2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
45 #include <net/strparser.h>
47 #include <trace/events/sock.h>
51 struct tls_decrypt_arg {
61 struct tls_decrypt_ctx {
63 u8 iv[TLS_MAX_IV_SIZE];
64 u8 aad[TLS_MAX_AAD_SIZE];
66 struct scatterlist sg[];
69 noinline void tls_err_abort(struct sock *sk, int err)
71 WARN_ON_ONCE(err >= 0);
72 /* sk->sk_err should contain a positive error code. */
73 WRITE_ONCE(sk->sk_err, -err);
74 /* Paired with smp_rmb() in tcp_poll() */
79 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
80 unsigned int recursion_level)
82 int start = skb_headlen(skb);
83 int i, chunk = start - offset;
84 struct sk_buff *frag_iter;
87 if (unlikely(recursion_level >= 24))
100 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
103 WARN_ON(start > offset + len);
105 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
106 chunk = end - offset;
119 if (unlikely(skb_has_frag_list(skb))) {
120 skb_walk_frags(skb, frag_iter) {
123 WARN_ON(start > offset + len);
125 end = start + frag_iter->len;
126 chunk = end - offset;
130 ret = __skb_nsg(frag_iter, offset - start, chunk,
131 recursion_level + 1);
132 if (unlikely(ret < 0))
147 /* Return the number of scatterlist elements required to completely map the
148 * skb, or -EMSGSIZE if the recursion depth is exceeded.
150 static int skb_nsg(struct sk_buff *skb, int offset, int len)
152 return __skb_nsg(skb, offset, len, 0);
155 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
156 struct tls_decrypt_arg *darg)
158 struct strp_msg *rxm = strp_msg(skb);
159 struct tls_msg *tlm = tls_msg(skb);
162 /* Determine zero-padding length */
163 if (prot->version == TLS_1_3_VERSION) {
164 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
165 char content_type = darg->zc ? darg->tail : 0;
168 while (content_type == 0) {
169 if (offset < prot->prepend_size)
171 err = skb_copy_bits(skb, rxm->offset + offset,
180 tlm->control = content_type;
185 static void tls_decrypt_done(void *data, int err)
187 struct aead_request *aead_req = data;
188 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
189 struct scatterlist *sgout = aead_req->dst;
190 struct scatterlist *sgin = aead_req->src;
191 struct tls_sw_context_rx *ctx;
192 struct tls_decrypt_ctx *dctx;
193 struct tls_context *tls_ctx;
194 struct scatterlist *sg;
199 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
200 aead_size = ALIGN(aead_size, __alignof__(*dctx));
201 dctx = (void *)((u8 *)aead_req + aead_size);
204 tls_ctx = tls_get_ctx(sk);
205 ctx = tls_sw_ctx_rx(tls_ctx);
207 /* Propagate if there was an err */
210 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
211 ctx->async_wait.err = err;
212 tls_err_abort(sk, err);
215 /* Free the destination pages if skb was not decrypted inplace */
217 /* Skip the first S/G entry as it points to AAD */
218 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
221 put_page(sg_page(sg));
227 spin_lock_bh(&ctx->decrypt_compl_lock);
228 if (!atomic_dec_return(&ctx->decrypt_pending))
229 complete(&ctx->async_wait.completion);
230 spin_unlock_bh(&ctx->decrypt_compl_lock);
233 static int tls_do_decryption(struct sock *sk,
234 struct scatterlist *sgin,
235 struct scatterlist *sgout,
238 struct aead_request *aead_req,
239 struct tls_decrypt_arg *darg)
241 struct tls_context *tls_ctx = tls_get_ctx(sk);
242 struct tls_prot_info *prot = &tls_ctx->prot_info;
243 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
246 aead_request_set_tfm(aead_req, ctx->aead_recv);
247 aead_request_set_ad(aead_req, prot->aad_size);
248 aead_request_set_crypt(aead_req, sgin, sgout,
249 data_len + prot->tag_size,
253 aead_request_set_callback(aead_req,
254 CRYPTO_TFM_REQ_MAY_BACKLOG,
255 tls_decrypt_done, aead_req);
256 atomic_inc(&ctx->decrypt_pending);
258 aead_request_set_callback(aead_req,
259 CRYPTO_TFM_REQ_MAY_BACKLOG,
260 crypto_req_done, &ctx->async_wait);
263 ret = crypto_aead_decrypt(aead_req);
264 if (ret == -EINPROGRESS) {
268 ret = crypto_wait_req(ret, &ctx->async_wait);
275 static void tls_trim_both_msgs(struct sock *sk, int target_size)
277 struct tls_context *tls_ctx = tls_get_ctx(sk);
278 struct tls_prot_info *prot = &tls_ctx->prot_info;
279 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
280 struct tls_rec *rec = ctx->open_rec;
282 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
284 target_size += prot->overhead_size;
285 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
288 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
290 struct tls_context *tls_ctx = tls_get_ctx(sk);
291 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
292 struct tls_rec *rec = ctx->open_rec;
293 struct sk_msg *msg_en = &rec->msg_encrypted;
295 return sk_msg_alloc(sk, msg_en, len, 0);
298 static int tls_clone_plaintext_msg(struct sock *sk, int required)
300 struct tls_context *tls_ctx = tls_get_ctx(sk);
301 struct tls_prot_info *prot = &tls_ctx->prot_info;
302 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
303 struct tls_rec *rec = ctx->open_rec;
304 struct sk_msg *msg_pl = &rec->msg_plaintext;
305 struct sk_msg *msg_en = &rec->msg_encrypted;
308 /* We add page references worth len bytes from encrypted sg
309 * at the end of plaintext sg. It is guaranteed that msg_en
310 * has enough required room (ensured by caller).
312 len = required - msg_pl->sg.size;
314 /* Skip initial bytes in msg_en's data to be able to use
315 * same offset of both plain and encrypted data.
317 skip = prot->prepend_size + msg_pl->sg.size;
319 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
322 static struct tls_rec *tls_get_rec(struct sock *sk)
324 struct tls_context *tls_ctx = tls_get_ctx(sk);
325 struct tls_prot_info *prot = &tls_ctx->prot_info;
326 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
327 struct sk_msg *msg_pl, *msg_en;
331 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
333 rec = kzalloc(mem_size, sk->sk_allocation);
337 msg_pl = &rec->msg_plaintext;
338 msg_en = &rec->msg_encrypted;
343 sg_init_table(rec->sg_aead_in, 2);
344 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
345 sg_unmark_end(&rec->sg_aead_in[1]);
347 sg_init_table(rec->sg_aead_out, 2);
348 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
349 sg_unmark_end(&rec->sg_aead_out[1]);
356 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
358 sk_msg_free(sk, &rec->msg_encrypted);
359 sk_msg_free(sk, &rec->msg_plaintext);
363 static void tls_free_open_rec(struct sock *sk)
365 struct tls_context *tls_ctx = tls_get_ctx(sk);
366 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
367 struct tls_rec *rec = ctx->open_rec;
370 tls_free_rec(sk, rec);
371 ctx->open_rec = NULL;
375 int tls_tx_records(struct sock *sk, int flags)
377 struct tls_context *tls_ctx = tls_get_ctx(sk);
378 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379 struct tls_rec *rec, *tmp;
380 struct sk_msg *msg_en;
381 int tx_flags, rc = 0;
383 if (tls_is_partially_sent_record(tls_ctx)) {
384 rec = list_first_entry(&ctx->tx_list,
385 struct tls_rec, list);
388 tx_flags = rec->tx_flags;
392 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
396 /* Full record has been transmitted.
