]> Git Repo - linux.git/blob - kernel/fork.c
mm,hugetlb: use folio fields in second tail page
[linux.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106
107 #include <trace/events/sched.h>
108
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111
112 /*
113  * Minimum number of threads to boot the kernel
114  */
115 #define MIN_THREADS 20
116
117 /*
118  * Maximum number of threads
119  */
120 #define MAX_THREADS FUTEX_TID_MASK
121
122 /*
123  * Protected counters by write_lock_irq(&tasklist_lock)
124  */
125 unsigned long total_forks;      /* Handle normal Linux uptimes. */
126 int nr_threads;                 /* The idle threads do not count.. */
127
128 static int max_threads;         /* tunable limit on nr_threads */
129
130 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
131
132 static const char * const resident_page_types[] = {
133         NAMED_ARRAY_INDEX(MM_FILEPAGES),
134         NAMED_ARRAY_INDEX(MM_ANONPAGES),
135         NAMED_ARRAY_INDEX(MM_SWAPENTS),
136         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
142
143 #ifdef CONFIG_PROVE_RCU
144 int lockdep_tasklist_lock_is_held(void)
145 {
146         return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150
151 int nr_processes(void)
152 {
153         int cpu;
154         int total = 0;
155
156         for_each_possible_cpu(cpu)
157                 total += per_cpu(process_counts, cpu);
158
159         return total;
160 }
161
162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168
169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173
174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176         kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181
182 /*
183  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184  * kmemcache based allocator.
185  */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187
188 #  ifdef CONFIG_VMAP_STACK
189 /*
190  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191  * flush.  Try to minimize the number of calls by caching stacks.
192  */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195
196 struct vm_stack {
197         struct rcu_head rcu;
198         struct vm_struct *stack_vm_area;
199 };
200
201 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202 {
203         unsigned int i;
204
205         for (i = 0; i < NR_CACHED_STACKS; i++) {
206                 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207                         continue;
208                 return true;
209         }
210         return false;
211 }
212
213 static void thread_stack_free_rcu(struct rcu_head *rh)
214 {
215         struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216
217         if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218                 return;
219
220         vfree(vm_stack);
221 }
222
223 static void thread_stack_delayed_free(struct task_struct *tsk)
224 {
225         struct vm_stack *vm_stack = tsk->stack;
226
227         vm_stack->stack_vm_area = tsk->stack_vm_area;
228         call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229 }
230
231 static int free_vm_stack_cache(unsigned int cpu)
232 {
233         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234         int i;
235
236         for (i = 0; i < NR_CACHED_STACKS; i++) {
237                 struct vm_struct *vm_stack = cached_vm_stacks[i];
238
239                 if (!vm_stack)
240                         continue;
241
242                 vfree(vm_stack->addr);
243                 cached_vm_stacks[i] = NULL;
244         }
245
246         return 0;
247 }
248
249 static int memcg_charge_kernel_stack(struct vm_struct *vm)
250 {
251         int i;
252         int ret;
253
254         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255         BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256
257         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258                 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259                 if (ret)
260                         goto err;
261         }
262         return 0;
263 err:
264         /*
265          * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266          * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267          * ignore this page.
268          */
269         for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270                 memcg_kmem_uncharge_page(vm->pages[i], 0);
271         return ret;
272 }
273
274 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
275 {
276         struct vm_struct *vm;
277         void *stack;
278         int i;
279
280         for (i = 0; i < NR_CACHED_STACKS; i++) {
281                 struct vm_struct *s;
282
283                 s = this_cpu_xchg(cached_stacks[i], NULL);
284
285                 if (!s)
286                         continue;
287
288                 /* Reset stack metadata. */
289                 kasan_unpoison_range(s->addr, THREAD_SIZE);
290
291                 stack = kasan_reset_tag(s->addr);
292
293                 /* Clear stale pointers from reused stack. */
294                 memset(stack, 0, THREAD_SIZE);
295
296                 if (memcg_charge_kernel_stack(s)) {
297                         vfree(s->addr);
298                         return -ENOMEM;
299                 }
300
301                 tsk->stack_vm_area = s;
302                 tsk->stack = stack;
303                 return 0;
304         }
305
306         /*
307          * Allocated stacks are cached and later reused by new threads,
308          * so memcg accounting is performed manually on assigning/releasing
309          * stacks to tasks. Drop __GFP_ACCOUNT.
310          */
311         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
312                                      VMALLOC_START, VMALLOC_END,
313                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
314                                      PAGE_KERNEL,
315                                      0, node, __builtin_return_address(0));
316         if (!stack)
317                 return -ENOMEM;
318
319         vm = find_vm_area(stack);
320         if (memcg_charge_kernel_stack(vm)) {
321                 vfree(stack);
322                 return -ENOMEM;
323         }
324         /*
325          * We can't call find_vm_area() in interrupt context, and
326          * free_thread_stack() can be called in interrupt context,
327          * so cache the vm_struct.
328          */
329         tsk->stack_vm_area = vm;
330         stack = kasan_reset_tag(stack);
331         tsk->stack = stack;
332         return 0;
333 }
334
335 static void free_thread_stack(struct task_struct *tsk)
336 {
337         if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338                 thread_stack_delayed_free(tsk);
339
340         tsk->stack = NULL;
341         tsk->stack_vm_area = NULL;
342 }
343
344 #  else /* !CONFIG_VMAP_STACK */
345
346 static void thread_stack_free_rcu(struct rcu_head *rh)
347 {
348         __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349 }
350
351 static void thread_stack_delayed_free(struct task_struct *tsk)
352 {
353         struct rcu_head *rh = tsk->stack;
354
355         call_rcu(rh, thread_stack_free_rcu);
356 }
357
358 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
359 {
360         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361                                              THREAD_SIZE_ORDER);
362
363         if (likely(page)) {
364                 tsk->stack = kasan_reset_tag(page_address(page));
365                 return 0;
366         }
367         return -ENOMEM;
368 }
369
370 static void free_thread_stack(struct task_struct *tsk)
371 {
372         thread_stack_delayed_free(tsk);
373         tsk->stack = NULL;
374 }
375
376 #  endif /* CONFIG_VMAP_STACK */
377 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
378
379 static struct kmem_cache *thread_stack_cache;
380
381 static void thread_stack_free_rcu(struct rcu_head *rh)
382 {
383         kmem_cache_free(thread_stack_cache, rh);
384 }
385
386 static void thread_stack_delayed_free(struct task_struct *tsk)
387 {
388         struct rcu_head *rh = tsk->stack;
389
390         call_rcu(rh, thread_stack_free_rcu);
391 }
392
393 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
394 {
395         unsigned long *stack;
396         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
397         stack = kasan_reset_tag(stack);
398         tsk->stack = stack;
399         return stack ? 0 : -ENOMEM;
400 }
401
402 static void free_thread_stack(struct task_struct *tsk)
403 {
404         thread_stack_delayed_free(tsk);
405         tsk->stack = NULL;
406 }
407
408 void thread_stack_cache_init(void)
409 {
410         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
412                                         THREAD_SIZE, NULL);
413         BUG_ON(thread_stack_cache == NULL);
414 }
415
416 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
417 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418
419 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
420 {
421         unsigned long *stack;
422
423         stack = arch_alloc_thread_stack_node(tsk, node);
424         tsk->stack = stack;
425         return stack ? 0 : -ENOMEM;
426 }
427
428 static void free_thread_stack(struct task_struct *tsk)
429 {
430         arch_free_thread_stack(tsk);
431         tsk->stack = NULL;
432 }
433
434 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
435
436 /* SLAB cache for signal_struct structures (tsk->signal) */
437 static struct kmem_cache *signal_cachep;
438
439 /* SLAB cache for sighand_struct structures (tsk->sighand) */
440 struct kmem_cache *sighand_cachep;
441
442 /* SLAB cache for files_struct structures (tsk->files) */
443 struct kmem_cache *files_cachep;
444
445 /* SLAB cache for fs_struct structures (tsk->fs) */
446 struct kmem_cache *fs_cachep;
447
448 /* SLAB cache for vm_area_struct structures */
449 static struct kmem_cache *vm_area_cachep;
450
451 /* SLAB cache for mm_struct structures (tsk->mm) */
452 static struct kmem_cache *mm_cachep;
453
454 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
455 {
456         struct vm_area_struct *vma;
457
458         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
459         if (vma)
460                 vma_init(vma, mm);
461         return vma;
462 }
463
464 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465 {
466         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467
468         if (new) {
469                 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470                 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471                 /*
472                  * orig->shared.rb may be modified concurrently, but the clone
473                  * will be reinitialized.
474                  */
475                 *new = data_race(*orig);
476                 INIT_LIST_HEAD(&new->anon_vma_chain);
477                 dup_anon_vma_name(orig, new);
478         }
479         return new;
480 }
481
482 void vm_area_free(struct vm_area_struct *vma)
483 {
484         free_anon_vma_name(vma);
485         kmem_cache_free(vm_area_cachep, vma);
486 }
487
488 static void account_kernel_stack(struct task_struct *tsk, int account)
489 {
490         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491                 struct vm_struct *vm = task_stack_vm_area(tsk);
492                 int i;
493
494                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495                         mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496                                               account * (PAGE_SIZE / 1024));
497         } else {
498                 void *stack = task_stack_page(tsk);
499
500                 /* All stack pages are in the same node. */
501                 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
502                                       account * (THREAD_SIZE / 1024));
503         }
504 }
505
506 void exit_task_stack_account(struct task_struct *tsk)
507 {
508         account_kernel_stack(tsk, -1);
509
510         if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511                 struct vm_struct *vm;
512                 int i;
513
514                 vm = task_stack_vm_area(tsk);
515                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516                         memcg_kmem_uncharge_page(vm->pages[i], 0);
517         }
518 }
519
520 static void release_task_stack(struct task_struct *tsk)
521 {
522         if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
523                 return;  /* Better to leak the stack than to free prematurely */
524
525         free_thread_stack(tsk);
526 }
527
528 #ifdef CONFIG_THREAD_INFO_IN_TASK
529 void put_task_stack(struct task_struct *tsk)
530 {
531         if (refcount_dec_and_test(&tsk->stack_refcount))
532                 release_task_stack(tsk);
533 }
534 #endif
535
536 void free_task(struct task_struct *tsk)
537 {
538         release_user_cpus_ptr(tsk);
539         scs_release(tsk);
540
541 #ifndef CONFIG_THREAD_INFO_IN_TASK
542         /*
543          * The task is finally done with both the stack and thread_info,
544          * so free both.
545          */
546         release_task_stack(tsk);
547 #else
548         /*
549          * If the task had a separate stack allocation, it should be gone
550          * by now.
551          */
552         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
553 #endif
554         rt_mutex_debug_task_free(tsk);
555         ftrace_graph_exit_task(tsk);
556         arch_release_task_struct(tsk);
557         if (tsk->flags & PF_KTHREAD)
558                 free_kthread_struct(tsk);
559         free_task_struct(tsk);
560 }
561 EXPORT_SYMBOL(free_task);
562
563 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
564 {
565         struct file *exe_file;
566
567         exe_file = get_mm_exe_file(oldmm);
568         RCU_INIT_POINTER(mm->exe_file, exe_file);
569         /*
570          * We depend on the oldmm having properly denied write access to the
571          * exe_file already.
