1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
81 #include <trace/events/kmem.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
88 #include <asm/tlbflush.h>
90 #include "pgalloc-track.h"
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
106 static vm_fault_t do_fault(struct vm_fault *vmf);
109 * A number of key systems in x86 including ioremap() rely on the assumption
110 * that high_memory defines the upper bound on direct map memory, then end
111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
116 EXPORT_SYMBOL(high_memory);
119 * Randomize the address space (stacks, mmaps, brk, etc.).
121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122 * as ancient (libc5 based) binaries can segfault. )
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
135 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 * some architectures, even if it's performed in hardware. By
137 * default, "false" means prefaulted entries will be 'young'.
143 static int __init disable_randmaps(char *s)
145 randomize_va_space = 0;
148 __setup("norandmaps", disable_randmaps);
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
153 unsigned long highest_memmap_pfn __read_mostly;
156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
158 static int __init init_zero_pfn(void)
160 zero_pfn = page_to_pfn(ZERO_PAGE(0));
163 early_initcall(init_zero_pfn);
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
167 trace_rss_stat(mm, member);
171 * Note: this doesn't free the actual pages themselves. That
172 * has been handled earlier when unmapping all the memory regions.
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
177 pgtable_t token = pmd_pgtable(*pmd);
179 pte_free_tlb(tlb, token, addr);
180 mm_dec_nr_ptes(tlb->mm);
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184 unsigned long addr, unsigned long end,
185 unsigned long floor, unsigned long ceiling)
192 pmd = pmd_offset(pud, addr);
194 next = pmd_addr_end(addr, end);
195 if (pmd_none_or_clear_bad(pmd))
197 free_pte_range(tlb, pmd, addr);
198 } while (pmd++, addr = next, addr != end);
208 if (end - 1 > ceiling - 1)
211 pmd = pmd_offset(pud, start);
213 pmd_free_tlb(tlb, pmd, start);
214 mm_dec_nr_pmds(tlb->mm);
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
226 pud = pud_offset(p4d, addr);
228 next = pud_addr_end(addr, end);
229 if (pud_none_or_clear_bad(pud))
231 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232 } while (pud++, addr = next, addr != end);
242 if (end - 1 > ceiling - 1)
245 pud = pud_offset(p4d, start);
247 pud_free_tlb(tlb, pud, start);
248 mm_dec_nr_puds(tlb->mm);
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252 unsigned long addr, unsigned long end,
253 unsigned long floor, unsigned long ceiling)
260 p4d = p4d_offset(pgd, addr);
262 next = p4d_addr_end(addr, end);
263 if (p4d_none_or_clear_bad(p4d))
265 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266 } while (p4d++, addr = next, addr != end);
272 ceiling &= PGDIR_MASK;
276 if (end - 1 > ceiling - 1)
279 p4d = p4d_offset(pgd, start);
281 p4d_free_tlb(tlb, p4d, start);
285 * This function frees user-level page tables of a process.
287 void free_pgd_range(struct mmu_gather *tlb,
288 unsigned long addr, unsigned long end,
289 unsigned long floor, unsigned long ceiling)
295 * The next few lines have given us lots of grief...
297 * Why are we testing PMD* at this top level? Because often
298 * there will be no work to do at all, and we'd prefer not to
299 * go all the way down to the bottom just to discover that.
301 * Why all these "- 1"s? Because 0 represents both the bottom
302 * of the address space and the top of it (using -1 for the
303 * top wouldn't help much: the masks would do the wrong thing).
304 * The rule is that addr 0 and floor 0 refer to the bottom of
305 * the address space, but end 0 and ceiling 0 refer to the top
306 * Comparisons need to use "end - 1" and "ceiling - 1" (though
307 * that end 0 case should be mythical).
309 * Wherever addr is brought up or ceiling brought down, we must
310 * be careful to reject "the opposite 0" before it confuses the
311 * subsequent tests. But what about where end is brought down
312 * by PMD_SIZE below? no, end can't go down to 0 there.
314 * Whereas we round start (addr) and ceiling down, by different
315 * masks at different levels, in order to test whether a table
316 * now has no other vmas using it, so can be freed, we don't
317 * bother to round floor or end up - the tests don't need that.
331 if (end - 1 > ceiling - 1)
336 * We add page table cache pages with PAGE_SIZE,
337 * (see pte_free_tlb()), flush the tlb if we need
339 tlb_change_page_size(tlb, PAGE_SIZE);
340 pgd = pgd_offset(tlb->mm, addr);
342 next = pgd_addr_end(addr, end);
343 if (pgd_none_or_clear_bad(pgd))
345 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346 } while (pgd++, addr = next, addr != end);
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350 struct vm_area_struct *vma, unsigned long floor,
351 unsigned long ceiling)
353 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
356 unsigned long addr = vma->vm_start;
357 struct vm_area_struct *next;
360 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361 * be 0. This will underflow and is okay.
363 next = mas_find(&mas, ceiling - 1);
366 * Hide vma from rmap and truncate_pagecache before freeing
369 unlink_anon_vmas(vma);
370 unlink_file_vma(vma);
372 if (is_vm_hugetlb_page(vma)) {
373 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374 floor, next ? next->vm_start : ceiling);
377 * Optimization: gather nearby vmas into one call down
379 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380 && !is_vm_hugetlb_page(next)) {
382 next = mas_find(&mas, ceiling - 1);
383 unlink_anon_vmas(vma);
384 unlink_file_vma(vma);
386 free_pgd_range(tlb, addr, vma->vm_end,
387 floor, next ? next->vm_start : ceiling);
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
395 spinlock_t *ptl = pmd_lock(mm, pmd);
397 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
400 * Ensure all pte setup (eg. pte page lock and page clearing) are
401 * visible before the pte is made visible to other CPUs by being
402 * put into page tables.
404 * The other side of the story is the pointer chasing in the page
405 * table walking code (when walking the page table without locking;
406 * ie. most of the time). Fortunately, these data accesses consist
407 * of a chain of data-dependent loads, meaning most CPUs (alpha
408 * being the notable exception) will already guarantee loads are
409 * seen in-order. See the alpha page table accessors for the
410 * smp_rmb() barriers in page table walking code.
412 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413 pmd_populate(mm, pmd, *pte);
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
421 pgtable_t new = pte_alloc_one(mm);
425 pmd_install(mm, pmd, &new);
431 int __pte_alloc_kernel(pmd_t *pmd)
433 pte_t *new = pte_alloc_one_kernel(&init_mm);
437 spin_lock(&init_mm.page_table_lock);
438 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
439 smp_wmb(); /* See comment in pmd_install() */
440 pmd_populate_kernel(&init_mm, pmd, new);
443 spin_unlock(&init_mm.page_table_lock);
445 pte_free_kernel(&init_mm, new);
449 static inline void init_rss_vec(int *rss)
451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
458 if (current->mm == mm)
460 for (i = 0; i < NR_MM_COUNTERS; i++)
462 add_mm_counter(mm, i, rss[i]);
466 * This function is called to print an error when a bad pte
467 * is found. For example, we might have a PFN-mapped pte in
468 * a region that doesn't allow it.
470 * The calling function must still handle the error.
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 pte_t pte, struct page *page)
475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476 p4d_t *p4d = p4d_offset(pgd, addr);
477 pud_t *pud = pud_offset(p4d, addr);
478 pmd_t *pmd = pmd_offset(pud, addr);
479 struct address_space *mapping;
481 static unsigned long resume;
482 static unsigned long nr_shown;
483 static unsigned long nr_unshown;
486 * Allow a burst of 60 reports, then keep quiet for that minute;
487 * or allow a steady drip of one report per second.
489 if (nr_shown == 60) {
490 if (time_before(jiffies, resume)) {
495 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
502 resume = jiffies + 60 * HZ;
504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 index = linear_page_index(vma, addr);
507 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
509 (long long)pte_val(pte), (long long)pmd_val(*pmd));
511 dump_page(page, "bad pte");
512 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
516 vma->vm_ops ? vma->vm_ops->fault : NULL,
517 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518 mapping ? mapping->a_ops->read_folio : NULL);
520 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
524 * vm_normal_page -- This function gets the "struct page" associated with a pte.
526 * "Special" mappings do not wish to be associated with a "struct page" (either
527 * it doesn't exist, or it exists but they don't want to touch it). In this
528 * case, NULL is returned here. "Normal" mappings do have a struct page.
530 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531 * pte bit, in which case this function is trivial. Secondly, an architecture
532 * may not have a spare pte bit, which requires a more complicated scheme,
535 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536 * special mapping (even if there are underlying and valid "struct pages").
537 * COWed pages of a VM_PFNMAP are always normal.
539 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542 * mapping will always honor the rule
544 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
546 * And for normal mappings this is false.
548 * This restricts such mappings to be a linear translation from virtual address
549 * to pfn. To get around this restriction, we allow arbitrary mappings so long
550 * as the vma is not a COW mapping; in that case, we know that all ptes are
551 * special (because none can have been COWed).
554 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
556 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557 * page" backing, however the difference is that _all_ pages with a struct
558 * page (that is, those where pfn_valid is true) are refcounted and considered
559 * normal pages by the VM. The disadvantage is that pages are refcounted
560 * (which can be slower and simply not an option for some PFNMAP users). The
561 * advantage is that we don't have to follow the strict linearity rule of
562 * PFNMAP mappings in order to support COWable mappings.
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
568 unsigned long pfn = pte_pfn(pte);
570 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571 if (likely(!pte_special(pte)))
573 if (vma->vm_ops && vma->vm_ops->find_special_page)
574 return vma->vm_ops->find_special_page(vma, addr);
575 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
577 if (is_zero_pfn(pfn))
581 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582 * and will have refcounts incremented on their struct pages
583 * when they are inserted into PTEs, thus they are safe to
584 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585 * do not have refcounts. Example of legacy ZONE_DEVICE is
586 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
590 print_bad_pte(vma, addr, pte, NULL);
594 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
596 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597 if (vma->vm_flags & VM_MIXEDMAP) {
603 off = (addr - vma->vm_start) >> PAGE_SHIFT;
604 if (pfn == vma->vm_pgoff + off)
606 if (!is_cow_mapping(vma->vm_flags))
611 if (is_zero_pfn(pfn))
615 if (unlikely(pfn > highest_memmap_pfn)) {
616 print_bad_pte(vma, addr, pte, NULL);
621 * NOTE! We still have PageReserved() pages in the page tables.
622 * eg. VDSO mappings can cause them to exist.
625 return pfn_to_page(pfn);
628 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
629 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
632 unsigned long pfn = pmd_pfn(pmd);
635 * There is no pmd_special() but there may be special pmds, e.g.
636 * in a direct-access (dax) mapping, so let's just replicate the
637 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
639 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
640 if (vma->vm_flags & VM_MIXEDMAP) {
646 off = (addr - vma->vm_start) >> PAGE_SHIFT;
647 if (pfn == vma->vm_pgoff + off)
649 if (!is_cow_mapping(vma->vm_flags))
656 if (is_huge_zero_pmd(pmd))
658 if (unlikely(pfn > highest_memmap_pfn))
662 * NOTE! We still have PageReserved() pages in the page tables.
663 * eg. VDSO mappings can cause them to exist.
666 return pfn_to_page(pfn);
670 static void restore_exclusive_pte(struct vm_area_struct *vma,
671 struct page *page, unsigned long address,
677 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
678 if (pte_swp_soft_dirty(*ptep))
679 pte = pte_mksoft_dirty(pte);
681 entry = pte_to_swp_entry(*ptep);
682 if (pte_swp_uffd_wp(*ptep))
683 pte = pte_mkuffd_wp(pte);
684 else if (is_writable_device_exclusive_entry(entry))
685 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
687 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
690 * No need to take a page reference as one was already
691 * created when the swap entry was made.
694 page_add_anon_rmap(page, vma, address, RMAP_NONE);
697 * Currently device exclusive access only supports anonymous
698 * memory so the entry shouldn't point to a filebacked page.
702 set_pte_at(vma->vm_mm, address, ptep, pte);
705 * No need to invalidate - it was non-present before. However
706 * secondary CPUs may have mappings that need invalidating.
708 update_mmu_cache(vma, address, ptep);
712 * Tries to restore an exclusive pte if the page lock can be acquired without
716 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
719 swp_entry_t entry = pte_to_swp_entry(*src_pte);
720 struct page *page = pfn_swap_entry_to_page(entry);
722 if (trylock_page(page)) {
723 restore_exclusive_pte(vma, page, addr, src_pte);
732 * copy one vm_area from one task to the other. Assumes the page tables
733 * already present in the new task to be cleared in the whole range
734 * covered by this vma.
738 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
739 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
740 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
742 unsigned long vm_flags = dst_vma->vm_flags;
743 pte_t pte = *src_pte;
745 swp_entry_t entry = pte_to_swp_entry(pte);
747 if (likely(!non_swap_entry(entry))) {
748 if (swap_duplicate(entry) < 0)
751 /* make sure dst_mm is on swapoff's mmlist. */
752 if (unlikely(list_empty(&dst_mm->mmlist))) {
753 spin_lock(&mmlist_lock);
754 if (list_empty(&dst_mm->mmlist))
755 list_add(&dst_mm->mmlist,
757 spin_unlock(&mmlist_lock);
759 /* Mark the swap entry as shared. */
760 if (pte_swp_exclusive(*src_pte)) {
761 pte = pte_swp_clear_exclusive(*src_pte);
762 set_pte_at(src_mm, addr, src_pte, pte);
765 } else if (is_migration_entry(entry)) {
766 page = pfn_swap_entry_to_page(entry);
768 rss[mm_counter(page)]++;
770 if (!is_readable_migration_entry(entry) &&
771 is_cow_mapping(vm_flags)) {
773 * COW mappings require pages in both parent and child
774 * to be set to read. A previously exclusive entry is
777 entry = make_readable_migration_entry(
779 pte = swp_entry_to_pte(entry);
780 if (pte_swp_soft_dirty(*src_pte))
781 pte = pte_swp_mksoft_dirty(pte);
782 if (pte_swp_uffd_wp(*src_pte))
783 pte = pte_swp_mkuffd_wp(pte);
784 set_pte_at(src_mm, addr, src_pte, pte);
786 } else if (is_device_private_entry(entry)) {
787 page = pfn_swap_entry_to_page(entry);
790 * Update rss count even for unaddressable pages, as
791 * they should treated just like normal pages in this
794 * We will likely want to have some new rss counters
795 * for unaddressable pages, at some point. But for now
796 * keep things as they are.
799 rss[mm_counter(page)]++;
800 /* Cannot fail as these pages cannot get pinned. */
801 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
804 * We do not preserve soft-dirty information, because so
805 * far, checkpoint/restore is the only feature that
806 * requires that. And checkpoint/restore does not work
807 * when a device driver is involved (you cannot easily
808 * save and restore device driver state).
810 if (is_writable_device_private_entry(entry) &&
811 is_cow_mapping(vm_flags)) {
812 entry = make_readable_device_private_entry(
814 pte = swp_entry_to_pte(entry);
815 if (pte_swp_uffd_wp(*src_pte))
816 pte = pte_swp_mkuffd_wp(pte);
817 set_pte_at(src_mm, addr, src_pte, pte);
819 } else if (is_device_exclusive_entry(entry)) {
821 * Make device exclusive entries present by restoring the
822 * original entry then copying as for a present pte. Device
823 * exclusive entries currently only support private writable
824 * (ie. COW) mappings.
826 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
827 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
830 } else if (is_pte_marker_entry(entry)) {
832 * We're copying the pgtable should only because dst_vma has
833 * uffd-wp enabled, do sanity check.
835 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
836 set_pte_at(dst_mm, addr, dst_pte, pte);
839 if (!userfaultfd_wp(dst_vma))
840 pte = pte_swp_clear_uffd_wp(pte);
841 set_pte_at(dst_mm, addr, dst_pte, pte);
846 * Copy a present and normal page.
848 * NOTE! The usual case is that this isn't required;
849 * instead, the caller can just increase the page refcount
850 * and re-use the pte the traditional way.
852 * And if we need a pre-allocated page but don't yet have
853 * one, return a negative error to let the preallocation
854 * code know so that it can do so outside the page table
858 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
859 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
860 struct page **prealloc, struct page *page)
862 struct page *new_page;
865 new_page = *prealloc;
870 * We have a prealloc page, all good! Take it
871 * over and copy the page & arm it.
