]> Git Repo - linux.git/blob - mm/memory.c
mm,hugetlb: use folio fields in second tail page
[linux.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *              Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh ([email protected])
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *              ([email protected])
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80
81 #include <trace/events/kmem.h>
82
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126                                         1;
127 #else
128                                         2;
129 #endif
130
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134         /*
135          * Transitioning a PTE from 'old' to 'young' can be expensive on
136          * some architectures, even if it's performed in hardware. By
137          * default, "false" means prefaulted entries will be 'young'.
138          */
139         return false;
140 }
141 #endif
142
143 static int __init disable_randmaps(char *s)
144 {
145         randomize_va_space = 0;
146         return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152
153 unsigned long highest_memmap_pfn __read_mostly;
154
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160         zero_pfn = page_to_pfn(ZERO_PAGE(0));
161         return 0;
162 }
163 early_initcall(init_zero_pfn);
164
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
166 {
167         trace_rss_stat(mm, member);
168 }
169
170 /*
171  * Note: this doesn't free the actual pages themselves. That
172  * has been handled earlier when unmapping all the memory regions.
173  */
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175                            unsigned long addr)
176 {
177         pgtable_t token = pmd_pgtable(*pmd);
178         pmd_clear(pmd);
179         pte_free_tlb(tlb, token, addr);
180         mm_dec_nr_ptes(tlb->mm);
181 }
182
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184                                 unsigned long addr, unsigned long end,
185                                 unsigned long floor, unsigned long ceiling)
186 {
187         pmd_t *pmd;
188         unsigned long next;
189         unsigned long start;
190
191         start = addr;
192         pmd = pmd_offset(pud, addr);
193         do {
194                 next = pmd_addr_end(addr, end);
195                 if (pmd_none_or_clear_bad(pmd))
196                         continue;
197                 free_pte_range(tlb, pmd, addr);
198         } while (pmd++, addr = next, addr != end);
199
200         start &= PUD_MASK;
201         if (start < floor)
202                 return;
203         if (ceiling) {
204                 ceiling &= PUD_MASK;
205                 if (!ceiling)
206                         return;
207         }
208         if (end - 1 > ceiling - 1)
209                 return;
210
211         pmd = pmd_offset(pud, start);
212         pud_clear(pud);
213         pmd_free_tlb(tlb, pmd, start);
214         mm_dec_nr_pmds(tlb->mm);
215 }
216
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218                                 unsigned long addr, unsigned long end,
219                                 unsigned long floor, unsigned long ceiling)
220 {
221         pud_t *pud;
222         unsigned long next;
223         unsigned long start;
224
225         start = addr;
226         pud = pud_offset(p4d, addr);
227         do {
228                 next = pud_addr_end(addr, end);
229                 if (pud_none_or_clear_bad(pud))
230                         continue;
231                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232         } while (pud++, addr = next, addr != end);
233
234         start &= P4D_MASK;
235         if (start < floor)
236                 return;
237         if (ceiling) {
238                 ceiling &= P4D_MASK;
239                 if (!ceiling)
240                         return;
241         }
242         if (end - 1 > ceiling - 1)
243                 return;
244
245         pud = pud_offset(p4d, start);
246         p4d_clear(p4d);
247         pud_free_tlb(tlb, pud, start);
248         mm_dec_nr_puds(tlb->mm);
249 }
250
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252                                 unsigned long addr, unsigned long end,
253                                 unsigned long floor, unsigned long ceiling)
254 {
255         p4d_t *p4d;
256         unsigned long next;
257         unsigned long start;
258
259         start = addr;
260         p4d = p4d_offset(pgd, addr);
261         do {
262                 next = p4d_addr_end(addr, end);
263                 if (p4d_none_or_clear_bad(p4d))
264                         continue;
265                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266         } while (p4d++, addr = next, addr != end);
267
268         start &= PGDIR_MASK;
269         if (start < floor)
270                 return;
271         if (ceiling) {
272                 ceiling &= PGDIR_MASK;
273                 if (!ceiling)
274                         return;
275         }
276         if (end - 1 > ceiling - 1)
277                 return;
278
279         p4d = p4d_offset(pgd, start);
280         pgd_clear(pgd);
281         p4d_free_tlb(tlb, p4d, start);
282 }
283
284 /*
285  * This function frees user-level page tables of a process.
286  */
287 void free_pgd_range(struct mmu_gather *tlb,
288                         unsigned long addr, unsigned long end,
289                         unsigned long floor, unsigned long ceiling)
290 {
291         pgd_t *pgd;
292         unsigned long next;
293
294         /*
295          * The next few lines have given us lots of grief...
296          *
297          * Why are we testing PMD* at this top level?  Because often
298          * there will be no work to do at all, and we'd prefer not to
299          * go all the way down to the bottom just to discover that.
300          *
301          * Why all these "- 1"s?  Because 0 represents both the bottom
302          * of the address space and the top of it (using -1 for the
303          * top wouldn't help much: the masks would do the wrong thing).
304          * The rule is that addr 0 and floor 0 refer to the bottom of
305          * the address space, but end 0 and ceiling 0 refer to the top
306          * Comparisons need to use "end - 1" and "ceiling - 1" (though
307          * that end 0 case should be mythical).
308          *
309          * Wherever addr is brought up or ceiling brought down, we must
310          * be careful to reject "the opposite 0" before it confuses the
311          * subsequent tests.  But what about where end is brought down
312          * by PMD_SIZE below? no, end can't go down to 0 there.
313          *
314          * Whereas we round start (addr) and ceiling down, by different
315          * masks at different levels, in order to test whether a table
316          * now has no other vmas using it, so can be freed, we don't
317          * bother to round floor or end up - the tests don't need that.
318          */
319
320         addr &= PMD_MASK;
321         if (addr < floor) {
322                 addr += PMD_SIZE;
323                 if (!addr)
324                         return;
325         }
326         if (ceiling) {
327                 ceiling &= PMD_MASK;
328                 if (!ceiling)
329                         return;
330         }
331         if (end - 1 > ceiling - 1)
332                 end -= PMD_SIZE;
333         if (addr > end - 1)
334                 return;
335         /*
336          * We add page table cache pages with PAGE_SIZE,
337          * (see pte_free_tlb()), flush the tlb if we need
338          */
339         tlb_change_page_size(tlb, PAGE_SIZE);
340         pgd = pgd_offset(tlb->mm, addr);
341         do {
342                 next = pgd_addr_end(addr, end);
343                 if (pgd_none_or_clear_bad(pgd))
344                         continue;
345                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346         } while (pgd++, addr = next, addr != end);
347 }
348
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350                    struct vm_area_struct *vma, unsigned long floor,
351                    unsigned long ceiling)
352 {
353         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354
355         do {
356                 unsigned long addr = vma->vm_start;
357                 struct vm_area_struct *next;
358
359                 /*
360                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361                  * be 0.  This will underflow and is okay.
362                  */
363                 next = mas_find(&mas, ceiling - 1);
364
365                 /*
366                  * Hide vma from rmap and truncate_pagecache before freeing
367                  * pgtables
368                  */
369                 unlink_anon_vmas(vma);
370                 unlink_file_vma(vma);
371
372                 if (is_vm_hugetlb_page(vma)) {
373                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374                                 floor, next ? next->vm_start : ceiling);
375                 } else {
376                         /*
377                          * Optimization: gather nearby vmas into one call down
378                          */
379                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380                                && !is_vm_hugetlb_page(next)) {
381                                 vma = next;
382                                 next = mas_find(&mas, ceiling - 1);
383                                 unlink_anon_vmas(vma);
384                                 unlink_file_vma(vma);
385                         }
386                         free_pgd_range(tlb, addr, vma->vm_end,
387                                 floor, next ? next->vm_start : ceiling);
388                 }
389                 vma = next;
390         } while (vma);
391 }
392
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
394 {
395         spinlock_t *ptl = pmd_lock(mm, pmd);
396
397         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
398                 mm_inc_nr_ptes(mm);
399                 /*
400                  * Ensure all pte setup (eg. pte page lock and page clearing) are
401                  * visible before the pte is made visible to other CPUs by being
402                  * put into page tables.
403                  *
404                  * The other side of the story is the pointer chasing in the page
405                  * table walking code (when walking the page table without locking;
406                  * ie. most of the time). Fortunately, these data accesses consist
407                  * of a chain of data-dependent loads, meaning most CPUs (alpha
408                  * being the notable exception) will already guarantee loads are
409                  * seen in-order. See the alpha page table accessors for the
410                  * smp_rmb() barriers in page table walking code.
411                  */
412                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413                 pmd_populate(mm, pmd, *pte);
414                 *pte = NULL;
415         }
416         spin_unlock(ptl);
417 }
418
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
420 {
421         pgtable_t new = pte_alloc_one(mm);
422         if (!new)
423                 return -ENOMEM;
424
425         pmd_install(mm, pmd, &new);
426         if (new)
427                 pte_free(mm, new);
428         return 0;
429 }
430
431 int __pte_alloc_kernel(pmd_t *pmd)
432 {
433         pte_t *new = pte_alloc_one_kernel(&init_mm);
434         if (!new)
435                 return -ENOMEM;
436
437         spin_lock(&init_mm.page_table_lock);
438         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
439                 smp_wmb(); /* See comment in pmd_install() */
440                 pmd_populate_kernel(&init_mm, pmd, new);
441                 new = NULL;
442         }
443         spin_unlock(&init_mm.page_table_lock);
444         if (new)
445                 pte_free_kernel(&init_mm, new);
446         return 0;
447 }
448
449 static inline void init_rss_vec(int *rss)
450 {
451         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456         int i;
457
458         if (current->mm == mm)
459                 sync_mm_rss(mm);
460         for (i = 0; i < NR_MM_COUNTERS; i++)
461                 if (rss[i])
462                         add_mm_counter(mm, i, rss[i]);
463 }
464
465 /*
466  * This function is called to print an error when a bad pte
467  * is found. For example, we might have a PFN-mapped pte in
468  * a region that doesn't allow it.
469  *
470  * The calling function must still handle the error.
471  */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473                           pte_t pte, struct page *page)
474 {
475         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476         p4d_t *p4d = p4d_offset(pgd, addr);
477         pud_t *pud = pud_offset(p4d, addr);
478         pmd_t *pmd = pmd_offset(pud, addr);
479         struct address_space *mapping;
480         pgoff_t index;
481         static unsigned long resume;
482         static unsigned long nr_shown;
483         static unsigned long nr_unshown;
484
485         /*
486          * Allow a burst of 60 reports, then keep quiet for that minute;
487          * or allow a steady drip of one report per second.
488          */
489         if (nr_shown == 60) {
490                 if (time_before(jiffies, resume)) {
491                         nr_unshown++;
492                         return;
493                 }
494                 if (nr_unshown) {
495                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496                                  nr_unshown);
497                         nr_unshown = 0;
498                 }
499                 nr_shown = 0;
500         }
501         if (nr_shown++ == 0)
502                 resume = jiffies + 60 * HZ;
503
504         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505         index = linear_page_index(vma, addr);
506
507         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
508                  current->comm,
509                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
510         if (page)
511                 dump_page(page, "bad pte");
512         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
515                  vma->vm_file,
516                  vma->vm_ops ? vma->vm_ops->fault : NULL,
517                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518                  mapping ? mapping->a_ops->read_folio : NULL);
519         dump_stack();
520         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 }
522
523 /*
524  * vm_normal_page -- This function gets the "struct page" associated with a pte.
525  *
526  * "Special" mappings do not wish to be associated with a "struct page" (either
527  * it doesn't exist, or it exists but they don't want to touch it). In this
528  * case, NULL is returned here. "Normal" mappings do have a struct page.
529  *
530  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531  * pte bit, in which case this function is trivial. Secondly, an architecture
532  * may not have a spare pte bit, which requires a more complicated scheme,
533  * described below.
534  *
535  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536  * special mapping (even if there are underlying and valid "struct pages").
537  * COWed pages of a VM_PFNMAP are always normal.
538  *
539  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542  * mapping will always honor the rule
543  *
544  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545  *
546  * And for normal mappings this is false.
547  *
548  * This restricts such mappings to be a linear translation from virtual address
549  * to pfn. To get around this restriction, we allow arbitrary mappings so long
550  * as the vma is not a COW mapping; in that case, we know that all ptes are
551  * special (because none can have been COWed).
552  *
553  *
554  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
555  *
556  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557  * page" backing, however the difference is that _all_ pages with a struct
558  * page (that is, those where pfn_valid is true) are refcounted and considered
559  * normal pages by the VM. The disadvantage is that pages are refcounted
560  * (which can be slower and simply not an option for some PFNMAP users). The
561  * advantage is that we don't have to follow the strict linearity rule of
562  * PFNMAP mappings in order to support COWable mappings.
563  *
564  */
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566                             pte_t pte)
567 {
568         unsigned long pfn = pte_pfn(pte);
569
570         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571                 if (likely(!pte_special(pte)))
572                         goto check_pfn;
573                 if (vma->vm_ops && vma->vm_ops->find_special_page)
574                         return vma->vm_ops->find_special_page(vma, addr);
575                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576                         return NULL;
577                 if (is_zero_pfn(pfn))
578                         return NULL;
579                 if (pte_devmap(pte))
580                 /*
581                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582                  * and will have refcounts incremented on their struct pages
583                  * when they are inserted into PTEs, thus they are safe to
584                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585                  * do not have refcounts. Example of legacy ZONE_DEVICE is
586                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587                  */
588                         return NULL;
589
590                 print_bad_pte(vma, addr, pte, NULL);
591                 return NULL;
592         }
593
594         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
595
596         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597                 if (vma->vm_flags & VM_MIXEDMAP) {
598                         if (!pfn_valid(pfn))
599                                 return NULL;
600                         goto out;
601                 } else {
602                         unsigned long off;
603                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
604                         if (pfn == vma->vm_pgoff + off)
605                                 return NULL;
606                         if (!is_cow_mapping(vma->vm_flags))
607                                 return NULL;
608                 }
609         }
610
611         if (is_zero_pfn(pfn))
612                 return NULL;
613
614 check_pfn:
615         if (unlikely(pfn > highest_memmap_pfn)) {
616                 print_bad_pte(vma, addr, pte, NULL);
617                 return NULL;
618         }
619
620         /*
621          * NOTE! We still have PageReserved() pages in the page tables.
622          * eg. VDSO mappings can cause them to exist.
623          */
624 out:
625         return pfn_to_page(pfn);
626 }
627
628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
629 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
630                                 pmd_t pmd)
631 {
632         unsigned long pfn = pmd_pfn(pmd);
633
634         /*
635          * There is no pmd_special() but there may be special pmds, e.g.
636          * in a direct-access (dax) mapping, so let's just replicate the
637          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
638          */
639         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
640                 if (vma->vm_flags & VM_MIXEDMAP) {
641                         if (!pfn_valid(pfn))
642                                 return NULL;
643                         goto out;
644                 } else {
645                         unsigned long off;
646                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
647                         if (pfn == vma->vm_pgoff + off)
648                                 return NULL;
649                         if (!is_cow_mapping(vma->vm_flags))
650                                 return NULL;
651                 }
652         }
653
654         if (pmd_devmap(pmd))
655                 return NULL;
656         if (is_huge_zero_pmd(pmd))
657                 return NULL;
658         if (unlikely(pfn > highest_memmap_pfn))
659                 return NULL;
660
661         /*
662          * NOTE! We still have PageReserved() pages in the page tables.
663          * eg. VDSO mappings can cause them to exist.
664          */
665 out:
666         return pfn_to_page(pfn);
667 }
668 #endif
669
670 static void restore_exclusive_pte(struct vm_area_struct *vma,
671                                   struct page *page, unsigned long address,
672                                   pte_t *ptep)
673 {
674         pte_t pte;
675         swp_entry_t entry;
676
677         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
678         if (pte_swp_soft_dirty(*ptep))
679                 pte = pte_mksoft_dirty(pte);
680
681         entry = pte_to_swp_entry(*ptep);
682         if (pte_swp_uffd_wp(*ptep))
683                 pte = pte_mkuffd_wp(pte);
684         else if (is_writable_device_exclusive_entry(entry))
685                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
686
687         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
688
689         /*
690          * No need to take a page reference as one was already
691          * created when the swap entry was made.
692          */
693         if (PageAnon(page))
694                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
695         else
696                 /*
697                  * Currently device exclusive access only supports anonymous
698                  * memory so the entry shouldn't point to a filebacked page.
699                  */
700                 WARN_ON_ONCE(1);
701
702         set_pte_at(vma->vm_mm, address, ptep, pte);
703
704         /*
705          * No need to invalidate - it was non-present before. However
706          * secondary CPUs may have mappings that need invalidating.
707          */
708         update_mmu_cache(vma, address, ptep);
709 }
710
711 /*
712  * Tries to restore an exclusive pte if the page lock can be acquired without
713  * sleeping.
714  */
715 static int
716 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
717                         unsigned long addr)
718 {
719         swp_entry_t entry = pte_to_swp_entry(*src_pte);
720         struct page *page = pfn_swap_entry_to_page(entry);
721
722         if (trylock_page(page)) {
723                 restore_exclusive_pte(vma, page, addr, src_pte);
724                 unlock_page(page);
725                 return 0;
726         }
727
728         return -EBUSY;
729 }
730
731 /*
732  * copy one vm_area from one task to the other. Assumes the page tables
733  * already present in the new task to be cleared in the whole range
734  * covered by this vma.
735  */
736
737 static unsigned long
738 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
739                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
740                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
741 {
742         unsigned long vm_flags = dst_vma->vm_flags;
743         pte_t pte = *src_pte;
744         struct page *page;
745         swp_entry_t entry = pte_to_swp_entry(pte);
746
747         if (likely(!non_swap_entry(entry))) {
748                 if (swap_duplicate(entry) < 0)
749                         return -EIO;
750
751                 /* make sure dst_mm is on swapoff's mmlist. */
752                 if (unlikely(list_empty(&dst_mm->mmlist))) {
753                         spin_lock(&mmlist_lock);
754                         if (list_empty(&dst_mm->mmlist))
755                                 list_add(&dst_mm->mmlist,
756                                                 &src_mm->mmlist);
757                         spin_unlock(&mmlist_lock);
758                 }
759                 /* Mark the swap entry as shared. */
760                 if (pte_swp_exclusive(*src_pte)) {
761                         pte = pte_swp_clear_exclusive(*src_pte);
762                         set_pte_at(src_mm, addr, src_pte, pte);
763                 }
764                 rss[MM_SWAPENTS]++;
765         } else if (is_migration_entry(entry)) {
766                 page = pfn_swap_entry_to_page(entry);
767
768                 rss[mm_counter(page)]++;
769
770                 if (!is_readable_migration_entry(entry) &&
771                                 is_cow_mapping(vm_flags)) {
772                         /*
773                          * COW mappings require pages in both parent and child
774                          * to be set to read. A previously exclusive entry is
775                          * now shared.
776                          */
777                         entry = make_readable_migration_entry(
778                                                         swp_offset(entry));
779                         pte = swp_entry_to_pte(entry);
780                         if (pte_swp_soft_dirty(*src_pte))
781                                 pte = pte_swp_mksoft_dirty(pte);
782                         if (pte_swp_uffd_wp(*src_pte))
783                                 pte = pte_swp_mkuffd_wp(pte);
784                         set_pte_at(src_mm, addr, src_pte, pte);
785                 }
786         } else if (is_device_private_entry(entry)) {
787                 page = pfn_swap_entry_to_page(entry);
788
789                 /*
790                  * Update rss count even for unaddressable pages, as
791                  * they should treated just like normal pages in this
792                  * respect.
793                  *
794                  * We will likely want to have some new rss counters
795                  * for unaddressable pages, at some point. But for now
796                  * keep things as they are.
797                  */
798                 get_page(page);
799                 rss[mm_counter(page)]++;
800                 /* Cannot fail as these pages cannot get pinned. */
801                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
802
803                 /*
804                  * We do not preserve soft-dirty information, because so
805                  * far, checkpoint/restore is the only feature that
806                  * requires that. And checkpoint/restore does not work
807                  * when a device driver is involved (you cannot easily
808                  * save and restore device driver state).
809                  */
810                 if (is_writable_device_private_entry(entry) &&
811                     is_cow_mapping(vm_flags)) {
812                         entry = make_readable_device_private_entry(
813                                                         swp_offset(entry));
814                         pte = swp_entry_to_pte(entry);
815                         if (pte_swp_uffd_wp(*src_pte))
816                                 pte = pte_swp_mkuffd_wp(pte);
817                         set_pte_at(src_mm, addr, src_pte, pte);
818                 }
819         } else if (is_device_exclusive_entry(entry)) {
820                 /*
821                  * Make device exclusive entries present by restoring the
822                  * original entry then copying as for a present pte. Device
823                  * exclusive entries currently only support private writable
824                  * (ie. COW) mappings.
825                  */
826                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
827                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
828                         return -EBUSY;
829                 return -ENOENT;
830         } else if (is_pte_marker_entry(entry)) {
831                 /*
832                  * We're copying the pgtable should only because dst_vma has
833                  * uffd-wp enabled, do sanity check.
834                  */
835                 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
836                 set_pte_at(dst_mm, addr, dst_pte, pte);
837                 return 0;
838         }
839         if (!userfaultfd_wp(dst_vma))
840                 pte = pte_swp_clear_uffd_wp(pte);
841         set_pte_at(dst_mm, addr, dst_pte, pte);
842         return 0;
843 }
844
845 /*
846  * Copy a present and normal page.
847  *
848  * NOTE! The usual case is that this isn't required;
849  * instead, the caller can just increase the page refcount
850  * and re-use the pte the traditional way.
851  *
852  * And if we need a pre-allocated page but don't yet have
853  * one, return a negative error to let the preallocation
854  * code know so that it can do so outside the page table
855  * lock.
856  */
857 static inline int
858 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
859                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
860                   struct page **prealloc, struct page *page)
861 {
862         struct page *new_page;
863         pte_t pte;
864
865         new_page = *prealloc;
866         if (!new_page)
867                 return -EAGAIN;
868
869         /*
870          * We have a prealloc page, all good!  Take it
871          * over and copy the page & arm it.