572          */
573         if (exe_file && deny_write_access(exe_file))
574                 pr_warn_once("deny_write_access() failed in %s\n", __func__);
575 }
576
577 #ifdef CONFIG_MMU
578 static __latent_entropy int dup_mmap(struct mm_struct *mm,
579                                         struct mm_struct *oldmm)
580 {
581         struct vm_area_struct *mpnt, *tmp;
582         int retval;
583         unsigned long charge = 0;
584         LIST_HEAD(uf);
585         MA_STATE(old_mas, &oldmm->mm_mt, 0, 0);
586         MA_STATE(mas, &mm->mm_mt, 0, 0);
587
588         uprobe_start_dup_mmap();
589         if (mmap_write_lock_killable(oldmm)) {
590                 retval = -EINTR;
591                 goto fail_uprobe_end;
592         }
593         flush_cache_dup_mm(oldmm);
594         uprobe_dup_mmap(oldmm, mm);
595         /*
596          * Not linked in yet - no deadlock potential:
597          */
598         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
599
600         /* No ordering required: file already has been exposed. */
601         dup_mm_exe_file(mm, oldmm);
602
603         mm->total_vm = oldmm->total_vm;
604         mm->data_vm = oldmm->data_vm;
605         mm->exec_vm = oldmm->exec_vm;
606         mm->stack_vm = oldmm->stack_vm;
607
608         retval = ksm_fork(mm, oldmm);
609         if (retval)
610                 goto out;
611         khugepaged_fork(mm, oldmm);
612
613         retval = mas_expected_entries(&mas, oldmm->map_count);
614         if (retval)
615                 goto out;
616
617         mas_for_each(&old_mas, mpnt, ULONG_MAX) {
618                 struct file *file;
619
620                 if (mpnt->vm_flags & VM_DONTCOPY) {
621                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
622                         continue;
623                 }
624                 charge = 0;
625                 /*
626                  * Don't duplicate many vmas if we've been oom-killed (for
627                  * example)
628                  */
629                 if (fatal_signal_pending(current)) {
630                         retval = -EINTR;
631                         goto loop_out;
632                 }
633                 if (mpnt->vm_flags & VM_ACCOUNT) {
634                         unsigned long len = vma_pages(mpnt);
635
636                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
637                                 goto fail_nomem;
638                         charge = len;
639                 }
640                 tmp = vm_area_dup(mpnt);
641                 if (!tmp)
642                         goto fail_nomem;
643                 retval = vma_dup_policy(mpnt, tmp);
644                 if (retval)
645                         goto fail_nomem_policy;
646                 tmp->vm_mm = mm;
647                 retval = dup_userfaultfd(tmp, &uf);
648                 if (retval)
649                         goto fail_nomem_anon_vma_fork;
650                 if (tmp->vm_flags & VM_WIPEONFORK) {
651                         /*
652                          * VM_WIPEONFORK gets a clean slate in the child.
653                          * Don't prepare anon_vma until fault since we don't
654                          * copy page for current vma.
655                          */
656                         tmp->anon_vma = NULL;
657                 } else if (anon_vma_fork(tmp, mpnt))
658                         goto fail_nomem_anon_vma_fork;
659                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
660                 file = tmp->vm_file;
661                 if (file) {
662                         struct address_space *mapping = file->f_mapping;
663
664                         get_file(file);
665                         i_mmap_lock_write(mapping);
666                         if (tmp->vm_flags & VM_SHARED)
667                                 mapping_allow_writable(mapping);
668                         flush_dcache_mmap_lock(mapping);
669                         /* insert tmp into the share list, just after mpnt */
670                         vma_interval_tree_insert_after(tmp, mpnt,
671                                         &mapping->i_mmap);
672                         flush_dcache_mmap_unlock(mapping);
673                         i_mmap_unlock_write(mapping);
674                 }
675
676                 /*
677                  * Copy/update hugetlb private vma information.
678                  */
679                 if (is_vm_hugetlb_page(tmp))
680                         hugetlb_dup_vma_private(tmp);
681
682                 /* Link the vma into the MT */
683                 mas.index = tmp->vm_start;
684                 mas.last = tmp->vm_end - 1;
685                 mas_store(&mas, tmp);
686                 if (mas_is_err(&mas))
687                         goto fail_nomem_mas_store;
688
689                 mm->map_count++;
690                 if (!(tmp->vm_flags & VM_WIPEONFORK))
691                         retval = copy_page_range(tmp, mpnt);
692
693                 if (tmp->vm_ops && tmp->vm_ops->open)
694                         tmp->vm_ops->open(tmp);
695
696                 if (retval)
697                         goto loop_out;
698         }
699         /* a new mm has just been created */
700         retval = arch_dup_mmap(oldmm, mm);
701 loop_out:
702         mas_destroy(&mas);
703 out:
704         mmap_write_unlock(mm);
705         flush_tlb_mm(oldmm);
706         mmap_write_unlock(oldmm);
707         dup_userfaultfd_complete(&uf);
708 fail_uprobe_end:
709         uprobe_end_dup_mmap();
710         return retval;
711
712 fail_nomem_mas_store:
713         unlink_anon_vmas(tmp);
714 fail_nomem_anon_vma_fork:
715         mpol_put(vma_policy(tmp));
716 fail_nomem_policy:
717         vm_area_free(tmp);
718 fail_nomem:
719         retval = -ENOMEM;
720         vm_unacct_memory(charge);
721         goto loop_out;
722 }
723
724 static inline int mm_alloc_pgd(struct mm_struct *mm)
725 {
726         mm->pgd = pgd_alloc(mm);
727         if (unlikely(!mm->pgd))
728                 return -ENOMEM;
729         return 0;
730 }
731
732 static inline void mm_free_pgd(struct mm_struct *mm)
733 {
734         pgd_free(mm, mm->pgd);
735 }
736 #else
737 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
738 {
739         mmap_write_lock(oldmm);
740         dup_mm_exe_file(mm, oldmm);
741         mmap_write_unlock(oldmm);
742         return 0;
743 }
744 #define mm_alloc_pgd(mm)        (0)
745 #define mm_free_pgd(mm)
746 #endif /* CONFIG_MMU */
747
748 static void check_mm(struct mm_struct *mm)
749 {
750         int i;
751
752         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
753                          "Please make sure 'struct resident_page_types[]' is updated as well");
754
755         for (i = 0; i < NR_MM_COUNTERS; i++) {
756                 long x = percpu_counter_sum(&mm->rss_stat[i]);
757
758                 if (likely(!x))
759                         continue;
760
761                 /* Making sure this is not due to race with CPU offlining. */
762                 x = percpu_counter_sum_all(&mm->rss_stat[i]);
763                 if (unlikely(x))
764                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
765                                  mm, resident_page_types[i], x);
766         }
767
768         if (mm_pgtables_bytes(mm))
769                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
770                                 mm_pgtables_bytes(mm));
771
772 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
773         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
774 #endif
775 }
776
777 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
778 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
779
780 /*
781  * Called when the last reference to the mm
782  * is dropped: either by a lazy thread or by
783  * mmput. Free the page directory and the mm.
784  */
785 void __mmdrop(struct mm_struct *mm)
786 {
787         int i;
788
789         BUG_ON(mm == &init_mm);
790         WARN_ON_ONCE(mm == current->mm);
791         WARN_ON_ONCE(mm == current->active_mm);
792         mm_free_pgd(mm);
793         destroy_context(mm);
794         mmu_notifier_subscriptions_destroy(mm);
795         check_mm(mm);
796         put_user_ns(mm->user_ns);
797         mm_pasid_drop(mm);
798
799         for (i = 0; i < NR_MM_COUNTERS; i++)
800                 percpu_counter_destroy(&mm->rss_stat[i]);
801         free_mm(mm);
802 }
803 EXPORT_SYMBOL_GPL(__mmdrop);
804
805 static void mmdrop_async_fn(struct work_struct *work)
806 {
807         struct mm_struct *mm;
808
809         mm = container_of(work, struct mm_struct, async_put_work);
810         __mmdrop(mm);
811 }
812
813 static void mmdrop_async(struct mm_struct *mm)
814 {
815         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
816                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
817                 schedule_work(&mm->async_put_work);
818         }
819 }
820
821 static inline void free_signal_struct(struct signal_struct *sig)
822 {
823         taskstats_tgid_free(sig);
824         sched_autogroup_exit(sig);
825         /*
826          * __mmdrop is not safe to call from softirq context on x86 due to
827          * pgd_dtor so postpone it to the async context
828          */
829         if (sig->oom_mm)
830                 mmdrop_async(sig->oom_mm);
831         kmem_cache_free(signal_cachep, sig);
832 }
833
834 static inline void put_signal_struct(struct signal_struct *sig)
835 {
836         if (refcount_dec_and_test(&sig->sigcnt))
837                 free_signal_struct(sig);
838 }
839
840 void __put_task_struct(struct task_struct *tsk)
841 {
842         WARN_ON(!tsk->exit_state);
843         WARN_ON(refcount_read(&tsk->usage));
844         WARN_ON(tsk == current);
845
846         io_uring_free(tsk);
847         cgroup_free(tsk);
848         task_numa_free(tsk, true);
849         security_task_free(tsk);
850         bpf_task_storage_free(tsk);
851         exit_creds(tsk);
852         delayacct_tsk_free(tsk);
853         put_signal_struct(tsk->signal);
854         sched_core_free(tsk);
855         free_task(tsk);
856 }
857 EXPORT_SYMBOL_GPL(__put_task_struct);
858
859 void __init __weak arch_task_cache_init(void) { }
860
861 /*
862  * set_max_threads
863  */
864 static void set_max_threads(unsigned int max_threads_suggested)
865 {
866         u64 threads;
867         unsigned long nr_pages = totalram_pages();
868
869         /*
870          * The number of threads shall be limited such that the thread
871          * structures may only consume a small part of the available memory.
872          */
873         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
874                 threads = MAX_THREADS;
875         else
876                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
877                                     (u64) THREAD_SIZE * 8UL);
878
879         if (threads > max_threads_suggested)
880                 threads = max_threads_suggested;
881
882         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
883 }
884
885 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
886 /* Initialized by the architecture: */
887 int arch_task_struct_size __read_mostly;
888 #endif
889
890 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
891 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
892 {
893         /* Fetch thread_struct whitelist for the architecture. */
894         arch_thread_struct_whitelist(offset, size);
895
896         /*
897          * Handle zero-sized whitelist or empty thread_struct, otherwise
898          * adjust offset to position of thread_struct in task_struct.
899          */
900         if (unlikely(*size == 0))
901                 *offset = 0;
902         else
903                 *offset += offsetof(struct task_struct, thread);
904 }
905 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
906
907 void __init fork_init(void)
908 {
909         int i;
910 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
911 #ifndef ARCH_MIN_TASKALIGN
912 #define ARCH_MIN_TASKALIGN      0
913 #endif
914         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
915         unsigned long useroffset, usersize;
916
917         /* create a slab on which task_structs can be allocated */
918         task_struct_whitelist(&useroffset, &usersize);
919         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
920                         arch_task_struct_size, align,
921                         SLAB_PANIC|SLAB_ACCOUNT,
922                         useroffset, usersize, NULL);
923 #endif
924
925         /* do the arch specific task caches init */
926         arch_task_cache_init();
927
928         set_max_threads(MAX_THREADS);
929
930         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
931         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
932         init_task.signal->rlim[RLIMIT_SIGPENDING] =
933                 init_task.signal->rlim[RLIMIT_NPROC];
934
935         for (i = 0; i < UCOUNT_COUNTS; i++)
936                 init_user_ns.ucount_max[i] = max_threads/2;
937
938         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
939         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
940         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
941         set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
942
943 #ifdef CONFIG_VMAP_STACK
944         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
945                           NULL, free_vm_stack_cache);
946 #endif
947
948         scs_init();
949
950         lockdep_init_task(&init_task);
951         uprobes_init();
952 }
953
954 int __weak arch_dup_task_struct(struct task_struct *dst,
955                                                struct task_struct *src)
956 {
957         *dst = *src;
958         return 0;
959 }
960
961 void set_task_stack_end_magic(struct task_struct *tsk)
962 {
963         unsigned long *stackend;
964
965         stackend = end_of_stack(tsk);
966         *stackend = STACK_END_MAGIC;    /* for overflow detection */
967 }
968
969 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
970 {
971         struct task_struct *tsk;
972         int err;
973
974         if (node == NUMA_NO_NODE)
975                 node = tsk_fork_get_node(orig);
976         tsk = alloc_task_struct_node(node);
977         if (!tsk)
978                 return NULL;
979
980         err = arch_dup_task_struct(tsk, orig);
981         if (err)
982                 goto free_tsk;
983
984         err = alloc_thread_stack_node(tsk, node);
985         if (err)
986                 goto free_tsk;
987
988 #ifdef CONFIG_THREAD_INFO_IN_TASK
989         refcount_set(&tsk->stack_refcount, 1);
990 #endif
991         account_kernel_stack(tsk, 1);
992
993         err = scs_prepare(tsk, node);
994         if (err)
995                 goto free_stack;
996
997 #ifdef CONFIG_SECCOMP
998         /*
999          * We must handle setting up seccomp filters once we're under
1000          * the sighand lock in case orig has changed between now and
1001          * then. Until then, filter must be NULL to avoid messing up
1002          * the usage counts on the error path calling free_task.