874 copy_user_highpage(new_page, page, addr, src_vma);
875 __SetPageUptodate(new_page);
876 page_add_new_anon_rmap(new_page, dst_vma, addr);
877 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
878 rss[mm_counter(new_page)]++;
880 /* All done, just insert the new page copy in the child */
881 pte = mk_pte(new_page, dst_vma->vm_page_prot);
882 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
883 if (userfaultfd_pte_wp(dst_vma, *src_pte))
884 /* Uffd-wp needs to be delivered to dest pte as well */
885 pte = pte_wrprotect(pte_mkuffd_wp(pte));
886 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
891 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
892 * is required to copy this pte.
895 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
897 struct page **prealloc)
899 struct mm_struct *src_mm = src_vma->vm_mm;
900 unsigned long vm_flags = src_vma->vm_flags;
901 pte_t pte = *src_pte;
904 page = vm_normal_page(src_vma, addr, pte);
905 if (page && PageAnon(page)) {
907 * If this page may have been pinned by the parent process,
908 * copy the page immediately for the child so that we'll always
909 * guarantee the pinned page won't be randomly replaced in the
913 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
914 /* Page maybe pinned, we have to copy. */
916 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
917 addr, rss, prealloc, page);
919 rss[mm_counter(page)]++;
922 page_dup_file_rmap(page, false);
923 rss[mm_counter(page)]++;
927 * If it's a COW mapping, write protect it both
928 * in the parent and the child
930 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
931 ptep_set_wrprotect(src_mm, addr, src_pte);
932 pte = pte_wrprotect(pte);
934 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
937 * If it's a shared mapping, mark it clean in
940 if (vm_flags & VM_SHARED)
941 pte = pte_mkclean(pte);
942 pte = pte_mkold(pte);
944 if (!userfaultfd_wp(dst_vma))
945 pte = pte_clear_uffd_wp(pte);
947 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
951 static inline struct page *
952 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
955 struct page *new_page;
957 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
961 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
965 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
971 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
972 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
975 struct mm_struct *dst_mm = dst_vma->vm_mm;
976 struct mm_struct *src_mm = src_vma->vm_mm;
977 pte_t *orig_src_pte, *orig_dst_pte;
978 pte_t *src_pte, *dst_pte;
979 spinlock_t *src_ptl, *dst_ptl;
980 int progress, ret = 0;
981 int rss[NR_MM_COUNTERS];
982 swp_entry_t entry = (swp_entry_t){0};
983 struct page *prealloc = NULL;
989 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
994 src_pte = pte_offset_map(src_pmd, addr);
995 src_ptl = pte_lockptr(src_mm, src_pmd);
996 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
997 orig_src_pte = src_pte;
998 orig_dst_pte = dst_pte;
999 arch_enter_lazy_mmu_mode();
1003 * We are holding two locks at this point - either of them
1004 * could generate latencies in another task on another CPU.
1006 if (progress >= 32) {
1008 if (need_resched() ||
1009 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1012 if (pte_none(*src_pte)) {
1016 if (unlikely(!pte_present(*src_pte))) {
1017 ret = copy_nonpresent_pte(dst_mm, src_mm,
1022 entry = pte_to_swp_entry(*src_pte);
1024 } else if (ret == -EBUSY) {
1032 * Device exclusive entry restored, continue by copying
1033 * the now present pte.
1035 WARN_ON_ONCE(ret != -ENOENT);
1037 /* copy_present_pte() will clear `*prealloc' if consumed */
1038 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1039 addr, rss, &prealloc);
1041 * If we need a pre-allocated page for this pte, drop the
1042 * locks, allocate, and try again.
1044 if (unlikely(ret == -EAGAIN))
1046 if (unlikely(prealloc)) {
1048 * pre-alloc page cannot be reused by next time so as
1049 * to strictly follow mempolicy (e.g., alloc_page_vma()
1050 * will allocate page according to address). This
1051 * could only happen if one pinned pte changed.
1057 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1059 arch_leave_lazy_mmu_mode();
1060 spin_unlock(src_ptl);
1061 pte_unmap(orig_src_pte);
1062 add_mm_rss_vec(dst_mm, rss);
1063 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1067 VM_WARN_ON_ONCE(!entry.val);
1068 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1073 } else if (ret == -EBUSY) {
1075 } else if (ret == -EAGAIN) {
1076 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1083 /* We've captured and resolved the error. Reset, try again. */
1089 if (unlikely(prealloc))
1095 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1096 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1099 struct mm_struct *dst_mm = dst_vma->vm_mm;
1100 struct mm_struct *src_mm = src_vma->vm_mm;
1101 pmd_t *src_pmd, *dst_pmd;
1104 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1107 src_pmd = pmd_offset(src_pud, addr);
1109 next = pmd_addr_end(addr, end);
1110 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1111 || pmd_devmap(*src_pmd)) {
1113 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1114 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1115 addr, dst_vma, src_vma);
1122 if (pmd_none_or_clear_bad(src_pmd))
1124 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1127 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1132 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1133 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1136 struct mm_struct *dst_mm = dst_vma->vm_mm;
1137 struct mm_struct *src_mm = src_vma->vm_mm;
1138 pud_t *src_pud, *dst_pud;
1141 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1144 src_pud = pud_offset(src_p4d, addr);
1146 next = pud_addr_end(addr, end);
1147 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1150 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1151 err = copy_huge_pud(dst_mm, src_mm,
1152 dst_pud, src_pud, addr, src_vma);
1159 if (pud_none_or_clear_bad(src_pud))
1161 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1164 } while (dst_pud++, src_pud++, addr = next, addr != end);
1169 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1170 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1173 struct mm_struct *dst_mm = dst_vma->vm_mm;
1174 p4d_t *src_p4d, *dst_p4d;
1177 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1180 src_p4d = p4d_offset(src_pgd, addr);
1182 next = p4d_addr_end(addr, end);
1183 if (p4d_none_or_clear_bad(src_p4d))
1185 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1188 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1193 * Return true if the vma needs to copy the pgtable during this fork(). Return
1194 * false when we can speed up fork() by allowing lazy page faults later until
1195 * when the child accesses the memory range.
1198 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1201 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1202 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1203 * contains uffd-wp protection information, that's something we can't
1204 * retrieve from page cache, and skip copying will lose those info.
1206 if (userfaultfd_wp(dst_vma))
1209 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1212 if (src_vma->anon_vma)
1216 * Don't copy ptes where a page fault will fill them correctly. Fork
1217 * becomes much lighter when there are big shared or private readonly
1218 * mappings. The tradeoff is that copy_page_range is more efficient
1225 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1227 pgd_t *src_pgd, *dst_pgd;
1229 unsigned long addr = src_vma->vm_start;
1230 unsigned long end = src_vma->vm_end;
1231 struct mm_struct *dst_mm = dst_vma->vm_mm;
1232 struct mm_struct *src_mm = src_vma->vm_mm;
1233 struct mmu_notifier_range range;
1237 if (!vma_needs_copy(dst_vma, src_vma))
1240 if (is_vm_hugetlb_page(src_vma))
1241 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1243 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1245 * We do not free on error cases below as remove_vma
1246 * gets called on error from higher level routine
1248 ret = track_pfn_copy(src_vma);
1254 * We need to invalidate the secondary MMU mappings only when
1255 * there could be a permission downgrade on the ptes of the
1256 * parent mm. And a permission downgrade will only happen if
1257 * is_cow_mapping() returns true.
1259 is_cow = is_cow_mapping(src_vma->vm_flags);
1262 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1263 0, src_vma, src_mm, addr, end);
1264 mmu_notifier_invalidate_range_start(&range);
1266 * Disabling preemption is not needed for the write side, as
1267 * the read side doesn't spin, but goes to the mmap_lock.
1269 * Use the raw variant of the seqcount_t write API to avoid
1270 * lockdep complaining about preemptibility.
1272 mmap_assert_write_locked(src_mm);
1273 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1277 dst_pgd = pgd_offset(dst_mm, addr);
1278 src_pgd = pgd_offset(src_mm, addr);
1280 next = pgd_addr_end(addr, end);
1281 if (pgd_none_or_clear_bad(src_pgd))
1283 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1288 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1291 raw_write_seqcount_end(&src_mm->write_protect_seq);
1292 mmu_notifier_invalidate_range_end(&range);
1297 /* Whether we should zap all COWed (private) pages too */
1298 static inline bool should_zap_cows(struct zap_details *details)
1300 /* By default, zap all pages */
1304 /* Or, we zap COWed pages only if the caller wants to */
1305 return details->even_cows;
1308 /* Decides whether we should zap this page with the page pointer specified */
1309 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1311 /* If we can make a decision without *page.. */
1312 if (should_zap_cows(details))
1315 /* E.g. the caller passes NULL for the case of a zero page */
1319 /* Otherwise we should only zap non-anon pages */
1320 return !PageAnon(page);
1323 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1328 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1332 * This function makes sure that we'll replace the none pte with an uffd-wp
1333 * swap special pte marker when necessary. Must be with the pgtable lock held.
1336 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1337 unsigned long addr, pte_t *pte,
1338 struct zap_details *details, pte_t pteval)
1340 if (zap_drop_file_uffd_wp(details))
1343 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1346 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1347 struct vm_area_struct *vma, pmd_t *pmd,
1348 unsigned long addr, unsigned long end,
1349 struct zap_details *details)
1351 struct mm_struct *mm = tlb->mm;
1352 int force_flush = 0;
1353 int rss[NR_MM_COUNTERS];
1359 tlb_change_page_size(tlb, PAGE_SIZE);
1362 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1364 flush_tlb_batched_pending(mm);
1365 arch_enter_lazy_mmu_mode();
1370 if (pte_none(ptent))
1376 if (pte_present(ptent)) {
1377 page = vm_normal_page(vma, addr, ptent);
1378 if (unlikely(!should_zap_page(details, page)))
1380 ptent = ptep_get_and_clear_full(mm, addr, pte,
1382 tlb_remove_tlb_entry(tlb, pte, addr);
1383 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1385 if (unlikely(!page))
1388 if (!PageAnon(page)) {
1389 if (pte_dirty(ptent)) {
1391 set_page_dirty(page);
1393 if (pte_young(ptent) &&
1394 likely(!(vma->vm_flags & VM_SEQ_READ)))
1395 mark_page_accessed(page);
1397 rss[mm_counter(page)]--;
1398 page_remove_rmap(page, vma, false);
1399 if (unlikely(page_mapcount(page) < 0))
1400 print_bad_pte(vma, addr, ptent, page);
1401 if (unlikely(__tlb_remove_page(tlb, page))) {
1409 entry = pte_to_swp_entry(ptent);
1410 if (is_device_private_entry(entry) ||
1411 is_device_exclusive_entry(entry)) {
1412 page = pfn_swap_entry_to_page(entry);
1413 if (unlikely(!should_zap_page(details, page)))
1416 * Both device private/exclusive mappings should only
1417 * work with anonymous page so far, so we don't need to
1418 * consider uffd-wp bit when zap. For more information,
1419 * see zap_install_uffd_wp_if_needed().
1421 WARN_ON_ONCE(!vma_is_anonymous(vma));
1422 rss[mm_counter(page)]--;
1423 if (is_device_private_entry(entry))
1424 page_remove_rmap(page, vma, false);
1426 } else if (!non_swap_entry(entry)) {
1427 /* Genuine swap entry, hence a private anon page */
1428 if (!should_zap_cows(details))
1431 if (unlikely(!free_swap_and_cache(entry)))
1432 print_bad_pte(vma, addr, ptent, NULL);
1433 } else if (is_migration_entry(entry)) {
1434 page = pfn_swap_entry_to_page(entry);
1435 if (!should_zap_page(details, page))
1437 rss[mm_counter(page)]--;
1438 } else if (pte_marker_entry_uffd_wp(entry)) {
1439 /* Only drop the uffd-wp marker if explicitly requested */
1440 if (!zap_drop_file_uffd_wp(details))
1442 } else if (is_hwpoison_entry(entry) ||
1443 is_swapin_error_entry(entry)) {
1444 if (!should_zap_cows(details))
1447 /* We should have covered all the swap entry types */
1450 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1451 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1452 } while (pte++, addr += PAGE_SIZE, addr != end);
1454 add_mm_rss_vec(mm, rss);
1455 arch_leave_lazy_mmu_mode();
1457 /* Do the actual TLB flush before dropping ptl */
1459 tlb_flush_mmu_tlbonly(tlb);
1460 pte_unmap_unlock(start_pte, ptl);
1463 * If we forced a TLB flush (either due to running out of
1464 * batch buffers or because we needed to flush dirty TLB
1465 * entries before releasing the ptl), free the batched
1466 * memory too. Restart if we didn't do everything.
1481 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1482 struct vm_area_struct *vma, pud_t *pud,
1483 unsigned long addr, unsigned long end,
1484 struct zap_details *details)
1489 pmd = pmd_offset(pud, addr);
1491 next = pmd_addr_end(addr, end);
1492 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1493 if (next - addr != HPAGE_PMD_SIZE)
1494 __split_huge_pmd(vma, pmd, addr, false, NULL);
1495 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1498 } else if (details && details->single_folio &&
1499 folio_test_pmd_mappable(details->single_folio) &&
1500 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1501 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1503 * Take and drop THP pmd lock so that we cannot return
1504 * prematurely, while zap_huge_pmd() has cleared *pmd,
1505 * but not yet decremented compound_mapcount().
1511 * Here there can be other concurrent MADV_DONTNEED or
1512 * trans huge page faults running, and if the pmd is
1513 * none or trans huge it can change under us. This is
1514 * because MADV_DONTNEED holds the mmap_lock in read
1517 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1519 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1522 } while (pmd++, addr = next, addr != end);
1527 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1528 struct vm_area_struct *vma, p4d_t *p4d,
1529 unsigned long addr, unsigned long end,
1530 struct zap_details *details)
1535 pud = pud_offset(p4d, addr);
1537 next = pud_addr_end(addr, end);
1538 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1539 if (next - addr != HPAGE_PUD_SIZE) {
1540 mmap_assert_locked(tlb->mm);
1541 split_huge_pud(vma, pud, addr);
1542 } else if (zap_huge_pud(tlb, vma, pud, addr))
1546 if (pud_none_or_clear_bad(pud))
1548 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1551 } while (pud++, addr = next, addr != end);
1556 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1557 struct vm_area_struct *vma, pgd_t *pgd,
1558 unsigned long addr, unsigned long end,
1559 struct zap_details *details)
1564 p4d = p4d_offset(pgd, addr);
1566 next = p4d_addr_end(addr, end);
1567 if (p4d_none_or_clear_bad(p4d))
1569 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1570 } while (p4d++, addr = next, addr != end);
1575 void unmap_page_range(struct mmu_gather *tlb,
1576 struct vm_area_struct *vma,
1577 unsigned long addr, unsigned long end,
1578 struct zap_details *details)
1583 BUG_ON(addr >= end);
1584 tlb_start_vma(tlb, vma);
1585 pgd = pgd_offset(vma->vm_mm, addr);
1587 next = pgd_addr_end(addr, end);
1588 if (pgd_none_or_clear_bad(pgd))
1590 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1591 } while (pgd++, addr = next, addr != end);
1592 tlb_end_vma(tlb, vma);
1596 static void unmap_single_vma(struct mmu_gather *tlb,
1597 struct vm_area_struct *vma, unsigned long start_addr,
1598 unsigned long end_addr,
1599 struct zap_details *details)
1601 unsigned long start = max(vma->vm_start, start_addr);
1604 if (start >= vma->vm_end)
1606 end = min(vma->vm_end, end_addr);
1607 if (end <= vma->vm_start)
1611 uprobe_munmap(vma, start, end);
1613 if (unlikely(vma->vm_flags & VM_PFNMAP))
1614 untrack_pfn(vma, 0, 0);
1617 if (unlikely(is_vm_hugetlb_page(vma))) {
1619 * It is undesirable to test vma->vm_file as it
1620 * should be non-null for valid hugetlb area.
1621 * However, vm_file will be NULL in the error
1622 * cleanup path of mmap_region. When
1623 * hugetlbfs ->mmap method fails,
1624 * mmap_region() nullifies vma->vm_file
1625 * before calling this function to clean up.
