1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/rwsem.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/freezer.h>
42 #include <linux/memcontrol.h>
43 #include <linux/migrate.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/memory-tiers.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53 #include <linux/pagewalk.h>
54 #include <linux/shmem_fs.h>
55 #include <linux/ctype.h>
56 #include <linux/debugfs.h>
57 #include <linux/khugepaged.h>
59 #include <asm/tlbflush.h>
60 #include <asm/div64.h>
62 #include <linux/swapops.h>
63 #include <linux/balloon_compaction.h>
64 #include <linux/sched/sysctl.h>
69 #define CREATE_TRACE_POINTS
70 #include <trace/events/vmscan.h>
73 /* How many pages shrink_list() should reclaim */
74 unsigned long nr_to_reclaim;
77 * Nodemask of nodes allowed by the caller. If NULL, all nodes
83 * The memory cgroup that hit its limit and as a result is the
84 * primary target of this reclaim invocation.
86 struct mem_cgroup *target_mem_cgroup;
89 * Scan pressure balancing between anon and file LRUs
91 unsigned long anon_cost;
92 unsigned long file_cost;
94 /* Can active folios be deactivated as part of reclaim? */
95 #define DEACTIVATE_ANON 1
96 #define DEACTIVATE_FILE 2
97 unsigned int may_deactivate:2;
98 unsigned int force_deactivate:1;
99 unsigned int skipped_deactivate:1;
101 /* Writepage batching in laptop mode; RECLAIM_WRITE */
102 unsigned int may_writepage:1;
104 /* Can mapped folios be reclaimed? */
105 unsigned int may_unmap:1;
107 /* Can folios be swapped as part of reclaim? */
108 unsigned int may_swap:1;
110 /* Proactive reclaim invoked by userspace through memory.reclaim */
111 unsigned int proactive:1;
114 * Cgroup memory below memory.low is protected as long as we
115 * don't threaten to OOM. If any cgroup is reclaimed at
116 * reduced force or passed over entirely due to its memory.low
117 * setting (memcg_low_skipped), and nothing is reclaimed as a
118 * result, then go back for one more cycle that reclaims the protected
119 * memory (memcg_low_reclaim) to avert OOM.
121 unsigned int memcg_low_reclaim:1;
122 unsigned int memcg_low_skipped:1;
124 unsigned int hibernation_mode:1;
126 /* One of the zones is ready for compaction */
127 unsigned int compaction_ready:1;
129 /* There is easily reclaimable cold cache in the current node */
130 unsigned int cache_trim_mode:1;
132 /* The file folios on the current node are dangerously low */
133 unsigned int file_is_tiny:1;
135 /* Always discard instead of demoting to lower tier memory */
136 unsigned int no_demotion:1;
138 #ifdef CONFIG_LRU_GEN
139 /* help kswapd make better choices among multiple memcgs */
140 unsigned int memcgs_need_aging:1;
141 unsigned long last_reclaimed;
144 /* Allocation order */
147 /* Scan (total_size >> priority) pages at once */
150 /* The highest zone to isolate folios for reclaim from */
153 /* This context's GFP mask */
156 /* Incremented by the number of inactive pages that were scanned */
157 unsigned long nr_scanned;
159 /* Number of pages freed so far during a call to shrink_zones() */
160 unsigned long nr_reclaimed;
164 unsigned int unqueued_dirty;
165 unsigned int congested;
166 unsigned int writeback;
167 unsigned int immediate;
168 unsigned int file_taken;
172 /* for recording the reclaimed slab by now */
173 struct reclaim_state reclaim_state;
176 #ifdef ARCH_HAS_PREFETCHW
177 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
179 if ((_folio)->lru.prev != _base) { \
180 struct folio *prev; \
182 prev = lru_to_folio(&(_folio->lru)); \
183 prefetchw(&prev->_field); \
187 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
191 * From 0 .. 200. Higher means more swappy.
193 int vm_swappiness = 60;
195 static void set_task_reclaim_state(struct task_struct *task,
196 struct reclaim_state *rs)
198 /* Check for an overwrite */
199 WARN_ON_ONCE(rs && task->reclaim_state);
201 /* Check for the nulling of an already-nulled member */
202 WARN_ON_ONCE(!rs && !task->reclaim_state);
204 task->reclaim_state = rs;
207 LIST_HEAD(shrinker_list);
208 DECLARE_RWSEM(shrinker_rwsem);
211 static int shrinker_nr_max;
213 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
214 static inline int shrinker_map_size(int nr_items)
216 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
219 static inline int shrinker_defer_size(int nr_items)
221 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
224 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
227 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
228 lockdep_is_held(&shrinker_rwsem));
231 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
232 int map_size, int defer_size,
233 int old_map_size, int old_defer_size)
235 struct shrinker_info *new, *old;
236 struct mem_cgroup_per_node *pn;
238 int size = map_size + defer_size;
241 pn = memcg->nodeinfo[nid];
242 old = shrinker_info_protected(memcg, nid);
243 /* Not yet online memcg */
247 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
251 new->nr_deferred = (atomic_long_t *)(new + 1);
252 new->map = (void *)new->nr_deferred + defer_size;
254 /* map: set all old bits, clear all new bits */
255 memset(new->map, (int)0xff, old_map_size);
256 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
257 /* nr_deferred: copy old values, clear all new values */
258 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
259 memset((void *)new->nr_deferred + old_defer_size, 0,
260 defer_size - old_defer_size);
262 rcu_assign_pointer(pn->shrinker_info, new);
263 kvfree_rcu(old, rcu);
269 void free_shrinker_info(struct mem_cgroup *memcg)
271 struct mem_cgroup_per_node *pn;
272 struct shrinker_info *info;
276 pn = memcg->nodeinfo[nid];
277 info = rcu_dereference_protected(pn->shrinker_info, true);
279 rcu_assign_pointer(pn->shrinker_info, NULL);
283 int alloc_shrinker_info(struct mem_cgroup *memcg)
285 struct shrinker_info *info;
286 int nid, size, ret = 0;
287 int map_size, defer_size = 0;
289 down_write(&shrinker_rwsem);
290 map_size = shrinker_map_size(shrinker_nr_max);
291 defer_size = shrinker_defer_size(shrinker_nr_max);
292 size = map_size + defer_size;
294 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
296 free_shrinker_info(memcg);
300 info->nr_deferred = (atomic_long_t *)(info + 1);
301 info->map = (void *)info->nr_deferred + defer_size;
302 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
304 up_write(&shrinker_rwsem);
309 static inline bool need_expand(int nr_max)
311 return round_up(nr_max, BITS_PER_LONG) >
312 round_up(shrinker_nr_max, BITS_PER_LONG);
315 static int expand_shrinker_info(int new_id)
318 int new_nr_max = new_id + 1;
319 int map_size, defer_size = 0;
320 int old_map_size, old_defer_size = 0;
321 struct mem_cgroup *memcg;
323 if (!need_expand(new_nr_max))
326 if (!root_mem_cgroup)
329 lockdep_assert_held(&shrinker_rwsem);
331 map_size = shrinker_map_size(new_nr_max);
332 defer_size = shrinker_defer_size(new_nr_max);
333 old_map_size = shrinker_map_size(shrinker_nr_max);
334 old_defer_size = shrinker_defer_size(shrinker_nr_max);
336 memcg = mem_cgroup_iter(NULL, NULL, NULL);
338 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
339 old_map_size, old_defer_size);
341 mem_cgroup_iter_break(NULL, memcg);
344 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
347 shrinker_nr_max = new_nr_max;
352 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
354 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
355 struct shrinker_info *info;
358 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
359 /* Pairs with smp mb in shrink_slab() */
360 smp_mb__before_atomic();
361 set_bit(shrinker_id, info->map);
366 static DEFINE_IDR(shrinker_idr);
368 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
370 int id, ret = -ENOMEM;
372 if (mem_cgroup_disabled())
375 down_write(&shrinker_rwsem);
376 /* This may call shrinker, so it must use down_read_trylock() */
377 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
381 if (id >= shrinker_nr_max) {
382 if (expand_shrinker_info(id)) {
383 idr_remove(&shrinker_idr, id);
390 up_write(&shrinker_rwsem);
394 static void unregister_memcg_shrinker(struct shrinker *shrinker)
396 int id = shrinker->id;
400 lockdep_assert_held(&shrinker_rwsem);
402 idr_remove(&shrinker_idr, id);
405 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
406 struct mem_cgroup *memcg)
408 struct shrinker_info *info;
410 info = shrinker_info_protected(memcg, nid);
411 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
414 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
415 struct mem_cgroup *memcg)
417 struct shrinker_info *info;
419 info = shrinker_info_protected(memcg, nid);
420 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
423 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
427 struct mem_cgroup *parent;
428 struct shrinker_info *child_info, *parent_info;
430 parent = parent_mem_cgroup(memcg);
432 parent = root_mem_cgroup;
434 /* Prevent from concurrent shrinker_info expand */
435 down_read(&shrinker_rwsem);
437 child_info = shrinker_info_protected(memcg, nid);
438 parent_info = shrinker_info_protected(parent, nid);
439 for (i = 0; i < shrinker_nr_max; i++) {
440 nr = atomic_long_read(&child_info->nr_deferred[i]);
441 atomic_long_add(nr, &parent_info->nr_deferred[i]);
444 up_read(&shrinker_rwsem);
447 static bool cgroup_reclaim(struct scan_control *sc)
449 return sc->target_mem_cgroup;
453 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
454 * @sc: scan_control in question
456 * The normal page dirty throttling mechanism in balance_dirty_pages() is
457 * completely broken with the legacy memcg and direct stalling in
458 * shrink_folio_list() is used for throttling instead, which lacks all the
459 * niceties such as fairness, adaptive pausing, bandwidth proportional
460 * allocation and configurability.
462 * This function tests whether the vmscan currently in progress can assume
463 * that the normal dirty throttling mechanism is operational.
465 static bool writeback_throttling_sane(struct scan_control *sc)
467 if (!cgroup_reclaim(sc))
469 #ifdef CONFIG_CGROUP_WRITEBACK
470 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
476 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
481 static void unregister_memcg_shrinker(struct shrinker *shrinker)
485 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
486 struct mem_cgroup *memcg)
491 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
492 struct mem_cgroup *memcg)
497 static bool cgroup_reclaim(struct scan_control *sc)
502 static bool writeback_throttling_sane(struct scan_control *sc)
508 static long xchg_nr_deferred(struct shrinker *shrinker,
509 struct shrink_control *sc)
513 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
517 (shrinker->flags & SHRINKER_MEMCG_AWARE))
518 return xchg_nr_deferred_memcg(nid, shrinker,
521 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
525 static long add_nr_deferred(long nr, struct shrinker *shrinker,
526 struct shrink_control *sc)
530 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
534 (shrinker->flags & SHRINKER_MEMCG_AWARE))
535 return add_nr_deferred_memcg(nr, nid, shrinker,
538 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
541 static bool can_demote(int nid, struct scan_control *sc)
543 if (!numa_demotion_enabled)
545 if (sc && sc->no_demotion)
547 if (next_demotion_node(nid) == NUMA_NO_NODE)
553 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
555 struct scan_control *sc)
559 * For non-memcg reclaim, is there
560 * space in any swap device?
562 if (get_nr_swap_pages() > 0)
565 /* Is the memcg below its swap limit? */
566 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
571 * The page can not be swapped.
573 * Can it be reclaimed from this node via demotion?
575 return can_demote(nid, sc);
579 * This misses isolated folios which are not accounted for to save counters.
580 * As the data only determines if reclaim or compaction continues, it is
581 * not expected that isolated folios will be a dominating factor.
583 unsigned long zone_reclaimable_pages(struct zone *zone)
587 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
588 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
589 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
590 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
591 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
597 * lruvec_lru_size - Returns the number of pages on the given LRU list.
598 * @lruvec: lru vector
600 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
602 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
605 unsigned long size = 0;
608 for (zid = 0; zid <= zone_idx; zid++) {
609 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
611 if (!managed_zone(zone))
614 if (!mem_cgroup_disabled())
615 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
617 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
623 * Add a shrinker callback to be called from the vm.
625 static int __prealloc_shrinker(struct shrinker *shrinker)
630 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
631 err = prealloc_memcg_shrinker(shrinker);
635 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
638 size = sizeof(*shrinker->nr_deferred);
639 if (shrinker->flags & SHRINKER_NUMA_AWARE)
642 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
643 if (!shrinker->nr_deferred)
649 #ifdef CONFIG_SHRINKER_DEBUG
650 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
656 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
661 err = __prealloc_shrinker(shrinker);
663 kfree_const(shrinker->name);
664 shrinker->name = NULL;
670 int prealloc_shrinker(struct shrinker *shrinker, const char *fmt, ...)
672 return __prealloc_shrinker(shrinker);
676 void free_prealloced_shrinker(struct shrinker *shrinker)
678 #ifdef CONFIG_SHRINKER_DEBUG
679 kfree_const(shrinker->name);
680 shrinker->name = NULL;
682 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
683 down_write(&shrinker_rwsem);
684 unregister_memcg_shrinker(shrinker);
685 up_write(&shrinker_rwsem);
689 kfree(shrinker->nr_deferred);
690 shrinker->nr_deferred = NULL;
693 void register_shrinker_prepared(struct shrinker *shrinker)
695 down_write(&shrinker_rwsem);
696 list_add_tail(&shrinker->list, &shrinker_list);
697 shrinker->flags |= SHRINKER_REGISTERED;
698 shrinker_debugfs_add(shrinker);
699 up_write(&shrinker_rwsem);
702 static int __register_shrinker(struct shrinker *shrinker)
704 int err = __prealloc_shrinker(shrinker);
708 register_shrinker_prepared(shrinker);
712 #ifdef CONFIG_SHRINKER_DEBUG
713 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
719 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
724 err = __register_shrinker(shrinker);
726 kfree_const(shrinker->name);
727 shrinker->name = NULL;
732 int register_shrinker(struct shrinker *shrinker, const char *fmt, ...)
734 return __register_shrinker(shrinker);
737 EXPORT_SYMBOL(register_shrinker);
742 void unregister_shrinker(struct shrinker *shrinker)
744 if (!(shrinker->flags & SHRINKER_REGISTERED))
747 down_write(&shrinker_rwsem);
748 list_del(&shrinker->list);
749 shrinker->flags &= ~SHRINKER_REGISTERED;
750 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
751 unregister_memcg_shrinker(shrinker);
752 shrinker_debugfs_remove(shrinker);
753 up_write(&shrinker_rwsem);
755 kfree(shrinker->nr_deferred);
756 shrinker->nr_deferred = NULL;
758 EXPORT_SYMBOL(unregister_shrinker);
761 * synchronize_shrinkers - Wait for all running shrinkers to complete.
763 * This is equivalent to calling unregister_shrink() and register_shrinker(),
764 * but atomically and with less overhead. This is useful to guarantee that all
765 * shrinker invocations have seen an update, before freeing memory, similar to
768 void synchronize_shrinkers(void)
770 down_write(&shrinker_rwsem);
771 up_write(&shrinker_rwsem);
773 EXPORT_SYMBOL(synchronize_shrinkers);
775 #define SHRINK_BATCH 128
777 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
778 struct shrinker *shrinker, int priority)
780 unsigned long freed = 0;
781 unsigned long long delta;
786 long batch_size = shrinker->batch ? shrinker->batch
788 long scanned = 0, next_deferred;
790 freeable = shrinker->count_objects(shrinker, shrinkctl);
791 if (freeable == 0 || freeable == SHRINK_EMPTY)
795 * copy the current shrinker scan count into a local variable
796 * and zero it so that other concurrent shrinker invocations
797 * don't also do this scanning work.
799 nr = xchg_nr_deferred(shrinker, shrinkctl);
801 if (shrinker->seeks) {
802 delta = freeable >> priority;
804 do_div(delta, shrinker->seeks);
807 * These objects don't require any IO to create. Trim
808 * them aggressively under memory pressure to keep
809 * them from causing refetches in the IO caches.
811 delta = freeable / 2;
814 total_scan = nr >> priority;
816 total_scan = min(total_scan, (2 * freeable));
818 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
819 freeable, delta, total_scan, priority);
822 * Normally, we should not scan less than batch_size objects in one
823 * pass to avoid too frequent shrinker calls, but if the slab has less
824 * than batch_size objects in total and we are really tight on memory,
825 * we will try to reclaim all available objects, otherwise we can end
826 * up failing allocations although there are plenty of reclaimable
827 * objects spread over several slabs with usage less than the
830 * We detect the "tight on memory" situations by looking at the total
831 * number of objects we want to scan (total_scan). If it is greater
832 * than the total number of objects on slab (freeable), we must be
833 * scanning at high prio and therefore should try to reclaim as much as
836 while (total_scan >= batch_size ||
837 total_scan >= freeable) {
839 unsigned long nr_to_scan = min(batch_size, total_scan);
841 shrinkctl->nr_to_scan = nr_to_scan;
842 shrinkctl->nr_scanned = nr_to_scan;
843 ret = shrinker->scan_objects(shrinker, shrinkctl);
844 if (ret == SHRINK_STOP)
848 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
849 total_scan -= shrinkctl->nr_scanned;
850 scanned += shrinkctl->nr_scanned;
856 * The deferred work is increased by any new work (delta) that wasn't
857 * done, decreased by old deferred work that was done now.
859 * And it is capped to two times of the freeable items.
861 next_deferred = max_t(long, (nr + delta - scanned), 0);
862 next_deferred = min(next_deferred, (2 * freeable));
865 * move the unused scan count back into the shrinker in a
866 * manner that handles concurrent updates.
868 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
870 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
875 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
876 struct mem_cgroup *memcg, int priority)
878 struct shrinker_info *info;
879 unsigned long ret, freed = 0;
882 if (!mem_cgroup_online(memcg))
885 if (!down_read_trylock(&shrinker_rwsem))
888 info = shrinker_info_protected(memcg, nid);
892 for_each_set_bit(i, info->map, shrinker_nr_max) {
893 struct shrink_control sc = {
894 .gfp_mask = gfp_mask,
898 struct shrinker *shrinker;
900 shrinker = idr_find(&shrinker_idr, i);
901 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
903 clear_bit(i, info->map);
907 /* Call non-slab shrinkers even though kmem is disabled */
908 if (!memcg_kmem_enabled() &&
909 !(shrinker->flags & SHRINKER_NONSLAB))
912 ret = do_shrink_slab(&sc, shrinker, priority);
913 if (ret == SHRINK_EMPTY) {
914 clear_bit(i, info->map);
916 * After the shrinker reported that it had no objects to
917 * free, but before we cleared the corresponding bit in
918 * the memcg shrinker map, a new object might have been
919 * added. To make sure, we have the bit set in this
920 * case, we invoke the shrinker one more time and reset
921 * the bit if it reports that it is not empty anymore.
922 * The memory barrier here pairs with the barrier in
923 * set_shrinker_bit():
925 * list_lru_add() shrink_slab_memcg()
926 * list_add_tail() clear_bit()
928 * set_bit() do_shrink_slab()
930 smp_mb__after_atomic();
931 ret = do_shrink_slab(&sc, shrinker, priority);
932 if (ret == SHRINK_EMPTY)
935 set_shrinker_bit(memcg, nid, i);
939 if (rwsem_is_contended(&shrinker_rwsem)) {
945 up_read(&shrinker_rwsem);
948 #else /* CONFIG_MEMCG */
949 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
950 struct mem_cgroup *memcg, int priority)
954 #endif /* CONFIG_MEMCG */
957 * shrink_slab - shrink slab caches
958 * @gfp_mask: allocation context
959 * @nid: node whose slab caches to target
960 * @memcg: memory cgroup whose slab caches to target
961 * @priority: the reclaim priority
963 * Call the shrink functions to age shrinkable caches.
965 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
966 * unaware shrinkers will receive a node id of 0 instead.
968 * @memcg specifies the memory cgroup to target. Unaware shrinkers
969 * are called only if it is the root cgroup.
971 * @priority is sc->priority, we take the number of objects and >> by priority
972 * in order to get the scan target.
974 * Returns the number of reclaimed slab objects.
976 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
977 struct mem_cgroup *memcg,
980 unsigned long ret, freed = 0;
981 struct shrinker *shrinker;
984 * The root memcg might be allocated even though memcg is disabled
985 * via "cgroup_disable=memory" boot parameter. This could make
986 * mem_cgroup_is_root() return false, then just run memcg slab
987 * shrink, but skip global shrink. This may result in premature
990 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
991 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
993 if (!down_read_trylock(&shrinker_rwsem))
996 list_for_each_entry(shrinker, &shrinker_list, list) {
997 struct shrink_control sc = {
998 .gfp_mask = gfp_mask,
1003 ret = do_shrink_slab(&sc, shrinker, priority);
1004 if (ret == SHRINK_EMPTY)
1008 * Bail out if someone want to register a new shrinker to
1009 * prevent the registration from being stalled for long periods
1010 * by parallel ongoing shrinking.
1012 if (rwsem_is_contended(&shrinker_rwsem)) {
1013 freed = freed ? : 1;
1018 up_read(&shrinker_rwsem);
1024 static void drop_slab_node(int nid)
1026 unsigned long freed;
1030 struct mem_cgroup *memcg = NULL;
1032 if (fatal_signal_pending(current))
1036 memcg = mem_cgroup_iter(NULL, NULL, NULL);
1038 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
1039 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
1040 } while ((freed >> shift++) > 1);
1043 void drop_slab(void)
1047 for_each_online_node(nid)
1048 drop_slab_node(nid);
1051 static int reclaimer_offset(void)
1053 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1054 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
1055 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
1056 PGSCAN_DIRECT - PGSCAN_KSWAPD);
1057 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1058 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
1059 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
1060 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
1062 if (current_is_kswapd())
1064 if (current_is_khugepaged())
1065 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
1066 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
1069 static inline int is_page_cache_freeable(struct folio *folio)
1072 * A freeable page cache folio is referenced only by the caller
1073 * that isolated the folio, the page cache and optional filesystem
1074 * private data at folio->private.