1003          */
1004         tsk->seccomp.filter = NULL;
1005 #endif
1006
1007         setup_thread_stack(tsk, orig);
1008         clear_user_return_notifier(tsk);
1009         clear_tsk_need_resched(tsk);
1010         set_task_stack_end_magic(tsk);
1011         clear_syscall_work_syscall_user_dispatch(tsk);
1012
1013 #ifdef CONFIG_STACKPROTECTOR
1014         tsk->stack_canary = get_random_canary();
1015 #endif
1016         if (orig->cpus_ptr == &orig->cpus_mask)
1017                 tsk->cpus_ptr = &tsk->cpus_mask;
1018         dup_user_cpus_ptr(tsk, orig, node);
1019
1020         /*
1021          * One for the user space visible state that goes away when reaped.
1022          * One for the scheduler.
1023          */
1024         refcount_set(&tsk->rcu_users, 2);
1025         /* One for the rcu users */
1026         refcount_set(&tsk->usage, 1);
1027 #ifdef CONFIG_BLK_DEV_IO_TRACE
1028         tsk->btrace_seq = 0;
1029 #endif
1030         tsk->splice_pipe = NULL;
1031         tsk->task_frag.page = NULL;
1032         tsk->wake_q.next = NULL;
1033         tsk->worker_private = NULL;
1034
1035         kcov_task_init(tsk);
1036         kmsan_task_create(tsk);
1037         kmap_local_fork(tsk);
1038
1039 #ifdef CONFIG_FAULT_INJECTION
1040         tsk->fail_nth = 0;
1041 #endif
1042
1043 #ifdef CONFIG_BLK_CGROUP
1044         tsk->throttle_queue = NULL;
1045         tsk->use_memdelay = 0;
1046 #endif
1047
1048 #ifdef CONFIG_IOMMU_SVA
1049         tsk->pasid_activated = 0;
1050 #endif
1051
1052 #ifdef CONFIG_MEMCG
1053         tsk->active_memcg = NULL;
1054 #endif
1055
1056 #ifdef CONFIG_CPU_SUP_INTEL
1057         tsk->reported_split_lock = 0;
1058 #endif
1059
1060         return tsk;
1061
1062 free_stack:
1063         exit_task_stack_account(tsk);
1064         free_thread_stack(tsk);
1065 free_tsk:
1066         free_task_struct(tsk);
1067         return NULL;
1068 }
1069
1070 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1071
1072 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1073
1074 static int __init coredump_filter_setup(char *s)
1075 {
1076         default_dump_filter =
1077                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1078                 MMF_DUMP_FILTER_MASK;
1079         return 1;
1080 }
1081
1082 __setup("coredump_filter=", coredump_filter_setup);
1083
1084 #include <linux/init_task.h>
1085
1086 static void mm_init_aio(struct mm_struct *mm)
1087 {
1088 #ifdef CONFIG_AIO
1089         spin_lock_init(&mm->ioctx_lock);
1090         mm->ioctx_table = NULL;
1091 #endif
1092 }
1093
1094 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1095                                            struct task_struct *p)
1096 {
1097 #ifdef CONFIG_MEMCG
1098         if (mm->owner == p)
1099                 WRITE_ONCE(mm->owner, NULL);
1100 #endif
1101 }
1102
1103 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1104 {
1105 #ifdef CONFIG_MEMCG
1106         mm->owner = p;
1107 #endif
1108 }
1109
1110 static void mm_init_uprobes_state(struct mm_struct *mm)
1111 {
1112 #ifdef CONFIG_UPROBES
1113         mm->uprobes_state.xol_area = NULL;
1114 #endif
1115 }
1116
1117 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1118         struct user_namespace *user_ns)
1119 {
1120         int i;
1121
1122         mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1123         mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1124         atomic_set(&mm->mm_users, 1);
1125         atomic_set(&mm->mm_count, 1);
1126         seqcount_init(&mm->write_protect_seq);
1127         mmap_init_lock(mm);
1128         INIT_LIST_HEAD(&mm->mmlist);
1129         mm_pgtables_bytes_init(mm);
1130         mm->map_count = 0;
1131         mm->locked_vm = 0;
1132         atomic64_set(&mm->pinned_vm, 0);
1133         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1134         spin_lock_init(&mm->page_table_lock);
1135         spin_lock_init(&mm->arg_lock);
1136         mm_init_cpumask(mm);
1137         mm_init_aio(mm);
1138         mm_init_owner(mm, p);
1139         mm_pasid_init(mm);
1140         RCU_INIT_POINTER(mm->exe_file, NULL);
1141         mmu_notifier_subscriptions_init(mm);
1142         init_tlb_flush_pending(mm);
1143 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1144         mm->pmd_huge_pte = NULL;
1145 #endif
1146         mm_init_uprobes_state(mm);
1147         hugetlb_count_init(mm);
1148
1149         if (current->mm) {
1150                 mm->flags = current->mm->flags & MMF_INIT_MASK;
1151                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1152         } else {
1153                 mm->flags = default_dump_filter;
1154                 mm->def_flags = 0;
1155         }
1156
1157         if (mm_alloc_pgd(mm))
1158                 goto fail_nopgd;
1159
1160         if (init_new_context(p, mm))
1161                 goto fail_nocontext;
1162
1163         for (i = 0; i < NR_MM_COUNTERS; i++)
1164                 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1165                         goto fail_pcpu;
1166
1167         mm->user_ns = get_user_ns(user_ns);
1168         lru_gen_init_mm(mm);
1169         return mm;
1170
1171 fail_pcpu:
1172         while (i > 0)
1173                 percpu_counter_destroy(&mm->rss_stat[--i]);
1174 fail_nocontext:
1175         mm_free_pgd(mm);
1176 fail_nopgd:
1177         free_mm(mm);
1178         return NULL;
1179 }
1180
1181 /*
1182  * Allocate and initialize an mm_struct.
1183  */
1184 struct mm_struct *mm_alloc(void)
1185 {
1186         struct mm_struct *mm;
1187
1188         mm = allocate_mm();
1189         if (!mm)
1190                 return NULL;
1191
1192         memset(mm, 0, sizeof(*mm));
1193         return mm_init(mm, current, current_user_ns());
1194 }
1195
1196 static inline void __mmput(struct mm_struct *mm)
1197 {
1198         VM_BUG_ON(atomic_read(&mm->mm_users));
1199
1200         uprobe_clear_state(mm);
1201         exit_aio(mm);
1202         ksm_exit(mm);
1203         khugepaged_exit(mm); /* must run before exit_mmap */
1204         exit_mmap(mm);
1205         mm_put_huge_zero_page(mm);
1206         set_mm_exe_file(mm, NULL);
1207         if (!list_empty(&mm->mmlist)) {
1208                 spin_lock(&mmlist_lock);
1209                 list_del(&mm->mmlist);
1210                 spin_unlock(&mmlist_lock);
1211         }
1212         if (mm->binfmt)
1213                 module_put(mm->binfmt->module);
1214         lru_gen_del_mm(mm);
1215         mmdrop(mm);
1216 }
1217
1218 /*
1219  * Decrement the use count and release all resources for an mm.
1220  */
1221 void mmput(struct mm_struct *mm)
1222 {
1223         might_sleep();
1224
1225         if (atomic_dec_and_test(&mm->mm_users))
1226                 __mmput(mm);
1227 }
1228 EXPORT_SYMBOL_GPL(mmput);
1229
1230 #ifdef CONFIG_MMU
1231 static void mmput_async_fn(struct work_struct *work)
1232 {
1233         struct mm_struct *mm = container_of(work, struct mm_struct,
1234                                             async_put_work);
1235
1236         __mmput(mm);
1237 }
1238
1239 void mmput_async(struct mm_struct *mm)
1240 {
1241         if (atomic_dec_and_test(&mm->mm_users)) {
1242                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1243                 schedule_work(&mm->async_put_work);
1244         }
1245 }
1246 EXPORT_SYMBOL_GPL(mmput_async);
1247 #endif
1248
1249 /**
1250  * set_mm_exe_file - change a reference to the mm's executable file
1251  *
1252  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1253  *
1254  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1255  * invocations: in mmput() nobody alive left, in execve task is single
1256  * threaded.
1257  *
1258  * Can only fail if new_exe_file != NULL.
1259  */
1260 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1261 {
1262         struct file *old_exe_file;
1263
1264         /*
1265          * It is safe to dereference the exe_file without RCU as
1266          * this function is only called if nobody else can access
1267          * this mm -- see comment above for justification.
1268          */
1269         old_exe_file = rcu_dereference_raw(mm->exe_file);
1270
1271         if (new_exe_file) {
1272                 /*
1273                  * We expect the caller (i.e., sys_execve) to already denied
1274                  * write access, so this is unlikely to fail.
1275                  */
1276                 if (unlikely(deny_write_access(new_exe_file)))
1277                         return -EACCES;
1278                 get_file(new_exe_file);
1279         }
1280         rcu_assign_pointer(mm->exe_file, new_exe_file);
1281         if (old_exe_file) {
1282                 allow_write_access(old_exe_file);
1283                 fput(old_exe_file);
1284         }
1285         return 0;
1286 }
1287
1288 /**
1289  * replace_mm_exe_file - replace a reference to the mm's executable file
1290  *
1291  * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1292  * dealing with concurrent invocation and without grabbing the mmap lock in
1293  * write mode.
1294  *
1295  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1296  */
1297 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1298 {
1299         struct vm_area_struct *vma;
1300         struct file *old_exe_file;
1301         int ret = 0;
1302
1303         /* Forbid mm->exe_file change if old file still mapped. */
1304         old_exe_file = get_mm_exe_file(mm);
1305         if (old_exe_file) {
1306                 VMA_ITERATOR(vmi, mm, 0);
1307                 mmap_read_lock(mm);
1308                 for_each_vma(vmi, vma) {
1309                         if (!vma->vm_file)
1310                                 continue;
1311                         if (path_equal(&vma->vm_file->f_path,
1312                                        &old_exe_file->f_path)) {
1313                                 ret = -EBUSY;
1314                                 break;
1315                         }
1316                 }
1317                 mmap_read_unlock(mm);
1318                 fput(old_exe_file);
1319                 if (ret)
1320                         return ret;
1321         }
1322
1323         /* set the new file, lockless */
1324         ret = deny_write_access(new_exe_file);
1325         if (ret)
1326                 return -EACCES;
1327         get_file(new_exe_file);
1328
1329         old_exe_file = xchg(&mm->exe_file, new_exe_file);
1330         if (old_exe_file) {
1331                 /*
1332                  * Don't race with dup_mmap() getting the file and disallowing
1333                  * write access while someone might open the file writable.
1334                  */
1335                 mmap_read_lock(mm);
1336                 allow_write_access(old_exe_file);
1337                 fput(old_exe_file);
1338                 mmap_read_unlock(mm);
1339         }
1340         return 0;
1341 }
1342
1343 /**
1344  * get_mm_exe_file - acquire a reference to the mm's executable file
1345  *
1346  * Returns %NULL if mm has no associated executable file.
1347  * User must release file via fput().
1348  */
1349 struct file *get_mm_exe_file(struct mm_struct *mm)
1350 {
1351         struct file *exe_file;
1352
1353         rcu_read_lock();
1354         exe_file = rcu_dereference(mm->exe_file);
1355         if (exe_file && !get_file_rcu(exe_file))
1356                 exe_file = NULL;
1357         rcu_read_unlock();
1358         return exe_file;
1359 }
1360
1361 /**
1362  * get_task_exe_file - acquire a reference to the task's executable file
1363  *
1364  * Returns %NULL if task's mm (if any) has no associated executable file or
1365  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1366  * User must release file via fput().