1626 * Since no pte has actually been setup, it is
1627 * safe to do nothing in this case.
1630 zap_flags_t zap_flags = details ?
1631 details->zap_flags : 0;
1632 __unmap_hugepage_range_final(tlb, vma, start, end,
1636 unmap_page_range(tlb, vma, start, end, details);
1641 * unmap_vmas - unmap a range of memory covered by a list of vma's
1642 * @tlb: address of the caller's struct mmu_gather
1643 * @mt: the maple tree
1644 * @vma: the starting vma
1645 * @start_addr: virtual address at which to start unmapping
1646 * @end_addr: virtual address at which to end unmapping
1648 * Unmap all pages in the vma list.
1650 * Only addresses between `start' and `end' will be unmapped.
1652 * The VMA list must be sorted in ascending virtual address order.
1654 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1655 * range after unmap_vmas() returns. So the only responsibility here is to
1656 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1657 * drops the lock and schedules.
1659 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1660 struct vm_area_struct *vma, unsigned long start_addr,
1661 unsigned long end_addr)
1663 struct mmu_notifier_range range;
1664 struct zap_details details = {
1665 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1666 /* Careful - we need to zap private pages too! */
1669 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1671 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1672 start_addr, end_addr);
1673 mmu_notifier_invalidate_range_start(&range);
1675 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1676 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1677 mmu_notifier_invalidate_range_end(&range);
1681 * zap_page_range - remove user pages in a given range
1682 * @vma: vm_area_struct holding the applicable pages
1683 * @start: starting address of pages to zap
1684 * @size: number of bytes to zap
1686 * Caller must protect the VMA list
1688 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1691 struct maple_tree *mt = &vma->vm_mm->mm_mt;
1692 unsigned long end = start + size;
1693 struct mmu_notifier_range range;
1694 struct mmu_gather tlb;
1695 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1698 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1699 start, start + size);
1700 tlb_gather_mmu(&tlb, vma->vm_mm);
1701 update_hiwater_rss(vma->vm_mm);
1702 mmu_notifier_invalidate_range_start(&range);
1704 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1705 } while ((vma = mas_find(&mas, end - 1)) != NULL);
1706 mmu_notifier_invalidate_range_end(&range);
1707 tlb_finish_mmu(&tlb);
1711 * zap_page_range_single - remove user pages in a given range
1712 * @vma: vm_area_struct holding the applicable pages
1713 * @address: starting address of pages to zap
1714 * @size: number of bytes to zap
1715 * @details: details of shared cache invalidation
1717 * The range must fit into one VMA.
1719 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1720 unsigned long size, struct zap_details *details)
1722 const unsigned long end = address + size;
1723 struct mmu_notifier_range range;
1724 struct mmu_gather tlb;
1727 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1729 if (is_vm_hugetlb_page(vma))
1730 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1732 tlb_gather_mmu(&tlb, vma->vm_mm);
1733 update_hiwater_rss(vma->vm_mm);
1734 mmu_notifier_invalidate_range_start(&range);
1736 * unmap 'address-end' not 'range.start-range.end' as range
1737 * could have been expanded for hugetlb pmd sharing.
1739 unmap_single_vma(&tlb, vma, address, end, details);
1740 mmu_notifier_invalidate_range_end(&range);
1741 tlb_finish_mmu(&tlb);
1745 * zap_vma_ptes - remove ptes mapping the vma
1746 * @vma: vm_area_struct holding ptes to be zapped
1747 * @address: starting address of pages to zap
1748 * @size: number of bytes to zap
1750 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1752 * The entire address range must be fully contained within the vma.
1755 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1758 if (!range_in_vma(vma, address, address + size) ||
1759 !(vma->vm_flags & VM_PFNMAP))
1762 zap_page_range_single(vma, address, size, NULL);
1764 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1766 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1773 pgd = pgd_offset(mm, addr);
1774 p4d = p4d_alloc(mm, pgd, addr);
1777 pud = pud_alloc(mm, p4d, addr);
1780 pmd = pmd_alloc(mm, pud, addr);
1784 VM_BUG_ON(pmd_trans_huge(*pmd));
1788 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1791 pmd_t *pmd = walk_to_pmd(mm, addr);
1795 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1798 static int validate_page_before_insert(struct page *page)
1800 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1802 flush_dcache_page(page);
1806 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1807 unsigned long addr, struct page *page, pgprot_t prot)
1809 if (!pte_none(*pte))
1811 /* Ok, finally just insert the thing.. */
1813 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1814 page_add_file_rmap(page, vma, false);
1815 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1820 * This is the old fallback for page remapping.
1822 * For historical reasons, it only allows reserved pages. Only
1823 * old drivers should use this, and they needed to mark their
1824 * pages reserved for the old functions anyway.
1826 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1827 struct page *page, pgprot_t prot)
1833 retval = validate_page_before_insert(page);
1837 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1840 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1841 pte_unmap_unlock(pte, ptl);
1847 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1848 unsigned long addr, struct page *page, pgprot_t prot)
1852 if (!page_count(page))
1854 err = validate_page_before_insert(page);
1857 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1860 /* insert_pages() amortizes the cost of spinlock operations
1861 * when inserting pages in a loop. Arch *must* define pte_index.
1863 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1864 struct page **pages, unsigned long *num, pgprot_t prot)
1867 pte_t *start_pte, *pte;
1868 spinlock_t *pte_lock;
1869 struct mm_struct *const mm = vma->vm_mm;
1870 unsigned long curr_page_idx = 0;
1871 unsigned long remaining_pages_total = *num;
1872 unsigned long pages_to_write_in_pmd;
1876 pmd = walk_to_pmd(mm, addr);
1880 pages_to_write_in_pmd = min_t(unsigned long,
1881 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1883 /* Allocate the PTE if necessary; takes PMD lock once only. */
1885 if (pte_alloc(mm, pmd))
1888 while (pages_to_write_in_pmd) {
1890 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1892 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1893 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1894 int err = insert_page_in_batch_locked(vma, pte,
1895 addr, pages[curr_page_idx], prot);
1896 if (unlikely(err)) {
1897 pte_unmap_unlock(start_pte, pte_lock);
1899 remaining_pages_total -= pte_idx;
1905 pte_unmap_unlock(start_pte, pte_lock);
1906 pages_to_write_in_pmd -= batch_size;
1907 remaining_pages_total -= batch_size;
1909 if (remaining_pages_total)
1913 *num = remaining_pages_total;
1916 #endif /* ifdef pte_index */
1919 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1920 * @vma: user vma to map to
1921 * @addr: target start user address of these pages
1922 * @pages: source kernel pages
1923 * @num: in: number of pages to map. out: number of pages that were *not*
1924 * mapped. (0 means all pages were successfully mapped).
1926 * Preferred over vm_insert_page() when inserting multiple pages.
1928 * In case of error, we may have mapped a subset of the provided
1929 * pages. It is the caller's responsibility to account for this case.
1931 * The same restrictions apply as in vm_insert_page().
1933 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1934 struct page **pages, unsigned long *num)
1937 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1939 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1941 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1942 BUG_ON(mmap_read_trylock(vma->vm_mm));
1943 BUG_ON(vma->vm_flags & VM_PFNMAP);
1944 vma->vm_flags |= VM_MIXEDMAP;
1946 /* Defer page refcount checking till we're about to map that page. */
1947 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1949 unsigned long idx = 0, pgcount = *num;
1952 for (; idx < pgcount; ++idx) {
1953 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1957 *num = pgcount - idx;
1959 #endif /* ifdef pte_index */
1961 EXPORT_SYMBOL(vm_insert_pages);
1964 * vm_insert_page - insert single page into user vma
1965 * @vma: user vma to map to
1966 * @addr: target user address of this page
1967 * @page: source kernel page
1969 * This allows drivers to insert individual pages they've allocated
1972 * The page has to be a nice clean _individual_ kernel allocation.
1973 * If you allocate a compound page, you need to have marked it as
1974 * such (__GFP_COMP), or manually just split the page up yourself
1975 * (see split_page()).
1977 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1978 * took an arbitrary page protection parameter. This doesn't allow
1979 * that. Your vma protection will have to be set up correctly, which
1980 * means that if you want a shared writable mapping, you'd better
1981 * ask for a shared writable mapping!
1983 * The page does not need to be reserved.
1985 * Usually this function is called from f_op->mmap() handler
1986 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1987 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1988 * function from other places, for example from page-fault handler.
1990 * Return: %0 on success, negative error code otherwise.
1992 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1995 if (addr < vma->vm_start || addr >= vma->vm_end)
1997 if (!page_count(page))
1999 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2000 BUG_ON(mmap_read_trylock(vma->vm_mm));
2001 BUG_ON(vma->vm_flags & VM_PFNMAP);
2002 vma->vm_flags |= VM_MIXEDMAP;
2004 return insert_page(vma, addr, page, vma->vm_page_prot);
2006 EXPORT_SYMBOL(vm_insert_page);
2009 * __vm_map_pages - maps range of kernel pages into user vma
2010 * @vma: user vma to map to
2011 * @pages: pointer to array of source kernel pages
2012 * @num: number of pages in page array
2013 * @offset: user's requested vm_pgoff
2015 * This allows drivers to map range of kernel pages into a user vma.
2017 * Return: 0 on success and error code otherwise.
2019 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2020 unsigned long num, unsigned long offset)
2022 unsigned long count = vma_pages(vma);
2023 unsigned long uaddr = vma->vm_start;
2026 /* Fail if the user requested offset is beyond the end of the object */
2030 /* Fail if the user requested size exceeds available object size */
2031 if (count > num - offset)
2034 for (i = 0; i < count; i++) {
2035 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2045 * vm_map_pages - maps range of kernel pages starts with non zero offset
2046 * @vma: user vma to map to
2047 * @pages: pointer to array of source kernel pages
2048 * @num: number of pages in page array
2050 * Maps an object consisting of @num pages, catering for the user's
2051 * requested vm_pgoff
2053 * If we fail to insert any page into the vma, the function will return
2054 * immediately leaving any previously inserted pages present. Callers
2055 * from the mmap handler may immediately return the error as their caller
2056 * will destroy the vma, removing any successfully inserted pages. Other
2057 * callers should make their own arrangements for calling unmap_region().
2059 * Context: Process context. Called by mmap handlers.
2060 * Return: 0 on success and error code otherwise.
2062 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2065 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2067 EXPORT_SYMBOL(vm_map_pages);
2070 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2071 * @vma: user vma to map to
2072 * @pages: pointer to array of source kernel pages
2073 * @num: number of pages in page array
2075 * Similar to vm_map_pages(), except that it explicitly sets the offset
2076 * to 0. This function is intended for the drivers that did not consider
2079 * Context: Process context. Called by mmap handlers.
2080 * Return: 0 on success and error code otherwise.
2082 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2085 return __vm_map_pages(vma, pages, num, 0);
2087 EXPORT_SYMBOL(vm_map_pages_zero);
2089 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2090 pfn_t pfn, pgprot_t prot, bool mkwrite)
2092 struct mm_struct *mm = vma->vm_mm;
2096 pte = get_locked_pte(mm, addr, &ptl);
2098 return VM_FAULT_OOM;
2099 if (!pte_none(*pte)) {
2102 * For read faults on private mappings the PFN passed
2103 * in may not match the PFN we have mapped if the
2104 * mapped PFN is a writeable COW page. In the mkwrite
2105 * case we are creating a writable PTE for a shared
2106 * mapping and we expect the PFNs to match. If they
2107 * don't match, we are likely racing with block
2108 * allocation and mapping invalidation so just skip the
2111 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2112 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2115 entry = pte_mkyoung(*pte);
2116 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2117 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2118 update_mmu_cache(vma, addr, pte);
2123 /* Ok, finally just insert the thing.. */
2124 if (pfn_t_devmap(pfn))
2125 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2127 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2130 entry = pte_mkyoung(entry);
2131 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2134 set_pte_at(mm, addr, pte, entry);
2135 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2138 pte_unmap_unlock(pte, ptl);
2139 return VM_FAULT_NOPAGE;
2143 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2144 * @vma: user vma to map to
2145 * @addr: target user address of this page
2146 * @pfn: source kernel pfn
2147 * @pgprot: pgprot flags for the inserted page
2149 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2150 * to override pgprot on a per-page basis.
2152 * This only makes sense for IO mappings, and it makes no sense for
2153 * COW mappings. In general, using multiple vmas is preferable;
2154 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2157 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2158 * a value of @pgprot different from that of @vma->vm_page_prot.
2160 * Context: Process context. May allocate using %GFP_KERNEL.
2161 * Return: vm_fault_t value.
2163 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2164 unsigned long pfn, pgprot_t pgprot)
2167 * Technically, architectures with pte_special can avoid all these
2168 * restrictions (same for remap_pfn_range). However we would like
2169 * consistency in testing and feature parity among all, so we should
2170 * try to keep these invariants in place for everybody.
2172 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2173 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2174 (VM_PFNMAP|VM_MIXEDMAP));
2175 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2176 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2178 if (addr < vma->vm_start || addr >= vma->vm_end)
2179 return VM_FAULT_SIGBUS;
2181 if (!pfn_modify_allowed(pfn, pgprot))
2182 return VM_FAULT_SIGBUS;
2184 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2186 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2189 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2192 * vmf_insert_pfn - insert single pfn into user vma
2193 * @vma: user vma to map to
2194 * @addr: target user address of this page
2195 * @pfn: source kernel pfn
2197 * Similar to vm_insert_page, this allows drivers to insert individual pages
2198 * they've allocated into a user vma. Same comments apply.
2200 * This function should only be called from a vm_ops->fault handler, and
2201 * in that case the handler should return the result of this function.
2203 * vma cannot be a COW mapping.
2205 * As this is called only for pages that do not currently exist, we
2206 * do not need to flush old virtual caches or the TLB.
2208 * Context: Process context. May allocate using %GFP_KERNEL.
2209 * Return: vm_fault_t value.
2211 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2214 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2216 EXPORT_SYMBOL(vmf_insert_pfn);
2218 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2220 /* these checks mirror the abort conditions in vm_normal_page */
2221 if (vma->vm_flags & VM_MIXEDMAP)
2223 if (pfn_t_devmap(pfn))
2225 if (pfn_t_special(pfn))
2227 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2232 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2233 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2238 BUG_ON(!vm_mixed_ok(vma, pfn));
2240 if (addr < vma->vm_start || addr >= vma->vm_end)
2241 return VM_FAULT_SIGBUS;
2243 track_pfn_insert(vma, &pgprot, pfn);
2245 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2246 return VM_FAULT_SIGBUS;
2249 * If we don't have pte special, then we have to use the pfn_valid()
2250 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2251 * refcount the page if pfn_valid is true (hence insert_page rather
2252 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2253 * without pte special, it would there be refcounted as a normal page.
2255 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2256 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2260 * At this point we are committed to insert_page()
2261 * regardless of whether the caller specified flags that
2262 * result in pfn_t_has_page() == false.
2264 page = pfn_to_page(pfn_t_to_pfn(pfn));
2265 err = insert_page(vma, addr, page, pgprot);
2267 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2271 return VM_FAULT_OOM;
2272 if (err < 0 && err != -EBUSY)
2273 return VM_FAULT_SIGBUS;
2275 return VM_FAULT_NOPAGE;
2279 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2280 * @vma: user vma to map to
2281 * @addr: target user address of this page
2282 * @pfn: source kernel pfn
2283 * @pgprot: pgprot flags for the inserted page
2285 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2286 * to override pgprot on a per-page basis.
2288 * Typically this function should be used by drivers to set caching- and
2289 * encryption bits different than those of @vma->vm_page_prot, because
2290 * the caching- or encryption mode may not be known at mmap() time.
2291 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2292 * to set caching and encryption bits for those vmas (except for COW pages).
2293 * This is ensured by core vm only modifying these page table entries using
2294 * functions that don't touch caching- or encryption bits, using pte_modify()
2295 * if needed. (See for example mprotect()).
2296 * Also when new page-table entries are created, this is only done using the
2297 * fault() callback, and never using the value of vma->vm_page_prot,
2298 * except for page-table entries that point to anonymous pages as the result
2301 * Context: Process context. May allocate using %GFP_KERNEL.
2302 * Return: vm_fault_t value.