872          */
873         *prealloc = NULL;
874         copy_user_highpage(new_page, page, addr, src_vma);
875         __SetPageUptodate(new_page);
876         page_add_new_anon_rmap(new_page, dst_vma, addr);
877         lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
878         rss[mm_counter(new_page)]++;
879
880         /* All done, just insert the new page copy in the child */
881         pte = mk_pte(new_page, dst_vma->vm_page_prot);
882         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
883         if (userfaultfd_pte_wp(dst_vma, *src_pte))
884                 /* Uffd-wp needs to be delivered to dest pte as well */
885                 pte = pte_wrprotect(pte_mkuffd_wp(pte));
886         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
887         return 0;
888 }
889
890 /*
891  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
892  * is required to copy this pte.
893  */
894 static inline int
895 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
897                  struct page **prealloc)
898 {
899         struct mm_struct *src_mm = src_vma->vm_mm;
900         unsigned long vm_flags = src_vma->vm_flags;
901         pte_t pte = *src_pte;
902         struct page *page;
903
904         page = vm_normal_page(src_vma, addr, pte);
905         if (page && PageAnon(page)) {
906                 /*
907                  * If this page may have been pinned by the parent process,
908                  * copy the page immediately for the child so that we'll always
909                  * guarantee the pinned page won't be randomly replaced in the
910                  * future.
911                  */
912                 get_page(page);
913                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
914                         /* Page maybe pinned, we have to copy. */
915                         put_page(page);
916                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
917                                                  addr, rss, prealloc, page);
918                 }
919                 rss[mm_counter(page)]++;
920         } else if (page) {
921                 get_page(page);
922                 page_dup_file_rmap(page, false);
923                 rss[mm_counter(page)]++;
924         }
925
926         /*
927          * If it's a COW mapping, write protect it both
928          * in the parent and the child
929          */
930         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
931                 ptep_set_wrprotect(src_mm, addr, src_pte);
932                 pte = pte_wrprotect(pte);
933         }
934         VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
935
936         /*
937          * If it's a shared mapping, mark it clean in
938          * the child
939          */
940         if (vm_flags & VM_SHARED)
941                 pte = pte_mkclean(pte);
942         pte = pte_mkold(pte);
943
944         if (!userfaultfd_wp(dst_vma))
945                 pte = pte_clear_uffd_wp(pte);
946
947         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
948         return 0;
949 }
950
951 static inline struct page *
952 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
953                    unsigned long addr)
954 {
955         struct page *new_page;
956
957         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
958         if (!new_page)
959                 return NULL;
960
961         if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
962                 put_page(new_page);
963                 return NULL;
964         }
965         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
966
967         return new_page;
968 }
969
970 static int
971 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
972                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
973                unsigned long end)
974 {
975         struct mm_struct *dst_mm = dst_vma->vm_mm;
976         struct mm_struct *src_mm = src_vma->vm_mm;
977         pte_t *orig_src_pte, *orig_dst_pte;
978         pte_t *src_pte, *dst_pte;
979         spinlock_t *src_ptl, *dst_ptl;
980         int progress, ret = 0;
981         int rss[NR_MM_COUNTERS];
982         swp_entry_t entry = (swp_entry_t){0};
983         struct page *prealloc = NULL;
984
985 again:
986         progress = 0;
987         init_rss_vec(rss);
988
989         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
990         if (!dst_pte) {
991                 ret = -ENOMEM;
992                 goto out;
993         }
994         src_pte = pte_offset_map(src_pmd, addr);
995         src_ptl = pte_lockptr(src_mm, src_pmd);
996         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
997         orig_src_pte = src_pte;
998         orig_dst_pte = dst_pte;
999         arch_enter_lazy_mmu_mode();
1000
1001         do {
1002                 /*
1003                  * We are holding two locks at this point - either of them
1004                  * could generate latencies in another task on another CPU.
1005                  */
1006                 if (progress >= 32) {
1007                         progress = 0;
1008                         if (need_resched() ||
1009                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1010                                 break;
1011                 }
1012                 if (pte_none(*src_pte)) {
1013                         progress++;
1014                         continue;
1015                 }
1016                 if (unlikely(!pte_present(*src_pte))) {
1017                         ret = copy_nonpresent_pte(dst_mm, src_mm,
1018                                                   dst_pte, src_pte,
1019                                                   dst_vma, src_vma,
1020                                                   addr, rss);
1021                         if (ret == -EIO) {
1022                                 entry = pte_to_swp_entry(*src_pte);
1023                                 break;
1024                         } else if (ret == -EBUSY) {
1025                                 break;
1026                         } else if (!ret) {
1027                                 progress += 8;
1028                                 continue;
1029                         }
1030
1031                         /*
1032                          * Device exclusive entry restored, continue by copying
1033                          * the now present pte.
1034                          */
1035                         WARN_ON_ONCE(ret != -ENOENT);
1036                 }
1037                 /* copy_present_pte() will clear `*prealloc' if consumed */
1038                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1039                                        addr, rss, &prealloc);
1040                 /*
1041                  * If we need a pre-allocated page for this pte, drop the
1042                  * locks, allocate, and try again.
1043                  */
1044                 if (unlikely(ret == -EAGAIN))
1045                         break;
1046                 if (unlikely(prealloc)) {
1047                         /*
1048                          * pre-alloc page cannot be reused by next time so as
1049                          * to strictly follow mempolicy (e.g., alloc_page_vma()
1050                          * will allocate page according to address).  This
1051                          * could only happen if one pinned pte changed.
1052                          */
1053                         put_page(prealloc);
1054                         prealloc = NULL;
1055                 }
1056                 progress += 8;
1057         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1058
1059         arch_leave_lazy_mmu_mode();
1060         spin_unlock(src_ptl);
1061         pte_unmap(orig_src_pte);
1062         add_mm_rss_vec(dst_mm, rss);
1063         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1064         cond_resched();
1065
1066         if (ret == -EIO) {
1067                 VM_WARN_ON_ONCE(!entry.val);
1068                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1069                         ret = -ENOMEM;
1070                         goto out;
1071                 }
1072                 entry.val = 0;
1073         } else if (ret == -EBUSY) {
1074                 goto out;
1075         } else if (ret ==  -EAGAIN) {
1076                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1077                 if (!prealloc)
1078                         return -ENOMEM;
1079         } else if (ret) {
1080                 VM_WARN_ON_ONCE(1);
1081         }
1082
1083         /* We've captured and resolved the error. Reset, try again. */
1084         ret = 0;
1085
1086         if (addr != end)
1087                 goto again;
1088 out:
1089         if (unlikely(prealloc))
1090                 put_page(prealloc);
1091         return ret;
1092 }
1093
1094 static inline int
1095 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1096                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1097                unsigned long end)
1098 {
1099         struct mm_struct *dst_mm = dst_vma->vm_mm;
1100         struct mm_struct *src_mm = src_vma->vm_mm;
1101         pmd_t *src_pmd, *dst_pmd;
1102         unsigned long next;
1103
1104         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1105         if (!dst_pmd)
1106                 return -ENOMEM;
1107         src_pmd = pmd_offset(src_pud, addr);
1108         do {
1109                 next = pmd_addr_end(addr, end);
1110                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1111                         || pmd_devmap(*src_pmd)) {
1112                         int err;
1113                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1114                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1115                                             addr, dst_vma, src_vma);
1116                         if (err == -ENOMEM)
1117                                 return -ENOMEM;
1118                         if (!err)
1119                                 continue;
1120                         /* fall through */
1121                 }
1122                 if (pmd_none_or_clear_bad(src_pmd))
1123                         continue;
1124                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1125                                    addr, next))
1126                         return -ENOMEM;
1127         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1128         return 0;
1129 }
1130
1131 static inline int
1132 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1133                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1134                unsigned long end)
1135 {
1136         struct mm_struct *dst_mm = dst_vma->vm_mm;
1137         struct mm_struct *src_mm = src_vma->vm_mm;
1138         pud_t *src_pud, *dst_pud;
1139         unsigned long next;
1140
1141         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1142         if (!dst_pud)
1143                 return -ENOMEM;
1144         src_pud = pud_offset(src_p4d, addr);
1145         do {
1146                 next = pud_addr_end(addr, end);
1147                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1148                         int err;
1149
1150                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1151                         err = copy_huge_pud(dst_mm, src_mm,
1152                                             dst_pud, src_pud, addr, src_vma);
1153                         if (err == -ENOMEM)
1154                                 return -ENOMEM;
1155                         if (!err)
1156                                 continue;
1157                         /* fall through */
1158                 }
1159                 if (pud_none_or_clear_bad(src_pud))
1160                         continue;
1161                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1162                                    addr, next))
1163                         return -ENOMEM;
1164         } while (dst_pud++, src_pud++, addr = next, addr != end);
1165         return 0;
1166 }
1167
1168 static inline int
1169 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1170                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1171                unsigned long end)
1172 {
1173         struct mm_struct *dst_mm = dst_vma->vm_mm;
1174         p4d_t *src_p4d, *dst_p4d;
1175         unsigned long next;
1176
1177         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1178         if (!dst_p4d)
1179                 return -ENOMEM;
1180         src_p4d = p4d_offset(src_pgd, addr);
1181         do {
1182                 next = p4d_addr_end(addr, end);
1183                 if (p4d_none_or_clear_bad(src_p4d))
1184                         continue;
1185                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1186                                    addr, next))
1187                         return -ENOMEM;
1188         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1189         return 0;
1190 }
1191
1192 /*
1193  * Return true if the vma needs to copy the pgtable during this fork().  Return
1194  * false when we can speed up fork() by allowing lazy page faults later until
1195  * when the child accesses the memory range.
1196  */
1197 static bool
1198 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1199 {
1200         /*
1201          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1202          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1203          * contains uffd-wp protection information, that's something we can't
1204          * retrieve from page cache, and skip copying will lose those info.
1205          */
1206         if (userfaultfd_wp(dst_vma))
1207                 return true;
1208
1209         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1210                 return true;
1211
1212         if (src_vma->anon_vma)
1213                 return true;
1214
1215         /*
1216          * Don't copy ptes where a page fault will fill them correctly.  Fork
1217          * becomes much lighter when there are big shared or private readonly
1218          * mappings. The tradeoff is that copy_page_range is more efficient
1219          * than faulting.
1220          */
1221         return false;
1222 }
1223
1224 int
1225 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1226 {
1227         pgd_t *src_pgd, *dst_pgd;
1228         unsigned long next;
1229         unsigned long addr = src_vma->vm_start;
1230         unsigned long end = src_vma->vm_end;
1231         struct mm_struct *dst_mm = dst_vma->vm_mm;
1232         struct mm_struct *src_mm = src_vma->vm_mm;
1233         struct mmu_notifier_range range;
1234         bool is_cow;
1235         int ret;
1236
1237         if (!vma_needs_copy(dst_vma, src_vma))
1238                 return 0;
1239
1240         if (is_vm_hugetlb_page(src_vma))
1241                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1242
1243         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1244                 /*
1245                  * We do not free on error cases below as remove_vma
1246                  * gets called on error from higher level routine
1247                  */
1248                 ret = track_pfn_copy(src_vma);
1249                 if (ret)
1250                         return ret;
1251         }
1252
1253         /*
1254          * We need to invalidate the secondary MMU mappings only when
1255          * there could be a permission downgrade on the ptes of the
1256          * parent mm. And a permission downgrade will only happen if
1257          * is_cow_mapping() returns true.
1258          */
1259         is_cow = is_cow_mapping(src_vma->vm_flags);
1260
1261         if (is_cow) {
1262                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1263                                         0, src_vma, src_mm, addr, end);
1264                 mmu_notifier_invalidate_range_start(&range);
1265                 /*
1266                  * Disabling preemption is not needed for the write side, as
1267                  * the read side doesn't spin, but goes to the mmap_lock.
1268                  *
1269                  * Use the raw variant of the seqcount_t write API to avoid
1270                  * lockdep complaining about preemptibility.
1271                  */
1272                 mmap_assert_write_locked(src_mm);
1273                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1274         }
1275
1276         ret = 0;
1277         dst_pgd = pgd_offset(dst_mm, addr);
1278         src_pgd = pgd_offset(src_mm, addr);
1279         do {
1280                 next = pgd_addr_end(addr, end);
1281                 if (pgd_none_or_clear_bad(src_pgd))
1282                         continue;
1283                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1284                                             addr, next))) {
1285                         ret = -ENOMEM;
1286                         break;
1287                 }
1288         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1289
1290         if (is_cow) {
1291                 raw_write_seqcount_end(&src_mm->write_protect_seq);
1292                 mmu_notifier_invalidate_range_end(&range);
1293         }
1294         return ret;
1295 }
1296
1297 /* Whether we should zap all COWed (private) pages too */
1298 static inline bool should_zap_cows(struct zap_details *details)
1299 {
1300         /* By default, zap all pages */
1301         if (!details)
1302                 return true;
1303
1304         /* Or, we zap COWed pages only if the caller wants to */
1305         return details->even_cows;
1306 }
1307
1308 /* Decides whether we should zap this page with the page pointer specified */
1309 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1310 {
1311         /* If we can make a decision without *page.. */
1312         if (should_zap_cows(details))
1313                 return true;
1314
1315         /* E.g. the caller passes NULL for the case of a zero page */
1316         if (!page)
1317                 return true;
1318
1319         /* Otherwise we should only zap non-anon pages */
1320         return !PageAnon(page);
1321 }
1322
1323 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1324 {
1325         if (!details)
1326                 return false;
1327
1328         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1329 }
1330
1331 /*
1332  * This function makes sure that we'll replace the none pte with an uffd-wp
1333  * swap special pte marker when necessary. Must be with the pgtable lock held.
1334  */
1335 static inline void
1336 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1337                               unsigned long addr, pte_t *pte,
1338                               struct zap_details *details, pte_t pteval)
1339 {
1340         if (zap_drop_file_uffd_wp(details))
1341                 return;
1342
1343         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1344 }
1345
1346 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1347                                 struct vm_area_struct *vma, pmd_t *pmd,
1348                                 unsigned long addr, unsigned long end,
1349                                 struct zap_details *details)
1350 {
1351         struct mm_struct *mm = tlb->mm;
1352         int force_flush = 0;
1353         int rss[NR_MM_COUNTERS];
1354         spinlock_t *ptl;
1355         pte_t *start_pte;
1356         pte_t *pte;
1357         swp_entry_t entry;
1358
1359         tlb_change_page_size(tlb, PAGE_SIZE);
1360 again:
1361         init_rss_vec(rss);
1362         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1363         pte = start_pte;
1364         flush_tlb_batched_pending(mm);
1365         arch_enter_lazy_mmu_mode();
1366         do {
1367                 pte_t ptent = *pte;
1368                 struct page *page;
1369
1370                 if (pte_none(ptent))
1371                         continue;
1372
1373                 if (need_resched())
1374                         break;
1375
1376                 if (pte_present(ptent)) {
1377                         page = vm_normal_page(vma, addr, ptent);
1378                         if (unlikely(!should_zap_page(details, page)))
1379                                 continue;
1380                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1381                                                         tlb->fullmm);
1382                         tlb_remove_tlb_entry(tlb, pte, addr);
1383                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1384                                                       ptent);
1385                         if (unlikely(!page))
1386                                 continue;
1387
1388                         if (!PageAnon(page)) {
1389                                 if (pte_dirty(ptent)) {
1390                                         force_flush = 1;
1391                                         set_page_dirty(page);
1392                                 }
1393                                 if (pte_young(ptent) &&
1394                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1395                                         mark_page_accessed(page);
1396                         }
1397                         rss[mm_counter(page)]--;
1398                         page_remove_rmap(page, vma, false);
1399                         if (unlikely(page_mapcount(page) < 0))
1400                                 print_bad_pte(vma, addr, ptent, page);
1401                         if (unlikely(__tlb_remove_page(tlb, page))) {
1402                                 force_flush = 1;
1403                                 addr += PAGE_SIZE;
1404                                 break;
1405                         }
1406                         continue;
1407                 }
1408
1409                 entry = pte_to_swp_entry(ptent);
1410                 if (is_device_private_entry(entry) ||
1411                     is_device_exclusive_entry(entry)) {
1412                         page = pfn_swap_entry_to_page(entry);
1413                         if (unlikely(!should_zap_page(details, page)))
1414                                 continue;
1415                         /*
1416                          * Both device private/exclusive mappings should only
1417                          * work with anonymous page so far, so we don't need to
1418                          * consider uffd-wp bit when zap. For more information,
1419                          * see zap_install_uffd_wp_if_needed().
1420                          */
1421                         WARN_ON_ONCE(!vma_is_anonymous(vma));
1422                         rss[mm_counter(page)]--;
1423                         if (is_device_private_entry(entry))
1424                                 page_remove_rmap(page, vma, false);
1425                         put_page(page);
1426                 } else if (!non_swap_entry(entry)) {
1427                         /* Genuine swap entry, hence a private anon page */
1428                         if (!should_zap_cows(details))
1429                                 continue;
1430                         rss[MM_SWAPENTS]--;
1431                         if (unlikely(!free_swap_and_cache(entry)))
1432                                 print_bad_pte(vma, addr, ptent, NULL);
1433                 } else if (is_migration_entry(entry)) {
1434                         page = pfn_swap_entry_to_page(entry);
1435                         if (!should_zap_page(details, page))
1436                                 continue;
1437                         rss[mm_counter(page)]--;
1438                 } else if (pte_marker_entry_uffd_wp(entry)) {
1439                         /* Only drop the uffd-wp marker if explicitly requested */
1440                         if (!zap_drop_file_uffd_wp(details))
1441                                 continue;
1442                 } else if (is_hwpoison_entry(entry) ||
1443                            is_swapin_error_entry(entry)) {
1444                         if (!should_zap_cows(details))
1445                                 continue;
1446                 } else {
1447                         /* We should have covered all the swap entry types */
1448                         WARN_ON_ONCE(1);
1449                 }
1450                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1451                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1452         } while (pte++, addr += PAGE_SIZE, addr != end);
1453
1454         add_mm_rss_vec(mm, rss);
1455         arch_leave_lazy_mmu_mode();
1456
1457         /* Do the actual TLB flush before dropping ptl */
1458         if (force_flush)
1459                 tlb_flush_mmu_tlbonly(tlb);
1460         pte_unmap_unlock(start_pte, ptl);
1461
1462         /*
1463          * If we forced a TLB flush (either due to running out of
1464          * batch buffers or because we needed to flush dirty TLB
1465          * entries before releasing the ptl), free the batched
1466          * memory too. Restart if we didn't do everything.
1467          */
1468         if (force_flush) {
1469                 force_flush = 0;
1470                 tlb_flush_mmu(tlb);
1471         }
1472
1473         if (addr != end) {
1474                 cond_resched();
1475                 goto again;
1476         }
1477
1478         return addr;
1479 }
1480
1481 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1482                                 struct vm_area_struct *vma, pud_t *pud,
1483                                 unsigned long addr, unsigned long end,
1484                                 struct zap_details *details)
1485 {
1486         pmd_t *pmd;
1487         unsigned long next;
1488
1489         pmd = pmd_offset(pud, addr);
1490         do {
1491                 next = pmd_addr_end(addr, end);
1492                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1493                         if (next - addr != HPAGE_PMD_SIZE)
1494                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1495                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1496                                 goto next;
1497                         /* fall through */
1498                 } else if (details && details->single_folio &&
1499                            folio_test_pmd_mappable(details->single_folio) &&
1500                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1501                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1502                         /*
1503                          * Take and drop THP pmd lock so that we cannot return
1504                          * prematurely, while zap_huge_pmd() has cleared *pmd,
1505                          * but not yet decremented compound_mapcount().
1506                          */
1507                         spin_unlock(ptl);
1508                 }
1509
1510                 /*
1511                  * Here there can be other concurrent MADV_DONTNEED or
1512                  * trans huge page faults running, and if the pmd is
1513                  * none or trans huge it can change under us. This is
1514                  * because MADV_DONTNEED holds the mmap_lock in read
1515                  * mode.
1516                  */
1517                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1518                         goto next;
1519                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1520 next:
1521                 cond_resched();
1522         } while (pmd++, addr = next, addr != end);
1523
1524         return addr;
1525 }
1526
1527 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1528                                 struct vm_area_struct *vma, p4d_t *p4d,
1529                                 unsigned long addr, unsigned long end,
1530                                 struct zap_details *details)
1531 {
1532         pud_t *pud;
1533         unsigned long next;
1534
1535         pud = pud_offset(p4d, addr);
1536         do {
1537                 next = pud_addr_end(addr, end);
1538                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1539                         if (next - addr != HPAGE_PUD_SIZE) {
1540                                 mmap_assert_locked(tlb->mm);
1541                                 split_huge_pud(vma, pud, addr);
1542                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1543                                 goto next;
1544                         /* fall through */
1545                 }
1546                 if (pud_none_or_clear_bad(pud))
1547                         continue;
1548                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1549 next:
1550                 cond_resched();
1551         } while (pud++, addr = next, addr != end);
1552
1553         return addr;
1554 }
1555
1556 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1557                                 struct vm_area_struct *vma, pgd_t *pgd,
1558                                 unsigned long addr, unsigned long end,
1559                                 struct zap_details *details)
1560 {
1561         p4d_t *p4d;
1562         unsigned long next;
1563
1564         p4d = p4d_offset(pgd, addr);
1565         do {
1566                 next = p4d_addr_end(addr, end);
1567                 if (p4d_none_or_clear_bad(p4d))
1568                         continue;
1569                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1570         } while (p4d++, addr = next, addr != end);
1571
1572         return addr;
1573 }
1574
1575 void unmap_page_range(struct mmu_gather *tlb,
1576                              struct vm_area_struct *vma,
1577                              unsigned long addr, unsigned long end,
1578                              struct zap_details *details)
1579 {
1580         pgd_t *pgd;
1581         unsigned long next;
1582
1583         BUG_ON(addr >= end);
1584         tlb_start_vma(tlb, vma);
1585         pgd = pgd_offset(vma->vm_mm, addr);
1586         do {
1587                 next = pgd_addr_end(addr, end);
1588                 if (pgd_none_or_clear_bad(pgd))
1589                         continue;
1590                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1591         } while (pgd++, addr = next, addr != end);
1592         tlb_end_vma(tlb, vma);
1593 }
1594
1595
1596 static void unmap_single_vma(struct mmu_gather *tlb,
1597                 struct vm_area_struct *vma, unsigned long start_addr,
1598                 unsigned long end_addr,
1599                 struct zap_details *details)
1600 {
1601         unsigned long start = max(vma->vm_start, start_addr);
1602         unsigned long end;
1603
1604         if (start >= vma->vm_end)
1605                 return;
1606         end = min(vma->vm_end, end_addr);
1607         if (end <= vma->vm_start)
1608                 return;
1609
1610         if (vma->vm_file)
1611                 uprobe_munmap(vma, start, end);
1612
1613         if (unlikely(vma->vm_flags & VM_PFNMAP))
1614                 untrack_pfn(vma, 0, 0);
1615
1616         if (start != end) {
1617                 if (unlikely(is_vm_hugetlb_page(vma))) {
1618                         /*
1619                          * It is undesirable to test vma->vm_file as it
1620                          * should be non-null for valid hugetlb area.