1076 return folio_ref_count(folio) - folio_test_private(folio) ==
1077 1 + folio_nr_pages(folio);
1081 * We detected a synchronous write error writing a folio out. Probably
1082 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1083 * fsync(), msync() or close().
1085 * The tricky part is that after writepage we cannot touch the mapping: nothing
1086 * prevents it from being freed up. But we have a ref on the folio and once
1087 * that folio is locked, the mapping is pinned.
1089 * We're allowed to run sleeping folio_lock() here because we know the caller has
1092 static void handle_write_error(struct address_space *mapping,
1093 struct folio *folio, int error)
1096 if (folio_mapping(folio) == mapping)
1097 mapping_set_error(mapping, error);
1098 folio_unlock(folio);
1101 static bool skip_throttle_noprogress(pg_data_t *pgdat)
1103 int reclaimable = 0, write_pending = 0;
1107 * If kswapd is disabled, reschedule if necessary but do not
1108 * throttle as the system is likely near OOM.
1110 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
1114 * If there are a lot of dirty/writeback folios then do not
1115 * throttle as throttling will occur when the folios cycle
1116 * towards the end of the LRU if still under writeback.
1118 for (i = 0; i < MAX_NR_ZONES; i++) {
1119 struct zone *zone = pgdat->node_zones + i;
1121 if (!managed_zone(zone))
1124 reclaimable += zone_reclaimable_pages(zone);
1125 write_pending += zone_page_state_snapshot(zone,
1126 NR_ZONE_WRITE_PENDING);
1128 if (2 * write_pending <= reclaimable)
1134 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1136 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1141 * Do not throttle IO workers, kthreads other than kswapd or
1142 * workqueues. They may be required for reclaim to make
1143 * forward progress (e.g. journalling workqueues or kthreads).
1145 if (!current_is_kswapd() &&
1146 current->flags & (PF_IO_WORKER|PF_KTHREAD)) {
1152 * These figures are pulled out of thin air.
1153 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1154 * parallel reclaimers which is a short-lived event so the timeout is
1155 * short. Failing to make progress or waiting on writeback are
1156 * potentially long-lived events so use a longer timeout. This is shaky
1157 * logic as a failure to make progress could be due to anything from
1158 * writeback to a slow device to excessive referenced folios at the tail
1159 * of the inactive LRU.
1162 case VMSCAN_THROTTLE_WRITEBACK:
1165 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1166 WRITE_ONCE(pgdat->nr_reclaim_start,
1167 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1171 case VMSCAN_THROTTLE_CONGESTED:
1173 case VMSCAN_THROTTLE_NOPROGRESS:
1174 if (skip_throttle_noprogress(pgdat)) {
1182 case VMSCAN_THROTTLE_ISOLATED:
1191 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1192 ret = schedule_timeout(timeout);
1193 finish_wait(wqh, &wait);
1195 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1196 atomic_dec(&pgdat->nr_writeback_throttled);
1198 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1199 jiffies_to_usecs(timeout - ret),
1204 * Account for folios written if tasks are throttled waiting on dirty
1205 * folios to clean. If enough folios have been cleaned since throttling
1206 * started then wakeup the throttled tasks.
1208 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1211 unsigned long nr_written;
1213 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1216 * This is an inaccurate read as the per-cpu deltas may not
1217 * be synchronised. However, given that the system is
1218 * writeback throttled, it is not worth taking the penalty
1219 * of getting an accurate count. At worst, the throttle
1220 * timeout guarantees forward progress.
1222 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1223 READ_ONCE(pgdat->nr_reclaim_start);
1225 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1226 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1229 /* possible outcome of pageout() */
1231 /* failed to write folio out, folio is locked */
1233 /* move folio to the active list, folio is locked */
1235 /* folio has been sent to the disk successfully, folio is unlocked */
1237 /* folio is clean and locked */
1242 * pageout is called by shrink_folio_list() for each dirty folio.
1243 * Calls ->writepage().
1245 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
1246 struct swap_iocb **plug)
1249 * If the folio is dirty, only perform writeback if that write
1250 * will be non-blocking. To prevent this allocation from being
1251 * stalled by pagecache activity. But note that there may be
1252 * stalls if we need to run get_block(). We could test
1253 * PagePrivate for that.
1255 * If this process is currently in __generic_file_write_iter() against
1256 * this folio's queue, we can perform writeback even if that
1259 * If the folio is swapcache, write it back even if that would
1260 * block, for some throttling. This happens by accident, because
1261 * swap_backing_dev_info is bust: it doesn't reflect the
1262 * congestion state of the swapdevs. Easy to fix, if needed.
1264 if (!is_page_cache_freeable(folio))
1268 * Some data journaling orphaned folios can have
1269 * folio->mapping == NULL while being dirty with clean buffers.
1271 if (folio_test_private(folio)) {
1272 if (try_to_free_buffers(folio)) {
1273 folio_clear_dirty(folio);
1274 pr_info("%s: orphaned folio\n", __func__);
1280 if (mapping->a_ops->writepage == NULL)
1281 return PAGE_ACTIVATE;
1283 if (folio_clear_dirty_for_io(folio)) {
1285 struct writeback_control wbc = {
1286 .sync_mode = WB_SYNC_NONE,
1287 .nr_to_write = SWAP_CLUSTER_MAX,
1289 .range_end = LLONG_MAX,
1294 folio_set_reclaim(folio);
1295 res = mapping->a_ops->writepage(&folio->page, &wbc);
1297 handle_write_error(mapping, folio, res);
1298 if (res == AOP_WRITEPAGE_ACTIVATE) {
1299 folio_clear_reclaim(folio);
1300 return PAGE_ACTIVATE;
1303 if (!folio_test_writeback(folio)) {
1304 /* synchronous write or broken a_ops? */
1305 folio_clear_reclaim(folio);
1307 trace_mm_vmscan_write_folio(folio);
1308 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
1309 return PAGE_SUCCESS;
1316 * Same as remove_mapping, but if the folio is removed from the mapping, it
1317 * gets returned with a refcount of 0.
1319 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
1320 bool reclaimed, struct mem_cgroup *target_memcg)
1323 void *shadow = NULL;
1325 BUG_ON(!folio_test_locked(folio));
1326 BUG_ON(mapping != folio_mapping(folio));
1328 if (!folio_test_swapcache(folio))
1329 spin_lock(&mapping->host->i_lock);
1330 xa_lock_irq(&mapping->i_pages);
1332 * The non racy check for a busy folio.
1334 * Must be careful with the order of the tests. When someone has
1335 * a ref to the folio, it may be possible that they dirty it then
1336 * drop the reference. So if the dirty flag is tested before the
1337 * refcount here, then the following race may occur:
1339 * get_user_pages(&page);
1340 * [user mapping goes away]
1342 * !folio_test_dirty(folio) [good]
1343 * folio_set_dirty(folio);
1345 * !refcount(folio) [good, discard it]
1347 * [oops, our write_to data is lost]
1349 * Reversing the order of the tests ensures such a situation cannot
1350 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
1351 * load is not satisfied before that of folio->_refcount.
1353 * Note that if the dirty flag is always set via folio_mark_dirty,
1354 * and thus under the i_pages lock, then this ordering is not required.
1356 refcount = 1 + folio_nr_pages(folio);
1357 if (!folio_ref_freeze(folio, refcount))
1359 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
1360 if (unlikely(folio_test_dirty(folio))) {
1361 folio_ref_unfreeze(folio, refcount);
1365 if (folio_test_swapcache(folio)) {
1366 swp_entry_t swap = folio_swap_entry(folio);
1368 /* get a shadow entry before mem_cgroup_swapout() clears folio_memcg() */
1369 if (reclaimed && !mapping_exiting(mapping))
1370 shadow = workingset_eviction(folio, target_memcg);
1371 mem_cgroup_swapout(folio, swap);
1372 __delete_from_swap_cache(folio, swap, shadow);
1373 xa_unlock_irq(&mapping->i_pages);
1374 put_swap_folio(folio, swap);
1376 void (*free_folio)(struct folio *);
1378 free_folio = mapping->a_ops->free_folio;
1380 * Remember a shadow entry for reclaimed file cache in
1381 * order to detect refaults, thus thrashing, later on.
1383 * But don't store shadows in an address space that is
1384 * already exiting. This is not just an optimization,
1385 * inode reclaim needs to empty out the radix tree or
1386 * the nodes are lost. Don't plant shadows behind its
1389 * We also don't store shadows for DAX mappings because the
1390 * only page cache folios found in these are zero pages
1391 * covering holes, and because we don't want to mix DAX
1392 * exceptional entries and shadow exceptional entries in the
1393 * same address_space.
1395 if (reclaimed && folio_is_file_lru(folio) &&
1396 !mapping_exiting(mapping) && !dax_mapping(mapping))
1397 shadow = workingset_eviction(folio, target_memcg);
1398 __filemap_remove_folio(folio, shadow);
1399 xa_unlock_irq(&mapping->i_pages);
1400 if (mapping_shrinkable(mapping))
1401 inode_add_lru(mapping->host);
1402 spin_unlock(&mapping->host->i_lock);
1411 xa_unlock_irq(&mapping->i_pages);
1412 if (!folio_test_swapcache(folio))
1413 spin_unlock(&mapping->host->i_lock);
1418 * remove_mapping() - Attempt to remove a folio from its mapping.
1419 * @mapping: The address space.
1420 * @folio: The folio to remove.
1422 * If the folio is dirty, under writeback or if someone else has a ref
1423 * on it, removal will fail.
1424 * Return: The number of pages removed from the mapping. 0 if the folio
1425 * could not be removed.
1426 * Context: The caller should have a single refcount on the folio and
1429 long remove_mapping(struct address_space *mapping, struct folio *folio)
1431 if (__remove_mapping(mapping, folio, false, NULL)) {
1433 * Unfreezing the refcount with 1 effectively
1434 * drops the pagecache ref for us without requiring another
1437 folio_ref_unfreeze(folio, 1);
1438 return folio_nr_pages(folio);
1444 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
1445 * @folio: Folio to be returned to an LRU list.
1447 * Add previously isolated @folio to appropriate LRU list.
1448 * The folio may still be unevictable for other reasons.
1450 * Context: lru_lock must not be held, interrupts must be enabled.
1452 void folio_putback_lru(struct folio *folio)
1454 folio_add_lru(folio);
1455 folio_put(folio); /* drop ref from isolate */
1458 enum folio_references {
1460 FOLIOREF_RECLAIM_CLEAN,
1465 static enum folio_references folio_check_references(struct folio *folio,
1466 struct scan_control *sc)
1468 int referenced_ptes, referenced_folio;
1469 unsigned long vm_flags;
1471 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
1473 referenced_folio = folio_test_clear_referenced(folio);
1476 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
1477 * Let the folio, now marked Mlocked, be moved to the unevictable list.
1479 if (vm_flags & VM_LOCKED)
1480 return FOLIOREF_ACTIVATE;
1482 /* rmap lock contention: rotate */
1483 if (referenced_ptes == -1)
1484 return FOLIOREF_KEEP;
1486 if (referenced_ptes) {
1488 * All mapped folios start out with page table
1489 * references from the instantiating fault, so we need
1490 * to look twice if a mapped file/anon folio is used more
1493 * Mark it and spare it for another trip around the
1494 * inactive list. Another page table reference will
1495 * lead to its activation.
1497 * Note: the mark is set for activated folios as well
1498 * so that recently deactivated but used folios are
1499 * quickly recovered.
1501 folio_set_referenced(folio);
1503 if (referenced_folio || referenced_ptes > 1)
1504 return FOLIOREF_ACTIVATE;
1507 * Activate file-backed executable folios after first usage.
1509 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
1510 return FOLIOREF_ACTIVATE;
1512 return FOLIOREF_KEEP;
1515 /* Reclaim if clean, defer dirty folios to writeback */
1516 if (referenced_folio && folio_is_file_lru(folio))
1517 return FOLIOREF_RECLAIM_CLEAN;
1519 return FOLIOREF_RECLAIM;
1522 /* Check if a folio is dirty or under writeback */
1523 static void folio_check_dirty_writeback(struct folio *folio,
1524 bool *dirty, bool *writeback)
1526 struct address_space *mapping;
1529 * Anonymous folios are not handled by flushers and must be written
1530 * from reclaim context. Do not stall reclaim based on them.
1531 * MADV_FREE anonymous folios are put into inactive file list too.
1532 * They could be mistakenly treated as file lru. So further anon
1535 if (!folio_is_file_lru(folio) ||
1536 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
1542 /* By default assume that the folio flags are accurate */
1543 *dirty = folio_test_dirty(folio);
1544 *writeback = folio_test_writeback(folio);
1546 /* Verify dirty/writeback state if the filesystem supports it */
1547 if (!folio_test_private(folio))
1550 mapping = folio_mapping(folio);
1551 if (mapping && mapping->a_ops->is_dirty_writeback)
1552 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1555 static struct page *alloc_demote_page(struct page *page, unsigned long private)
1557 struct page *target_page;
1558 nodemask_t *allowed_mask;
1559 struct migration_target_control *mtc;
1561 mtc = (struct migration_target_control *)private;
1563 allowed_mask = mtc->nmask;
1565 * make sure we allocate from the target node first also trying to
1566 * demote or reclaim pages from the target node via kswapd if we are
1567 * low on free memory on target node. If we don't do this and if
1568 * we have free memory on the slower(lower) memtier, we would start
1569 * allocating pages from slower(lower) memory tiers without even forcing
1570 * a demotion of cold pages from the target memtier. This can result
1571 * in the kernel placing hot pages in slower(lower) memory tiers.
1574 mtc->gfp_mask |= __GFP_THISNODE;
1575 target_page = alloc_migration_target(page, (unsigned long)mtc);
1579 mtc->gfp_mask &= ~__GFP_THISNODE;
1580 mtc->nmask = allowed_mask;
1582 return alloc_migration_target(page, (unsigned long)mtc);
1586 * Take folios on @demote_folios and attempt to demote them to another node.
1587 * Folios which are not demoted are left on @demote_folios.
1589 static unsigned int demote_folio_list(struct list_head *demote_folios,
1590 struct pglist_data *pgdat)
1592 int target_nid = next_demotion_node(pgdat->node_id);
1593 unsigned int nr_succeeded;
1594 nodemask_t allowed_mask;
1596 struct migration_target_control mtc = {
1598 * Allocate from 'node', or fail quickly and quietly.
1599 * When this happens, 'page' will likely just be discarded
1600 * instead of migrated.
1602 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1603 __GFP_NOMEMALLOC | GFP_NOWAIT,
1605 .nmask = &allowed_mask
1608 if (list_empty(demote_folios))
1611 if (target_nid == NUMA_NO_NODE)
1614 node_get_allowed_targets(pgdat, &allowed_mask);
1616 /* Demotion ignores all cpuset and mempolicy settings */
1617 migrate_pages(demote_folios, alloc_demote_page, NULL,
1618 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1621 __count_vm_events(PGDEMOTE_KSWAPD + reclaimer_offset(), nr_succeeded);
1623 return nr_succeeded;
1626 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1628 if (gfp_mask & __GFP_FS)
1630 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1633 * We can "enter_fs" for swap-cache with only __GFP_IO
1634 * providing this isn't SWP_FS_OPS.
1635 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1636 * but that will never affect SWP_FS_OPS, so the data_race
1639 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1643 * shrink_folio_list() returns the number of reclaimed pages
1645 static unsigned int shrink_folio_list(struct list_head *folio_list,
1646 struct pglist_data *pgdat, struct scan_control *sc,
1647 struct reclaim_stat *stat, bool ignore_references)
1649 LIST_HEAD(ret_folios);
1650 LIST_HEAD(free_folios);
1651 LIST_HEAD(demote_folios);
1652 unsigned int nr_reclaimed = 0;
1653 unsigned int pgactivate = 0;
1654 bool do_demote_pass;
1655 struct swap_iocb *plug = NULL;
1657 memset(stat, 0, sizeof(*stat));
1659 do_demote_pass = can_demote(pgdat->node_id, sc);
1662 while (!list_empty(folio_list)) {
1663 struct address_space *mapping;
1664 struct folio *folio;
1665 enum folio_references references = FOLIOREF_RECLAIM;
1666 bool dirty, writeback;
1667 unsigned int nr_pages;
1671 folio = lru_to_folio(folio_list);
1672 list_del(&folio->lru);
1674 if (!folio_trylock(folio))
1677 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1679 nr_pages = folio_nr_pages(folio);
1681 /* Account the number of base pages */
1682 sc->nr_scanned += nr_pages;
1684 if (unlikely(!folio_evictable(folio)))
1685 goto activate_locked;
1687 if (!sc->may_unmap && folio_mapped(folio))
1690 /* folio_update_gen() tried to promote this page? */
1691 if (lru_gen_enabled() && !ignore_references &&
1692 folio_mapped(folio) && folio_test_referenced(folio))
1696 * The number of dirty pages determines if a node is marked
1697 * reclaim_congested. kswapd will stall and start writing
1698 * folios if the tail of the LRU is all dirty unqueued folios.
1700 folio_check_dirty_writeback(folio, &dirty, &writeback);
1701 if (dirty || writeback)
1702 stat->nr_dirty += nr_pages;
1704 if (dirty && !writeback)
1705 stat->nr_unqueued_dirty += nr_pages;
1708 * Treat this folio as congested if folios are cycling
1709 * through the LRU so quickly that the folios marked
1710 * for immediate reclaim are making it to the end of
1711 * the LRU a second time.
1713 if (writeback && folio_test_reclaim(folio))
1714 stat->nr_congested += nr_pages;
1717 * If a folio at the tail of the LRU is under writeback, there
1718 * are three cases to consider.
1720 * 1) If reclaim is encountering an excessive number
1721 * of folios under writeback and this folio has both
1722 * the writeback and reclaim flags set, then it
1723 * indicates that folios are being queued for I/O but
1724 * are being recycled through the LRU before the I/O
1725 * can complete. Waiting on the folio itself risks an
1726 * indefinite stall if it is impossible to writeback
1727 * the folio due to I/O error or disconnected storage
1728 * so instead note that the LRU is being scanned too
1729 * quickly and the caller can stall after the folio
1730 * list has been processed.
1732 * 2) Global or new memcg reclaim encounters a folio that is
1733 * not marked for immediate reclaim, or the caller does not
1734 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1735 * not to fs). In this case mark the folio for immediate
1736 * reclaim and continue scanning.
1738 * Require may_enter_fs() because we would wait on fs, which
1739 * may not have submitted I/O yet. And the loop driver might
1740 * enter reclaim, and deadlock if it waits on a folio for
1741 * which it is needed to do the write (loop masks off
1742 * __GFP_IO|__GFP_FS for this reason); but more thought
1743 * would probably show more reasons.
1745 * 3) Legacy memcg encounters a folio that already has the
1746 * reclaim flag set. memcg does not have any dirty folio
1747 * throttling so we could easily OOM just because too many
1748 * folios are in writeback and there is nothing else to
1749 * reclaim. Wait for the writeback to complete.
1751 * In cases 1) and 2) we activate the folios to get them out of
1752 * the way while we continue scanning for clean folios on the
1753 * inactive list and refilling from the active list. The
1754 * observation here is that waiting for disk writes is more
1755 * expensive than potentially causing reloads down the line.
1756 * Since they're marked for immediate reclaim, they won't put
1757 * memory pressure on the cache working set any longer than it
1758 * takes to write them to disk.
1760 if (folio_test_writeback(folio)) {
1762 if (current_is_kswapd() &&
1763 folio_test_reclaim(folio) &&
1764 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1765 stat->nr_immediate += nr_pages;
1766 goto activate_locked;
1769 } else if (writeback_throttling_sane(sc) ||
1770 !folio_test_reclaim(folio) ||
1771 !may_enter_fs(folio, sc->gfp_mask)) {
1773 * This is slightly racy -
1774 * folio_end_writeback() might have
1775 * just cleared the reclaim flag, then
1776 * setting the reclaim flag here ends up
1777 * interpreted as the readahead flag - but
1778 * that does not matter enough to care.
1779 * What we do want is for this folio to
1780 * have the reclaim flag set next time
1781 * memcg reclaim reaches the tests above,
1782 * so it will then wait for writeback to
1783 * avoid OOM; and it's also appropriate
1784 * in global reclaim.
1786 folio_set_reclaim(folio);
1787 stat->nr_writeback += nr_pages;
1788 goto activate_locked;
1792 folio_unlock(folio);
1793 folio_wait_writeback(folio);
1794 /* then go back and try same folio again */
1795 list_add_tail(&folio->lru, folio_list);
1800 if (!ignore_references)
1801 references = folio_check_references(folio, sc);
1803 switch (references) {
1804 case FOLIOREF_ACTIVATE:
1805 goto activate_locked;
1807 stat->nr_ref_keep += nr_pages;
1809 case FOLIOREF_RECLAIM:
1810 case FOLIOREF_RECLAIM_CLEAN:
1811 ; /* try to reclaim the folio below */
1815 * Before reclaiming the folio, try to relocate
1816 * its contents to another node.
1818 if (do_demote_pass &&
1819 (thp_migration_supported() || !folio_test_large(folio))) {
1820 list_add(&folio->lru, &demote_folios);
1821 folio_unlock(folio);
1826 * Anonymous process memory has backing store?
1827 * Try to allocate it some swap space here.