1367  */
1368 struct file *get_task_exe_file(struct task_struct *task)
1369 {
1370         struct file *exe_file = NULL;
1371         struct mm_struct *mm;
1372
1373         task_lock(task);
1374         mm = task->mm;
1375         if (mm) {
1376                 if (!(task->flags & PF_KTHREAD))
1377                         exe_file = get_mm_exe_file(mm);
1378         }
1379         task_unlock(task);
1380         return exe_file;
1381 }
1382
1383 /**
1384  * get_task_mm - acquire a reference to the task's mm
1385  *
1386  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1387  * this kernel workthread has transiently adopted a user mm with use_mm,
1388  * to do its AIO) is not set and if so returns a reference to it, after
1389  * bumping up the use count.  User must release the mm via mmput()
1390  * after use.  Typically used by /proc and ptrace.
1391  */
1392 struct mm_struct *get_task_mm(struct task_struct *task)
1393 {
1394         struct mm_struct *mm;
1395
1396         task_lock(task);
1397         mm = task->mm;
1398         if (mm) {
1399                 if (task->flags & PF_KTHREAD)
1400                         mm = NULL;
1401                 else
1402                         mmget(mm);
1403         }
1404         task_unlock(task);
1405         return mm;
1406 }
1407 EXPORT_SYMBOL_GPL(get_task_mm);
1408
1409 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1410 {
1411         struct mm_struct *mm;
1412         int err;
1413
1414         err =  down_read_killable(&task->signal->exec_update_lock);
1415         if (err)
1416                 return ERR_PTR(err);
1417
1418         mm = get_task_mm(task);
1419         if (mm && mm != current->mm &&
1420                         !ptrace_may_access(task, mode)) {
1421                 mmput(mm);
1422                 mm = ERR_PTR(-EACCES);
1423         }
1424         up_read(&task->signal->exec_update_lock);
1425
1426         return mm;
1427 }
1428
1429 static void complete_vfork_done(struct task_struct *tsk)
1430 {
1431         struct completion *vfork;
1432
1433         task_lock(tsk);
1434         vfork = tsk->vfork_done;
1435         if (likely(vfork)) {
1436                 tsk->vfork_done = NULL;
1437                 complete(vfork);
1438         }
1439         task_unlock(tsk);
1440 }
1441
1442 static int wait_for_vfork_done(struct task_struct *child,
1443                                 struct completion *vfork)
1444 {
1445         unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
1446         int killed;
1447
1448         cgroup_enter_frozen();
1449         killed = wait_for_completion_state(vfork, state);
1450         cgroup_leave_frozen(false);
1451
1452         if (killed) {
1453                 task_lock(child);
1454                 child->vfork_done = NULL;
1455                 task_unlock(child);
1456         }
1457
1458         put_task_struct(child);
1459         return killed;
1460 }
1461
1462 /* Please note the differences between mmput and mm_release.
1463  * mmput is called whenever we stop holding onto a mm_struct,
1464  * error success whatever.
1465  *
1466  * mm_release is called after a mm_struct has been removed
1467  * from the current process.
1468  *
1469  * This difference is important for error handling, when we
1470  * only half set up a mm_struct for a new process and need to restore
1471  * the old one.  Because we mmput the new mm_struct before
1472  * restoring the old one. . .
1473  * Eric Biederman 10 January 1998
1474  */
1475 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1476 {
1477         uprobe_free_utask(tsk);
1478
1479         /* Get rid of any cached register state */
1480         deactivate_mm(tsk, mm);
1481
1482         /*
1483          * Signal userspace if we're not exiting with a core dump
1484          * because we want to leave the value intact for debugging
1485          * purposes.
1486          */
1487         if (tsk->clear_child_tid) {
1488                 if (atomic_read(&mm->mm_users) > 1) {
1489                         /*
1490                          * We don't check the error code - if userspace has
1491                          * not set up a proper pointer then tough luck.
1492                          */
1493                         put_user(0, tsk->clear_child_tid);
1494                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1495                                         1, NULL, NULL, 0, 0);
1496                 }
1497                 tsk->clear_child_tid = NULL;
1498         }
1499
1500         /*
1501          * All done, finally we can wake up parent and return this mm to him.
1502          * Also kthread_stop() uses this completion for synchronization.
1503          */
1504         if (tsk->vfork_done)
1505                 complete_vfork_done(tsk);
1506 }
1507
1508 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1509 {
1510         futex_exit_release(tsk);
1511         mm_release(tsk, mm);
1512 }
1513
1514 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1515 {
1516         futex_exec_release(tsk);
1517         mm_release(tsk, mm);
1518 }
1519
1520 /**
1521  * dup_mm() - duplicates an existing mm structure
1522  * @tsk: the task_struct with which the new mm will be associated.
1523  * @oldmm: the mm to duplicate.
1524  *
1525  * Allocates a new mm structure and duplicates the provided @oldmm structure
1526  * content into it.
1527  *
1528  * Return: the duplicated mm or NULL on failure.
1529  */
1530 static struct mm_struct *dup_mm(struct task_struct *tsk,
1531                                 struct mm_struct *oldmm)
1532 {
1533         struct mm_struct *mm;
1534         int err;
1535
1536         mm = allocate_mm();
1537         if (!mm)
1538                 goto fail_nomem;
1539
1540         memcpy(mm, oldmm, sizeof(*mm));
1541
1542         if (!mm_init(mm, tsk, mm->user_ns))
1543                 goto fail_nomem;
1544
1545         err = dup_mmap(mm, oldmm);
1546         if (err)
1547                 goto free_pt;
1548
1549         mm->hiwater_rss = get_mm_rss(mm);
1550         mm->hiwater_vm = mm->total_vm;
1551
1552         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1553                 goto free_pt;
1554
1555         return mm;
1556
1557 free_pt:
1558         /* don't put binfmt in mmput, we haven't got module yet */
1559         mm->binfmt = NULL;
1560         mm_init_owner(mm, NULL);
1561         mmput(mm);
1562
1563 fail_nomem:
1564         return NULL;
1565 }
1566
1567 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1568 {
1569         struct mm_struct *mm, *oldmm;
1570
1571         tsk->min_flt = tsk->maj_flt = 0;
1572         tsk->nvcsw = tsk->nivcsw = 0;
1573 #ifdef CONFIG_DETECT_HUNG_TASK
1574         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1575         tsk->last_switch_time = 0;
1576 #endif
1577
1578         tsk->mm = NULL;
1579         tsk->active_mm = NULL;
1580
1581         /*
1582          * Are we cloning a kernel thread?
1583          *
1584          * We need to steal a active VM for that..
1585          */
1586         oldmm = current->mm;
1587         if (!oldmm)
1588                 return 0;
1589
1590         if (clone_flags & CLONE_VM) {
1591                 mmget(oldmm);
1592                 mm = oldmm;
1593         } else {
1594                 mm = dup_mm(tsk, current->mm);
1595                 if (!mm)
1596                         return -ENOMEM;
1597         }
1598
1599         tsk->mm = mm;
1600         tsk->active_mm = mm;
1601         return 0;
1602 }
1603
1604 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1605 {
1606         struct fs_struct *fs = current->fs;
1607         if (clone_flags & CLONE_FS) {
1608                 /* tsk->fs is already what we want */
1609                 spin_lock(&fs->lock);
1610                 if (fs->in_exec) {
1611                         spin_unlock(&fs->lock);
1612                         return -EAGAIN;
1613                 }
1614                 fs->users++;
1615                 spin_unlock(&fs->lock);
1616                 return 0;
1617         }
1618         tsk->fs = copy_fs_struct(fs);
1619         if (!tsk->fs)
1620                 return -ENOMEM;
1621         return 0;
1622 }
1623
1624 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1625 {
1626         struct files_struct *oldf, *newf;
1627         int error = 0;
1628
1629         /*
1630          * A background process may not have any files ...
1631          */
1632         oldf = current->files;
1633         if (!oldf)
1634                 goto out;
1635
1636         if (clone_flags & CLONE_FILES) {
1637                 atomic_inc(&oldf->count);
1638                 goto out;
1639         }
1640
1641         newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1642         if (!newf)
1643                 goto out;
1644
1645         tsk->files = newf;
1646         error = 0;
1647 out:
1648         return error;
1649 }
1650
1651 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1652 {
1653         struct sighand_struct *sig;
1654
1655         if (clone_flags & CLONE_SIGHAND) {
1656                 refcount_inc(&current->sighand->count);
1657                 return 0;
1658         }
1659         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1660         RCU_INIT_POINTER(tsk->sighand, sig);
1661         if (!sig)
1662                 return -ENOMEM;
1663
1664         refcount_set(&sig->count, 1);
1665         spin_lock_irq(&current->sighand->siglock);
1666         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1667         spin_unlock_irq(&current->sighand->siglock);
1668
1669         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1670         if (clone_flags & CLONE_CLEAR_SIGHAND)
1671                 flush_signal_handlers(tsk, 0);
1672
1673         return 0;
1674 }
1675
1676 void __cleanup_sighand(struct sighand_struct *sighand)
1677 {
1678         if (refcount_dec_and_test(&sighand->count)) {
1679                 signalfd_cleanup(sighand);
1680                 /*
1681                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1682                  * without an RCU grace period, see __lock_task_sighand().
1683                  */
1684                 kmem_cache_free(sighand_cachep, sighand);
1685         }
1686 }
1687
1688 /*
1689  * Initialize POSIX timer handling for a thread group.
1690  */
1691 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1692 {
1693         struct posix_cputimers *pct = &sig->posix_cputimers;
1694         unsigned long cpu_limit;
1695
1696         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1697         posix_cputimers_group_init(pct, cpu_limit);
1698 }
1699
1700 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1701 {
1702         struct signal_struct *sig;
1703
1704         if (clone_flags & CLONE_THREAD)
1705                 return 0;
1706
1707         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1708         tsk->signal = sig;
1709         if (!sig)
1710                 return -ENOMEM;
1711
1712         sig->nr_threads = 1;
1713         sig->quick_threads = 1;
1714         atomic_set(&sig->live, 1);
1715         refcount_set(&sig->sigcnt, 1);
1716
1717         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1718         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1719         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1720
1721         init_waitqueue_head(&sig->wait_chldexit);
1722         sig->curr_target = tsk;
1723         init_sigpending(&sig->shared_pending);
1724         INIT_HLIST_HEAD(&sig->multiprocess);
1725         seqlock_init(&sig->stats_lock);
1726         prev_cputime_init(&sig->prev_cputime);
1727
1728 #ifdef CONFIG_POSIX_TIMERS
1729         INIT_LIST_HEAD(&sig->posix_timers);
1730         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1731         sig->real_timer.function = it_real_fn;
1732 #endif
1733
1734         task_lock(current->group_leader);
1735         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1736         task_unlock(current->group_leader);
1737
1738         posix_cpu_timers_init_group(sig);
1739
1740         tty_audit_fork(sig);
1741         sched_autogroup_fork(sig);
1742
1743         sig->oom_score_adj = current->signal->oom_score_adj;
1744         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1745
1746         mutex_init(&sig->cred_guard_mutex);
1747         init_rwsem(&sig->exec_update_lock);
1748
1749         return 0;
1750 }
1751
1752 static void copy_seccomp(struct task_struct *p)
1753 {
1754 #ifdef CONFIG_SECCOMP
1755         /*
1756          * Must be called with sighand->lock held, which is common to
1757          * all threads in the group. Holding cred_guard_mutex is not
1758          * needed because this new task is not yet running and cannot
1759          * be racing exec.
1760          */
1761         assert_spin_locked(&current->sighand->siglock);
1762
1763         /* Ref-count the new filter user, and assign it. */
1764         get_seccomp_filter(current);
1765         p->seccomp = current->seccomp;
1766
1767         /*
1768          * Explicitly enable no_new_privs here in case it got set
1769          * between the task_struct being duplicated and holding the
1770          * sighand lock. The seccomp state and nnp must be in sync.
1771          */
1772         if (task_no_new_privs(current))
1773                 task_set_no_new_privs(p);
1774
1775         /*
1776          * If the parent gained a seccomp mode after copying thread
1777          * flags and between before we held the sighand lock, we have
1778          * to manually enable the seccomp thread flag here.