1621                          * However, vm_file will be NULL in the error
1622                          * cleanup path of mmap_region. When
1623                          * hugetlbfs ->mmap method fails,
1624                          * mmap_region() nullifies vma->vm_file
1625                          * before calling this function to clean up.
1626                          * Since no pte has actually been setup, it is
1627                          * safe to do nothing in this case.
1628                          */
1629                         if (vma->vm_file) {
1630                                 zap_flags_t zap_flags = details ?
1631                                     details->zap_flags : 0;
1632                                 __unmap_hugepage_range_final(tlb, vma, start, end,
1633                                                              NULL, zap_flags);
1634                         }
1635                 } else
1636                         unmap_page_range(tlb, vma, start, end, details);
1637         }
1638 }
1639
1640 /**
1641  * unmap_vmas - unmap a range of memory covered by a list of vma's
1642  * @tlb: address of the caller's struct mmu_gather
1643  * @mt: the maple tree
1644  * @vma: the starting vma
1645  * @start_addr: virtual address at which to start unmapping
1646  * @end_addr: virtual address at which to end unmapping
1647  *
1648  * Unmap all pages in the vma list.
1649  *
1650  * Only addresses between `start' and `end' will be unmapped.
1651  *
1652  * The VMA list must be sorted in ascending virtual address order.
1653  *
1654  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1655  * range after unmap_vmas() returns.  So the only responsibility here is to
1656  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1657  * drops the lock and schedules.
1658  */
1659 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1660                 struct vm_area_struct *vma, unsigned long start_addr,
1661                 unsigned long end_addr)
1662 {
1663         struct mmu_notifier_range range;
1664         struct zap_details details = {
1665                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1666                 /* Careful - we need to zap private pages too! */
1667                 .even_cows = true,
1668         };
1669         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1670
1671         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1672                                 start_addr, end_addr);
1673         mmu_notifier_invalidate_range_start(&range);
1674         do {
1675                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1676         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1677         mmu_notifier_invalidate_range_end(&range);
1678 }
1679
1680 /**
1681  * zap_page_range - remove user pages in a given range
1682  * @vma: vm_area_struct holding the applicable pages
1683  * @start: starting address of pages to zap
1684  * @size: number of bytes to zap
1685  *
1686  * Caller must protect the VMA list
1687  */
1688 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1689                 unsigned long size)
1690 {
1691         struct maple_tree *mt = &vma->vm_mm->mm_mt;
1692         unsigned long end = start + size;
1693         struct mmu_notifier_range range;
1694         struct mmu_gather tlb;
1695         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1696
1697         lru_add_drain();
1698         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1699                                 start, start + size);
1700         tlb_gather_mmu(&tlb, vma->vm_mm);
1701         update_hiwater_rss(vma->vm_mm);
1702         mmu_notifier_invalidate_range_start(&range);
1703         do {
1704                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1705         } while ((vma = mas_find(&mas, end - 1)) != NULL);
1706         mmu_notifier_invalidate_range_end(&range);
1707         tlb_finish_mmu(&tlb);
1708 }
1709
1710 /**
1711  * zap_page_range_single - remove user pages in a given range
1712  * @vma: vm_area_struct holding the applicable pages
1713  * @address: starting address of pages to zap
1714  * @size: number of bytes to zap
1715  * @details: details of shared cache invalidation
1716  *
1717  * The range must fit into one VMA.
1718  */
1719 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1720                 unsigned long size, struct zap_details *details)
1721 {
1722         const unsigned long end = address + size;
1723         struct mmu_notifier_range range;
1724         struct mmu_gather tlb;
1725
1726         lru_add_drain();
1727         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1728                                 address, end);
1729         if (is_vm_hugetlb_page(vma))
1730                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1731                                                      &range.end);
1732         tlb_gather_mmu(&tlb, vma->vm_mm);
1733         update_hiwater_rss(vma->vm_mm);
1734         mmu_notifier_invalidate_range_start(&range);
1735         /*
1736          * unmap 'address-end' not 'range.start-range.end' as range
1737          * could have been expanded for hugetlb pmd sharing.
1738          */
1739         unmap_single_vma(&tlb, vma, address, end, details);
1740         mmu_notifier_invalidate_range_end(&range);
1741         tlb_finish_mmu(&tlb);
1742 }
1743
1744 /**
1745  * zap_vma_ptes - remove ptes mapping the vma
1746  * @vma: vm_area_struct holding ptes to be zapped
1747  * @address: starting address of pages to zap
1748  * @size: number of bytes to zap
1749  *
1750  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1751  *
1752  * The entire address range must be fully contained within the vma.
1753  *
1754  */
1755 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1756                 unsigned long size)
1757 {
1758         if (!range_in_vma(vma, address, address + size) ||
1759                         !(vma->vm_flags & VM_PFNMAP))
1760                 return;
1761
1762         zap_page_range_single(vma, address, size, NULL);
1763 }
1764 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1765
1766 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1767 {
1768         pgd_t *pgd;
1769         p4d_t *p4d;
1770         pud_t *pud;
1771         pmd_t *pmd;
1772
1773         pgd = pgd_offset(mm, addr);
1774         p4d = p4d_alloc(mm, pgd, addr);
1775         if (!p4d)
1776                 return NULL;
1777         pud = pud_alloc(mm, p4d, addr);
1778         if (!pud)
1779                 return NULL;
1780         pmd = pmd_alloc(mm, pud, addr);
1781         if (!pmd)
1782                 return NULL;
1783
1784         VM_BUG_ON(pmd_trans_huge(*pmd));
1785         return pmd;
1786 }
1787
1788 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1789                         spinlock_t **ptl)
1790 {
1791         pmd_t *pmd = walk_to_pmd(mm, addr);
1792
1793         if (!pmd)
1794                 return NULL;
1795         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1796 }
1797
1798 static int validate_page_before_insert(struct page *page)
1799 {
1800         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1801                 return -EINVAL;
1802         flush_dcache_page(page);
1803         return 0;
1804 }
1805
1806 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1807                         unsigned long addr, struct page *page, pgprot_t prot)
1808 {
1809         if (!pte_none(*pte))
1810                 return -EBUSY;
1811         /* Ok, finally just insert the thing.. */
1812         get_page(page);
1813         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1814         page_add_file_rmap(page, vma, false);
1815         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1816         return 0;
1817 }
1818
1819 /*
1820  * This is the old fallback for page remapping.
1821  *
1822  * For historical reasons, it only allows reserved pages. Only
1823  * old drivers should use this, and they needed to mark their
1824  * pages reserved for the old functions anyway.
1825  */
1826 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1827                         struct page *page, pgprot_t prot)
1828 {
1829         int retval;
1830         pte_t *pte;
1831         spinlock_t *ptl;
1832
1833         retval = validate_page_before_insert(page);
1834         if (retval)
1835                 goto out;
1836         retval = -ENOMEM;
1837         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1838         if (!pte)
1839                 goto out;
1840         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1841         pte_unmap_unlock(pte, ptl);
1842 out:
1843         return retval;
1844 }
1845
1846 #ifdef pte_index
1847 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1848                         unsigned long addr, struct page *page, pgprot_t prot)
1849 {
1850         int err;
1851
1852         if (!page_count(page))
1853                 return -EINVAL;
1854         err = validate_page_before_insert(page);
1855         if (err)
1856                 return err;
1857         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1858 }
1859
1860 /* insert_pages() amortizes the cost of spinlock operations
1861  * when inserting pages in a loop. Arch *must* define pte_index.
1862  */
1863 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1864                         struct page **pages, unsigned long *num, pgprot_t prot)
1865 {
1866         pmd_t *pmd = NULL;
1867         pte_t *start_pte, *pte;
1868         spinlock_t *pte_lock;
1869         struct mm_struct *const mm = vma->vm_mm;
1870         unsigned long curr_page_idx = 0;
1871         unsigned long remaining_pages_total = *num;
1872         unsigned long pages_to_write_in_pmd;
1873         int ret;
1874 more:
1875         ret = -EFAULT;
1876         pmd = walk_to_pmd(mm, addr);
1877         if (!pmd)
1878                 goto out;
1879
1880         pages_to_write_in_pmd = min_t(unsigned long,
1881                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1882
1883         /* Allocate the PTE if necessary; takes PMD lock once only. */
1884         ret = -ENOMEM;
1885         if (pte_alloc(mm, pmd))
1886                 goto out;
1887
1888         while (pages_to_write_in_pmd) {
1889                 int pte_idx = 0;
1890                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1891
1892                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1893                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1894                         int err = insert_page_in_batch_locked(vma, pte,
1895                                 addr, pages[curr_page_idx], prot);
1896                         if (unlikely(err)) {
1897                                 pte_unmap_unlock(start_pte, pte_lock);
1898                                 ret = err;
1899                                 remaining_pages_total -= pte_idx;
1900                                 goto out;
1901                         }
1902                         addr += PAGE_SIZE;
1903                         ++curr_page_idx;
1904                 }
1905                 pte_unmap_unlock(start_pte, pte_lock);
1906                 pages_to_write_in_pmd -= batch_size;
1907                 remaining_pages_total -= batch_size;
1908         }
1909         if (remaining_pages_total)
1910                 goto more;
1911         ret = 0;
1912 out:
1913         *num = remaining_pages_total;
1914         return ret;
1915 }
1916 #endif  /* ifdef pte_index */
1917
1918 /**
1919  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1920  * @vma: user vma to map to
1921  * @addr: target start user address of these pages
1922  * @pages: source kernel pages
1923  * @num: in: number of pages to map. out: number of pages that were *not*
1924  * mapped. (0 means all pages were successfully mapped).
1925  *
1926  * Preferred over vm_insert_page() when inserting multiple pages.
1927  *
1928  * In case of error, we may have mapped a subset of the provided
1929  * pages. It is the caller's responsibility to account for this case.
1930  *
1931  * The same restrictions apply as in vm_insert_page().
1932  */
1933 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1934                         struct page **pages, unsigned long *num)
1935 {
1936 #ifdef pte_index
1937         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1938
1939         if (addr < vma->vm_start || end_addr >= vma->vm_end)
1940                 return -EFAULT;
1941         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1942                 BUG_ON(mmap_read_trylock(vma->vm_mm));
1943                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1944                 vma->vm_flags |= VM_MIXEDMAP;
1945         }
1946         /* Defer page refcount checking till we're about to map that page. */
1947         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1948 #else
1949         unsigned long idx = 0, pgcount = *num;
1950         int err = -EINVAL;
1951
1952         for (; idx < pgcount; ++idx) {
1953                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1954                 if (err)
1955                         break;
1956         }
1957         *num = pgcount - idx;
1958         return err;
1959 #endif  /* ifdef pte_index */
1960 }
1961 EXPORT_SYMBOL(vm_insert_pages);
1962
1963 /**
1964  * vm_insert_page - insert single page into user vma
1965  * @vma: user vma to map to
1966  * @addr: target user address of this page
1967  * @page: source kernel page
1968  *
1969  * This allows drivers to insert individual pages they've allocated
1970  * into a user vma.
1971  *
1972  * The page has to be a nice clean _individual_ kernel allocation.
1973  * If you allocate a compound page, you need to have marked it as
1974  * such (__GFP_COMP), or manually just split the page up yourself
1975  * (see split_page()).
1976  *
1977  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1978  * took an arbitrary page protection parameter. This doesn't allow
1979  * that. Your vma protection will have to be set up correctly, which
1980  * means that if you want a shared writable mapping, you'd better
1981  * ask for a shared writable mapping!
1982  *
1983  * The page does not need to be reserved.
1984  *
1985  * Usually this function is called from f_op->mmap() handler
1986  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1987  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1988  * function from other places, for example from page-fault handler.
1989  *
1990  * Return: %0 on success, negative error code otherwise.
1991  */
1992 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1993                         struct page *page)
1994 {
1995         if (addr < vma->vm_start || addr >= vma->vm_end)
1996                 return -EFAULT;
1997         if (!page_count(page))
1998                 return -EINVAL;
1999         if (!(vma->vm_flags & VM_MIXEDMAP)) {
2000                 BUG_ON(mmap_read_trylock(vma->vm_mm));
2001                 BUG_ON(vma->vm_flags & VM_PFNMAP);
2002                 vma->vm_flags |= VM_MIXEDMAP;
2003         }
2004         return insert_page(vma, addr, page, vma->vm_page_prot);
2005 }
2006 EXPORT_SYMBOL(vm_insert_page);
2007
2008 /*
2009  * __vm_map_pages - maps range of kernel pages into user vma
2010  * @vma: user vma to map to
2011  * @pages: pointer to array of source kernel pages
2012  * @num: number of pages in page array
2013  * @offset: user's requested vm_pgoff
2014  *
2015  * This allows drivers to map range of kernel pages into a user vma.
2016  *
2017  * Return: 0 on success and error code otherwise.
2018  */
2019 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2020                                 unsigned long num, unsigned long offset)
2021 {
2022         unsigned long count = vma_pages(vma);
2023         unsigned long uaddr = vma->vm_start;
2024         int ret, i;
2025
2026         /* Fail if the user requested offset is beyond the end of the object */
2027         if (offset >= num)
2028                 return -ENXIO;
2029
2030         /* Fail if the user requested size exceeds available object size */
2031         if (count > num - offset)
2032                 return -ENXIO;
2033
2034         for (i = 0; i < count; i++) {
2035                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2036                 if (ret < 0)
2037                         return ret;
2038                 uaddr += PAGE_SIZE;
2039         }
2040
2041         return 0;
2042 }
2043
2044 /**
2045  * vm_map_pages - maps range of kernel pages starts with non zero offset
2046  * @vma: user vma to map to
2047  * @pages: pointer to array of source kernel pages
2048  * @num: number of pages in page array
2049  *
2050  * Maps an object consisting of @num pages, catering for the user's
2051  * requested vm_pgoff
2052  *
2053  * If we fail to insert any page into the vma, the function will return
2054  * immediately leaving any previously inserted pages present.  Callers
2055  * from the mmap handler may immediately return the error as their caller
2056  * will destroy the vma, removing any successfully inserted pages. Other
2057  * callers should make their own arrangements for calling unmap_region().
2058  *
2059  * Context: Process context. Called by mmap handlers.
2060  * Return: 0 on success and error code otherwise.
2061  */
2062 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2063                                 unsigned long num)
2064 {
2065         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2066 }
2067 EXPORT_SYMBOL(vm_map_pages);
2068
2069 /**
2070  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2071  * @vma: user vma to map to
2072  * @pages: pointer to array of source kernel pages
2073  * @num: number of pages in page array
2074  *
2075  * Similar to vm_map_pages(), except that it explicitly sets the offset
2076  * to 0. This function is intended for the drivers that did not consider
2077  * vm_pgoff.
2078  *
2079  * Context: Process context. Called by mmap handlers.
2080  * Return: 0 on success and error code otherwise.
2081  */
2082 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2083                                 unsigned long num)
2084 {
2085         return __vm_map_pages(vma, pages, num, 0);
2086 }
2087 EXPORT_SYMBOL(vm_map_pages_zero);
2088
2089 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2090                         pfn_t pfn, pgprot_t prot, bool mkwrite)
2091 {
2092         struct mm_struct *mm = vma->vm_mm;
2093         pte_t *pte, entry;
2094         spinlock_t *ptl;
2095
2096         pte = get_locked_pte(mm, addr, &ptl);
2097         if (!pte)
2098                 return VM_FAULT_OOM;
2099         if (!pte_none(*pte)) {
2100                 if (mkwrite) {
2101                         /*
2102                          * For read faults on private mappings the PFN passed
2103                          * in may not match the PFN we have mapped if the
2104                          * mapped PFN is a writeable COW page.  In the mkwrite
2105                          * case we are creating a writable PTE for a shared
2106                          * mapping and we expect the PFNs to match. If they
2107                          * don't match, we are likely racing with block
2108                          * allocation and mapping invalidation so just skip the
2109                          * update.
2110                          */
2111                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2112                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2113                                 goto out_unlock;
2114                         }
2115                         entry = pte_mkyoung(*pte);
2116                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2117                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2118                                 update_mmu_cache(vma, addr, pte);
2119                 }
2120                 goto out_unlock;
2121         }
2122
2123         /* Ok, finally just insert the thing.. */
2124         if (pfn_t_devmap(pfn))
2125                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2126         else
2127                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2128
2129         if (mkwrite) {
2130                 entry = pte_mkyoung(entry);
2131                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2132         }
2133
2134         set_pte_at(mm, addr, pte, entry);
2135         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2136
2137 out_unlock:
2138         pte_unmap_unlock(pte, ptl);
2139         return VM_FAULT_NOPAGE;
2140 }
2141
2142 /**
2143  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2144  * @vma: user vma to map to
2145  * @addr: target user address of this page
2146  * @pfn: source kernel pfn
2147  * @pgprot: pgprot flags for the inserted page
2148  *
2149  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2150  * to override pgprot on a per-page basis.
2151  *
2152  * This only makes sense for IO mappings, and it makes no sense for
2153  * COW mappings.  In general, using multiple vmas is preferable;
2154  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2155  * impractical.
2156  *
2157  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2158  * a value of @pgprot different from that of @vma->vm_page_prot.
2159  *
2160  * Context: Process context.  May allocate using %GFP_KERNEL.
2161  * Return: vm_fault_t value.
2162  */
2163 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2164                         unsigned long pfn, pgprot_t pgprot)
2165 {
2166         /*
2167          * Technically, architectures with pte_special can avoid all these
2168          * restrictions (same for remap_pfn_range).  However we would like
2169          * consistency in testing and feature parity among all, so we should
2170          * try to keep these invariants in place for everybody.
2171          */
2172         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2173         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2174                                                 (VM_PFNMAP|VM_MIXEDMAP));
2175         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2176         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2177
2178         if (addr < vma->vm_start || addr >= vma->vm_end)
2179                 return VM_FAULT_SIGBUS;
2180
2181         if (!pfn_modify_allowed(pfn, pgprot))
2182                 return VM_FAULT_SIGBUS;
2183
2184         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2185
2186         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2187                         false);
2188 }
2189 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2190
2191 /**
2192  * vmf_insert_pfn - insert single pfn into user vma
2193  * @vma: user vma to map to
2194  * @addr: target user address of this page
2195  * @pfn: source kernel pfn
2196  *
2197  * Similar to vm_insert_page, this allows drivers to insert individual pages
2198  * they've allocated into a user vma. Same comments apply.
2199  *
2200  * This function should only be called from a vm_ops->fault handler, and
2201  * in that case the handler should return the result of this function.
2202  *
2203  * vma cannot be a COW mapping.
2204  *
2205  * As this is called only for pages that do not currently exist, we
2206  * do not need to flush old virtual caches or the TLB.
2207  *
2208  * Context: Process context.  May allocate using %GFP_KERNEL.
2209  * Return: vm_fault_t value.
2210  */
2211 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2212                         unsigned long pfn)
2213 {
2214         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2215 }
2216 EXPORT_SYMBOL(vmf_insert_pfn);
2217
2218 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2219 {
2220         /* these checks mirror the abort conditions in vm_normal_page */
2221         if (vma->vm_flags & VM_MIXEDMAP)
2222                 return true;
2223         if (pfn_t_devmap(pfn))
2224                 return true;
2225         if (pfn_t_special(pfn))
2226                 return true;
2227         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2228                 return true;
2229         return false;
2230 }
2231
2232 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2233                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2234                 bool mkwrite)
2235 {
2236         int err;
2237
2238         BUG_ON(!vm_mixed_ok(vma, pfn));
2239
2240         if (addr < vma->vm_start || addr >= vma->vm_end)
2241                 return VM_FAULT_SIGBUS;
2242
2243         track_pfn_insert(vma, &pgprot, pfn);
2244
2245         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2246                 return VM_FAULT_SIGBUS;
2247
2248         /*
2249          * If we don't have pte special, then we have to use the pfn_valid()
2250          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2251          * refcount the page if pfn_valid is true (hence insert_page rather
2252          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2253          * without pte special, it would there be refcounted as a normal page.
2254          */
2255         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2256             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2257                 struct page *page;
2258
2259                 /*
2260                  * At this point we are committed to insert_page()
2261                  * regardless of whether the caller specified flags that
2262                  * result in pfn_t_has_page() == false.
2263                  */
2264                 page = pfn_to_page(pfn_t_to_pfn(pfn));
2265                 err = insert_page(vma, addr, page, pgprot);
2266         } else {
2267                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2268         }
2269
2270         if (err == -ENOMEM)
2271                 return VM_FAULT_OOM;
2272         if (err < 0 && err != -EBUSY)
2273                 return VM_FAULT_SIGBUS;
2274
2275         return VM_FAULT_NOPAGE;
2276 }
2277
2278 /**
2279  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2280  * @vma: user vma to map to
2281  * @addr: target user address of this page
2282  * @pfn: source kernel pfn
2283  * @pgprot: pgprot flags for the inserted page
2284  *
2285  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2286  * to override pgprot on a per-page basis.
2287  *
2288  * Typically this function should be used by drivers to set caching- and
2289  * encryption bits different than those of @vma->vm_page_prot, because
2290  * the caching- or encryption mode may not be known at mmap() time.