397 * Remove the head of tx_list
399 list_del(&rec->list);
400 sk_msg_free(sk, &rec->msg_plaintext);
404 /* Tx all ready records */
405 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
406 if (READ_ONCE(rec->tx_ready)) {
408 tx_flags = rec->tx_flags;
412 msg_en = &rec->msg_encrypted;
413 rc = tls_push_sg(sk, tls_ctx,
414 &msg_en->sg.data[msg_en->sg.curr],
419 list_del(&rec->list);
420 sk_msg_free(sk, &rec->msg_plaintext);
428 if (rc < 0 && rc != -EAGAIN)
429 tls_err_abort(sk, -EBADMSG);
434 static void tls_encrypt_done(void *data, int err)
436 struct tls_sw_context_tx *ctx;
437 struct tls_context *tls_ctx;
438 struct tls_prot_info *prot;
439 struct tls_rec *rec = data;
440 struct scatterlist *sge;
441 struct sk_msg *msg_en;
446 msg_en = &rec->msg_encrypted;
449 tls_ctx = tls_get_ctx(sk);
450 prot = &tls_ctx->prot_info;
451 ctx = tls_sw_ctx_tx(tls_ctx);
453 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
454 sge->offset -= prot->prepend_size;
455 sge->length += prot->prepend_size;
457 /* Check if error is previously set on socket */
458 if (err || sk->sk_err) {
461 /* If err is already set on socket, return the same code */
463 ctx->async_wait.err = -sk->sk_err;
465 ctx->async_wait.err = err;
466 tls_err_abort(sk, err);
471 struct tls_rec *first_rec;
473 /* Mark the record as ready for transmission */
474 smp_store_mb(rec->tx_ready, true);
476 /* If received record is at head of tx_list, schedule tx */
477 first_rec = list_first_entry(&ctx->tx_list,
478 struct tls_rec, list);
479 if (rec == first_rec)
483 spin_lock_bh(&ctx->encrypt_compl_lock);
484 pending = atomic_dec_return(&ctx->encrypt_pending);
486 if (!pending && ctx->async_notify)
487 complete(&ctx->async_wait.completion);
488 spin_unlock_bh(&ctx->encrypt_compl_lock);
493 /* Schedule the transmission */
494 if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
495 schedule_delayed_work(&ctx->tx_work.work, 1);
498 static int tls_do_encryption(struct sock *sk,
499 struct tls_context *tls_ctx,
500 struct tls_sw_context_tx *ctx,
501 struct aead_request *aead_req,
502 size_t data_len, u32 start)
504 struct tls_prot_info *prot = &tls_ctx->prot_info;
505 struct tls_rec *rec = ctx->open_rec;
506 struct sk_msg *msg_en = &rec->msg_encrypted;
507 struct scatterlist *sge = sk_msg_elem(msg_en, start);
508 int rc, iv_offset = 0;
510 /* For CCM based ciphers, first byte of IV is a constant */
511 switch (prot->cipher_type) {
512 case TLS_CIPHER_AES_CCM_128:
513 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
516 case TLS_CIPHER_SM4_CCM:
517 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
522 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
523 prot->iv_size + prot->salt_size);
525 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
526 tls_ctx->tx.rec_seq);
528 sge->offset += prot->prepend_size;
529 sge->length -= prot->prepend_size;
531 msg_en->sg.curr = start;
533 aead_request_set_tfm(aead_req, ctx->aead_send);
534 aead_request_set_ad(aead_req, prot->aad_size);
535 aead_request_set_crypt(aead_req, rec->sg_aead_in,
537 data_len, rec->iv_data);
539 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
540 tls_encrypt_done, rec);
542 /* Add the record in tx_list */
543 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
544 atomic_inc(&ctx->encrypt_pending);
546 rc = crypto_aead_encrypt(aead_req);
547 if (!rc || rc != -EINPROGRESS) {
548 atomic_dec(&ctx->encrypt_pending);
549 sge->offset -= prot->prepend_size;
550 sge->length += prot->prepend_size;
554 WRITE_ONCE(rec->tx_ready, true);
555 } else if (rc != -EINPROGRESS) {
556 list_del(&rec->list);
560 /* Unhook the record from context if encryption is not failure */
561 ctx->open_rec = NULL;
562 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
566 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
567 struct tls_rec **to, struct sk_msg *msg_opl,
568 struct sk_msg *msg_oen, u32 split_point,
569 u32 tx_overhead_size, u32 *orig_end)
571 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
572 struct scatterlist *sge, *osge, *nsge;
573 u32 orig_size = msg_opl->sg.size;
574 struct scatterlist tmp = { };
575 struct sk_msg *msg_npl;
579 new = tls_get_rec(sk);
582 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
583 tx_overhead_size, 0);
585 tls_free_rec(sk, new);
589 *orig_end = msg_opl->sg.end;
590 i = msg_opl->sg.start;
591 sge = sk_msg_elem(msg_opl, i);
592 while (apply && sge->length) {
593 if (sge->length > apply) {
594 u32 len = sge->length - apply;
596 get_page(sg_page(sge));
597 sg_set_page(&tmp, sg_page(sge), len,
598 sge->offset + apply);
603 apply -= sge->length;
604 bytes += sge->length;
607 sk_msg_iter_var_next(i);
608 if (i == msg_opl->sg.end)
610 sge = sk_msg_elem(msg_opl, i);
614 msg_opl->sg.curr = i;
615 msg_opl->sg.copybreak = 0;
616 msg_opl->apply_bytes = 0;
617 msg_opl->sg.size = bytes;
619 msg_npl = &new->msg_plaintext;
620 msg_npl->apply_bytes = apply;
621 msg_npl->sg.size = orig_size - bytes;
623 j = msg_npl->sg.start;
624 nsge = sk_msg_elem(msg_npl, j);
626 memcpy(nsge, &tmp, sizeof(*nsge));
627 sk_msg_iter_var_next(j);
628 nsge = sk_msg_elem(msg_npl, j);
631 osge = sk_msg_elem(msg_opl, i);
632 while (osge->length) {
633 memcpy(nsge, osge, sizeof(*nsge));
635 sk_msg_iter_var_next(i);
636 sk_msg_iter_var_next(j);
639 osge = sk_msg_elem(msg_opl, i);
640 nsge = sk_msg_elem(msg_npl, j);
644 msg_npl->sg.curr = j;
645 msg_npl->sg.copybreak = 0;
651 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
652 struct tls_rec *from, u32 orig_end)
654 struct sk_msg *msg_npl = &from->msg_plaintext;
655 struct sk_msg *msg_opl = &to->msg_plaintext;
656 struct scatterlist *osge, *nsge;
660 sk_msg_iter_var_prev(i);
661 j = msg_npl->sg.start;
663 osge = sk_msg_elem(msg_opl, i);
664 nsge = sk_msg_elem(msg_npl, j);
666 if (sg_page(osge) == sg_page(nsge) &&
667 osge->offset + osge->length == nsge->offset) {
668 osge->length += nsge->length;
669 put_page(sg_page(nsge));
672 msg_opl->sg.end = orig_end;
673 msg_opl->sg.curr = orig_end;
674 msg_opl->sg.copybreak = 0;
675 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
676 msg_opl->sg.size += msg_npl->sg.size;
678 sk_msg_free(sk, &to->msg_encrypted);
679 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
684 static int tls_push_record(struct sock *sk, int flags,
685 unsigned char record_type)
687 struct tls_context *tls_ctx = tls_get_ctx(sk);
688 struct tls_prot_info *prot = &tls_ctx->prot_info;
689 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
690 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
691 u32 i, split_point, orig_end;
692 struct sk_msg *msg_pl, *msg_en;
693 struct aead_request *req;
700 msg_pl = &rec->msg_plaintext;
701 msg_en = &rec->msg_encrypted;
703 split_point = msg_pl->apply_bytes;
704 split = split_point && split_point < msg_pl->sg.size;
705 if (unlikely((!split &&
707 prot->overhead_size > msg_en->sg.size) ||
710 prot->overhead_size > msg_en->sg.size))) {
712 split_point = msg_en->sg.size;
715 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
716 split_point, prot->overhead_size,