1828 * Lazyfree folio could be freed directly
1830 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1831 if (!folio_test_swapcache(folio)) {
1832 if (!(sc->gfp_mask & __GFP_IO))
1834 if (folio_maybe_dma_pinned(folio))
1836 if (folio_test_large(folio)) {
1837 /* cannot split folio, skip it */
1838 if (!can_split_folio(folio, NULL))
1839 goto activate_locked;
1841 * Split folios without a PMD map right
1842 * away. Chances are some or all of the
1843 * tail pages can be freed without IO.
1845 if (!folio_entire_mapcount(folio) &&
1846 split_folio_to_list(folio,
1848 goto activate_locked;
1850 if (!add_to_swap(folio)) {
1851 if (!folio_test_large(folio))
1852 goto activate_locked_split;
1853 /* Fallback to swap normal pages */
1854 if (split_folio_to_list(folio,
1856 goto activate_locked;
1857 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1858 count_vm_event(THP_SWPOUT_FALLBACK);
1860 if (!add_to_swap(folio))
1861 goto activate_locked_split;
1864 } else if (folio_test_swapbacked(folio) &&
1865 folio_test_large(folio)) {
1866 /* Split shmem folio */
1867 if (split_folio_to_list(folio, folio_list))
1872 * If the folio was split above, the tail pages will make
1873 * their own pass through this function and be accounted
1876 if ((nr_pages > 1) && !folio_test_large(folio)) {
1877 sc->nr_scanned -= (nr_pages - 1);
1882 * The folio is mapped into the page tables of one or more
1883 * processes. Try to unmap it here.
1885 if (folio_mapped(folio)) {
1886 enum ttu_flags flags = TTU_BATCH_FLUSH;
1887 bool was_swapbacked = folio_test_swapbacked(folio);
1889 if (folio_test_pmd_mappable(folio))
1890 flags |= TTU_SPLIT_HUGE_PMD;
1892 try_to_unmap(folio, flags);
1893 if (folio_mapped(folio)) {
1894 stat->nr_unmap_fail += nr_pages;
1895 if (!was_swapbacked &&
1896 folio_test_swapbacked(folio))
1897 stat->nr_lazyfree_fail += nr_pages;
1898 goto activate_locked;
1902 mapping = folio_mapping(folio);
1903 if (folio_test_dirty(folio)) {
1905 * Only kswapd can writeback filesystem folios
1906 * to avoid risk of stack overflow. But avoid
1907 * injecting inefficient single-folio I/O into
1908 * flusher writeback as much as possible: only
1909 * write folios when we've encountered many
1910 * dirty folios, and when we've already scanned
1911 * the rest of the LRU for clean folios and see
1912 * the same dirty folios again (with the reclaim
1915 if (folio_is_file_lru(folio) &&
1916 (!current_is_kswapd() ||
1917 !folio_test_reclaim(folio) ||
1918 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1920 * Immediately reclaim when written back.
1921 * Similar in principle to deactivate_page()
1922 * except we already have the folio isolated
1923 * and know it's dirty
1925 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1927 folio_set_reclaim(folio);
1929 goto activate_locked;
1932 if (references == FOLIOREF_RECLAIM_CLEAN)
1934 if (!may_enter_fs(folio, sc->gfp_mask))
1936 if (!sc->may_writepage)
1940 * Folio is dirty. Flush the TLB if a writable entry
1941 * potentially exists to avoid CPU writes after I/O
1942 * starts and then write it out here.
1944 try_to_unmap_flush_dirty();
1945 switch (pageout(folio, mapping, &plug)) {
1949 goto activate_locked;
1951 stat->nr_pageout += nr_pages;
1953 if (folio_test_writeback(folio))
1955 if (folio_test_dirty(folio))
1959 * A synchronous write - probably a ramdisk. Go
1960 * ahead and try to reclaim the folio.
1962 if (!folio_trylock(folio))
1964 if (folio_test_dirty(folio) ||
1965 folio_test_writeback(folio))
1967 mapping = folio_mapping(folio);
1970 ; /* try to free the folio below */
1975 * If the folio has buffers, try to free the buffer
1976 * mappings associated with this folio. If we succeed
1977 * we try to free the folio as well.
1979 * We do this even if the folio is dirty.
1980 * filemap_release_folio() does not perform I/O, but it
1981 * is possible for a folio to have the dirty flag set,
1982 * but it is actually clean (all its buffers are clean).
1983 * This happens if the buffers were written out directly,
1984 * with submit_bh(). ext3 will do this, as well as
1985 * the blockdev mapping. filemap_release_folio() will
1986 * discover that cleanness and will drop the buffers
1987 * and mark the folio clean - it can be freed.
1989 * Rarely, folios can have buffers and no ->mapping.
1990 * These are the folios which were not successfully
1991 * invalidated in truncate_cleanup_folio(). We try to
1992 * drop those buffers here and if that worked, and the
1993 * folio is no longer mapped into process address space
1994 * (refcount == 1) it can be freed. Otherwise, leave
1995 * the folio on the LRU so it is swappable.
1997 if (folio_has_private(folio)) {
1998 if (!filemap_release_folio(folio, sc->gfp_mask))
1999 goto activate_locked;
2000 if (!mapping && folio_ref_count(folio) == 1) {
2001 folio_unlock(folio);
2002 if (folio_put_testzero(folio))
2006 * rare race with speculative reference.
2007 * the speculative reference will free
2008 * this folio shortly, so we may
2009 * increment nr_reclaimed here (and
2010 * leave it off the LRU).
2012 nr_reclaimed += nr_pages;
2018 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
2019 /* follow __remove_mapping for reference */
2020 if (!folio_ref_freeze(folio, 1))
2023 * The folio has only one reference left, which is
2024 * from the isolation. After the caller puts the
2025 * folio back on the lru and drops the reference, the
2026 * folio will be freed anyway. It doesn't matter
2027 * which lru it goes on. So we don't bother checking
2028 * the dirty flag here.
2030 count_vm_events(PGLAZYFREED, nr_pages);
2031 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
2032 } else if (!mapping || !__remove_mapping(mapping, folio, true,
2033 sc->target_mem_cgroup))
2036 folio_unlock(folio);
2039 * Folio may get swapped out as a whole, need to account
2042 nr_reclaimed += nr_pages;
2045 * Is there need to periodically free_folio_list? It would
2046 * appear not as the counts should be low
2048 if (unlikely(folio_test_large(folio)))
2049 destroy_large_folio(folio);
2051 list_add(&folio->lru, &free_folios);
2054 activate_locked_split:
2056 * The tail pages that are failed to add into swap cache
2057 * reach here. Fixup nr_scanned and nr_pages.
2060 sc->nr_scanned -= (nr_pages - 1);
2064 /* Not a candidate for swapping, so reclaim swap space. */
2065 if (folio_test_swapcache(folio) &&
2066 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
2067 folio_free_swap(folio);
2068 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
2069 if (!folio_test_mlocked(folio)) {
2070 int type = folio_is_file_lru(folio);
2071 folio_set_active(folio);
2072 stat->nr_activate[type] += nr_pages;
2073 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
2076 folio_unlock(folio);
2078 list_add(&folio->lru, &ret_folios);
2079 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
2080 folio_test_unevictable(folio), folio);
2082 /* 'folio_list' is always empty here */
2084 /* Migrate folios selected for demotion */
2085 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
2086 /* Folios that could not be demoted are still in @demote_folios */
2087 if (!list_empty(&demote_folios)) {
2088 /* Folios which weren't demoted go back on @folio_list for retry: */
2089 list_splice_init(&demote_folios, folio_list);
2090 do_demote_pass = false;
2094 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
2096 mem_cgroup_uncharge_list(&free_folios);
2097 try_to_unmap_flush();
2098 free_unref_page_list(&free_folios);
2100 list_splice(&ret_folios, folio_list);
2101 count_vm_events(PGACTIVATE, pgactivate);
2104 swap_write_unplug(plug);
2105 return nr_reclaimed;
2108 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
2109 struct list_head *folio_list)
2111 struct scan_control sc = {
2112 .gfp_mask = GFP_KERNEL,
2115 struct reclaim_stat stat;
2116 unsigned int nr_reclaimed;
2117 struct folio *folio, *next;
2118 LIST_HEAD(clean_folios);
2119 unsigned int noreclaim_flag;
2121 list_for_each_entry_safe(folio, next, folio_list, lru) {
2122 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
2123 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
2124 !folio_test_unevictable(folio)) {
2125 folio_clear_active(folio);
2126 list_move(&folio->lru, &clean_folios);
2131 * We should be safe here since we are only dealing with file pages and
2132 * we are not kswapd and therefore cannot write dirty file pages. But
2133 * call memalloc_noreclaim_save() anyway, just in case these conditions
2134 * change in the future.
2136 noreclaim_flag = memalloc_noreclaim_save();
2137 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
2139 memalloc_noreclaim_restore(noreclaim_flag);
2141 list_splice(&clean_folios, folio_list);
2142 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2143 -(long)nr_reclaimed);
2145 * Since lazyfree pages are isolated from file LRU from the beginning,
2146 * they will rotate back to anonymous LRU in the end if it failed to
2147 * discard so isolated count will be mismatched.
2148 * Compensate the isolated count for both LRU lists.
2150 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
2151 stat.nr_lazyfree_fail);
2152 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
2153 -(long)stat.nr_lazyfree_fail);
2154 return nr_reclaimed;
2158 * Update LRU sizes after isolating pages. The LRU size updates must
2159 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2161 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2162 enum lru_list lru, unsigned long *nr_zone_taken)
2166 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2167 if (!nr_zone_taken[zid])
2170 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2176 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2178 * lruvec->lru_lock is heavily contended. Some of the functions that
2179 * shrink the lists perform better by taking out a batch of pages
2180 * and working on them outside the LRU lock.
2182 * For pagecache intensive workloads, this function is the hottest
2183 * spot in the kernel (apart from copy_*_user functions).
2185 * Lru_lock must be held before calling this function.
2187 * @nr_to_scan: The number of eligible pages to look through on the list.
2188 * @lruvec: The LRU vector to pull pages from.
2189 * @dst: The temp list to put pages on to.
2190 * @nr_scanned: The number of pages that were scanned.
2191 * @sc: The scan_control struct for this reclaim session
2192 * @lru: LRU list id for isolating
2194 * returns how many pages were moved onto *@dst.
2196 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
2197 struct lruvec *lruvec, struct list_head *dst,
2198 unsigned long *nr_scanned, struct scan_control *sc,
2201 struct list_head *src = &lruvec->lists[lru];
2202 unsigned long nr_taken = 0;
2203 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2204 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2205 unsigned long skipped = 0;
2206 unsigned long scan, total_scan, nr_pages;
2207 LIST_HEAD(folios_skipped);
2211 while (scan < nr_to_scan && !list_empty(src)) {
2212 struct list_head *move_to = src;
2213 struct folio *folio;
2215 folio = lru_to_folio(src);
2216 prefetchw_prev_lru_folio(folio, src, flags);
2218 nr_pages = folio_nr_pages(folio);
2219 total_scan += nr_pages;
2221 if (folio_zonenum(folio) > sc->reclaim_idx) {
2222 nr_skipped[folio_zonenum(folio)] += nr_pages;
2223 move_to = &folios_skipped;
2228 * Do not count skipped folios because that makes the function
2229 * return with no isolated folios if the LRU mostly contains
2230 * ineligible folios. This causes the VM to not reclaim any
2231 * folios, triggering a premature OOM.
2232 * Account all pages in a folio.
2236 if (!folio_test_lru(folio))
2238 if (!sc->may_unmap && folio_mapped(folio))
2242 * Be careful not to clear the lru flag until after we're
2243 * sure the folio is not being freed elsewhere -- the
2244 * folio release code relies on it.
2246 if (unlikely(!folio_try_get(folio)))
2249 if (!folio_test_clear_lru(folio)) {
2250 /* Another thread is already isolating this folio */
2255 nr_taken += nr_pages;
2256 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
2259 list_move(&folio->lru, move_to);
2263 * Splice any skipped folios to the start of the LRU list. Note that
2264 * this disrupts the LRU order when reclaiming for lower zones but
2265 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2266 * scanning would soon rescan the same folios to skip and waste lots
2269 if (!list_empty(&folios_skipped)) {
2272 list_splice(&folios_skipped, src);
2273 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2274 if (!nr_skipped[zid])
2277 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2278 skipped += nr_skipped[zid];
2281 *nr_scanned = total_scan;
2282 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2283 total_scan, skipped, nr_taken,
2284 sc->may_unmap ? 0 : ISOLATE_UNMAPPED, lru);
2285 update_lru_sizes(lruvec, lru, nr_zone_taken);
2290 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
2291 * @folio: Folio to isolate from its LRU list.
2293 * Isolate a @folio from an LRU list and adjust the vmstat statistic
2294 * corresponding to whatever LRU list the folio was on.
2296 * The folio will have its LRU flag cleared. If it was found on the
2297 * active list, it will have the Active flag set. If it was found on the
2298 * unevictable list, it will have the Unevictable flag set. These flags
2299 * may need to be cleared by the caller before letting the page go.
2303 * (1) Must be called with an elevated refcount on the folio. This is a
2304 * fundamental difference from isolate_lru_folios() (which is called
2305 * without a stable reference).
2306 * (2) The lru_lock must not be held.
2307 * (3) Interrupts must be enabled.
2309 * Return: 0 if the folio was removed from an LRU list.
2310 * -EBUSY if the folio was not on an LRU list.
2312 int folio_isolate_lru(struct folio *folio)
2316 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
2318 if (folio_test_clear_lru(folio)) {
2319 struct lruvec *lruvec;
2322 lruvec = folio_lruvec_lock_irq(folio);
2323 lruvec_del_folio(lruvec, folio);
2324 unlock_page_lruvec_irq(lruvec);
2332 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2333 * then get rescheduled. When there are massive number of tasks doing page
2334 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2335 * the LRU list will go small and be scanned faster than necessary, leading to
2336 * unnecessary swapping, thrashing and OOM.
2338 static int too_many_isolated(struct pglist_data *pgdat, int file,
2339 struct scan_control *sc)
2341 unsigned long inactive, isolated;
2344 if (current_is_kswapd())
2347 if (!writeback_throttling_sane(sc))
2351 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2352 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2354 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2355 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2359 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2360 * won't get blocked by normal direct-reclaimers, forming a circular
2363 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2366 too_many = isolated > inactive;
2368 /* Wake up tasks throttled due to too_many_isolated. */
2370 wake_throttle_isolated(pgdat);
2376 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
2377 * On return, @list is reused as a list of folios to be freed by the caller.
2379 * Returns the number of pages moved to the given lruvec.
2381 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
2382 struct list_head *list)
2384 int nr_pages, nr_moved = 0;
2385 LIST_HEAD(folios_to_free);
2387 while (!list_empty(list)) {
2388 struct folio *folio = lru_to_folio(list);
2390 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
2391 list_del(&folio->lru);
2392 if (unlikely(!folio_evictable(folio))) {
2393 spin_unlock_irq(&lruvec->lru_lock);
2394 folio_putback_lru(folio);
2395 spin_lock_irq(&lruvec->lru_lock);
2400 * The folio_set_lru needs to be kept here for list integrity.
2402 * #0 move_folios_to_lru #1 release_pages
2403 * if (!folio_put_testzero())
2404 * if (folio_put_testzero())
2405 * !lru //skip lru_lock
2407 * list_add(&folio->lru,)
2408 * list_add(&folio->lru,)
2410 folio_set_lru(folio);
2412 if (unlikely(folio_put_testzero(folio))) {
2413 __folio_clear_lru_flags(folio);
2415 if (unlikely(folio_test_large(folio))) {
2416 spin_unlock_irq(&lruvec->lru_lock);
2417 destroy_large_folio(folio);
2418 spin_lock_irq(&lruvec->lru_lock);
2420 list_add(&folio->lru, &folios_to_free);
2426 * All pages were isolated from the same lruvec (and isolation
2427 * inhibits memcg migration).
2429 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
2430 lruvec_add_folio(lruvec, folio);
2431 nr_pages = folio_nr_pages(folio);
2432 nr_moved += nr_pages;
2433 if (folio_test_active(folio))
2434 workingset_age_nonresident(lruvec, nr_pages);
2438 * To save our caller's stack, now use input list for pages to free.
2440 list_splice(&folios_to_free, list);
2446 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
2447 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
2448 * we should not throttle. Otherwise it is safe to do so.
2450 static int current_may_throttle(void)
2452 return !(current->flags & PF_LOCAL_THROTTLE);
2456 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2457 * of reclaimed pages
2459 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2460 struct lruvec *lruvec, struct scan_control *sc,
2463 LIST_HEAD(folio_list);
2464 unsigned long nr_scanned;
2465 unsigned int nr_reclaimed = 0;
2466 unsigned long nr_taken;
2467 struct reclaim_stat stat;
2468 bool file = is_file_lru(lru);
2469 enum vm_event_item item;
2470 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2471 bool stalled = false;
2473 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2477 /* wait a bit for the reclaimer. */
2479 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2481 /* We are about to die and free our memory. Return now. */
2482 if (fatal_signal_pending(current))
2483 return SWAP_CLUSTER_MAX;
2488 spin_lock_irq(&lruvec->lru_lock);
2490 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2491 &nr_scanned, sc, lru);
2493 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2494 item = PGSCAN_KSWAPD + reclaimer_offset();
2495 if (!cgroup_reclaim(sc))
2496 __count_vm_events(item, nr_scanned);
2497 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2498 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2500 spin_unlock_irq(&lruvec->lru_lock);
2505 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
2507 spin_lock_irq(&lruvec->lru_lock);
2508 move_folios_to_lru(lruvec, &folio_list);
2510 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2511 item = PGSTEAL_KSWAPD + reclaimer_offset();
2512 if (!cgroup_reclaim(sc))
2513 __count_vm_events(item, nr_reclaimed);
2514 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2515 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2516 spin_unlock_irq(&lruvec->lru_lock);
2518 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
2519 mem_cgroup_uncharge_list(&folio_list);
2520 free_unref_page_list(&folio_list);
2523 * If dirty folios are scanned that are not queued for IO, it
2524 * implies that flushers are not doing their job. This can
2525 * happen when memory pressure pushes dirty folios to the end of
2526 * the LRU before the dirty limits are breached and the dirty
2527 * data has expired. It can also happen when the proportion of
2528 * dirty folios grows not through writes but through memory
2529 * pressure reclaiming all the clean cache. And in some cases,
2530 * the flushers simply cannot keep up with the allocation
2531 * rate. Nudge the flusher threads in case they are asleep.
2533 if (stat.nr_unqueued_dirty == nr_taken) {
2534 wakeup_flusher_threads(WB_REASON_VMSCAN);
2536 * For cgroupv1 dirty throttling is achieved by waking up
2537 * the kernel flusher here and later waiting on folios
2538 * which are in writeback to finish (see shrink_folio_list()).
2540 * Flusher may not be able to issue writeback quickly
2541 * enough for cgroupv1 writeback throttling to work
2542 * on a large system.
2544 if (!writeback_throttling_sane(sc))
2545 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2548 sc->nr.dirty += stat.nr_dirty;
2549 sc->nr.congested += stat.nr_congested;
2550 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2551 sc->nr.writeback += stat.nr_writeback;
2552 sc->nr.immediate += stat.nr_immediate;
2553 sc->nr.taken += nr_taken;
2555 sc->nr.file_taken += nr_taken;
2557 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2558 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2559 return nr_reclaimed;
2563 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2565 * We move them the other way if the folio is referenced by one or more
2568 * If the folios are mostly unmapped, the processing is fast and it is
2569 * appropriate to hold lru_lock across the whole operation. But if
2570 * the folios are mapped, the processing is slow (folio_referenced()), so
2571 * we should drop lru_lock around each folio. It's impossible to balance
2572 * this, so instead we remove the folios from the LRU while processing them.
2573 * It is safe to rely on the active flag against the non-LRU folios in here
2574 * because nobody will play with that bit on a non-LRU folio.
2576 * The downside is that we have to touch folio->_refcount against each folio.
2577 * But we had to alter folio->flags anyway.
2579 static void shrink_active_list(unsigned long nr_to_scan,
2580 struct lruvec *lruvec,
2581 struct scan_control *sc,
2584 unsigned long nr_taken;
2585 unsigned long nr_scanned;
2586 unsigned long vm_flags;
2587 LIST_HEAD(l_hold); /* The folios which were snipped off */
2588 LIST_HEAD(l_active);
2589 LIST_HEAD(l_inactive);
2590 unsigned nr_deactivate, nr_activate;
2591 unsigned nr_rotated = 0;
2592 int file = is_file_lru(lru);
2593 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2597 spin_lock_irq(&lruvec->lru_lock);
2599 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2600 &nr_scanned, sc, lru);
2602 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2604 if (!cgroup_reclaim(sc))
2605 __count_vm_events(PGREFILL, nr_scanned);
2606 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2608 spin_unlock_irq(&lruvec->lru_lock);
2610 while (!list_empty(&l_hold)) {
2611 struct folio *folio;
2614 folio = lru_to_folio(&l_hold);
2615 list_del(&folio->lru);
2617 if (unlikely(!folio_evictable(folio))) {
2618 folio_putback_lru(folio);
2622 if (unlikely(buffer_heads_over_limit)) {
2623 if (folio_test_private(folio) && folio_trylock(folio)) {
2624 if (folio_test_private(folio))
2625 filemap_release_folio(folio, 0);
2626 folio_unlock(folio);
2630 /* Referenced or rmap lock contention: rotate */
2631 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2634 * Identify referenced, file-backed active folios and
2635 * give them one more trip around the active list. So
2636 * that executable code get better chances to stay in
2637 * memory under moderate memory pressure. Anon folios
2638 * are not likely to be evicted by use-once streaming
2639 * IO, plus JVM can create lots of anon VM_EXEC folios,
2640 * so we ignore them here.
