1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
5 #include <linux/spinlock.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/secretmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/rwsem.h>
17 #include <linux/hugetlb.h>
18 #include <linux/migrate.h>
19 #include <linux/mm_inline.h>
20 #include <linux/sched/mm.h>
22 #include <asm/mmu_context.h>
23 #include <asm/tlbflush.h>
27 struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
32 static inline void sanity_check_pinned_pages(struct page **pages,
35 if (!IS_ENABLED(CONFIG_DEBUG_VM))
39 * We only pin anonymous pages if they are exclusive. Once pinned, we
40 * can no longer turn them possibly shared and PageAnonExclusive() will
41 * stick around until the page is freed.
43 * We'd like to verify that our pinned anonymous pages are still mapped
44 * exclusively. The issue with anon THP is that we don't know how
45 * they are/were mapped when pinning them. However, for anon
46 * THP we can assume that either the given page (PTE-mapped THP) or
47 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
48 * neither is the case, there is certainly something wrong.
50 for (; npages; npages--, pages++) {
51 struct page *page = *pages;
52 struct folio *folio = page_folio(page);
54 if (!folio_test_anon(folio))
56 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
57 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
59 /* Either a PTE-mapped or a PMD-mapped THP. */
60 VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
61 !PageAnonExclusive(page), page);
66 * Return the folio with ref appropriately incremented,
67 * or NULL if that failed.
69 static inline struct folio *try_get_folio(struct page *page, int refs)
74 folio = page_folio(page);
75 if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
77 if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
81 * At this point we have a stable reference to the folio; but it
82 * could be that between calling page_folio() and the refcount
83 * increment, the folio was split, in which case we'd end up
84 * holding a reference on a folio that has nothing to do with the page
85 * we were given anymore.
86 * So now that the folio is stable, recheck that the page still
87 * belongs to this folio.
89 if (unlikely(page_folio(page) != folio)) {
90 if (!put_devmap_managed_page_refs(&folio->page, refs))
91 folio_put_refs(folio, refs);
99 * try_grab_folio() - Attempt to get or pin a folio.
100 * @page: pointer to page to be grabbed
101 * @refs: the value to (effectively) add to the folio's refcount
102 * @flags: gup flags: these are the FOLL_* flag values.
104 * "grab" names in this file mean, "look at flags to decide whether to use
105 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
107 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
108 * same time. (That's true throughout the get_user_pages*() and
109 * pin_user_pages*() APIs.) Cases:
111 * FOLL_GET: folio's refcount will be incremented by @refs.
113 * FOLL_PIN on large folios: folio's refcount will be incremented by
114 * @refs, and its compound_pincount will be incremented by @refs.
116 * FOLL_PIN on single-page folios: folio's refcount will be incremented by
117 * @refs * GUP_PIN_COUNTING_BIAS.
119 * Return: The folio containing @page (with refcount appropriately
120 * incremented) for success, or NULL upon failure. If neither FOLL_GET
121 * nor FOLL_PIN was set, that's considered failure, and furthermore,
122 * a likely bug in the caller, so a warning is also emitted.
124 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
126 if (flags & FOLL_GET)
127 return try_get_folio(page, refs);
128 else if (flags & FOLL_PIN) {
132 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
133 * right zone, so fail and let the caller fall back to the slow
136 if (unlikely((flags & FOLL_LONGTERM) &&
137 !is_longterm_pinnable_page(page)))
141 * CAUTION: Don't use compound_head() on the page before this
142 * point, the result won't be stable.
144 folio = try_get_folio(page, refs);
149 * When pinning a large folio, use an exact count to track it.
151 * However, be sure to *also* increment the normal folio
152 * refcount field at least once, so that the folio really
153 * is pinned. That's why the refcount from the earlier
154 * try_get_folio() is left intact.
156 if (folio_test_large(folio))
157 atomic_add(refs, folio_pincount_ptr(folio));
160 refs * (GUP_PIN_COUNTING_BIAS - 1));
162 * Adjust the pincount before re-checking the PTE for changes.
163 * This is essentially a smp_mb() and is paired with a memory
164 * barrier in page_try_share_anon_rmap().
166 smp_mb__after_atomic();
168 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
177 static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
179 if (flags & FOLL_PIN) {
180 node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
181 if (folio_test_large(folio))
182 atomic_sub(refs, folio_pincount_ptr(folio));
184 refs *= GUP_PIN_COUNTING_BIAS;
187 if (!put_devmap_managed_page_refs(&folio->page, refs))
188 folio_put_refs(folio, refs);
192 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
193 * @page: pointer to page to be grabbed
194 * @flags: gup flags: these are the FOLL_* flag values.
196 * This might not do anything at all, depending on the flags argument.
198 * "grab" names in this file mean, "look at flags to decide whether to use
199 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
202 * time. Cases: please see the try_grab_folio() documentation, with
205 * Return: true for success, or if no action was required (if neither FOLL_PIN
206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207 * FOLL_PIN was set, but the page could not be grabbed.
209 bool __must_check try_grab_page(struct page *page, unsigned int flags)
211 struct folio *folio = page_folio(page);
213 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
214 if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
217 if (flags & FOLL_GET)
218 folio_ref_inc(folio);
219 else if (flags & FOLL_PIN) {
221 * Similar to try_grab_folio(): be sure to *also*
222 * increment the normal page refcount field at least once,
223 * so that the page really is pinned.
225 if (folio_test_large(folio)) {
226 folio_ref_add(folio, 1);
227 atomic_add(1, folio_pincount_ptr(folio));
229 folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
232 node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
239 * unpin_user_page() - release a dma-pinned page
240 * @page: pointer to page to be released
242 * Pages that were pinned via pin_user_pages*() must be released via either
243 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
244 * that such pages can be separately tracked and uniquely handled. In
245 * particular, interactions with RDMA and filesystems need special handling.
247 void unpin_user_page(struct page *page)
249 sanity_check_pinned_pages(&page, 1);
250 gup_put_folio(page_folio(page), 1, FOLL_PIN);
252 EXPORT_SYMBOL(unpin_user_page);
254 static inline struct folio *gup_folio_range_next(struct page *start,
255 unsigned long npages, unsigned long i, unsigned int *ntails)
257 struct page *next = nth_page(start, i);
258 struct folio *folio = page_folio(next);
261 if (folio_test_large(folio))
262 nr = min_t(unsigned int, npages - i,
263 folio_nr_pages(folio) - folio_page_idx(folio, next));
269 static inline struct folio *gup_folio_next(struct page **list,
270 unsigned long npages, unsigned long i, unsigned int *ntails)
272 struct folio *folio = page_folio(list[i]);
275 for (nr = i + 1; nr < npages; nr++) {
276 if (page_folio(list[nr]) != folio)
285 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
286 * @pages: array of pages to be maybe marked dirty, and definitely released.
287 * @npages: number of pages in the @pages array.
288 * @make_dirty: whether to mark the pages dirty
290 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
291 * variants called on that page.
293 * For each page in the @pages array, make that page (or its head page, if a
294 * compound page) dirty, if @make_dirty is true, and if the page was previously
295 * listed as clean. In any case, releases all pages using unpin_user_page(),
296 * possibly via unpin_user_pages(), for the non-dirty case.
298 * Please see the unpin_user_page() documentation for details.
300 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
301 * required, then the caller should a) verify that this is really correct,
302 * because _lock() is usually required, and b) hand code it:
303 * set_page_dirty_lock(), unpin_user_page().
306 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
314 unpin_user_pages(pages, npages);
318 sanity_check_pinned_pages(pages, npages);
319 for (i = 0; i < npages; i += nr) {
320 folio = gup_folio_next(pages, npages, i, &nr);
322 * Checking PageDirty at this point may race with
323 * clear_page_dirty_for_io(), but that's OK. Two key
326 * 1) This code sees the page as already dirty, so it
327 * skips the call to set_page_dirty(). That could happen
328 * because clear_page_dirty_for_io() called
329 * page_mkclean(), followed by set_page_dirty().
330 * However, now the page is going to get written back,
331 * which meets the original intention of setting it
332 * dirty, so all is well: clear_page_dirty_for_io() goes
333 * on to call TestClearPageDirty(), and write the page
336 * 2) This code sees the page as clean, so it calls
337 * set_page_dirty(). The page stays dirty, despite being
338 * written back, so it gets written back again in the
339 * next writeback cycle. This is harmless.
341 if (!folio_test_dirty(folio)) {
343 folio_mark_dirty(folio);
346 gup_put_folio(folio, nr, FOLL_PIN);
349 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
352 * unpin_user_page_range_dirty_lock() - release and optionally dirty
353 * gup-pinned page range
355 * @page: the starting page of a range maybe marked dirty, and definitely released.
356 * @npages: number of consecutive pages to release.
357 * @make_dirty: whether to mark the pages dirty
359 * "gup-pinned page range" refers to a range of pages that has had one of the
360 * pin_user_pages() variants called on that page.
362 * For the page ranges defined by [page .. page+npages], make that range (or
363 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
364 * page range was previously listed as clean.
366 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
367 * required, then the caller should a) verify that this is really correct,
368 * because _lock() is usually required, and b) hand code it:
369 * set_page_dirty_lock(), unpin_user_page().