720 /* This can happen if above tls_split_open_record allocates
721 * a single large encryption buffer instead of two smaller
722 * ones. In this case adjust pointers and continue without
725 if (!msg_pl->sg.size) {
726 tls_merge_open_record(sk, rec, tmp, orig_end);
727 msg_pl = &rec->msg_plaintext;
728 msg_en = &rec->msg_encrypted;
731 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
732 prot->overhead_size);
735 rec->tx_flags = flags;
736 req = &rec->aead_req;
739 sk_msg_iter_var_prev(i);
741 rec->content_type = record_type;
742 if (prot->version == TLS_1_3_VERSION) {
743 /* Add content type to end of message. No padding added */
744 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
745 sg_mark_end(&rec->sg_content_type);
746 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
747 &rec->sg_content_type);
749 sg_mark_end(sk_msg_elem(msg_pl, i));
752 if (msg_pl->sg.end < msg_pl->sg.start) {
753 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
754 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
758 i = msg_pl->sg.start;
759 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
762 sk_msg_iter_var_prev(i);
763 sg_mark_end(sk_msg_elem(msg_en, i));
765 i = msg_en->sg.start;
766 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
768 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
769 tls_ctx->tx.rec_seq, record_type, prot);
771 tls_fill_prepend(tls_ctx,
772 page_address(sg_page(&msg_en->sg.data[i])) +
773 msg_en->sg.data[i].offset,
774 msg_pl->sg.size + prot->tail_size,
777 tls_ctx->pending_open_record_frags = false;
779 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
780 msg_pl->sg.size + prot->tail_size, i);
782 if (rc != -EINPROGRESS) {
783 tls_err_abort(sk, -EBADMSG);
785 tls_ctx->pending_open_record_frags = true;
786 tls_merge_open_record(sk, rec, tmp, orig_end);
789 ctx->async_capable = 1;
792 msg_pl = &tmp->msg_plaintext;
793 msg_en = &tmp->msg_encrypted;
794 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
795 tls_ctx->pending_open_record_frags = true;
799 return tls_tx_records(sk, flags);
802 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
803 bool full_record, u8 record_type,
804 ssize_t *copied, int flags)
806 struct tls_context *tls_ctx = tls_get_ctx(sk);
807 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
808 struct sk_msg msg_redir = { };
809 struct sk_psock *psock;
810 struct sock *sk_redir;
812 bool enospc, policy, redir_ingress;
816 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
817 psock = sk_psock_get(sk);
818 if (!psock || !policy) {
819 err = tls_push_record(sk, flags, record_type);
820 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
821 *copied -= sk_msg_free(sk, msg);
822 tls_free_open_rec(sk);
826 sk_psock_put(sk, psock);
830 enospc = sk_msg_full(msg);
831 if (psock->eval == __SK_NONE) {
832 delta = msg->sg.size;
833 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
834 delta -= msg->sg.size;
836 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
837 !enospc && !full_record) {
843 if (msg->apply_bytes && msg->apply_bytes < send)
844 send = msg->apply_bytes;
846 switch (psock->eval) {
848 err = tls_push_record(sk, flags, record_type);
849 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
850 *copied -= sk_msg_free(sk, msg);
851 tls_free_open_rec(sk);
857 redir_ingress = psock->redir_ingress;
858 sk_redir = psock->sk_redir;
859 memcpy(&msg_redir, msg, sizeof(*msg));
860 if (msg->apply_bytes < send)
861 msg->apply_bytes = 0;
863 msg->apply_bytes -= send;
864 sk_msg_return_zero(sk, msg, send);
865 msg->sg.size -= send;
867 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
868 &msg_redir, send, flags);
871 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
874 if (msg->sg.size == 0)
875 tls_free_open_rec(sk);
879 sk_msg_free_partial(sk, msg, send);
880 if (msg->apply_bytes < send)
881 msg->apply_bytes = 0;
883 msg->apply_bytes -= send;
884 if (msg->sg.size == 0)
885 tls_free_open_rec(sk);
886 *copied -= (send + delta);
891 bool reset_eval = !ctx->open_rec;
895 msg = &rec->msg_plaintext;
896 if (!msg->apply_bytes)
900 psock->eval = __SK_NONE;
901 if (psock->sk_redir) {
902 sock_put(psock->sk_redir);
903 psock->sk_redir = NULL;
910 sk_psock_put(sk, psock);
914 static int tls_sw_push_pending_record(struct sock *sk, int flags)
916 struct tls_context *tls_ctx = tls_get_ctx(sk);
917 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
918 struct tls_rec *rec = ctx->open_rec;
919 struct sk_msg *msg_pl;
925 msg_pl = &rec->msg_plaintext;
926 copied = msg_pl->sg.size;
930 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
934 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
935 struct sk_msg *msg_pl, size_t try_to_copy,
938 struct page *page = NULL, **pages = &page;
944 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
945 try_to_copy, 1, 0, &off);
949 if (WARN_ON_ONCE(!sendpage_ok(page))) {
950 iov_iter_revert(&msg->msg_iter, part);
954 sk_msg_page_add(msg_pl, page, part, off);
955 msg_pl->sg.copybreak = 0;
956 msg_pl->sg.curr = msg_pl->sg.end;
957 sk_mem_charge(sk, part);
960 } while (try_to_copy && !sk_msg_full(msg_pl));
965 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
968 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
969 struct tls_context *tls_ctx = tls_get_ctx(sk);
970 struct tls_prot_info *prot = &tls_ctx->prot_info;
971 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
972 bool async_capable = ctx->async_capable;
973 unsigned char record_type = TLS_RECORD_TYPE_DATA;
974 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
975 bool eor = !(msg->msg_flags & MSG_MORE);
978 struct sk_msg *msg_pl, *msg_en;
989 if (!eor && (msg->msg_flags & MSG_EOR))
992 if (unlikely(msg->msg_controllen)) {
993 ret = tls_process_cmsg(sk, msg, &record_type);
995 if (ret == -EINPROGRESS)
997 else if (ret != -EAGAIN)
1002 while (msg_data_left(msg)) {
1009 rec = ctx->open_rec;
1011 rec = ctx->open_rec = tls_get_rec(sk);
1017 msg_pl = &rec->msg_plaintext;
1018 msg_en = &rec->msg_encrypted;
1020 orig_size = msg_pl->sg.size;
1021 full_record = false;
1022 try_to_copy = msg_data_left(msg);
1023 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1024 if (try_to_copy >= record_room) {
1025 try_to_copy = record_room;
1029 required_size = msg_pl->sg.size + try_to_copy +
1030 prot->overhead_size;
1032 if (!sk_stream_memory_free(sk))
1033 goto wait_for_sndbuf;
1036 ret = tls_alloc_encrypted_msg(sk, required_size);
1039 goto wait_for_memory;
1041 /* Adjust try_to_copy according to the amount that was
1042 * actually allocated. The difference is due
1043 * to max sg elements limit
1045 try_to_copy -= required_size - msg_en->sg.size;
1049 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1050 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1051 try_to_copy, &copied);
1054 tls_ctx->pending_open_record_frags = true;
1056 if (sk_msg_full(msg_pl))
1059 if (full_record || eor)
1064 if (!is_kvec && (full_record || eor) && !async_capable) {
1065 u32 first = msg_pl->sg.end;
1067 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1068 msg_pl, try_to_copy);