1779          */
1780         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1781                 set_task_syscall_work(p, SECCOMP);
1782 #endif
1783 }
1784
1785 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1786 {
1787         current->clear_child_tid = tidptr;
1788
1789         return task_pid_vnr(current);
1790 }
1791
1792 static void rt_mutex_init_task(struct task_struct *p)
1793 {
1794         raw_spin_lock_init(&p->pi_lock);
1795 #ifdef CONFIG_RT_MUTEXES
1796         p->pi_waiters = RB_ROOT_CACHED;
1797         p->pi_top_task = NULL;
1798         p->pi_blocked_on = NULL;
1799 #endif
1800 }
1801
1802 static inline void init_task_pid_links(struct task_struct *task)
1803 {
1804         enum pid_type type;
1805
1806         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1807                 INIT_HLIST_NODE(&task->pid_links[type]);
1808 }
1809
1810 static inline void
1811 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1812 {
1813         if (type == PIDTYPE_PID)
1814                 task->thread_pid = pid;
1815         else
1816                 task->signal->pids[type] = pid;
1817 }
1818
1819 static inline void rcu_copy_process(struct task_struct *p)
1820 {
1821 #ifdef CONFIG_PREEMPT_RCU
1822         p->rcu_read_lock_nesting = 0;
1823         p->rcu_read_unlock_special.s = 0;
1824         p->rcu_blocked_node = NULL;
1825         INIT_LIST_HEAD(&p->rcu_node_entry);
1826 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1827 #ifdef CONFIG_TASKS_RCU
1828         p->rcu_tasks_holdout = false;
1829         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1830         p->rcu_tasks_idle_cpu = -1;
1831 #endif /* #ifdef CONFIG_TASKS_RCU */
1832 #ifdef CONFIG_TASKS_TRACE_RCU
1833         p->trc_reader_nesting = 0;
1834         p->trc_reader_special.s = 0;
1835         INIT_LIST_HEAD(&p->trc_holdout_list);
1836         INIT_LIST_HEAD(&p->trc_blkd_node);
1837 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1838 }
1839
1840 struct pid *pidfd_pid(const struct file *file)
1841 {
1842         if (file->f_op == &pidfd_fops)
1843                 return file->private_data;
1844
1845         return ERR_PTR(-EBADF);
1846 }
1847
1848 static int pidfd_release(struct inode *inode, struct file *file)
1849 {
1850         struct pid *pid = file->private_data;
1851
1852         file->private_data = NULL;
1853         put_pid(pid);
1854         return 0;
1855 }
1856
1857 #ifdef CONFIG_PROC_FS
1858 /**
1859  * pidfd_show_fdinfo - print information about a pidfd
1860  * @m: proc fdinfo file
1861  * @f: file referencing a pidfd
1862  *
1863  * Pid:
1864  * This function will print the pid that a given pidfd refers to in the
1865  * pid namespace of the procfs instance.
1866  * If the pid namespace of the process is not a descendant of the pid
1867  * namespace of the procfs instance 0 will be shown as its pid. This is
1868  * similar to calling getppid() on a process whose parent is outside of
1869  * its pid namespace.
1870  *
1871  * NSpid:
1872  * If pid namespaces are supported then this function will also print
1873  * the pid of a given pidfd refers to for all descendant pid namespaces
1874  * starting from the current pid namespace of the instance, i.e. the
1875  * Pid field and the first entry in the NSpid field will be identical.
1876  * If the pid namespace of the process is not a descendant of the pid
1877  * namespace of the procfs instance 0 will be shown as its first NSpid
1878  * entry and no others will be shown.
1879  * Note that this differs from the Pid and NSpid fields in
1880  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1881  * the  pid namespace of the procfs instance. The difference becomes
1882  * obvious when sending around a pidfd between pid namespaces from a
1883  * different branch of the tree, i.e. where no ancestral relation is
1884  * present between the pid namespaces:
1885  * - create two new pid namespaces ns1 and ns2 in the initial pid
1886  *   namespace (also take care to create new mount namespaces in the
1887  *   new pid namespace and mount procfs)
1888  * - create a process with a pidfd in ns1
1889  * - send pidfd from ns1 to ns2
1890  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1891  *   have exactly one entry, which is 0
1892  */
1893 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1894 {
1895         struct pid *pid = f->private_data;
1896         struct pid_namespace *ns;
1897         pid_t nr = -1;
1898
1899         if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1900                 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1901                 nr = pid_nr_ns(pid, ns);
1902         }
1903
1904         seq_put_decimal_ll(m, "Pid:\t", nr);
1905
1906 #ifdef CONFIG_PID_NS
1907         seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1908         if (nr > 0) {
1909                 int i;
1910
1911                 /* If nr is non-zero it means that 'pid' is valid and that
1912                  * ns, i.e. the pid namespace associated with the procfs
1913                  * instance, is in the pid namespace hierarchy of pid.
1914                  * Start at one below the already printed level.
1915                  */
1916                 for (i = ns->level + 1; i <= pid->level; i++)
1917                         seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1918         }
1919 #endif
1920         seq_putc(m, '\n');
1921 }
1922 #endif
1923
1924 /*
1925  * Poll support for process exit notification.
1926  */
1927 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1928 {
1929         struct pid *pid = file->private_data;
1930         __poll_t poll_flags = 0;
1931
1932         poll_wait(file, &pid->wait_pidfd, pts);
1933
1934         /*
1935          * Inform pollers only when the whole thread group exits.
1936          * If the thread group leader exits before all other threads in the
1937          * group, then poll(2) should block, similar to the wait(2) family.
1938          */
1939         if (thread_group_exited(pid))
1940                 poll_flags = EPOLLIN | EPOLLRDNORM;
1941
1942         return poll_flags;
1943 }
1944
1945 const struct file_operations pidfd_fops = {
1946         .release = pidfd_release,
1947         .poll = pidfd_poll,
1948 #ifdef CONFIG_PROC_FS
1949         .show_fdinfo = pidfd_show_fdinfo,
1950 #endif
1951 };
1952
1953 static void __delayed_free_task(struct rcu_head *rhp)
1954 {
1955         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1956
1957         free_task(tsk);
1958 }
1959
1960 static __always_inline void delayed_free_task(struct task_struct *tsk)
1961 {
1962         if (IS_ENABLED(CONFIG_MEMCG))
1963                 call_rcu(&tsk->rcu, __delayed_free_task);
1964         else
1965                 free_task(tsk);
1966 }
1967
1968 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1969 {
1970         /* Skip if kernel thread */
1971         if (!tsk->mm)
1972                 return;
1973
1974         /* Skip if spawning a thread or using vfork */
1975         if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1976                 return;
1977
1978         /* We need to synchronize with __set_oom_adj */
1979         mutex_lock(&oom_adj_mutex);
1980         set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1981         /* Update the values in case they were changed after copy_signal */
1982         tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1983         tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1984         mutex_unlock(&oom_adj_mutex);
1985 }
1986
1987 #ifdef CONFIG_RV
1988 static void rv_task_fork(struct task_struct *p)
1989 {
1990         int i;
1991
1992         for (i = 0; i < RV_PER_TASK_MONITORS; i++)
1993                 p->rv[i].da_mon.monitoring = false;
1994 }
1995 #else
1996 #define rv_task_fork(p) do {} while (0)
1997 #endif
1998
1999 /*
2000  * This creates a new process as a copy of the old one,
2001  * but does not actually start it yet.
2002  *
2003  * It copies the registers, and all the appropriate
2004  * parts of the process environment (as per the clone
2005  * flags). The actual kick-off is left to the caller.
2006  */
2007 static __latent_entropy struct task_struct *copy_process(
2008                                         struct pid *pid,
2009                                         int trace,
2010                                         int node,
2011                                         struct kernel_clone_args *args)
2012 {
2013         int pidfd = -1, retval;
2014         struct task_struct *p;
2015         struct multiprocess_signals delayed;
2016         struct file *pidfile = NULL;
2017         const u64 clone_flags = args->flags;
2018         struct nsproxy *nsp = current->nsproxy;
2019
2020         /*
2021          * Don't allow sharing the root directory with processes in a different
2022          * namespace
2023          */
2024         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2025                 return ERR_PTR(-EINVAL);
2026
2027         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2028                 return ERR_PTR(-EINVAL);
2029
2030         /*
2031          * Thread groups must share signals as well, and detached threads
2032          * can only be started up within the thread group.
2033          */
2034         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2035                 return ERR_PTR(-EINVAL);
2036
2037         /*
2038          * Shared signal handlers imply shared VM. By way of the above,
2039          * thread groups also imply shared VM. Blocking this case allows
2040          * for various simplifications in other code.
2041          */
2042         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2043                 return ERR_PTR(-EINVAL);
2044
2045         /*
2046          * Siblings of global init remain as zombies on exit since they are
2047          * not reaped by their parent (swapper). To solve this and to avoid
2048          * multi-rooted process trees, prevent global and container-inits
2049          * from creating siblings.
2050          */
2051         if ((clone_flags & CLONE_PARENT) &&
2052                                 current->signal->flags & SIGNAL_UNKILLABLE)
2053                 return ERR_PTR(-EINVAL);
2054
2055         /*
2056          * If the new process will be in a different pid or user namespace
2057          * do not allow it to share a thread group with the forking task.
2058          */
2059         if (clone_flags & CLONE_THREAD) {
2060                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2061                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2062                         return ERR_PTR(-EINVAL);
2063         }
2064
2065         /*
2066          * If the new process will be in a different time namespace
2067          * do not allow it to share VM or a thread group with the forking task.
2068          */
2069         if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2070                 if (nsp->time_ns != nsp->time_ns_for_children)
2071                         return ERR_PTR(-EINVAL);
2072         }
2073
2074         if (clone_flags & CLONE_PIDFD) {
2075                 /*
2076                  * - CLONE_DETACHED is blocked so that we can potentially
2077                  *   reuse it later for CLONE_PIDFD.
2078                  * - CLONE_THREAD is blocked until someone really needs it.
2079                  */
2080                 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2081                         return ERR_PTR(-EINVAL);
2082         }
2083
2084         /*
2085          * Force any signals received before this point to be delivered
2086          * before the fork happens.  Collect up signals sent to multiple
2087          * processes that happen during the fork and delay them so that
2088          * they appear to happen after the fork.
2089          */
2090         sigemptyset(&delayed.signal);
2091         INIT_HLIST_NODE(&delayed.node);
2092
2093         spin_lock_irq(&current->sighand->siglock);
2094         if (!(clone_flags & CLONE_THREAD))
2095                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2096         recalc_sigpending();
2097         spin_unlock_irq(&current->sighand->siglock);
2098         retval = -ERESTARTNOINTR;
2099         if (task_sigpending(current))
2100                 goto fork_out;
2101
2102         retval = -ENOMEM;
2103         p = dup_task_struct(current, node);
2104         if (!p)
2105                 goto fork_out;
2106         p->flags &= ~PF_KTHREAD;
2107         if (args->kthread)
2108                 p->flags |= PF_KTHREAD;
2109         if (args->io_thread) {
2110                 /*
2111                  * Mark us an IO worker, and block any signal that isn't
2112                  * fatal or STOP
2113                  */
2114                 p->flags |= PF_IO_WORKER;
2115                 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2116         }
2117
2118         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2119         /*
2120          * Clear TID on mm_release()?
2121          */
2122         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2123
2124         ftrace_graph_init_task(p);
2125
2126         rt_mutex_init_task(p);
2127
2128         lockdep_assert_irqs_enabled();
2129 #ifdef CONFIG_PROVE_LOCKING
2130         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2131 #endif
2132         retval = copy_creds(p, clone_flags);
2133         if (retval < 0)
2134                 goto bad_fork_free;
2135
2136         retval = -EAGAIN;
2137         if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2138                 if (p->real_cred->user != INIT_USER &&
2139                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2140                         goto bad_fork_cleanup_count;
2141         }
2142         current->flags &= ~PF_NPROC_EXCEEDED;
2143
2144         /*
2145          * If multiple threads are within copy_process(), then this check
2146          * triggers too late. This doesn't hurt, the check is only there
2147          * to stop root fork bombs.