372 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
379 for (i = 0; i < npages; i += nr) {
380 folio = gup_folio_range_next(page, npages, i, &nr);
381 if (make_dirty && !folio_test_dirty(folio)) {
383 folio_mark_dirty(folio);
386 gup_put_folio(folio, nr, FOLL_PIN);
389 EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
391 static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
398 * Don't perform any sanity checks because we might have raced with
399 * fork() and some anonymous pages might now actually be shared --
400 * which is why we're unpinning after all.
402 for (i = 0; i < npages; i += nr) {
403 folio = gup_folio_next(pages, npages, i, &nr);
404 gup_put_folio(folio, nr, FOLL_PIN);
409 * unpin_user_pages() - release an array of gup-pinned pages.
410 * @pages: array of pages to be marked dirty and released.
411 * @npages: number of pages in the @pages array.
413 * For each page in the @pages array, release the page using unpin_user_page().
415 * Please see the unpin_user_page() documentation for details.
417 void unpin_user_pages(struct page **pages, unsigned long npages)
424 * If this WARN_ON() fires, then the system *might* be leaking pages (by
425 * leaving them pinned), but probably not. More likely, gup/pup returned
426 * a hard -ERRNO error to the caller, who erroneously passed it here.
428 if (WARN_ON(IS_ERR_VALUE(npages)))
431 sanity_check_pinned_pages(pages, npages);
432 for (i = 0; i < npages; i += nr) {
433 folio = gup_folio_next(pages, npages, i, &nr);
434 gup_put_folio(folio, nr, FOLL_PIN);
437 EXPORT_SYMBOL(unpin_user_pages);
440 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
441 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
442 * cache bouncing on large SMP machines for concurrent pinned gups.
444 static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
446 if (!test_bit(MMF_HAS_PINNED, mm_flags))
447 set_bit(MMF_HAS_PINNED, mm_flags);
451 static struct page *no_page_table(struct vm_area_struct *vma,
455 * When core dumping an enormous anonymous area that nobody
456 * has touched so far, we don't want to allocate unnecessary pages or
457 * page tables. Return error instead of NULL to skip handle_mm_fault,
458 * then get_dump_page() will return NULL to leave a hole in the dump.
459 * But we can only make this optimization where a hole would surely
460 * be zero-filled if handle_mm_fault() actually did handle it.
462 if ((flags & FOLL_DUMP) &&
463 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
464 return ERR_PTR(-EFAULT);
468 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
469 pte_t *pte, unsigned int flags)
471 if (flags & FOLL_TOUCH) {
474 if (flags & FOLL_WRITE)
475 entry = pte_mkdirty(entry);
476 entry = pte_mkyoung(entry);
478 if (!pte_same(*pte, entry)) {
479 set_pte_at(vma->vm_mm, address, pte, entry);
480 update_mmu_cache(vma, address, pte);
484 /* Proper page table entry exists, but no corresponding struct page */
488 /* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
489 static inline bool can_follow_write_pte(pte_t pte, struct page *page,
490 struct vm_area_struct *vma,
493 /* If the pte is writable, we can write to the page. */
497 /* Maybe FOLL_FORCE is set to override it? */
498 if (!(flags & FOLL_FORCE))
501 /* But FOLL_FORCE has no effect on shared mappings */
502 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
505 /* ... or read-only private ones */
506 if (!(vma->vm_flags & VM_MAYWRITE))
509 /* ... or already writable ones that just need to take a write fault */
510 if (vma->vm_flags & VM_WRITE)
514 * See can_change_pte_writable(): we broke COW and could map the page
515 * writable if we have an exclusive anonymous page ...
517 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
520 /* ... and a write-fault isn't required for other reasons. */
521 if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
523 return !userfaultfd_pte_wp(vma, pte);
526 static struct page *follow_page_pte(struct vm_area_struct *vma,
527 unsigned long address, pmd_t *pmd, unsigned int flags,
528 struct dev_pagemap **pgmap)
530 struct mm_struct *mm = vma->vm_mm;
536 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
537 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
538 (FOLL_PIN | FOLL_GET)))
539 return ERR_PTR(-EINVAL);
541 if (unlikely(pmd_bad(*pmd)))
542 return no_page_table(vma, flags);
544 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
546 if (!pte_present(pte)) {
549 * KSM's break_ksm() relies upon recognizing a ksm page
550 * even while it is being migrated, so for that case we
551 * need migration_entry_wait().
553 if (likely(!(flags & FOLL_MIGRATION)))
557 entry = pte_to_swp_entry(pte);
558 if (!is_migration_entry(entry))
560 pte_unmap_unlock(ptep, ptl);
561 migration_entry_wait(mm, pmd, address);
564 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
567 page = vm_normal_page(vma, address, pte);
570 * We only care about anon pages in can_follow_write_pte() and don't
571 * have to worry about pte_devmap() because they are never anon.
573 if ((flags & FOLL_WRITE) &&
574 !can_follow_write_pte(pte, page, vma, flags)) {
579 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
581 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
582 * case since they are only valid while holding the pgmap
585 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
587 page = pte_page(pte);
590 } else if (unlikely(!page)) {
591 if (flags & FOLL_DUMP) {
592 /* Avoid special (like zero) pages in core dumps */
593 page = ERR_PTR(-EFAULT);
597 if (is_zero_pfn(pte_pfn(pte))) {
598 page = pte_page(pte);
600 ret = follow_pfn_pte(vma, address, ptep, flags);
606 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
607 page = ERR_PTR(-EMLINK);
611 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
612 !PageAnonExclusive(page), page);
614 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
615 if (unlikely(!try_grab_page(page, flags))) {
616 page = ERR_PTR(-ENOMEM);
620 * We need to make the page accessible if and only if we are going
621 * to access its content (the FOLL_PIN case). Please see
622 * Documentation/core-api/pin_user_pages.rst for details.
624 if (flags & FOLL_PIN) {
625 ret = arch_make_page_accessible(page);
627 unpin_user_page(page);
632 if (flags & FOLL_TOUCH) {
633 if ((flags & FOLL_WRITE) &&
634 !pte_dirty(pte) && !PageDirty(page))
635 set_page_dirty(page);
637 * pte_mkyoung() would be more correct here, but atomic care
638 * is needed to avoid losing the dirty bit: it is easier to use
639 * mark_page_accessed().
641 mark_page_accessed(page);
644 pte_unmap_unlock(ptep, ptl);
647 pte_unmap_unlock(ptep, ptl);
650 return no_page_table(vma, flags);
653 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
654 unsigned long address, pud_t *pudp,
656 struct follow_page_context *ctx)
661 struct mm_struct *mm = vma->vm_mm;
663 pmd = pmd_offset(pudp, address);
665 * The READ_ONCE() will stabilize the pmdval in a register or
666 * on the stack so that it will stop changing under the code.
668 pmdval = READ_ONCE(*pmd);
669 if (pmd_none(pmdval))
670 return no_page_table(vma, flags);
672 if (!pmd_present(pmdval)) {
674 * Should never reach here, if thp migration is not supported;
675 * Otherwise, it must be a thp migration entry.
677 VM_BUG_ON(!thp_migration_supported() ||
678 !is_pmd_migration_entry(pmdval));
680 if (likely(!(flags & FOLL_MIGRATION)))
681 return no_page_table(vma, flags);
683 pmd_migration_entry_wait(mm, pmd);
684 pmdval = READ_ONCE(*pmd);
686 * MADV_DONTNEED may convert the pmd to null because
687 * mmap_lock is held in read mode
689 if (pmd_none(pmdval))
690 return no_page_table(vma, flags);
693 if (pmd_devmap(pmdval)) {
694 ptl = pmd_lock(mm, pmd);
695 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
700 if (likely(!pmd_trans_huge(pmdval)))
701 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
703 if (pmd_protnone(pmdval) && !gup_can_follow_protnone(flags))
704 return no_page_table(vma, flags);
707 ptl = pmd_lock(mm, pmd);
708 if (unlikely(pmd_none(*pmd))) {
710 return no_page_table(vma, flags);
712 if (unlikely(!pmd_present(*pmd))) {
714 if (likely(!(flags & FOLL_MIGRATION)))
715 return no_page_table(vma, flags);
716 pmd_migration_entry_wait(mm, pmd);
719 if (unlikely(!pmd_trans_huge(*pmd))) {
721 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
723 if (flags & FOLL_SPLIT_PMD) {
725 page = pmd_page(*pmd);
726 if (is_huge_zero_page(page)) {
729 split_huge_pmd(vma, pmd, address);
730 if (pmd_trans_unstable(pmd))
734 split_huge_pmd(vma, pmd, address);
735 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
738 return ret ? ERR_PTR(ret) :
739 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
741 page = follow_trans_huge_pmd(vma, address, pmd, flags);
743 ctx->page_mask = HPAGE_PMD_NR - 1;
747 static struct page *follow_pud_mask(struct vm_area_struct *vma,
748 unsigned long address, p4d_t *p4dp,
750 struct follow_page_context *ctx)
755 struct mm_struct *mm = vma->vm_mm;
757 pud = pud_offset(p4dp, address);
759 return no_page_table(vma, flags);
760 if (pud_devmap(*pud)) {
761 ptl = pud_lock(mm, pud);
762 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
767 if (unlikely(pud_bad(*pud)))
768 return no_page_table(vma, flags);
770 return follow_pmd_mask(vma, address, pud, flags, ctx);
773 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
774 unsigned long address, pgd_t *pgdp,
776 struct follow_page_context *ctx)
780 p4d = p4d_offset(pgdp, address);
782 return no_page_table(vma, flags);
783 BUILD_BUG_ON(p4d_huge(*p4d));
784 if (unlikely(p4d_bad(*p4d)))
785 return no_page_table(vma, flags);
787 return follow_pud_mask(vma, address, p4d, flags, ctx);
791 * follow_page_mask - look up a page descriptor from a user-virtual address
792 * @vma: vm_area_struct mapping @address
793 * @address: virtual address to look up
794 * @flags: flags modifying lookup behaviour
795 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
796 * pointer to output page_mask
798 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
800 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
801 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
803 * When getting an anonymous page and the caller has to trigger unsharing
804 * of a shared anonymous page first, -EMLINK is returned. The caller should
805 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
806 * relevant with FOLL_PIN and !FOLL_WRITE.