1070 goto fallback_to_reg_send;
1073 copied += try_to_copy;
1075 sk_msg_sg_copy_set(msg_pl, first);
1076 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1077 record_type, &copied,
1080 if (ret == -EINPROGRESS)
1082 else if (ret == -ENOMEM)
1083 goto wait_for_memory;
1084 else if (ctx->open_rec && ret == -ENOSPC)
1086 else if (ret != -EAGAIN)
1091 copied -= try_to_copy;
1092 sk_msg_sg_copy_clear(msg_pl, first);
1093 iov_iter_revert(&msg->msg_iter,
1094 msg_pl->sg.size - orig_size);
1095 fallback_to_reg_send:
1096 sk_msg_trim(sk, msg_pl, orig_size);
1099 required_size = msg_pl->sg.size + try_to_copy;
1101 ret = tls_clone_plaintext_msg(sk, required_size);
1106 /* Adjust try_to_copy according to the amount that was
1107 * actually allocated. The difference is due
1108 * to max sg elements limit
1110 try_to_copy -= required_size - msg_pl->sg.size;
1112 sk_msg_trim(sk, msg_en,
1113 msg_pl->sg.size + prot->overhead_size);
1117 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1118 msg_pl, try_to_copy);
1123 /* Open records defined only if successfully copied, otherwise
1124 * we would trim the sg but not reset the open record frags.
1126 tls_ctx->pending_open_record_frags = true;
1127 copied += try_to_copy;
1129 if (full_record || eor) {
1130 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1131 record_type, &copied,
1134 if (ret == -EINPROGRESS)
1136 else if (ret == -ENOMEM)
1137 goto wait_for_memory;
1138 else if (ret != -EAGAIN) {
1149 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1151 ret = sk_stream_wait_memory(sk, &timeo);
1155 tls_trim_both_msgs(sk, orig_size);
1159 if (ctx->open_rec && msg_en->sg.size < required_size)
1160 goto alloc_encrypted;
1165 } else if (num_zc) {
1166 /* Wait for pending encryptions to get completed */
1167 spin_lock_bh(&ctx->encrypt_compl_lock);
1168 ctx->async_notify = true;
1170 pending = atomic_read(&ctx->encrypt_pending);
1171 spin_unlock_bh(&ctx->encrypt_compl_lock);
1173 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1175 reinit_completion(&ctx->async_wait.completion);
1177 /* There can be no concurrent accesses, since we have no
1178 * pending encrypt operations
1180 WRITE_ONCE(ctx->async_notify, false);
1182 if (ctx->async_wait.err) {
1183 ret = ctx->async_wait.err;
1188 /* Transmit if any encryptions have completed */
1189 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1190 cancel_delayed_work(&ctx->tx_work.work);
1191 tls_tx_records(sk, msg->msg_flags);
1195 ret = sk_stream_error(sk, msg->msg_flags, ret);
1196 return copied > 0 ? copied : ret;
1199 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1201 struct tls_context *tls_ctx = tls_get_ctx(sk);
1204 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1205 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1206 MSG_SENDPAGE_NOPOLICY))
1209 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1213 ret = tls_sw_sendmsg_locked(sk, msg, size);
1215 mutex_unlock(&tls_ctx->tx_lock);
1220 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1222 void tls_sw_splice_eof(struct socket *sock)
1224 struct sock *sk = sock->sk;
1225 struct tls_context *tls_ctx = tls_get_ctx(sk);
1226 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1227 struct tls_rec *rec;
1228 struct sk_msg *msg_pl;
1230 bool retrying = false;
1237 mutex_lock(&tls_ctx->tx_lock);
1241 /* same checks as in tls_sw_push_pending_record() */
1242 rec = ctx->open_rec;
1246 msg_pl = &rec->msg_plaintext;
1247 if (msg_pl->sg.size == 0)
1250 /* Check the BPF advisor and perform transmission. */
1251 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1266 /* Wait for pending encryptions to get completed */
1267 spin_lock_bh(&ctx->encrypt_compl_lock);
1268 ctx->async_notify = true;
1270 pending = atomic_read(&ctx->encrypt_pending);
1271 spin_unlock_bh(&ctx->encrypt_compl_lock);
1273 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1275 reinit_completion(&ctx->async_wait.completion);
1277 /* There can be no concurrent accesses, since we have no pending
1278 * encrypt operations
1280 WRITE_ONCE(ctx->async_notify, false);
1282 if (ctx->async_wait.err)
1285 /* Transmit if any encryptions have completed */
1286 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1287 cancel_delayed_work(&ctx->tx_work.work);
1288 tls_tx_records(sk, 0);
1293 mutex_unlock(&tls_ctx->tx_lock);
1297 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1300 struct tls_context *tls_ctx = tls_get_ctx(sk);
1301 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1302 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1306 timeo = sock_rcvtimeo(sk, nonblock);
1308 while (!tls_strp_msg_ready(ctx)) {
1309 if (!sk_psock_queue_empty(psock))
1313 return sock_error(sk);
1318 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1319 tls_strp_check_rcv(&ctx->strp);
1320 if (tls_strp_msg_ready(ctx))
1324 if (sk->sk_shutdown & RCV_SHUTDOWN)
1327 if (sock_flag(sk, SOCK_DONE))
1334 add_wait_queue(sk_sleep(sk), &wait);
1335 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1336 ret = sk_wait_event(sk, &timeo,
1337 tls_strp_msg_ready(ctx) ||
1338 !sk_psock_queue_empty(psock),
1340 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1341 remove_wait_queue(sk_sleep(sk), &wait);
1343 /* Handle signals */
1344 if (signal_pending(current))
1345 return sock_intr_errno(timeo);
1348 tls_strp_msg_load(&ctx->strp, released);
1353 static int tls_setup_from_iter(struct iov_iter *from,
1354 int length, int *pages_used,
1355 struct scatterlist *to,
1358 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1359 struct page *pages[MAX_SKB_FRAGS];
1360 unsigned int size = 0;
1361 ssize_t copied, use;
1364 while (length > 0) {
1366 maxpages = to_max_pages - num_elem;
1367 if (maxpages == 0) {
1371 copied = iov_iter_get_pages2(from, pages,
1382 use = min_t(int, copied, PAGE_SIZE - offset);
1384 sg_set_page(&to[num_elem],
1385 pages[i], use, offset);
1386 sg_unmark_end(&to[num_elem]);
1387 /* We do not uncharge memory from this API */
1396 /* Mark the end in the last sg entry if newly added */
1397 if (num_elem > *pages_used)
1398 sg_mark_end(&to[num_elem - 1]);
1401 iov_iter_revert(from, size);
1402 *pages_used = num_elem;
1407 static struct sk_buff *
1408 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1409 unsigned int full_len)
1411 struct strp_msg *clr_rxm;
1412 struct sk_buff *clr_skb;
1415 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1416 &err, sk->sk_allocation);
1420 skb_copy_header(clr_skb, skb);
1421 clr_skb->len = full_len;
1422 clr_skb->data_len = full_len;
1424 clr_rxm = strp_msg(clr_skb);
1425 clr_rxm->offset = 0;
1432 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1433 * They must transform the darg in/out argument are as follows:
1435 * -------------------------------------------------------------------
1436 * zc | Zero-copy decrypt allowed | Zero-copy performed
1437 * async | Async decrypt allowed | Async crypto used / in progress
1438 * skb | * | Output skb
1440 * If ZC decryption was performed darg.skb will point to the input skb.