2148          */
2149         retval = -EAGAIN;
2150         if (data_race(nr_threads >= max_threads))
2151                 goto bad_fork_cleanup_count;
2152
2153         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
2154         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2155         p->flags |= PF_FORKNOEXEC;
2156         INIT_LIST_HEAD(&p->children);
2157         INIT_LIST_HEAD(&p->sibling);
2158         rcu_copy_process(p);
2159         p->vfork_done = NULL;
2160         spin_lock_init(&p->alloc_lock);
2161
2162         init_sigpending(&p->pending);
2163
2164         p->utime = p->stime = p->gtime = 0;
2165 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2166         p->utimescaled = p->stimescaled = 0;
2167 #endif
2168         prev_cputime_init(&p->prev_cputime);
2169
2170 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2171         seqcount_init(&p->vtime.seqcount);
2172         p->vtime.starttime = 0;
2173         p->vtime.state = VTIME_INACTIVE;
2174 #endif
2175
2176 #ifdef CONFIG_IO_URING
2177         p->io_uring = NULL;
2178 #endif
2179
2180 #if defined(SPLIT_RSS_COUNTING)
2181         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2182 #endif
2183
2184         p->default_timer_slack_ns = current->timer_slack_ns;
2185
2186 #ifdef CONFIG_PSI
2187         p->psi_flags = 0;
2188 #endif
2189
2190         task_io_accounting_init(&p->ioac);
2191         acct_clear_integrals(p);
2192
2193         posix_cputimers_init(&p->posix_cputimers);
2194
2195         p->io_context = NULL;
2196         audit_set_context(p, NULL);
2197         cgroup_fork(p);
2198         if (args->kthread) {
2199                 if (!set_kthread_struct(p))
2200                         goto bad_fork_cleanup_delayacct;
2201         }
2202 #ifdef CONFIG_NUMA
2203         p->mempolicy = mpol_dup(p->mempolicy);
2204         if (IS_ERR(p->mempolicy)) {
2205                 retval = PTR_ERR(p->mempolicy);
2206                 p->mempolicy = NULL;
2207                 goto bad_fork_cleanup_delayacct;
2208         }
2209 #endif
2210 #ifdef CONFIG_CPUSETS
2211         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2212         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2213         seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2214 #endif
2215 #ifdef CONFIG_TRACE_IRQFLAGS
2216         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2217         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2218         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2219         p->softirqs_enabled             = 1;
2220         p->softirq_context              = 0;
2221 #endif
2222
2223         p->pagefault_disabled = 0;
2224
2225 #ifdef CONFIG_LOCKDEP
2226         lockdep_init_task(p);
2227 #endif
2228
2229 #ifdef CONFIG_DEBUG_MUTEXES
2230         p->blocked_on = NULL; /* not blocked yet */
2231 #endif
2232 #ifdef CONFIG_BCACHE
2233         p->sequential_io        = 0;
2234         p->sequential_io_avg    = 0;
2235 #endif
2236 #ifdef CONFIG_BPF_SYSCALL
2237         RCU_INIT_POINTER(p->bpf_storage, NULL);
2238         p->bpf_ctx = NULL;
2239 #endif
2240
2241         /* Perform scheduler related setup. Assign this task to a CPU. */
2242         retval = sched_fork(clone_flags, p);
2243         if (retval)
2244                 goto bad_fork_cleanup_policy;
2245
2246         retval = perf_event_init_task(p, clone_flags);
2247         if (retval)
2248                 goto bad_fork_cleanup_policy;
2249         retval = audit_alloc(p);
2250         if (retval)
2251                 goto bad_fork_cleanup_perf;
2252         /* copy all the process information */
2253         shm_init_task(p);
2254         retval = security_task_alloc(p, clone_flags);
2255         if (retval)
2256                 goto bad_fork_cleanup_audit;
2257         retval = copy_semundo(clone_flags, p);
2258         if (retval)
2259                 goto bad_fork_cleanup_security;
2260         retval = copy_files(clone_flags, p);
2261         if (retval)
2262                 goto bad_fork_cleanup_semundo;
2263         retval = copy_fs(clone_flags, p);
2264         if (retval)
2265                 goto bad_fork_cleanup_files;
2266         retval = copy_sighand(clone_flags, p);
2267         if (retval)
2268                 goto bad_fork_cleanup_fs;
2269         retval = copy_signal(clone_flags, p);
2270         if (retval)
2271                 goto bad_fork_cleanup_sighand;
2272         retval = copy_mm(clone_flags, p);
2273         if (retval)
2274                 goto bad_fork_cleanup_signal;
2275         retval = copy_namespaces(clone_flags, p);
2276         if (retval)
2277                 goto bad_fork_cleanup_mm;
2278         retval = copy_io(clone_flags, p);
2279         if (retval)
2280                 goto bad_fork_cleanup_namespaces;
2281         retval = copy_thread(p, args);
2282         if (retval)
2283                 goto bad_fork_cleanup_io;
2284
2285         stackleak_task_init(p);
2286
2287         if (pid != &init_struct_pid) {
2288                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2289                                 args->set_tid_size);
2290                 if (IS_ERR(pid)) {
2291                         retval = PTR_ERR(pid);
2292                         goto bad_fork_cleanup_thread;
2293                 }
2294         }
2295
2296         /*
2297          * This has to happen after we've potentially unshared the file
2298          * descriptor table (so that the pidfd doesn't leak into the child
2299          * if the fd table isn't shared).
2300          */
2301         if (clone_flags & CLONE_PIDFD) {
2302                 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2303                 if (retval < 0)
2304                         goto bad_fork_free_pid;
2305
2306                 pidfd = retval;
2307
2308                 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2309                                               O_RDWR | O_CLOEXEC);
2310                 if (IS_ERR(pidfile)) {
2311                         put_unused_fd(pidfd);
2312                         retval = PTR_ERR(pidfile);
2313                         goto bad_fork_free_pid;
2314                 }
2315                 get_pid(pid);   /* held by pidfile now */
2316
2317                 retval = put_user(pidfd, args->pidfd);
2318                 if (retval)
2319                         goto bad_fork_put_pidfd;
2320         }
2321
2322 #ifdef CONFIG_BLOCK
2323         p->plug = NULL;
2324 #endif
2325         futex_init_task(p);
2326
2327         /*
2328          * sigaltstack should be cleared when sharing the same VM
2329          */
2330         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2331                 sas_ss_reset(p);
2332
2333         /*
2334          * Syscall tracing and stepping should be turned off in the
2335          * child regardless of CLONE_PTRACE.
2336          */
2337         user_disable_single_step(p);
2338         clear_task_syscall_work(p, SYSCALL_TRACE);
2339 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2340         clear_task_syscall_work(p, SYSCALL_EMU);
2341 #endif
2342         clear_tsk_latency_tracing(p);
2343
2344         /* ok, now we should be set up.. */
2345         p->pid = pid_nr(pid);
2346         if (clone_flags & CLONE_THREAD) {
2347                 p->group_leader = current->group_leader;
2348                 p->tgid = current->tgid;
2349         } else {
2350                 p->group_leader = p;
2351                 p->tgid = p->pid;
2352         }
2353
2354         p->nr_dirtied = 0;
2355         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2356         p->dirty_paused_when = 0;
2357
2358         p->pdeath_signal = 0;
2359         INIT_LIST_HEAD(&p->thread_group);
2360         p->task_works = NULL;
2361         clear_posix_cputimers_work(p);
2362
2363 #ifdef CONFIG_KRETPROBES
2364         p->kretprobe_instances.first = NULL;
2365 #endif
2366 #ifdef CONFIG_RETHOOK
2367         p->rethooks.first = NULL;
2368 #endif
2369
2370         /*
2371          * Ensure that the cgroup subsystem policies allow the new process to be
2372          * forked. It should be noted that the new process's css_set can be changed
2373          * between here and cgroup_post_fork() if an organisation operation is in
2374          * progress.
2375          */
2376         retval = cgroup_can_fork(p, args);
2377         if (retval)
2378                 goto bad_fork_put_pidfd;
2379
2380         /*
2381          * Now that the cgroups are pinned, re-clone the parent cgroup and put
2382          * the new task on the correct runqueue. All this *before* the task
2383          * becomes visible.
2384          *
2385          * This isn't part of ->can_fork() because while the re-cloning is
2386          * cgroup specific, it unconditionally needs to place the task on a
2387          * runqueue.
2388          */
2389         sched_cgroup_fork(p, args);
2390
2391         /*
2392          * From this point on we must avoid any synchronous user-space
2393          * communication until we take the tasklist-lock. In particular, we do
2394          * not want user-space to be able to predict the process start-time by
2395          * stalling fork(2) after we recorded the start_time but before it is
2396          * visible to the system.
2397          */
2398
2399         p->start_time = ktime_get_ns();
2400         p->start_boottime = ktime_get_boottime_ns();
2401
2402         /*
2403          * Make it visible to the rest of the system, but dont wake it up yet.
2404          * Need tasklist lock for parent etc handling!
2405          */
2406         write_lock_irq(&tasklist_lock);
2407
2408         /* CLONE_PARENT re-uses the old parent */
2409         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2410                 p->real_parent = current->real_parent;
2411                 p->parent_exec_id = current->parent_exec_id;
2412                 if (clone_flags & CLONE_THREAD)
2413                         p->exit_signal = -1;
2414                 else
2415                         p->exit_signal = current->group_leader->exit_signal;
2416         } else {
2417                 p->real_parent = current;
2418                 p->parent_exec_id = current->self_exec_id;
2419                 p->exit_signal = args->exit_signal;
2420         }
2421
2422         klp_copy_process(p);
2423
2424         sched_core_fork(p);
2425
2426         spin_lock(&current->sighand->siglock);
2427
2428         /*
2429          * Copy seccomp details explicitly here, in case they were changed
2430          * before holding sighand lock.
2431          */
2432         copy_seccomp(p);
2433
2434         rv_task_fork(p);
2435
2436         rseq_fork(p, clone_flags);
2437
2438         /* Don't start children in a dying pid namespace */
2439         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2440                 retval = -ENOMEM;
2441                 goto bad_fork_cancel_cgroup;
2442         }
2443
2444         /* Let kill terminate clone/fork in the middle */
2445         if (fatal_signal_pending(current)) {
2446                 retval = -EINTR;
2447                 goto bad_fork_cancel_cgroup;
2448         }
2449
2450         init_task_pid_links(p);
2451         if (likely(p->pid)) {
2452                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2453
2454                 init_task_pid(p, PIDTYPE_PID, pid);
2455                 if (thread_group_leader(p)) {
2456                         init_task_pid(p, PIDTYPE_TGID, pid);
2457                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2458                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2459
2460                         if (is_child_reaper(pid)) {
2461                                 ns_of_pid(pid)->child_reaper = p;
2462                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2463                         }
2464                         p->signal->shared_pending.signal = delayed.signal;
2465                         p->signal->tty = tty_kref_get(current->signal->tty);
2466                         /*
2467                          * Inherit has_child_subreaper flag under the same
2468                          * tasklist_lock with adding child to the process tree
2469                          * for propagate_has_child_subreaper optimization.