808 * On output, the @ctx->page_mask is set according to the size of the page.
810 * Return: the mapped (struct page *), %NULL if no mapping exists, or
811 * an error pointer if there is a mapping to something not represented
812 * by a page descriptor (see also vm_normal_page()).
814 static struct page *follow_page_mask(struct vm_area_struct *vma,
815 unsigned long address, unsigned int flags,
816 struct follow_page_context *ctx)
820 struct mm_struct *mm = vma->vm_mm;
825 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
826 * special hugetlb page table walking code. This eliminates the
827 * need to check for hugetlb entries in the general walking code.
829 * hugetlb_follow_page_mask is only for follow_page() handling here.
830 * Ordinary GUP uses follow_hugetlb_page for hugetlb processing.
832 if (is_vm_hugetlb_page(vma)) {
833 page = hugetlb_follow_page_mask(vma, address, flags);
835 page = no_page_table(vma, flags);
839 pgd = pgd_offset(mm, address);
841 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
842 return no_page_table(vma, flags);
844 return follow_p4d_mask(vma, address, pgd, flags, ctx);
847 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
848 unsigned int foll_flags)
850 struct follow_page_context ctx = { NULL };
853 if (vma_is_secretmem(vma))
856 if (foll_flags & FOLL_PIN)
859 page = follow_page_mask(vma, address, foll_flags, &ctx);
861 put_dev_pagemap(ctx.pgmap);
865 static int get_gate_page(struct mm_struct *mm, unsigned long address,
866 unsigned int gup_flags, struct vm_area_struct **vma,
876 /* user gate pages are read-only */
877 if (gup_flags & FOLL_WRITE)
879 if (address > TASK_SIZE)
880 pgd = pgd_offset_k(address);
882 pgd = pgd_offset_gate(mm, address);
885 p4d = p4d_offset(pgd, address);
888 pud = pud_offset(p4d, address);
891 pmd = pmd_offset(pud, address);
892 if (!pmd_present(*pmd))
894 VM_BUG_ON(pmd_trans_huge(*pmd));
895 pte = pte_offset_map(pmd, address);
898 *vma = get_gate_vma(mm);
901 *page = vm_normal_page(*vma, address, *pte);
903 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
905 *page = pte_page(*pte);
907 if (unlikely(!try_grab_page(*page, gup_flags))) {
919 * mmap_lock must be held on entry. If @locked != NULL and *@flags
920 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
921 * is, *@locked will be set to 0 and -EBUSY returned.
923 static int faultin_page(struct vm_area_struct *vma,
924 unsigned long address, unsigned int *flags, bool unshare,
927 unsigned int fault_flags = 0;
930 if (*flags & FOLL_NOFAULT)
932 if (*flags & FOLL_WRITE)
933 fault_flags |= FAULT_FLAG_WRITE;
934 if (*flags & FOLL_REMOTE)
935 fault_flags |= FAULT_FLAG_REMOTE;
937 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
938 if (*flags & FOLL_NOWAIT)
939 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
940 if (*flags & FOLL_TRIED) {
942 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
945 fault_flags |= FAULT_FLAG_TRIED;
948 fault_flags |= FAULT_FLAG_UNSHARE;
949 /* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
950 VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
953 ret = handle_mm_fault(vma, address, fault_flags, NULL);
955 if (ret & VM_FAULT_COMPLETED) {
957 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
958 * mmap lock in the page fault handler. Sanity check this.
960 WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
964 * We should do the same as VM_FAULT_RETRY, but let's not
965 * return -EBUSY since that's not reflecting the reality of
966 * what has happened - we've just fully completed a page
967 * fault, with the mmap lock released. Use -EAGAIN to show
968 * that we want to take the mmap lock _again_.
973 if (ret & VM_FAULT_ERROR) {
974 int err = vm_fault_to_errno(ret, *flags);
981 if (ret & VM_FAULT_RETRY) {
982 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
990 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
992 vm_flags_t vm_flags = vma->vm_flags;
993 int write = (gup_flags & FOLL_WRITE);
994 int foreign = (gup_flags & FOLL_REMOTE);
996 if (vm_flags & (VM_IO | VM_PFNMAP))
999 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1002 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1005 if (vma_is_secretmem(vma))
1009 if (!(vm_flags & VM_WRITE)) {
1010 if (!(gup_flags & FOLL_FORCE))
1013 * We used to let the write,force case do COW in a
1014 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1015 * set a breakpoint in a read-only mapping of an
1016 * executable, without corrupting the file (yet only
1017 * when that file had been opened for writing!).
1018 * Anon pages in shared mappings are surprising: now
1021 if (!is_cow_mapping(vm_flags))
1024 } else if (!(vm_flags & VM_READ)) {
1025 if (!(gup_flags & FOLL_FORCE))
1028 * Is there actually any vma we can reach here which does not
1029 * have VM_MAYREAD set?
1031 if (!(vm_flags & VM_MAYREAD))
1035 * gups are always data accesses, not instruction
1036 * fetches, so execute=false here
1038 if (!arch_vma_access_permitted(vma, write, false, foreign))
1044 * __get_user_pages() - pin user pages in memory
1045 * @mm: mm_struct of target mm
1046 * @start: starting user address
1047 * @nr_pages: number of pages from start to pin
1048 * @gup_flags: flags modifying pin behaviour
1049 * @pages: array that receives pointers to the pages pinned.
1050 * Should be at least nr_pages long. Or NULL, if caller
1051 * only intends to ensure the pages are faulted in.
1052 * @vmas: array of pointers to vmas corresponding to each page.
1053 * Or NULL if the caller does not require them.
1054 * @locked: whether we're still with the mmap_lock held
1056 * Returns either number of pages pinned (which may be less than the
1057 * number requested), or an error. Details about the return value:
1059 * -- If nr_pages is 0, returns 0.
1060 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1061 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1062 * pages pinned. Again, this may be less than nr_pages.
1063 * -- 0 return value is possible when the fault would need to be retried.
1065 * The caller is responsible for releasing returned @pages, via put_page().
1067 * @vmas are valid only as long as mmap_lock is held.
1069 * Must be called with mmap_lock held. It may be released. See below.
1071 * __get_user_pages walks a process's page tables and takes a reference to
1072 * each struct page that each user address corresponds to at a given
1073 * instant. That is, it takes the page that would be accessed if a user
1074 * thread accesses the given user virtual address at that instant.
1076 * This does not guarantee that the page exists in the user mappings when
1077 * __get_user_pages returns, and there may even be a completely different
1078 * page there in some cases (eg. if mmapped pagecache has been invalidated
1079 * and subsequently re faulted). However it does guarantee that the page
1080 * won't be freed completely. And mostly callers simply care that the page
1081 * contains data that was valid *at some point in time*. Typically, an IO
1082 * or similar operation cannot guarantee anything stronger anyway because
1083 * locks can't be held over the syscall boundary.
1085 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1086 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1087 * appropriate) must be called after the page is finished with, and
1088 * before put_page is called.
1090 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1091 * released by an up_read(). That can happen if @gup_flags does not
1094 * A caller using such a combination of @locked and @gup_flags
1095 * must therefore hold the mmap_lock for reading only, and recognize
1096 * when it's been released. Otherwise, it must be held for either
1097 * reading or writing and will not be released.
1099 * In most cases, get_user_pages or get_user_pages_fast should be used
1100 * instead of __get_user_pages. __get_user_pages should be used only if
1101 * you need some special @gup_flags.
1103 static long __get_user_pages(struct mm_struct *mm,
1104 unsigned long start, unsigned long nr_pages,
1105 unsigned int gup_flags, struct page **pages,
1106 struct vm_area_struct **vmas, int *locked)
1108 long ret = 0, i = 0;
1109 struct vm_area_struct *vma = NULL;
1110 struct follow_page_context ctx = { NULL };
1115 start = untagged_addr(start);
1117 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1121 unsigned int foll_flags = gup_flags;
1122 unsigned int page_increm;
1124 /* first iteration or cross vma bound */
1125 if (!vma || start >= vma->vm_end) {
1126 vma = find_extend_vma(mm, start);
1127 if (!vma && in_gate_area(mm, start)) {
1128 ret = get_gate_page(mm, start & PAGE_MASK,
1130 pages ? &pages[i] : NULL);
1141 ret = check_vma_flags(vma, gup_flags);
1145 if (is_vm_hugetlb_page(vma)) {
1146 i = follow_hugetlb_page(mm, vma, pages, vmas,
1147 &start, &nr_pages, i,
1149 if (locked && *locked == 0) {
1151 * We've got a VM_FAULT_RETRY
1152 * and we've lost mmap_lock.