2642 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2643 nr_rotated += folio_nr_pages(folio);
2644 list_add(&folio->lru, &l_active);
2649 folio_clear_active(folio); /* we are de-activating */
2650 folio_set_workingset(folio);
2651 list_add(&folio->lru, &l_inactive);
2655 * Move folios back to the lru list.
2657 spin_lock_irq(&lruvec->lru_lock);
2659 nr_activate = move_folios_to_lru(lruvec, &l_active);
2660 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2661 /* Keep all free folios in l_active list */
2662 list_splice(&l_inactive, &l_active);
2664 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2665 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2667 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2668 spin_unlock_irq(&lruvec->lru_lock);
2671 lru_note_cost(lruvec, file, 0, nr_rotated);
2672 mem_cgroup_uncharge_list(&l_active);
2673 free_unref_page_list(&l_active);
2674 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2675 nr_deactivate, nr_rotated, sc->priority, file);
2678 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2679 struct pglist_data *pgdat)
2681 struct reclaim_stat dummy_stat;
2682 unsigned int nr_reclaimed;
2683 struct folio *folio;
2684 struct scan_control sc = {
2685 .gfp_mask = GFP_KERNEL,
2692 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2693 while (!list_empty(folio_list)) {
2694 folio = lru_to_folio(folio_list);
2695 list_del(&folio->lru);
2696 folio_putback_lru(folio);
2699 return nr_reclaimed;
2702 unsigned long reclaim_pages(struct list_head *folio_list)
2705 unsigned int nr_reclaimed = 0;
2706 LIST_HEAD(node_folio_list);
2707 unsigned int noreclaim_flag;
2709 if (list_empty(folio_list))
2710 return nr_reclaimed;
2712 noreclaim_flag = memalloc_noreclaim_save();
2714 nid = folio_nid(lru_to_folio(folio_list));
2716 struct folio *folio = lru_to_folio(folio_list);
2718 if (nid == folio_nid(folio)) {
2719 folio_clear_active(folio);
2720 list_move(&folio->lru, &node_folio_list);
2724 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2725 nid = folio_nid(lru_to_folio(folio_list));
2726 } while (!list_empty(folio_list));
2728 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2730 memalloc_noreclaim_restore(noreclaim_flag);
2732 return nr_reclaimed;
2735 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2736 struct lruvec *lruvec, struct scan_control *sc)
2738 if (is_active_lru(lru)) {
2739 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2740 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2742 sc->skipped_deactivate = 1;
2746 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2750 * The inactive anon list should be small enough that the VM never has
2751 * to do too much work.
2753 * The inactive file list should be small enough to leave most memory
2754 * to the established workingset on the scan-resistant active list,
2755 * but large enough to avoid thrashing the aggregate readahead window.
2757 * Both inactive lists should also be large enough that each inactive
2758 * folio has a chance to be referenced again before it is reclaimed.
2760 * If that fails and refaulting is observed, the inactive list grows.
2762 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2763 * on this LRU, maintained by the pageout code. An inactive_ratio
2764 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2767 * memory ratio inactive
2768 * -------------------------------------
2777 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2779 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2780 unsigned long inactive, active;
2781 unsigned long inactive_ratio;
2784 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2785 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2787 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2789 inactive_ratio = int_sqrt(10 * gb);
2793 return inactive * inactive_ratio < active;
2803 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2806 struct lruvec *target_lruvec;
2808 if (lru_gen_enabled())
2811 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2814 * Flush the memory cgroup stats, so that we read accurate per-memcg
2815 * lruvec stats for heuristics.
2817 mem_cgroup_flush_stats();
2820 * Determine the scan balance between anon and file LRUs.
2822 spin_lock_irq(&target_lruvec->lru_lock);
2823 sc->anon_cost = target_lruvec->anon_cost;
2824 sc->file_cost = target_lruvec->file_cost;
2825 spin_unlock_irq(&target_lruvec->lru_lock);
2828 * Target desirable inactive:active list ratios for the anon
2829 * and file LRU lists.
2831 if (!sc->force_deactivate) {
2832 unsigned long refaults;
2835 * When refaults are being observed, it means a new
2836 * workingset is being established. Deactivate to get
2837 * rid of any stale active pages quickly.
2839 refaults = lruvec_page_state(target_lruvec,
2840 WORKINGSET_ACTIVATE_ANON);
2841 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2842 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2843 sc->may_deactivate |= DEACTIVATE_ANON;
2845 sc->may_deactivate &= ~DEACTIVATE_ANON;
2847 refaults = lruvec_page_state(target_lruvec,
2848 WORKINGSET_ACTIVATE_FILE);
2849 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2850 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2851 sc->may_deactivate |= DEACTIVATE_FILE;
2853 sc->may_deactivate &= ~DEACTIVATE_FILE;
2855 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2858 * If we have plenty of inactive file pages that aren't
2859 * thrashing, try to reclaim those first before touching
2862 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2863 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2864 sc->cache_trim_mode = 1;
2866 sc->cache_trim_mode = 0;
2869 * Prevent the reclaimer from falling into the cache trap: as
2870 * cache pages start out inactive, every cache fault will tip
2871 * the scan balance towards the file LRU. And as the file LRU
2872 * shrinks, so does the window for rotation from references.
2873 * This means we have a runaway feedback loop where a tiny
2874 * thrashing file LRU becomes infinitely more attractive than
2875 * anon pages. Try to detect this based on file LRU size.
2877 if (!cgroup_reclaim(sc)) {
2878 unsigned long total_high_wmark = 0;
2879 unsigned long free, anon;
2882 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2883 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2884 node_page_state(pgdat, NR_INACTIVE_FILE);
2886 for (z = 0; z < MAX_NR_ZONES; z++) {
2887 struct zone *zone = &pgdat->node_zones[z];
2889 if (!managed_zone(zone))
2892 total_high_wmark += high_wmark_pages(zone);
2896 * Consider anon: if that's low too, this isn't a
2897 * runaway file reclaim problem, but rather just
2898 * extreme pressure. Reclaim as per usual then.
2900 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2903 file + free <= total_high_wmark &&
2904 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2905 anon >> sc->priority;
2910 * Determine how aggressively the anon and file LRU lists should be
2913 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2914 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2916 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2919 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2920 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2921 unsigned long anon_cost, file_cost, total_cost;
2922 int swappiness = mem_cgroup_swappiness(memcg);
2923 u64 fraction[ANON_AND_FILE];
2924 u64 denominator = 0; /* gcc */
2925 enum scan_balance scan_balance;
2926 unsigned long ap, fp;
2929 /* If we have no swap space, do not bother scanning anon folios. */
2930 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2931 scan_balance = SCAN_FILE;
2936 * Global reclaim will swap to prevent OOM even with no
2937 * swappiness, but memcg users want to use this knob to
2938 * disable swapping for individual groups completely when
2939 * using the memory controller's swap limit feature would be
2942 if (cgroup_reclaim(sc) && !swappiness) {
2943 scan_balance = SCAN_FILE;
2948 * Do not apply any pressure balancing cleverness when the
2949 * system is close to OOM, scan both anon and file equally
2950 * (unless the swappiness setting disagrees with swapping).
2952 if (!sc->priority && swappiness) {
2953 scan_balance = SCAN_EQUAL;
2958 * If the system is almost out of file pages, force-scan anon.
2960 if (sc->file_is_tiny) {
2961 scan_balance = SCAN_ANON;
2966 * If there is enough inactive page cache, we do not reclaim
2967 * anything from the anonymous working right now.
2969 if (sc->cache_trim_mode) {
2970 scan_balance = SCAN_FILE;
2974 scan_balance = SCAN_FRACT;
2976 * Calculate the pressure balance between anon and file pages.
2978 * The amount of pressure we put on each LRU is inversely
2979 * proportional to the cost of reclaiming each list, as
2980 * determined by the share of pages that are refaulting, times
2981 * the relative IO cost of bringing back a swapped out
2982 * anonymous page vs reloading a filesystem page (swappiness).
2984 * Although we limit that influence to ensure no list gets
2985 * left behind completely: at least a third of the pressure is
2986 * applied, before swappiness.
2988 * With swappiness at 100, anon and file have equal IO cost.
2990 total_cost = sc->anon_cost + sc->file_cost;
2991 anon_cost = total_cost + sc->anon_cost;
2992 file_cost = total_cost + sc->file_cost;
2993 total_cost = anon_cost + file_cost;
2995 ap = swappiness * (total_cost + 1);
2996 ap /= anon_cost + 1;
2998 fp = (200 - swappiness) * (total_cost + 1);
2999 fp /= file_cost + 1;
3003 denominator = ap + fp;
3005 for_each_evictable_lru(lru) {
3006 int file = is_file_lru(lru);
3007 unsigned long lruvec_size;
3008 unsigned long low, min;
3011 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
3012 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
3017 * Scale a cgroup's reclaim pressure by proportioning
3018 * its current usage to its memory.low or memory.min
3021 * This is important, as otherwise scanning aggression
3022 * becomes extremely binary -- from nothing as we
3023 * approach the memory protection threshold, to totally
3024 * nominal as we exceed it. This results in requiring
3025 * setting extremely liberal protection thresholds. It
3026 * also means we simply get no protection at all if we
3027 * set it too low, which is not ideal.
3029 * If there is any protection in place, we reduce scan
3030 * pressure by how much of the total memory used is
3031 * within protection thresholds.
3033 * There is one special case: in the first reclaim pass,
3034 * we skip over all groups that are within their low
3035 * protection. If that fails to reclaim enough pages to
3036 * satisfy the reclaim goal, we come back and override
3037 * the best-effort low protection. However, we still
3038 * ideally want to honor how well-behaved groups are in
3039 * that case instead of simply punishing them all
3040 * equally. As such, we reclaim them based on how much
3041 * memory they are using, reducing the scan pressure
3042 * again by how much of the total memory used is under
3045 unsigned long cgroup_size = mem_cgroup_size(memcg);
3046 unsigned long protection;
3048 /* memory.low scaling, make sure we retry before OOM */
3049 if (!sc->memcg_low_reclaim && low > min) {
3051 sc->memcg_low_skipped = 1;
3056 /* Avoid TOCTOU with earlier protection check */
3057 cgroup_size = max(cgroup_size, protection);
3059 scan = lruvec_size - lruvec_size * protection /
3063 * Minimally target SWAP_CLUSTER_MAX pages to keep
3064 * reclaim moving forwards, avoiding decrementing
3065 * sc->priority further than desirable.
3067 scan = max(scan, SWAP_CLUSTER_MAX);
3072 scan >>= sc->priority;
3075 * If the cgroup's already been deleted, make sure to
3076 * scrape out the remaining cache.
3078 if (!scan && !mem_cgroup_online(memcg))
3079 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
3081 switch (scan_balance) {
3083 /* Scan lists relative to size */
3087 * Scan types proportional to swappiness and
3088 * their relative recent reclaim efficiency.
3089 * Make sure we don't miss the last page on
3090 * the offlined memory cgroups because of a
3093 scan = mem_cgroup_online(memcg) ?
3094 div64_u64(scan * fraction[file], denominator) :
3095 DIV64_U64_ROUND_UP(scan * fraction[file],
3100 /* Scan one type exclusively */
3101 if ((scan_balance == SCAN_FILE) != file)
3105 /* Look ma, no brain */
3114 * Anonymous LRU management is a waste if there is
3115 * ultimately no way to reclaim the memory.
3117 static bool can_age_anon_pages(struct pglist_data *pgdat,
3118 struct scan_control *sc)
3120 /* Aging the anon LRU is valuable if swap is present: */
3121 if (total_swap_pages > 0)
3124 /* Also valuable if anon pages can be demoted: */
3125 return can_demote(pgdat->node_id, sc);
3128 #ifdef CONFIG_LRU_GEN
3130 #ifdef CONFIG_LRU_GEN_ENABLED
3131 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
3132 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
3134 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
3135 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
3138 /******************************************************************************
3140 ******************************************************************************/
3142 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
3144 #define DEFINE_MAX_SEQ(lruvec) \
3145 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
3147 #define DEFINE_MIN_SEQ(lruvec) \
3148 unsigned long min_seq[ANON_AND_FILE] = { \
3149 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
3150 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
3153 #define for_each_gen_type_zone(gen, type, zone) \
3154 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
3155 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
3156 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
3158 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
3160 struct pglist_data *pgdat = NODE_DATA(nid);
3164 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
3166 /* for hotadd_new_pgdat() */
3168 lruvec->pgdat = pgdat;
3173 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3175 return pgdat ? &pgdat->__lruvec : NULL;
3178 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
3180 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3181 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3183 if (!can_demote(pgdat->node_id, sc) &&
3184 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
3187 return mem_cgroup_swappiness(memcg);
3190 static int get_nr_gens(struct lruvec *lruvec, int type)
3192 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
3195 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
3197 /* see the comment on lru_gen_struct */
3198 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
3199 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
3200 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
3203 /******************************************************************************
3205 ******************************************************************************/
3207 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3209 static struct lru_gen_mm_list mm_list = {
3210 .fifo = LIST_HEAD_INIT(mm_list.fifo),
3211 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
3216 return &memcg->mm_list;
3218 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
3223 void lru_gen_add_mm(struct mm_struct *mm)
3226 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
3227 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3229 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
3231 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
3232 mm->lru_gen.memcg = memcg;
3234 spin_lock(&mm_list->lock);
3236 for_each_node_state(nid, N_MEMORY) {
3237 struct lruvec *lruvec = get_lruvec(memcg, nid);
3242 /* the first addition since the last iteration */
3243 if (lruvec->mm_state.tail == &mm_list->fifo)
3244 lruvec->mm_state.tail = &mm->lru_gen.list;
3247 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
3249 spin_unlock(&mm_list->lock);
3252 void lru_gen_del_mm(struct mm_struct *mm)
3255 struct lru_gen_mm_list *mm_list;
3256 struct mem_cgroup *memcg = NULL;
3258 if (list_empty(&mm->lru_gen.list))
3262 memcg = mm->lru_gen.memcg;
3264 mm_list = get_mm_list(memcg);
3266 spin_lock(&mm_list->lock);
3268 for_each_node(nid) {
3269 struct lruvec *lruvec = get_lruvec(memcg, nid);
3274 /* where the last iteration ended (exclusive) */
3275 if (lruvec->mm_state.tail == &mm->lru_gen.list)
3276 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
3278 /* where the current iteration continues (inclusive) */
3279 if (lruvec->mm_state.head != &mm->lru_gen.list)
3282 lruvec->mm_state.head = lruvec->mm_state.head->next;
3283 /* the deletion ends the current iteration */
3284 if (lruvec->mm_state.head == &mm_list->fifo)
3285 WRITE_ONCE(lruvec->mm_state.seq, lruvec->mm_state.seq + 1);
3288 list_del_init(&mm->lru_gen.list);
3290 spin_unlock(&mm_list->lock);
3293 mem_cgroup_put(mm->lru_gen.memcg);
3294 mm->lru_gen.memcg = NULL;
3299 void lru_gen_migrate_mm(struct mm_struct *mm)
3301 struct mem_cgroup *memcg;
3302 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3304 VM_WARN_ON_ONCE(task->mm != mm);
3305 lockdep_assert_held(&task->alloc_lock);
3307 /* for mm_update_next_owner() */
3308 if (mem_cgroup_disabled())
3312 memcg = mem_cgroup_from_task(task);
3314 if (memcg == mm->lru_gen.memcg)
3317 VM_WARN_ON_ONCE(!mm->lru_gen.memcg);
3318 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3326 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
3327 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
3328 * bits in a bitmap, k is the number of hash functions and n is the number of
3331 * Page table walkers use one of the two filters to reduce their search space.
3332 * To get rid of non-leaf entries that no longer have enough leaf entries, the
3333 * aging uses the double-buffering technique to flip to the other filter each
3334 * time it produces a new generation. For non-leaf entries that have enough
3335 * leaf entries, the aging carries them over to the next generation in
3336 * walk_pmd_range(); the eviction also report them when walking the rmap
3337 * in lru_gen_look_around().
3339 * For future optimizations:
3340 * 1. It's not necessary to keep both filters all the time. The spare one can be
3341 * freed after the RCU grace period and reallocated if needed again.
3342 * 2. And when reallocating, it's worth scaling its size according to the number
3343 * of inserted entries in the other filter, to reduce the memory overhead on
3344 * small systems and false positives on large systems.
3345 * 3. Jenkins' hash function is an alternative to Knuth's.
3347 #define BLOOM_FILTER_SHIFT 15
3349 static inline int filter_gen_from_seq(unsigned long seq)
3351 return seq % NR_BLOOM_FILTERS;
3354 static void get_item_key(void *item, int *key)
3356 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
3358 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
3360 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
3361 key[1] = hash >> BLOOM_FILTER_SHIFT;
3364 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
3366 unsigned long *filter;
3367 int gen = filter_gen_from_seq(seq);
3369 filter = lruvec->mm_state.filters[gen];
3371 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
3375 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
3376 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3377 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
3380 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3383 unsigned long *filter;
3384 int gen = filter_gen_from_seq(seq);
3386 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3390 get_item_key(item, key);
3392 if (!test_bit(key[0], filter))
3393 set_bit(key[0], filter);
3394 if (!test_bit(key[1], filter))
3395 set_bit(key[1], filter);
3398 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
3401 unsigned long *filter;
3402 int gen = filter_gen_from_seq(seq);
3404 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
3408 get_item_key(item, key);
3410 return test_bit(key[0], filter) && test_bit(key[1], filter);
3413 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
3418 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3421 hist = lru_hist_from_seq(walk->max_seq);
3423 for (i = 0; i < NR_MM_STATS; i++) {
3424 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
3425 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
3426 walk->mm_stats[i] = 0;
3430 if (NR_HIST_GENS > 1 && last) {
3431 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
3433 for (i = 0; i < NR_MM_STATS; i++)
3434 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
3438 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3441 unsigned long size = 0;
3442 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3443 int key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
3445 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
3448 clear_bit(key, &mm->lru_gen.bitmap);
3450 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
3451 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
3452 get_mm_counter(mm, MM_ANONPAGES) +
3453 get_mm_counter(mm, MM_SHMEMPAGES);
3456 if (size < MIN_LRU_BATCH)
3459 return !mmget_not_zero(mm);
3462 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
3463 struct mm_struct **iter)
3467 struct mm_struct *mm = NULL;
3468 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3469 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3470 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3473 * There are four interesting cases for this page table walker:
3474 * 1. It tries to start a new iteration of mm_list with a stale max_seq;
3475 * there is nothing left to do.
3476 * 2. It's the first of the current generation, and it needs to reset
3477 * the Bloom filter for the next generation.
3478 * 3. It reaches the end of mm_list, and it needs to increment
3479 * mm_state->seq; the iteration is done.
3480 * 4. It's the last of the current generation, and it needs to reset the
3481 * mm stats counters for the next generation.
3483 spin_lock(&mm_list->lock);
3485 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3486 VM_WARN_ON_ONCE(*iter && mm_state->seq > walk->max_seq);
3487 VM_WARN_ON_ONCE(*iter && !mm_state->nr_walkers);
3489 if (walk->max_seq <= mm_state->seq) {
3495 if (!mm_state->nr_walkers) {
3496 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3498 mm_state->head = mm_list->fifo.next;
3502 while (!mm && mm_state->head != &mm_list->fifo) {
3503 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3505 mm_state->head = mm_state->head->next;
3507 /* force scan for those added after the last iteration */
3508 if (!mm_state->tail || mm_state->tail == &mm->lru_gen.list) {
3509 mm_state->tail = mm_state->head;
3510 walk->force_scan = true;
3513 if (should_skip_mm(mm, walk))
3517 if (mm_state->head == &mm_list->fifo)
3518 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3521 mm_state->nr_walkers--;
3523 mm_state->nr_walkers++;
3525 if (mm_state->nr_walkers)
3529 reset_mm_stats(lruvec, walk, last);
3531 spin_unlock(&mm_list->lock);
3534 reset_bloom_filter(lruvec, walk->max_seq + 1);
3544 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3546 bool success = false;
3547 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3548 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3549 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3551 spin_lock(&mm_list->lock);
3553 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3555 if (max_seq > mm_state->seq && !mm_state->nr_walkers) {
3556 VM_WARN_ON_ONCE(mm_state->head && mm_state->head != &mm_list->fifo);
3558 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3559 reset_mm_stats(lruvec, NULL, true);
3563 spin_unlock(&mm_list->lock);
3568 /******************************************************************************
3569 * refault feedback loop
3570 ******************************************************************************/
3573 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3575 * The P term is refaulted/(evicted+protected) from a tier in the generation
3576 * currently being evicted; the I term is the exponential moving average of the
3577 * P term over the generations previously evicted, using the smoothing factor
3578 * 1/2; the D term isn't supported.
3580 * The setpoint (SP) is always the first tier of one type; the process variable
3581 * (PV) is either any tier of the other type or any other tier of the same
3584 * The error is the difference between the SP and the PV; the correction is to
3585 * turn off protection when SP>PV or turn on protection when SP<PV.
3587 * For future optimizations:
3588 * 1. The D term may discount the other two terms over time so that long-lived
3589 * generations can resist stale information.
3592 unsigned long refaulted;
3593 unsigned long total;
3597 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3598 struct ctrl_pos *pos)
3600 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3601 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3603 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3604 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3605 pos->total = lrugen->avg_total[type][tier] +
3606 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3608 pos->total += lrugen->protected[hist][type][tier - 1];
3612 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3615 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3616 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3617 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3619 lockdep_assert_held(&lruvec->lru_lock);
3621 if (!carryover && !clear)
3624 hist = lru_hist_from_seq(seq);
3626 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3630 sum = lrugen->avg_refaulted[type][tier] +
3631 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3632 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3634 sum = lrugen->avg_total[type][tier] +
3635 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3637 sum += lrugen->protected[hist][type][tier - 1];
3638 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3642 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3643 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3645 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3650 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3653 * Return true if the PV has a limited number of refaults or a lower
3654 * refaulted/total than the SP.
