_dma_flush(struct device *dev)
67 return !plat_device_is_coherent(dev) &&
68 (boot_cpu_type() == CPU_R10000 ||
69 boot_cpu_type() == CPU_R12000 ||
70 boot_cpu_type() == CPU_BMIPS5000);
73 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
77 /* ignore region specifiers */
78 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
85 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
86 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
88 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
89 dma_flag = __GFP_DMA32;
92 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
93 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
94 dma_flag = __GFP_DMA32;
97 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
98 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
104 /* Don't invoke OOM killer */
105 gfp |= __GFP_NORETRY;
107 return gfp | dma_flag;
110 void *dma_alloc_noncoherent(struct device *dev, size_t size,
111 dma_addr_t * dma_handle, gfp_t gfp)
115 gfp = massage_gfp_flags(dev, gfp);
117 ret = (void *) __get_free_pages(gfp, get_order(size));
120 memset(ret, 0, size);
121 *dma_handle = plat_map_dma_mem(dev, ret, size);
126 EXPORT_SYMBOL(dma_alloc_noncoherent);
128 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
129 dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
132 struct page *page = NULL;
133 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
135 if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
138 gfp = massage_gfp_flags(dev, gfp);
140 if (IS_ENABLED(CONFIG_DMA_CMA) && !(gfp & GFP_ATOMIC))
141 page = dma_alloc_from_contiguous(dev,
142 count, get_order(size));
144 page = alloc_pages(gfp, get_order(size));
149 ret = page_address(page);
150 memset(ret, 0, size);
151 *dma_handle = plat_map_dma_mem(dev, ret, size);
152 if (!plat_device_is_coherent(dev)) {
153 dma_cache_wback_inv((unsigned long) ret, size);
155 ret = UNCAC_ADDR(ret);
162 void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
163 dma_addr_t dma_handle)
165 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
166 free_pages((unsigned long) vaddr, get_order(size));
168 EXPORT_SYMBOL(dma_free_noncoherent);
170 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
171 dma_addr_t dma_handle, struct dma_attrs *attrs)
173 unsigned long addr = (unsigned long) vaddr;
174 int order = get_order(size);
175 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
176 struct page *page = NULL;
178 if (dma_release_from_coherent(dev, order, vaddr))
181 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
183 if (!plat_device_is_coherent(dev) && !hw_coherentio)
184 addr = CAC_ADDR(addr);
186 page = virt_to_page((void *) addr);
188 if (!dma_release_from_contiguous(dev, page, count))
189 __free_pages(page, get_order(size));
192 static inline void __dma_sync_virtual(void *addr, size_t size,
193 enum dma_data_direction direction)
197 dma_cache_wback((unsigned long)addr, size);
200 case DMA_FROM_DEVICE:
201 dma_cache_inv((unsigned long)addr, size);
204 case DMA_BIDIRECTIONAL:
205 dma_cache_wback_inv((unsigned long)addr, size);
214 * A single sg entry may refer to multiple physically contiguous
215 * pages. But we still need to process highmem pages individually.
216 * If highmem is not configured then the bulk of this loop gets
219 static inline void __dma_sync(struct page *page,
220 unsigned long offset, size_t size, enum dma_data_direction direction)
227 if (PageHighMem(page)) {
230 if (offset + len > PAGE_SIZE) {
231 if (offset >= PAGE_SIZE) {
232 page += offset >> PAGE_SHIFT;
233 offset &= ~PAGE_MASK;
235 len = PAGE_SIZE - offset;
238 addr = kmap_atomic(page);
239 __dma_sync_virtual(addr + offset, len, direction);
242 __dma_sync_virtual(page_address(page) + offset,
250 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
251 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
253 if (cpu_needs_post_dma_flush(dev))
254 __dma_sync(dma_addr_to_page(dev, dma_addr),
255 dma_addr & ~PAGE_MASK, size, direction);
257 plat_unmap_dma_mem(dev, dma_addr, size, direction);
260 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
261 int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
265 for (i = 0; i < nents; i++, sg++) {
266 if (!plat_device_is_coherent(dev))
267 __dma_sync(sg_page(sg), sg->offset, sg->length,
269 #ifdef CONFIG_NEED_SG_DMA_LENGTH
270 sg->dma_length = sg->length;
272 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
279 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
280 unsigned long offset, size_t size, enum dma_data_direction direction,
281 struct dma_attrs *attrs)
283 if (!plat_device_is_coherent(dev))
284 __dma_sync(page, offset, size, direction);
286 return plat_map_dma_mem_page(dev, page) + offset;
289 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
290 int nhwentries, enum dma_data_direction direction,
291 struct dma_attrs *attrs)
295 for (i = 0; i < nhwentries; i++, sg++) {
296 if (!plat_device_is_coherent(dev) &&
297 direction != DMA_TO_DEVICE)
298 __dma_sync(sg_page(sg), sg->offset, sg->length,
300 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
304 static void mips_dma_sync_single_for_cpu(struct device *dev,
305 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
307 if (cpu_needs_post_dma_flush(dev))
308 __dma_sync(dma_addr_to_page(dev, dma_handle),
309 dma_handle & ~PAGE_MASK, size, direction);
312 static void mips_dma_sync_single_for_device(struct device *dev,
313 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
315 if (!plat_device_is_coherent(dev))
316 __dma_sync(dma_addr_to_page(dev, dma_handle),
317 dma_handle & ~PAGE_MASK, size, direction);
320 static void mips_dma_sync_sg_for_cpu(struct device *dev,
321 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
325 if (cpu_needs_post_dma_flush(dev))
326 for (i = 0; i < nelems; i++, sg++)
327 __dma_sync(sg_page(sg), sg->offset, sg->length,
331 static void mips_dma_sync_sg_for_device(struct device *dev,
332 struct scatterlist *sg, int nelems, enum dma_data_direction direction)
336 if (!plat_device_is_coherent(dev))
337 for (i = 0; i < nelems; i++, sg++)
338 __dma_sync(sg_page(sg), sg->offset, sg->length,
342 int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
347 int mips_dma_supported(struct device *dev, u64 mask)
349 return plat_dma_supported(dev, mask);
352 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
353 enum dma_data_direction direction)
355 BUG_ON(direction == DMA_NONE);
357 if (!plat_device_is_coherent(dev))
358 __dma_sync_virtual(vaddr, size, direction);
361 EXPORT_SYMBOL(dma_cache_sync);
363 static struct dma_map_ops mips_default_dma_map_ops = {
364 .alloc = mips_dma_alloc_coherent,
365 .free = mips_dma_free_coherent,
366 .map_page = mips_dma_map_page,
367 .unmap_page = mips_dma_unmap_page,
368 .map_sg = mips_dma_map_sg,
369 .unmap_sg = mips_dma_unmap_sg,
370 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
371 .sync_single_for_device = mips_dma_sync_single_for_device,
372 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
373 .sync_sg_for_device = mips_dma_sync_sg_for_device,
374 .mapping_error = mips_dma_mapping_error,
375 .dma_supported = mips_dma_supported
378 struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
379 EXPORT_SYMBOL(mips_dma_map_ops);
381 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
383 static int __init mips_dma_init(void)
385 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
389 fs_initcall(mips_dma_init);