1153 * We must stop here.
1155 BUG_ON(gup_flags & FOLL_NOWAIT);
1163 * If we have a pending SIGKILL, don't keep faulting pages and
1164 * potentially allocating memory.
1166 if (fatal_signal_pending(current)) {
1172 page = follow_page_mask(vma, start, foll_flags, &ctx);
1173 if (!page || PTR_ERR(page) == -EMLINK) {
1174 ret = faultin_page(vma, start, &foll_flags,
1175 PTR_ERR(page) == -EMLINK, locked);
1189 } else if (PTR_ERR(page) == -EEXIST) {
1191 * Proper page table entry exists, but no corresponding
1192 * struct page. If the caller expects **pages to be
1193 * filled in, bail out now, because that can't be done
1197 ret = PTR_ERR(page);
1202 } else if (IS_ERR(page)) {
1203 ret = PTR_ERR(page);
1208 flush_anon_page(vma, page, start);
1209 flush_dcache_page(page);
1217 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1218 if (page_increm > nr_pages)
1219 page_increm = nr_pages;
1221 start += page_increm * PAGE_SIZE;
1222 nr_pages -= page_increm;
1226 put_dev_pagemap(ctx.pgmap);
1230 static bool vma_permits_fault(struct vm_area_struct *vma,
1231 unsigned int fault_flags)
1233 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1234 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1235 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1237 if (!(vm_flags & vma->vm_flags))
1241 * The architecture might have a hardware protection
1242 * mechanism other than read/write that can deny access.
1244 * gup always represents data access, not instruction
1245 * fetches, so execute=false here:
1247 if (!arch_vma_access_permitted(vma, write, false, foreign))
1254 * fixup_user_fault() - manually resolve a user page fault
1255 * @mm: mm_struct of target mm
1256 * @address: user address
1257 * @fault_flags:flags to pass down to handle_mm_fault()
1258 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
1259 * does not allow retry. If NULL, the caller must guarantee
1260 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1262 * This is meant to be called in the specific scenario where for locking reasons
1263 * we try to access user memory in atomic context (within a pagefault_disable()
1264 * section), this returns -EFAULT, and we want to resolve the user fault before
1267 * Typically this is meant to be used by the futex code.
1269 * The main difference with get_user_pages() is that this function will
1270 * unconditionally call handle_mm_fault() which will in turn perform all the
1271 * necessary SW fixup of the dirty and young bits in the PTE, while
1272 * get_user_pages() only guarantees to update these in the struct page.
1274 * This is important for some architectures where those bits also gate the
1275 * access permission to the page because they are maintained in software. On
1276 * such architectures, gup() will not be enough to make a subsequent access
1279 * This function will not return with an unlocked mmap_lock. So it has not the
1280 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1282 int fixup_user_fault(struct mm_struct *mm,
1283 unsigned long address, unsigned int fault_flags,
1286 struct vm_area_struct *vma;
1289 address = untagged_addr(address);
1292 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1295 vma = find_extend_vma(mm, address);
1296 if (!vma || address < vma->vm_start)
1299 if (!vma_permits_fault(vma, fault_flags))
1302 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1303 fatal_signal_pending(current))
1306 ret = handle_mm_fault(vma, address, fault_flags, NULL);
1308 if (ret & VM_FAULT_COMPLETED) {
1310 * NOTE: it's a pity that we need to retake the lock here
1311 * to pair with the unlock() in the callers. Ideally we
1312 * could tell the callers so they do not need to unlock.
1319 if (ret & VM_FAULT_ERROR) {
1320 int err = vm_fault_to_errno(ret, 0);
1327 if (ret & VM_FAULT_RETRY) {
1330 fault_flags |= FAULT_FLAG_TRIED;
1336 EXPORT_SYMBOL_GPL(fixup_user_fault);
1339 * Please note that this function, unlike __get_user_pages will not
1340 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1342 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1343 unsigned long start,
1344 unsigned long nr_pages,
1345 struct page **pages,
1346 struct vm_area_struct **vmas,
1350 long ret, pages_done;
1354 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1356 /* check caller initialized locked */
1357 BUG_ON(*locked != 1);
1360 if (flags & FOLL_PIN)
1361 mm_set_has_pinned_flag(&mm->flags);
1364 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1365 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1366 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1367 * for FOLL_GET, not for the newer FOLL_PIN.
1369 * FOLL_PIN always expects pages to be non-null, but no need to assert
1370 * that here, as any failures will be obvious enough.
1372 if (pages && !(flags & FOLL_PIN))
1376 lock_dropped = false;
1378 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1381 /* VM_FAULT_RETRY couldn't trigger, bypass */
1384 /* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1387 BUG_ON(ret >= nr_pages);
1398 * VM_FAULT_RETRY didn't trigger or it was a
1406 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1407 * For the prefault case (!pages) we only update counts.
1411 start += ret << PAGE_SHIFT;
1412 lock_dropped = true;
1416 * Repeat on the address that fired VM_FAULT_RETRY
1417 * with both FAULT_FLAG_ALLOW_RETRY and
1418 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1419 * by fatal signals, so we need to check it before we
1420 * start trying again otherwise it can loop forever.
1423 if (fatal_signal_pending(current)) {
1425 pages_done = -EINTR;
1429 ret = mmap_read_lock_killable(mm);
1438 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1439 pages, NULL, locked);
1441 /* Continue to retry until we succeeded */
1459 if (lock_dropped && *locked) {
1461 * We must let the caller know we temporarily dropped the lock
1462 * and so the critical section protected by it was lost.
1464 mmap_read_unlock(mm);
1471 * populate_vma_page_range() - populate a range of pages in the vma.
1473 * @start: start address
1475 * @locked: whether the mmap_lock is still held
1477 * This takes care of mlocking the pages too if VM_LOCKED is set.
1479 * Return either number of pages pinned in the vma, or a negative error
1482 * vma->vm_mm->mmap_lock must be held.
1484 * If @locked is NULL, it may be held for read or write and will
1487 * If @locked is non-NULL, it must held for read only and may be
1488 * released. If it's released, *@locked will be set to 0.
1490 long populate_vma_page_range(struct vm_area_struct *vma,
1491 unsigned long start, unsigned long end, int *locked)
1493 struct mm_struct *mm = vma->vm_mm;
1494 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1498 VM_BUG_ON(!PAGE_ALIGNED(start));
1499 VM_BUG_ON(!PAGE_ALIGNED(end));
1500 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1501 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1502 mmap_assert_locked(mm);
1505 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1506 * faultin_page() to break COW, so it has no work to do here.
1508 if (vma->vm_flags & VM_LOCKONFAULT)
1511 gup_flags = FOLL_TOUCH;
1513 * We want to touch writable mappings with a write fault in order
1514 * to break COW, except for shared mappings because these don't COW
1515 * and we would not want to dirty them for nothing.
1517 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1518 gup_flags |= FOLL_WRITE;
1521 * We want mlock to succeed for regions that have any permissions
1522 * other than PROT_NONE.
1524 if (vma_is_accessible(vma))
1525 gup_flags |= FOLL_FORCE;
1528 * We made sure addr is within a VMA, so the following will
1529 * not result in a stack expansion that recurses back here.
1531 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1532 NULL, NULL, locked);
1538 * faultin_vma_page_range() - populate (prefault) page tables inside the
1539 * given VMA range readable/writable
1541 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1544 * @start: start address
1546 * @write: whether to prefault readable or writable
1547 * @locked: whether the mmap_lock is still held
1549 * Returns either number of processed pages in the vma, or a negative error
1550 * code on error (see __get_user_pages()).
1552 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1553 * covered by the VMA.
1555 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1557 * If @locked is non-NULL, it must held for read only and may be released. If
1558 * it's released, *@locked will be set to 0.
1560 long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1561 unsigned long end, bool write, int *locked)
1563 struct mm_struct *mm = vma->vm_mm;
1564 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1568 VM_BUG_ON(!PAGE_ALIGNED(start));
1569 VM_BUG_ON(!PAGE_ALIGNED(end));
1570 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1571 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1572 mmap_assert_locked(mm);
1575 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1576 * the page dirty with FOLL_WRITE -- which doesn't make a
1577 * difference with !FOLL_FORCE, because the page is writable
1578 * in the page table.
1579 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1581 * !FOLL_FORCE: Require proper access permissions.
1583 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
1585 gup_flags |= FOLL_WRITE;
1588 * We want to report -EINVAL instead of -EFAULT for any permission
1589 * problems or incompatible mappings.
1591 if (check_vma_flags(vma, gup_flags))
1594 ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1595 NULL, NULL, locked);
1601 * __mm_populate - populate and/or mlock pages within a range of address space.
1603 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1604 * flags. VMAs must be already marked with the desired vm_flags, and
1605 * mmap_lock must not be held.
1607 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1609 struct mm_struct *mm = current->mm;
1610 unsigned long end, nstart, nend;
1611 struct vm_area_struct *vma = NULL;
1617 for (nstart = start; nstart < end; nstart = nend) {
1619 * We want to fault in pages for [nstart; end) address range.
1620 * Find first corresponding VMA.
1625 vma = find_vma_intersection(mm, nstart, end);
1626 } else if (nstart >= vma->vm_end)
1627 vma = find_vma_intersection(mm, vma->vm_end, end);
1632 * Set [nstart; nend) to intersection of desired address
1633 * range with the first VMA. Also, skip undesirable VMA types.