2304 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2305 pfn_t pfn, pgprot_t pgprot)
2307 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2309 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2311 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2314 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2316 EXPORT_SYMBOL(vmf_insert_mixed);
2319 * If the insertion of PTE failed because someone else already added a
2320 * different entry in the mean time, we treat that as success as we assume
2321 * the same entry was actually inserted.
2323 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2324 unsigned long addr, pfn_t pfn)
2326 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2328 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2331 * maps a range of physical memory into the requested pages. the old
2332 * mappings are removed. any references to nonexistent pages results
2333 * in null mappings (currently treated as "copy-on-access")
2335 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2336 unsigned long addr, unsigned long end,
2337 unsigned long pfn, pgprot_t prot)
2339 pte_t *pte, *mapped_pte;
2343 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2346 arch_enter_lazy_mmu_mode();
2348 BUG_ON(!pte_none(*pte));
2349 if (!pfn_modify_allowed(pfn, prot)) {
2353 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2355 } while (pte++, addr += PAGE_SIZE, addr != end);
2356 arch_leave_lazy_mmu_mode();
2357 pte_unmap_unlock(mapped_pte, ptl);
2361 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2362 unsigned long addr, unsigned long end,
2363 unsigned long pfn, pgprot_t prot)
2369 pfn -= addr >> PAGE_SHIFT;
2370 pmd = pmd_alloc(mm, pud, addr);
2373 VM_BUG_ON(pmd_trans_huge(*pmd));
2375 next = pmd_addr_end(addr, end);
2376 err = remap_pte_range(mm, pmd, addr, next,
2377 pfn + (addr >> PAGE_SHIFT), prot);
2380 } while (pmd++, addr = next, addr != end);
2384 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2385 unsigned long addr, unsigned long end,
2386 unsigned long pfn, pgprot_t prot)
2392 pfn -= addr >> PAGE_SHIFT;
2393 pud = pud_alloc(mm, p4d, addr);
2397 next = pud_addr_end(addr, end);
2398 err = remap_pmd_range(mm, pud, addr, next,
2399 pfn + (addr >> PAGE_SHIFT), prot);
2402 } while (pud++, addr = next, addr != end);
2406 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2407 unsigned long addr, unsigned long end,
2408 unsigned long pfn, pgprot_t prot)
2414 pfn -= addr >> PAGE_SHIFT;
2415 p4d = p4d_alloc(mm, pgd, addr);
2419 next = p4d_addr_end(addr, end);
2420 err = remap_pud_range(mm, p4d, addr, next,
2421 pfn + (addr >> PAGE_SHIFT), prot);
2424 } while (p4d++, addr = next, addr != end);
2429 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2430 * must have pre-validated the caching bits of the pgprot_t.
2432 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2433 unsigned long pfn, unsigned long size, pgprot_t prot)
2437 unsigned long end = addr + PAGE_ALIGN(size);
2438 struct mm_struct *mm = vma->vm_mm;
2441 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2445 * Physically remapped pages are special. Tell the
2446 * rest of the world about it:
2447 * VM_IO tells people not to look at these pages
2448 * (accesses can have side effects).
2449 * VM_PFNMAP tells the core MM that the base pages are just
2450 * raw PFN mappings, and do not have a "struct page" associated
2453 * Disable vma merging and expanding with mremap().
2455 * Omit vma from core dump, even when VM_IO turned off.
2457 * There's a horrible special case to handle copy-on-write
2458 * behaviour that some programs depend on. We mark the "original"
2459 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2460 * See vm_normal_page() for details.
2462 if (is_cow_mapping(vma->vm_flags)) {
2463 if (addr != vma->vm_start || end != vma->vm_end)
2465 vma->vm_pgoff = pfn;
2468 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2470 BUG_ON(addr >= end);
2471 pfn -= addr >> PAGE_SHIFT;
2472 pgd = pgd_offset(mm, addr);
2473 flush_cache_range(vma, addr, end);
2475 next = pgd_addr_end(addr, end);
2476 err = remap_p4d_range(mm, pgd, addr, next,
2477 pfn + (addr >> PAGE_SHIFT), prot);
2480 } while (pgd++, addr = next, addr != end);
2486 * remap_pfn_range - remap kernel memory to userspace
2487 * @vma: user vma to map to
2488 * @addr: target page aligned user address to start at
2489 * @pfn: page frame number of kernel physical memory address
2490 * @size: size of mapping area
2491 * @prot: page protection flags for this mapping
2493 * Note: this is only safe if the mm semaphore is held when called.
2495 * Return: %0 on success, negative error code otherwise.
2497 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2498 unsigned long pfn, unsigned long size, pgprot_t prot)
2502 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2506 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2508 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2511 EXPORT_SYMBOL(remap_pfn_range);
2514 * vm_iomap_memory - remap memory to userspace
2515 * @vma: user vma to map to
2516 * @start: start of the physical memory to be mapped
2517 * @len: size of area
2519 * This is a simplified io_remap_pfn_range() for common driver use. The
2520 * driver just needs to give us the physical memory range to be mapped,
2521 * we'll figure out the rest from the vma information.
2523 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2524 * whatever write-combining details or similar.
2526 * Return: %0 on success, negative error code otherwise.
2528 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2530 unsigned long vm_len, pfn, pages;
2532 /* Check that the physical memory area passed in looks valid */
2533 if (start + len < start)
2536 * You *really* shouldn't map things that aren't page-aligned,
2537 * but we've historically allowed it because IO memory might
2538 * just have smaller alignment.
2540 len += start & ~PAGE_MASK;
2541 pfn = start >> PAGE_SHIFT;
2542 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2543 if (pfn + pages < pfn)
2546 /* We start the mapping 'vm_pgoff' pages into the area */
2547 if (vma->vm_pgoff > pages)
2549 pfn += vma->vm_pgoff;
2550 pages -= vma->vm_pgoff;
2552 /* Can we fit all of the mapping? */
2553 vm_len = vma->vm_end - vma->vm_start;
2554 if (vm_len >> PAGE_SHIFT > pages)
2557 /* Ok, let it rip */
2558 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2560 EXPORT_SYMBOL(vm_iomap_memory);
2562 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2563 unsigned long addr, unsigned long end,
2564 pte_fn_t fn, void *data, bool create,
2565 pgtbl_mod_mask *mask)
2567 pte_t *pte, *mapped_pte;
2572 mapped_pte = pte = (mm == &init_mm) ?
2573 pte_alloc_kernel_track(pmd, addr, mask) :
2574 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2578 mapped_pte = pte = (mm == &init_mm) ?
2579 pte_offset_kernel(pmd, addr) :
2580 pte_offset_map_lock(mm, pmd, addr, &ptl);
2583 BUG_ON(pmd_huge(*pmd));
2585 arch_enter_lazy_mmu_mode();
2589 if (create || !pte_none(*pte)) {
2590 err = fn(pte++, addr, data);
2594 } while (addr += PAGE_SIZE, addr != end);
2596 *mask |= PGTBL_PTE_MODIFIED;
2598 arch_leave_lazy_mmu_mode();
2601 pte_unmap_unlock(mapped_pte, ptl);
2605 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2606 unsigned long addr, unsigned long end,
2607 pte_fn_t fn, void *data, bool create,
2608 pgtbl_mod_mask *mask)
2614 BUG_ON(pud_huge(*pud));
2617 pmd = pmd_alloc_track(mm, pud, addr, mask);
2621 pmd = pmd_offset(pud, addr);
2624 next = pmd_addr_end(addr, end);
2625 if (pmd_none(*pmd) && !create)
2627 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2629 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2634 err = apply_to_pte_range(mm, pmd, addr, next,
2635 fn, data, create, mask);
2638 } while (pmd++, addr = next, addr != end);
2643 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2644 unsigned long addr, unsigned long end,
2645 pte_fn_t fn, void *data, bool create,
2646 pgtbl_mod_mask *mask)
2653 pud = pud_alloc_track(mm, p4d, addr, mask);
2657 pud = pud_offset(p4d, addr);
2660 next = pud_addr_end(addr, end);
2661 if (pud_none(*pud) && !create)
2663 if (WARN_ON_ONCE(pud_leaf(*pud)))
2665 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2670 err = apply_to_pmd_range(mm, pud, addr, next,
2671 fn, data, create, mask);
2674 } while (pud++, addr = next, addr != end);
2679 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2680 unsigned long addr, unsigned long end,
2681 pte_fn_t fn, void *data, bool create,
2682 pgtbl_mod_mask *mask)
2689 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2693 p4d = p4d_offset(pgd, addr);
2696 next = p4d_addr_end(addr, end);
2697 if (p4d_none(*p4d) && !create)
2699 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2701 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2706 err = apply_to_pud_range(mm, p4d, addr, next,
2707 fn, data, create, mask);
2710 } while (p4d++, addr = next, addr != end);
2715 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2716 unsigned long size, pte_fn_t fn,
2717 void *data, bool create)
2720 unsigned long start = addr, next;
2721 unsigned long end = addr + size;
2722 pgtbl_mod_mask mask = 0;
2725 if (WARN_ON(addr >= end))
2728 pgd = pgd_offset(mm, addr);
2730 next = pgd_addr_end(addr, end);
2731 if (pgd_none(*pgd) && !create)
2733 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2735 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2740 err = apply_to_p4d_range(mm, pgd, addr, next,
2741 fn, data, create, &mask);
2744 } while (pgd++, addr = next, addr != end);
2746 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2747 arch_sync_kernel_mappings(start, start + size);
2753 * Scan a region of virtual memory, filling in page tables as necessary
2754 * and calling a provided function on each leaf page table.
2756 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2757 unsigned long size, pte_fn_t fn, void *data)
2759 return __apply_to_page_range(mm, addr, size, fn, data, true);
2761 EXPORT_SYMBOL_GPL(apply_to_page_range);
2764 * Scan a region of virtual memory, calling a provided function on
2765 * each leaf page table where it exists.
2767 * Unlike apply_to_page_range, this does _not_ fill in page tables
2768 * where they are absent.
2770 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2771 unsigned long size, pte_fn_t fn, void *data)
2773 return __apply_to_page_range(mm, addr, size, fn, data, false);
2775 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2778 * handle_pte_fault chooses page fault handler according to an entry which was
2779 * read non-atomically. Before making any commitment, on those architectures
2780 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2781 * parts, do_swap_page must check under lock before unmapping the pte and
2782 * proceeding (but do_wp_page is only called after already making such a check;
2783 * and do_anonymous_page can safely check later on).
2785 static inline int pte_unmap_same(struct vm_fault *vmf)
2788 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2789 if (sizeof(pte_t) > sizeof(unsigned long)) {
2790 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2792 same = pte_same(*vmf->pte, vmf->orig_pte);
2796 pte_unmap(vmf->pte);
2803 * 0: copied succeeded
2804 * -EHWPOISON: copy failed due to hwpoison in source page
2805 * -EAGAIN: copied failed (some other reason)
2807 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2808 struct vm_fault *vmf)
2813 bool locked = false;
2814 struct vm_area_struct *vma = vmf->vma;
2815 struct mm_struct *mm = vma->vm_mm;
2816 unsigned long addr = vmf->address;
2819 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2820 memory_failure_queue(page_to_pfn(src), 0);
2827 * If the source page was a PFN mapping, we don't have
2828 * a "struct page" for it. We do a best-effort copy by
2829 * just copying from the original user address. If that
2830 * fails, we just zero-fill it. Live with it.
2832 kaddr = kmap_atomic(dst);
2833 uaddr = (void __user *)(addr & PAGE_MASK);
2836 * On architectures with software "accessed" bits, we would
2837 * take a double page fault, so mark it accessed here.
2839 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2842 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2844 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2846 * Other thread has already handled the fault
2847 * and update local tlb only
2849 update_mmu_tlb(vma, addr, vmf->pte);
2854 entry = pte_mkyoung(vmf->orig_pte);
2855 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2856 update_mmu_cache(vma, addr, vmf->pte);
2860 * This really shouldn't fail, because the page is there
2861 * in the page tables. But it might just be unreadable,
2862 * in which case we just give up and fill the result with
2865 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2869 /* Re-validate under PTL if the page is still mapped */
2870 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2872 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2873 /* The PTE changed under us, update local tlb */
2874 update_mmu_tlb(vma, addr, vmf->pte);
2880 * The same page can be mapped back since last copy attempt.
2881 * Try to copy again under PTL.
2883 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2885 * Give a warn in case there can be some obscure
2898 pte_unmap_unlock(vmf->pte, vmf->ptl);
2899 kunmap_atomic(kaddr);
2900 flush_dcache_page(dst);
2905 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2907 struct file *vm_file = vma->vm_file;
2910 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2913 * Special mappings (e.g. VDSO) do not have any file so fake
2914 * a default GFP_KERNEL for them.
2920 * Notify the address space that the page is about to become writable so that
2921 * it can prohibit this or wait for the page to get into an appropriate state.
2923 * We do this without the lock held, so that it can sleep if it needs to.
2925 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2928 struct page *page = vmf->page;
2929 unsigned int old_flags = vmf->flags;
2931 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2933 if (vmf->vma->vm_file &&
2934 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2935 return VM_FAULT_SIGBUS;
2937 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2938 /* Restore original flags so that caller is not surprised */
2939 vmf->flags = old_flags;
2940 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2942 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2944 if (!page->mapping) {
2946 return 0; /* retry */
2948 ret |= VM_FAULT_LOCKED;
2950 VM_BUG_ON_PAGE(!PageLocked(page), page);
2955 * Handle dirtying of a page in shared file mapping on a write fault.
2957 * The function expects the page to be locked and unlocks it.
2959 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2961 struct vm_area_struct *vma = vmf->vma;
2962 struct address_space *mapping;
2963 struct page *page = vmf->page;
2965 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2967 dirtied = set_page_dirty(page);
2968 VM_BUG_ON_PAGE(PageAnon(page), page);
2970 * Take a local copy of the address_space - page.mapping may be zeroed
2971 * by truncate after unlock_page(). The address_space itself remains
2972 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2973 * release semantics to prevent the compiler from undoing this copying.
2975 mapping = page_rmapping(page);
2979 file_update_time(vma->vm_file);
2982 * Throttle page dirtying rate down to writeback speed.
2984 * mapping may be NULL here because some device drivers do not
2985 * set page.mapping but still dirty their pages
2987 * Drop the mmap_lock before waiting on IO, if we can. The file
2988 * is pinning the mapping, as per above.
2990 if ((dirtied || page_mkwrite) && mapping) {
2993 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2994 balance_dirty_pages_ratelimited(mapping);
2997 return VM_FAULT_COMPLETED;
3005 * Handle write page faults for pages that can be reused in the current vma
3007 * This can happen either due to the mapping being with the VM_SHARED flag,
3008 * or due to us being the last reference standing to the page. In either
3009 * case, all we need to do here is to mark the page as writable and update
3010 * any related book-keeping.
3012 static inline void wp_page_reuse(struct vm_fault *vmf)
3013 __releases(vmf->ptl)
3015 struct vm_area_struct *vma = vmf->vma;
3016 struct page *page = vmf->page;
3019 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3020 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3023 * Clear the pages cpupid information as the existing
3024 * information potentially belongs to a now completely
3025 * unrelated process.
3028 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3030 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3031 entry = pte_mkyoung(vmf->orig_pte);
3032 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3033 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3034 update_mmu_cache(vma, vmf->address, vmf->pte);
3035 pte_unmap_unlock(vmf->pte, vmf->ptl);
3036 count_vm_event(PGREUSE);
3040 * Handle the case of a page which we actually need to copy to a new page,
3041 * either due to COW or unsharing.
3043 * Called with mmap_lock locked and the old page referenced, but
3044 * without the ptl held.
3046 * High level logic flow:
3048 * - Allocate a page, copy the content of the old page to the new one.
3049 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3050 * - Take the PTL. If the pte changed, bail out and release the allocated page
3051 * - If the pte is still the way we remember it, update the page table and all
3052 * relevant references. This includes dropping the reference the page-table
3053 * held to the old page, as well as updating the rmap.
3054 * - In any case, unlock the PTL and drop the reference we took to the old page.