1443 /* This function decrypts the input skb into either out_iov or in out_sg
1444 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1445 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1446 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1447 * NULL, then the decryption happens inside skb buffers itself, i.e.
1448 * zero-copy gets disabled and 'darg->zc' is updated.
1450 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1451 struct scatterlist *out_sg,
1452 struct tls_decrypt_arg *darg)
1454 struct tls_context *tls_ctx = tls_get_ctx(sk);
1455 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1456 struct tls_prot_info *prot = &tls_ctx->prot_info;
1457 int n_sgin, n_sgout, aead_size, err, pages = 0;
1458 struct sk_buff *skb = tls_strp_msg(ctx);
1459 const struct strp_msg *rxm = strp_msg(skb);
1460 const struct tls_msg *tlm = tls_msg(skb);
1461 struct aead_request *aead_req;
1462 struct scatterlist *sgin = NULL;
1463 struct scatterlist *sgout = NULL;
1464 const int data_len = rxm->full_len - prot->overhead_size;
1465 int tail_pages = !!prot->tail_size;
1466 struct tls_decrypt_ctx *dctx;
1467 struct sk_buff *clear_skb;
1471 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1472 rxm->full_len - prot->prepend_size);
1474 return n_sgin ?: -EBADMSG;
1476 if (darg->zc && (out_iov || out_sg)) {
1480 n_sgout = 1 + tail_pages +
1481 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1483 n_sgout = sg_nents(out_sg);
1487 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1491 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1494 /* Increment to accommodate AAD */
1495 n_sgin = n_sgin + 1;
1497 /* Allocate a single block of memory which contains
1498 * aead_req || tls_decrypt_ctx.
1499 * Both structs are variable length.
1501 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1502 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1503 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1510 /* Segment the allocated memory */
1511 aead_req = (struct aead_request *)mem;
1512 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1514 sgin = &dctx->sg[0];
1515 sgout = &dctx->sg[n_sgin];
1517 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1518 switch (prot->cipher_type) {
1519 case TLS_CIPHER_AES_CCM_128:
1520 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1523 case TLS_CIPHER_SM4_CCM:
1524 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1530 if (prot->version == TLS_1_3_VERSION ||
1531 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1532 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1533 prot->iv_size + prot->salt_size);
1535 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1536 &dctx->iv[iv_offset] + prot->salt_size,
1540 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1542 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1545 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1547 tls_ctx->rx.rec_seq, tlm->control, prot);
1550 sg_init_table(sgin, n_sgin);
1551 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1552 err = skb_to_sgvec(skb, &sgin[1],
1553 rxm->offset + prot->prepend_size,
1554 rxm->full_len - prot->prepend_size);
1559 sg_init_table(sgout, n_sgout);
1560 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1562 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1563 data_len + prot->tail_size);
1566 } else if (out_iov) {
1567 sg_init_table(sgout, n_sgout);
1568 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1570 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1571 (n_sgout - 1 - tail_pages));
1573 goto exit_free_pages;
1575 if (prot->tail_size) {
1576 sg_unmark_end(&sgout[pages]);
1577 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1579 sg_mark_end(&sgout[pages + 1]);
1581 } else if (out_sg) {
1582 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1585 /* Prepare and submit AEAD request */
1586 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1587 data_len + prot->tail_size, aead_req, darg);
1589 goto exit_free_pages;
1591 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1594 if (unlikely(darg->async)) {
1595 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1597 __skb_queue_tail(&ctx->async_hold, darg->skb);
1601 if (prot->tail_size)
1602 darg->tail = dctx->tail;
1605 /* Release the pages in case iov was mapped to pages */
1606 for (; pages > 0; pages--)
1607 put_page(sg_page(&sgout[pages]));
1611 consume_skb(clear_skb);
1616 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1617 struct msghdr *msg, struct tls_decrypt_arg *darg)
1619 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1620 struct tls_prot_info *prot = &tls_ctx->prot_info;
1621 struct strp_msg *rxm;
1624 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1626 if (err == -EBADMSG)
1627 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1630 /* keep going even for ->async, the code below is TLS 1.3 */
1632 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1633 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1634 darg->tail != TLS_RECORD_TYPE_DATA)) {
1637 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1638 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1639 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1642 pad = tls_padding_length(prot, darg->skb, darg);
1644 if (darg->skb != tls_strp_msg(ctx))
1645 consume_skb(darg->skb);
1649 rxm = strp_msg(darg->skb);
1650 rxm->full_len -= pad;
1656 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1657 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1659 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1660 struct tls_prot_info *prot = &tls_ctx->prot_info;
1661 struct strp_msg *rxm;
1664 if (tls_ctx->rx_conf != TLS_HW)
1667 err = tls_device_decrypted(sk, tls_ctx);
1671 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1675 darg->async = false;
1676 darg->skb = tls_strp_msg(ctx);
1677 /* ->zc downgrade check, in case TLS 1.3 gets here */
1678 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1679 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1681 rxm = strp_msg(darg->skb);
1682 rxm->full_len -= pad;
1685 /* Non-ZC case needs a real skb */
1686 darg->skb = tls_strp_msg_detach(ctx);
1690 unsigned int off, len;
1692 /* In ZC case nobody cares about the output skb.
1693 * Just copy the data here. Note the skb is not fully trimmed.