1635 nend = min(end, vma->vm_end);
1636 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1638 if (nstart < vma->vm_start)
1639 nstart = vma->vm_start;
1641 * Now fault in a range of pages. populate_vma_page_range()
1642 * double checks the vma flags, so that it won't mlock pages
1643 * if the vma was already munlocked.
1645 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1647 if (ignore_errors) {
1649 continue; /* continue at next VMA */
1653 nend = nstart + ret * PAGE_SIZE;
1657 mmap_read_unlock(mm);
1658 return ret; /* 0 or negative error code */
1660 #else /* CONFIG_MMU */
1661 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1662 unsigned long nr_pages, struct page **pages,
1663 struct vm_area_struct **vmas, int *locked,
1664 unsigned int foll_flags)
1666 struct vm_area_struct *vma;
1667 unsigned long vm_flags;
1670 /* calculate required read or write permissions.
1671 * If FOLL_FORCE is set, we only require the "MAY" flags.
1673 vm_flags = (foll_flags & FOLL_WRITE) ?
1674 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1675 vm_flags &= (foll_flags & FOLL_FORCE) ?
1676 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1678 for (i = 0; i < nr_pages; i++) {
1679 vma = find_vma(mm, start);
1681 goto finish_or_fault;
1683 /* protect what we can, including chardevs */
1684 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1685 !(vm_flags & vma->vm_flags))
1686 goto finish_or_fault;
1689 pages[i] = virt_to_page((void *)start);
1695 start = (start + PAGE_SIZE) & PAGE_MASK;
1701 return i ? : -EFAULT;
1703 #endif /* !CONFIG_MMU */
1706 * fault_in_writeable - fault in userspace address range for writing
1707 * @uaddr: start of address range
1708 * @size: size of address range
1710 * Returns the number of bytes not faulted in (like copy_to_user() and
1711 * copy_from_user()).
1713 size_t fault_in_writeable(char __user *uaddr, size_t size)
1715 char __user *start = uaddr, *end;
1717 if (unlikely(size == 0))
1719 if (!user_write_access_begin(uaddr, size))
1721 if (!PAGE_ALIGNED(uaddr)) {
1722 unsafe_put_user(0, uaddr, out);
1723 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1725 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1726 if (unlikely(end < start))
1728 while (uaddr != end) {
1729 unsafe_put_user(0, uaddr, out);
1734 user_write_access_end();
1735 if (size > uaddr - start)
1736 return size - (uaddr - start);
1739 EXPORT_SYMBOL(fault_in_writeable);
1742 * fault_in_subpage_writeable - fault in an address range for writing
1743 * @uaddr: start of address range
1744 * @size: size of address range
1746 * Fault in a user address range for writing while checking for permissions at
1747 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1748 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1750 * Returns the number of bytes not faulted in (like copy_to_user() and
1751 * copy_from_user()).
1753 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1758 * Attempt faulting in at page granularity first for page table
1759 * permission checking. The arch-specific probe_subpage_writeable()
1760 * functions may not check for this.
1762 faulted_in = size - fault_in_writeable(uaddr, size);
1764 faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1766 return size - faulted_in;
1768 EXPORT_SYMBOL(fault_in_subpage_writeable);
1771 * fault_in_safe_writeable - fault in an address range for writing
1772 * @uaddr: start of address range
1773 * @size: length of address range
1775 * Faults in an address range for writing. This is primarily useful when we
1776 * already know that some or all of the pages in the address range aren't in
1779 * Unlike fault_in_writeable(), this function is non-destructive.
1781 * Note that we don't pin or otherwise hold the pages referenced that we fault
1782 * in. There's no guarantee that they'll stay in memory for any duration of
1785 * Returns the number of bytes not faulted in, like copy_to_user() and
1788 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1790 unsigned long start = (unsigned long)uaddr, end;
1791 struct mm_struct *mm = current->mm;
1792 bool unlocked = false;
1794 if (unlikely(size == 0))
1796 end = PAGE_ALIGN(start + size);
1802 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1804 start = (start + PAGE_SIZE) & PAGE_MASK;
1805 } while (start != end);
1806 mmap_read_unlock(mm);
1808 if (size > (unsigned long)uaddr - start)
1809 return size - ((unsigned long)uaddr - start);
1812 EXPORT_SYMBOL(fault_in_safe_writeable);
1815 * fault_in_readable - fault in userspace address range for reading
1816 * @uaddr: start of user address range
1817 * @size: size of user address range
1819 * Returns the number of bytes not faulted in (like copy_to_user() and
1820 * copy_from_user()).
1822 size_t fault_in_readable(const char __user *uaddr, size_t size)
1824 const char __user *start = uaddr, *end;
1827 if (unlikely(size == 0))
1829 if (!user_read_access_begin(uaddr, size))
1831 if (!PAGE_ALIGNED(uaddr)) {
1832 unsafe_get_user(c, uaddr, out);
1833 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1835 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1836 if (unlikely(end < start))
1838 while (uaddr != end) {
1839 unsafe_get_user(c, uaddr, out);
1844 user_read_access_end();
1846 if (size > uaddr - start)
1847 return size - (uaddr - start);
1850 EXPORT_SYMBOL(fault_in_readable);
1853 * get_dump_page() - pin user page in memory while writing it to core dump
1854 * @addr: user address
1856 * Returns struct page pointer of user page pinned for dump,
1857 * to be freed afterwards by put_page().
1859 * Returns NULL on any kind of failure - a hole must then be inserted into
1860 * the corefile, to preserve alignment with its headers; and also returns
1861 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1862 * allowing a hole to be left in the corefile to save disk space.
1864 * Called without mmap_lock (takes and releases the mmap_lock by itself).
1866 #ifdef CONFIG_ELF_CORE
1867 struct page *get_dump_page(unsigned long addr)
1869 struct mm_struct *mm = current->mm;
1874 if (mmap_read_lock_killable(mm))
1876 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1877 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1879 mmap_read_unlock(mm);
1880 return (ret == 1) ? page : NULL;
1882 #endif /* CONFIG_ELF_CORE */
1884 #ifdef CONFIG_MIGRATION
1886 * Returns the number of collected pages. Return value is always >= 0.
1888 static unsigned long collect_longterm_unpinnable_pages(
1889 struct list_head *movable_page_list,
1890 unsigned long nr_pages,
1891 struct page **pages)
1893 unsigned long i, collected = 0;
1894 struct folio *prev_folio = NULL;
1895 bool drain_allow = true;
1897 for (i = 0; i < nr_pages; i++) {
1898 struct folio *folio = page_folio(pages[i]);
1900 if (folio == prev_folio)
1904 if (folio_is_longterm_pinnable(folio))
1909 if (folio_is_device_coherent(folio))
1912 if (folio_test_hugetlb(folio)) {
1913 isolate_hugetlb(&folio->page, movable_page_list);
1917 if (!folio_test_lru(folio) && drain_allow) {
1918 lru_add_drain_all();
1919 drain_allow = false;
1922 if (!folio_isolate_lru(folio))
1925 list_add_tail(&folio->lru, movable_page_list);
1926 node_stat_mod_folio(folio,
1927 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1928 folio_nr_pages(folio));
1935 * Unpins all pages and migrates device coherent pages and movable_page_list.
1936 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
1937 * (or partial success).
1939 static int migrate_longterm_unpinnable_pages(
1940 struct list_head *movable_page_list,
1941 unsigned long nr_pages,
1942 struct page **pages)
1947 for (i = 0; i < nr_pages; i++) {
1948 struct folio *folio = page_folio(pages[i]);
1950 if (folio_is_device_coherent(folio)) {
1952 * Migration will fail if the page is pinned, so convert
1953 * the pin on the source page to a normal reference.
1957 gup_put_folio(folio, 1, FOLL_PIN);
1959 if (migrate_device_coherent_page(&folio->page)) {
1968 * We can't migrate pages with unexpected references, so drop
1969 * the reference obtained by __get_user_pages_locked().
1970 * Migrating pages have been added to movable_page_list after
1971 * calling folio_isolate_lru() which takes a reference so the
1972 * page won't be freed if it's migrating.
1974 unpin_user_page(pages[i]);
1978 if (!list_empty(movable_page_list)) {
1979 struct migration_target_control mtc = {
1980 .nid = NUMA_NO_NODE,
1981 .gfp_mask = GFP_USER | __GFP_NOWARN,
1984 if (migrate_pages(movable_page_list, alloc_migration_target,
1985 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1986 MR_LONGTERM_PIN, NULL)) {
1992 putback_movable_pages(movable_page_list);
1997 for (i = 0; i < nr_pages; i++)
1999 unpin_user_page(pages[i]);
2000 putback_movable_pages(movable_page_list);
2006 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2007 * pages in the range are required to be pinned via FOLL_PIN, before calling
2010 * If any pages in the range are not allowed to be pinned, then this routine
2011 * will migrate those pages away, unpin all the pages in the range and return
2012 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2013 * call this routine again.
2015 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2016 * The caller should give up, and propagate the error back up the call stack.
2018 * If everything is OK and all pages in the range are allowed to be pinned, then
2019 * this routine leaves all pages pinned and returns zero for success.