2470                          */
2471                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2472                                                          p->real_parent->signal->is_child_subreaper;
2473                         list_add_tail(&p->sibling, &p->real_parent->children);
2474                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2475                         attach_pid(p, PIDTYPE_TGID);
2476                         attach_pid(p, PIDTYPE_PGID);
2477                         attach_pid(p, PIDTYPE_SID);
2478                         __this_cpu_inc(process_counts);
2479                 } else {
2480                         current->signal->nr_threads++;
2481                         current->signal->quick_threads++;
2482                         atomic_inc(&current->signal->live);
2483                         refcount_inc(&current->signal->sigcnt);
2484                         task_join_group_stop(p);
2485                         list_add_tail_rcu(&p->thread_group,
2486                                           &p->group_leader->thread_group);
2487                         list_add_tail_rcu(&p->thread_node,
2488                                           &p->signal->thread_head);
2489                 }
2490                 attach_pid(p, PIDTYPE_PID);
2491                 nr_threads++;
2492         }
2493         total_forks++;
2494         hlist_del_init(&delayed.node);
2495         spin_unlock(&current->sighand->siglock);
2496         syscall_tracepoint_update(p);
2497         write_unlock_irq(&tasklist_lock);
2498
2499         if (pidfile)
2500                 fd_install(pidfd, pidfile);
2501
2502         proc_fork_connector(p);
2503         sched_post_fork(p);
2504         cgroup_post_fork(p, args);
2505         perf_event_fork(p);
2506
2507         trace_task_newtask(p, clone_flags);
2508         uprobe_copy_process(p, clone_flags);
2509
2510         copy_oom_score_adj(clone_flags, p);
2511
2512         return p;
2513
2514 bad_fork_cancel_cgroup:
2515         sched_core_free(p);
2516         spin_unlock(&current->sighand->siglock);
2517         write_unlock_irq(&tasklist_lock);
2518         cgroup_cancel_fork(p, args);
2519 bad_fork_put_pidfd:
2520         if (clone_flags & CLONE_PIDFD) {
2521                 fput(pidfile);
2522                 put_unused_fd(pidfd);
2523         }
2524 bad_fork_free_pid:
2525         if (pid != &init_struct_pid)
2526                 free_pid(pid);
2527 bad_fork_cleanup_thread:
2528         exit_thread(p);
2529 bad_fork_cleanup_io:
2530         if (p->io_context)
2531                 exit_io_context(p);
2532 bad_fork_cleanup_namespaces:
2533         exit_task_namespaces(p);
2534 bad_fork_cleanup_mm:
2535         if (p->mm) {
2536                 mm_clear_owner(p->mm, p);
2537                 mmput(p->mm);
2538         }
2539 bad_fork_cleanup_signal:
2540         if (!(clone_flags & CLONE_THREAD))
2541                 free_signal_struct(p->signal);
2542 bad_fork_cleanup_sighand:
2543         __cleanup_sighand(p->sighand);
2544 bad_fork_cleanup_fs:
2545         exit_fs(p); /* blocking */
2546 bad_fork_cleanup_files:
2547         exit_files(p); /* blocking */
2548 bad_fork_cleanup_semundo:
2549         exit_sem(p);
2550 bad_fork_cleanup_security:
2551         security_task_free(p);
2552 bad_fork_cleanup_audit:
2553         audit_free(p);
2554 bad_fork_cleanup_perf:
2555         perf_event_free_task(p);
2556 bad_fork_cleanup_policy:
2557         lockdep_free_task(p);
2558 #ifdef CONFIG_NUMA
2559         mpol_put(p->mempolicy);
2560 #endif
2561 bad_fork_cleanup_delayacct:
2562         delayacct_tsk_free(p);
2563 bad_fork_cleanup_count:
2564         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2565         exit_creds(p);
2566 bad_fork_free:
2567         WRITE_ONCE(p->__state, TASK_DEAD);
2568         exit_task_stack_account(p);
2569         put_task_stack(p);
2570         delayed_free_task(p);
2571 fork_out:
2572         spin_lock_irq(&current->sighand->siglock);
2573         hlist_del_init(&delayed.node);
2574         spin_unlock_irq(&current->sighand->siglock);
2575         return ERR_PTR(retval);
2576 }
2577
2578 static inline void init_idle_pids(struct task_struct *idle)
2579 {
2580         enum pid_type type;
2581
2582         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2583                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2584                 init_task_pid(idle, type, &init_struct_pid);
2585         }
2586 }
2587
2588 static int idle_dummy(void *dummy)
2589 {
2590         /* This function is never called */
2591         return 0;
2592 }
2593
2594 struct task_struct * __init fork_idle(int cpu)
2595 {
2596         struct task_struct *task;
2597         struct kernel_clone_args args = {
2598                 .flags          = CLONE_VM,
2599                 .fn             = &idle_dummy,
2600                 .fn_arg         = NULL,
2601                 .kthread        = 1,
2602                 .idle           = 1,
2603         };
2604
2605         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2606         if (!IS_ERR(task)) {
2607                 init_idle_pids(task);
2608                 init_idle(task, cpu);
2609         }
2610
2611         return task;
2612 }
2613
2614 struct mm_struct *copy_init_mm(void)
2615 {
2616         return dup_mm(NULL, &init_mm);
2617 }
2618
2619 /*
2620  * This is like kernel_clone(), but shaved down and tailored to just
2621  * creating io_uring workers. It returns a created task, or an error pointer.
2622  * The returned task is inactive, and the caller must fire it up through
2623  * wake_up_new_task(p). All signals are blocked in the created task.
2624  */
2625 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2626 {
2627         unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2628                                 CLONE_IO;
2629         struct kernel_clone_args args = {
2630                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2631                                     CLONE_UNTRACED) & ~CSIGNAL),
2632                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2633                 .fn             = fn,
2634                 .fn_arg         = arg,
2635                 .io_thread      = 1,
2636         };
2637
2638         return copy_process(NULL, 0, node, &args);
2639 }
2640
2641 /*
2642  *  Ok, this is the main fork-routine.
2643  *
2644  * It copies the process, and if successful kick-starts
2645  * it and waits for it to finish using the VM if required.
2646  *
2647  * args->exit_signal is expected to be checked for sanity by the caller.
2648  */
2649 pid_t kernel_clone(struct kernel_clone_args *args)
2650 {
2651         u64 clone_flags = args->flags;
2652         struct completion vfork;
2653         struct pid *pid;
2654         struct task_struct *p;
2655         int trace = 0;
2656         pid_t nr;
2657
2658         /*
2659          * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2660          * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2661          * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2662          * field in struct clone_args and it still doesn't make sense to have
2663          * them both point at the same memory location. Performing this check
2664          * here has the advantage that we don't need to have a separate helper
2665          * to check for legacy clone().
2666          */
2667         if ((args->flags & CLONE_PIDFD) &&
2668             (args->flags & CLONE_PARENT_SETTID) &&
2669             (args->pidfd == args->parent_tid))
2670                 return -EINVAL;
2671
2672         /*
2673          * Determine whether and which event to report to ptracer.  When
2674          * called from kernel_thread or CLONE_UNTRACED is explicitly
2675          * requested, no event is reported; otherwise, report if the event
2676          * for the type of forking is enabled.
2677          */
2678         if (!(clone_flags & CLONE_UNTRACED)) {
2679                 if (clone_flags & CLONE_VFORK)
2680                         trace = PTRACE_EVENT_VFORK;
2681                 else if (args->exit_signal != SIGCHLD)
2682                         trace = PTRACE_EVENT_CLONE;
2683                 else
2684                         trace = PTRACE_EVENT_FORK;
2685
2686                 if (likely(!ptrace_event_enabled(current, trace)))
2687                         trace = 0;
2688         }
2689
2690         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2691         add_latent_entropy();
2692
2693         if (IS_ERR(p))
2694                 return PTR_ERR(p);
2695
2696         /*
2697          * Do this prior waking up the new thread - the thread pointer
2698          * might get invalid after that point, if the thread exits quickly.
2699          */
2700         trace_sched_process_fork(current, p);
2701
2702         pid = get_task_pid(p, PIDTYPE_PID);
2703         nr = pid_vnr(pid);
2704
2705         if (clone_flags & CLONE_PARENT_SETTID)
2706                 put_user(nr, args->parent_tid);
2707
2708         if (clone_flags & CLONE_VFORK) {
2709                 p->vfork_done = &vfork;
2710                 init_completion(&vfork);
2711                 get_task_struct(p);
2712         }
2713
2714         if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2715                 /* lock the task to synchronize with memcg migration */
2716                 task_lock(p);
2717                 lru_gen_add_mm(p->mm);
2718                 task_unlock(p);
2719         }
2720
2721         wake_up_new_task(p);
2722
2723         /* forking complete and child started to run, tell ptracer */
2724         if (unlikely(trace))
2725                 ptrace_event_pid(trace, pid);
2726
2727         if (clone_flags & CLONE_VFORK) {
2728                 if (!wait_for_vfork_done(p, &vfork))
2729                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2730         }
2731
2732         put_pid(pid);
2733         return nr;
2734 }
2735
2736 /*
2737  * Create a kernel thread.
2738  */
2739 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2740 {
2741         struct kernel_clone_args args = {
2742                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2743                                     CLONE_UNTRACED) & ~CSIGNAL),
2744                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2745                 .fn             = fn,
2746                 .fn_arg         = arg,
2747                 .kthread        = 1,
2748         };
2749
2750         return kernel_clone(&args);
2751 }
2752
2753 /*
2754  * Create a user mode thread.
2755  */
2756 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2757 {
2758         struct kernel_clone_args args = {
2759                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2760                                     CLONE_UNTRACED) & ~CSIGNAL),
2761                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2762                 .fn             = fn,
2763                 .fn_arg         = arg,
2764         };
2765
2766         return kernel_clone(&args);
2767 }
2768
2769 #ifdef __ARCH_WANT_SYS_FORK
2770 SYSCALL_DEFINE0(fork)
2771 {
2772 #ifdef CONFIG_MMU
2773         struct kernel_clone_args args = {
2774                 .exit_signal = SIGCHLD,
2775         };
2776
2777         return kernel_clone(&args);
2778 #else
2779         /* can not support in nommu mode */
2780         return -EINVAL;
2781 #endif
2782 }
2783 #endif
2784
2785 #ifdef __ARCH_WANT_SYS_VFORK
2786 SYSCALL_DEFINE0(vfork)
2787 {
2788         struct kernel_clone_args args = {
2789                 .flags          = CLONE_VFORK | CLONE_VM,
2790                 .exit_signal    = SIGCHLD,
2791         };
2792
2793         return kernel_clone(&args);
2794 }
2795 #endif
2796
2797 #ifdef __ARCH_WANT_SYS_CLONE
2798 #ifdef CONFIG_CLONE_BACKWARDS
2799 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2800                  int __user *, parent_tidptr,
2801                  unsigned long, tls,
2802                  int __user *, child_tidptr)
2803 #elif defined(CONFIG_CLONE_BACKWARDS2)
2804 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2805                  int __user *, parent_tidptr,
2806                  int __user *, child_tidptr,
2807                  unsigned long, tls)
2808 #elif defined(CONFIG_CLONE_BACKWARDS3)
2809 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2810                 int, stack_size,
2811                 int __user *, parent_tidptr,
2812                 int __user *, child_tidptr,
2813                 unsigned long, tls)
2814 #else
2815 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2816                  int __user *, parent_tidptr,
2817                  int __user *, child_tidptr,
2818                  unsigned long, tls)
2819 #endif
2820 {
2821         struct kernel_clone_args args = {
2822                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2823                 .pidfd          = parent_tidptr,
2824                 .child_tid      = child_tidptr,
2825                 .parent_tid     = parent_tidptr,
2826                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2827                 .stack          = newsp,
2828                 .tls            = tls,
2829         };
2830
2831         return kernel_clone(&args);
2832 }
2833 #endif
2834
2835 #ifdef __ARCH_WANT_SYS_CLONE3
2836
2837 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2838                                               struct clone_args __user *uargs,
2839                                               size_t usize)
2840 {
2841         int err;
2842         struct clone_args args;
2843         pid_t *kset_tid = kargs->set_tid;
2844
2845         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2846                      CLONE_ARGS_SIZE_VER0);
2847         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2848                      CLONE_ARGS_SIZE_VER1);
2849         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2850                      CLONE_ARGS_SIZE_VER2);
2851         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2852
2853         if (unlikely(usize > PAGE_SIZE))
2854                 return -E2BIG;
2855         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2856                 return -EINVAL;
2857
2858         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2859         if (err)
2860                 return err;
2861
2862         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2863                 return -EINVAL;
2864
2865         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2866                 return -EINVAL;
2867
2868         if (unlikely(args.set_tid && args.set_tid_size == 0))
2869                 return -EINVAL;
2870
2871         /*
2872          * Verify that higher 32bits of exit_signal are unset and that
2873          * it is a valid signal
2874          */
2875         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2876                      !valid_signal(args.exit_signal)))
2877                 return -EINVAL;
2878
2879         if ((args.flags & CLONE_INTO_CGROUP) &&
2880             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2881                 return -EINVAL;
2882
2883         *kargs = (struct kernel_clone_args){
2884                 .flags          = args.flags,
2885                 .pidfd          = u64_to_user_ptr(args.pidfd),
2886                 .child_tid      = u64_to_user_ptr(args.child_tid),
2887                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
2888                 .exit_signal    = args.exit_signal,
2889                 .stack          = args.stack,
2890                 .stack_size     = args.stack_size,
2891                 .tls            = args.tls,
2892                 .set_tid_size   = args.set_tid_size,
2893                 .cgroup         = args.cgroup,
2894         };
2895
2896         if (args.set_tid &&
2897                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2898                         (kargs->set_tid_size * sizeof(pid_t))))
2899                 return -EFAULT;
2900
2901         kargs->set_tid = kset_tid;
2902
2903         return 0;
2904 }
2905
2906 /**
2907  * clone3_stack_valid - check and prepare stack
2908  * @kargs: kernel clone args
2909  *
2910  * Verify that the stack arguments userspace gave us are sane.