2291  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2292  * to set caching and encryption bits for those vmas (except for COW pages).
2293  * This is ensured by core vm only modifying these page table entries using
2294  * functions that don't touch caching- or encryption bits, using pte_modify()
2295  * if needed. (See for example mprotect()).
2296  * Also when new page-table entries are created, this is only done using the
2297  * fault() callback, and never using the value of vma->vm_page_prot,
2298  * except for page-table entries that point to anonymous pages as the result
2299  * of COW.
2300  *
2301  * Context: Process context.  May allocate using %GFP_KERNEL.
2302  * Return: vm_fault_t value.
2303  */
2304 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2305                                  pfn_t pfn, pgprot_t pgprot)
2306 {
2307         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2308 }
2309 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2310
2311 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2312                 pfn_t pfn)
2313 {
2314         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2315 }
2316 EXPORT_SYMBOL(vmf_insert_mixed);
2317
2318 /*
2319  *  If the insertion of PTE failed because someone else already added a
2320  *  different entry in the mean time, we treat that as success as we assume
2321  *  the same entry was actually inserted.
2322  */
2323 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2324                 unsigned long addr, pfn_t pfn)
2325 {
2326         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2327 }
2328 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2329
2330 /*
2331  * maps a range of physical memory into the requested pages. the old
2332  * mappings are removed. any references to nonexistent pages results
2333  * in null mappings (currently treated as "copy-on-access")
2334  */
2335 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2336                         unsigned long addr, unsigned long end,
2337                         unsigned long pfn, pgprot_t prot)
2338 {
2339         pte_t *pte, *mapped_pte;
2340         spinlock_t *ptl;
2341         int err = 0;
2342
2343         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2344         if (!pte)
2345                 return -ENOMEM;
2346         arch_enter_lazy_mmu_mode();
2347         do {
2348                 BUG_ON(!pte_none(*pte));
2349                 if (!pfn_modify_allowed(pfn, prot)) {
2350                         err = -EACCES;
2351                         break;
2352                 }
2353                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2354                 pfn++;
2355         } while (pte++, addr += PAGE_SIZE, addr != end);
2356         arch_leave_lazy_mmu_mode();
2357         pte_unmap_unlock(mapped_pte, ptl);
2358         return err;
2359 }
2360
2361 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2362                         unsigned long addr, unsigned long end,
2363                         unsigned long pfn, pgprot_t prot)
2364 {
2365         pmd_t *pmd;
2366         unsigned long next;
2367         int err;
2368
2369         pfn -= addr >> PAGE_SHIFT;
2370         pmd = pmd_alloc(mm, pud, addr);
2371         if (!pmd)
2372                 return -ENOMEM;
2373         VM_BUG_ON(pmd_trans_huge(*pmd));
2374         do {
2375                 next = pmd_addr_end(addr, end);
2376                 err = remap_pte_range(mm, pmd, addr, next,
2377                                 pfn + (addr >> PAGE_SHIFT), prot);
2378                 if (err)
2379                         return err;
2380         } while (pmd++, addr = next, addr != end);
2381         return 0;
2382 }
2383
2384 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2385                         unsigned long addr, unsigned long end,
2386                         unsigned long pfn, pgprot_t prot)
2387 {
2388         pud_t *pud;
2389         unsigned long next;
2390         int err;
2391
2392         pfn -= addr >> PAGE_SHIFT;
2393         pud = pud_alloc(mm, p4d, addr);
2394         if (!pud)
2395                 return -ENOMEM;
2396         do {
2397                 next = pud_addr_end(addr, end);
2398                 err = remap_pmd_range(mm, pud, addr, next,
2399                                 pfn + (addr >> PAGE_SHIFT), prot);
2400                 if (err)
2401                         return err;
2402         } while (pud++, addr = next, addr != end);
2403         return 0;
2404 }
2405
2406 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2407                         unsigned long addr, unsigned long end,
2408                         unsigned long pfn, pgprot_t prot)
2409 {
2410         p4d_t *p4d;
2411         unsigned long next;
2412         int err;
2413
2414         pfn -= addr >> PAGE_SHIFT;
2415         p4d = p4d_alloc(mm, pgd, addr);
2416         if (!p4d)
2417                 return -ENOMEM;
2418         do {
2419                 next = p4d_addr_end(addr, end);
2420                 err = remap_pud_range(mm, p4d, addr, next,
2421                                 pfn + (addr >> PAGE_SHIFT), prot);
2422                 if (err)
2423                         return err;
2424         } while (p4d++, addr = next, addr != end);
2425         return 0;
2426 }
2427
2428 /*
2429  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2430  * must have pre-validated the caching bits of the pgprot_t.
2431  */
2432 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2433                 unsigned long pfn, unsigned long size, pgprot_t prot)
2434 {
2435         pgd_t *pgd;
2436         unsigned long next;
2437         unsigned long end = addr + PAGE_ALIGN(size);
2438         struct mm_struct *mm = vma->vm_mm;
2439         int err;
2440
2441         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2442                 return -EINVAL;
2443
2444         /*
2445          * Physically remapped pages are special. Tell the
2446          * rest of the world about it:
2447          *   VM_IO tells people not to look at these pages
2448          *      (accesses can have side effects).
2449          *   VM_PFNMAP tells the core MM that the base pages are just
2450          *      raw PFN mappings, and do not have a "struct page" associated
2451          *      with them.
2452          *   VM_DONTEXPAND
2453          *      Disable vma merging and expanding with mremap().
2454          *   VM_DONTDUMP
2455          *      Omit vma from core dump, even when VM_IO turned off.
2456          *
2457          * There's a horrible special case to handle copy-on-write
2458          * behaviour that some programs depend on. We mark the "original"
2459          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2460          * See vm_normal_page() for details.
2461          */
2462         if (is_cow_mapping(vma->vm_flags)) {
2463                 if (addr != vma->vm_start || end != vma->vm_end)
2464                         return -EINVAL;
2465                 vma->vm_pgoff = pfn;
2466         }
2467
2468         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2469
2470         BUG_ON(addr >= end);
2471         pfn -= addr >> PAGE_SHIFT;
2472         pgd = pgd_offset(mm, addr);
2473         flush_cache_range(vma, addr, end);
2474         do {
2475                 next = pgd_addr_end(addr, end);
2476                 err = remap_p4d_range(mm, pgd, addr, next,
2477                                 pfn + (addr >> PAGE_SHIFT), prot);
2478                 if (err)
2479                         return err;
2480         } while (pgd++, addr = next, addr != end);
2481
2482         return 0;
2483 }
2484
2485 /**
2486  * remap_pfn_range - remap kernel memory to userspace
2487  * @vma: user vma to map to
2488  * @addr: target page aligned user address to start at
2489  * @pfn: page frame number of kernel physical memory address
2490  * @size: size of mapping area
2491  * @prot: page protection flags for this mapping
2492  *
2493  * Note: this is only safe if the mm semaphore is held when called.
2494  *
2495  * Return: %0 on success, negative error code otherwise.
2496  */
2497 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2498                     unsigned long pfn, unsigned long size, pgprot_t prot)
2499 {
2500         int err;
2501
2502         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2503         if (err)
2504                 return -EINVAL;
2505
2506         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2507         if (err)
2508                 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2509         return err;
2510 }
2511 EXPORT_SYMBOL(remap_pfn_range);
2512
2513 /**
2514  * vm_iomap_memory - remap memory to userspace
2515  * @vma: user vma to map to
2516  * @start: start of the physical memory to be mapped
2517  * @len: size of area
2518  *
2519  * This is a simplified io_remap_pfn_range() for common driver use. The
2520  * driver just needs to give us the physical memory range to be mapped,
2521  * we'll figure out the rest from the vma information.
2522  *
2523  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2524  * whatever write-combining details or similar.
2525  *
2526  * Return: %0 on success, negative error code otherwise.
2527  */
2528 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2529 {
2530         unsigned long vm_len, pfn, pages;
2531
2532         /* Check that the physical memory area passed in looks valid */
2533         if (start + len < start)
2534                 return -EINVAL;
2535         /*
2536          * You *really* shouldn't map things that aren't page-aligned,
2537          * but we've historically allowed it because IO memory might
2538          * just have smaller alignment.
2539          */
2540         len += start & ~PAGE_MASK;
2541         pfn = start >> PAGE_SHIFT;
2542         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2543         if (pfn + pages < pfn)
2544                 return -EINVAL;
2545
2546         /* We start the mapping 'vm_pgoff' pages into the area */
2547         if (vma->vm_pgoff > pages)
2548                 return -EINVAL;
2549         pfn += vma->vm_pgoff;
2550         pages -= vma->vm_pgoff;
2551
2552         /* Can we fit all of the mapping? */
2553         vm_len = vma->vm_end - vma->vm_start;
2554         if (vm_len >> PAGE_SHIFT > pages)
2555                 return -EINVAL;
2556
2557         /* Ok, let it rip */
2558         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2559 }
2560 EXPORT_SYMBOL(vm_iomap_memory);
2561
2562 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2563                                      unsigned long addr, unsigned long end,
2564                                      pte_fn_t fn, void *data, bool create,
2565                                      pgtbl_mod_mask *mask)
2566 {
2567         pte_t *pte, *mapped_pte;
2568         int err = 0;
2569         spinlock_t *ptl;
2570
2571         if (create) {
2572                 mapped_pte = pte = (mm == &init_mm) ?
2573                         pte_alloc_kernel_track(pmd, addr, mask) :
2574                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
2575                 if (!pte)
2576                         return -ENOMEM;
2577         } else {
2578                 mapped_pte = pte = (mm == &init_mm) ?
2579                         pte_offset_kernel(pmd, addr) :
2580                         pte_offset_map_lock(mm, pmd, addr, &ptl);
2581         }
2582
2583         BUG_ON(pmd_huge(*pmd));
2584
2585         arch_enter_lazy_mmu_mode();
2586
2587         if (fn) {
2588                 do {
2589                         if (create || !pte_none(*pte)) {
2590                                 err = fn(pte++, addr, data);
2591                                 if (err)
2592                                         break;
2593                         }
2594                 } while (addr += PAGE_SIZE, addr != end);
2595         }
2596         *mask |= PGTBL_PTE_MODIFIED;
2597
2598         arch_leave_lazy_mmu_mode();
2599
2600         if (mm != &init_mm)
2601                 pte_unmap_unlock(mapped_pte, ptl);
2602         return err;
2603 }
2604
2605 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2606                                      unsigned long addr, unsigned long end,
2607                                      pte_fn_t fn, void *data, bool create,
2608                                      pgtbl_mod_mask *mask)
2609 {
2610         pmd_t *pmd;
2611         unsigned long next;
2612         int err = 0;
2613
2614         BUG_ON(pud_huge(*pud));
2615
2616         if (create) {
2617                 pmd = pmd_alloc_track(mm, pud, addr, mask);
2618                 if (!pmd)
2619                         return -ENOMEM;
2620         } else {
2621                 pmd = pmd_offset(pud, addr);
2622         }
2623         do {
2624                 next = pmd_addr_end(addr, end);
2625                 if (pmd_none(*pmd) && !create)
2626                         continue;
2627                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2628                         return -EINVAL;
2629                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2630                         if (!create)
2631                                 continue;
2632                         pmd_clear_bad(pmd);
2633                 }
2634                 err = apply_to_pte_range(mm, pmd, addr, next,
2635                                          fn, data, create, mask);
2636                 if (err)
2637                         break;
2638         } while (pmd++, addr = next, addr != end);
2639
2640         return err;
2641 }
2642
2643 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2644                                      unsigned long addr, unsigned long end,
2645                                      pte_fn_t fn, void *data, bool create,
2646                                      pgtbl_mod_mask *mask)
2647 {
2648         pud_t *pud;
2649         unsigned long next;
2650         int err = 0;
2651
2652         if (create) {
2653                 pud = pud_alloc_track(mm, p4d, addr, mask);
2654                 if (!pud)
2655                         return -ENOMEM;
2656         } else {
2657                 pud = pud_offset(p4d, addr);
2658         }
2659         do {
2660                 next = pud_addr_end(addr, end);
2661                 if (pud_none(*pud) && !create)
2662                         continue;
2663                 if (WARN_ON_ONCE(pud_leaf(*pud)))
2664                         return -EINVAL;
2665                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2666                         if (!create)
2667                                 continue;
2668                         pud_clear_bad(pud);
2669                 }
2670                 err = apply_to_pmd_range(mm, pud, addr, next,
2671                                          fn, data, create, mask);
2672                 if (err)
2673                         break;
2674         } while (pud++, addr = next, addr != end);
2675
2676         return err;
2677 }
2678
2679 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2680                                      unsigned long addr, unsigned long end,
2681                                      pte_fn_t fn, void *data, bool create,
2682                                      pgtbl_mod_mask *mask)
2683 {
2684         p4d_t *p4d;
2685         unsigned long next;
2686         int err = 0;
2687
2688         if (create) {
2689                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2690                 if (!p4d)
2691                         return -ENOMEM;
2692         } else {
2693                 p4d = p4d_offset(pgd, addr);
2694         }
2695         do {
2696                 next = p4d_addr_end(addr, end);
2697                 if (p4d_none(*p4d) && !create)
2698                         continue;
2699                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2700                         return -EINVAL;
2701                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2702                         if (!create)
2703                                 continue;
2704                         p4d_clear_bad(p4d);
2705                 }
2706                 err = apply_to_pud_range(mm, p4d, addr, next,
2707                                          fn, data, create, mask);
2708                 if (err)
2709                         break;
2710         } while (p4d++, addr = next, addr != end);
2711
2712         return err;
2713 }
2714
2715 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2716                                  unsigned long size, pte_fn_t fn,
2717                                  void *data, bool create)
2718 {
2719         pgd_t *pgd;
2720         unsigned long start = addr, next;
2721         unsigned long end = addr + size;
2722         pgtbl_mod_mask mask = 0;
2723         int err = 0;
2724
2725         if (WARN_ON(addr >= end))
2726                 return -EINVAL;
2727
2728         pgd = pgd_offset(mm, addr);
2729         do {
2730                 next = pgd_addr_end(addr, end);
2731                 if (pgd_none(*pgd) && !create)
2732                         continue;
2733                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2734                         return -EINVAL;
2735                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2736                         if (!create)
2737                                 continue;
2738                         pgd_clear_bad(pgd);
2739                 }
2740                 err = apply_to_p4d_range(mm, pgd, addr, next,
2741                                          fn, data, create, &mask);
2742                 if (err)
2743                         break;
2744         } while (pgd++, addr = next, addr != end);
2745
2746         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2747                 arch_sync_kernel_mappings(start, start + size);
2748
2749         return err;
2750 }
2751
2752 /*
2753  * Scan a region of virtual memory, filling in page tables as necessary
2754  * and calling a provided function on each leaf page table.
2755  */
2756 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2757                         unsigned long size, pte_fn_t fn, void *data)
2758 {
2759         return __apply_to_page_range(mm, addr, size, fn, data, true);
2760 }
2761 EXPORT_SYMBOL_GPL(apply_to_page_range);
2762
2763 /*
2764  * Scan a region of virtual memory, calling a provided function on
2765  * each leaf page table where it exists.
2766  *
2767  * Unlike apply_to_page_range, this does _not_ fill in page tables
2768  * where they are absent.
2769  */
2770 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2771                                  unsigned long size, pte_fn_t fn, void *data)
2772 {
2773         return __apply_to_page_range(mm, addr, size, fn, data, false);
2774 }
2775 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2776
2777 /*
2778  * handle_pte_fault chooses page fault handler according to an entry which was
2779  * read non-atomically.  Before making any commitment, on those architectures
2780  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2781  * parts, do_swap_page must check under lock before unmapping the pte and
2782  * proceeding (but do_wp_page is only called after already making such a check;
2783  * and do_anonymous_page can safely check later on).
2784  */
2785 static inline int pte_unmap_same(struct vm_fault *vmf)
2786 {
2787         int same = 1;
2788 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2789         if (sizeof(pte_t) > sizeof(unsigned long)) {
2790                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2791                 spin_lock(ptl);
2792                 same = pte_same(*vmf->pte, vmf->orig_pte);
2793                 spin_unlock(ptl);
2794         }
2795 #endif
2796         pte_unmap(vmf->pte);
2797         vmf->pte = NULL;
2798         return same;
2799 }
2800
2801 /*
2802  * Return:
2803  *      0:              copied succeeded
2804  *      -EHWPOISON:     copy failed due to hwpoison in source page
2805  *      -EAGAIN:        copied failed (some other reason)
2806  */
2807 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2808                                       struct vm_fault *vmf)
2809 {
2810         int ret;
2811         void *kaddr;
2812         void __user *uaddr;
2813         bool locked = false;
2814         struct vm_area_struct *vma = vmf->vma;
2815         struct mm_struct *mm = vma->vm_mm;
2816         unsigned long addr = vmf->address;
2817
2818         if (likely(src)) {
2819                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2820                         memory_failure_queue(page_to_pfn(src), 0);
2821                         return -EHWPOISON;
2822                 }
2823                 return 0;
2824         }
2825
2826         /*
2827          * If the source page was a PFN mapping, we don't have
2828          * a "struct page" for it. We do a best-effort copy by
2829          * just copying from the original user address. If that
2830          * fails, we just zero-fill it. Live with it.
2831          */
2832         kaddr = kmap_atomic(dst);
2833         uaddr = (void __user *)(addr & PAGE_MASK);
2834
2835         /*
2836          * On architectures with software "accessed" bits, we would
2837          * take a double page fault, so mark it accessed here.
2838          */
2839         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2840                 pte_t entry;
2841
2842                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2843                 locked = true;
2844                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2845                         /*
2846                          * Other thread has already handled the fault
2847                          * and update local tlb only
2848                          */
2849                         update_mmu_tlb(vma, addr, vmf->pte);
2850                         ret = -EAGAIN;
2851                         goto pte_unlock;
2852                 }
2853
2854                 entry = pte_mkyoung(vmf->orig_pte);
2855                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2856                         update_mmu_cache(vma, addr, vmf->pte);
2857         }
2858
2859         /*
2860          * This really shouldn't fail, because the page is there
2861          * in the page tables. But it might just be unreadable,
2862          * in which case we just give up and fill the result with
2863          * zeroes.
2864          */
2865         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2866                 if (locked)
2867                         goto warn;
2868
2869                 /* Re-validate under PTL if the page is still mapped */
2870                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2871                 locked = true;
2872                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2873                         /* The PTE changed under us, update local tlb */
2874                         update_mmu_tlb(vma, addr, vmf->pte);
2875                         ret = -EAGAIN;
2876                         goto pte_unlock;
2877                 }
2878
2879                 /*
2880                  * The same page can be mapped back since last copy attempt.
2881                  * Try to copy again under PTL.
2882                  */
2883                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2884                         /*
2885                          * Give a warn in case there can be some obscure
2886                          * use-case
2887                          */
2888 warn:
2889                         WARN_ON_ONCE(1);
2890                         clear_page(kaddr);
2891                 }
2892         }
2893
2894         ret = 0;
2895
2896 pte_unlock:
2897         if (locked)
2898                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2899         kunmap_atomic(kaddr);
2900         flush_dcache_page(dst);
2901
2902         return ret;
2903 }
2904
2905 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2906 {
2907         struct file *vm_file = vma->vm_file;
2908
2909         if (vm_file)
2910                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2911
2912         /*
2913          * Special mappings (e.g. VDSO) do not have any file so fake
2914          * a default GFP_KERNEL for them.
2915          */
2916         return GFP_KERNEL;
2917 }
2918
2919 /*
2920  * Notify the address space that the page is about to become writable so that
2921  * it can prohibit this or wait for the page to get into an appropriate state.
2922  *
2923  * We do this without the lock held, so that it can sleep if it needs to.
2924  */
2925 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2926 {
2927         vm_fault_t ret;
2928         struct page *page = vmf->page;
2929         unsigned int old_flags = vmf->flags;
2930
2931         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2932
2933         if (vmf->vma->vm_file &&
2934             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2935                 return VM_FAULT_SIGBUS;
2936
2937         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2938         /* Restore original flags so that caller is not surprised */
2939         vmf->flags = old_flags;
2940         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2941                 return ret;
2942         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2943                 lock_page(page);
2944                 if (!page->mapping) {
2945                         unlock_page(page);
2946                         return 0; /* retry */
2947                 }
2948                 ret |= VM_FAULT_LOCKED;
2949         } else
2950                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2951         return ret;
2952 }
2953
2954 /*
2955  * Handle dirtying of a page in shared file mapping on a write fault.
2956  *
2957  * The function expects the page to be locked and unlocks it.
2958  */
2959 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2960 {
2961         struct vm_area_struct *vma = vmf->vma;
2962         struct address_space *mapping;
2963         struct page *page = vmf->page;
2964         bool dirtied;
2965         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2966
2967         dirtied = set_page_dirty(page);
2968         VM_BUG_ON_PAGE(PageAnon(page), page);
2969         /*
2970          * Take a local copy of the address_space - page.mapping may be zeroed
2971          * by truncate after unlock_page().   The address_space itself remains
2972          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2973          * release semantics to prevent the compiler from undoing this copying.
2974          */
2975         mapping = page_rmapping(page);
2976         unlock_page(page);
2977
2978         if (!page_mkwrite)
2979                 file_update_time(vma->vm_file);
2980
2981         /*
2982          * Throttle page dirtying rate down to writeback speed.
2983          *
2984          * mapping may be NULL here because some device drivers do not
2985          * set page.mapping but still dirty their pages
2986          *
2987          * Drop the mmap_lock before waiting on IO, if we can. The file
2988          * is pinning the mapping, as per above.
2989          */
2990         if ((dirtied || page_mkwrite) && mapping) {
2991                 struct file *fpin;
2992
2993                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2994                 balance_dirty_pages_ratelimited(mapping);
2995                 if (fpin) {
2996                         fput(fpin);
2997                         return VM_FAULT_COMPLETED;
2998                 }
2999         }
3000
3001         return 0;
3002 }
3003
3004 /*
3005  * Handle write page faults for pages that can be reused in the current vma
3006  *
3007  * This can happen either due to the mapping being with the VM_SHARED flag,
3008  * or due to us being the last reference standing to the page. In either
3009  * case, all we need to do here is to mark the page as writable and update
3010  * any related book-keeping.