2021 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2022 struct page **pages)
2024 unsigned long collected;
2025 LIST_HEAD(movable_page_list);
2027 collected = collect_longterm_unpinnable_pages(&movable_page_list,
2032 return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2036 static long check_and_migrate_movable_pages(unsigned long nr_pages,
2037 struct page **pages)
2041 #endif /* CONFIG_MIGRATION */
2044 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2045 * allows us to process the FOLL_LONGTERM flag.
2047 static long __gup_longterm_locked(struct mm_struct *mm,
2048 unsigned long start,
2049 unsigned long nr_pages,
2050 struct page **pages,
2051 struct vm_area_struct **vmas,
2052 unsigned int gup_flags)
2055 long rc, nr_pinned_pages;
2057 if (!(gup_flags & FOLL_LONGTERM))
2058 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2062 * If we get to this point then FOLL_LONGTERM is set, and FOLL_LONGTERM
2063 * implies FOLL_PIN (although the reverse is not true). Therefore it is
2064 * correct to unconditionally call check_and_migrate_movable_pages()
2065 * which assumes pages have been pinned via FOLL_PIN.
2067 * Enforce the above reasoning by asserting that FOLL_PIN is set.
2069 if (WARN_ON(!(gup_flags & FOLL_PIN)))
2071 flags = memalloc_pin_save();
2073 nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2076 if (nr_pinned_pages <= 0) {
2077 rc = nr_pinned_pages;
2080 rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2081 } while (rc == -EAGAIN);
2082 memalloc_pin_restore(flags);
2084 return rc ? rc : nr_pinned_pages;
2087 static bool is_valid_gup_flags(unsigned int gup_flags)
2090 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2091 * never directly by the caller, so enforce that with an assertion:
2093 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2096 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
2097 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
2100 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2107 static long __get_user_pages_remote(struct mm_struct *mm,
2108 unsigned long start, unsigned long nr_pages,
2109 unsigned int gup_flags, struct page **pages,
2110 struct vm_area_struct **vmas, int *locked)
2113 * Parts of FOLL_LONGTERM behavior are incompatible with
2114 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2115 * vmas. However, this only comes up if locked is set, and there are
2116 * callers that do request FOLL_LONGTERM, but do not set locked. So,
2117 * allow what we can.
2119 if (gup_flags & FOLL_LONGTERM) {
2120 if (WARN_ON_ONCE(locked))
2123 * This will check the vmas (even if our vmas arg is NULL)
2124 * and return -ENOTSUPP if DAX isn't allowed in this case:
2126 return __gup_longterm_locked(mm, start, nr_pages, pages,
2127 vmas, gup_flags | FOLL_TOUCH |
2131 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
2133 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
2137 * get_user_pages_remote() - pin user pages in memory
2138 * @mm: mm_struct of target mm
2139 * @start: starting user address
2140 * @nr_pages: number of pages from start to pin
2141 * @gup_flags: flags modifying lookup behaviour
2142 * @pages: array that receives pointers to the pages pinned.
2143 * Should be at least nr_pages long. Or NULL, if caller
2144 * only intends to ensure the pages are faulted in.
2145 * @vmas: array of pointers to vmas corresponding to each page.
2146 * Or NULL if the caller does not require them.
2147 * @locked: pointer to lock flag indicating whether lock is held and
2148 * subsequently whether VM_FAULT_RETRY functionality can be
2149 * utilised. Lock must initially be held.
2151 * Returns either number of pages pinned (which may be less than the
2152 * number requested), or an error. Details about the return value:
2154 * -- If nr_pages is 0, returns 0.
2155 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2156 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2157 * pages pinned. Again, this may be less than nr_pages.
2159 * The caller is responsible for releasing returned @pages, via put_page().
2161 * @vmas are valid only as long as mmap_lock is held.
2163 * Must be called with mmap_lock held for read or write.
2165 * get_user_pages_remote walks a process's page tables and takes a reference
2166 * to each struct page that each user address corresponds to at a given
2167 * instant. That is, it takes the page that would be accessed if a user
2168 * thread accesses the given user virtual address at that instant.
2170 * This does not guarantee that the page exists in the user mappings when
2171 * get_user_pages_remote returns, and there may even be a completely different
2172 * page there in some cases (eg. if mmapped pagecache has been invalidated
2173 * and subsequently re faulted). However it does guarantee that the page
2174 * won't be freed completely. And mostly callers simply care that the page
2175 * contains data that was valid *at some point in time*. Typically, an IO
2176 * or similar operation cannot guarantee anything stronger anyway because
2177 * locks can't be held over the syscall boundary.
2179 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2180 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2181 * be called after the page is finished with, and before put_page is called.
2183 * get_user_pages_remote is typically used for fewer-copy IO operations,
2184 * to get a handle on the memory by some means other than accesses
2185 * via the user virtual addresses. The pages may be submitted for
2186 * DMA to devices or accessed via their kernel linear mapping (via the
2187 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2189 * See also get_user_pages_fast, for performance critical applications.
2191 * get_user_pages_remote should be phased out in favor of
2192 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2193 * should use get_user_pages_remote because it cannot pass
2194 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2196 long get_user_pages_remote(struct mm_struct *mm,
2197 unsigned long start, unsigned long nr_pages,
2198 unsigned int gup_flags, struct page **pages,
2199 struct vm_area_struct **vmas, int *locked)
2201 if (!is_valid_gup_flags(gup_flags))
2204 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2205 pages, vmas, locked);
2207 EXPORT_SYMBOL(get_user_pages_remote);
2209 #else /* CONFIG_MMU */
2210 long get_user_pages_remote(struct mm_struct *mm,
2211 unsigned long start, unsigned long nr_pages,
2212 unsigned int gup_flags, struct page **pages,
2213 struct vm_area_struct **vmas, int *locked)
2218 static long __get_user_pages_remote(struct mm_struct *mm,
2219 unsigned long start, unsigned long nr_pages,
2220 unsigned int gup_flags, struct page **pages,
2221 struct vm_area_struct **vmas, int *locked)
2225 #endif /* !CONFIG_MMU */
2228 * get_user_pages() - pin user pages in memory
2229 * @start: starting user address
2230 * @nr_pages: number of pages from start to pin
2231 * @gup_flags: flags modifying lookup behaviour
2232 * @pages: array that receives pointers to the pages pinned.
2233 * Should be at least nr_pages long. Or NULL, if caller
2234 * only intends to ensure the pages are faulted in.
2235 * @vmas: array of pointers to vmas corresponding to each page.
2236 * Or NULL if the caller does not require them.
2238 * This is the same as get_user_pages_remote(), just with a less-flexible
2239 * calling convention where we assume that the mm being operated on belongs to
2240 * the current task, and doesn't allow passing of a locked parameter. We also
2241 * obviously don't pass FOLL_REMOTE in here.
2243 long get_user_pages(unsigned long start, unsigned long nr_pages,
2244 unsigned int gup_flags, struct page **pages,
2245 struct vm_area_struct **vmas)
2247 if (!is_valid_gup_flags(gup_flags))
2250 return __gup_longterm_locked(current->mm, start, nr_pages,
2251 pages, vmas, gup_flags | FOLL_TOUCH);
2253 EXPORT_SYMBOL(get_user_pages);
2256 * get_user_pages_unlocked() is suitable to replace the form:
2258 * mmap_read_lock(mm);
2259 * get_user_pages(mm, ..., pages, NULL);
2260 * mmap_read_unlock(mm);
2264 * get_user_pages_unlocked(mm, ..., pages);
2266 * It is functionally equivalent to get_user_pages_fast so
2267 * get_user_pages_fast should be used instead if specific gup_flags
2268 * (e.g. FOLL_FORCE) are not required.
2270 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2271 struct page **pages, unsigned int gup_flags)
2273 struct mm_struct *mm = current->mm;
2278 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2279 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2280 * vmas. As there are no users of this flag in this call we simply
2281 * disallow this option for now.
2283 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2287 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2288 &locked, gup_flags | FOLL_TOUCH);
2290 mmap_read_unlock(mm);
2293 EXPORT_SYMBOL(get_user_pages_unlocked);
2298 * get_user_pages_fast attempts to pin user pages by walking the page
2299 * tables directly and avoids taking locks. Thus the walker needs to be
2300 * protected from page table pages being freed from under it, and should
2301 * block any THP splits.
2303 * One way to achieve this is to have the walker disable interrupts, and
2304 * rely on IPIs from the TLB flushing code blocking before the page table
2305 * pages are freed. This is unsuitable for architectures that do not need
2306 * to broadcast an IPI when invalidating TLBs.
2308 * Another way to achieve this is to batch up page table containing pages
2309 * belonging to more than one mm_user, then rcu_sched a callback to free those
2310 * pages. Disabling interrupts will allow the fast_gup walker to both block
2311 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2312 * (which is a relatively rare event). The code below adopts this strategy.
2314 * Before activating this code, please be aware that the following assumptions
2315 * are currently made:
2317 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2318 * free pages containing page tables or TLB flushing requires IPI broadcast.
2320 * *) ptes can be read atomically by the architecture.
2322 * *) access_ok is sufficient to validate userspace address ranges.
2324 * The last two assumptions can be relaxed by the addition of helper functions.