3656 return pv->refaulted < MIN_LRU_BATCH ||
3657 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3658 (sp->refaulted + 1) * pv->total * pv->gain;
3661 /******************************************************************************
3663 ******************************************************************************/
3665 /* promote pages accessed through page tables */
3666 static int folio_update_gen(struct folio *folio, int gen)
3668 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3670 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3671 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3674 /* lru_gen_del_folio() has isolated this page? */
3675 if (!(old_flags & LRU_GEN_MASK)) {
3676 /* for shrink_folio_list() */
3677 new_flags = old_flags | BIT(PG_referenced);
3681 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3682 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3683 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3685 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3688 /* protect pages accessed multiple times through file descriptors */
3689 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3691 int type = folio_is_file_lru(folio);
3692 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3693 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3694 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3696 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3699 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3700 /* folio_update_gen() has promoted this page? */
3701 if (new_gen >= 0 && new_gen != old_gen)
3704 new_gen = (old_gen + 1) % MAX_NR_GENS;
3706 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3707 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3708 /* for folio_end_writeback() */
3710 new_flags |= BIT(PG_reclaim);
3711 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3713 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3718 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3719 int old_gen, int new_gen)
3721 int type = folio_is_file_lru(folio);
3722 int zone = folio_zonenum(folio);
3723 int delta = folio_nr_pages(folio);
3725 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3726 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3730 walk->nr_pages[old_gen][type][zone] -= delta;
3731 walk->nr_pages[new_gen][type][zone] += delta;
3734 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3736 int gen, type, zone;
3737 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3741 for_each_gen_type_zone(gen, type, zone) {
3742 enum lru_list lru = type * LRU_INACTIVE_FILE;
3743 int delta = walk->nr_pages[gen][type][zone];
3748 walk->nr_pages[gen][type][zone] = 0;
3749 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3750 lrugen->nr_pages[gen][type][zone] + delta);
3752 if (lru_gen_is_active(lruvec, gen))
3754 __update_lru_size(lruvec, lru, zone, delta);
3758 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3760 struct address_space *mapping;
3761 struct vm_area_struct *vma = args->vma;
3762 struct lru_gen_mm_walk *walk = args->private;
3764 if (!vma_is_accessible(vma))
3767 if (is_vm_hugetlb_page(vma))
3770 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3773 if (vma == get_gate_vma(vma->vm_mm))
3776 if (vma_is_anonymous(vma))
3777 return !walk->can_swap;
3779 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3782 mapping = vma->vm_file->f_mapping;
3783 if (mapping_unevictable(mapping))
3786 if (shmem_mapping(mapping))
3787 return !walk->can_swap;
3789 /* to exclude special mappings like dax, etc. */
3790 return !mapping->a_ops->read_folio;
3794 * Some userspace memory allocators map many single-page VMAs. Instead of
3795 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3796 * table to reduce zigzags and improve cache performance.
3798 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3799 unsigned long *vm_start, unsigned long *vm_end)
3801 unsigned long start = round_up(*vm_end, size);
3802 unsigned long end = (start | ~mask) + 1;
3803 VMA_ITERATOR(vmi, args->mm, start);
3805 VM_WARN_ON_ONCE(mask & size);
3806 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3808 for_each_vma(vmi, args->vma) {
3809 if (end && end <= args->vma->vm_start)
3812 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3815 *vm_start = max(start, args->vma->vm_start);
3816 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3824 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3826 unsigned long pfn = pte_pfn(pte);
3828 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3830 if (!pte_present(pte) || is_zero_pfn(pfn))
3833 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3836 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3842 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3843 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3845 unsigned long pfn = pmd_pfn(pmd);
3847 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3849 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3852 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3855 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3862 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3863 struct pglist_data *pgdat, bool can_swap)
3865 struct folio *folio;
3867 /* try to avoid unnecessary memory loads */
3868 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3871 folio = pfn_folio(pfn);
3872 if (folio_nid(folio) != pgdat->node_id)
3875 if (folio_memcg_rcu(folio) != memcg)
3878 /* file VMAs can contain anon pages from COW */
3879 if (!folio_is_file_lru(folio) && !can_swap)
3885 static bool suitable_to_scan(int total, int young)
3887 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3889 /* suitable if the average number of young PTEs per cacheline is >=1 */
3890 return young * n >= total;
3893 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3894 struct mm_walk *args)
3902 struct lru_gen_mm_walk *walk = args->private;
3903 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3904 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3905 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3907 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3909 ptl = pte_lockptr(args->mm, pmd);
3910 if (!spin_trylock(ptl))
3913 arch_enter_lazy_mmu_mode();
3915 pte = pte_offset_map(pmd, start & PMD_MASK);
3917 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3919 struct folio *folio;
3922 walk->mm_stats[MM_LEAF_TOTAL]++;
3924 pfn = get_pte_pfn(pte[i], args->vma, addr);
3928 if (!pte_young(pte[i])) {
3929 walk->mm_stats[MM_LEAF_OLD]++;
3933 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3937 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3938 VM_WARN_ON_ONCE(true);
3941 walk->mm_stats[MM_LEAF_YOUNG]++;
3943 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
3944 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3945 !folio_test_swapcache(folio)))
3946 folio_mark_dirty(folio);
3948 old_gen = folio_update_gen(folio, new_gen);
3949 if (old_gen >= 0 && old_gen != new_gen)
3950 update_batch_size(walk, folio, old_gen, new_gen);
3953 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3958 arch_leave_lazy_mmu_mode();
3961 return suitable_to_scan(total, young);
3964 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
3965 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3966 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3971 struct lru_gen_mm_walk *walk = args->private;
3972 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3973 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3974 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3976 VM_WARN_ON_ONCE(pud_leaf(*pud));
3978 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3984 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
3985 if (i && i <= MIN_LRU_BATCH) {
3986 __set_bit(i - 1, bitmap);
3990 pmd = pmd_offset(pud, *start);
3992 ptl = pmd_lockptr(args->mm, pmd);
3993 if (!spin_trylock(ptl))
3996 arch_enter_lazy_mmu_mode();
4000 struct folio *folio;
4001 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
4003 pfn = get_pmd_pfn(pmd[i], vma, addr);
4007 if (!pmd_trans_huge(pmd[i])) {
4008 if (arch_has_hw_nonleaf_pmd_young() &&
4009 get_cap(LRU_GEN_NONLEAF_YOUNG))
4010 pmdp_test_and_clear_young(vma, addr, pmd + i);
4014 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
4018 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
4021 walk->mm_stats[MM_LEAF_YOUNG]++;
4023 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
4024 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4025 !folio_test_swapcache(folio)))
4026 folio_mark_dirty(folio);
4028 old_gen = folio_update_gen(folio, new_gen);
4029 if (old_gen >= 0 && old_gen != new_gen)
4030 update_batch_size(walk, folio, old_gen, new_gen);
4032 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
4033 } while (i <= MIN_LRU_BATCH);
4035 arch_leave_lazy_mmu_mode();
4039 bitmap_zero(bitmap, MIN_LRU_BATCH);
4042 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
4043 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
4048 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
4049 struct mm_walk *args)
4055 struct vm_area_struct *vma;
4056 unsigned long pos = -1;
4057 struct lru_gen_mm_walk *walk = args->private;
4058 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4060 VM_WARN_ON_ONCE(pud_leaf(*pud));
4063 * Finish an entire PMD in two passes: the first only reaches to PTE
4064 * tables to avoid taking the PMD lock; the second, if necessary, takes
4065 * the PMD lock to clear the accessed bit in PMD entries.
4067 pmd = pmd_offset(pud, start & PUD_MASK);
4069 /* walk_pte_range() may call get_next_vma() */
4071 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
4072 pmd_t val = pmd_read_atomic(pmd + i);
4074 /* for pmd_read_atomic() */
4077 next = pmd_addr_end(addr, end);
4079 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
4080 walk->mm_stats[MM_LEAF_TOTAL]++;
4084 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4085 if (pmd_trans_huge(val)) {
4086 unsigned long pfn = pmd_pfn(val);
4087 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
4089 walk->mm_stats[MM_LEAF_TOTAL]++;
4091 if (!pmd_young(val)) {
4092 walk->mm_stats[MM_LEAF_OLD]++;
4096 /* try to avoid unnecessary memory loads */
4097 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
4100 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4104 walk->mm_stats[MM_NONLEAF_TOTAL]++;
4106 if (arch_has_hw_nonleaf_pmd_young() &&
4107 get_cap(LRU_GEN_NONLEAF_YOUNG)) {
4108 if (!pmd_young(val))
4111 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
4114 if (!walk->force_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
4117 walk->mm_stats[MM_NONLEAF_FOUND]++;
4119 if (!walk_pte_range(&val, addr, next, args))
4122 walk->mm_stats[MM_NONLEAF_ADDED]++;
4124 /* carry over to the next generation */
4125 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
4128 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
4130 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
4134 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
4135 struct mm_walk *args)
4141 struct lru_gen_mm_walk *walk = args->private;
4143 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
4145 pud = pud_offset(p4d, start & P4D_MASK);
4147 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
4148 pud_t val = READ_ONCE(pud[i]);
4150 next = pud_addr_end(addr, end);
4152 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
4155 walk_pmd_range(&val, addr, next, args);
4157 /* a racy check to curtail the waiting time */
4158 if (wq_has_sleeper(&walk->lruvec->mm_state.wait))
4161 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
4162 end = (addr | ~PUD_MASK) + 1;
4167 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
4170 end = round_up(end, P4D_SIZE);
4172 if (!end || !args->vma)
4175 walk->next_addr = max(end, args->vma->vm_start);
4180 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
4182 static const struct mm_walk_ops mm_walk_ops = {
4183 .test_walk = should_skip_vma,
4184 .p4d_entry = walk_pud_range,
4188 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4190 walk->next_addr = FIRST_USER_ADDRESS;
4195 /* folio_update_gen() requires stable folio_memcg() */
4196 if (!mem_cgroup_trylock_pages(memcg))
4199 /* the caller might be holding the lock for write */
4200 if (mmap_read_trylock(mm)) {
4201 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
4203 mmap_read_unlock(mm);
4206 mem_cgroup_unlock_pages();
4208 if (walk->batched) {
4209 spin_lock_irq(&lruvec->lru_lock);
4210 reset_batch_size(lruvec, walk);
4211 spin_unlock_irq(&lruvec->lru_lock);
4215 } while (err == -EAGAIN);
4218 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
4220 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4222 if (pgdat && current_is_kswapd()) {
4223 VM_WARN_ON_ONCE(walk);
4225 walk = &pgdat->mm_walk;
4226 } else if (!pgdat && !walk) {
4227 VM_WARN_ON_ONCE(current_is_kswapd());
4229 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
4232 current->reclaim_state->mm_walk = walk;
4237 static void clear_mm_walk(void)
4239 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
4241 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
4242 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
4244 current->reclaim_state->mm_walk = NULL;
4246 if (!current_is_kswapd())
4250 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
4253 int remaining = MAX_LRU_BATCH;
4254 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4255 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
4257 if (type == LRU_GEN_ANON && !can_swap)
4260 /* prevent cold/hot inversion if force_scan is true */
4261 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4262 struct list_head *head = &lrugen->lists[old_gen][type][zone];
4264 while (!list_empty(head)) {
4265 struct folio *folio = lru_to_folio(head);
4267 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4268 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4269 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4270 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4272 new_gen = folio_inc_gen(lruvec, folio, false);
4273 list_move_tail(&folio->lru, &lrugen->lists[new_gen][type][zone]);
4280 reset_ctrl_pos(lruvec, type, true);
4281 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
4286 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
4288 int gen, type, zone;
4289 bool success = false;
4290 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4291 DEFINE_MIN_SEQ(lruvec);
4293 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4295 /* find the oldest populated generation */
4296 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4297 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
4298 gen = lru_gen_from_seq(min_seq[type]);
4300 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4301 if (!list_empty(&lrugen->lists[gen][type][zone]))
4311 /* see the comment on lru_gen_struct */
4313 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
4314 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
4317 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4318 if (min_seq[type] == lrugen->min_seq[type])
4321 reset_ctrl_pos(lruvec, type, true);
4322 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
4329 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool force_scan)
4333 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4335 spin_lock_irq(&lruvec->lru_lock);
4337 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4339 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
4340 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4343 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
4345 while (!inc_min_seq(lruvec, type, can_swap)) {
4346 spin_unlock_irq(&lruvec->lru_lock);
4348 spin_lock_irq(&lruvec->lru_lock);
4353 * Update the active/inactive LRU sizes for compatibility. Both sides of
4354 * the current max_seq need to be covered, since max_seq+1 can overlap
4355 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4356 * overlap, cold/hot inversion happens.
4358 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4359 next = lru_gen_from_seq(lrugen->max_seq + 1);
4361 for (type = 0; type < ANON_AND_FILE; type++) {
4362 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4363 enum lru_list lru = type * LRU_INACTIVE_FILE;
4364 long delta = lrugen->nr_pages[prev][type][zone] -
4365 lrugen->nr_pages[next][type][zone];
4370 __update_lru_size(lruvec, lru, zone, delta);
4371 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4375 for (type = 0; type < ANON_AND_FILE; type++)
4376 reset_ctrl_pos(lruvec, type, false);
4378 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4379 /* make sure preceding modifications appear */
4380 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4382 spin_unlock_irq(&lruvec->lru_lock);
4385 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
4386 struct scan_control *sc, bool can_swap, bool force_scan)
4389 struct lru_gen_mm_walk *walk;
4390 struct mm_struct *mm = NULL;
4391 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4393 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
4395 /* see the comment in iterate_mm_list() */
4396 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
4402 * If the hardware doesn't automatically set the accessed bit, fallback
4403 * to lru_gen_look_around(), which only clears the accessed bit in a
4404 * handful of PTEs. Spreading the work out over a period of time usually
4405 * is less efficient, but it avoids bursty page faults.
4407 if (!force_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
4408 success = iterate_mm_list_nowalk(lruvec, max_seq);
4412 walk = set_mm_walk(NULL);
4414 success = iterate_mm_list_nowalk(lruvec, max_seq);
4418 walk->lruvec = lruvec;
4419 walk->max_seq = max_seq;
4420 walk->can_swap = can_swap;
4421 walk->force_scan = force_scan;
4424 success = iterate_mm_list(lruvec, walk, &mm);
4426 walk_mm(lruvec, mm, walk);
4432 if (sc->priority <= DEF_PRIORITY - 2)
4433 wait_event_killable(lruvec->mm_state.wait,
4434 max_seq < READ_ONCE(lrugen->max_seq));
4436 return max_seq < READ_ONCE(lrugen->max_seq);
4439 VM_WARN_ON_ONCE(max_seq != READ_ONCE(lrugen->max_seq));
4441 inc_max_seq(lruvec, can_swap, force_scan);
4442 /* either this sees any waiters or they will see updated max_seq */
4443 if (wq_has_sleeper(&lruvec->mm_state.wait))
4444 wake_up_all(&lruvec->mm_state.wait);
4449 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
4450 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4452 int gen, type, zone;
4453 unsigned long old = 0;
4454 unsigned long young = 0;
4455 unsigned long total = 0;
4456 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4457 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4459 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4462 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4463 unsigned long size = 0;
4465 gen = lru_gen_from_seq(seq);
4467 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4468 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4473 else if (seq + MIN_NR_GENS == max_seq)
4478 /* try to scrape all its memory if this memcg was deleted */
4479 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4482 * The aging tries to be lazy to reduce the overhead, while the eviction
4483 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4484 * ideal number of generations is MIN_NR_GENS+1.
4486 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4488 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4492 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4493 * of the total number of pages for each generation. A reasonable range
4494 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4495 * aging cares about the upper bound of hot pages, while the eviction
4496 * cares about the lower bound of cold pages.
4498 if (young * MIN_NR_GENS > total)
4500 if (old * (MIN_NR_GENS + 2) < total)
4506 static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
4509 unsigned long nr_to_scan;
4510 int swappiness = get_swappiness(lruvec, sc);
4511 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4512 DEFINE_MAX_SEQ(lruvec);
4513 DEFINE_MIN_SEQ(lruvec);
4515 VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4517 mem_cgroup_calculate_protection(NULL, memcg);
4519 if (mem_cgroup_below_min(memcg))
4522 need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
4525 int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4526 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4528 if (time_is_after_jiffies(birth + min_ttl))
4531 /* the size is likely too small to be helpful */
4532 if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4537 try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
4542 /* to protect the working set of the last N jiffies */
4543 static unsigned long lru_gen_min_ttl __read_mostly;
4545 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4547 struct mem_cgroup *memcg;
4548 bool success = false;
4549 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4551 VM_WARN_ON_ONCE(!current_is_kswapd());
4553 sc->last_reclaimed = sc->nr_reclaimed;
4556 * To reduce the chance of going into the aging path, which can be
4557 * costly, optimistically skip it if the flag below was cleared in the
4558 * eviction path. This improves the overall performance when multiple
4559 * memcgs are available.
4561 if (!sc->memcgs_need_aging) {
4562 sc->memcgs_need_aging = true;
4568 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4570 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4572 if (age_lruvec(lruvec, sc, min_ttl))
4576 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4580 /* check the order to exclude compaction-induced reclaim */
4581 if (success || !min_ttl || sc->order)
4585 * The main goal is to OOM kill if every generation from all memcgs is
4586 * younger than min_ttl. However, another possibility is all memcgs are
4587 * either below min or empty.
4589 if (mutex_trylock(&oom_lock)) {
4590 struct oom_control oc = {
4591 .gfp_mask = sc->gfp_mask,
4596 mutex_unlock(&oom_lock);
4601 * This function exploits spatial locality when shrink_folio_list() walks the
4602 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4603 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4604 * the PTE table to the Bloom filter. This forms a feedback loop between the
4605 * eviction and the aging.
4607 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4611 unsigned long start;
4614 struct lru_gen_mm_walk *walk;
4616 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4617 struct folio *folio = pfn_folio(pvmw->pfn);
4618 struct mem_cgroup *memcg = folio_memcg(folio);
4619 struct pglist_data *pgdat = folio_pgdat(folio);
4620 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4621 DEFINE_MAX_SEQ(lruvec);
4622 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4624 lockdep_assert_held(pvmw->ptl);
4625 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4627 if (spin_is_contended(pvmw->ptl))
4630 /* avoid taking the LRU lock under the PTL when possible */
4631 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4633 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4634 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4636 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4637 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4638 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4639 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4640 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4642 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4643 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4647 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4650 arch_enter_lazy_mmu_mode();
4652 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4655 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4659 if (!pte_young(pte[i]))
4662 folio = get_pfn_folio(pfn, memcg, pgdat, !walk || walk->can_swap);
4666 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4667 VM_WARN_ON_ONCE(true);
4671 if (pte_dirty(pte[i]) && !folio_test_dirty(folio) &&
4672 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4673 !folio_test_swapcache(folio)))
4674 folio_mark_dirty(folio);
4676 old_gen = folio_lru_gen(folio);
4678 folio_set_referenced(folio);
4679 else if (old_gen != new_gen)
4680 __set_bit(i, bitmap);
4683 arch_leave_lazy_mmu_mode();
4686 /* feedback from rmap walkers to page table walkers */
4687 if (suitable_to_scan(i, young))
4688 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4690 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
4691 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4692 folio = pfn_folio(pte_pfn(pte[i]));
4693 folio_activate(folio);
4698 /* folio_update_gen() requires stable folio_memcg() */
4699 if (!mem_cgroup_trylock_pages(memcg))
4703 spin_lock_irq(&lruvec->lru_lock);
4704 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4707 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4708 folio = pfn_folio(pte_pfn(pte[i]));
4709 if (folio_memcg_rcu(folio) != memcg)
4712 old_gen = folio_update_gen(folio, new_gen);
4713 if (old_gen < 0 || old_gen == new_gen)
4717 update_batch_size(walk, folio, old_gen, new_gen);
4719 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
4723 spin_unlock_irq(&lruvec->lru_lock);
4725 mem_cgroup_unlock_pages();
4728 /******************************************************************************
4730 ******************************************************************************/
4732 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, int tier_idx)
4735 int gen = folio_lru_gen(folio);
4736 int type = folio_is_file_lru(folio);
4737 int zone = folio_zonenum(folio);
4738 int delta = folio_nr_pages(folio);
4739 int refs = folio_lru_refs(folio);
4740 int tier = lru_tier_from_refs(refs);
4741 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4743 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4746 if (!folio_evictable(folio)) {
4747 success = lru_gen_del_folio(lruvec, folio, true);
4748 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4749 folio_set_unevictable(folio);
4750 lruvec_add_folio(lruvec, folio);
4751 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4755 /* dirty lazyfree */
4756 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4757 success = lru_gen_del_folio(lruvec, folio, true);
4758 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4759 folio_set_swapbacked(folio);
4760 lruvec_add_folio_tail(lruvec, folio);
4765 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4766 list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4771 if (tier > tier_idx) {
4772 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4774 gen = folio_inc_gen(lruvec, folio, false);
4775 list_move_tail(&folio->lru, &lrugen->lists[gen][type][zone]);
4777 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4778 lrugen->protected[hist][type][tier - 1] + delta);
4779 __mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
4783 /* waiting for writeback */
4784 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4785 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4786 gen = folio_inc_gen(lruvec, folio, true);
4787 list_move(&folio->lru, &lrugen->lists[gen][type][zone]);
4794 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4798 /* unmapping inhibited */
4799 if (!sc->may_unmap && folio_mapped(folio))
4802 /* swapping inhibited */
4803 if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4804 (folio_test_dirty(folio) ||
4805 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4808 /* raced with release_pages() */
4809 if (!folio_try_get(folio))
4812 /* raced with another isolation */
4813 if (!folio_test_clear_lru(folio)) {
4818 /* see the comment on MAX_NR_TIERS */
4819 if (!folio_test_referenced(folio))
4820 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4822 /* for shrink_folio_list() */
4823 folio_clear_reclaim(folio);
4824 folio_clear_referenced(folio);
4826 success = lru_gen_del_folio(lruvec, folio, true);
4827 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4832 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4833 int type, int tier, struct list_head *list)
4836 enum vm_event_item item;
4840 int remaining = MAX_LRU_BATCH;
4841 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4842 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4844 VM_WARN_ON_ONCE(!list_empty(list));
4846 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4849 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4851 for (zone = sc->reclaim_idx; zone >= 0; zone--) {
4854 struct list_head *head = &lrugen->lists[gen][type][zone];
4856 while (!list_empty(head)) {
4857 struct folio *folio = lru_to_folio(head);
4858 int delta = folio_nr_pages(folio);
4860 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4861 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4862 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4863 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4867 if (sort_folio(lruvec, folio, tier))
4869 else if (isolate_folio(lruvec, folio, sc)) {
4870 list_add(&folio->lru, list);
4873 list_move(&folio->lru, &moved);
4877 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4882 list_splice(&moved, head);
4883 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4886 if (!remaining || isolated >= MIN_LRU_BATCH)
4890 item = PGSCAN_KSWAPD + reclaimer_offset();
4891 if (!cgroup_reclaim(sc)) {
4892 __count_vm_events(item, isolated);
4893 __count_vm_events(PGREFILL, sorted);
4895 __count_memcg_events(memcg, item, isolated);
4896 __count_memcg_events(memcg, PGREFILL, sorted);
4897 __count_vm_events(PGSCAN_ANON + type, isolated);
4900 * There might not be eligible pages due to reclaim_idx, may_unmap and
4901 * may_writepage. Check the remaining to prevent livelock if it's not
4904 return isolated || !remaining ? scanned : 0;
4907 static int get_tier_idx(struct lruvec *lruvec, int type)
4910 struct ctrl_pos sp, pv;
4913 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4914 * This value is chosen because any other tier would have at least twice
4915 * as many refaults as the first tier.
