1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
60 #include <asm/tlbflush.h>
61 #include <asm/div64.h>
63 #include <linux/swapops.h>
64 #include <linux/balloon_compaction.h>
65 #include <linux/sched/sysctl.h>
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/vmscan.h>
74 /* How many pages shrink_list() should reclaim */
75 unsigned long nr_to_reclaim;
78 * Nodemask of nodes allowed by the caller. If NULL, all nodes
84 * The memory cgroup that hit its limit and as a result is the
85 * primary target of this reclaim invocation.
87 struct mem_cgroup *target_mem_cgroup;
90 * Scan pressure balancing between anon and file LRUs
92 unsigned long anon_cost;
93 unsigned long file_cost;
95 /* Can active folios be deactivated as part of reclaim? */
96 #define DEACTIVATE_ANON 1
97 #define DEACTIVATE_FILE 2
98 unsigned int may_deactivate:2;
99 unsigned int force_deactivate:1;
100 unsigned int skipped_deactivate:1;
102 /* Writepage batching in laptop mode; RECLAIM_WRITE */
103 unsigned int may_writepage:1;
105 /* Can mapped folios be reclaimed? */
106 unsigned int may_unmap:1;
108 /* Can folios be swapped as part of reclaim? */
109 unsigned int may_swap:1;
111 /* Proactive reclaim invoked by userspace through memory.reclaim */
112 unsigned int proactive:1;
115 * Cgroup memory below memory.low is protected as long as we
116 * don't threaten to OOM. If any cgroup is reclaimed at
117 * reduced force or passed over entirely due to its memory.low
118 * setting (memcg_low_skipped), and nothing is reclaimed as a
119 * result, then go back for one more cycle that reclaims the protected
120 * memory (memcg_low_reclaim) to avert OOM.
122 unsigned int memcg_low_reclaim:1;
123 unsigned int memcg_low_skipped:1;
125 unsigned int hibernation_mode:1;
127 /* One of the zones is ready for compaction */
128 unsigned int compaction_ready:1;
130 /* There is easily reclaimable cold cache in the current node */
131 unsigned int cache_trim_mode:1;
133 /* The file folios on the current node are dangerously low */
134 unsigned int file_is_tiny:1;
136 /* Always discard instead of demoting to lower tier memory */
137 unsigned int no_demotion:1;
139 /* Allocation order */
142 /* Scan (total_size >> priority) pages at once */
145 /* The highest zone to isolate folios for reclaim from */
148 /* This context's GFP mask */
151 /* Incremented by the number of inactive pages that were scanned */
152 unsigned long nr_scanned;
154 /* Number of pages freed so far during a call to shrink_zones() */
155 unsigned long nr_reclaimed;
159 unsigned int unqueued_dirty;
160 unsigned int congested;
161 unsigned int writeback;
162 unsigned int immediate;
163 unsigned int file_taken;
167 /* for recording the reclaimed slab by now */
168 struct reclaim_state reclaim_state;
171 #ifdef ARCH_HAS_PREFETCHW
172 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
174 if ((_folio)->lru.prev != _base) { \
175 struct folio *prev; \
177 prev = lru_to_folio(&(_folio->lru)); \
178 prefetchw(&prev->_field); \
182 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
186 * From 0 .. 200. Higher means more swappy.
188 int vm_swappiness = 60;
192 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
193 static bool cgroup_reclaim(struct scan_control *sc)
195 return sc->target_mem_cgroup;
199 * Returns true for reclaim on the root cgroup. This is true for direct
200 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
202 static bool root_reclaim(struct scan_control *sc)
204 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
208 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
209 * @sc: scan_control in question
211 * The normal page dirty throttling mechanism in balance_dirty_pages() is
212 * completely broken with the legacy memcg and direct stalling in
213 * shrink_folio_list() is used for throttling instead, which lacks all the
214 * niceties such as fairness, adaptive pausing, bandwidth proportional
215 * allocation and configurability.
217 * This function tests whether the vmscan currently in progress can assume
218 * that the normal dirty throttling mechanism is operational.
220 static bool writeback_throttling_sane(struct scan_control *sc)
222 if (!cgroup_reclaim(sc))
224 #ifdef CONFIG_CGROUP_WRITEBACK
225 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
231 static bool cgroup_reclaim(struct scan_control *sc)
236 static bool root_reclaim(struct scan_control *sc)
241 static bool writeback_throttling_sane(struct scan_control *sc)
247 static void set_task_reclaim_state(struct task_struct *task,
248 struct reclaim_state *rs)
250 /* Check for an overwrite */
251 WARN_ON_ONCE(rs && task->reclaim_state);
253 /* Check for the nulling of an already-nulled member */
254 WARN_ON_ONCE(!rs && !task->reclaim_state);
256 task->reclaim_state = rs;
260 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
261 * scan_control->nr_reclaimed.
263 static void flush_reclaim_state(struct scan_control *sc)
266 * Currently, reclaim_state->reclaimed includes three types of pages
267 * freed outside of vmscan:
269 * (2) Clean file pages from pruned inodes (on highmem systems).