3011  */
3012 static inline void wp_page_reuse(struct vm_fault *vmf)
3013         __releases(vmf->ptl)
3014 {
3015         struct vm_area_struct *vma = vmf->vma;
3016         struct page *page = vmf->page;
3017         pte_t entry;
3018
3019         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3020         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3021
3022         /*
3023          * Clear the pages cpupid information as the existing
3024          * information potentially belongs to a now completely
3025          * unrelated process.
3026          */
3027         if (page)
3028                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3029
3030         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3031         entry = pte_mkyoung(vmf->orig_pte);
3032         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3033         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3034                 update_mmu_cache(vma, vmf->address, vmf->pte);
3035         pte_unmap_unlock(vmf->pte, vmf->ptl);
3036         count_vm_event(PGREUSE);
3037 }
3038
3039 /*
3040  * Handle the case of a page which we actually need to copy to a new page,
3041  * either due to COW or unsharing.
3042  *
3043  * Called with mmap_lock locked and the old page referenced, but
3044  * without the ptl held.
3045  *
3046  * High level logic flow:
3047  *
3048  * - Allocate a page, copy the content of the old page to the new one.
3049  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3050  * - Take the PTL. If the pte changed, bail out and release the allocated page
3051  * - If the pte is still the way we remember it, update the page table and all
3052  *   relevant references. This includes dropping the reference the page-table
3053  *   held to the old page, as well as updating the rmap.
3054  * - In any case, unlock the PTL and drop the reference we took to the old page.
3055  */
3056 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3057 {
3058         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3059         struct vm_area_struct *vma = vmf->vma;
3060         struct mm_struct *mm = vma->vm_mm;
3061         struct page *old_page = vmf->page;
3062         struct page *new_page = NULL;
3063         pte_t entry;
3064         int page_copied = 0;
3065         struct mmu_notifier_range range;
3066         int ret;
3067
3068         delayacct_wpcopy_start();
3069
3070         if (unlikely(anon_vma_prepare(vma)))
3071                 goto oom;
3072
3073         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3074                 new_page = alloc_zeroed_user_highpage_movable(vma,
3075                                                               vmf->address);
3076                 if (!new_page)
3077                         goto oom;
3078         } else {
3079                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3080                                 vmf->address);
3081                 if (!new_page)
3082                         goto oom;
3083
3084                 ret = __wp_page_copy_user(new_page, old_page, vmf);
3085                 if (ret) {
3086                         /*
3087                          * COW failed, if the fault was solved by other,
3088                          * it's fine. If not, userspace would re-fault on
3089                          * the same address and we will handle the fault
3090                          * from the second attempt.
3091                          * The -EHWPOISON case will not be retried.
3092                          */
3093                         put_page(new_page);
3094                         if (old_page)
3095                                 put_page(old_page);
3096
3097                         delayacct_wpcopy_end();
3098                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3099                 }
3100                 kmsan_copy_page_meta(new_page, old_page);
3101         }
3102
3103         if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3104                 goto oom_free_new;
3105         cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3106
3107         __SetPageUptodate(new_page);
3108
3109         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3110                                 vmf->address & PAGE_MASK,
3111                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3112         mmu_notifier_invalidate_range_start(&range);
3113
3114         /*
3115          * Re-check the pte - we dropped the lock
3116          */
3117         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3118         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3119                 if (old_page) {
3120                         if (!PageAnon(old_page)) {
3121                                 dec_mm_counter(mm, mm_counter_file(old_page));
3122                                 inc_mm_counter(mm, MM_ANONPAGES);
3123                         }
3124                 } else {
3125                         inc_mm_counter(mm, MM_ANONPAGES);
3126                 }
3127                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3128                 entry = mk_pte(new_page, vma->vm_page_prot);
3129                 entry = pte_sw_mkyoung(entry);
3130                 if (unlikely(unshare)) {
3131                         if (pte_soft_dirty(vmf->orig_pte))
3132                                 entry = pte_mksoft_dirty(entry);
3133                         if (pte_uffd_wp(vmf->orig_pte))
3134                                 entry = pte_mkuffd_wp(entry);
3135                 } else {
3136                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3137                 }
3138
3139                 /*
3140                  * Clear the pte entry and flush it first, before updating the
3141                  * pte with the new entry, to keep TLBs on different CPUs in
3142                  * sync. This code used to set the new PTE then flush TLBs, but
3143                  * that left a window where the new PTE could be loaded into
3144                  * some TLBs while the old PTE remains in others.
3145                  */
3146                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3147                 page_add_new_anon_rmap(new_page, vma, vmf->address);
3148                 lru_cache_add_inactive_or_unevictable(new_page, vma);
3149                 /*
3150                  * We call the notify macro here because, when using secondary
3151                  * mmu page tables (such as kvm shadow page tables), we want the
3152                  * new page to be mapped directly into the secondary page table.
3153                  */
3154                 BUG_ON(unshare && pte_write(entry));
3155                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3156                 update_mmu_cache(vma, vmf->address, vmf->pte);
3157                 if (old_page) {
3158                         /*
3159                          * Only after switching the pte to the new page may
3160                          * we remove the mapcount here. Otherwise another
3161                          * process may come and find the rmap count decremented
3162                          * before the pte is switched to the new page, and
3163                          * "reuse" the old page writing into it while our pte
3164                          * here still points into it and can be read by other
3165                          * threads.
3166                          *
3167                          * The critical issue is to order this
3168                          * page_remove_rmap with the ptp_clear_flush above.
3169                          * Those stores are ordered by (if nothing else,)
3170                          * the barrier present in the atomic_add_negative
3171                          * in page_remove_rmap.
3172                          *
3173                          * Then the TLB flush in ptep_clear_flush ensures that
3174                          * no process can access the old page before the
3175                          * decremented mapcount is visible. And the old page
3176                          * cannot be reused until after the decremented
3177                          * mapcount is visible. So transitively, TLBs to
3178                          * old page will be flushed before it can be reused.
3179                          */
3180                         page_remove_rmap(old_page, vma, false);
3181                 }
3182
3183                 /* Free the old page.. */
3184                 new_page = old_page;
3185                 page_copied = 1;
3186         } else {
3187                 update_mmu_tlb(vma, vmf->address, vmf->pte);
3188         }
3189
3190         if (new_page)
3191                 put_page(new_page);
3192
3193         pte_unmap_unlock(vmf->pte, vmf->ptl);
3194         /*
3195          * No need to double call mmu_notifier->invalidate_range() callback as
3196          * the above ptep_clear_flush_notify() did already call it.
3197          */
3198         mmu_notifier_invalidate_range_only_end(&range);
3199         if (old_page) {
3200                 if (page_copied)
3201                         free_swap_cache(old_page);
3202                 put_page(old_page);
3203         }
3204
3205         delayacct_wpcopy_end();
3206         return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3207 oom_free_new:
3208         put_page(new_page);
3209 oom:
3210         if (old_page)
3211                 put_page(old_page);
3212
3213         delayacct_wpcopy_end();
3214         return VM_FAULT_OOM;
3215 }
3216
3217 /**
3218  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3219  *                        writeable once the page is prepared
3220  *
3221  * @vmf: structure describing the fault
3222  *
3223  * This function handles all that is needed to finish a write page fault in a
3224  * shared mapping due to PTE being read-only once the mapped page is prepared.
3225  * It handles locking of PTE and modifying it.
3226  *
3227  * The function expects the page to be locked or other protection against
3228  * concurrent faults / writeback (such as DAX radix tree locks).
3229  *
3230  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3231  * we acquired PTE lock.
3232  */
3233 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3234 {
3235         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3236         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3237                                        &vmf->ptl);
3238         /*
3239          * We might have raced with another page fault while we released the
3240          * pte_offset_map_lock.
3241          */
3242         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3243                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3244                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3245                 return VM_FAULT_NOPAGE;
3246         }
3247         wp_page_reuse(vmf);
3248         return 0;
3249 }
3250
3251 /*
3252  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3253  * mapping
3254  */
3255 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3256 {
3257         struct vm_area_struct *vma = vmf->vma;
3258
3259         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3260                 vm_fault_t ret;
3261
3262                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3263                 vmf->flags |= FAULT_FLAG_MKWRITE;
3264                 ret = vma->vm_ops->pfn_mkwrite(vmf);
3265                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3266                         return ret;
3267                 return finish_mkwrite_fault(vmf);
3268         }
3269         wp_page_reuse(vmf);
3270         return VM_FAULT_WRITE;
3271 }
3272
3273 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3274         __releases(vmf->ptl)
3275 {
3276         struct vm_area_struct *vma = vmf->vma;
3277         vm_fault_t ret = VM_FAULT_WRITE;
3278
3279         get_page(vmf->page);
3280
3281         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3282                 vm_fault_t tmp;
3283
3284                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3285                 tmp = do_page_mkwrite(vmf);
3286                 if (unlikely(!tmp || (tmp &
3287                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3288                         put_page(vmf->page);
3289                         return tmp;
3290                 }
3291                 tmp = finish_mkwrite_fault(vmf);
3292                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3293                         unlock_page(vmf->page);
3294                         put_page(vmf->page);
3295                         return tmp;
3296                 }
3297         } else {
3298                 wp_page_reuse(vmf);
3299                 lock_page(vmf->page);
3300         }
3301         ret |= fault_dirty_shared_page(vmf);
3302         put_page(vmf->page);
3303
3304         return ret;
3305 }
3306
3307 /*
3308  * This routine handles present pages, when
3309  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3310  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3311  *   (FAULT_FLAG_UNSHARE)
3312  *
3313  * It is done by copying the page to a new address and decrementing the
3314  * shared-page counter for the old page.
3315  *
3316  * Note that this routine assumes that the protection checks have been
3317  * done by the caller (the low-level page fault routine in most cases).
3318  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3319  * done any necessary COW.
3320  *
3321  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3322  * though the page will change only once the write actually happens. This
3323  * avoids a few races, and potentially makes it more efficient.
3324  *
3325  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3326  * but allow concurrent faults), with pte both mapped and locked.
3327  * We return with mmap_lock still held, but pte unmapped and unlocked.
3328  */
3329 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3330         __releases(vmf->ptl)
3331 {
3332         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3333         struct vm_area_struct *vma = vmf->vma;
3334         struct folio *folio;
3335
3336         VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3337         VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3338
3339         if (likely(!unshare)) {
3340                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3341                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3342                         return handle_userfault(vmf, VM_UFFD_WP);
3343                 }
3344
3345                 /*
3346                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
3347                  * is flushed in this case before copying.
3348                  */
3349                 if (unlikely(userfaultfd_wp(vmf->vma) &&
3350                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
3351                         flush_tlb_page(vmf->vma, vmf->address);
3352         }
3353
3354         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3355         if (!vmf->page) {
3356                 if (unlikely(unshare)) {
3357                         /* No anonymous page -> nothing to do. */
3358                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3359                         return 0;
3360                 }
3361
3362                 /*
3363                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3364                  * VM_PFNMAP VMA.
3365                  *
3366                  * We should not cow pages in a shared writeable mapping.
3367                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
3368                  */
3369                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3370                                      (VM_WRITE|VM_SHARED))
3371                         return wp_pfn_shared(vmf);
3372
3373                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3374                 return wp_page_copy(vmf);
3375         }
3376
3377         /*
3378          * Take out anonymous pages first, anonymous shared vmas are
3379          * not dirty accountable.
3380          */
3381         folio = page_folio(vmf->page);
3382         if (folio_test_anon(folio)) {
3383                 /*
3384                  * If the page is exclusive to this process we must reuse the
3385                  * page without further checks.
3386                  */
3387                 if (PageAnonExclusive(vmf->page))
3388                         goto reuse;
3389
3390                 /*
3391                  * We have to verify under folio lock: these early checks are
3392                  * just an optimization to avoid locking the folio and freeing
3393                  * the swapcache if there is little hope that we can reuse.
3394                  *
3395                  * KSM doesn't necessarily raise the folio refcount.
3396                  */
3397                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3398                         goto copy;
3399                 if (!folio_test_lru(folio))
3400                         /*
3401                          * Note: We cannot easily detect+handle references from
3402                          * remote LRU pagevecs or references to LRU folios.
3403                          */
3404                         lru_add_drain();
3405                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3406                         goto copy;
3407                 if (!folio_trylock(folio))
3408                         goto copy;
3409                 if (folio_test_swapcache(folio))
3410                         folio_free_swap(folio);
3411                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3412                         folio_unlock(folio);
3413                         goto copy;
3414                 }
3415                 /*
3416                  * Ok, we've got the only folio reference from our mapping
3417                  * and the folio is locked, it's dark out, and we're wearing
3418                  * sunglasses. Hit it.
3419                  */
3420                 page_move_anon_rmap(vmf->page, vma);
3421                 folio_unlock(folio);
3422 reuse:
3423                 if (unlikely(unshare)) {
3424                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3425                         return 0;
3426                 }
3427                 wp_page_reuse(vmf);
3428                 return VM_FAULT_WRITE;
3429         } else if (unshare) {
3430                 /* No anonymous page -> nothing to do. */
3431                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3432                 return 0;
3433         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3434                                         (VM_WRITE|VM_SHARED))) {
3435                 return wp_page_shared(vmf);
3436         }
3437 copy:
3438         /*
3439          * Ok, we need to copy. Oh, well..
3440          */
3441         get_page(vmf->page);
3442
3443         pte_unmap_unlock(vmf->pte, vmf->ptl);
3444 #ifdef CONFIG_KSM
3445         if (PageKsm(vmf->page))
3446                 count_vm_event(COW_KSM);
3447 #endif
3448         return wp_page_copy(vmf);
3449 }
3450
3451 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3452                 unsigned long start_addr, unsigned long end_addr,
3453                 struct zap_details *details)
3454 {
3455         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3456 }
3457
3458 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3459                                             pgoff_t first_index,
3460                                             pgoff_t last_index,
3461                                             struct zap_details *details)
3462 {
3463         struct vm_area_struct *vma;
3464         pgoff_t vba, vea, zba, zea;
3465
3466         vma_interval_tree_foreach(vma, root, first_index, last_index) {
3467                 vba = vma->vm_pgoff;
3468                 vea = vba + vma_pages(vma) - 1;
3469                 zba = max(first_index, vba);
3470                 zea = min(last_index, vea);
3471
3472                 unmap_mapping_range_vma(vma,
3473                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3474                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3475                                 details);
3476         }
3477 }
3478
3479 /**
3480  * unmap_mapping_folio() - Unmap single folio from processes.
3481  * @folio: The locked folio to be unmapped.
3482  *
3483  * Unmap this folio from any userspace process which still has it mmaped.
3484  * Typically, for efficiency, the range of nearby pages has already been
3485  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3486  * truncation or invalidation holds the lock on a folio, it may find that
3487  * the page has been remapped again: and then uses unmap_mapping_folio()
3488  * to unmap it finally.
3489  */
3490 void unmap_mapping_folio(struct folio *folio)
3491 {
3492         struct address_space *mapping = folio->mapping;
3493         struct zap_details details = { };
3494         pgoff_t first_index;
3495         pgoff_t last_index;
3496
3497         VM_BUG_ON(!folio_test_locked(folio));
3498
3499         first_index = folio->index;
3500         last_index = folio->index + folio_nr_pages(folio) - 1;
3501
3502         details.even_cows = false;
3503         details.single_folio = folio;
3504         details.zap_flags = ZAP_FLAG_DROP_MARKER;
3505
3506         i_mmap_lock_read(mapping);
3507         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3508                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3509                                          last_index, &details);
3510         i_mmap_unlock_read(mapping);
3511 }
3512
3513 /**
3514  * unmap_mapping_pages() - Unmap pages from processes.
3515  * @mapping: The address space containing pages to be unmapped.
3516  * @start: Index of first page to be unmapped.
3517  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3518  * @even_cows: Whether to unmap even private COWed pages.
3519  *
3520  * Unmap the pages in this address space from any userspace process which
3521  * has them mmaped.  Generally, you want to remove COWed pages as well when
3522  * a file is being truncated, but not when invalidating pages from the page
3523  * cache.
3524  */
3525 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3526                 pgoff_t nr, bool even_cows)
3527 {
3528         struct zap_details details = { };
3529         pgoff_t first_index = start;
3530         pgoff_t last_index = start + nr - 1;
3531
3532         details.even_cows = even_cows;
3533         if (last_index < first_index)
3534                 last_index = ULONG_MAX;
3535
3536         i_mmap_lock_read(mapping);
3537         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3538                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3539                                          last_index, &details);
3540         i_mmap_unlock_read(mapping);
3541 }
3542 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3543
3544 /**
3545  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3546  * address_space corresponding to the specified byte range in the underlying
3547  * file.
3548  *
3549  * @mapping: the address space containing mmaps to be unmapped.
3550  * @holebegin: byte in first page to unmap, relative to the start of
3551  * the underlying file.  This will be rounded down to a PAGE_SIZE
3552  * boundary.  Note that this is different from truncate_pagecache(), which
3553  * must keep the partial page.  In contrast, we must get rid of
3554  * partial pages.
3555  * @holelen: size of prospective hole in bytes.  This will be rounded
3556  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3557  * end of the file.
3558  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3559  * but 0 when invalidating pagecache, don't throw away private data.
3560  */
3561 void unmap_mapping_range(struct address_space *mapping,
3562                 loff_t const holebegin, loff_t const holelen, int even_cows)
3563 {
3564         pgoff_t hba = holebegin >> PAGE_SHIFT;
3565         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3566
3567         /* Check for overflow. */
3568         if (sizeof(holelen) > sizeof(hlen)) {
3569                 long long holeend =
3570                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3571                 if (holeend & ~(long long)ULONG_MAX)
3572                         hlen = ULONG_MAX - hba + 1;
3573         }
3574
3575         unmap_mapping_pages(mapping, hba, hlen, even_cows);
3576 }
3577 EXPORT_SYMBOL(unmap_mapping_range);
3578
3579 /*
3580  * Restore a potential device exclusive pte to a working pte entry
3581  */
3582 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3583 {
3584         struct folio *folio = page_folio(vmf->page);
3585         struct vm_area_struct *vma = vmf->vma;
3586         struct mmu_notifier_range range;
3587
3588         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3589                 return VM_FAULT_RETRY;
3590         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3591                                 vma->vm_mm, vmf->address & PAGE_MASK,
3592                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3593         mmu_notifier_invalidate_range_start(&range);
3594
3595         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3596                                 &vmf->ptl);
3597         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3598                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3599
3600         pte_unmap_unlock(vmf->pte, vmf->ptl);
3601         folio_unlock(folio);
3602
3603         mmu_notifier_invalidate_range_end(&range);
3604         return 0;
3605 }
3606
3607 static inline bool should_try_to_free_swap(struct folio *folio,
3608                                            struct vm_area_struct *vma,
3609                                            unsigned int fault_flags)
3610 {
3611         if (!folio_test_swapcache(folio))
3612                 return false;
3613         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3614             folio_test_mlocked(folio))
3615                 return true;
3616         /*
3617          * If we want to map a page that's in the swapcache writable, we
3618          * have to detect via the refcount if we're really the exclusive
3619          * user. Try freeing the swapcache to get rid of the swapcache
3620          * reference only in case it's likely that we'll be the exlusive user.
3621          */
3622         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3623                 folio_ref_count(folio) == 2;
3624 }
3625
3626 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3627 {
3628         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3629                                        vmf->address, &vmf->ptl);
3630         /*
3631          * Be careful so that we will only recover a special uffd-wp pte into a
3632          * none pte.  Otherwise it means the pte could have changed, so retry.
3633          */
3634         if (is_pte_marker(*vmf->pte))
3635                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3636         pte_unmap_unlock(vmf->pte, vmf->ptl);
3637         return 0;
3638 }
3639
3640 /*
3641  * This is actually a page-missing access, but with uffd-wp special pte
3642  * installed.  It means this pte was wr-protected before being unmapped.
3643  */
3644 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3645 {
3646         /*
3647          * Just in case there're leftover special ptes even after the region
3648          * got unregistered - we can simply clear them.  We can also do that
3649          * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3650          * ranges, but it should be more efficient to be done lazily here.
3651          */
3652         if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3653                 return pte_marker_clear(vmf);
3654
3655         /* do_fault() can handle pte markers too like none pte */
3656         return do_fault(vmf);
3657 }
3658
3659 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3660 {
3661         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3662         unsigned long marker = pte_marker_get(entry);
3663
3664         /*
3665          * PTE markers should never be empty.  If anything weird happened,
3666          * the best thing to do is to kill the process along with its mm.
3667          */
3668         if (WARN_ON_ONCE(!marker))
3669                 return VM_FAULT_SIGBUS;
3670
3671         /* Higher priority than uffd-wp when data corrupted */
3672         if (marker & PTE_MARKER_SWAPIN_ERROR)
3673                 return VM_FAULT_SIGBUS;
3674
3675         if (pte_marker_entry_uffd_wp(entry))
3676                 return pte_marker_handle_uffd_wp(vmf);
3677
3678         /* This is an unknown pte marker */
3679         return VM_FAULT_SIGBUS;
3680 }
3681
3682 /*
3683  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3684  * but allow concurrent faults), and pte mapped but not yet locked.
3685  * We return with pte unmapped and unlocked.
3686  *
3687  * We return with the mmap_lock locked or unlocked in the same cases
3688  * as does filemap_fault().
3689  */
3690 vm_fault_t do_swap_page(struct vm_fault *vmf)
3691 {
3692         struct vm_area_struct *vma = vmf->vma;
3693         struct folio *swapcache, *folio = NULL;
3694         struct page *page;
3695         struct swap_info_struct *si = NULL;
3696         rmap_t rmap_flags = RMAP_NONE;
3697         bool exclusive = false;
3698         swp_entry_t entry;
3699         pte_t pte;
3700         int locked;
3701         vm_fault_t ret = 0;
3702         void *shadow = NULL;
3703
3704         if (!pte_unmap_same(vmf))
3705                 goto out;
3706
3707         entry = pte_to_swp_entry(vmf->orig_pte);
3708         if (unlikely(non_swap_entry(entry))) {
3709                 if (is_migration_entry(entry)) {
3710                         migration_entry_wait(vma->vm_mm, vmf->pmd,
3711                                              vmf->address);
3712                 } else if (is_device_exclusive_entry(entry)) {
3713                         vmf->page = pfn_swap_entry_to_page(entry);
3714                         ret = remove_device_exclusive_entry(vmf);
3715                 } else if (is_device_private_entry(entry)) {
3716                         vmf->page = pfn_swap_entry_to_page(entry);
3717                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3718                                         vmf->address, &vmf->ptl);
3719                         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3720                                 spin_unlock(vmf->ptl);
3721                                 goto out;
3722                         }
3723
3724                         /*
3725                          * Get a page reference while we know the page can't be
3726                          * freed.