2326 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2328 #ifdef CONFIG_HAVE_FAST_GUP
2330 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2332 struct page **pages)
2334 while ((*nr) - nr_start) {
2335 struct page *page = pages[--(*nr)];
2337 ClearPageReferenced(page);
2338 if (flags & FOLL_PIN)
2339 unpin_user_page(page);
2345 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2347 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2350 * To pin the page, fast-gup needs to do below in order:
2351 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2353 * For the rest of pgtable operations where pgtable updates can be racy
2354 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2357 * Above will work for all pte-level operations, including THP split.
2359 * For THP collapse, it's a bit more complicated because fast-gup may be
2360 * walking a pgtable page that is being freed (pte is still valid but pmd
2361 * can be cleared already). To avoid race in such condition, we need to
2362 * also check pmd here to make sure pmd doesn't change (corresponds to
2363 * pmdp_collapse_flush() in the THP collapse code path).
2365 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2366 unsigned long end, unsigned int flags,
2367 struct page **pages, int *nr)
2369 struct dev_pagemap *pgmap = NULL;
2370 int nr_start = *nr, ret = 0;
2373 ptem = ptep = pte_offset_map(&pmd, addr);
2375 pte_t pte = ptep_get_lockless(ptep);
2377 struct folio *folio;
2379 if (pte_protnone(pte) && !gup_can_follow_protnone(flags))
2382 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2385 if (pte_devmap(pte)) {
2386 if (unlikely(flags & FOLL_LONGTERM))
2389 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2390 if (unlikely(!pgmap)) {
2391 undo_dev_pagemap(nr, nr_start, flags, pages);
2394 } else if (pte_special(pte))
2397 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2398 page = pte_page(pte);
2400 folio = try_grab_folio(page, 1, flags);
2404 if (unlikely(page_is_secretmem(page))) {
2405 gup_put_folio(folio, 1, flags);
2409 if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2410 unlikely(pte_val(pte) != pte_val(*ptep))) {
2411 gup_put_folio(folio, 1, flags);
2415 if (!pte_write(pte) && gup_must_unshare(flags, page)) {
2416 gup_put_folio(folio, 1, flags);
2421 * We need to make the page accessible if and only if we are
2422 * going to access its content (the FOLL_PIN case). Please
2423 * see Documentation/core-api/pin_user_pages.rst for
2426 if (flags & FOLL_PIN) {
2427 ret = arch_make_page_accessible(page);
2429 gup_put_folio(folio, 1, flags);
2433 folio_set_referenced(folio);
2436 } while (ptep++, addr += PAGE_SIZE, addr != end);
2442 put_dev_pagemap(pgmap);
2449 * If we can't determine whether or not a pte is special, then fail immediately
2450 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2453 * For a futex to be placed on a THP tail page, get_futex_key requires a
2454 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2455 * useful to have gup_huge_pmd even if we can't operate on ptes.
2457 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2458 unsigned long end, unsigned int flags,
2459 struct page **pages, int *nr)
2463 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2465 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2466 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2467 unsigned long end, unsigned int flags,
2468 struct page **pages, int *nr)
2471 struct dev_pagemap *pgmap = NULL;
2474 struct page *page = pfn_to_page(pfn);
2476 pgmap = get_dev_pagemap(pfn, pgmap);
2477 if (unlikely(!pgmap)) {
2478 undo_dev_pagemap(nr, nr_start, flags, pages);
2481 SetPageReferenced(page);
2483 if (unlikely(!try_grab_page(page, flags))) {
2484 undo_dev_pagemap(nr, nr_start, flags, pages);
2489 } while (addr += PAGE_SIZE, addr != end);
2491 put_dev_pagemap(pgmap);
2495 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2496 unsigned long end, unsigned int flags,
2497 struct page **pages, int *nr)
2499 unsigned long fault_pfn;
2502 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2503 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2506 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2507 undo_dev_pagemap(nr, nr_start, flags, pages);
2513 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2514 unsigned long end, unsigned int flags,
2515 struct page **pages, int *nr)
2517 unsigned long fault_pfn;
2520 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2521 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2524 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2525 undo_dev_pagemap(nr, nr_start, flags, pages);
2531 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2532 unsigned long end, unsigned int flags,
2533 struct page **pages, int *nr)
2539 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2540 unsigned long end, unsigned int flags,
2541 struct page **pages, int *nr)
2548 static int record_subpages(struct page *page, unsigned long addr,
2549 unsigned long end, struct page **pages)
2553 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2554 pages[nr] = nth_page(page, nr);
2559 #ifdef CONFIG_ARCH_HAS_HUGEPD
2560 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2563 unsigned long __boundary = (addr + sz) & ~(sz-1);
2564 return (__boundary - 1 < end - 1) ? __boundary : end;
2567 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2568 unsigned long end, unsigned int flags,
2569 struct page **pages, int *nr)
2571 unsigned long pte_end;
2573 struct folio *folio;
2577 pte_end = (addr + sz) & ~(sz-1);
2581 pte = huge_ptep_get(ptep);
2583 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2586 /* hugepages are never "special" */
2587 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2589 page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
2590 refs = record_subpages(page, addr, end, pages + *nr);
2592 folio = try_grab_folio(page, refs, flags);
2596 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2597 gup_put_folio(folio, refs, flags);
2601 if (!pte_write(pte) && gup_must_unshare(flags, &folio->page)) {
2602 gup_put_folio(folio, refs, flags);
2607 folio_set_referenced(folio);
2611 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2612 unsigned int pdshift, unsigned long end, unsigned int flags,
2613 struct page **pages, int *nr)
2616 unsigned long sz = 1UL << hugepd_shift(hugepd);
2619 ptep = hugepte_offset(hugepd, addr, pdshift);
2621 next = hugepte_addr_end(addr, end, sz);
2622 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2624 } while (ptep++, addr = next, addr != end);
2629 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2630 unsigned int pdshift, unsigned long end, unsigned int flags,
2631 struct page **pages, int *nr)
2635 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2637 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2638 unsigned long end, unsigned int flags,
2639 struct page **pages, int *nr)
2642 struct folio *folio;
2645 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2648 if (pmd_devmap(orig)) {
2649 if (unlikely(flags & FOLL_LONGTERM))
2651 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2655 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2656 refs = record_subpages(page, addr, end, pages + *nr);
2658 folio = try_grab_folio(page, refs, flags);
2662 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2663 gup_put_folio(folio, refs, flags);
2667 if (!pmd_write(orig) && gup_must_unshare(flags, &folio->page)) {
2668 gup_put_folio(folio, refs, flags);
2673 folio_set_referenced(folio);
2677 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2678 unsigned long end, unsigned int flags,
2679 struct page **pages, int *nr)
2682 struct folio *folio;
2685 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2688 if (pud_devmap(orig)) {
2689 if (unlikely(flags & FOLL_LONGTERM))
2691 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2695 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2696 refs = record_subpages(page, addr, end, pages + *nr);
2698 folio = try_grab_folio(page, refs, flags);
2702 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2703 gup_put_folio(folio, refs, flags);
2707 if (!pud_write(orig) && gup_must_unshare(flags, &folio->page)) {
2708 gup_put_folio(folio, refs, flags);
2713 folio_set_referenced(folio);
2717 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2718 unsigned long end, unsigned int flags,
2719 struct page **pages, int *nr)
2723 struct folio *folio;
2725 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2728 BUILD_BUG_ON(pgd_devmap(orig));
2730 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2731 refs = record_subpages(page, addr, end, pages + *nr);
2733 folio = try_grab_folio(page, refs, flags);
2737 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2738 gup_put_folio(folio, refs, flags);
2743 folio_set_referenced(folio);
2747 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2748 unsigned int flags, struct page **pages, int *nr)
2753 pmdp = pmd_offset_lockless(pudp, pud, addr);
2755 pmd_t pmd = READ_ONCE(*pmdp);
2757 next = pmd_addr_end(addr, end);
2758 if (!pmd_present(pmd))
2761 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2763 if (pmd_protnone(pmd) &&
2764 !gup_can_follow_protnone(flags))
2767 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2771 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2773 * architecture have different format for hugetlbfs
2774 * pmd format and THP pmd format
2776 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2777 PMD_SHIFT, next, flags, pages, nr))
2779 } else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2781 } while (pmdp++, addr = next, addr != end);
2786 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2787 unsigned int flags, struct page **pages, int *nr)
2792 pudp = pud_offset_lockless(p4dp, p4d, addr);
2794 pud_t pud = READ_ONCE(*pudp);
2796 next = pud_addr_end(addr, end);
2797 if (unlikely(!pud_present(pud)))
2799 if (unlikely(pud_huge(pud))) {
2800 if (!gup_huge_pud(pud, pudp, addr, next, flags,
2803 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2804 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2805 PUD_SHIFT, next, flags, pages, nr))
2807 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2809 } while (pudp++, addr = next, addr != end);
2814 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2815 unsigned int flags, struct page **pages, int *nr)
2820 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2822 p4d_t p4d = READ_ONCE(*p4dp);
2824 next = p4d_addr_end(addr, end);
2827 BUILD_BUG_ON(p4d_huge(p4d));
2828 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2829 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2830 P4D_SHIFT, next, flags, pages, nr))
2832 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2834 } while (p4dp++, addr = next, addr != end);
2839 static void gup_pgd_range(unsigned long addr, unsigned long end,
2840 unsigned int flags, struct page **pages, int *nr)
2845 pgdp = pgd_offset(current->mm, addr);
2847 pgd_t pgd = READ_ONCE(*pgdp);
2849 next = pgd_addr_end(addr, end);
2852 if (unlikely(pgd_huge(pgd))) {
2853 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2856 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2857 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2858 PGDIR_SHIFT, next, flags, pages, nr))
2860 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2862 } while (pgdp++, addr = next, addr != end);
2865 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2866 unsigned int flags, struct page **pages, int *nr)
2869 #endif /* CONFIG_HAVE_FAST_GUP */
2871 #ifndef gup_fast_permitted
2873 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2874 * we need to fall back to the slow version:
2876 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2882 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2883 unsigned int gup_flags, struct page **pages)
2888 * FIXME: FOLL_LONGTERM does not work with
2889 * get_user_pages_unlocked() (see comments in that function)
2891 if (gup_flags & FOLL_LONGTERM) {
2892 mmap_read_lock(current->mm);
2893 ret = __gup_longterm_locked(current->mm,
2895 pages, NULL, gup_flags);
2896 mmap_read_unlock(current->mm);
2898 ret = get_user_pages_unlocked(start, nr_pages,
2905 static unsigned long lockless_pages_from_mm(unsigned long start,
2907 unsigned int gup_flags,
2908 struct page **pages)
2910 unsigned long flags;
2914 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2915 !gup_fast_permitted(start, end))
2918 if (gup_flags & FOLL_PIN) {
2919 seq = raw_read_seqcount(¤t->mm->write_protect_seq);
2925 * Disable interrupts. The nested form is used, in order to allow full,
2926 * general purpose use of this routine.