3056 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3058 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3059 struct vm_area_struct *vma = vmf->vma;
3060 struct mm_struct *mm = vma->vm_mm;
3061 struct page *old_page = vmf->page;
3062 struct page *new_page = NULL;
3064 int page_copied = 0;
3065 struct mmu_notifier_range range;
3068 delayacct_wpcopy_start();
3070 if (unlikely(anon_vma_prepare(vma)))
3073 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3074 new_page = alloc_zeroed_user_highpage_movable(vma,
3079 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3084 ret = __wp_page_copy_user(new_page, old_page, vmf);
3087 * COW failed, if the fault was solved by other,
3088 * it's fine. If not, userspace would re-fault on
3089 * the same address and we will handle the fault
3090 * from the second attempt.
3091 * The -EHWPOISON case will not be retried.
3097 delayacct_wpcopy_end();
3098 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3100 kmsan_copy_page_meta(new_page, old_page);
3103 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3105 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3107 __SetPageUptodate(new_page);
3109 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3110 vmf->address & PAGE_MASK,
3111 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3112 mmu_notifier_invalidate_range_start(&range);
3115 * Re-check the pte - we dropped the lock
3117 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3118 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3120 if (!PageAnon(old_page)) {
3121 dec_mm_counter(mm, mm_counter_file(old_page));
3122 inc_mm_counter(mm, MM_ANONPAGES);
3125 inc_mm_counter(mm, MM_ANONPAGES);
3127 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3128 entry = mk_pte(new_page, vma->vm_page_prot);
3129 entry = pte_sw_mkyoung(entry);
3130 if (unlikely(unshare)) {
3131 if (pte_soft_dirty(vmf->orig_pte))
3132 entry = pte_mksoft_dirty(entry);
3133 if (pte_uffd_wp(vmf->orig_pte))
3134 entry = pte_mkuffd_wp(entry);
3136 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3140 * Clear the pte entry and flush it first, before updating the
3141 * pte with the new entry, to keep TLBs on different CPUs in
3142 * sync. This code used to set the new PTE then flush TLBs, but
3143 * that left a window where the new PTE could be loaded into
3144 * some TLBs while the old PTE remains in others.
3146 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3147 page_add_new_anon_rmap(new_page, vma, vmf->address);
3148 lru_cache_add_inactive_or_unevictable(new_page, vma);
3150 * We call the notify macro here because, when using secondary
3151 * mmu page tables (such as kvm shadow page tables), we want the
3152 * new page to be mapped directly into the secondary page table.
3154 BUG_ON(unshare && pte_write(entry));
3155 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3156 update_mmu_cache(vma, vmf->address, vmf->pte);
3159 * Only after switching the pte to the new page may
3160 * we remove the mapcount here. Otherwise another
3161 * process may come and find the rmap count decremented
3162 * before the pte is switched to the new page, and
3163 * "reuse" the old page writing into it while our pte
3164 * here still points into it and can be read by other
3167 * The critical issue is to order this
3168 * page_remove_rmap with the ptp_clear_flush above.
3169 * Those stores are ordered by (if nothing else,)
3170 * the barrier present in the atomic_add_negative
3171 * in page_remove_rmap.
3173 * Then the TLB flush in ptep_clear_flush ensures that
3174 * no process can access the old page before the
3175 * decremented mapcount is visible. And the old page
3176 * cannot be reused until after the decremented
3177 * mapcount is visible. So transitively, TLBs to
3178 * old page will be flushed before it can be reused.
3180 page_remove_rmap(old_page, vma, false);
3183 /* Free the old page.. */
3184 new_page = old_page;
3187 update_mmu_tlb(vma, vmf->address, vmf->pte);
3193 pte_unmap_unlock(vmf->pte, vmf->ptl);
3195 * No need to double call mmu_notifier->invalidate_range() callback as
3196 * the above ptep_clear_flush_notify() did already call it.
3198 mmu_notifier_invalidate_range_only_end(&range);
3201 free_swap_cache(old_page);
3205 delayacct_wpcopy_end();
3206 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3213 delayacct_wpcopy_end();
3214 return VM_FAULT_OOM;
3218 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3219 * writeable once the page is prepared
3221 * @vmf: structure describing the fault
3223 * This function handles all that is needed to finish a write page fault in a
3224 * shared mapping due to PTE being read-only once the mapped page is prepared.
3225 * It handles locking of PTE and modifying it.
3227 * The function expects the page to be locked or other protection against
3228 * concurrent faults / writeback (such as DAX radix tree locks).
3230 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3231 * we acquired PTE lock.
3233 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3235 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3236 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3239 * We might have raced with another page fault while we released the
3240 * pte_offset_map_lock.
3242 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3243 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3244 pte_unmap_unlock(vmf->pte, vmf->ptl);
3245 return VM_FAULT_NOPAGE;
3252 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3255 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3257 struct vm_area_struct *vma = vmf->vma;
3259 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3262 pte_unmap_unlock(vmf->pte, vmf->ptl);
3263 vmf->flags |= FAULT_FLAG_MKWRITE;
3264 ret = vma->vm_ops->pfn_mkwrite(vmf);
3265 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3267 return finish_mkwrite_fault(vmf);
3270 return VM_FAULT_WRITE;
3273 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3274 __releases(vmf->ptl)
3276 struct vm_area_struct *vma = vmf->vma;
3277 vm_fault_t ret = VM_FAULT_WRITE;
3279 get_page(vmf->page);
3281 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3284 pte_unmap_unlock(vmf->pte, vmf->ptl);
3285 tmp = do_page_mkwrite(vmf);
3286 if (unlikely(!tmp || (tmp &
3287 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3288 put_page(vmf->page);
3291 tmp = finish_mkwrite_fault(vmf);
3292 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3293 unlock_page(vmf->page);
3294 put_page(vmf->page);
3299 lock_page(vmf->page);
3301 ret |= fault_dirty_shared_page(vmf);
3302 put_page(vmf->page);
3308 * This routine handles present pages, when
3309 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3310 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3311 * (FAULT_FLAG_UNSHARE)
3313 * It is done by copying the page to a new address and decrementing the
3314 * shared-page counter for the old page.
3316 * Note that this routine assumes that the protection checks have been
3317 * done by the caller (the low-level page fault routine in most cases).
3318 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3319 * done any necessary COW.
3321 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3322 * though the page will change only once the write actually happens. This
3323 * avoids a few races, and potentially makes it more efficient.
3325 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3326 * but allow concurrent faults), with pte both mapped and locked.
3327 * We return with mmap_lock still held, but pte unmapped and unlocked.
3329 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3330 __releases(vmf->ptl)
3332 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3333 struct vm_area_struct *vma = vmf->vma;
3334 struct folio *folio;
3336 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3337 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3339 if (likely(!unshare)) {
3340 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3341 pte_unmap_unlock(vmf->pte, vmf->ptl);
3342 return handle_userfault(vmf, VM_UFFD_WP);
3346 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3347 * is flushed in this case before copying.
3349 if (unlikely(userfaultfd_wp(vmf->vma) &&
3350 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3351 flush_tlb_page(vmf->vma, vmf->address);
3354 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3356 if (unlikely(unshare)) {
3357 /* No anonymous page -> nothing to do. */
3358 pte_unmap_unlock(vmf->pte, vmf->ptl);
3363 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3366 * We should not cow pages in a shared writeable mapping.
3367 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3369 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3370 (VM_WRITE|VM_SHARED))
3371 return wp_pfn_shared(vmf);
3373 pte_unmap_unlock(vmf->pte, vmf->ptl);
3374 return wp_page_copy(vmf);
3378 * Take out anonymous pages first, anonymous shared vmas are
3379 * not dirty accountable.
3381 folio = page_folio(vmf->page);
3382 if (folio_test_anon(folio)) {
3384 * If the page is exclusive to this process we must reuse the
3385 * page without further checks.
3387 if (PageAnonExclusive(vmf->page))
3391 * We have to verify under folio lock: these early checks are
3392 * just an optimization to avoid locking the folio and freeing
3393 * the swapcache if there is little hope that we can reuse.
3395 * KSM doesn't necessarily raise the folio refcount.
3397 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3399 if (!folio_test_lru(folio))
3401 * Note: We cannot easily detect+handle references from
3402 * remote LRU pagevecs or references to LRU folios.
3405 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3407 if (!folio_trylock(folio))
3409 if (folio_test_swapcache(folio))
3410 folio_free_swap(folio);
3411 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3412 folio_unlock(folio);
3416 * Ok, we've got the only folio reference from our mapping
3417 * and the folio is locked, it's dark out, and we're wearing
3418 * sunglasses. Hit it.
3420 page_move_anon_rmap(vmf->page, vma);
3421 folio_unlock(folio);
3423 if (unlikely(unshare)) {
3424 pte_unmap_unlock(vmf->pte, vmf->ptl);
3428 return VM_FAULT_WRITE;
3429 } else if (unshare) {
3430 /* No anonymous page -> nothing to do. */
3431 pte_unmap_unlock(vmf->pte, vmf->ptl);
3433 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3434 (VM_WRITE|VM_SHARED))) {
3435 return wp_page_shared(vmf);
3439 * Ok, we need to copy. Oh, well..
3441 get_page(vmf->page);
3443 pte_unmap_unlock(vmf->pte, vmf->ptl);
3445 if (PageKsm(vmf->page))
3446 count_vm_event(COW_KSM);
3448 return wp_page_copy(vmf);
3451 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3452 unsigned long start_addr, unsigned long end_addr,
3453 struct zap_details *details)
3455 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3458 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3459 pgoff_t first_index,
3461 struct zap_details *details)
3463 struct vm_area_struct *vma;
3464 pgoff_t vba, vea, zba, zea;
3466 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3467 vba = vma->vm_pgoff;
3468 vea = vba + vma_pages(vma) - 1;
3469 zba = max(first_index, vba);
3470 zea = min(last_index, vea);
3472 unmap_mapping_range_vma(vma,
3473 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3474 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3480 * unmap_mapping_folio() - Unmap single folio from processes.
3481 * @folio: The locked folio to be unmapped.
3483 * Unmap this folio from any userspace process which still has it mmaped.
3484 * Typically, for efficiency, the range of nearby pages has already been
3485 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3486 * truncation or invalidation holds the lock on a folio, it may find that
3487 * the page has been remapped again: and then uses unmap_mapping_folio()
3488 * to unmap it finally.
3490 void unmap_mapping_folio(struct folio *folio)
3492 struct address_space *mapping = folio->mapping;
3493 struct zap_details details = { };
3494 pgoff_t first_index;
3497 VM_BUG_ON(!folio_test_locked(folio));
3499 first_index = folio->index;
3500 last_index = folio->index + folio_nr_pages(folio) - 1;
3502 details.even_cows = false;
3503 details.single_folio = folio;
3504 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3506 i_mmap_lock_read(mapping);
3507 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3508 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3509 last_index, &details);
3510 i_mmap_unlock_read(mapping);
3514 * unmap_mapping_pages() - Unmap pages from processes.
3515 * @mapping: The address space containing pages to be unmapped.
3516 * @start: Index of first page to be unmapped.
3517 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3518 * @even_cows: Whether to unmap even private COWed pages.
3520 * Unmap the pages in this address space from any userspace process which
3521 * has them mmaped. Generally, you want to remove COWed pages as well when
3522 * a file is being truncated, but not when invalidating pages from the page
3525 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3526 pgoff_t nr, bool even_cows)
3528 struct zap_details details = { };
3529 pgoff_t first_index = start;
3530 pgoff_t last_index = start + nr - 1;
3532 details.even_cows = even_cows;
3533 if (last_index < first_index)
3534 last_index = ULONG_MAX;
3536 i_mmap_lock_read(mapping);
3537 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3538 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3539 last_index, &details);
3540 i_mmap_unlock_read(mapping);
3542 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3545 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3546 * address_space corresponding to the specified byte range in the underlying
3549 * @mapping: the address space containing mmaps to be unmapped.
3550 * @holebegin: byte in first page to unmap, relative to the start of
3551 * the underlying file. This will be rounded down to a PAGE_SIZE
3552 * boundary. Note that this is different from truncate_pagecache(), which
3553 * must keep the partial page. In contrast, we must get rid of
3555 * @holelen: size of prospective hole in bytes. This will be rounded
3556 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3558 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3559 * but 0 when invalidating pagecache, don't throw away private data.
3561 void unmap_mapping_range(struct address_space *mapping,
3562 loff_t const holebegin, loff_t const holelen, int even_cows)
3564 pgoff_t hba = holebegin >> PAGE_SHIFT;
3565 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3567 /* Check for overflow. */
3568 if (sizeof(holelen) > sizeof(hlen)) {
3570 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3571 if (holeend & ~(long long)ULONG_MAX)
3572 hlen = ULONG_MAX - hba + 1;
3575 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3577 EXPORT_SYMBOL(unmap_mapping_range);
3580 * Restore a potential device exclusive pte to a working pte entry
3582 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3584 struct folio *folio = page_folio(vmf->page);
3585 struct vm_area_struct *vma = vmf->vma;
3586 struct mmu_notifier_range range;
3588 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3589 return VM_FAULT_RETRY;
3590 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3591 vma->vm_mm, vmf->address & PAGE_MASK,
3592 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3593 mmu_notifier_invalidate_range_start(&range);
3595 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3597 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3598 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3600 pte_unmap_unlock(vmf->pte, vmf->ptl);
3601 folio_unlock(folio);
3603 mmu_notifier_invalidate_range_end(&range);
3607 static inline bool should_try_to_free_swap(struct folio *folio,
3608 struct vm_area_struct *vma,
3609 unsigned int fault_flags)
3611 if (!folio_test_swapcache(folio))
3613 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3614 folio_test_mlocked(folio))
3617 * If we want to map a page that's in the swapcache writable, we
3618 * have to detect via the refcount if we're really the exclusive
3619 * user. Try freeing the swapcache to get rid of the swapcache
3620 * reference only in case it's likely that we'll be the exlusive user.
3622 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3623 folio_ref_count(folio) == 2;
3626 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3628 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3629 vmf->address, &vmf->ptl);
3631 * Be careful so that we will only recover a special uffd-wp pte into a
3632 * none pte. Otherwise it means the pte could have changed, so retry.
3634 if (is_pte_marker(*vmf->pte))
3635 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3636 pte_unmap_unlock(vmf->pte, vmf->ptl);
3641 * This is actually a page-missing access, but with uffd-wp special pte
3642 * installed. It means this pte was wr-protected before being unmapped.
3644 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3647 * Just in case there're leftover special ptes even after the region
3648 * got unregistered - we can simply clear them. We can also do that
3649 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3650 * ranges, but it should be more efficient to be done lazily here.
3652 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3653 return pte_marker_clear(vmf);
3655 /* do_fault() can handle pte markers too like none pte */
3656 return do_fault(vmf);
3659 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3661 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3662 unsigned long marker = pte_marker_get(entry);
3665 * PTE markers should never be empty. If anything weird happened,
3666 * the best thing to do is to kill the process along with its mm.
3668 if (WARN_ON_ONCE(!marker))
3669 return VM_FAULT_SIGBUS;
3671 /* Higher priority than uffd-wp when data corrupted */
3672 if (marker & PTE_MARKER_SWAPIN_ERROR)
3673 return VM_FAULT_SIGBUS;
3675 if (pte_marker_entry_uffd_wp(entry))
3676 return pte_marker_handle_uffd_wp(vmf);
3678 /* This is an unknown pte marker */
3679 return VM_FAULT_SIGBUS;
3683 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3684 * but allow concurrent faults), and pte mapped but not yet locked.
3685 * We return with pte unmapped and unlocked.
3687 * We return with the mmap_lock locked or unlocked in the same cases
3688 * as does filemap_fault().