3727                          */
3728                         get_page(vmf->page);
3729                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3730                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3731                         put_page(vmf->page);
3732                 } else if (is_hwpoison_entry(entry)) {
3733                         ret = VM_FAULT_HWPOISON;
3734                 } else if (is_pte_marker_entry(entry)) {
3735                         ret = handle_pte_marker(vmf);
3736                 } else {
3737                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3738                         ret = VM_FAULT_SIGBUS;
3739                 }
3740                 goto out;
3741         }
3742
3743         /* Prevent swapoff from happening to us. */
3744         si = get_swap_device(entry);
3745         if (unlikely(!si))
3746                 goto out;
3747
3748         folio = swap_cache_get_folio(entry, vma, vmf->address);
3749         if (folio)
3750                 page = folio_file_page(folio, swp_offset(entry));
3751         swapcache = folio;
3752
3753         if (!folio) {
3754                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3755                     __swap_count(entry) == 1) {
3756                         /* skip swapcache */
3757                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3758                                                 vma, vmf->address, false);
3759                         page = &folio->page;
3760                         if (folio) {
3761                                 __folio_set_locked(folio);
3762                                 __folio_set_swapbacked(folio);
3763
3764                                 if (mem_cgroup_swapin_charge_folio(folio,
3765                                                         vma->vm_mm, GFP_KERNEL,
3766                                                         entry)) {
3767                                         ret = VM_FAULT_OOM;
3768                                         goto out_page;
3769                                 }
3770                                 mem_cgroup_swapin_uncharge_swap(entry);
3771
3772                                 shadow = get_shadow_from_swap_cache(entry);
3773                                 if (shadow)
3774                                         workingset_refault(folio, shadow);
3775
3776                                 folio_add_lru(folio);
3777
3778                                 /* To provide entry to swap_readpage() */
3779                                 folio_set_swap_entry(folio, entry);
3780                                 swap_readpage(page, true, NULL);
3781                                 folio->private = NULL;
3782                         }
3783                 } else {
3784                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3785                                                 vmf);
3786                         if (page)
3787                                 folio = page_folio(page);
3788                         swapcache = folio;
3789                 }
3790
3791                 if (!folio) {
3792                         /*
3793                          * Back out if somebody else faulted in this pte
3794                          * while we released the pte lock.
3795                          */
3796                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3797                                         vmf->address, &vmf->ptl);
3798                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3799                                 ret = VM_FAULT_OOM;
3800                         goto unlock;
3801                 }
3802
3803                 /* Had to read the page from swap area: Major fault */
3804                 ret = VM_FAULT_MAJOR;
3805                 count_vm_event(PGMAJFAULT);
3806                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3807         } else if (PageHWPoison(page)) {
3808                 /*
3809                  * hwpoisoned dirty swapcache pages are kept for killing
3810                  * owner processes (which may be unknown at hwpoison time)
3811                  */
3812                 ret = VM_FAULT_HWPOISON;
3813                 goto out_release;
3814         }
3815
3816         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3817
3818         if (!locked) {
3819                 ret |= VM_FAULT_RETRY;
3820                 goto out_release;
3821         }
3822
3823         if (swapcache) {
3824                 /*
3825                  * Make sure folio_free_swap() or swapoff did not release the
3826                  * swapcache from under us.  The page pin, and pte_same test
3827                  * below, are not enough to exclude that.  Even if it is still
3828                  * swapcache, we need to check that the page's swap has not
3829                  * changed.
3830                  */
3831                 if (unlikely(!folio_test_swapcache(folio) ||
3832                              page_private(page) != entry.val))
3833                         goto out_page;
3834
3835                 /*
3836                  * KSM sometimes has to copy on read faults, for example, if
3837                  * page->index of !PageKSM() pages would be nonlinear inside the
3838                  * anon VMA -- PageKSM() is lost on actual swapout.
3839                  */
3840                 page = ksm_might_need_to_copy(page, vma, vmf->address);
3841                 if (unlikely(!page)) {
3842                         ret = VM_FAULT_OOM;
3843                         goto out_page;
3844                 }
3845                 folio = page_folio(page);
3846
3847                 /*
3848                  * If we want to map a page that's in the swapcache writable, we
3849                  * have to detect via the refcount if we're really the exclusive
3850                  * owner. Try removing the extra reference from the local LRU
3851                  * pagevecs if required.
3852                  */
3853                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3854                     !folio_test_ksm(folio) && !folio_test_lru(folio))
3855                         lru_add_drain();
3856         }
3857
3858         cgroup_throttle_swaprate(page, GFP_KERNEL);
3859
3860         /*
3861          * Back out if somebody else already faulted in this pte.
3862          */
3863         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3864                         &vmf->ptl);
3865         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3866                 goto out_nomap;
3867
3868         if (unlikely(!folio_test_uptodate(folio))) {
3869                 ret = VM_FAULT_SIGBUS;
3870                 goto out_nomap;
3871         }
3872
3873         /*
3874          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3875          * must never point at an anonymous page in the swapcache that is
3876          * PG_anon_exclusive. Sanity check that this holds and especially, that
3877          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3878          * check after taking the PT lock and making sure that nobody
3879          * concurrently faulted in this page and set PG_anon_exclusive.
3880          */
3881         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3882         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3883
3884         /*
3885          * Check under PT lock (to protect against concurrent fork() sharing
3886          * the swap entry concurrently) for certainly exclusive pages.
3887          */
3888         if (!folio_test_ksm(folio)) {
3889                 /*
3890                  * Note that pte_swp_exclusive() == false for architectures
3891                  * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3892                  */
3893                 exclusive = pte_swp_exclusive(vmf->orig_pte);
3894                 if (folio != swapcache) {
3895                         /*
3896                          * We have a fresh page that is not exposed to the
3897                          * swapcache -> certainly exclusive.
3898                          */
3899                         exclusive = true;
3900                 } else if (exclusive && folio_test_writeback(folio) &&
3901                           data_race(si->flags & SWP_STABLE_WRITES)) {
3902                         /*
3903                          * This is tricky: not all swap backends support
3904                          * concurrent page modifications while under writeback.
3905                          *
3906                          * So if we stumble over such a page in the swapcache
3907                          * we must not set the page exclusive, otherwise we can
3908                          * map it writable without further checks and modify it
3909                          * while still under writeback.
3910                          *
3911                          * For these problematic swap backends, simply drop the
3912                          * exclusive marker: this is perfectly fine as we start
3913                          * writeback only if we fully unmapped the page and
3914                          * there are no unexpected references on the page after
3915                          * unmapping succeeded. After fully unmapped, no
3916                          * further GUP references (FOLL_GET and FOLL_PIN) can
3917                          * appear, so dropping the exclusive marker and mapping
3918                          * it only R/O is fine.
3919                          */
3920                         exclusive = false;
3921                 }
3922         }
3923
3924         /*
3925          * Remove the swap entry and conditionally try to free up the swapcache.
3926          * We're already holding a reference on the page but haven't mapped it
3927          * yet.
3928          */
3929         swap_free(entry);
3930         if (should_try_to_free_swap(folio, vma, vmf->flags))
3931                 folio_free_swap(folio);
3932
3933         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3934         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3935         pte = mk_pte(page, vma->vm_page_prot);
3936
3937         /*
3938          * Same logic as in do_wp_page(); however, optimize for pages that are
3939          * certainly not shared either because we just allocated them without
3940          * exposing them to the swapcache or because the swap entry indicates
3941          * exclusivity.
3942          */
3943         if (!folio_test_ksm(folio) &&
3944             (exclusive || folio_ref_count(folio) == 1)) {
3945                 if (vmf->flags & FAULT_FLAG_WRITE) {
3946                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3947                         vmf->flags &= ~FAULT_FLAG_WRITE;
3948                         ret |= VM_FAULT_WRITE;
3949                 }
3950                 rmap_flags |= RMAP_EXCLUSIVE;
3951         }
3952         flush_icache_page(vma, page);
3953         if (pte_swp_soft_dirty(vmf->orig_pte))
3954                 pte = pte_mksoft_dirty(pte);
3955         if (pte_swp_uffd_wp(vmf->orig_pte)) {
3956                 pte = pte_mkuffd_wp(pte);
3957                 pte = pte_wrprotect(pte);
3958         }
3959         vmf->orig_pte = pte;
3960
3961         /* ksm created a completely new copy */
3962         if (unlikely(folio != swapcache && swapcache)) {
3963                 page_add_new_anon_rmap(page, vma, vmf->address);
3964                 folio_add_lru_vma(folio, vma);
3965         } else {
3966                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3967         }
3968
3969         VM_BUG_ON(!folio_test_anon(folio) ||
3970                         (pte_write(pte) && !PageAnonExclusive(page)));
3971         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3972         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3973
3974         folio_unlock(folio);
3975         if (folio != swapcache && swapcache) {
3976                 /*
3977                  * Hold the lock to avoid the swap entry to be reused
3978                  * until we take the PT lock for the pte_same() check
3979                  * (to avoid false positives from pte_same). For
3980                  * further safety release the lock after the swap_free
3981                  * so that the swap count won't change under a
3982                  * parallel locked swapcache.
3983                  */
3984                 folio_unlock(swapcache);
3985                 folio_put(swapcache);
3986         }
3987
3988         if (vmf->flags & FAULT_FLAG_WRITE) {
3989                 ret |= do_wp_page(vmf);
3990                 if (ret & VM_FAULT_ERROR)
3991                         ret &= VM_FAULT_ERROR;
3992                 goto out;
3993         }
3994
3995         /* No need to invalidate - it was non-present before */
3996         update_mmu_cache(vma, vmf->address, vmf->pte);
3997 unlock:
3998         pte_unmap_unlock(vmf->pte, vmf->ptl);
3999 out:
4000         if (si)
4001                 put_swap_device(si);
4002         return ret;
4003 out_nomap:
4004         pte_unmap_unlock(vmf->pte, vmf->ptl);
4005 out_page:
4006         folio_unlock(folio);
4007 out_release:
4008         folio_put(folio);
4009         if (folio != swapcache && swapcache) {
4010                 folio_unlock(swapcache);
4011                 folio_put(swapcache);
4012         }
4013         if (si)
4014                 put_swap_device(si);
4015         return ret;
4016 }
4017
4018 /*
4019  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4020  * but allow concurrent faults), and pte mapped but not yet locked.
4021  * We return with mmap_lock still held, but pte unmapped and unlocked.
4022  */
4023 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4024 {
4025         struct vm_area_struct *vma = vmf->vma;
4026         struct page *page;
4027         vm_fault_t ret = 0;
4028         pte_t entry;
4029
4030         /* File mapping without ->vm_ops ? */
4031         if (vma->vm_flags & VM_SHARED)
4032                 return VM_FAULT_SIGBUS;
4033
4034         /*
4035          * Use pte_alloc() instead of pte_alloc_map().  We can't run
4036          * pte_offset_map() on pmds where a huge pmd might be created
4037          * from a different thread.
4038          *
4039          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4040          * parallel threads are excluded by other means.
4041          *
4042          * Here we only have mmap_read_lock(mm).
4043          */
4044         if (pte_alloc(vma->vm_mm, vmf->pmd))
4045                 return VM_FAULT_OOM;
4046
4047         /* See comment in handle_pte_fault() */
4048         if (unlikely(pmd_trans_unstable(vmf->pmd)))
4049                 return 0;
4050
4051         /* Use the zero-page for reads */
4052         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4053                         !mm_forbids_zeropage(vma->vm_mm)) {
4054                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4055                                                 vma->vm_page_prot));
4056                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4057                                 vmf->address, &vmf->ptl);
4058                 if (!pte_none(*vmf->pte)) {
4059                         update_mmu_tlb(vma, vmf->address, vmf->pte);
4060                         goto unlock;
4061                 }
4062                 ret = check_stable_address_space(vma->vm_mm);
4063                 if (ret)
4064                         goto unlock;
4065                 /* Deliver the page fault to userland, check inside PT lock */
4066                 if (userfaultfd_missing(vma)) {
4067                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4068                         return handle_userfault(vmf, VM_UFFD_MISSING);
4069                 }
4070                 goto setpte;
4071         }
4072
4073         /* Allocate our own private page. */
4074         if (unlikely(anon_vma_prepare(vma)))
4075                 goto oom;
4076         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4077         if (!page)
4078                 goto oom;
4079
4080         if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4081                 goto oom_free_page;
4082         cgroup_throttle_swaprate(page, GFP_KERNEL);
4083
4084         /*
4085          * The memory barrier inside __SetPageUptodate makes sure that
4086          * preceding stores to the page contents become visible before
4087          * the set_pte_at() write.
4088          */
4089         __SetPageUptodate(page);
4090
4091         entry = mk_pte(page, vma->vm_page_prot);
4092         entry = pte_sw_mkyoung(entry);
4093         if (vma->vm_flags & VM_WRITE)
4094                 entry = pte_mkwrite(pte_mkdirty(entry));
4095
4096         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4097                         &vmf->ptl);
4098         if (!pte_none(*vmf->pte)) {
4099                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4100                 goto release;
4101         }
4102
4103         ret = check_stable_address_space(vma->vm_mm);
4104         if (ret)
4105                 goto release;
4106
4107         /* Deliver the page fault to userland, check inside PT lock */
4108         if (userfaultfd_missing(vma)) {
4109                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4110                 put_page(page);
4111                 return handle_userfault(vmf, VM_UFFD_MISSING);
4112         }
4113
4114         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4115         page_add_new_anon_rmap(page, vma, vmf->address);
4116         lru_cache_add_inactive_or_unevictable(page, vma);
4117 setpte:
4118         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4119
4120         /* No need to invalidate - it was non-present before */
4121         update_mmu_cache(vma, vmf->address, vmf->pte);
4122 unlock:
4123         pte_unmap_unlock(vmf->pte, vmf->ptl);
4124         return ret;
4125 release:
4126         put_page(page);
4127         goto unlock;
4128 oom_free_page:
4129         put_page(page);
4130 oom:
4131         return VM_FAULT_OOM;
4132 }
4133
4134 /*
4135  * The mmap_lock must have been held on entry, and may have been
4136  * released depending on flags and vma->vm_ops->fault() return value.
4137  * See filemap_fault() and __lock_page_retry().
4138  */
4139 static vm_fault_t __do_fault(struct vm_fault *vmf)
4140 {
4141         struct vm_area_struct *vma = vmf->vma;
4142         vm_fault_t ret;
4143
4144         /*
4145          * Preallocate pte before we take page_lock because this might lead to
4146          * deadlocks for memcg reclaim which waits for pages under writeback:
4147          *                              lock_page(A)
4148          *                              SetPageWriteback(A)
4149          *                              unlock_page(A)
4150          * lock_page(B)
4151          *                              lock_page(B)
4152          * pte_alloc_one
4153          *   shrink_page_list
4154          *     wait_on_page_writeback(A)
4155          *                              SetPageWriteback(B)
4156          *                              unlock_page(B)
4157          *                              # flush A, B to clear the writeback
4158          */
4159         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4160                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4161                 if (!vmf->prealloc_pte)
4162                         return VM_FAULT_OOM;
4163         }
4164
4165         ret = vma->vm_ops->fault(vmf);
4166         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4167                             VM_FAULT_DONE_COW)))
4168                 return ret;
4169
4170         if (unlikely(PageHWPoison(vmf->page))) {
4171                 struct page *page = vmf->page;
4172                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4173                 if (ret & VM_FAULT_LOCKED) {
4174                         if (page_mapped(page))
4175                                 unmap_mapping_pages(page_mapping(page),
4176                                                     page->index, 1, false);
4177                         /* Retry if a clean page was removed from the cache. */
4178                         if (invalidate_inode_page(page))
4179                                 poisonret = VM_FAULT_NOPAGE;
4180                         unlock_page(page);
4181                 }
4182                 put_page(page);
4183                 vmf->page = NULL;
4184                 return poisonret;
4185         }
4186
4187         if (unlikely(!(ret & VM_FAULT_LOCKED)))
4188                 lock_page(vmf->page);
4189         else
4190                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4191
4192         return ret;
4193 }
4194
4195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4196 static void deposit_prealloc_pte(struct vm_fault *vmf)
4197 {
4198         struct vm_area_struct *vma = vmf->vma;
4199
4200         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4201         /*
4202          * We are going to consume the prealloc table,
4203          * count that as nr_ptes.
4204          */
4205         mm_inc_nr_ptes(vma->vm_mm);
4206         vmf->prealloc_pte = NULL;
4207 }
4208
4209 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4210 {
4211         struct vm_area_struct *vma = vmf->vma;
4212         bool write = vmf->flags & FAULT_FLAG_WRITE;
4213         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4214         pmd_t entry;
4215         int i;
4216         vm_fault_t ret = VM_FAULT_FALLBACK;
4217
4218         if (!transhuge_vma_suitable(vma, haddr))
4219                 return ret;
4220
4221         page = compound_head(page);
4222         if (compound_order(page) != HPAGE_PMD_ORDER)
4223                 return ret;
4224
4225         /*
4226          * Just backoff if any subpage of a THP is corrupted otherwise
4227          * the corrupted page may mapped by PMD silently to escape the
4228          * check.  This kind of THP just can be PTE mapped.  Access to
4229          * the corrupted subpage should trigger SIGBUS as expected.
4230          */
4231         if (unlikely(PageHasHWPoisoned(page)))
4232                 return ret;
4233
4234         /*
4235          * Archs like ppc64 need additional space to store information
4236          * related to pte entry. Use the preallocated table for that.
4237          */
4238         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4239                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4240                 if (!vmf->prealloc_pte)
4241                         return VM_FAULT_OOM;
4242         }
4243
4244         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4245         if (unlikely(!pmd_none(*vmf->pmd)))
4246                 goto out;
4247
4248         for (i = 0; i < HPAGE_PMD_NR; i++)
4249                 flush_icache_page(vma, page + i);
4250
4251         entry = mk_huge_pmd(page, vma->vm_page_prot);
4252         if (write)
4253                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4254
4255         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4256         page_add_file_rmap(page, vma, true);
4257
4258         /*
4259          * deposit and withdraw with pmd lock held
4260          */
4261         if (arch_needs_pgtable_deposit())
4262                 deposit_prealloc_pte(vmf);
4263
4264         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4265
4266         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4267
4268         /* fault is handled */
4269         ret = 0;
4270         count_vm_event(THP_FILE_MAPPED);
4271 out:
4272         spin_unlock(vmf->ptl);
4273         return ret;
4274 }
4275 #else
4276 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4277 {
4278         return VM_FAULT_FALLBACK;
4279 }
4280 #endif
4281
4282 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4283 {
4284         struct vm_area_struct *vma = vmf->vma;
4285         bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4286         bool write = vmf->flags & FAULT_FLAG_WRITE;
4287         bool prefault = vmf->address != addr;
4288         pte_t entry;
4289
4290         flush_icache_page(vma, page);
4291         entry = mk_pte(page, vma->vm_page_prot);
4292
4293         if (prefault && arch_wants_old_prefaulted_pte())
4294                 entry = pte_mkold(entry);
4295         else
4296                 entry = pte_sw_mkyoung(entry);
4297
4298         if (write)
4299                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4300         if (unlikely(uffd_wp))
4301                 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4302         /* copy-on-write page */
4303         if (write && !(vma->vm_flags & VM_SHARED)) {
4304                 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4305                 page_add_new_anon_rmap(page, vma, addr);
4306                 lru_cache_add_inactive_or_unevictable(page, vma);
4307         } else {
4308                 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4309                 page_add_file_rmap(page, vma, false);
4310         }
4311         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4312 }
4313
4314 static bool vmf_pte_changed(struct vm_fault *vmf)
4315 {
4316         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4317                 return !pte_same(*vmf->pte, vmf->orig_pte);
4318
4319         return !pte_none(*vmf->pte);
4320 }
4321
4322 /**
4323  * finish_fault - finish page fault once we have prepared the page to fault
4324  *
4325  * @vmf: structure describing the fault
4326  *
4327  * This function handles all that is needed to finish a page fault once the
4328  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4329  * given page, adds reverse page mapping, handles memcg charges and LRU
4330  * addition.
4331  *
4332  * The function expects the page to be locked and on success it consumes a
4333  * reference of a page being mapped (for the PTE which maps it).
4334  *
4335  * Return: %0 on success, %VM_FAULT_ code in case of error.
4336  */
4337 vm_fault_t finish_fault(struct vm_fault *vmf)
4338 {
4339         struct vm_area_struct *vma = vmf->vma;
4340         struct page *page;
4341         vm_fault_t ret;
4342
4343         /* Did we COW the page? */
4344         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4345                 page = vmf->cow_page;
4346         else
4347                 page = vmf->page;
4348
4349         /*
4350          * check even for read faults because we might have lost our CoWed
4351          * page
4352          */
4353         if (!(vma->vm_flags & VM_SHARED)) {
4354                 ret = check_stable_address_space(vma->vm_mm);
4355                 if (ret)
4356                         return ret;
4357         }
4358
4359         if (pmd_none(*vmf->pmd)) {
4360                 if (PageTransCompound(page)) {
4361                         ret = do_set_pmd(vmf, page);
4362                         if (ret != VM_FAULT_FALLBACK)
4363                                 return ret;
4364                 }
4365
4366                 if (vmf->prealloc_pte)
4367                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4368                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4369                         return VM_FAULT_OOM;
4370         }
4371
4372         /*
4373          * See comment in handle_pte_fault() for how this scenario happens, we
4374          * need to return NOPAGE so that we drop this page.