1695 off = rxm->offset + prot->prepend_size;
1696 len = rxm->full_len - prot->overhead_size;
1698 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1705 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1706 struct tls_decrypt_arg *darg)
1708 struct tls_context *tls_ctx = tls_get_ctx(sk);
1709 struct tls_prot_info *prot = &tls_ctx->prot_info;
1710 struct strp_msg *rxm;
1713 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1715 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1719 rxm = strp_msg(darg->skb);
1720 rxm->offset += prot->prepend_size;
1721 rxm->full_len -= prot->overhead_size;
1722 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1727 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1729 struct tls_decrypt_arg darg = { .zc = true, };
1731 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1734 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1740 *control = tlm->control;
1744 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1745 sizeof(*control), control);
1746 if (*control != TLS_RECORD_TYPE_DATA) {
1747 if (err || msg->msg_flags & MSG_CTRUNC)
1750 } else if (*control != tlm->control) {
1757 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1759 tls_strp_msg_done(&ctx->strp);
1762 /* This function traverses the rx_list in tls receive context to copies the
1763 * decrypted records into the buffer provided by caller zero copy is not
1764 * true. Further, the records are removed from the rx_list if it is not a peek
1765 * case and the record has been consumed completely.
1767 static int process_rx_list(struct tls_sw_context_rx *ctx,
1774 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1775 struct tls_msg *tlm;
1779 while (skip && skb) {
1780 struct strp_msg *rxm = strp_msg(skb);
1783 err = tls_record_content_type(msg, tlm, control);
1787 if (skip < rxm->full_len)
1790 skip = skip - rxm->full_len;
1791 skb = skb_peek_next(skb, &ctx->rx_list);
1794 while (len && skb) {
1795 struct sk_buff *next_skb;
1796 struct strp_msg *rxm = strp_msg(skb);
1797 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1801 err = tls_record_content_type(msg, tlm, control);
1805 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1811 copied = copied + chunk;
1813 /* Consume the data from record if it is non-peek case*/
1815 rxm->offset = rxm->offset + chunk;
1816 rxm->full_len = rxm->full_len - chunk;
1818 /* Return if there is unconsumed data in the record */
1819 if (rxm->full_len - skip)
1823 /* The remaining skip-bytes must lie in 1st record in rx_list.
1824 * So from the 2nd record, 'skip' should be 0.
1829 msg->msg_flags |= MSG_EOR;
1831 next_skb = skb_peek_next(skb, &ctx->rx_list);
1834 __skb_unlink(skb, &ctx->rx_list);
1843 return copied ? : err;
1847 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1848 size_t len_left, size_t decrypted, ssize_t done,
1853 if (len_left <= decrypted)
1856 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1857 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1861 return sk_flush_backlog(sk);
1864 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1870 timeo = sock_rcvtimeo(sk, nonblock);
1872 while (unlikely(ctx->reader_present)) {
1873 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1875 ctx->reader_contended = 1;
1877 add_wait_queue(&ctx->wq, &wait);
1878 ret = sk_wait_event(sk, &timeo,
1879 !READ_ONCE(ctx->reader_present), &wait);
1880 remove_wait_queue(&ctx->wq, &wait);
1884 if (signal_pending(current))
1885 return sock_intr_errno(timeo);
1890 WRITE_ONCE(ctx->reader_present, 1);
1895 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1901 err = tls_rx_reader_acquire(sk, ctx, nonblock);
1907 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1909 if (unlikely(ctx->reader_contended)) {
1910 if (wq_has_sleeper(&ctx->wq))
1913 ctx->reader_contended = 0;
1915 WARN_ON_ONCE(!ctx->reader_present);
1918 WRITE_ONCE(ctx->reader_present, 0);
1921 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1923 tls_rx_reader_release(sk, ctx);
1927 int tls_sw_recvmsg(struct sock *sk,
1933 struct tls_context *tls_ctx = tls_get_ctx(sk);
1934 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1935 struct tls_prot_info *prot = &tls_ctx->prot_info;
1936 ssize_t decrypted = 0, async_copy_bytes = 0;
1937 struct sk_psock *psock;
1938 unsigned char control = 0;
1939 size_t flushed_at = 0;
1940 struct strp_msg *rxm;
1941 struct tls_msg *tlm;
1945 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1946 bool is_peek = flags & MSG_PEEK;
1947 bool released = true;
1948 bool bpf_strp_enabled;
1951 if (unlikely(flags & MSG_ERRQUEUE))
1952 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1954 psock = sk_psock_get(sk);
1955 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1958 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1960 /* If crypto failed the connection is broken */
1961 err = ctx->async_wait.err;
1965 /* Process pending decrypted records. It must be non-zero-copy */
1966 err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1974 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1977 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1980 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1981 struct tls_decrypt_arg darg;
1982 int to_decrypt, chunk;
1984 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1988 chunk = sk_msg_recvmsg(sk, psock, msg, len,
1999 memset(&darg.inargs, 0, sizeof(darg.inargs));
2001 rxm = strp_msg(tls_strp_msg(ctx));
2002 tlm = tls_msg(tls_strp_msg(ctx));
2004 to_decrypt = rxm->full_len - prot->overhead_size;
2006 if (zc_capable && to_decrypt <= len &&
2007 tlm->control == TLS_RECORD_TYPE_DATA)
2010 /* Do not use async mode if record is non-data */
2011 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2012 darg.async = ctx->async_capable;
2016 err = tls_rx_one_record(sk, msg, &darg);
2018 tls_err_abort(sk, -EBADMSG);
2022 async |= darg.async;
2024 /* If the type of records being processed is not known yet,
2025 * set it to record type just dequeued. If it is already known,
2026 * but does not match the record type just dequeued, go to end.
2027 * We always get record type here since for tls1.2, record type
2028 * is known just after record is dequeued from stream parser.
2029 * For tls1.3, we disable async.