4917 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4918 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4919 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4920 if (!positive_ctrl_err(&sp, &pv))
4927 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4930 struct ctrl_pos sp, pv;
4931 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4934 * Compare the first tier of anon with that of file to determine which
4935 * type to scan. Also need to compare other tiers of the selected type
4936 * with the first tier of the other type to determine the last tier (of
4937 * the selected type) to evict.
4939 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4940 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4941 type = positive_ctrl_err(&sp, &pv);
4943 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4944 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4945 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4946 if (!positive_ctrl_err(&sp, &pv))
4950 *tier_idx = tier - 1;
4955 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4956 int *type_scanned, struct list_head *list)
4962 DEFINE_MIN_SEQ(lruvec);
4965 * Try to make the obvious choice first. When anon and file are both
4966 * available from the same generation, interpret swappiness 1 as file
4967 * first and 200 as anon first.
4970 type = LRU_GEN_FILE;
4971 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4972 type = LRU_GEN_ANON;
4973 else if (swappiness == 1)
4974 type = LRU_GEN_FILE;
4975 else if (swappiness == 200)
4976 type = LRU_GEN_ANON;
4978 type = get_type_to_scan(lruvec, swappiness, &tier);
4980 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4982 tier = get_tier_idx(lruvec, type);
4984 scanned = scan_folios(lruvec, sc, type, tier, list);
4992 *type_scanned = type;
4997 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4998 bool *need_swapping)
5005 struct folio *folio;
5007 enum vm_event_item item;
5008 struct reclaim_stat stat;
5009 struct lru_gen_mm_walk *walk;
5010 bool skip_retry = false;
5011 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5012 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
5014 spin_lock_irq(&lruvec->lru_lock);
5016 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
5018 scanned += try_to_inc_min_seq(lruvec, swappiness);
5020 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
5023 spin_unlock_irq(&lruvec->lru_lock);
5025 if (list_empty(&list))
5028 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
5029 sc->nr_reclaimed += reclaimed;
5031 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
5032 if (!folio_evictable(folio)) {
5033 list_del(&folio->lru);
5034 folio_putback_lru(folio);
5038 if (folio_test_reclaim(folio) &&
5039 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
5040 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
5041 if (folio_test_workingset(folio))
5042 folio_set_referenced(folio);
5046 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
5047 folio_mapped(folio) || folio_test_locked(folio) ||
5048 folio_test_dirty(folio) || folio_test_writeback(folio)) {
5049 /* don't add rejected folios to the oldest generation */
5050 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
5055 /* retry folios that may have missed folio_rotate_reclaimable() */
5056 list_move(&folio->lru, &clean);
5057 sc->nr_scanned -= folio_nr_pages(folio);
5060 spin_lock_irq(&lruvec->lru_lock);
5062 move_folios_to_lru(lruvec, &list);
5064 walk = current->reclaim_state->mm_walk;
5065 if (walk && walk->batched)
5066 reset_batch_size(lruvec, walk);
5068 item = PGSTEAL_KSWAPD + reclaimer_offset();
5069 if (!cgroup_reclaim(sc))
5070 __count_vm_events(item, reclaimed);
5071 __count_memcg_events(memcg, item, reclaimed);
5072 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
5074 spin_unlock_irq(&lruvec->lru_lock);
5076 mem_cgroup_uncharge_list(&list);
5077 free_unref_page_list(&list);
5079 INIT_LIST_HEAD(&list);
5080 list_splice_init(&clean, &list);
5082 if (!list_empty(&list)) {
5087 if (need_swapping && type == LRU_GEN_ANON)
5088 *need_swapping = true;
5094 * For future optimizations:
5095 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
5098 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
5099 bool can_swap, bool *need_aging)
5101 unsigned long nr_to_scan;
5102 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5103 DEFINE_MAX_SEQ(lruvec);
5104 DEFINE_MIN_SEQ(lruvec);
5106 if (mem_cgroup_below_min(memcg) ||
5107 (mem_cgroup_below_low(memcg) && !sc->memcg_low_reclaim))
5110 *need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
5114 /* skip the aging path at the default priority */
5115 if (sc->priority == DEF_PRIORITY)
5118 /* leave the work to lru_gen_age_node() */
5119 if (current_is_kswapd())
5122 if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
5125 return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
5128 static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq,
5129 struct scan_control *sc, bool need_swapping)
5132 DEFINE_MAX_SEQ(lruvec);
5134 if (!current_is_kswapd()) {
5135 /* age each memcg at most once to ensure fairness */
5136 if (max_seq - seq > 1)
5139 /* over-swapping can increase allocation latency */
5140 if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping)
5143 /* give this thread a chance to exit and free its memory */
5144 if (fatal_signal_pending(current)) {
5145 sc->nr_reclaimed += MIN_LRU_BATCH;
5149 if (cgroup_reclaim(sc))
5151 } else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim)
5154 /* keep scanning at low priorities to ensure fairness */
5155 if (sc->priority > DEF_PRIORITY - 2)
5159 * A minimum amount of work was done under global memory pressure. For
5160 * kswapd, it may be overshooting. For direct reclaim, the allocation
5161 * may succeed if all suitable zones are somewhat safe. In either case,
5162 * it's better to stop now, and restart later if necessary.
5164 for (i = 0; i <= sc->reclaim_idx; i++) {
5165 unsigned long wmark;
5166 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
5168 if (!managed_zone(zone))
5171 wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone);
5172 if (wmark > zone_page_state(zone, NR_FREE_PAGES))
5176 sc->nr_reclaimed += MIN_LRU_BATCH;
5181 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5183 struct blk_plug plug;
5184 bool need_aging = false;
5185 bool need_swapping = false;
5186 unsigned long scanned = 0;
5187 unsigned long reclaimed = sc->nr_reclaimed;
5188 DEFINE_MAX_SEQ(lruvec);
5192 blk_start_plug(&plug);
5194 set_mm_walk(lruvec_pgdat(lruvec));
5199 unsigned long nr_to_scan;
5202 swappiness = get_swappiness(lruvec, sc);
5203 else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
5208 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
5212 delta = evict_folios(lruvec, sc, swappiness, &need_swapping);
5217 if (scanned >= nr_to_scan)
5220 if (should_abort_scan(lruvec, max_seq, sc, need_swapping))
5226 /* see the comment in lru_gen_age_node() */
5227 if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
5228 sc->memcgs_need_aging = false;
5232 blk_finish_plug(&plug);
5235 /******************************************************************************
5237 ******************************************************************************/
5239 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5241 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5243 if (lrugen->enabled) {
5246 for_each_evictable_lru(lru) {
5247 if (!list_empty(&lruvec->lists[lru]))
5251 int gen, type, zone;
5253 for_each_gen_type_zone(gen, type, zone) {
5254 if (!list_empty(&lrugen->lists[gen][type][zone]))
5262 static bool fill_evictable(struct lruvec *lruvec)
5265 int remaining = MAX_LRU_BATCH;
5267 for_each_evictable_lru(lru) {
5268 int type = is_file_lru(lru);
5269 bool active = is_active_lru(lru);
5270 struct list_head *head = &lruvec->lists[lru];
5272 while (!list_empty(head)) {
5274 struct folio *folio = lru_to_folio(head);
5276 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5277 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5278 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5279 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5281 lruvec_del_folio(lruvec, folio);
5282 success = lru_gen_add_folio(lruvec, folio, false);
5283 VM_WARN_ON_ONCE(!success);
5293 static bool drain_evictable(struct lruvec *lruvec)
5295 int gen, type, zone;
5296 int remaining = MAX_LRU_BATCH;
5298 for_each_gen_type_zone(gen, type, zone) {
5299 struct list_head *head = &lruvec->lrugen.lists[gen][type][zone];
5301 while (!list_empty(head)) {
5303 struct folio *folio = lru_to_folio(head);
5305 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5306 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5307 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5308 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5310 success = lru_gen_del_folio(lruvec, folio, false);
5311 VM_WARN_ON_ONCE(!success);
5312 lruvec_add_folio(lruvec, folio);
5322 static void lru_gen_change_state(bool enabled)
5324 static DEFINE_MUTEX(state_mutex);
5326 struct mem_cgroup *memcg;
5331 mutex_lock(&state_mutex);
5333 if (enabled == lru_gen_enabled())
5337 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5339 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5341 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5345 for_each_node(nid) {
5346 struct lruvec *lruvec = get_lruvec(memcg, nid);
5351 spin_lock_irq(&lruvec->lru_lock);
5353 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5354 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5356 lruvec->lrugen.enabled = enabled;
5358 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5359 spin_unlock_irq(&lruvec->lru_lock);
5361 spin_lock_irq(&lruvec->lru_lock);
5364 spin_unlock_irq(&lruvec->lru_lock);
5368 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5370 mutex_unlock(&state_mutex);
5376 /******************************************************************************
5378 ******************************************************************************/
5380 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5382 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5385 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5386 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
5387 const char *buf, size_t len)
5391 if (kstrtouint(buf, 0, &msecs))
5394 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5399 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
5400 min_ttl_ms, 0644, show_min_ttl, store_min_ttl
5403 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5405 unsigned int caps = 0;
5407 if (get_cap(LRU_GEN_CORE))
5408 caps |= BIT(LRU_GEN_CORE);
5410 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
5411 caps |= BIT(LRU_GEN_MM_WALK);
5413 if (arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG))
5414 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5416 return snprintf(buf, PAGE_SIZE, "0x%04x\n", caps);
5419 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5420 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
5421 const char *buf, size_t len)
5426 if (tolower(*buf) == 'n')
5428 else if (tolower(*buf) == 'y')
5430 else if (kstrtouint(buf, 0, &caps))
5433 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5434 bool enabled = caps & BIT(i);
5436 if (i == LRU_GEN_CORE)
5437 lru_gen_change_state(enabled);
5439 static_branch_enable(&lru_gen_caps[i]);
5441 static_branch_disable(&lru_gen_caps[i]);
5447 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
5448 enabled, 0644, show_enabled, store_enabled
5451 static struct attribute *lru_gen_attrs[] = {
5452 &lru_gen_min_ttl_attr.attr,
5453 &lru_gen_enabled_attr.attr,
5457 static struct attribute_group lru_gen_attr_group = {
5459 .attrs = lru_gen_attrs,
5462 /******************************************************************************
5464 ******************************************************************************/
5466 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5468 struct mem_cgroup *memcg;
5469 loff_t nr_to_skip = *pos;
5471 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5473 return ERR_PTR(-ENOMEM);
5475 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5479 for_each_node_state(nid, N_MEMORY) {
5481 return get_lruvec(memcg, nid);
5483 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5488 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5490 if (!IS_ERR_OR_NULL(v))
5491 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5497 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5499 int nid = lruvec_pgdat(v)->node_id;
5500 struct mem_cgroup *memcg = lruvec_memcg(v);
5504 nid = next_memory_node(nid);
5505 if (nid == MAX_NUMNODES) {
5506 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5510 nid = first_memory_node;
5513 return get_lruvec(memcg, nid);
5516 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5517 unsigned long max_seq, unsigned long *min_seq,
5522 int hist = lru_hist_from_seq(seq);
5523 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5525 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5526 seq_printf(m, " %10d", tier);
5527 for (type = 0; type < ANON_AND_FILE; type++) {
5528 const char *s = " ";
5529 unsigned long n[3] = {};
5531 if (seq == max_seq) {
5533 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5534 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5535 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5537 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5538 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5540 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5543 for (i = 0; i < 3; i++)
5544 seq_printf(m, " %10lu%c", n[i], s[i]);
5550 for (i = 0; i < NR_MM_STATS; i++) {
5551 const char *s = " ";
5552 unsigned long n = 0;
5554 if (seq == max_seq && NR_HIST_GENS == 1) {
5556 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5557 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5559 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5562 seq_printf(m, " %10lu%c", n, s[i]);
5567 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5568 static int lru_gen_seq_show(struct seq_file *m, void *v)
5571 bool full = !debugfs_real_fops(m->file)->write;
5572 struct lruvec *lruvec = v;
5573 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5574 int nid = lruvec_pgdat(lruvec)->node_id;
5575 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5576 DEFINE_MAX_SEQ(lruvec);
5577 DEFINE_MIN_SEQ(lruvec);
5579 if (nid == first_memory_node) {
5580 const char *path = memcg ? m->private : "";
5584 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5586 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5589 seq_printf(m, " node %5d\n", nid);
5592 seq = min_seq[LRU_GEN_ANON];
5593 else if (max_seq >= MAX_NR_GENS)
5594 seq = max_seq - MAX_NR_GENS + 1;
5598 for (; seq <= max_seq; seq++) {
5600 int gen = lru_gen_from_seq(seq);
5601 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5603 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5605 for (type = 0; type < ANON_AND_FILE; type++) {
5606 unsigned long size = 0;
5607 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5609 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5610 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5612 seq_printf(m, " %10lu%c", size, mark);
5618 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5624 static const struct seq_operations lru_gen_seq_ops = {
5625 .start = lru_gen_seq_start,
5626 .stop = lru_gen_seq_stop,
5627 .next = lru_gen_seq_next,
5628 .show = lru_gen_seq_show,
5631 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5632 bool can_swap, bool force_scan)
5634 DEFINE_MAX_SEQ(lruvec);
5635 DEFINE_MIN_SEQ(lruvec);
5643 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5646 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5651 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5652 int swappiness, unsigned long nr_to_reclaim)
5654 DEFINE_MAX_SEQ(lruvec);
5656 if (seq + MIN_NR_GENS > max_seq)
5659 sc->nr_reclaimed = 0;
5661 while (!signal_pending(current)) {
5662 DEFINE_MIN_SEQ(lruvec);
5664 if (seq < min_seq[!swappiness])
5667 if (sc->nr_reclaimed >= nr_to_reclaim)
5670 if (!evict_folios(lruvec, sc, swappiness, NULL))
5679 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5680 struct scan_control *sc, int swappiness, unsigned long opt)
5682 struct lruvec *lruvec;
5684 struct mem_cgroup *memcg = NULL;
5686 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5689 if (!mem_cgroup_disabled()) {
5691 memcg = mem_cgroup_from_id(memcg_id);
5693 if (memcg && !css_tryget(&memcg->css))
5702 if (memcg_id != mem_cgroup_id(memcg))
5705 lruvec = get_lruvec(memcg, nid);
5708 swappiness = get_swappiness(lruvec, sc);
5709 else if (swappiness > 200)
5714 err = run_aging(lruvec, seq, sc, swappiness, opt);
5717 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5721 mem_cgroup_put(memcg);
5726 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5727 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5728 size_t len, loff_t *pos)
5733 struct blk_plug plug;
5735 struct scan_control sc = {
5736 .may_writepage = true,
5739 .reclaim_idx = MAX_NR_ZONES - 1,
5740 .gfp_mask = GFP_KERNEL,
5743 buf = kvmalloc(len + 1, GFP_KERNEL);
5747 if (copy_from_user(buf, src, len)) {
5752 set_task_reclaim_state(current, &sc.reclaim_state);
5753 flags = memalloc_noreclaim_save();
5754 blk_start_plug(&plug);
5755 if (!set_mm_walk(NULL)) {
5763 while ((cur = strsep(&next, ",;\n"))) {
5767 unsigned int memcg_id;
5770 unsigned int swappiness = -1;
5771 unsigned long opt = -1;
5773 cur = skip_spaces(cur);
5777 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5778 &seq, &end, &swappiness, &end, &opt, &end);
5779 if (n < 4 || cur[end]) {
5784 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5790 blk_finish_plug(&plug);
5791 memalloc_noreclaim_restore(flags);
5792 set_task_reclaim_state(current, NULL);
5799 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5801 return seq_open(file, &lru_gen_seq_ops);
5804 static const struct file_operations lru_gen_rw_fops = {
5805 .open = lru_gen_seq_open,
5807 .write = lru_gen_seq_write,
5808 .llseek = seq_lseek,
5809 .release = seq_release,
5812 static const struct file_operations lru_gen_ro_fops = {
5813 .open = lru_gen_seq_open,
5815 .llseek = seq_lseek,
5816 .release = seq_release,
5819 /******************************************************************************
5821 ******************************************************************************/
5823 void lru_gen_init_lruvec(struct lruvec *lruvec)
5826 int gen, type, zone;
5827 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5829 lrugen->max_seq = MIN_NR_GENS + 1;
5830 lrugen->enabled = lru_gen_enabled();
5832 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5833 lrugen->timestamps[i] = jiffies;
5835 for_each_gen_type_zone(gen, type, zone)
5836 INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
5838 lruvec->mm_state.seq = MIN_NR_GENS;
5839 init_waitqueue_head(&lruvec->mm_state.wait);
5843 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5845 INIT_LIST_HEAD(&memcg->mm_list.fifo);
5846 spin_lock_init(&memcg->mm_list.lock);
5849 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5854 for_each_node(nid) {
5855 struct lruvec *lruvec = get_lruvec(memcg, nid);
5857 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5858 sizeof(lruvec->lrugen.nr_pages)));
5860 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5861 bitmap_free(lruvec->mm_state.filters[i]);
5862 lruvec->mm_state.filters[i] = NULL;
5868 static int __init init_lru_gen(void)
5870 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5871 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5873 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5874 pr_err("lru_gen: failed to create sysfs group\n");
5876 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5877 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5881 late_initcall(init_lru_gen);
5883 #else /* !CONFIG_LRU_GEN */
5885 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5889 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5893 #endif /* CONFIG_LRU_GEN */
5895 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5897 unsigned long nr[NR_LRU_LISTS];
5898 unsigned long targets[NR_LRU_LISTS];
5899 unsigned long nr_to_scan;
5901 unsigned long nr_reclaimed = 0;
5902 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5903 bool proportional_reclaim;
5904 struct blk_plug plug;
5906 if (lru_gen_enabled()) {
5907 lru_gen_shrink_lruvec(lruvec, sc);
5911 get_scan_count(lruvec, sc, nr);
5913 /* Record the original scan target for proportional adjustments later */
5914 memcpy(targets, nr, sizeof(nr));
5917 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5918 * event that can occur when there is little memory pressure e.g.
5919 * multiple streaming readers/writers. Hence, we do not abort scanning
5920 * when the requested number of pages are reclaimed when scanning at
5921 * DEF_PRIORITY on the assumption that the fact we are direct
5922 * reclaiming implies that kswapd is not keeping up and it is best to
5923 * do a batch of work at once. For memcg reclaim one check is made to
5924 * abort proportional reclaim if either the file or anon lru has already
5925 * dropped to zero at the first pass.
5927 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5928 sc->priority == DEF_PRIORITY);
5930 blk_start_plug(&plug);
5931 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5932 nr[LRU_INACTIVE_FILE]) {
5933 unsigned long nr_anon, nr_file, percentage;
5934 unsigned long nr_scanned;
5936 for_each_evictable_lru(lru) {
5938 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5939 nr[lru] -= nr_to_scan;
5941 nr_reclaimed += shrink_list(lru, nr_to_scan,
5948 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5952 * For kswapd and memcg, reclaim at least the number of pages
5953 * requested. Ensure that the anon and file LRUs are scanned
5954 * proportionally what was requested by get_scan_count(). We
5955 * stop reclaiming one LRU and reduce the amount scanning
5956 * proportional to the original scan target.
5958 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5959 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5962 * It's just vindictive to attack the larger once the smaller
5963 * has gone to zero. And given the way we stop scanning the
5964 * smaller below, this makes sure that we only make one nudge
5965 * towards proportionality once we've got nr_to_reclaim.