4375          */
4376         if (pmd_devmap_trans_unstable(vmf->pmd))
4377                 return VM_FAULT_NOPAGE;
4378
4379         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4380                                       vmf->address, &vmf->ptl);
4381
4382         /* Re-check under ptl */
4383         if (likely(!vmf_pte_changed(vmf))) {
4384                 do_set_pte(vmf, page, vmf->address);
4385
4386                 /* no need to invalidate: a not-present page won't be cached */
4387                 update_mmu_cache(vma, vmf->address, vmf->pte);
4388
4389                 ret = 0;
4390         } else {
4391                 update_mmu_tlb(vma, vmf->address, vmf->pte);
4392                 ret = VM_FAULT_NOPAGE;
4393         }
4394
4395         pte_unmap_unlock(vmf->pte, vmf->ptl);
4396         return ret;
4397 }
4398
4399 static unsigned long fault_around_bytes __read_mostly =
4400         rounddown_pow_of_two(65536);
4401
4402 #ifdef CONFIG_DEBUG_FS
4403 static int fault_around_bytes_get(void *data, u64 *val)
4404 {
4405         *val = fault_around_bytes;
4406         return 0;
4407 }
4408
4409 /*
4410  * fault_around_bytes must be rounded down to the nearest page order as it's
4411  * what do_fault_around() expects to see.
4412  */
4413 static int fault_around_bytes_set(void *data, u64 val)
4414 {
4415         if (val / PAGE_SIZE > PTRS_PER_PTE)
4416                 return -EINVAL;
4417         if (val > PAGE_SIZE)
4418                 fault_around_bytes = rounddown_pow_of_two(val);
4419         else
4420                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4421         return 0;
4422 }
4423 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4424                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4425
4426 static int __init fault_around_debugfs(void)
4427 {
4428         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4429                                    &fault_around_bytes_fops);
4430         return 0;
4431 }
4432 late_initcall(fault_around_debugfs);
4433 #endif
4434
4435 /*
4436  * do_fault_around() tries to map few pages around the fault address. The hope
4437  * is that the pages will be needed soon and this will lower the number of
4438  * faults to handle.
4439  *
4440  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4441  * not ready to be mapped: not up-to-date, locked, etc.
4442  *
4443  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4444  * only once.
4445  *
4446  * fault_around_bytes defines how many bytes we'll try to map.
4447  * do_fault_around() expects it to be set to a power of two less than or equal
4448  * to PTRS_PER_PTE.
4449  *
4450  * The virtual address of the area that we map is naturally aligned to
4451  * fault_around_bytes rounded down to the machine page size
4452  * (and therefore to page order).  This way it's easier to guarantee
4453  * that we don't cross page table boundaries.
4454  */
4455 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4456 {
4457         unsigned long address = vmf->address, nr_pages, mask;
4458         pgoff_t start_pgoff = vmf->pgoff;
4459         pgoff_t end_pgoff;
4460         int off;
4461
4462         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4463         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4464
4465         address = max(address & mask, vmf->vma->vm_start);
4466         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4467         start_pgoff -= off;
4468
4469         /*
4470          *  end_pgoff is either the end of the page table, the end of
4471          *  the vma or nr_pages from start_pgoff, depending what is nearest.
4472          */
4473         end_pgoff = start_pgoff -
4474                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4475                 PTRS_PER_PTE - 1;
4476         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4477                         start_pgoff + nr_pages - 1);
4478
4479         if (pmd_none(*vmf->pmd)) {
4480                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4481                 if (!vmf->prealloc_pte)
4482                         return VM_FAULT_OOM;
4483         }
4484
4485         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4486 }
4487
4488 /* Return true if we should do read fault-around, false otherwise */
4489 static inline bool should_fault_around(struct vm_fault *vmf)
4490 {
4491         /* No ->map_pages?  No way to fault around... */
4492         if (!vmf->vma->vm_ops->map_pages)
4493                 return false;
4494
4495         if (uffd_disable_fault_around(vmf->vma))
4496                 return false;
4497
4498         return fault_around_bytes >> PAGE_SHIFT > 1;
4499 }
4500
4501 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4502 {
4503         vm_fault_t ret = 0;
4504
4505         /*
4506          * Let's call ->map_pages() first and use ->fault() as fallback
4507          * if page by the offset is not ready to be mapped (cold cache or
4508          * something).
4509          */
4510         if (should_fault_around(vmf)) {
4511                 ret = do_fault_around(vmf);
4512                 if (ret)
4513                         return ret;
4514         }
4515
4516         ret = __do_fault(vmf);
4517         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4518                 return ret;
4519
4520         ret |= finish_fault(vmf);
4521         unlock_page(vmf->page);
4522         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4523                 put_page(vmf->page);
4524         return ret;
4525 }
4526
4527 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4528 {
4529         struct vm_area_struct *vma = vmf->vma;
4530         vm_fault_t ret;
4531
4532         if (unlikely(anon_vma_prepare(vma)))
4533                 return VM_FAULT_OOM;
4534
4535         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4536         if (!vmf->cow_page)
4537                 return VM_FAULT_OOM;
4538
4539         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4540                                 GFP_KERNEL)) {
4541                 put_page(vmf->cow_page);
4542                 return VM_FAULT_OOM;
4543         }
4544         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4545
4546         ret = __do_fault(vmf);
4547         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4548                 goto uncharge_out;
4549         if (ret & VM_FAULT_DONE_COW)
4550                 return ret;
4551
4552         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4553         __SetPageUptodate(vmf->cow_page);
4554
4555         ret |= finish_fault(vmf);
4556         unlock_page(vmf->page);
4557         put_page(vmf->page);
4558         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4559                 goto uncharge_out;
4560         return ret;
4561 uncharge_out:
4562         put_page(vmf->cow_page);
4563         return ret;
4564 }
4565
4566 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4567 {
4568         struct vm_area_struct *vma = vmf->vma;
4569         vm_fault_t ret, tmp;
4570
4571         ret = __do_fault(vmf);
4572         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4573                 return ret;
4574
4575         /*
4576          * Check if the backing address space wants to know that the page is
4577          * about to become writable
4578          */
4579         if (vma->vm_ops->page_mkwrite) {
4580                 unlock_page(vmf->page);
4581                 tmp = do_page_mkwrite(vmf);
4582                 if (unlikely(!tmp ||
4583                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4584                         put_page(vmf->page);
4585                         return tmp;
4586                 }
4587         }
4588
4589         ret |= finish_fault(vmf);
4590         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4591                                         VM_FAULT_RETRY))) {
4592                 unlock_page(vmf->page);
4593                 put_page(vmf->page);
4594                 return ret;
4595         }
4596
4597         ret |= fault_dirty_shared_page(vmf);
4598         return ret;
4599 }
4600
4601 /*
4602  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4603  * but allow concurrent faults).
4604  * The mmap_lock may have been released depending on flags and our
4605  * return value.  See filemap_fault() and __folio_lock_or_retry().
4606  * If mmap_lock is released, vma may become invalid (for example
4607  * by other thread calling munmap()).
4608  */
4609 static vm_fault_t do_fault(struct vm_fault *vmf)
4610 {
4611         struct vm_area_struct *vma = vmf->vma;
4612         struct mm_struct *vm_mm = vma->vm_mm;
4613         vm_fault_t ret;
4614
4615         /*
4616          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4617          */
4618         if (!vma->vm_ops->fault) {
4619                 /*
4620                  * If we find a migration pmd entry or a none pmd entry, which
4621                  * should never happen, return SIGBUS
4622                  */
4623                 if (unlikely(!pmd_present(*vmf->pmd)))
4624                         ret = VM_FAULT_SIGBUS;
4625                 else {
4626                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4627                                                        vmf->pmd,
4628                                                        vmf->address,
4629                                                        &vmf->ptl);
4630                         /*
4631                          * Make sure this is not a temporary clearing of pte
4632                          * by holding ptl and checking again. A R/M/W update
4633                          * of pte involves: take ptl, clearing the pte so that
4634                          * we don't have concurrent modification by hardware
4635                          * followed by an update.
4636                          */
4637                         if (unlikely(pte_none(*vmf->pte)))
4638                                 ret = VM_FAULT_SIGBUS;
4639                         else
4640                                 ret = VM_FAULT_NOPAGE;
4641
4642                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4643                 }
4644         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4645                 ret = do_read_fault(vmf);
4646         else if (!(vma->vm_flags & VM_SHARED))
4647                 ret = do_cow_fault(vmf);
4648         else
4649                 ret = do_shared_fault(vmf);
4650
4651         /* preallocated pagetable is unused: free it */
4652         if (vmf->prealloc_pte) {
4653                 pte_free(vm_mm, vmf->prealloc_pte);
4654                 vmf->prealloc_pte = NULL;
4655         }
4656         return ret;
4657 }
4658
4659 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4660                       unsigned long addr, int page_nid, int *flags)
4661 {
4662         get_page(page);
4663
4664         count_vm_numa_event(NUMA_HINT_FAULTS);
4665         if (page_nid == numa_node_id()) {
4666                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4667                 *flags |= TNF_FAULT_LOCAL;
4668         }
4669
4670         return mpol_misplaced(page, vma, addr);
4671 }
4672
4673 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4674 {
4675         struct vm_area_struct *vma = vmf->vma;
4676         struct page *page = NULL;
4677         int page_nid = NUMA_NO_NODE;
4678         int last_cpupid;
4679         int target_nid;
4680         pte_t pte, old_pte;
4681         bool was_writable = pte_savedwrite(vmf->orig_pte);
4682         int flags = 0;
4683
4684         /*
4685          * The "pte" at this point cannot be used safely without
4686          * validation through pte_unmap_same(). It's of NUMA type but
4687          * the pfn may be screwed if the read is non atomic.
4688          */
4689         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4690         spin_lock(vmf->ptl);
4691         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4692                 pte_unmap_unlock(vmf->pte, vmf->ptl);
4693                 goto out;
4694         }
4695
4696         /* Get the normal PTE  */
4697         old_pte = ptep_get(vmf->pte);
4698         pte = pte_modify(old_pte, vma->vm_page_prot);
4699
4700         page = vm_normal_page(vma, vmf->address, pte);
4701         if (!page || is_zone_device_page(page))
4702                 goto out_map;
4703
4704         /* TODO: handle PTE-mapped THP */
4705         if (PageCompound(page))
4706                 goto out_map;
4707
4708         /*
4709          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4710          * much anyway since they can be in shared cache state. This misses
4711          * the case where a mapping is writable but the process never writes
4712          * to it but pte_write gets cleared during protection updates and
4713          * pte_dirty has unpredictable behaviour between PTE scan updates,
4714          * background writeback, dirty balancing and application behaviour.
4715          */
4716         if (!was_writable)
4717                 flags |= TNF_NO_GROUP;
4718
4719         /*
4720          * Flag if the page is shared between multiple address spaces. This
4721          * is later used when determining whether to group tasks together
4722          */
4723         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4724                 flags |= TNF_SHARED;
4725
4726         page_nid = page_to_nid(page);
4727         /*
4728          * For memory tiering mode, cpupid of slow memory page is used
4729          * to record page access time.  So use default value.
4730          */
4731         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4732             !node_is_toptier(page_nid))
4733                 last_cpupid = (-1 & LAST_CPUPID_MASK);
4734         else
4735                 last_cpupid = page_cpupid_last(page);
4736         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4737                         &flags);
4738         if (target_nid == NUMA_NO_NODE) {
4739                 put_page(page);
4740                 goto out_map;
4741         }
4742         pte_unmap_unlock(vmf->pte, vmf->ptl);
4743
4744         /* Migrate to the requested node */
4745         if (migrate_misplaced_page(page, vma, target_nid)) {
4746                 page_nid = target_nid;
4747                 flags |= TNF_MIGRATED;
4748         } else {
4749                 flags |= TNF_MIGRATE_FAIL;
4750                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4751                 spin_lock(vmf->ptl);
4752                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4753                         pte_unmap_unlock(vmf->pte, vmf->ptl);
4754                         goto out;
4755                 }
4756                 goto out_map;
4757         }
4758
4759 out:
4760         if (page_nid != NUMA_NO_NODE)
4761                 task_numa_fault(last_cpupid, page_nid, 1, flags);
4762         return 0;
4763 out_map:
4764         /*
4765          * Make it present again, depending on how arch implements
4766          * non-accessible ptes, some can allow access by kernel mode.
4767          */
4768         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4769         pte = pte_modify(old_pte, vma->vm_page_prot);
4770         pte = pte_mkyoung(pte);
4771         if (was_writable)
4772                 pte = pte_mkwrite(pte);
4773         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4774         update_mmu_cache(vma, vmf->address, vmf->pte);
4775         pte_unmap_unlock(vmf->pte, vmf->ptl);
4776         goto out;
4777 }
4778
4779 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4780 {
4781         if (vma_is_anonymous(vmf->vma))
4782                 return do_huge_pmd_anonymous_page(vmf);
4783         if (vmf->vma->vm_ops->huge_fault)
4784                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4785         return VM_FAULT_FALLBACK;
4786 }
4787
4788 /* `inline' is required to avoid gcc 4.1.2 build error */
4789 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4790 {
4791         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4792
4793         if (vma_is_anonymous(vmf->vma)) {
4794                 if (likely(!unshare) &&
4795                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4796                         return handle_userfault(vmf, VM_UFFD_WP);
4797                 return do_huge_pmd_wp_page(vmf);
4798         }
4799         if (vmf->vma->vm_ops->huge_fault) {
4800                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4801
4802                 if (!(ret & VM_FAULT_FALLBACK))
4803                         return ret;
4804         }
4805
4806         /* COW or write-notify handled on pte level: split pmd. */
4807         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4808
4809         return VM_FAULT_FALLBACK;
4810 }
4811
4812 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4813 {
4814 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4815         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4816         /* No support for anonymous transparent PUD pages yet */
4817         if (vma_is_anonymous(vmf->vma))
4818                 return VM_FAULT_FALLBACK;
4819         if (vmf->vma->vm_ops->huge_fault)
4820                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4821 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4822         return VM_FAULT_FALLBACK;
4823 }
4824
4825 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4826 {
4827 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
4828         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4829         /* No support for anonymous transparent PUD pages yet */
4830         if (vma_is_anonymous(vmf->vma))
4831                 goto split;
4832         if (vmf->vma->vm_ops->huge_fault) {
4833                 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4834
4835                 if (!(ret & VM_FAULT_FALLBACK))
4836                         return ret;
4837         }
4838 split:
4839         /* COW or write-notify not handled on PUD level: split pud.*/
4840         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4841 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4842         return VM_FAULT_FALLBACK;
4843 }
4844
4845 /*
4846  * These routines also need to handle stuff like marking pages dirty
4847  * and/or accessed for architectures that don't do it in hardware (most
4848  * RISC architectures).  The early dirtying is also good on the i386.
4849  *
4850  * There is also a hook called "update_mmu_cache()" that architectures
4851  * with external mmu caches can use to update those (ie the Sparc or
4852  * PowerPC hashed page tables that act as extended TLBs).
4853  *
4854  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4855  * concurrent faults).
4856  *
4857  * The mmap_lock may have been released depending on flags and our return value.
4858  * See filemap_fault() and __folio_lock_or_retry().
4859  */
4860 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4861 {
4862         pte_t entry;
4863
4864         if (unlikely(pmd_none(*vmf->pmd))) {
4865                 /*
4866                  * Leave __pte_alloc() until later: because vm_ops->fault may
4867                  * want to allocate huge page, and if we expose page table
4868                  * for an instant, it will be difficult to retract from
4869                  * concurrent faults and from rmap lookups.
4870                  */
4871                 vmf->pte = NULL;
4872                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4873         } else {
4874                 /*
4875                  * If a huge pmd materialized under us just retry later.  Use
4876                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4877                  * of pmd_trans_huge() to ensure the pmd didn't become
4878                  * pmd_trans_huge under us and then back to pmd_none, as a
4879                  * result of MADV_DONTNEED running immediately after a huge pmd
4880                  * fault in a different thread of this mm, in turn leading to a
4881                  * misleading pmd_trans_huge() retval. All we have to ensure is
4882                  * that it is a regular pmd that we can walk with
4883                  * pte_offset_map() and we can do that through an atomic read
4884                  * in C, which is what pmd_trans_unstable() provides.
4885                  */
4886                 if (pmd_devmap_trans_unstable(vmf->pmd))
4887                         return 0;
4888                 /*
4889                  * A regular pmd is established and it can't morph into a huge
4890                  * pmd from under us anymore at this point because we hold the
4891                  * mmap_lock read mode and khugepaged takes it in write mode.
4892                  * So now it's safe to run pte_offset_map().
4893                  */
4894                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4895                 vmf->orig_pte = *vmf->pte;
4896                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4897
4898                 /*
4899                  * some architectures can have larger ptes than wordsize,
4900                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4901                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4902                  * accesses.  The code below just needs a consistent view
4903                  * for the ifs and we later double check anyway with the
4904                  * ptl lock held. So here a barrier will do.
4905                  */
4906                 barrier();
4907                 if (pte_none(vmf->orig_pte)) {
4908                         pte_unmap(vmf->pte);
4909                         vmf->pte = NULL;
4910                 }
4911         }
4912
4913         if (!vmf->pte) {
4914                 if (vma_is_anonymous(vmf->vma))
4915                         return do_anonymous_page(vmf);
4916                 else
4917                         return do_fault(vmf);
4918         }
4919
4920         if (!pte_present(vmf->orig_pte))
4921                 return do_swap_page(vmf);
4922
4923         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4924                 return do_numa_page(vmf);
4925
4926         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4927         spin_lock(vmf->ptl);
4928         entry = vmf->orig_pte;
4929         if (unlikely(!pte_same(*vmf->pte, entry))) {
4930                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4931                 goto unlock;
4932         }
4933         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4934                 if (!pte_write(entry))
4935                         return do_wp_page(vmf);
4936                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4937                         entry = pte_mkdirty(entry);
4938         }
4939         entry = pte_mkyoung(entry);
4940         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4941                                 vmf->flags & FAULT_FLAG_WRITE)) {
4942                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4943         } else {
4944                 /* Skip spurious TLB flush for retried page fault */
4945                 if (vmf->flags & FAULT_FLAG_TRIED)
4946                         goto unlock;
4947                 /*
4948                  * This is needed only for protection faults but the arch code
4949                  * is not yet telling us if this is a protection fault or not.
4950                  * This still avoids useless tlb flushes for .text page faults
4951                  * with threads.
4952                  */
4953                 if (vmf->flags & FAULT_FLAG_WRITE)
4954                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4955         }
4956 unlock:
4957         pte_unmap_unlock(vmf->pte, vmf->ptl);
4958         return 0;
4959 }
4960
4961 /*
4962  * By the time we get here, we already hold the mm semaphore
4963  *
4964  * The mmap_lock may have been released depending on flags and our
4965  * return value.  See filemap_fault() and __folio_lock_or_retry().
4966  */
4967 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4968                 unsigned long address, unsigned int flags)
4969 {
4970         struct vm_fault vmf = {
4971                 .vma = vma,
4972                 .address = address & PAGE_MASK,
4973                 .real_address = address,
4974                 .flags = flags,
4975                 .pgoff = linear_page_index(vma, address),
4976                 .gfp_mask = __get_fault_gfp_mask(vma),
4977         };
4978         struct mm_struct *mm = vma->vm_mm;
4979         unsigned long vm_flags = vma->vm_flags;
4980         pgd_t *pgd;
4981         p4d_t *p4d;
4982         vm_fault_t ret;
4983
4984         pgd = pgd_offset(mm, address);
4985         p4d = p4d_alloc(mm, pgd, address);
4986         if (!p4d)
4987                 return VM_FAULT_OOM;
4988
4989         vmf.pud = pud_alloc(mm, p4d, address);
4990         if (!vmf.pud)
4991                 return VM_FAULT_OOM;
4992 retry_pud:
4993         if (pud_none(*vmf.pud) &&
4994             hugepage_vma_check(vma, vm_flags, false, true, true)) {
4995                 ret = create_huge_pud(&vmf);
4996                 if (!(ret & VM_FAULT_FALLBACK))
4997                         return ret;
4998         } else {
4999                 pud_t orig_pud = *vmf.pud;
5000
5001                 barrier();
5002                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5003
5004                         /*
5005                          * TODO once we support anonymous PUDs: NUMA case and
5006                          * FAULT_FLAG_UNSHARE handling.
5007                          */
5008                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5009                                 ret = wp_huge_pud(&vmf, orig_pud);
5010                                 if (!(ret & VM_FAULT_FALLBACK))
5011                                         return ret;
5012                         } else {
5013                                 huge_pud_set_accessed(&vmf, orig_pud);
5014                                 return 0;
5015                         }
5016                 }
5017         }
5018
5019         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5020         if (!vmf.pmd)
5021                 return VM_FAULT_OOM;
5022
5023         /* Huge pud page fault raced with pmd_alloc? */
5024         if (pud_trans_unstable(vmf.pud))
5025                 goto retry_pud;
5026
5027         if (pmd_none(*vmf.pmd) &&
5028             hugepage_vma_check(vma, vm_flags, false, true, true)) {
5029                 ret = create_huge_pmd(&vmf);
5030                 if (!(ret & VM_FAULT_FALLBACK))
5031                         return ret;
5032         } else {
5033                 vmf.orig_pmd = *vmf.pmd;
5034
5035                 barrier();
5036                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5037                         VM_BUG_ON(thp_migration_supported() &&
5038                                           !is_pmd_migration_entry(vmf.orig_pmd));
5039                         if (is_pmd_migration_entry(vmf.orig_pmd))
5040                                 pmd_migration_entry_wait(mm, vmf.pmd);
5041                         return 0;
5042                 }
5043                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5044                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5045                                 return do_huge_pmd_numa_page(&vmf);
5046
5047                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5048                             !pmd_write(vmf.orig_pmd)) {
5049                                 ret = wp_huge_pmd(&vmf);
5050                                 if (!(ret & VM_FAULT_FALLBACK))
5051                                         return ret;
5052                         } else {
5053                                 huge_pmd_set_accessed(&vmf);
5054                                 return 0;
5055                         }
5056                 }
5057         }
5058
5059         return handle_pte_fault(&vmf);
5060 }
5061
5062 /**
5063  * mm_account_fault - Do page fault accounting
5064  *
5065  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5066  *        of perf event counters, but we'll still do the per-task accounting to
5067  *        the task who triggered this page fault.