3690 vm_fault_t do_swap_page(struct vm_fault *vmf)
3692 struct vm_area_struct *vma = vmf->vma;
3693 struct folio *swapcache, *folio = NULL;
3695 struct swap_info_struct *si = NULL;
3696 rmap_t rmap_flags = RMAP_NONE;
3697 bool exclusive = false;
3702 void *shadow = NULL;
3704 if (!pte_unmap_same(vmf))
3707 entry = pte_to_swp_entry(vmf->orig_pte);
3708 if (unlikely(non_swap_entry(entry))) {
3709 if (is_migration_entry(entry)) {
3710 migration_entry_wait(vma->vm_mm, vmf->pmd,
3712 } else if (is_device_exclusive_entry(entry)) {
3713 vmf->page = pfn_swap_entry_to_page(entry);
3714 ret = remove_device_exclusive_entry(vmf);
3715 } else if (is_device_private_entry(entry)) {
3716 vmf->page = pfn_swap_entry_to_page(entry);
3717 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3718 vmf->address, &vmf->ptl);
3719 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3720 spin_unlock(vmf->ptl);
3725 * Get a page reference while we know the page can't be
3728 get_page(vmf->page);
3729 pte_unmap_unlock(vmf->pte, vmf->ptl);
3730 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3731 put_page(vmf->page);
3732 } else if (is_hwpoison_entry(entry)) {
3733 ret = VM_FAULT_HWPOISON;
3734 } else if (is_pte_marker_entry(entry)) {
3735 ret = handle_pte_marker(vmf);
3737 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3738 ret = VM_FAULT_SIGBUS;
3743 /* Prevent swapoff from happening to us. */
3744 si = get_swap_device(entry);
3748 folio = swap_cache_get_folio(entry, vma, vmf->address);
3750 page = folio_file_page(folio, swp_offset(entry));
3754 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3755 __swap_count(entry) == 1) {
3756 /* skip swapcache */
3757 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3758 vma, vmf->address, false);
3759 page = &folio->page;
3761 __folio_set_locked(folio);
3762 __folio_set_swapbacked(folio);
3764 if (mem_cgroup_swapin_charge_folio(folio,
3765 vma->vm_mm, GFP_KERNEL,
3770 mem_cgroup_swapin_uncharge_swap(entry);
3772 shadow = get_shadow_from_swap_cache(entry);
3774 workingset_refault(folio, shadow);
3776 folio_add_lru(folio);
3778 /* To provide entry to swap_readpage() */
3779 folio_set_swap_entry(folio, entry);
3780 swap_readpage(page, true, NULL);
3781 folio->private = NULL;
3784 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3787 folio = page_folio(page);
3793 * Back out if somebody else faulted in this pte
3794 * while we released the pte lock.
3796 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3797 vmf->address, &vmf->ptl);
3798 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3803 /* Had to read the page from swap area: Major fault */
3804 ret = VM_FAULT_MAJOR;
3805 count_vm_event(PGMAJFAULT);
3806 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3807 } else if (PageHWPoison(page)) {
3809 * hwpoisoned dirty swapcache pages are kept for killing
3810 * owner processes (which may be unknown at hwpoison time)
3812 ret = VM_FAULT_HWPOISON;
3816 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3819 ret |= VM_FAULT_RETRY;
3825 * Make sure folio_free_swap() or swapoff did not release the
3826 * swapcache from under us. The page pin, and pte_same test
3827 * below, are not enough to exclude that. Even if it is still
3828 * swapcache, we need to check that the page's swap has not
3831 if (unlikely(!folio_test_swapcache(folio) ||
3832 page_private(page) != entry.val))
3836 * KSM sometimes has to copy on read faults, for example, if
3837 * page->index of !PageKSM() pages would be nonlinear inside the
3838 * anon VMA -- PageKSM() is lost on actual swapout.
3840 page = ksm_might_need_to_copy(page, vma, vmf->address);
3841 if (unlikely(!page)) {
3845 folio = page_folio(page);
3848 * If we want to map a page that's in the swapcache writable, we
3849 * have to detect via the refcount if we're really the exclusive
3850 * owner. Try removing the extra reference from the local LRU
3851 * pagevecs if required.
3853 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3854 !folio_test_ksm(folio) && !folio_test_lru(folio))
3858 cgroup_throttle_swaprate(page, GFP_KERNEL);
3861 * Back out if somebody else already faulted in this pte.
3863 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3865 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3868 if (unlikely(!folio_test_uptodate(folio))) {
3869 ret = VM_FAULT_SIGBUS;
3874 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3875 * must never point at an anonymous page in the swapcache that is
3876 * PG_anon_exclusive. Sanity check that this holds and especially, that
3877 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3878 * check after taking the PT lock and making sure that nobody
3879 * concurrently faulted in this page and set PG_anon_exclusive.
3881 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3882 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3885 * Check under PT lock (to protect against concurrent fork() sharing
3886 * the swap entry concurrently) for certainly exclusive pages.
3888 if (!folio_test_ksm(folio)) {
3890 * Note that pte_swp_exclusive() == false for architectures
3891 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3893 exclusive = pte_swp_exclusive(vmf->orig_pte);
3894 if (folio != swapcache) {
3896 * We have a fresh page that is not exposed to the
3897 * swapcache -> certainly exclusive.
3900 } else if (exclusive && folio_test_writeback(folio) &&
3901 data_race(si->flags & SWP_STABLE_WRITES)) {
3903 * This is tricky: not all swap backends support
3904 * concurrent page modifications while under writeback.
3906 * So if we stumble over such a page in the swapcache
3907 * we must not set the page exclusive, otherwise we can
3908 * map it writable without further checks and modify it
3909 * while still under writeback.
3911 * For these problematic swap backends, simply drop the
3912 * exclusive marker: this is perfectly fine as we start
3913 * writeback only if we fully unmapped the page and
3914 * there are no unexpected references on the page after
3915 * unmapping succeeded. After fully unmapped, no
3916 * further GUP references (FOLL_GET and FOLL_PIN) can
3917 * appear, so dropping the exclusive marker and mapping
3918 * it only R/O is fine.
3925 * Remove the swap entry and conditionally try to free up the swapcache.
3926 * We're already holding a reference on the page but haven't mapped it
3930 if (should_try_to_free_swap(folio, vma, vmf->flags))
3931 folio_free_swap(folio);
3933 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3934 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3935 pte = mk_pte(page, vma->vm_page_prot);
3938 * Same logic as in do_wp_page(); however, optimize for pages that are
3939 * certainly not shared either because we just allocated them without
3940 * exposing them to the swapcache or because the swap entry indicates
3943 if (!folio_test_ksm(folio) &&
3944 (exclusive || folio_ref_count(folio) == 1)) {
3945 if (vmf->flags & FAULT_FLAG_WRITE) {
3946 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3947 vmf->flags &= ~FAULT_FLAG_WRITE;
3948 ret |= VM_FAULT_WRITE;
3950 rmap_flags |= RMAP_EXCLUSIVE;
3952 flush_icache_page(vma, page);
3953 if (pte_swp_soft_dirty(vmf->orig_pte))
3954 pte = pte_mksoft_dirty(pte);
3955 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3956 pte = pte_mkuffd_wp(pte);
3957 pte = pte_wrprotect(pte);
3959 vmf->orig_pte = pte;
3961 /* ksm created a completely new copy */
3962 if (unlikely(folio != swapcache && swapcache)) {
3963 page_add_new_anon_rmap(page, vma, vmf->address);
3964 folio_add_lru_vma(folio, vma);
3966 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3969 VM_BUG_ON(!folio_test_anon(folio) ||
3970 (pte_write(pte) && !PageAnonExclusive(page)));
3971 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3972 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3974 folio_unlock(folio);
3975 if (folio != swapcache && swapcache) {
3977 * Hold the lock to avoid the swap entry to be reused
3978 * until we take the PT lock for the pte_same() check
3979 * (to avoid false positives from pte_same). For
3980 * further safety release the lock after the swap_free
3981 * so that the swap count won't change under a
3982 * parallel locked swapcache.
3984 folio_unlock(swapcache);
3985 folio_put(swapcache);
3988 if (vmf->flags & FAULT_FLAG_WRITE) {
3989 ret |= do_wp_page(vmf);
3990 if (ret & VM_FAULT_ERROR)
3991 ret &= VM_FAULT_ERROR;
3995 /* No need to invalidate - it was non-present before */
3996 update_mmu_cache(vma, vmf->address, vmf->pte);
3998 pte_unmap_unlock(vmf->pte, vmf->ptl);
4001 put_swap_device(si);
4004 pte_unmap_unlock(vmf->pte, vmf->ptl);
4006 folio_unlock(folio);
4009 if (folio != swapcache && swapcache) {
4010 folio_unlock(swapcache);
4011 folio_put(swapcache);
4014 put_swap_device(si);
4019 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4020 * but allow concurrent faults), and pte mapped but not yet locked.
4021 * We return with mmap_lock still held, but pte unmapped and unlocked.
4023 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4025 struct vm_area_struct *vma = vmf->vma;
4030 /* File mapping without ->vm_ops ? */
4031 if (vma->vm_flags & VM_SHARED)
4032 return VM_FAULT_SIGBUS;
4035 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4036 * pte_offset_map() on pmds where a huge pmd might be created
4037 * from a different thread.
4039 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4040 * parallel threads are excluded by other means.
4042 * Here we only have mmap_read_lock(mm).
4044 if (pte_alloc(vma->vm_mm, vmf->pmd))
4045 return VM_FAULT_OOM;
4047 /* See comment in handle_pte_fault() */
4048 if (unlikely(pmd_trans_unstable(vmf->pmd)))
4051 /* Use the zero-page for reads */
4052 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4053 !mm_forbids_zeropage(vma->vm_mm)) {
4054 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4055 vma->vm_page_prot));
4056 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4057 vmf->address, &vmf->ptl);
4058 if (!pte_none(*vmf->pte)) {
4059 update_mmu_tlb(vma, vmf->address, vmf->pte);
4062 ret = check_stable_address_space(vma->vm_mm);
4065 /* Deliver the page fault to userland, check inside PT lock */
4066 if (userfaultfd_missing(vma)) {
4067 pte_unmap_unlock(vmf->pte, vmf->ptl);
4068 return handle_userfault(vmf, VM_UFFD_MISSING);
4073 /* Allocate our own private page. */
4074 if (unlikely(anon_vma_prepare(vma)))
4076 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4080 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4082 cgroup_throttle_swaprate(page, GFP_KERNEL);
4085 * The memory barrier inside __SetPageUptodate makes sure that
4086 * preceding stores to the page contents become visible before
4087 * the set_pte_at() write.
4089 __SetPageUptodate(page);
4091 entry = mk_pte(page, vma->vm_page_prot);
4092 entry = pte_sw_mkyoung(entry);
4093 if (vma->vm_flags & VM_WRITE)
4094 entry = pte_mkwrite(pte_mkdirty(entry));
4096 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4098 if (!pte_none(*vmf->pte)) {
4099 update_mmu_tlb(vma, vmf->address, vmf->pte);
4103 ret = check_stable_address_space(vma->vm_mm);
4107 /* Deliver the page fault to userland, check inside PT lock */
4108 if (userfaultfd_missing(vma)) {
4109 pte_unmap_unlock(vmf->pte, vmf->ptl);
4111 return handle_userfault(vmf, VM_UFFD_MISSING);
4114 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4115 page_add_new_anon_rmap(page, vma, vmf->address);
4116 lru_cache_add_inactive_or_unevictable(page, vma);
4118 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4120 /* No need to invalidate - it was non-present before */
4121 update_mmu_cache(vma, vmf->address, vmf->pte);
4123 pte_unmap_unlock(vmf->pte, vmf->ptl);
4131 return VM_FAULT_OOM;
4135 * The mmap_lock must have been held on entry, and may have been
4136 * released depending on flags and vma->vm_ops->fault() return value.
4137 * See filemap_fault() and __lock_page_retry().
4139 static vm_fault_t __do_fault(struct vm_fault *vmf)
4141 struct vm_area_struct *vma = vmf->vma;
4145 * Preallocate pte before we take page_lock because this might lead to
4146 * deadlocks for memcg reclaim which waits for pages under writeback:
4148 * SetPageWriteback(A)
4154 * wait_on_page_writeback(A)
4155 * SetPageWriteback(B)
4157 * # flush A, B to clear the writeback
4159 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4160 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4161 if (!vmf->prealloc_pte)
4162 return VM_FAULT_OOM;
4165 ret = vma->vm_ops->fault(vmf);
4166 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4167 VM_FAULT_DONE_COW)))
4170 if (unlikely(PageHWPoison(vmf->page))) {
4171 struct page *page = vmf->page;
4172 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4173 if (ret & VM_FAULT_LOCKED) {
4174 if (page_mapped(page))
4175 unmap_mapping_pages(page_mapping(page),
4176 page->index, 1, false);
4177 /* Retry if a clean page was removed from the cache. */
4178 if (invalidate_inode_page(page))
4179 poisonret = VM_FAULT_NOPAGE;
4187 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4188 lock_page(vmf->page);
4190 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4196 static void deposit_prealloc_pte(struct vm_fault *vmf)
4198 struct vm_area_struct *vma = vmf->vma;
4200 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4202 * We are going to consume the prealloc table,
4203 * count that as nr_ptes.
4205 mm_inc_nr_ptes(vma->vm_mm);
4206 vmf->prealloc_pte = NULL;
4209 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4211 struct vm_area_struct *vma = vmf->vma;
4212 bool write = vmf->flags & FAULT_FLAG_WRITE;
4213 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4216 vm_fault_t ret = VM_FAULT_FALLBACK;
4218 if (!transhuge_vma_suitable(vma, haddr))
4221 page = compound_head(page);
4222 if (compound_order(page) != HPAGE_PMD_ORDER)
4226 * Just backoff if any subpage of a THP is corrupted otherwise
4227 * the corrupted page may mapped by PMD silently to escape the
4228 * check. This kind of THP just can be PTE mapped. Access to
4229 * the corrupted subpage should trigger SIGBUS as expected.
4231 if (unlikely(PageHasHWPoisoned(page)))
4235 * Archs like ppc64 need additional space to store information
4236 * related to pte entry. Use the preallocated table for that.
4238 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4239 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4240 if (!vmf->prealloc_pte)
4241 return VM_FAULT_OOM;
4244 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4245 if (unlikely(!pmd_none(*vmf->pmd)))
4248 for (i = 0; i < HPAGE_PMD_NR; i++)
4249 flush_icache_page(vma, page + i);
4251 entry = mk_huge_pmd(page, vma->vm_page_prot);
4253 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4255 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4256 page_add_file_rmap(page, vma, true);
4259 * deposit and withdraw with pmd lock held
4261 if (arch_needs_pgtable_deposit())
4262 deposit_prealloc_pte(vmf);
4264 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4266 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4268 /* fault is handled */
4270 count_vm_event(THP_FILE_MAPPED);
4272 spin_unlock(vmf->ptl);
4276 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4278 return VM_FAULT_FALLBACK;
4282 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4284 struct vm_area_struct *vma = vmf->vma;
4285 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4286 bool write = vmf->flags & FAULT_FLAG_WRITE;
4287 bool prefault = vmf->address != addr;
4290 flush_icache_page(vma, page);
4291 entry = mk_pte(page, vma->vm_page_prot);
4293 if (prefault && arch_wants_old_prefaulted_pte())
4294 entry = pte_mkold(entry);
4296 entry = pte_sw_mkyoung(entry);
4299 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4300 if (unlikely(uffd_wp))
4301 entry = pte_mkuffd_wp(pte_wrprotect(entry));
4302 /* copy-on-write page */
4303 if (write && !(vma->vm_flags & VM_SHARED)) {
4304 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4305 page_add_new_anon_rmap(page, vma, addr);
4306 lru_cache_add_inactive_or_unevictable(page, vma);
4308 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4309 page_add_file_rmap(page, vma, false);
4311 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4314 static bool vmf_pte_changed(struct vm_fault *vmf)
4316 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4317 return !pte_same(*vmf->pte, vmf->orig_pte);
4319 return !pte_none(*vmf->pte);
4323 * finish_fault - finish page fault once we have prepared the page to fault
4325 * @vmf: structure describing the fault
4327 * This function handles all that is needed to finish a page fault once the
4328 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4329 * given page, adds reverse page mapping, handles memcg charges and LRU
4332 * The function expects the page to be locked and on success it consumes a
4333 * reference of a page being mapped (for the PTE which maps it).
4335 * Return: %0 on success, %VM_FAULT_ code in case of error.
4337 vm_fault_t finish_fault(struct vm_fault *vmf)
4339 struct vm_area_struct *vma = vmf->vma;
4343 /* Did we COW the page? */
4344 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4345 page = vmf->cow_page;
4350 * check even for read faults because we might have lost our CoWed
4353 if (!(vma->vm_flags & VM_SHARED)) {
4354 ret = check_stable_address_space(vma->vm_mm);
4359 if (pmd_none(*vmf->pmd)) {
4360 if (PageTransCompound(page)) {
4361 ret = do_set_pmd(vmf, page);
4362 if (ret != VM_FAULT_FALLBACK)
4366 if (vmf->prealloc_pte)
4367 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4368 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4369 return VM_FAULT_OOM;
4373 * See comment in handle_pte_fault() for how this scenario happens, we
4374 * need to return NOPAGE so that we drop this page.