5967 if (!nr_file || !nr_anon)
5970 if (nr_file > nr_anon) {
5971 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5972 targets[LRU_ACTIVE_ANON] + 1;
5974 percentage = nr_anon * 100 / scan_target;
5976 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5977 targets[LRU_ACTIVE_FILE] + 1;
5979 percentage = nr_file * 100 / scan_target;
5982 /* Stop scanning the smaller of the LRU */
5984 nr[lru + LRU_ACTIVE] = 0;
5987 * Recalculate the other LRU scan count based on its original
5988 * scan target and the percentage scanning already complete
5990 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5991 nr_scanned = targets[lru] - nr[lru];
5992 nr[lru] = targets[lru] * (100 - percentage) / 100;
5993 nr[lru] -= min(nr[lru], nr_scanned);
5996 nr_scanned = targets[lru] - nr[lru];
5997 nr[lru] = targets[lru] * (100 - percentage) / 100;
5998 nr[lru] -= min(nr[lru], nr_scanned);
6000 blk_finish_plug(&plug);
6001 sc->nr_reclaimed += nr_reclaimed;
6004 * Even if we did not try to evict anon pages at all, we want to
6005 * rebalance the anon lru active/inactive ratio.
6007 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
6008 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6009 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6010 sc, LRU_ACTIVE_ANON);
6013 /* Use reclaim/compaction for costly allocs or under memory pressure */
6014 static bool in_reclaim_compaction(struct scan_control *sc)
6016 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
6017 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
6018 sc->priority < DEF_PRIORITY - 2))
6025 * Reclaim/compaction is used for high-order allocation requests. It reclaims
6026 * order-0 pages before compacting the zone. should_continue_reclaim() returns
6027 * true if more pages should be reclaimed such that when the page allocator
6028 * calls try_to_compact_pages() that it will have enough free pages to succeed.
6029 * It will give up earlier than that if there is difficulty reclaiming pages.
6031 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
6032 unsigned long nr_reclaimed,
6033 struct scan_control *sc)
6035 unsigned long pages_for_compaction;
6036 unsigned long inactive_lru_pages;
6039 /* If not in reclaim/compaction mode, stop */
6040 if (!in_reclaim_compaction(sc))
6044 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
6045 * number of pages that were scanned. This will return to the caller
6046 * with the risk reclaim/compaction and the resulting allocation attempt
6047 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
6048 * allocations through requiring that the full LRU list has been scanned
6049 * first, by assuming that zero delta of sc->nr_scanned means full LRU
6050 * scan, but that approximation was wrong, and there were corner cases
6051 * where always a non-zero amount of pages were scanned.
6056 /* If compaction would go ahead or the allocation would succeed, stop */
6057 for (z = 0; z <= sc->reclaim_idx; z++) {
6058 struct zone *zone = &pgdat->node_zones[z];
6059 if (!managed_zone(zone))
6062 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
6063 case COMPACT_SUCCESS:
6064 case COMPACT_CONTINUE:
6067 /* check next zone */
6073 * If we have not reclaimed enough pages for compaction and the
6074 * inactive lists are large enough, continue reclaiming
6076 pages_for_compaction = compact_gap(sc->order);
6077 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
6078 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
6079 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
6081 return inactive_lru_pages > pages_for_compaction;
6084 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
6086 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
6087 struct mem_cgroup *memcg;
6089 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
6091 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6092 unsigned long reclaimed;
6093 unsigned long scanned;
6096 * This loop can become CPU-bound when target memcgs
6097 * aren't eligible for reclaim - either because they
6098 * don't have any reclaimable pages, or because their
6099 * memory is explicitly protected. Avoid soft lockups.
6103 mem_cgroup_calculate_protection(target_memcg, memcg);
6105 if (mem_cgroup_below_min(memcg)) {
6108 * If there is no reclaimable memory, OOM.
6111 } else if (mem_cgroup_below_low(memcg)) {
6114 * Respect the protection only as long as
6115 * there is an unprotected supply
6116 * of reclaimable memory from other cgroups.
6118 if (!sc->memcg_low_reclaim) {
6119 sc->memcg_low_skipped = 1;
6122 memcg_memory_event(memcg, MEMCG_LOW);
6125 reclaimed = sc->nr_reclaimed;
6126 scanned = sc->nr_scanned;
6128 shrink_lruvec(lruvec, sc);
6130 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6133 /* Record the group's reclaim efficiency */
6135 vmpressure(sc->gfp_mask, memcg, false,
6136 sc->nr_scanned - scanned,
6137 sc->nr_reclaimed - reclaimed);
6139 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
6142 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6144 struct reclaim_state *reclaim_state = current->reclaim_state;
6145 unsigned long nr_reclaimed, nr_scanned;
6146 struct lruvec *target_lruvec;
6147 bool reclaimable = false;
6149 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6152 memset(&sc->nr, 0, sizeof(sc->nr));
6154 nr_reclaimed = sc->nr_reclaimed;
6155 nr_scanned = sc->nr_scanned;
6157 prepare_scan_count(pgdat, sc);
6159 shrink_node_memcgs(pgdat, sc);
6161 if (reclaim_state) {
6162 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
6163 reclaim_state->reclaimed_slab = 0;
6166 /* Record the subtree's reclaim efficiency */
6168 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6169 sc->nr_scanned - nr_scanned,
6170 sc->nr_reclaimed - nr_reclaimed);
6172 if (sc->nr_reclaimed - nr_reclaimed)
6175 if (current_is_kswapd()) {
6177 * If reclaim is isolating dirty pages under writeback,
6178 * it implies that the long-lived page allocation rate
6179 * is exceeding the page laundering rate. Either the
6180 * global limits are not being effective at throttling
6181 * processes due to the page distribution throughout
6182 * zones or there is heavy usage of a slow backing
6183 * device. The only option is to throttle from reclaim
6184 * context which is not ideal as there is no guarantee
6185 * the dirtying process is throttled in the same way
6186 * balance_dirty_pages() manages.
6188 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6189 * count the number of pages under pages flagged for
6190 * immediate reclaim and stall if any are encountered
6191 * in the nr_immediate check below.
6193 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6194 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6196 /* Allow kswapd to start writing pages during reclaim.*/
6197 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
6198 set_bit(PGDAT_DIRTY, &pgdat->flags);
6201 * If kswapd scans pages marked for immediate
6202 * reclaim and under writeback (nr_immediate), it
6203 * implies that pages are cycling through the LRU
6204 * faster than they are written so forcibly stall
6205 * until some pages complete writeback.
6207 if (sc->nr.immediate)
6208 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6212 * Tag a node/memcg as congested if all the dirty pages were marked
6213 * for writeback and immediate reclaim (counted in nr.congested).
6215 * Legacy memcg will stall in page writeback so avoid forcibly
6216 * stalling in reclaim_throttle().
6218 if ((current_is_kswapd() ||
6219 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
6220 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
6221 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
6224 * Stall direct reclaim for IO completions if the lruvec is
6225 * node is congested. Allow kswapd to continue until it
6226 * starts encountering unqueued dirty pages or cycling through
6227 * the LRU too quickly.
6229 if (!current_is_kswapd() && current_may_throttle() &&
6230 !sc->hibernation_mode &&
6231 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
6232 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6234 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
6239 * Kswapd gives up on balancing particular nodes after too
6240 * many failures to reclaim anything from them and goes to
6241 * sleep. On reclaim progress, reset the failure counter. A
6242 * successful direct reclaim run will revive a dormant kswapd.
6245 pgdat->kswapd_failures = 0;
6249 * Returns true if compaction should go ahead for a costly-order request, or
6250 * the allocation would already succeed without compaction. Return false if we
6251 * should reclaim first.
6253 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6255 unsigned long watermark;
6256 enum compact_result suitable;
6258 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
6259 if (suitable == COMPACT_SUCCESS)
6260 /* Allocation should succeed already. Don't reclaim. */
6262 if (suitable == COMPACT_SKIPPED)
6263 /* Compaction cannot yet proceed. Do reclaim. */
6267 * Compaction is already possible, but it takes time to run and there
6268 * are potentially other callers using the pages just freed. So proceed
6269 * with reclaim to make a buffer of free pages available to give
6270 * compaction a reasonable chance of completing and allocating the page.
6271 * Note that we won't actually reclaim the whole buffer in one attempt
6272 * as the target watermark in should_continue_reclaim() is lower. But if
6273 * we are already above the high+gap watermark, don't reclaim at all.
6275 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6277 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6280 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6283 * If reclaim is making progress greater than 12% efficiency then
6284 * wake all the NOPROGRESS throttled tasks.
6286 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6287 wait_queue_head_t *wqh;
6289 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6290 if (waitqueue_active(wqh))
6297 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6298 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6299 * under writeback and marked for immediate reclaim at the tail of the
6302 if (current_is_kswapd() || cgroup_reclaim(sc))
6305 /* Throttle if making no progress at high prioities. */
6306 if (sc->priority == 1 && !sc->nr_reclaimed)
6307 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6311 * This is the direct reclaim path, for page-allocating processes. We only
6312 * try to reclaim pages from zones which will satisfy the caller's allocation
6315 * If a zone is deemed to be full of pinned pages then just give it a light
6316 * scan then give up on it.
6318 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6322 unsigned long nr_soft_reclaimed;
6323 unsigned long nr_soft_scanned;
6325 pg_data_t *last_pgdat = NULL;
6326 pg_data_t *first_pgdat = NULL;
6329 * If the number of buffer_heads in the machine exceeds the maximum
6330 * allowed level, force direct reclaim to scan the highmem zone as
6331 * highmem pages could be pinning lowmem pages storing buffer_heads
6333 orig_mask = sc->gfp_mask;
6334 if (buffer_heads_over_limit) {
6335 sc->gfp_mask |= __GFP_HIGHMEM;
6336 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6339 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6340 sc->reclaim_idx, sc->nodemask) {
6342 * Take care memory controller reclaiming has small influence
6345 if (!cgroup_reclaim(sc)) {
6346 if (!cpuset_zone_allowed(zone,
6347 GFP_KERNEL | __GFP_HARDWALL))
6351 * If we already have plenty of memory free for
6352 * compaction in this zone, don't free any more.
6353 * Even though compaction is invoked for any
6354 * non-zero order, only frequent costly order
6355 * reclamation is disruptive enough to become a
6356 * noticeable problem, like transparent huge
6359 if (IS_ENABLED(CONFIG_COMPACTION) &&
6360 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6361 compaction_ready(zone, sc)) {
6362 sc->compaction_ready = true;
6367 * Shrink each node in the zonelist once. If the
6368 * zonelist is ordered by zone (not the default) then a
6369 * node may be shrunk multiple times but in that case
6370 * the user prefers lower zones being preserved.
6372 if (zone->zone_pgdat == last_pgdat)
6376 * This steals pages from memory cgroups over softlimit
6377 * and returns the number of reclaimed pages and
6378 * scanned pages. This works for global memory pressure
6379 * and balancing, not for a memcg's limit.
6381 nr_soft_scanned = 0;
6382 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6383 sc->order, sc->gfp_mask,
6385 sc->nr_reclaimed += nr_soft_reclaimed;
6386 sc->nr_scanned += nr_soft_scanned;
6387 /* need some check for avoid more shrink_zone() */
6391 first_pgdat = zone->zone_pgdat;
6393 /* See comment about same check for global reclaim above */
6394 if (zone->zone_pgdat == last_pgdat)
6396 last_pgdat = zone->zone_pgdat;
6397 shrink_node(zone->zone_pgdat, sc);
6401 consider_reclaim_throttle(first_pgdat, sc);
6404 * Restore to original mask to avoid the impact on the caller if we
6405 * promoted it to __GFP_HIGHMEM.
6407 sc->gfp_mask = orig_mask;
6410 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6412 struct lruvec *target_lruvec;
6413 unsigned long refaults;
6415 if (lru_gen_enabled())
6418 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6419 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6420 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6421 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6422 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6426 * This is the main entry point to direct page reclaim.
6428 * If a full scan of the inactive list fails to free enough memory then we
6429 * are "out of memory" and something needs to be killed.
6431 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6432 * high - the zone may be full of dirty or under-writeback pages, which this
6433 * caller can't do much about. We kick the writeback threads and take explicit
6434 * naps in the hope that some of these pages can be written. But if the
6435 * allocating task holds filesystem locks which prevent writeout this might not
6436 * work, and the allocation attempt will fail.
6438 * returns: 0, if no pages reclaimed
6439 * else, the number of pages reclaimed
6441 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6442 struct scan_control *sc)
6444 int initial_priority = sc->priority;
6445 pg_data_t *last_pgdat;
6449 delayacct_freepages_start();
6451 if (!cgroup_reclaim(sc))
6452 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6456 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6459 shrink_zones(zonelist, sc);
6461 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6464 if (sc->compaction_ready)
6468 * If we're getting trouble reclaiming, start doing
6469 * writepage even in laptop mode.
6471 if (sc->priority < DEF_PRIORITY - 2)
6472 sc->may_writepage = 1;
6473 } while (--sc->priority >= 0);
6476 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6478 if (zone->zone_pgdat == last_pgdat)
6480 last_pgdat = zone->zone_pgdat;
6482 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6484 if (cgroup_reclaim(sc)) {
6485 struct lruvec *lruvec;
6487 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6489 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6493 delayacct_freepages_end();
6495 if (sc->nr_reclaimed)
6496 return sc->nr_reclaimed;
6498 /* Aborted reclaim to try compaction? don't OOM, then */
6499 if (sc->compaction_ready)
6503 * We make inactive:active ratio decisions based on the node's
6504 * composition of memory, but a restrictive reclaim_idx or a
6505 * memory.low cgroup setting can exempt large amounts of
6506 * memory from reclaim. Neither of which are very common, so
6507 * instead of doing costly eligibility calculations of the
6508 * entire cgroup subtree up front, we assume the estimates are
6509 * good, and retry with forcible deactivation if that fails.
6511 if (sc->skipped_deactivate) {
6512 sc->priority = initial_priority;
6513 sc->force_deactivate = 1;
6514 sc->skipped_deactivate = 0;
6518 /* Untapped cgroup reserves? Don't OOM, retry. */
6519 if (sc->memcg_low_skipped) {
6520 sc->priority = initial_priority;
6521 sc->force_deactivate = 0;
6522 sc->memcg_low_reclaim = 1;
6523 sc->memcg_low_skipped = 0;
6530 static bool allow_direct_reclaim(pg_data_t *pgdat)
6533 unsigned long pfmemalloc_reserve = 0;
6534 unsigned long free_pages = 0;
6538 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6541 for (i = 0; i <= ZONE_NORMAL; i++) {
6542 zone = &pgdat->node_zones[i];
6543 if (!managed_zone(zone))
6546 if (!zone_reclaimable_pages(zone))
6549 pfmemalloc_reserve += min_wmark_pages(zone);
6550 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6553 /* If there are no reserves (unexpected config) then do not throttle */
6554 if (!pfmemalloc_reserve)
6557 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6559 /* kswapd must be awake if processes are being throttled */
6560 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6561 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6562 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6564 wake_up_interruptible(&pgdat->kswapd_wait);
6571 * Throttle direct reclaimers if backing storage is backed by the network
6572 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6573 * depleted. kswapd will continue to make progress and wake the processes
6574 * when the low watermark is reached.
6576 * Returns true if a fatal signal was delivered during throttling. If this
6577 * happens, the page allocator should not consider triggering the OOM killer.
6579 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6580 nodemask_t *nodemask)
6584 pg_data_t *pgdat = NULL;
6587 * Kernel threads should not be throttled as they may be indirectly
6588 * responsible for cleaning pages necessary for reclaim to make forward
6589 * progress. kjournald for example may enter direct reclaim while
6590 * committing a transaction where throttling it could forcing other
6591 * processes to block on log_wait_commit().
6593 if (current->flags & PF_KTHREAD)
6597 * If a fatal signal is pending, this process should not throttle.
6598 * It should return quickly so it can exit and free its memory
6600 if (fatal_signal_pending(current))
6604 * Check if the pfmemalloc reserves are ok by finding the first node
6605 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6606 * GFP_KERNEL will be required for allocating network buffers when
6607 * swapping over the network so ZONE_HIGHMEM is unusable.
6609 * Throttling is based on the first usable node and throttled processes
6610 * wait on a queue until kswapd makes progress and wakes them. There
6611 * is an affinity then between processes waking up and where reclaim
6612 * progress has been made assuming the process wakes on the same node.
6613 * More importantly, processes running on remote nodes will not compete
6614 * for remote pfmemalloc reserves and processes on different nodes
6615 * should make reasonable progress.
6617 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6618 gfp_zone(gfp_mask), nodemask) {
6619 if (zone_idx(zone) > ZONE_NORMAL)
6622 /* Throttle based on the first usable node */
6623 pgdat = zone->zone_pgdat;
6624 if (allow_direct_reclaim(pgdat))
6629 /* If no zone was usable by the allocation flags then do not throttle */
6633 /* Account for the throttling */
6634 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6637 * If the caller cannot enter the filesystem, it's possible that it
6638 * is due to the caller holding an FS lock or performing a journal
6639 * transaction in the case of a filesystem like ext[3|4]. In this case,
6640 * it is not safe to block on pfmemalloc_wait as kswapd could be
6641 * blocked waiting on the same lock. Instead, throttle for up to a
6642 * second before continuing.
6644 if (!(gfp_mask & __GFP_FS))
6645 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6646 allow_direct_reclaim(pgdat), HZ);
6648 /* Throttle until kswapd wakes the process */
6649 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6650 allow_direct_reclaim(pgdat));
6652 if (fatal_signal_pending(current))
6659 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6660 gfp_t gfp_mask, nodemask_t *nodemask)
6662 unsigned long nr_reclaimed;
6663 struct scan_control sc = {
6664 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6665 .gfp_mask = current_gfp_context(gfp_mask),
6666 .reclaim_idx = gfp_zone(gfp_mask),
6668 .nodemask = nodemask,
6669 .priority = DEF_PRIORITY,
6670 .may_writepage = !laptop_mode,
6676 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6677 * Confirm they are large enough for max values.
6679 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6680 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6681 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6684 * Do not enter reclaim if fatal signal was delivered while throttled.
6685 * 1 is returned so that the page allocator does not OOM kill at this
6688 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6691 set_task_reclaim_state(current, &sc.reclaim_state);
6692 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6694 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6696 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6697 set_task_reclaim_state(current, NULL);
6699 return nr_reclaimed;
6704 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6705 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6706 gfp_t gfp_mask, bool noswap,
6708 unsigned long *nr_scanned)
6710 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6711 struct scan_control sc = {
6712 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6713 .target_mem_cgroup = memcg,
6714 .may_writepage = !laptop_mode,
6716 .reclaim_idx = MAX_NR_ZONES - 1,
6717 .may_swap = !noswap,
6720 WARN_ON_ONCE(!current->reclaim_state);
6722 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6723 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6725 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6729 * NOTE: Although we can get the priority field, using it
6730 * here is not a good idea, since it limits the pages we can scan.
6731 * if we don't reclaim here, the shrink_node from balance_pgdat
6732 * will pick up pages from other mem cgroup's as well. We hack
6733 * the priority and make it zero.
6735 shrink_lruvec(lruvec, &sc);
6737 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6739 *nr_scanned = sc.nr_scanned;
6741 return sc.nr_reclaimed;
6744 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6745 unsigned long nr_pages,
6747 unsigned int reclaim_options)
6749 unsigned long nr_reclaimed;
6750 unsigned int noreclaim_flag;
6751 struct scan_control sc = {
6752 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6753 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6754 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6755 .reclaim_idx = MAX_NR_ZONES - 1,
6756 .target_mem_cgroup = memcg,
6757 .priority = DEF_PRIORITY,
6758 .may_writepage = !laptop_mode,
6760 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6761 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6764 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6765 * equal pressure on all the nodes. This is based on the assumption that
6766 * the reclaim does not bail out early.
6768 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6770 set_task_reclaim_state(current, &sc.reclaim_state);
6771 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6772 noreclaim_flag = memalloc_noreclaim_save();
6774 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6776 memalloc_noreclaim_restore(noreclaim_flag);
6777 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6778 set_task_reclaim_state(current, NULL);
6780 return nr_reclaimed;
6784 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6786 struct mem_cgroup *memcg;
6787 struct lruvec *lruvec;
6789 if (lru_gen_enabled()) {
6790 lru_gen_age_node(pgdat, sc);
6794 if (!can_age_anon_pages(pgdat, sc))
6797 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6798 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6801 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6803 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6804 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6805 sc, LRU_ACTIVE_ANON);
6806 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6810 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6816 * Check for watermark boosts top-down as the higher zones
6817 * are more likely to be boosted. Both watermarks and boosts
6818 * should not be checked at the same time as reclaim would
6819 * start prematurely when there is no boosting and a lower
6822 for (i = highest_zoneidx; i >= 0; i--) {
6823 zone = pgdat->node_zones + i;
6824 if (!managed_zone(zone))
6827 if (zone->watermark_boost)
6835 * Returns true if there is an eligible zone balanced for the request order
6836 * and highest_zoneidx
6838 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6841 unsigned long mark = -1;
6845 * Check watermarks bottom-up as lower zones are more likely to
6848 for (i = 0; i <= highest_zoneidx; i++) {
6849 zone = pgdat->node_zones + i;
6851 if (!managed_zone(zone))
6854 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6855 mark = wmark_pages(zone, WMARK_PROMO);
6857 mark = high_wmark_pages(zone);
6858 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6863 * If a node has no managed zone within highest_zoneidx, it does not
6864 * need balancing by definition. This can happen if a zone-restricted
6865 * allocation tries to wake a remote kswapd.