5068  * @address: the faulted address.
5069  * @flags: the fault flags.
5070  * @ret: the fault retcode.
5071  *
5072  * This will take care of most of the page fault accounting.  Meanwhile, it
5073  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5074  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5075  * still be in per-arch page fault handlers at the entry of page fault.
5076  */
5077 static inline void mm_account_fault(struct pt_regs *regs,
5078                                     unsigned long address, unsigned int flags,
5079                                     vm_fault_t ret)
5080 {
5081         bool major;
5082
5083         /*
5084          * We don't do accounting for some specific faults:
5085          *
5086          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5087          *   includes arch_vma_access_permitted() failing before reaching here.
5088          *   So this is not a "this many hardware page faults" counter.  We
5089          *   should use the hw profiling for that.
5090          *
5091          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5092          *   once they're completed.
5093          */
5094         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5095                 return;
5096
5097         /*
5098          * We define the fault as a major fault when the final successful fault
5099          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5100          * handle it immediately previously).
5101          */
5102         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5103
5104         if (major)
5105                 current->maj_flt++;
5106         else
5107                 current->min_flt++;
5108
5109         /*
5110          * If the fault is done for GUP, regs will be NULL.  We only do the
5111          * accounting for the per thread fault counters who triggered the
5112          * fault, and we skip the perf event updates.
5113          */
5114         if (!regs)
5115                 return;
5116
5117         if (major)
5118                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5119         else
5120                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5121 }
5122
5123 #ifdef CONFIG_LRU_GEN
5124 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5125 {
5126         /* the LRU algorithm doesn't apply to sequential or random reads */
5127         current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5128 }
5129
5130 static void lru_gen_exit_fault(void)
5131 {
5132         current->in_lru_fault = false;
5133 }
5134 #else
5135 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5136 {
5137 }
5138
5139 static void lru_gen_exit_fault(void)
5140 {
5141 }
5142 #endif /* CONFIG_LRU_GEN */
5143
5144 /*
5145  * By the time we get here, we already hold the mm semaphore
5146  *
5147  * The mmap_lock may have been released depending on flags and our
5148  * return value.  See filemap_fault() and __folio_lock_or_retry().
5149  */
5150 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5151                            unsigned int flags, struct pt_regs *regs)
5152 {
5153         vm_fault_t ret;
5154
5155         __set_current_state(TASK_RUNNING);
5156
5157         count_vm_event(PGFAULT);
5158         count_memcg_event_mm(vma->vm_mm, PGFAULT);
5159
5160         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5161                                             flags & FAULT_FLAG_INSTRUCTION,
5162                                             flags & FAULT_FLAG_REMOTE))
5163                 return VM_FAULT_SIGSEGV;
5164
5165         /*
5166          * Enable the memcg OOM handling for faults triggered in user
5167          * space.  Kernel faults are handled more gracefully.
5168          */
5169         if (flags & FAULT_FLAG_USER)
5170                 mem_cgroup_enter_user_fault();
5171
5172         lru_gen_enter_fault(vma);
5173
5174         if (unlikely(is_vm_hugetlb_page(vma)))
5175                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5176         else
5177                 ret = __handle_mm_fault(vma, address, flags);
5178
5179         lru_gen_exit_fault();
5180
5181         if (flags & FAULT_FLAG_USER) {
5182                 mem_cgroup_exit_user_fault();
5183                 /*
5184                  * The task may have entered a memcg OOM situation but
5185                  * if the allocation error was handled gracefully (no
5186                  * VM_FAULT_OOM), there is no need to kill anything.
5187                  * Just clean up the OOM state peacefully.
5188                  */
5189                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5190                         mem_cgroup_oom_synchronize(false);
5191         }
5192
5193         mm_account_fault(regs, address, flags, ret);
5194
5195         return ret;
5196 }
5197 EXPORT_SYMBOL_GPL(handle_mm_fault);
5198
5199 #ifndef __PAGETABLE_P4D_FOLDED
5200 /*
5201  * Allocate p4d page table.
5202  * We've already handled the fast-path in-line.
5203  */
5204 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5205 {
5206         p4d_t *new = p4d_alloc_one(mm, address);
5207         if (!new)
5208                 return -ENOMEM;
5209
5210         spin_lock(&mm->page_table_lock);
5211         if (pgd_present(*pgd)) {        /* Another has populated it */
5212                 p4d_free(mm, new);
5213         } else {
5214                 smp_wmb(); /* See comment in pmd_install() */
5215                 pgd_populate(mm, pgd, new);
5216         }
5217         spin_unlock(&mm->page_table_lock);
5218         return 0;
5219 }
5220 #endif /* __PAGETABLE_P4D_FOLDED */
5221
5222 #ifndef __PAGETABLE_PUD_FOLDED
5223 /*
5224  * Allocate page upper directory.
5225  * We've already handled the fast-path in-line.
5226  */
5227 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5228 {
5229         pud_t *new = pud_alloc_one(mm, address);
5230         if (!new)
5231                 return -ENOMEM;
5232
5233         spin_lock(&mm->page_table_lock);
5234         if (!p4d_present(*p4d)) {
5235                 mm_inc_nr_puds(mm);
5236                 smp_wmb(); /* See comment in pmd_install() */
5237                 p4d_populate(mm, p4d, new);
5238         } else  /* Another has populated it */
5239                 pud_free(mm, new);
5240         spin_unlock(&mm->page_table_lock);
5241         return 0;
5242 }
5243 #endif /* __PAGETABLE_PUD_FOLDED */
5244
5245 #ifndef __PAGETABLE_PMD_FOLDED
5246 /*
5247  * Allocate page middle directory.
5248  * We've already handled the fast-path in-line.
5249  */
5250 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5251 {
5252         spinlock_t *ptl;
5253         pmd_t *new = pmd_alloc_one(mm, address);
5254         if (!new)
5255                 return -ENOMEM;
5256
5257         ptl = pud_lock(mm, pud);
5258         if (!pud_present(*pud)) {
5259                 mm_inc_nr_pmds(mm);
5260                 smp_wmb(); /* See comment in pmd_install() */
5261                 pud_populate(mm, pud, new);
5262         } else {        /* Another has populated it */
5263                 pmd_free(mm, new);
5264         }
5265         spin_unlock(ptl);
5266         return 0;
5267 }
5268 #endif /* __PAGETABLE_PMD_FOLDED */
5269
5270 /**
5271  * follow_pte - look up PTE at a user virtual address
5272  * @mm: the mm_struct of the target address space
5273  * @address: user virtual address
5274  * @ptepp: location to store found PTE
5275  * @ptlp: location to store the lock for the PTE
5276  *
5277  * On a successful return, the pointer to the PTE is stored in @ptepp;
5278  * the corresponding lock is taken and its location is stored in @ptlp.
5279  * The contents of the PTE are only stable until @ptlp is released;
5280  * any further use, if any, must be protected against invalidation
5281  * with MMU notifiers.
5282  *
5283  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5284  * should be taken for read.
5285  *
5286  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5287  * it is not a good general-purpose API.
5288  *
5289  * Return: zero on success, -ve otherwise.
5290  */
5291 int follow_pte(struct mm_struct *mm, unsigned long address,
5292                pte_t **ptepp, spinlock_t **ptlp)
5293 {
5294         pgd_t *pgd;
5295         p4d_t *p4d;
5296         pud_t *pud;
5297         pmd_t *pmd;
5298         pte_t *ptep;
5299
5300         pgd = pgd_offset(mm, address);
5301         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5302                 goto out;
5303
5304         p4d = p4d_offset(pgd, address);
5305         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5306                 goto out;
5307
5308         pud = pud_offset(p4d, address);
5309         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5310                 goto out;
5311
5312         pmd = pmd_offset(pud, address);
5313         VM_BUG_ON(pmd_trans_huge(*pmd));
5314
5315         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5316                 goto out;
5317
5318         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5319         if (!pte_present(*ptep))
5320                 goto unlock;
5321         *ptepp = ptep;
5322         return 0;
5323 unlock:
5324         pte_unmap_unlock(ptep, *ptlp);
5325 out:
5326         return -EINVAL;
5327 }
5328 EXPORT_SYMBOL_GPL(follow_pte);
5329
5330 /**
5331  * follow_pfn - look up PFN at a user virtual address
5332  * @vma: memory mapping
5333  * @address: user virtual address
5334  * @pfn: location to store found PFN
5335  *
5336  * Only IO mappings and raw PFN mappings are allowed.
5337  *
5338  * This function does not allow the caller to read the permissions
5339  * of the PTE.  Do not use it.
5340  *
5341  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5342  */
5343 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5344         unsigned long *pfn)
5345 {
5346         int ret = -EINVAL;
5347         spinlock_t *ptl;
5348         pte_t *ptep;
5349
5350         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5351                 return ret;
5352
5353         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5354         if (ret)
5355                 return ret;
5356         *pfn = pte_pfn(*ptep);
5357         pte_unmap_unlock(ptep, ptl);
5358         return 0;
5359 }
5360 EXPORT_SYMBOL(follow_pfn);
5361
5362 #ifdef CONFIG_HAVE_IOREMAP_PROT
5363 int follow_phys(struct vm_area_struct *vma,
5364                 unsigned long address, unsigned int flags,
5365                 unsigned long *prot, resource_size_t *phys)
5366 {
5367         int ret = -EINVAL;
5368         pte_t *ptep, pte;
5369         spinlock_t *ptl;
5370
5371         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5372                 goto out;
5373
5374         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5375                 goto out;
5376         pte = *ptep;
5377
5378         if ((flags & FOLL_WRITE) && !pte_write(pte))
5379                 goto unlock;
5380
5381         *prot = pgprot_val(pte_pgprot(pte));
5382         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5383
5384         ret = 0;
5385 unlock:
5386         pte_unmap_unlock(ptep, ptl);
5387 out:
5388         return ret;
5389 }
5390
5391 /**
5392  * generic_access_phys - generic implementation for iomem mmap access
5393  * @vma: the vma to access
5394  * @addr: userspace address, not relative offset within @vma
5395  * @buf: buffer to read/write
5396  * @len: length of transfer
5397  * @write: set to FOLL_WRITE when writing, otherwise reading
5398  *
5399  * This is a generic implementation for &vm_operations_struct.access for an
5400  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5401  * not page based.
5402  */
5403 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5404                         void *buf, int len, int write)
5405 {
5406         resource_size_t phys_addr;
5407         unsigned long prot = 0;
5408         void __iomem *maddr;
5409         pte_t *ptep, pte;
5410         spinlock_t *ptl;
5411         int offset = offset_in_page(addr);
5412         int ret = -EINVAL;
5413
5414         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5415                 return -EINVAL;
5416
5417 retry:
5418         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5419                 return -EINVAL;
5420         pte = *ptep;
5421         pte_unmap_unlock(ptep, ptl);
5422
5423         prot = pgprot_val(pte_pgprot(pte));
5424         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5425
5426         if ((write & FOLL_WRITE) && !pte_write(pte))
5427                 return -EINVAL;
5428
5429         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5430         if (!maddr)
5431                 return -ENOMEM;
5432
5433         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5434                 goto out_unmap;
5435
5436         if (!pte_same(pte, *ptep)) {
5437                 pte_unmap_unlock(ptep, ptl);
5438                 iounmap(maddr);
5439
5440                 goto retry;
5441         }
5442
5443         if (write)
5444                 memcpy_toio(maddr + offset, buf, len);
5445         else
5446                 memcpy_fromio(buf, maddr + offset, len);
5447         ret = len;
5448         pte_unmap_unlock(ptep, ptl);
5449 out_unmap:
5450         iounmap(maddr);
5451
5452         return ret;
5453 }
5454 EXPORT_SYMBOL_GPL(generic_access_phys);
5455 #endif
5456
5457 /*
5458  * Access another process' address space as given in mm.
5459  */
5460 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5461                        int len, unsigned int gup_flags)
5462 {
5463         struct vm_area_struct *vma;
5464         void *old_buf = buf;
5465         int write = gup_flags & FOLL_WRITE;
5466
5467         if (mmap_read_lock_killable(mm))
5468                 return 0;
5469
5470         /* ignore errors, just check how much was successfully transferred */
5471         while (len) {
5472                 int bytes, ret, offset;
5473                 void *maddr;
5474                 struct page *page = NULL;
5475
5476                 ret = get_user_pages_remote(mm, addr, 1,
5477                                 gup_flags, &page, &vma, NULL);
5478                 if (ret <= 0) {
5479 #ifndef CONFIG_HAVE_IOREMAP_PROT
5480                         break;
5481 #else
5482                         /*
5483                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
5484                          * we can access using slightly different code.
5485                          */
5486                         vma = vma_lookup(mm, addr);
5487                         if (!vma)
5488                                 break;
5489                         if (vma->vm_ops && vma->vm_ops->access)
5490                                 ret = vma->vm_ops->access(vma, addr, buf,
5491                                                           len, write);
5492                         if (ret <= 0)
5493                                 break;
5494                         bytes = ret;
5495 #endif
5496                 } else {
5497                         bytes = len;
5498                         offset = addr & (PAGE_SIZE-1);
5499                         if (bytes > PAGE_SIZE-offset)
5500                                 bytes = PAGE_SIZE-offset;
5501
5502                         maddr = kmap(page);
5503                         if (write) {
5504                                 copy_to_user_page(vma, page, addr,
5505                                                   maddr + offset, buf, bytes);
5506                                 set_page_dirty_lock(page);
5507                         } else {
5508                                 copy_from_user_page(vma, page, addr,
5509                                                     buf, maddr + offset, bytes);
5510                         }
5511                         kunmap(page);
5512                         put_page(page);
5513                 }
5514                 len -= bytes;
5515                 buf += bytes;
5516                 addr += bytes;
5517         }
5518         mmap_read_unlock(mm);
5519
5520         return buf - old_buf;
5521 }
5522
5523 /**
5524  * access_remote_vm - access another process' address space
5525  * @mm:         the mm_struct of the target address space
5526  * @addr:       start address to access
5527  * @buf:        source or destination buffer
5528  * @len:        number of bytes to transfer
5529  * @gup_flags:  flags modifying lookup behaviour
5530  *
5531  * The caller must hold a reference on @mm.
5532  *
5533  * Return: number of bytes copied from source to destination.
5534  */
5535 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5536                 void *buf, int len, unsigned int gup_flags)
5537 {
5538         return __access_remote_vm(mm, addr, buf, len, gup_flags);
5539 }
5540
5541 /*
5542  * Access another process' address space.
5543  * Source/target buffer must be kernel space,
5544  * Do not walk the page table directly, use get_user_pages
5545  */
5546 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5547                 void *buf, int len, unsigned int gup_flags)
5548 {
5549         struct mm_struct *mm;
5550         int ret;
5551
5552         mm = get_task_mm(tsk);
5553         if (!mm)
5554                 return 0;
5555
5556         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5557
5558         mmput(mm);
5559
5560         return ret;
5561 }
5562 EXPORT_SYMBOL_GPL(access_process_vm);
5563
5564 /*
5565  * Print the name of a VMA.
5566  */
5567 void print_vma_addr(char *prefix, unsigned long ip)
5568 {
5569         struct mm_struct *mm = current->mm;
5570         struct vm_area_struct *vma;
5571
5572         /*
5573          * we might be running from an atomic context so we cannot sleep
5574          */
5575         if (!mmap_read_trylock(mm))
5576                 return;
5577
5578         vma = find_vma(mm, ip);
5579         if (vma && vma->vm_file) {
5580                 struct file *f = vma->vm_file;
5581                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5582                 if (buf) {
5583                         char *p;
5584
5585                         p = file_path(f, buf, PAGE_SIZE);
5586                         if (IS_ERR(p))
5587                                 p = "?";
5588                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5589                                         vma->vm_start,
5590                                         vma->vm_end - vma->vm_start);
5591                         free_page((unsigned long)buf);
5592                 }
5593         }
5594         mmap_read_unlock(mm);
5595 }
5596
5597 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5598 void __might_fault(const char *file, int line)
5599 {
5600         if (pagefault_disabled())
5601                 return;
5602         __might_sleep(file, line);
5603 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5604         if (current->mm)
5605                 might_lock_read(&current->mm->mmap_lock);
5606 #endif
5607 }
5608 EXPORT_SYMBOL(__might_fault);
5609 #endif
5610
5611 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5612 /*
5613  * Process all subpages of the specified huge page with the specified
5614  * operation.  The target subpage will be processed last to keep its
5615  * cache lines hot.
5616  */
5617 static inline void process_huge_page(
5618         unsigned long addr_hint, unsigned int pages_per_huge_page,
5619         void (*process_subpage)(unsigned long addr, int idx, void *arg),
5620         void *arg)
5621 {
5622         int i, n, base, l;
5623         unsigned long addr = addr_hint &
5624                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5625
5626         /* Process target subpage last to keep its cache lines hot */
5627         might_sleep();
5628         n = (addr_hint - addr) / PAGE_SIZE;
5629         if (2 * n <= pages_per_huge_page) {
5630                 /* If target subpage in first half of huge page */
5631                 base = 0;
5632                 l = n;
5633                 /* Process subpages at the end of huge page */
5634                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5635                         cond_resched();
5636                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5637                 }
5638         } else {
5639                 /* If target subpage in second half of huge page */
5640                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5641                 l = pages_per_huge_page - n;
5642                 /* Process subpages at the begin of huge page */
5643                 for (i = 0; i < base; i++) {
5644                         cond_resched();
5645                         process_subpage(addr + i * PAGE_SIZE, i, arg);
5646                 }
5647         }
5648         /*
5649          * Process remaining subpages in left-right-left-right pattern
5650          * towards the target subpage
5651          */
5652         for (i = 0; i < l; i++) {
5653                 int left_idx = base + i;
5654                 int right_idx = base + 2 * l - 1 - i;
5655
5656                 cond_resched();
5657                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5658                 cond_resched();
5659                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5660         }
5661 }
5662
5663 static void clear_gigantic_page(struct page *page,
5664                                 unsigned long addr,
5665                                 unsigned int pages_per_huge_page)
5666 {
5667         int i;
5668         struct page *p;
5669
5670         might_sleep();
5671         for (i = 0; i < pages_per_huge_page; i++) {
5672                 p = nth_page(page, i);
5673                 cond_resched();
5674                 clear_user_highpage(p, addr + i * PAGE_SIZE);
5675         }
5676 }
5677
5678 static void clear_subpage(unsigned long addr, int idx, void *arg)
5679 {
5680         struct page *page = arg;
5681
5682         clear_user_highpage(page + idx, addr);
5683 }
5684
5685 void clear_huge_page(struct page *page,
5686                      unsigned long addr_hint, unsigned int pages_per_huge_page)
5687 {
5688         unsigned long addr = addr_hint &
5689                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5690
5691         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5692                 clear_gigantic_page(page, addr, pages_per_huge_page);
5693                 return;
5694         }
5695
5696         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5697 }
5698
5699 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5700                                     unsigned long addr,
5701                                     struct vm_area_struct *vma,
5702                                     unsigned int pages_per_huge_page)
5703 {
5704         int i;
5705         struct page *dst_base = dst;
5706         struct page *src_base = src;
5707
5708         for (i = 0; i < pages_per_huge_page; i++) {
5709                 dst = nth_page(dst_base, i);
5710                 src = nth_page(src_base, i);
5711
5712                 cond_resched();
5713                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5714         }
5715 }
5716
5717 struct copy_subpage_arg {
5718         struct page *dst;
5719         struct page *src;
5720         struct vm_area_struct *vma;
5721 };
5722
5723 static void copy_subpage(unsigned long addr, int idx, void *arg)
5724 {
5725         struct copy_subpage_arg *copy_arg = arg;
5726
5727         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5728                            addr, copy_arg->vma);
5729 }
5730
5731 void copy_user_huge_page(struct page *dst, struct page *src,
5732                          unsigned long addr_hint, struct vm_area_struct *vma,
5733                          unsigned int pages_per_huge_page)
5734 {
5735         unsigned long addr = addr_hint &
5736                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5737         struct copy_subpage_arg arg = {
5738                 .dst = dst,
5739                 .src = src,
5740                 .vma = vma,
5741         };
5742
5743         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5744                 copy_user_gigantic_page(dst, src, addr, vma,
5745                                         pages_per_huge_page);
5746                 return;
5747         }
5748
5749         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5750 }
5751
5752 long copy_huge_page_from_user(struct page *dst_page,
5753                                 const void __user *usr_src,
5754                                 unsigned int pages_per_huge_page,
5755                                 bool allow_pagefault)
5756 {
5757         void *page_kaddr;
5758         unsigned long i, rc = 0;
5759         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5760         struct page *subpage;
5761
5762         for (i = 0; i < pages_per_huge_page; i++) {
5763                 subpage = nth_page(dst_page, i);
5764                 if (allow_pagefault)
5765                         page_kaddr = kmap(subpage);
5766                 else
5767                         page_kaddr = kmap_atomic(subpage);
5768                 rc = copy_from_user(page_kaddr,
5769                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5770                 if (allow_pagefault)
5771                         kunmap(subpage);
5772                 else
5773                         kunmap_atomic(page_kaddr);
5774
5775                 ret_val -= (PAGE_SIZE - rc);
5776                 if (rc)
5777                         break;
5778
5779                 flush_dcache_page(subpage);
5780
5781                 cond_resched();
5782         }
5783         return ret_val;
5784 }
5785 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5786
5787 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5788
5789 static struct kmem_cache *page_ptl_cachep;
5790
5791 void __init ptlock_cache_init(void)
5792 {
5793         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5794                         SLAB_PANIC, NULL);
5795 }
5796
5797 bool ptlock_alloc(struct page *page)
5798 {
5799         spinlock_t *ptl;
5800
5801         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5802         if (!ptl)
5803                 return false;
5804         page->ptl = ptl;
5805         return true;
5806 }
5807
5808 void ptlock_free(struct page *page)
5809 {
5810         kmem_cache_free(page_ptl_cachep, page->ptl);
5811 }
5812 #endif
This page took 0.356805 seconds and 4 git commands to generate.