2911  * In addition, set the stack direction for userspace since it's easy for us to
2912  * determine.
2913  */
2914 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2915 {
2916         if (kargs->stack == 0) {
2917                 if (kargs->stack_size > 0)
2918                         return false;
2919         } else {
2920                 if (kargs->stack_size == 0)
2921                         return false;
2922
2923                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2924                         return false;
2925
2926 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2927                 kargs->stack += kargs->stack_size;
2928 #endif
2929         }
2930
2931         return true;
2932 }
2933
2934 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2935 {
2936         /* Verify that no unknown flags are passed along. */
2937         if (kargs->flags &
2938             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2939                 return false;
2940
2941         /*
2942          * - make the CLONE_DETACHED bit reusable for clone3
2943          * - make the CSIGNAL bits reusable for clone3
2944          */
2945         if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2946                 return false;
2947
2948         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2949             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2950                 return false;
2951
2952         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2953             kargs->exit_signal)
2954                 return false;
2955
2956         if (!clone3_stack_valid(kargs))
2957                 return false;
2958
2959         return true;
2960 }
2961
2962 /**
2963  * clone3 - create a new process with specific properties
2964  * @uargs: argument structure
2965  * @size:  size of @uargs
2966  *
2967  * clone3() is the extensible successor to clone()/clone2().
2968  * It takes a struct as argument that is versioned by its size.
2969  *
2970  * Return: On success, a positive PID for the child process.
2971  *         On error, a negative errno number.
2972  */
2973 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2974 {
2975         int err;
2976
2977         struct kernel_clone_args kargs;
2978         pid_t set_tid[MAX_PID_NS_LEVEL];
2979
2980         kargs.set_tid = set_tid;
2981
2982         err = copy_clone_args_from_user(&kargs, uargs, size);
2983         if (err)
2984                 return err;
2985
2986         if (!clone3_args_valid(&kargs))
2987                 return -EINVAL;
2988
2989         return kernel_clone(&kargs);
2990 }
2991 #endif
2992
2993 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2994 {
2995         struct task_struct *leader, *parent, *child;
2996         int res;
2997
2998         read_lock(&tasklist_lock);
2999         leader = top = top->group_leader;
3000 down:
3001         for_each_thread(leader, parent) {
3002                 list_for_each_entry(child, &parent->children, sibling) {
3003                         res = visitor(child, data);
3004                         if (res) {
3005                                 if (res < 0)
3006                                         goto out;
3007                                 leader = child;
3008                                 goto down;
3009                         }
3010 up:
3011                         ;
3012                 }
3013         }
3014
3015         if (leader != top) {
3016                 child = leader;
3017                 parent = child->real_parent;
3018                 leader = parent->group_leader;
3019                 goto up;
3020         }
3021 out:
3022         read_unlock(&tasklist_lock);
3023 }
3024
3025 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3026 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3027 #endif
3028
3029 static void sighand_ctor(void *data)
3030 {
3031         struct sighand_struct *sighand = data;
3032
3033         spin_lock_init(&sighand->siglock);
3034         init_waitqueue_head(&sighand->signalfd_wqh);
3035 }
3036
3037 void __init proc_caches_init(void)
3038 {
3039         unsigned int mm_size;
3040
3041         sighand_cachep = kmem_cache_create("sighand_cache",
3042                         sizeof(struct sighand_struct), 0,
3043                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3044                         SLAB_ACCOUNT, sighand_ctor);
3045         signal_cachep = kmem_cache_create("signal_cache",
3046                         sizeof(struct signal_struct), 0,
3047                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3048                         NULL);
3049         files_cachep = kmem_cache_create("files_cache",
3050                         sizeof(struct files_struct), 0,
3051                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3052                         NULL);
3053         fs_cachep = kmem_cache_create("fs_cache",
3054                         sizeof(struct fs_struct), 0,
3055                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3056                         NULL);
3057
3058         /*
3059          * The mm_cpumask is located at the end of mm_struct, and is
3060          * dynamically sized based on the maximum CPU number this system
3061          * can have, taking hotplug into account (nr_cpu_ids).
3062          */
3063         mm_size = sizeof(struct mm_struct) + cpumask_size();
3064
3065         mm_cachep = kmem_cache_create_usercopy("mm_struct",
3066                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3067                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3068                         offsetof(struct mm_struct, saved_auxv),
3069                         sizeof_field(struct mm_struct, saved_auxv),
3070                         NULL);
3071         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3072         mmap_init();
3073         nsproxy_cache_init();
3074 }
3075
3076 /*
3077  * Check constraints on flags passed to the unshare system call.
3078  */
3079 static int check_unshare_flags(unsigned long unshare_flags)
3080 {
3081         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3082                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3083                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3084                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3085                                 CLONE_NEWTIME))
3086                 return -EINVAL;
3087         /*
3088          * Not implemented, but pretend it works if there is nothing
3089          * to unshare.  Note that unsharing the address space or the
3090          * signal handlers also need to unshare the signal queues (aka
3091          * CLONE_THREAD).
3092          */
3093         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3094                 if (!thread_group_empty(current))
3095                         return -EINVAL;
3096         }
3097         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3098                 if (refcount_read(&current->sighand->count) > 1)
3099                         return -EINVAL;
3100         }
3101         if (unshare_flags & CLONE_VM) {
3102                 if (!current_is_single_threaded())
3103                         return -EINVAL;
3104         }
3105
3106         return 0;
3107 }
3108
3109 /*
3110  * Unshare the filesystem structure if it is being shared
3111  */
3112 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3113 {
3114         struct fs_struct *fs = current->fs;
3115
3116         if (!(unshare_flags & CLONE_FS) || !fs)
3117                 return 0;
3118
3119         /* don't need lock here; in the worst case we'll do useless copy */
3120         if (fs->users == 1)
3121                 return 0;
3122
3123         *new_fsp = copy_fs_struct(fs);
3124         if (!*new_fsp)
3125                 return -ENOMEM;
3126
3127         return 0;
3128 }
3129
3130 /*
3131  * Unshare file descriptor table if it is being shared
3132  */
3133 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3134                struct files_struct **new_fdp)
3135 {
3136         struct files_struct *fd = current->files;
3137         int error = 0;
3138
3139         if ((unshare_flags & CLONE_FILES) &&
3140             (fd && atomic_read(&fd->count) > 1)) {
3141                 *new_fdp = dup_fd(fd, max_fds, &error);
3142                 if (!*new_fdp)
3143                         return error;
3144         }
3145
3146         return 0;
3147 }
3148
3149 /*
3150  * unshare allows a process to 'unshare' part of the process
3151  * context which was originally shared using clone.  copy_*
3152  * functions used by kernel_clone() cannot be used here directly
3153  * because they modify an inactive task_struct that is being
3154  * constructed. Here we are modifying the current, active,
3155  * task_struct.
3156  */
3157 int ksys_unshare(unsigned long unshare_flags)
3158 {
3159         struct fs_struct *fs, *new_fs = NULL;
3160         struct files_struct *new_fd = NULL;
3161         struct cred *new_cred = NULL;
3162         struct nsproxy *new_nsproxy = NULL;
3163         int do_sysvsem = 0;
3164         int err;
3165
3166         /*
3167          * If unsharing a user namespace must also unshare the thread group
3168          * and unshare the filesystem root and working directories.
3169          */
3170         if (unshare_flags & CLONE_NEWUSER)
3171                 unshare_flags |= CLONE_THREAD | CLONE_FS;
3172         /*
3173          * If unsharing vm, must also unshare signal handlers.
3174          */
3175         if (unshare_flags & CLONE_VM)
3176                 unshare_flags |= CLONE_SIGHAND;
3177         /*
3178          * If unsharing a signal handlers, must also unshare the signal queues.
3179          */
3180         if (unshare_flags & CLONE_SIGHAND)
3181                 unshare_flags |= CLONE_THREAD;
3182         /*
3183          * If unsharing namespace, must also unshare filesystem information.
3184          */
3185         if (unshare_flags & CLONE_NEWNS)
3186                 unshare_flags |= CLONE_FS;
3187
3188         err = check_unshare_flags(unshare_flags);
3189         if (err)
3190                 goto bad_unshare_out;
3191         /*
3192          * CLONE_NEWIPC must also detach from the undolist: after switching
3193          * to a new ipc namespace, the semaphore arrays from the old
3194          * namespace are unreachable.
3195          */
3196         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3197                 do_sysvsem = 1;
3198         err = unshare_fs(unshare_flags, &new_fs);
3199         if (err)
3200                 goto bad_unshare_out;
3201         err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3202         if (err)
3203                 goto bad_unshare_cleanup_fs;
3204         err = unshare_userns(unshare_flags, &new_cred);
3205         if (err)
3206                 goto bad_unshare_cleanup_fd;
3207         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3208                                          new_cred, new_fs);
3209         if (err)
3210                 goto bad_unshare_cleanup_cred;
3211
3212         if (new_cred) {
3213                 err = set_cred_ucounts(new_cred);
3214                 if (err)
3215                         goto bad_unshare_cleanup_cred;
3216         }
3217
3218         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3219                 if (do_sysvsem) {
3220                         /*
3221                          * CLONE_SYSVSEM is equivalent to sys_exit().
3222                          */
3223                         exit_sem(current);
3224                 }
3225                 if (unshare_flags & CLONE_NEWIPC) {
3226                         /* Orphan segments in old ns (see sem above). */
3227                         exit_shm(current);
3228                         shm_init_task(current);
3229                 }
3230
3231                 if (new_nsproxy)
3232                         switch_task_namespaces(current, new_nsproxy);
3233
3234                 task_lock(current);
3235
3236                 if (new_fs) {
3237                         fs = current->fs;
3238                         spin_lock(&fs->lock);
3239                         current->fs = new_fs;
3240                         if (--fs->users)
3241                                 new_fs = NULL;
3242                         else
3243                                 new_fs = fs;
3244                         spin_unlock(&fs->lock);
3245                 }
3246
3247                 if (new_fd)
3248                         swap(current->files, new_fd);
3249
3250                 task_unlock(current);
3251
3252                 if (new_cred) {
3253                         /* Install the new user namespace */
3254                         commit_creds(new_cred);
3255                         new_cred = NULL;
3256                 }
3257         }
3258
3259         perf_event_namespaces(current);
3260
3261 bad_unshare_cleanup_cred:
3262         if (new_cred)
3263                 put_cred(new_cred);
3264 bad_unshare_cleanup_fd:
3265         if (new_fd)
3266                 put_files_struct(new_fd);
3267
3268 bad_unshare_cleanup_fs:
3269         if (new_fs)
3270                 free_fs_struct(new_fs);
3271
3272 bad_unshare_out:
3273         return err;
3274 }
3275
3276 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3277 {
3278         return ksys_unshare(unshare_flags);
3279 }
3280
3281 /*
3282  *      Helper to unshare the files of the current task.
3283  *      We don't want to expose copy_files internals to
3284  *      the exec layer of the kernel.
3285  */
3286
3287 int unshare_files(void)
3288 {
3289         struct task_struct *task = current;
3290         struct files_struct *old, *copy = NULL;
3291         int error;
3292
3293         error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
3294         if (error || !copy)
3295                 return error;
3296
3297         old = task->files;
3298         task_lock(task);
3299         task->files = copy;
3300         task_unlock(task);
3301         put_files_struct(old);
3302         return 0;
3303 }
3304
3305 int sysctl_max_threads(struct ctl_table *table, int write,
3306                        void *buffer, size_t *lenp, loff_t *ppos)
3307 {
3308         struct ctl_table t;
3309         int ret;
3310         int threads = max_threads;
3311         int min = 1;
3312         int max = MAX_THREADS;
3313
3314         t = *table;
3315         t.data = &threads;
3316         t.extra1 = &min;
3317         t.extra2 = &max;
3318
3319         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3320         if (ret || !write)
3321                 return ret;
3322
3323         max_threads = threads;
3324
3325         return 0;
3326 }
This page took 0.212933 seconds and 4 git commands to generate.