2031 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2033 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2034 tls_rx_rec_done(ctx);
2036 __skb_queue_tail(&ctx->rx_list, darg.skb);
2040 /* periodically flush backlog, and feed strparser */
2041 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2045 /* TLS 1.3 may have updated the length by more than overhead */
2046 rxm = strp_msg(darg.skb);
2047 chunk = rxm->full_len;
2048 tls_rx_rec_done(ctx);
2051 bool partially_consumed = chunk > len;
2052 struct sk_buff *skb = darg.skb;
2054 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2057 /* TLS 1.2-only, to_decrypt must be text len */
2058 chunk = min_t(int, to_decrypt, len);
2059 async_copy_bytes += chunk;
2063 __skb_queue_tail(&ctx->rx_list, skb);
2067 if (bpf_strp_enabled) {
2069 err = sk_psock_tls_strp_read(psock, skb);
2070 if (err != __SK_PASS) {
2071 rxm->offset = rxm->offset + rxm->full_len;
2073 if (err == __SK_DROP)
2079 if (partially_consumed)
2082 err = skb_copy_datagram_msg(skb, rxm->offset,
2085 goto put_on_rx_list_err;
2088 goto put_on_rx_list;
2090 if (partially_consumed) {
2091 rxm->offset += chunk;
2092 rxm->full_len -= chunk;
2093 goto put_on_rx_list;
2102 /* Return full control message to userspace before trying
2103 * to parse another message type
2105 msg->msg_flags |= MSG_EOR;
2106 if (control != TLS_RECORD_TYPE_DATA)
2114 /* Wait for all previously submitted records to be decrypted */
2115 spin_lock_bh(&ctx->decrypt_compl_lock);
2116 reinit_completion(&ctx->async_wait.completion);
2117 pending = atomic_read(&ctx->decrypt_pending);
2118 spin_unlock_bh(&ctx->decrypt_compl_lock);
2121 ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2122 __skb_queue_purge(&ctx->async_hold);
2125 if (err >= 0 || err == -EINPROGRESS)
2131 /* Drain records from the rx_list & copy if required */
2132 if (is_peek || is_kvec)
2133 err = process_rx_list(ctx, msg, &control, copied,
2134 decrypted, is_peek);
2136 err = process_rx_list(ctx, msg, &control, 0,
2137 async_copy_bytes, is_peek);
2138 decrypted += max(err, 0);
2141 copied += decrypted;
2144 tls_rx_reader_unlock(sk, ctx);
2146 sk_psock_put(sk, psock);
2147 return copied ? : err;
2150 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2151 struct pipe_inode_info *pipe,
2152 size_t len, unsigned int flags)
2154 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2155 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2156 struct strp_msg *rxm = NULL;
2157 struct sock *sk = sock->sk;
2158 struct tls_msg *tlm;
2159 struct sk_buff *skb;
2164 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2168 if (!skb_queue_empty(&ctx->rx_list)) {
2169 skb = __skb_dequeue(&ctx->rx_list);
2171 struct tls_decrypt_arg darg;
2173 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2176 goto splice_read_end;
2178 memset(&darg.inargs, 0, sizeof(darg.inargs));
2180 err = tls_rx_one_record(sk, NULL, &darg);
2182 tls_err_abort(sk, -EBADMSG);
2183 goto splice_read_end;
2186 tls_rx_rec_done(ctx);
2190 rxm = strp_msg(skb);
2193 /* splice does not support reading control messages */
2194 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2196 goto splice_requeue;
2199 chunk = min_t(unsigned int, rxm->full_len, len);
2200 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2202 goto splice_requeue;
2204 if (chunk < rxm->full_len) {
2206 rxm->full_len -= len;
2207 goto splice_requeue;
2213 tls_rx_reader_unlock(sk, ctx);
2214 return copied ? : err;
2217 __skb_queue_head(&ctx->rx_list, skb);
2218 goto splice_read_end;
2221 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2222 sk_read_actor_t read_actor)
2224 struct tls_context *tls_ctx = tls_get_ctx(sk);
2225 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2226 struct tls_prot_info *prot = &tls_ctx->prot_info;
2227 struct strp_msg *rxm = NULL;
2228 struct sk_buff *skb = NULL;
2229 struct sk_psock *psock;
2230 size_t flushed_at = 0;
2231 bool released = true;
2232 struct tls_msg *tlm;
2237 psock = sk_psock_get(sk);
2239 sk_psock_put(sk, psock);
2242 err = tls_rx_reader_acquire(sk, ctx, true);
2246 /* If crypto failed the connection is broken */
2247 err = ctx->async_wait.err;
2253 if (!skb_queue_empty(&ctx->rx_list)) {
2254 skb = __skb_dequeue(&ctx->rx_list);
2255 rxm = strp_msg(skb);
2258 struct tls_decrypt_arg darg;
2260 err = tls_rx_rec_wait(sk, NULL, true, released);
2264 memset(&darg.inargs, 0, sizeof(darg.inargs));
2266 err = tls_rx_one_record(sk, NULL, &darg);
2268 tls_err_abort(sk, -EBADMSG);
2272 released = tls_read_flush_backlog(sk, prot, INT_MAX,
2276 rxm = strp_msg(skb);
2278 decrypted += rxm->full_len;
2280 tls_rx_rec_done(ctx);
2283 /* read_sock does not support reading control messages */
2284 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2286 goto read_sock_requeue;
2289 used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2293 goto read_sock_requeue;
2296 if (used < rxm->full_len) {
2297 rxm->offset += used;
2298 rxm->full_len -= used;
2300 goto read_sock_requeue;
2309 tls_rx_reader_release(sk, ctx);
2310 return copied ? : err;
2313 __skb_queue_head(&ctx->rx_list, skb);
2317 bool tls_sw_sock_is_readable(struct sock *sk)
2319 struct tls_context *tls_ctx = tls_get_ctx(sk);
2320 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2321 bool ingress_empty = true;
2322 struct sk_psock *psock;
2325 psock = sk_psock(sk);
2327 ingress_empty = list_empty(&psock->ingress_msg);
2330 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2331 !skb_queue_empty(&ctx->rx_list);
2334 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2336 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2337 struct tls_prot_info *prot = &tls_ctx->prot_info;
2338 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2339 size_t cipher_overhead;
2340 size_t data_len = 0;
2343 /* Verify that we have a full TLS header, or wait for more data */
2344 if (strp->stm.offset + prot->prepend_size > skb->len)
2347 /* Sanity-check size of on-stack buffer. */
2348 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2353 /* Linearize header to local buffer */
2354 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2358 strp->mark = header[0];
2360 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2362 cipher_overhead = prot->tag_size;
2363 if (prot->version != TLS_1_3_VERSION &&
2364 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2365 cipher_overhead += prot->iv_size;
2367 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2372 if (data_len < cipher_overhead) {
2377 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2378 if (header[1] != TLS_1_2_VERSION_MINOR ||
2379 header[2] != TLS_1_2_VERSION_MAJOR) {
2384 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2385 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2386 return data_len + TLS_HEADER_SIZE;
2389 tls_err_abort(strp->sk, ret);
2394 void tls_rx_msg_ready(struct tls_strparser *strp)
2396 struct tls_sw_context_rx *ctx;
2398 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2399 ctx->saved_data_ready(strp->sk);
2402 static void tls_data_ready(struct sock *sk)
2404 struct tls_context *tls_ctx = tls_get_ctx(sk);
2405 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2406 struct sk_psock *psock;
2409 trace_sk_data_ready(sk);
2411 alloc_save = sk->sk_allocation;
2412 sk->sk_allocation = GFP_ATOMIC;
2413 tls_strp_data_ready(&ctx->strp);
2414 sk->sk_allocation = alloc_save;
2416 psock = sk_psock_get(sk);
2418 if (!list_empty(&psock->ingress_msg))
2419 ctx->saved_data_ready(sk);
2420 sk_psock_put(sk, psock);
2424 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2426 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2428 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2429 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2430 cancel_delayed_work_sync(&ctx->tx_work.work);
2433 void tls_sw_release_resources_tx(struct sock *sk)
2435 struct tls_context *tls_ctx = tls_get_ctx(sk);
2436 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2437 struct tls_rec *rec, *tmp;
2440 /* Wait for any pending async encryptions to complete */
2441 spin_lock_bh(&ctx->encrypt_compl_lock);
2442 ctx->async_notify = true;
2443 pending = atomic_read(&ctx->encrypt_pending);
2444 spin_unlock_bh(&ctx->encrypt_compl_lock);
2447 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2449 tls_tx_records(sk, -1);
2451 /* Free up un-sent records in tx_list. First, free
2452 * the partially sent record if any at head of tx_list.