4376 if (pmd_devmap_trans_unstable(vmf->pmd))
4377 return VM_FAULT_NOPAGE;
4379 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4380 vmf->address, &vmf->ptl);
4382 /* Re-check under ptl */
4383 if (likely(!vmf_pte_changed(vmf))) {
4384 do_set_pte(vmf, page, vmf->address);
4386 /* no need to invalidate: a not-present page won't be cached */
4387 update_mmu_cache(vma, vmf->address, vmf->pte);
4391 update_mmu_tlb(vma, vmf->address, vmf->pte);
4392 ret = VM_FAULT_NOPAGE;
4395 pte_unmap_unlock(vmf->pte, vmf->ptl);
4399 static unsigned long fault_around_bytes __read_mostly =
4400 rounddown_pow_of_two(65536);
4402 #ifdef CONFIG_DEBUG_FS
4403 static int fault_around_bytes_get(void *data, u64 *val)
4405 *val = fault_around_bytes;
4410 * fault_around_bytes must be rounded down to the nearest page order as it's
4411 * what do_fault_around() expects to see.
4413 static int fault_around_bytes_set(void *data, u64 val)
4415 if (val / PAGE_SIZE > PTRS_PER_PTE)
4417 if (val > PAGE_SIZE)
4418 fault_around_bytes = rounddown_pow_of_two(val);
4420 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4423 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4424 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4426 static int __init fault_around_debugfs(void)
4428 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4429 &fault_around_bytes_fops);
4432 late_initcall(fault_around_debugfs);
4436 * do_fault_around() tries to map few pages around the fault address. The hope
4437 * is that the pages will be needed soon and this will lower the number of
4440 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4441 * not ready to be mapped: not up-to-date, locked, etc.
4443 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4446 * fault_around_bytes defines how many bytes we'll try to map.
4447 * do_fault_around() expects it to be set to a power of two less than or equal
4450 * The virtual address of the area that we map is naturally aligned to
4451 * fault_around_bytes rounded down to the machine page size
4452 * (and therefore to page order). This way it's easier to guarantee
4453 * that we don't cross page table boundaries.
4455 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4457 unsigned long address = vmf->address, nr_pages, mask;
4458 pgoff_t start_pgoff = vmf->pgoff;
4462 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4463 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4465 address = max(address & mask, vmf->vma->vm_start);
4466 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4470 * end_pgoff is either the end of the page table, the end of
4471 * the vma or nr_pages from start_pgoff, depending what is nearest.
4473 end_pgoff = start_pgoff -
4474 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4476 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4477 start_pgoff + nr_pages - 1);
4479 if (pmd_none(*vmf->pmd)) {
4480 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4481 if (!vmf->prealloc_pte)
4482 return VM_FAULT_OOM;
4485 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4488 /* Return true if we should do read fault-around, false otherwise */
4489 static inline bool should_fault_around(struct vm_fault *vmf)
4491 /* No ->map_pages? No way to fault around... */
4492 if (!vmf->vma->vm_ops->map_pages)
4495 if (uffd_disable_fault_around(vmf->vma))
4498 return fault_around_bytes >> PAGE_SHIFT > 1;
4501 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4506 * Let's call ->map_pages() first and use ->fault() as fallback
4507 * if page by the offset is not ready to be mapped (cold cache or
4510 if (should_fault_around(vmf)) {
4511 ret = do_fault_around(vmf);
4516 ret = __do_fault(vmf);
4517 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4520 ret |= finish_fault(vmf);
4521 unlock_page(vmf->page);
4522 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4523 put_page(vmf->page);
4527 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4529 struct vm_area_struct *vma = vmf->vma;
4532 if (unlikely(anon_vma_prepare(vma)))
4533 return VM_FAULT_OOM;
4535 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4537 return VM_FAULT_OOM;
4539 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4541 put_page(vmf->cow_page);
4542 return VM_FAULT_OOM;
4544 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4546 ret = __do_fault(vmf);
4547 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4549 if (ret & VM_FAULT_DONE_COW)
4552 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4553 __SetPageUptodate(vmf->cow_page);
4555 ret |= finish_fault(vmf);
4556 unlock_page(vmf->page);
4557 put_page(vmf->page);
4558 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4562 put_page(vmf->cow_page);
4566 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4568 struct vm_area_struct *vma = vmf->vma;
4569 vm_fault_t ret, tmp;
4571 ret = __do_fault(vmf);
4572 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4576 * Check if the backing address space wants to know that the page is
4577 * about to become writable
4579 if (vma->vm_ops->page_mkwrite) {
4580 unlock_page(vmf->page);
4581 tmp = do_page_mkwrite(vmf);
4582 if (unlikely(!tmp ||
4583 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4584 put_page(vmf->page);
4589 ret |= finish_fault(vmf);
4590 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4592 unlock_page(vmf->page);
4593 put_page(vmf->page);
4597 ret |= fault_dirty_shared_page(vmf);
4602 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4603 * but allow concurrent faults).
4604 * The mmap_lock may have been released depending on flags and our
4605 * return value. See filemap_fault() and __folio_lock_or_retry().
4606 * If mmap_lock is released, vma may become invalid (for example
4607 * by other thread calling munmap()).
4609 static vm_fault_t do_fault(struct vm_fault *vmf)
4611 struct vm_area_struct *vma = vmf->vma;
4612 struct mm_struct *vm_mm = vma->vm_mm;
4616 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4618 if (!vma->vm_ops->fault) {
4620 * If we find a migration pmd entry or a none pmd entry, which
4621 * should never happen, return SIGBUS
4623 if (unlikely(!pmd_present(*vmf->pmd)))
4624 ret = VM_FAULT_SIGBUS;
4626 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4631 * Make sure this is not a temporary clearing of pte
4632 * by holding ptl and checking again. A R/M/W update
4633 * of pte involves: take ptl, clearing the pte so that
4634 * we don't have concurrent modification by hardware
4635 * followed by an update.
4637 if (unlikely(pte_none(*vmf->pte)))
4638 ret = VM_FAULT_SIGBUS;
4640 ret = VM_FAULT_NOPAGE;
4642 pte_unmap_unlock(vmf->pte, vmf->ptl);
4644 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4645 ret = do_read_fault(vmf);
4646 else if (!(vma->vm_flags & VM_SHARED))
4647 ret = do_cow_fault(vmf);
4649 ret = do_shared_fault(vmf);
4651 /* preallocated pagetable is unused: free it */
4652 if (vmf->prealloc_pte) {
4653 pte_free(vm_mm, vmf->prealloc_pte);
4654 vmf->prealloc_pte = NULL;
4659 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4660 unsigned long addr, int page_nid, int *flags)
4664 count_vm_numa_event(NUMA_HINT_FAULTS);
4665 if (page_nid == numa_node_id()) {
4666 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4667 *flags |= TNF_FAULT_LOCAL;
4670 return mpol_misplaced(page, vma, addr);
4673 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4675 struct vm_area_struct *vma = vmf->vma;
4676 struct page *page = NULL;
4677 int page_nid = NUMA_NO_NODE;
4681 bool was_writable = pte_savedwrite(vmf->orig_pte);
4685 * The "pte" at this point cannot be used safely without
4686 * validation through pte_unmap_same(). It's of NUMA type but
4687 * the pfn may be screwed if the read is non atomic.
4689 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4690 spin_lock(vmf->ptl);
4691 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4692 pte_unmap_unlock(vmf->pte, vmf->ptl);
4696 /* Get the normal PTE */
4697 old_pte = ptep_get(vmf->pte);
4698 pte = pte_modify(old_pte, vma->vm_page_prot);
4700 page = vm_normal_page(vma, vmf->address, pte);
4701 if (!page || is_zone_device_page(page))
4704 /* TODO: handle PTE-mapped THP */
4705 if (PageCompound(page))
4709 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4710 * much anyway since they can be in shared cache state. This misses
4711 * the case where a mapping is writable but the process never writes
4712 * to it but pte_write gets cleared during protection updates and
4713 * pte_dirty has unpredictable behaviour between PTE scan updates,
4714 * background writeback, dirty balancing and application behaviour.
4717 flags |= TNF_NO_GROUP;
4720 * Flag if the page is shared between multiple address spaces. This
4721 * is later used when determining whether to group tasks together
4723 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4724 flags |= TNF_SHARED;
4726 page_nid = page_to_nid(page);
4728 * For memory tiering mode, cpupid of slow memory page is used
4729 * to record page access time. So use default value.
4731 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4732 !node_is_toptier(page_nid))
4733 last_cpupid = (-1 & LAST_CPUPID_MASK);
4735 last_cpupid = page_cpupid_last(page);
4736 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4738 if (target_nid == NUMA_NO_NODE) {
4742 pte_unmap_unlock(vmf->pte, vmf->ptl);
4744 /* Migrate to the requested node */
4745 if (migrate_misplaced_page(page, vma, target_nid)) {
4746 page_nid = target_nid;
4747 flags |= TNF_MIGRATED;
4749 flags |= TNF_MIGRATE_FAIL;
4750 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4751 spin_lock(vmf->ptl);
4752 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4753 pte_unmap_unlock(vmf->pte, vmf->ptl);
4760 if (page_nid != NUMA_NO_NODE)
4761 task_numa_fault(last_cpupid, page_nid, 1, flags);
4765 * Make it present again, depending on how arch implements
4766 * non-accessible ptes, some can allow access by kernel mode.
4768 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4769 pte = pte_modify(old_pte, vma->vm_page_prot);
4770 pte = pte_mkyoung(pte);
4772 pte = pte_mkwrite(pte);
4773 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4774 update_mmu_cache(vma, vmf->address, vmf->pte);
4775 pte_unmap_unlock(vmf->pte, vmf->ptl);
4779 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4781 if (vma_is_anonymous(vmf->vma))
4782 return do_huge_pmd_anonymous_page(vmf);
4783 if (vmf->vma->vm_ops->huge_fault)
4784 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4785 return VM_FAULT_FALLBACK;
4788 /* `inline' is required to avoid gcc 4.1.2 build error */
4789 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4791 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4793 if (vma_is_anonymous(vmf->vma)) {
4794 if (likely(!unshare) &&
4795 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4796 return handle_userfault(vmf, VM_UFFD_WP);
4797 return do_huge_pmd_wp_page(vmf);
4799 if (vmf->vma->vm_ops->huge_fault) {
4800 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4802 if (!(ret & VM_FAULT_FALLBACK))
4806 /* COW or write-notify handled on pte level: split pmd. */
4807 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4809 return VM_FAULT_FALLBACK;
4812 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4814 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4815 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4816 /* No support for anonymous transparent PUD pages yet */
4817 if (vma_is_anonymous(vmf->vma))
4818 return VM_FAULT_FALLBACK;
4819 if (vmf->vma->vm_ops->huge_fault)
4820 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4821 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4822 return VM_FAULT_FALLBACK;
4825 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4827 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4828 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4829 /* No support for anonymous transparent PUD pages yet */
4830 if (vma_is_anonymous(vmf->vma))
4832 if (vmf->vma->vm_ops->huge_fault) {
4833 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4835 if (!(ret & VM_FAULT_FALLBACK))
4839 /* COW or write-notify not handled on PUD level: split pud.*/
4840 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4841 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4842 return VM_FAULT_FALLBACK;
4846 * These routines also need to handle stuff like marking pages dirty
4847 * and/or accessed for architectures that don't do it in hardware (most
4848 * RISC architectures). The early dirtying is also good on the i386.
4850 * There is also a hook called "update_mmu_cache()" that architectures
4851 * with external mmu caches can use to update those (ie the Sparc or
4852 * PowerPC hashed page tables that act as extended TLBs).
4854 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4855 * concurrent faults).
4857 * The mmap_lock may have been released depending on flags and our return value.
4858 * See filemap_fault() and __folio_lock_or_retry().
4860 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4864 if (unlikely(pmd_none(*vmf->pmd))) {
4866 * Leave __pte_alloc() until later: because vm_ops->fault may
4867 * want to allocate huge page, and if we expose page table
4868 * for an instant, it will be difficult to retract from
4869 * concurrent faults and from rmap lookups.
4872 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4875 * If a huge pmd materialized under us just retry later. Use
4876 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4877 * of pmd_trans_huge() to ensure the pmd didn't become
4878 * pmd_trans_huge under us and then back to pmd_none, as a
4879 * result of MADV_DONTNEED running immediately after a huge pmd
4880 * fault in a different thread of this mm, in turn leading to a
4881 * misleading pmd_trans_huge() retval. All we have to ensure is
4882 * that it is a regular pmd that we can walk with
4883 * pte_offset_map() and we can do that through an atomic read
4884 * in C, which is what pmd_trans_unstable() provides.
4886 if (pmd_devmap_trans_unstable(vmf->pmd))
4889 * A regular pmd is established and it can't morph into a huge
4890 * pmd from under us anymore at this point because we hold the
4891 * mmap_lock read mode and khugepaged takes it in write mode.
4892 * So now it's safe to run pte_offset_map().
4894 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4895 vmf->orig_pte = *vmf->pte;
4896 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4899 * some architectures can have larger ptes than wordsize,
4900 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4901 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4902 * accesses. The code below just needs a consistent view
4903 * for the ifs and we later double check anyway with the
4904 * ptl lock held. So here a barrier will do.
4907 if (pte_none(vmf->orig_pte)) {
4908 pte_unmap(vmf->pte);
4914 if (vma_is_anonymous(vmf->vma))
4915 return do_anonymous_page(vmf);
4917 return do_fault(vmf);
4920 if (!pte_present(vmf->orig_pte))
4921 return do_swap_page(vmf);
4923 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4924 return do_numa_page(vmf);
4926 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4927 spin_lock(vmf->ptl);
4928 entry = vmf->orig_pte;
4929 if (unlikely(!pte_same(*vmf->pte, entry))) {
4930 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4933 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4934 if (!pte_write(entry))
4935 return do_wp_page(vmf);
4936 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4937 entry = pte_mkdirty(entry);
4939 entry = pte_mkyoung(entry);
4940 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4941 vmf->flags & FAULT_FLAG_WRITE)) {
4942 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4944 /* Skip spurious TLB flush for retried page fault */
4945 if (vmf->flags & FAULT_FLAG_TRIED)
4948 * This is needed only for protection faults but the arch code
4949 * is not yet telling us if this is a protection fault or not.
4950 * This still avoids useless tlb flushes for .text page faults
4953 if (vmf->flags & FAULT_FLAG_WRITE)
4954 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4957 pte_unmap_unlock(vmf->pte, vmf->ptl);
4962 * By the time we get here, we already hold the mm semaphore
4964 * The mmap_lock may have been released depending on flags and our
4965 * return value. See filemap_fault() and __folio_lock_or_retry().
4967 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4968 unsigned long address, unsigned int flags)
4970 struct vm_fault vmf = {
4972 .address = address & PAGE_MASK,
4973 .real_address = address,
4975 .pgoff = linear_page_index(vma, address),
4976 .gfp_mask = __get_fault_gfp_mask(vma),
4978 struct mm_struct *mm = vma->vm_mm;
4979 unsigned long vm_flags = vma->vm_flags;
4984 pgd = pgd_offset(mm, address);
4985 p4d = p4d_alloc(mm, pgd, address);
4987 return VM_FAULT_OOM;
4989 vmf.pud = pud_alloc(mm, p4d, address);
4991 return VM_FAULT_OOM;
4993 if (pud_none(*vmf.pud) &&
4994 hugepage_vma_check(vma, vm_flags, false, true, true)) {
4995 ret = create_huge_pud(&vmf);
4996 if (!(ret & VM_FAULT_FALLBACK))
4999 pud_t orig_pud = *vmf.pud;
5002 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5005 * TODO once we support anonymous PUDs: NUMA case and
5006 * FAULT_FLAG_UNSHARE handling.