2928 * With interrupts disabled, we block page table pages from being freed
2929 * from under us. See struct mmu_table_batch comments in
2930 * include/asm-generic/tlb.h for more details.
2932 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2933 * that come from THPs splitting.
2935 local_irq_save(flags);
2936 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2937 local_irq_restore(flags);
2940 * When pinning pages for DMA there could be a concurrent write protect
2941 * from fork() via copy_page_range(), in this case always fail fast GUP.
2943 if (gup_flags & FOLL_PIN) {
2944 if (read_seqcount_retry(¤t->mm->write_protect_seq, seq)) {
2945 unpin_user_pages_lockless(pages, nr_pinned);
2948 sanity_check_pinned_pages(pages, nr_pinned);
2954 static int internal_get_user_pages_fast(unsigned long start,
2955 unsigned long nr_pages,
2956 unsigned int gup_flags,
2957 struct page **pages)
2959 unsigned long len, end;
2960 unsigned long nr_pinned;
2963 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2964 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2965 FOLL_FAST_ONLY | FOLL_NOFAULT)))
2968 if (gup_flags & FOLL_PIN)
2969 mm_set_has_pinned_flag(¤t->mm->flags);
2971 if (!(gup_flags & FOLL_FAST_ONLY))
2972 might_lock_read(¤t->mm->mmap_lock);
2974 start = untagged_addr(start) & PAGE_MASK;
2975 len = nr_pages << PAGE_SHIFT;
2976 if (check_add_overflow(start, len, &end))
2978 if (unlikely(!access_ok((void __user *)start, len)))
2981 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2982 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2985 /* Slow path: try to get the remaining pages with get_user_pages */
2986 start += nr_pinned << PAGE_SHIFT;
2988 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2992 * The caller has to unpin the pages we already pinned so
2993 * returning -errno is not an option
2999 return ret + nr_pinned;
3003 * get_user_pages_fast_only() - pin user pages in memory
3004 * @start: starting user address
3005 * @nr_pages: number of pages from start to pin
3006 * @gup_flags: flags modifying pin behaviour
3007 * @pages: array that receives pointers to the pages pinned.
3008 * Should be at least nr_pages long.
3010 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3012 * Note a difference with get_user_pages_fast: this always returns the
3013 * number of pages pinned, 0 if no pages were pinned.
3015 * If the architecture does not support this function, simply return with no
3018 * Careful, careful! COW breaking can go either way, so a non-write
3019 * access can get ambiguous page results. If you call this function without
3020 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3022 int get_user_pages_fast_only(unsigned long start, int nr_pages,
3023 unsigned int gup_flags, struct page **pages)
3027 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3028 * because gup fast is always a "pin with a +1 page refcount" request.
3030 * FOLL_FAST_ONLY is required in order to match the API description of
3031 * this routine: no fall back to regular ("slow") GUP.
3033 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
3035 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3039 * As specified in the API description above, this routine is not
3040 * allowed to return negative values. However, the common core
3041 * routine internal_get_user_pages_fast() *can* return -errno.
3042 * Therefore, correct for that here:
3049 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3052 * get_user_pages_fast() - pin user pages in memory
3053 * @start: starting user address
3054 * @nr_pages: number of pages from start to pin
3055 * @gup_flags: flags modifying pin behaviour
3056 * @pages: array that receives pointers to the pages pinned.
3057 * Should be at least nr_pages long.
3059 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3060 * If not successful, it will fall back to taking the lock and
3061 * calling get_user_pages().
3063 * Returns number of pages pinned. This may be fewer than the number requested.
3064 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3067 int get_user_pages_fast(unsigned long start, int nr_pages,
3068 unsigned int gup_flags, struct page **pages)
3070 if (!is_valid_gup_flags(gup_flags))
3074 * The caller may or may not have explicitly set FOLL_GET; either way is
3075 * OK. However, internally (within mm/gup.c), gup fast variants must set
3076 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3079 gup_flags |= FOLL_GET;
3080 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3082 EXPORT_SYMBOL_GPL(get_user_pages_fast);
3085 * pin_user_pages_fast() - pin user pages in memory without taking locks
3087 * @start: starting user address
3088 * @nr_pages: number of pages from start to pin
3089 * @gup_flags: flags modifying pin behaviour
3090 * @pages: array that receives pointers to the pages pinned.
3091 * Should be at least nr_pages long.
3093 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3094 * get_user_pages_fast() for documentation on the function arguments, because
3095 * the arguments here are identical.
3097 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3098 * see Documentation/core-api/pin_user_pages.rst for further details.
3100 int pin_user_pages_fast(unsigned long start, int nr_pages,
3101 unsigned int gup_flags, struct page **pages)
3103 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3104 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3107 if (WARN_ON_ONCE(!pages))
3110 gup_flags |= FOLL_PIN;
3111 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3113 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3116 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3117 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
3119 * The API rules are the same, too: no negative values may be returned.
3121 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3122 unsigned int gup_flags, struct page **pages)
3127 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3128 * rules require returning 0, rather than -errno:
3130 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3133 if (WARN_ON_ONCE(!pages))
3136 * FOLL_FAST_ONLY is required in order to match the API description of
3137 * this routine: no fall back to regular ("slow") GUP.
3139 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3140 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3143 * This routine is not allowed to return negative values. However,
3144 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3145 * correct for that here:
3152 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3155 * pin_user_pages_remote() - pin pages of a remote process
3157 * @mm: mm_struct of target mm
3158 * @start: starting user address
3159 * @nr_pages: number of pages from start to pin
3160 * @gup_flags: flags modifying lookup behaviour
3161 * @pages: array that receives pointers to the pages pinned.
3162 * Should be at least nr_pages long.
3163 * @vmas: array of pointers to vmas corresponding to each page.
3164 * Or NULL if the caller does not require them.
3165 * @locked: pointer to lock flag indicating whether lock is held and
3166 * subsequently whether VM_FAULT_RETRY functionality can be
3167 * utilised. Lock must initially be held.
3169 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3170 * get_user_pages_remote() for documentation on the function arguments, because
3171 * the arguments here are identical.
3173 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3174 * see Documentation/core-api/pin_user_pages.rst for details.
3176 long pin_user_pages_remote(struct mm_struct *mm,
3177 unsigned long start, unsigned long nr_pages,
3178 unsigned int gup_flags, struct page **pages,
3179 struct vm_area_struct **vmas, int *locked)
3181 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3182 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3185 if (WARN_ON_ONCE(!pages))
3188 gup_flags |= FOLL_PIN;
3189 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3190 pages, vmas, locked);
3192 EXPORT_SYMBOL(pin_user_pages_remote);
3195 * pin_user_pages() - pin user pages in memory for use by other devices
3197 * @start: starting user address
3198 * @nr_pages: number of pages from start to pin
3199 * @gup_flags: flags modifying lookup behaviour
3200 * @pages: array that receives pointers to the pages pinned.
3201 * Should be at least nr_pages long.
3202 * @vmas: array of pointers to vmas corresponding to each page.
3203 * Or NULL if the caller does not require them.
3205 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3208 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3209 * see Documentation/core-api/pin_user_pages.rst for details.
3211 long pin_user_pages(unsigned long start, unsigned long nr_pages,
3212 unsigned int gup_flags, struct page **pages,
3213 struct vm_area_struct **vmas)
3215 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3216 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3219 if (WARN_ON_ONCE(!pages))
3222 gup_flags |= FOLL_PIN;
3223 return __gup_longterm_locked(current->mm, start, nr_pages,
3224 pages, vmas, gup_flags);
3226 EXPORT_SYMBOL(pin_user_pages);
3229 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3230 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3231 * FOLL_PIN and rejects FOLL_GET.
3233 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3234 struct page **pages, unsigned int gup_flags)
3236 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3237 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3240 if (WARN_ON_ONCE(!pages))
3243 gup_flags |= FOLL_PIN;
3244 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3246 EXPORT_SYMBOL(pin_user_pages_unlocked);