2454 if (tls_ctx->partially_sent_record) {
2455 tls_free_partial_record(sk, tls_ctx);
2456 rec = list_first_entry(&ctx->tx_list,
2457 struct tls_rec, list);
2458 list_del(&rec->list);
2459 sk_msg_free(sk, &rec->msg_plaintext);
2463 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2464 list_del(&rec->list);
2465 sk_msg_free(sk, &rec->msg_encrypted);
2466 sk_msg_free(sk, &rec->msg_plaintext);
2470 crypto_free_aead(ctx->aead_send);
2471 tls_free_open_rec(sk);
2474 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2476 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2481 void tls_sw_release_resources_rx(struct sock *sk)
2483 struct tls_context *tls_ctx = tls_get_ctx(sk);
2484 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2486 if (ctx->aead_recv) {
2487 __skb_queue_purge(&ctx->rx_list);
2488 crypto_free_aead(ctx->aead_recv);
2489 tls_strp_stop(&ctx->strp);
2490 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2491 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2494 if (ctx->saved_data_ready) {
2495 write_lock_bh(&sk->sk_callback_lock);
2496 sk->sk_data_ready = ctx->saved_data_ready;
2497 write_unlock_bh(&sk->sk_callback_lock);
2502 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2504 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2506 tls_strp_done(&ctx->strp);
2509 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2511 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2516 void tls_sw_free_resources_rx(struct sock *sk)
2518 struct tls_context *tls_ctx = tls_get_ctx(sk);
2520 tls_sw_release_resources_rx(sk);
2521 tls_sw_free_ctx_rx(tls_ctx);
2524 /* The work handler to transmitt the encrypted records in tx_list */
2525 static void tx_work_handler(struct work_struct *work)
2527 struct delayed_work *delayed_work = to_delayed_work(work);
2528 struct tx_work *tx_work = container_of(delayed_work,
2529 struct tx_work, work);
2530 struct sock *sk = tx_work->sk;
2531 struct tls_context *tls_ctx = tls_get_ctx(sk);
2532 struct tls_sw_context_tx *ctx;
2534 if (unlikely(!tls_ctx))
2537 ctx = tls_sw_ctx_tx(tls_ctx);
2538 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2541 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2544 if (mutex_trylock(&tls_ctx->tx_lock)) {
2546 tls_tx_records(sk, -1);
2548 mutex_unlock(&tls_ctx->tx_lock);
2549 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2550 /* Someone is holding the tx_lock, they will likely run Tx
2551 * and cancel the work on their way out of the lock section.
2552 * Schedule a long delay just in case.
2554 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2558 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2560 struct tls_rec *rec;
2562 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2566 return READ_ONCE(rec->tx_ready);
2569 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2571 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2573 /* Schedule the transmission if tx list is ready */
2574 if (tls_is_tx_ready(tx_ctx) &&
2575 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2576 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2579 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2581 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2583 write_lock_bh(&sk->sk_callback_lock);
2584 rx_ctx->saved_data_ready = sk->sk_data_ready;
2585 sk->sk_data_ready = tls_data_ready;
2586 write_unlock_bh(&sk->sk_callback_lock);
2589 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2591 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2593 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2594 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2597 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2599 struct tls_sw_context_tx *sw_ctx_tx;
2601 if (!ctx->priv_ctx_tx) {
2602 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2606 sw_ctx_tx = ctx->priv_ctx_tx;
2609 crypto_init_wait(&sw_ctx_tx->async_wait);
2610 spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2611 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2612 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2613 sw_ctx_tx->tx_work.sk = sk;
2618 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2620 struct tls_sw_context_rx *sw_ctx_rx;
2622 if (!ctx->priv_ctx_rx) {
2623 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2627 sw_ctx_rx = ctx->priv_ctx_rx;
2630 crypto_init_wait(&sw_ctx_rx->async_wait);
2631 spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2632 init_waitqueue_head(&sw_ctx_rx->wq);
2633 skb_queue_head_init(&sw_ctx_rx->rx_list);
2634 skb_queue_head_init(&sw_ctx_rx->async_hold);
2639 int init_prot_info(struct tls_prot_info *prot,
2640 const struct tls_crypto_info *crypto_info,
2641 const struct tls_cipher_desc *cipher_desc)
2643 u16 nonce_size = cipher_desc->nonce;
2645 if (crypto_info->version == TLS_1_3_VERSION) {
2647 prot->aad_size = TLS_HEADER_SIZE;
2648 prot->tail_size = 1;
2650 prot->aad_size = TLS_AAD_SPACE_SIZE;
2651 prot->tail_size = 0;
2654 /* Sanity-check the sizes for stack allocations. */
2655 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2658 prot->version = crypto_info->version;
2659 prot->cipher_type = crypto_info->cipher_type;
2660 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2661 prot->tag_size = cipher_desc->tag;
2662 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2663 prot->iv_size = cipher_desc->iv;
2664 prot->salt_size = cipher_desc->salt;
2665 prot->rec_seq_size = cipher_desc->rec_seq;
2670 int tls_set_sw_offload(struct sock *sk, int tx)
2672 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2673 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2674 const struct tls_cipher_desc *cipher_desc;
2675 struct tls_crypto_info *crypto_info;
2676 char *iv, *rec_seq, *key, *salt;
2677 struct cipher_context *cctx;
2678 struct tls_prot_info *prot;
2679 struct crypto_aead **aead;
2680 struct tls_context *ctx;
2681 struct crypto_tfm *tfm;
2684 ctx = tls_get_ctx(sk);
2685 prot = &ctx->prot_info;
2688 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2689 if (!ctx->priv_ctx_tx)
2692 sw_ctx_tx = ctx->priv_ctx_tx;
2693 crypto_info = &ctx->crypto_send.info;
2695 aead = &sw_ctx_tx->aead_send;
2697 ctx->priv_ctx_rx = init_ctx_rx(ctx);
2698 if (!ctx->priv_ctx_rx)
2701 sw_ctx_rx = ctx->priv_ctx_rx;
2702 crypto_info = &ctx->crypto_recv.info;
2704 aead = &sw_ctx_rx->aead_recv;
2707 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
2713 rc = init_prot_info(prot, crypto_info, cipher_desc);
2717 iv = crypto_info_iv(crypto_info, cipher_desc);
2718 key = crypto_info_key(crypto_info, cipher_desc);
2719 salt = crypto_info_salt(crypto_info, cipher_desc);
2720 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
2722 memcpy(cctx->iv, salt, cipher_desc->salt);
2723 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2724 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2727 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2728 if (IS_ERR(*aead)) {
2729 rc = PTR_ERR(*aead);
2735 ctx->push_pending_record = tls_sw_push_pending_record;
2737 rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2741 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2746 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2748 tls_update_rx_zc_capable(ctx);
2749 sw_ctx_rx->async_capable =
2750 crypto_info->version != TLS_1_3_VERSION &&
2751 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2753 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2761 crypto_free_aead(*aead);
2765 kfree(ctx->priv_ctx_tx);
2766 ctx->priv_ctx_tx = NULL;
2768 kfree(ctx->priv_ctx_rx);
2769 ctx->priv_ctx_rx = NULL;