6873 /* Clear pgdat state for congested, dirty or under writeback. */
6874 static void clear_pgdat_congested(pg_data_t *pgdat)
6876 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6878 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6879 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6880 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6884 * Prepare kswapd for sleeping. This verifies that there are no processes
6885 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6887 * Returns true if kswapd is ready to sleep
6889 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6890 int highest_zoneidx)
6893 * The throttled processes are normally woken up in balance_pgdat() as
6894 * soon as allow_direct_reclaim() is true. But there is a potential
6895 * race between when kswapd checks the watermarks and a process gets
6896 * throttled. There is also a potential race if processes get
6897 * throttled, kswapd wakes, a large process exits thereby balancing the
6898 * zones, which causes kswapd to exit balance_pgdat() before reaching
6899 * the wake up checks. If kswapd is going to sleep, no process should
6900 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6901 * the wake up is premature, processes will wake kswapd and get
6902 * throttled again. The difference from wake ups in balance_pgdat() is
6903 * that here we are under prepare_to_wait().
6905 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6906 wake_up_all(&pgdat->pfmemalloc_wait);
6908 /* Hopeless node, leave it to direct reclaim */
6909 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6912 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6913 clear_pgdat_congested(pgdat);
6921 * kswapd shrinks a node of pages that are at or below the highest usable
6922 * zone that is currently unbalanced.
6924 * Returns true if kswapd scanned at least the requested number of pages to
6925 * reclaim or if the lack of progress was due to pages under writeback.
6926 * This is used to determine if the scanning priority needs to be raised.
6928 static bool kswapd_shrink_node(pg_data_t *pgdat,
6929 struct scan_control *sc)
6934 /* Reclaim a number of pages proportional to the number of zones */
6935 sc->nr_to_reclaim = 0;
6936 for (z = 0; z <= sc->reclaim_idx; z++) {
6937 zone = pgdat->node_zones + z;
6938 if (!managed_zone(zone))
6941 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6945 * Historically care was taken to put equal pressure on all zones but
6946 * now pressure is applied based on node LRU order.
6948 shrink_node(pgdat, sc);
6951 * Fragmentation may mean that the system cannot be rebalanced for
6952 * high-order allocations. If twice the allocation size has been
6953 * reclaimed then recheck watermarks only at order-0 to prevent
6954 * excessive reclaim. Assume that a process requested a high-order
6955 * can direct reclaim/compact.
6957 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6960 return sc->nr_scanned >= sc->nr_to_reclaim;
6963 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6965 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6970 for (i = 0; i <= highest_zoneidx; i++) {
6971 zone = pgdat->node_zones + i;
6973 if (!managed_zone(zone))
6977 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6979 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6984 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6986 update_reclaim_active(pgdat, highest_zoneidx, true);
6990 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6992 update_reclaim_active(pgdat, highest_zoneidx, false);
6996 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6997 * that are eligible for use by the caller until at least one zone is
7000 * Returns the order kswapd finished reclaiming at.
7002 * kswapd scans the zones in the highmem->normal->dma direction. It skips
7003 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
7004 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
7005 * or lower is eligible for reclaim until at least one usable zone is
7008 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
7011 unsigned long nr_soft_reclaimed;
7012 unsigned long nr_soft_scanned;
7013 unsigned long pflags;
7014 unsigned long nr_boost_reclaim;
7015 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7018 struct scan_control sc = {
7019 .gfp_mask = GFP_KERNEL,
7024 set_task_reclaim_state(current, &sc.reclaim_state);
7025 psi_memstall_enter(&pflags);
7026 __fs_reclaim_acquire(_THIS_IP_);
7028 count_vm_event(PAGEOUTRUN);
7031 * Account for the reclaim boost. Note that the zone boost is left in
7032 * place so that parallel allocations that are near the watermark will
7033 * stall or direct reclaim until kswapd is finished.
7035 nr_boost_reclaim = 0;
7036 for (i = 0; i <= highest_zoneidx; i++) {
7037 zone = pgdat->node_zones + i;
7038 if (!managed_zone(zone))
7041 nr_boost_reclaim += zone->watermark_boost;
7042 zone_boosts[i] = zone->watermark_boost;
7044 boosted = nr_boost_reclaim;
7047 set_reclaim_active(pgdat, highest_zoneidx);
7048 sc.priority = DEF_PRIORITY;
7050 unsigned long nr_reclaimed = sc.nr_reclaimed;
7051 bool raise_priority = true;
7055 sc.reclaim_idx = highest_zoneidx;
7058 * If the number of buffer_heads exceeds the maximum allowed
7059 * then consider reclaiming from all zones. This has a dual
7060 * purpose -- on 64-bit systems it is expected that
7061 * buffer_heads are stripped during active rotation. On 32-bit
7062 * systems, highmem pages can pin lowmem memory and shrinking
7063 * buffers can relieve lowmem pressure. Reclaim may still not
7064 * go ahead if all eligible zones for the original allocation
7065 * request are balanced to avoid excessive reclaim from kswapd.
7067 if (buffer_heads_over_limit) {
7068 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7069 zone = pgdat->node_zones + i;
7070 if (!managed_zone(zone))
7079 * If the pgdat is imbalanced then ignore boosting and preserve
7080 * the watermarks for a later time and restart. Note that the
7081 * zone watermarks will be still reset at the end of balancing
7082 * on the grounds that the normal reclaim should be enough to
7083 * re-evaluate if boosting is required when kswapd next wakes.
7085 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7086 if (!balanced && nr_boost_reclaim) {
7087 nr_boost_reclaim = 0;
7092 * If boosting is not active then only reclaim if there are no
7093 * eligible zones. Note that sc.reclaim_idx is not used as
7094 * buffer_heads_over_limit may have adjusted it.
7096 if (!nr_boost_reclaim && balanced)
7099 /* Limit the priority of boosting to avoid reclaim writeback */
7100 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7101 raise_priority = false;
7104 * Do not writeback or swap pages for boosted reclaim. The
7105 * intent is to relieve pressure not issue sub-optimal IO
7106 * from reclaim context. If no pages are reclaimed, the
7107 * reclaim will be aborted.
7109 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7110 sc.may_swap = !nr_boost_reclaim;
7113 * Do some background aging, to give pages a chance to be
7114 * referenced before reclaiming. All pages are rotated
7115 * regardless of classzone as this is about consistent aging.
7117 kswapd_age_node(pgdat, &sc);
7120 * If we're getting trouble reclaiming, start doing writepage
7121 * even in laptop mode.
7123 if (sc.priority < DEF_PRIORITY - 2)
7124 sc.may_writepage = 1;
7126 /* Call soft limit reclaim before calling shrink_node. */
7128 nr_soft_scanned = 0;
7129 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
7130 sc.gfp_mask, &nr_soft_scanned);
7131 sc.nr_reclaimed += nr_soft_reclaimed;
7134 * There should be no need to raise the scanning priority if
7135 * enough pages are already being scanned that that high
7136 * watermark would be met at 100% efficiency.
7138 if (kswapd_shrink_node(pgdat, &sc))
7139 raise_priority = false;
7142 * If the low watermark is met there is no need for processes
7143 * to be throttled on pfmemalloc_wait as they should not be
7144 * able to safely make forward progress. Wake them
7146 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7147 allow_direct_reclaim(pgdat))
7148 wake_up_all(&pgdat->pfmemalloc_wait);
7150 /* Check if kswapd should be suspending */
7151 __fs_reclaim_release(_THIS_IP_);
7152 ret = try_to_freeze();
7153 __fs_reclaim_acquire(_THIS_IP_);
7154 if (ret || kthread_should_stop())
7158 * Raise priority if scanning rate is too low or there was no
7159 * progress in reclaiming pages
7161 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7162 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7165 * If reclaim made no progress for a boost, stop reclaim as
7166 * IO cannot be queued and it could be an infinite loop in
7167 * extreme circumstances.
7169 if (nr_boost_reclaim && !nr_reclaimed)
7172 if (raise_priority || !nr_reclaimed)
7174 } while (sc.priority >= 1);
7176 if (!sc.nr_reclaimed)
7177 pgdat->kswapd_failures++;
7180 clear_reclaim_active(pgdat, highest_zoneidx);
7182 /* If reclaim was boosted, account for the reclaim done in this pass */
7184 unsigned long flags;
7186 for (i = 0; i <= highest_zoneidx; i++) {
7187 if (!zone_boosts[i])
7190 /* Increments are under the zone lock */
7191 zone = pgdat->node_zones + i;
7192 spin_lock_irqsave(&zone->lock, flags);
7193 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7194 spin_unlock_irqrestore(&zone->lock, flags);
7198 * As there is now likely space, wakeup kcompact to defragment
7201 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7204 snapshot_refaults(NULL, pgdat);
7205 __fs_reclaim_release(_THIS_IP_);
7206 psi_memstall_leave(&pflags);
7207 set_task_reclaim_state(current, NULL);
7210 * Return the order kswapd stopped reclaiming at as
7211 * prepare_kswapd_sleep() takes it into account. If another caller
7212 * entered the allocator slow path while kswapd was awake, order will
7213 * remain at the higher level.
7219 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7220 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7221 * not a valid index then either kswapd runs for first time or kswapd couldn't
7222 * sleep after previous reclaim attempt (node is still unbalanced). In that
7223 * case return the zone index of the previous kswapd reclaim cycle.
7225 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7226 enum zone_type prev_highest_zoneidx)
7228 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7230 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7233 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7234 unsigned int highest_zoneidx)
7239 if (freezing(current) || kthread_should_stop())
7242 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7245 * Try to sleep for a short interval. Note that kcompactd will only be
7246 * woken if it is possible to sleep for a short interval. This is
7247 * deliberate on the assumption that if reclaim cannot keep an
7248 * eligible zone balanced that it's also unlikely that compaction will
7251 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7253 * Compaction records what page blocks it recently failed to
7254 * isolate pages from and skips them in the future scanning.
7255 * When kswapd is going to sleep, it is reasonable to assume
7256 * that pages and compaction may succeed so reset the cache.
7258 reset_isolation_suitable(pgdat);
7261 * We have freed the memory, now we should compact it to make
7262 * allocation of the requested order possible.
7264 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7266 remaining = schedule_timeout(HZ/10);
7269 * If woken prematurely then reset kswapd_highest_zoneidx and
7270 * order. The values will either be from a wakeup request or
7271 * the previous request that slept prematurely.
7274 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7275 kswapd_highest_zoneidx(pgdat,
7278 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7279 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7282 finish_wait(&pgdat->kswapd_wait, &wait);
7283 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7287 * After a short sleep, check if it was a premature sleep. If not, then
7288 * go fully to sleep until explicitly woken up.
7291 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7292 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7295 * vmstat counters are not perfectly accurate and the estimated
7296 * value for counters such as NR_FREE_PAGES can deviate from the
7297 * true value by nr_online_cpus * threshold. To avoid the zone
7298 * watermarks being breached while under pressure, we reduce the
7299 * per-cpu vmstat threshold while kswapd is awake and restore
7300 * them before going back to sleep.
7302 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7304 if (!kthread_should_stop())
7307 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7310 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7312 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7314 finish_wait(&pgdat->kswapd_wait, &wait);
7318 * The background pageout daemon, started as a kernel thread
7319 * from the init process.
7321 * This basically trickles out pages so that we have _some_
7322 * free memory available even if there is no other activity
7323 * that frees anything up. This is needed for things like routing
7324 * etc, where we otherwise might have all activity going on in
7325 * asynchronous contexts that cannot page things out.
7327 * If there are applications that are active memory-allocators
7328 * (most normal use), this basically shouldn't matter.
7330 static int kswapd(void *p)
7332 unsigned int alloc_order, reclaim_order;
7333 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7334 pg_data_t *pgdat = (pg_data_t *)p;
7335 struct task_struct *tsk = current;
7336 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7338 if (!cpumask_empty(cpumask))
7339 set_cpus_allowed_ptr(tsk, cpumask);
7342 * Tell the memory management that we're a "memory allocator",
7343 * and that if we need more memory we should get access to it
7344 * regardless (see "__alloc_pages()"). "kswapd" should
7345 * never get caught in the normal page freeing logic.
7347 * (Kswapd normally doesn't need memory anyway, but sometimes
7348 * you need a small amount of memory in order to be able to
7349 * page out something else, and this flag essentially protects
7350 * us from recursively trying to free more memory as we're
7351 * trying to free the first piece of memory in the first place).
7353 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7356 WRITE_ONCE(pgdat->kswapd_order, 0);
7357 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7358 atomic_set(&pgdat->nr_writeback_throttled, 0);
7362 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7363 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7367 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7370 /* Read the new order and highest_zoneidx */
7371 alloc_order = READ_ONCE(pgdat->kswapd_order);
7372 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7374 WRITE_ONCE(pgdat->kswapd_order, 0);
7375 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7377 ret = try_to_freeze();
7378 if (kthread_should_stop())
7382 * We can speed up thawing tasks if we don't call balance_pgdat
7383 * after returning from the refrigerator
7389 * Reclaim begins at the requested order but if a high-order
7390 * reclaim fails then kswapd falls back to reclaiming for
7391 * order-0. If that happens, kswapd will consider sleeping
7392 * for the order it finished reclaiming at (reclaim_order)
7393 * but kcompactd is woken to compact for the original
7394 * request (alloc_order).
7396 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7398 reclaim_order = balance_pgdat(pgdat, alloc_order,
7400 if (reclaim_order < alloc_order)
7401 goto kswapd_try_sleep;
7404 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7410 * A zone is low on free memory or too fragmented for high-order memory. If
7411 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7412 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7413 * has failed or is not needed, still wake up kcompactd if only compaction is
7416 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7417 enum zone_type highest_zoneidx)
7420 enum zone_type curr_idx;
7422 if (!managed_zone(zone))
7425 if (!cpuset_zone_allowed(zone, gfp_flags))
7428 pgdat = zone->zone_pgdat;
7429 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7431 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7432 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7434 if (READ_ONCE(pgdat->kswapd_order) < order)
7435 WRITE_ONCE(pgdat->kswapd_order, order);
7437 if (!waitqueue_active(&pgdat->kswapd_wait))
7440 /* Hopeless node, leave it to direct reclaim if possible */
7441 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7442 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7443 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7445 * There may be plenty of free memory available, but it's too
7446 * fragmented for high-order allocations. Wake up kcompactd
7447 * and rely on compaction_suitable() to determine if it's
7448 * needed. If it fails, it will defer subsequent attempts to
7449 * ratelimit its work.
7451 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7452 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7456 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7458 wake_up_interruptible(&pgdat->kswapd_wait);
7461 #ifdef CONFIG_HIBERNATION
7463 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7466 * Rather than trying to age LRUs the aim is to preserve the overall
7467 * LRU order by reclaiming preferentially
7468 * inactive > active > active referenced > active mapped
7470 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7472 struct scan_control sc = {
7473 .nr_to_reclaim = nr_to_reclaim,
7474 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7475 .reclaim_idx = MAX_NR_ZONES - 1,
7476 .priority = DEF_PRIORITY,
7480 .hibernation_mode = 1,
7482 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7483 unsigned long nr_reclaimed;
7484 unsigned int noreclaim_flag;
7486 fs_reclaim_acquire(sc.gfp_mask);
7487 noreclaim_flag = memalloc_noreclaim_save();
7488 set_task_reclaim_state(current, &sc.reclaim_state);
7490 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7492 set_task_reclaim_state(current, NULL);
7493 memalloc_noreclaim_restore(noreclaim_flag);
7494 fs_reclaim_release(sc.gfp_mask);
7496 return nr_reclaimed;
7498 #endif /* CONFIG_HIBERNATION */
7501 * This kswapd start function will be called by init and node-hot-add.
7503 void kswapd_run(int nid)
7505 pg_data_t *pgdat = NODE_DATA(nid);
7507 pgdat_kswapd_lock(pgdat);
7508 if (!pgdat->kswapd) {
7509 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7510 if (IS_ERR(pgdat->kswapd)) {
7511 /* failure at boot is fatal */
7512 BUG_ON(system_state < SYSTEM_RUNNING);
7513 pr_err("Failed to start kswapd on node %d\n", nid);
7514 pgdat->kswapd = NULL;
7517 pgdat_kswapd_unlock(pgdat);
7521 * Called by memory hotplug when all memory in a node is offlined. Caller must
7522 * be holding mem_hotplug_begin/done().
7524 void kswapd_stop(int nid)
7526 pg_data_t *pgdat = NODE_DATA(nid);
7527 struct task_struct *kswapd;
7529 pgdat_kswapd_lock(pgdat);
7530 kswapd = pgdat->kswapd;
7532 kthread_stop(kswapd);
7533 pgdat->kswapd = NULL;
7535 pgdat_kswapd_unlock(pgdat);
7538 static int __init kswapd_init(void)
7543 for_each_node_state(nid, N_MEMORY)
7548 module_init(kswapd_init)
7554 * If non-zero call node_reclaim when the number of free pages falls below
7557 int node_reclaim_mode __read_mostly;
7560 * Priority for NODE_RECLAIM. This determines the fraction of pages
7561 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7564 #define NODE_RECLAIM_PRIORITY 4
7567 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7570 int sysctl_min_unmapped_ratio = 1;
7573 * If the number of slab pages in a zone grows beyond this percentage then
7574 * slab reclaim needs to occur.
7576 int sysctl_min_slab_ratio = 5;
7578 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7580 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7581 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7582 node_page_state(pgdat, NR_ACTIVE_FILE);
7585 * It's possible for there to be more file mapped pages than
7586 * accounted for by the pages on the file LRU lists because
7587 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7589 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7592 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7593 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7595 unsigned long nr_pagecache_reclaimable;
7596 unsigned long delta = 0;
7599 * If RECLAIM_UNMAP is set, then all file pages are considered
7600 * potentially reclaimable. Otherwise, we have to worry about
7601 * pages like swapcache and node_unmapped_file_pages() provides
7604 if (node_reclaim_mode & RECLAIM_UNMAP)
7605 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7607 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7609 /* If we can't clean pages, remove dirty pages from consideration */
7610 if (!(node_reclaim_mode & RECLAIM_WRITE))
7611 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7613 /* Watch for any possible underflows due to delta */
7614 if (unlikely(delta > nr_pagecache_reclaimable))
7615 delta = nr_pagecache_reclaimable;
7617 return nr_pagecache_reclaimable - delta;
7621 * Try to free up some pages from this node through reclaim.
7623 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7625 /* Minimum pages needed in order to stay on node */
7626 const unsigned long nr_pages = 1 << order;
7627 struct task_struct *p = current;
7628 unsigned int noreclaim_flag;
7629 struct scan_control sc = {
7630 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7631 .gfp_mask = current_gfp_context(gfp_mask),
7633 .priority = NODE_RECLAIM_PRIORITY,
7634 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7635 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7637 .reclaim_idx = gfp_zone(gfp_mask),
7639 unsigned long pflags;
7641 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7645 psi_memstall_enter(&pflags);
7646 fs_reclaim_acquire(sc.gfp_mask);
7648 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7650 noreclaim_flag = memalloc_noreclaim_save();
7651 set_task_reclaim_state(p, &sc.reclaim_state);
7653 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7654 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7656 * Free memory by calling shrink node with increasing
7657 * priorities until we have enough memory freed.
7660 shrink_node(pgdat, &sc);
7661 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7664 set_task_reclaim_state(p, NULL);
7665 memalloc_noreclaim_restore(noreclaim_flag);
7666 fs_reclaim_release(sc.gfp_mask);
7667 psi_memstall_leave(&pflags);
7669 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7671 return sc.nr_reclaimed >= nr_pages;
7674 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7679 * Node reclaim reclaims unmapped file backed pages and
7680 * slab pages if we are over the defined limits.
7682 * A small portion of unmapped file backed pages is needed for
7683 * file I/O otherwise pages read by file I/O will be immediately
7684 * thrown out if the node is overallocated. So we do not reclaim
7685 * if less than a specified percentage of the node is used by
7686 * unmapped file backed pages.
7688 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7689 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7690 pgdat->min_slab_pages)
7691 return NODE_RECLAIM_FULL;
7694 * Do not scan if the allocation should not be delayed.
7696 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7697 return NODE_RECLAIM_NOSCAN;
7700 * Only run node reclaim on the local node or on nodes that do not
7701 * have associated processors. This will favor the local processor
7702 * over remote processors and spread off node memory allocations
7703 * as wide as possible.
7705 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7706 return NODE_RECLAIM_NOSCAN;
7708 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7709 return NODE_RECLAIM_NOSCAN;
7711 ret = __node_reclaim(pgdat, gfp_mask, order);
7712 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7715 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7721 void check_move_unevictable_pages(struct pagevec *pvec)
7723 struct folio_batch fbatch;
7726 folio_batch_init(&fbatch);
7727 for (i = 0; i < pvec->nr; i++) {
7728 struct page *page = pvec->pages[i];
7730 if (PageTransTail(page))
7732 folio_batch_add(&fbatch, page_folio(page));
7734 check_move_unevictable_folios(&fbatch);
7736 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7739 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7741 * @fbatch: Batch of lru folios to check.
7743 * Checks folios for evictability, if an evictable folio is in the unevictable
7744 * lru list, moves it to the appropriate evictable lru list. This function
7745 * should be only used for lru folios.
7747 void check_move_unevictable_folios(struct folio_batch *fbatch)
7749 struct lruvec *lruvec = NULL;
7754 for (i = 0; i < fbatch->nr; i++) {
7755 struct folio *folio = fbatch->folios[i];
7756 int nr_pages = folio_nr_pages(folio);
7758 pgscanned += nr_pages;
7760 /* block memcg migration while the folio moves between lrus */
7761 if (!folio_test_clear_lru(folio))
7764 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7765 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7766 lruvec_del_folio(lruvec, folio);
7767 folio_clear_unevictable(folio);
7768 lruvec_add_folio(lruvec, folio);
7769 pgrescued += nr_pages;
7771 folio_set_lru(folio);
7775 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7776 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7777 unlock_page_lruvec_irq(lruvec);
7778 } else if (pgscanned) {
7779 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7782 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);