5008 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5009 ret = wp_huge_pud(&vmf, orig_pud);
5010 if (!(ret & VM_FAULT_FALLBACK))
5013 huge_pud_set_accessed(&vmf, orig_pud);
5019 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5021 return VM_FAULT_OOM;
5023 /* Huge pud page fault raced with pmd_alloc? */
5024 if (pud_trans_unstable(vmf.pud))
5027 if (pmd_none(*vmf.pmd) &&
5028 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5029 ret = create_huge_pmd(&vmf);
5030 if (!(ret & VM_FAULT_FALLBACK))
5033 vmf.orig_pmd = *vmf.pmd;
5036 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5037 VM_BUG_ON(thp_migration_supported() &&
5038 !is_pmd_migration_entry(vmf.orig_pmd));
5039 if (is_pmd_migration_entry(vmf.orig_pmd))
5040 pmd_migration_entry_wait(mm, vmf.pmd);
5043 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5044 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5045 return do_huge_pmd_numa_page(&vmf);
5047 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5048 !pmd_write(vmf.orig_pmd)) {
5049 ret = wp_huge_pmd(&vmf);
5050 if (!(ret & VM_FAULT_FALLBACK))
5053 huge_pmd_set_accessed(&vmf);
5059 return handle_pte_fault(&vmf);
5063 * mm_account_fault - Do page fault accounting
5065 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5066 * of perf event counters, but we'll still do the per-task accounting to
5067 * the task who triggered this page fault.
5068 * @address: the faulted address.
5069 * @flags: the fault flags.
5070 * @ret: the fault retcode.
5072 * This will take care of most of the page fault accounting. Meanwhile, it
5073 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5074 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5075 * still be in per-arch page fault handlers at the entry of page fault.
5077 static inline void mm_account_fault(struct pt_regs *regs,
5078 unsigned long address, unsigned int flags,
5084 * We don't do accounting for some specific faults:
5086 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5087 * includes arch_vma_access_permitted() failing before reaching here.
5088 * So this is not a "this many hardware page faults" counter. We
5089 * should use the hw profiling for that.
5091 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5092 * once they're completed.
5094 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5098 * We define the fault as a major fault when the final successful fault
5099 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5100 * handle it immediately previously).
5102 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5110 * If the fault is done for GUP, regs will be NULL. We only do the
5111 * accounting for the per thread fault counters who triggered the
5112 * fault, and we skip the perf event updates.
5118 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5120 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5123 #ifdef CONFIG_LRU_GEN
5124 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5126 /* the LRU algorithm doesn't apply to sequential or random reads */
5127 current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5130 static void lru_gen_exit_fault(void)
5132 current->in_lru_fault = false;
5135 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5139 static void lru_gen_exit_fault(void)
5142 #endif /* CONFIG_LRU_GEN */
5145 * By the time we get here, we already hold the mm semaphore
5147 * The mmap_lock may have been released depending on flags and our
5148 * return value. See filemap_fault() and __folio_lock_or_retry().
5150 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5151 unsigned int flags, struct pt_regs *regs)
5155 __set_current_state(TASK_RUNNING);
5157 count_vm_event(PGFAULT);
5158 count_memcg_event_mm(vma->vm_mm, PGFAULT);
5160 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5161 flags & FAULT_FLAG_INSTRUCTION,
5162 flags & FAULT_FLAG_REMOTE))
5163 return VM_FAULT_SIGSEGV;
5166 * Enable the memcg OOM handling for faults triggered in user
5167 * space. Kernel faults are handled more gracefully.
5169 if (flags & FAULT_FLAG_USER)
5170 mem_cgroup_enter_user_fault();
5172 lru_gen_enter_fault(vma);
5174 if (unlikely(is_vm_hugetlb_page(vma)))
5175 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5177 ret = __handle_mm_fault(vma, address, flags);
5179 lru_gen_exit_fault();
5181 if (flags & FAULT_FLAG_USER) {
5182 mem_cgroup_exit_user_fault();
5184 * The task may have entered a memcg OOM situation but
5185 * if the allocation error was handled gracefully (no
5186 * VM_FAULT_OOM), there is no need to kill anything.
5187 * Just clean up the OOM state peacefully.
5189 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5190 mem_cgroup_oom_synchronize(false);
5193 mm_account_fault(regs, address, flags, ret);
5197 EXPORT_SYMBOL_GPL(handle_mm_fault);
5199 #ifndef __PAGETABLE_P4D_FOLDED
5201 * Allocate p4d page table.
5202 * We've already handled the fast-path in-line.
5204 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5206 p4d_t *new = p4d_alloc_one(mm, address);
5210 spin_lock(&mm->page_table_lock);
5211 if (pgd_present(*pgd)) { /* Another has populated it */
5214 smp_wmb(); /* See comment in pmd_install() */
5215 pgd_populate(mm, pgd, new);
5217 spin_unlock(&mm->page_table_lock);
5220 #endif /* __PAGETABLE_P4D_FOLDED */
5222 #ifndef __PAGETABLE_PUD_FOLDED
5224 * Allocate page upper directory.
5225 * We've already handled the fast-path in-line.
5227 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5229 pud_t *new = pud_alloc_one(mm, address);
5233 spin_lock(&mm->page_table_lock);
5234 if (!p4d_present(*p4d)) {
5236 smp_wmb(); /* See comment in pmd_install() */
5237 p4d_populate(mm, p4d, new);
5238 } else /* Another has populated it */
5240 spin_unlock(&mm->page_table_lock);
5243 #endif /* __PAGETABLE_PUD_FOLDED */
5245 #ifndef __PAGETABLE_PMD_FOLDED
5247 * Allocate page middle directory.
5248 * We've already handled the fast-path in-line.
5250 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5253 pmd_t *new = pmd_alloc_one(mm, address);
5257 ptl = pud_lock(mm, pud);
5258 if (!pud_present(*pud)) {
5260 smp_wmb(); /* See comment in pmd_install() */
5261 pud_populate(mm, pud, new);
5262 } else { /* Another has populated it */
5268 #endif /* __PAGETABLE_PMD_FOLDED */
5271 * follow_pte - look up PTE at a user virtual address
5272 * @mm: the mm_struct of the target address space
5273 * @address: user virtual address
5274 * @ptepp: location to store found PTE
5275 * @ptlp: location to store the lock for the PTE
5277 * On a successful return, the pointer to the PTE is stored in @ptepp;
5278 * the corresponding lock is taken and its location is stored in @ptlp.
5279 * The contents of the PTE are only stable until @ptlp is released;
5280 * any further use, if any, must be protected against invalidation
5281 * with MMU notifiers.
5283 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5284 * should be taken for read.
5286 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5287 * it is not a good general-purpose API.
5289 * Return: zero on success, -ve otherwise.
5291 int follow_pte(struct mm_struct *mm, unsigned long address,
5292 pte_t **ptepp, spinlock_t **ptlp)
5300 pgd = pgd_offset(mm, address);
5301 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5304 p4d = p4d_offset(pgd, address);
5305 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5308 pud = pud_offset(p4d, address);
5309 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5312 pmd = pmd_offset(pud, address);
5313 VM_BUG_ON(pmd_trans_huge(*pmd));
5315 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5318 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5319 if (!pte_present(*ptep))
5324 pte_unmap_unlock(ptep, *ptlp);
5328 EXPORT_SYMBOL_GPL(follow_pte);
5331 * follow_pfn - look up PFN at a user virtual address
5332 * @vma: memory mapping
5333 * @address: user virtual address
5334 * @pfn: location to store found PFN
5336 * Only IO mappings and raw PFN mappings are allowed.
5338 * This function does not allow the caller to read the permissions
5339 * of the PTE. Do not use it.
5341 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5343 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5350 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5353 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5356 *pfn = pte_pfn(*ptep);
5357 pte_unmap_unlock(ptep, ptl);
5360 EXPORT_SYMBOL(follow_pfn);
5362 #ifdef CONFIG_HAVE_IOREMAP_PROT
5363 int follow_phys(struct vm_area_struct *vma,
5364 unsigned long address, unsigned int flags,
5365 unsigned long *prot, resource_size_t *phys)
5371 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5374 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5378 if ((flags & FOLL_WRITE) && !pte_write(pte))
5381 *prot = pgprot_val(pte_pgprot(pte));
5382 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5386 pte_unmap_unlock(ptep, ptl);
5392 * generic_access_phys - generic implementation for iomem mmap access
5393 * @vma: the vma to access
5394 * @addr: userspace address, not relative offset within @vma
5395 * @buf: buffer to read/write
5396 * @len: length of transfer
5397 * @write: set to FOLL_WRITE when writing, otherwise reading
5399 * This is a generic implementation for &vm_operations_struct.access for an
5400 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5403 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5404 void *buf, int len, int write)
5406 resource_size_t phys_addr;
5407 unsigned long prot = 0;
5408 void __iomem *maddr;
5411 int offset = offset_in_page(addr);
5414 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5418 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5421 pte_unmap_unlock(ptep, ptl);
5423 prot = pgprot_val(pte_pgprot(pte));
5424 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5426 if ((write & FOLL_WRITE) && !pte_write(pte))
5429 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5433 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5436 if (!pte_same(pte, *ptep)) {
5437 pte_unmap_unlock(ptep, ptl);
5444 memcpy_toio(maddr + offset, buf, len);
5446 memcpy_fromio(buf, maddr + offset, len);
5448 pte_unmap_unlock(ptep, ptl);
5454 EXPORT_SYMBOL_GPL(generic_access_phys);
5458 * Access another process' address space as given in mm.
5460 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5461 int len, unsigned int gup_flags)
5463 struct vm_area_struct *vma;
5464 void *old_buf = buf;
5465 int write = gup_flags & FOLL_WRITE;
5467 if (mmap_read_lock_killable(mm))
5470 /* ignore errors, just check how much was successfully transferred */
5472 int bytes, ret, offset;
5474 struct page *page = NULL;
5476 ret = get_user_pages_remote(mm, addr, 1,
5477 gup_flags, &page, &vma, NULL);
5479 #ifndef CONFIG_HAVE_IOREMAP_PROT
5483 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5484 * we can access using slightly different code.
5486 vma = vma_lookup(mm, addr);
5489 if (vma->vm_ops && vma->vm_ops->access)
5490 ret = vma->vm_ops->access(vma, addr, buf,
5498 offset = addr & (PAGE_SIZE-1);
5499 if (bytes > PAGE_SIZE-offset)
5500 bytes = PAGE_SIZE-offset;
5504 copy_to_user_page(vma, page, addr,
5505 maddr + offset, buf, bytes);
5506 set_page_dirty_lock(page);
5508 copy_from_user_page(vma, page, addr,
5509 buf, maddr + offset, bytes);
5518 mmap_read_unlock(mm);
5520 return buf - old_buf;
5524 * access_remote_vm - access another process' address space
5525 * @mm: the mm_struct of the target address space
5526 * @addr: start address to access
5527 * @buf: source or destination buffer
5528 * @len: number of bytes to transfer
5529 * @gup_flags: flags modifying lookup behaviour
5531 * The caller must hold a reference on @mm.
5533 * Return: number of bytes copied from source to destination.
5535 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5536 void *buf, int len, unsigned int gup_flags)
5538 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5542 * Access another process' address space.
5543 * Source/target buffer must be kernel space,
5544 * Do not walk the page table directly, use get_user_pages
5546 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5547 void *buf, int len, unsigned int gup_flags)
5549 struct mm_struct *mm;
5552 mm = get_task_mm(tsk);
5556 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5562 EXPORT_SYMBOL_GPL(access_process_vm);
5565 * Print the name of a VMA.
5567 void print_vma_addr(char *prefix, unsigned long ip)
5569 struct mm_struct *mm = current->mm;
5570 struct vm_area_struct *vma;
5573 * we might be running from an atomic context so we cannot sleep
5575 if (!mmap_read_trylock(mm))
5578 vma = find_vma(mm, ip);
5579 if (vma && vma->vm_file) {
5580 struct file *f = vma->vm_file;
5581 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5585 p = file_path(f, buf, PAGE_SIZE);
5588 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5590 vma->vm_end - vma->vm_start);
5591 free_page((unsigned long)buf);
5594 mmap_read_unlock(mm);
5597 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5598 void __might_fault(const char *file, int line)
5600 if (pagefault_disabled())
5602 __might_sleep(file, line);
5603 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5605 might_lock_read(¤t->mm->mmap_lock);
5608 EXPORT_SYMBOL(__might_fault);
5611 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5613 * Process all subpages of the specified huge page with the specified
5614 * operation. The target subpage will be processed last to keep its
5617 static inline void process_huge_page(
5618 unsigned long addr_hint, unsigned int pages_per_huge_page,
5619 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5623 unsigned long addr = addr_hint &
5624 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5626 /* Process target subpage last to keep its cache lines hot */
5628 n = (addr_hint - addr) / PAGE_SIZE;
5629 if (2 * n <= pages_per_huge_page) {
5630 /* If target subpage in first half of huge page */
5633 /* Process subpages at the end of huge page */
5634 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5636 process_subpage(addr + i * PAGE_SIZE, i, arg);
5639 /* If target subpage in second half of huge page */
5640 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5641 l = pages_per_huge_page - n;
5642 /* Process subpages at the begin of huge page */
5643 for (i = 0; i < base; i++) {
5645 process_subpage(addr + i * PAGE_SIZE, i, arg);
5649 * Process remaining subpages in left-right-left-right pattern
5650 * towards the target subpage
5652 for (i = 0; i < l; i++) {
5653 int left_idx = base + i;
5654 int right_idx = base + 2 * l - 1 - i;
5657 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5659 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5663 static void clear_gigantic_page(struct page *page,
5665 unsigned int pages_per_huge_page)
5671 for (i = 0; i < pages_per_huge_page; i++) {
5672 p = nth_page(page, i);
5674 clear_user_highpage(p, addr + i * PAGE_SIZE);
5678 static void clear_subpage(unsigned long addr, int idx, void *arg)
5680 struct page *page = arg;
5682 clear_user_highpage(page + idx, addr);
5685 void clear_huge_page(struct page *page,
5686 unsigned long addr_hint, unsigned int pages_per_huge_page)
5688 unsigned long addr = addr_hint &
5689 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5691 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5692 clear_gigantic_page(page, addr, pages_per_huge_page);
5696 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5699 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5701 struct vm_area_struct *vma,
5702 unsigned int pages_per_huge_page)
5705 struct page *dst_base = dst;
5706 struct page *src_base = src;
5708 for (i = 0; i < pages_per_huge_page; i++) {
5709 dst = nth_page(dst_base, i);
5710 src = nth_page(src_base, i);
5713 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5717 struct copy_subpage_arg {
5720 struct vm_area_struct *vma;
5723 static void copy_subpage(unsigned long addr, int idx, void *arg)
5725 struct copy_subpage_arg *copy_arg = arg;
5727 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5728 addr, copy_arg->vma);
5731 void copy_user_huge_page(struct page *dst, struct page *src,
5732 unsigned long addr_hint, struct vm_area_struct *vma,
5733 unsigned int pages_per_huge_page)
5735 unsigned long addr = addr_hint &
5736 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5737 struct copy_subpage_arg arg = {
5743 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5744 copy_user_gigantic_page(dst, src, addr, vma,
5745 pages_per_huge_page);
5749 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5752 long copy_huge_page_from_user(struct page *dst_page,
5753 const void __user *usr_src,
5754 unsigned int pages_per_huge_page,
5755 bool allow_pagefault)
5758 unsigned long i, rc = 0;
5759 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5760 struct page *subpage;
5762 for (i = 0; i < pages_per_huge_page; i++) {
5763 subpage = nth_page(dst_page, i);
5764 if (allow_pagefault)
5765 page_kaddr = kmap(subpage);
5767 page_kaddr = kmap_atomic(subpage);
5768 rc = copy_from_user(page_kaddr,
5769 usr_src + i * PAGE_SIZE, PAGE_SIZE);
5770 if (allow_pagefault)
5773 kunmap_atomic(page_kaddr);
5775 ret_val -= (PAGE_SIZE - rc);
5779 flush_dcache_page(subpage);
5785 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5787 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5789 static struct kmem_cache *page_ptl_cachep;
5791 void __init ptlock_cache_init(void)
5793 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5797 bool ptlock_alloc(struct page *page)
5801 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5808 void ptlock_free(struct page *page)
5810 kmem_cache_free(page_ptl_cachep, page->ptl);