270 * (3) XFS freed buffer pages.
272 * For all of these cases, we cannot universally link the pages to a
273 * single memcg. For example, a memcg-aware shrinker can free one object
274 * charged to the target memcg, causing an entire page to be freed.
275 * If we count the entire page as reclaimed from the memcg, we end up
276 * overestimating the reclaimed amount (potentially under-reclaiming).
278 * Only count such pages for global reclaim to prevent under-reclaiming
279 * from the target memcg; preventing unnecessary retries during memcg
280 * charging and false positives from proactive reclaim.
282 * For uncommon cases where the freed pages were actually mostly
283 * charged to the target memcg, we end up underestimating the reclaimed
284 * amount. This should be fine. The freed pages will be uncharged
285 * anyway, even if they are not counted here properly, and we will be
286 * able to make forward progress in charging (which is usually in a
289 * We can go one step further, and report the uncharged objcg pages in
290 * memcg reclaim, to make reporting more accurate and reduce
291 * underestimation, but it's probably not worth the complexity for now.
293 if (current->reclaim_state && root_reclaim(sc)) {
294 sc->nr_reclaimed += current->reclaim_state->reclaimed;
295 current->reclaim_state->reclaimed = 0;
299 static bool can_demote(int nid, struct scan_control *sc)
301 if (!numa_demotion_enabled)
303 if (sc && sc->no_demotion)
305 if (next_demotion_node(nid) == NUMA_NO_NODE)
311 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
313 struct scan_control *sc)
317 * For non-memcg reclaim, is there
318 * space in any swap device?
320 if (get_nr_swap_pages() > 0)
323 /* Is the memcg below its swap limit? */
324 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
329 * The page can not be swapped.
331 * Can it be reclaimed from this node via demotion?
333 return can_demote(nid, sc);
337 * This misses isolated folios which are not accounted for to save counters.
338 * As the data only determines if reclaim or compaction continues, it is
339 * not expected that isolated folios will be a dominating factor.
341 unsigned long zone_reclaimable_pages(struct zone *zone)
345 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
346 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
347 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
348 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
349 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
355 * lruvec_lru_size - Returns the number of pages on the given LRU list.
356 * @lruvec: lru vector
358 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
360 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
363 unsigned long size = 0;
366 for (zid = 0; zid <= zone_idx; zid++) {
367 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
369 if (!managed_zone(zone))
372 if (!mem_cgroup_disabled())
373 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
375 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
380 static unsigned long drop_slab_node(int nid)
382 unsigned long freed = 0;
383 struct mem_cgroup *memcg = NULL;
385 memcg = mem_cgroup_iter(NULL, NULL, NULL);
387 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
388 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
401 for_each_online_node(nid) {
402 if (fatal_signal_pending(current))
405 freed += drop_slab_node(nid);
407 } while ((freed >> shift++) > 1);
410 static int reclaimer_offset(void)
412 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
413 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
414 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
415 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
416 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
417 PGSCAN_DIRECT - PGSCAN_KSWAPD);
418 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
419 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
421 if (current_is_kswapd())
423 if (current_is_khugepaged())
424 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
425 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
428 static inline int is_page_cache_freeable(struct folio *folio)
431 * A freeable page cache folio is referenced only by the caller
432 * that isolated the folio, the page cache and optional filesystem
433 * private data at folio->private.
435 return folio_ref_count(folio) - folio_test_private(folio) ==
436 1 + folio_nr_pages(folio);
440 * We detected a synchronous write error writing a folio out. Probably
441 * -ENOSPC. We need to propagate that into the address_space for a subsequent
442 * fsync(), msync() or close().
444 * The tricky part is that after writepage we cannot touch the mapping: nothing
445 * prevents it from being freed up. But we have a ref on the folio and once
446 * that folio is locked, the mapping is pinned.
448 * We're allowed to run sleeping folio_lock() here because we know the caller has
451 static void handle_write_error(struct address_space *mapping,
452 struct folio *folio, int error)
455 if (folio_mapping(folio) == mapping)
456 mapping_set_error(mapping, error);
460 static bool skip_throttle_noprogress(pg_data_t *pgdat)
462 int reclaimable = 0, write_pending = 0;
466 * If kswapd is disabled, reschedule if necessary but do not
467 * throttle as the system is likely near OOM.
469 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
473 * If there are a lot of dirty/writeback folios then do not
474 * throttle as throttling will occur when the folios cycle
475 * towards the end of the LRU if still under writeback.
477 for (i = 0; i < MAX_NR_ZONES; i++) {
478 struct zone *zone = pgdat->node_zones + i;
480 if (!managed_zone(zone))
483 reclaimable += zone_reclaimable_pages(zone);
484 write_pending += zone_page_state_snapshot(zone,
485 NR_ZONE_WRITE_PENDING);
487 if (2 * write_pending <= reclaimable)
493 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
495 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
500 * Do not throttle user workers, kthreads other than kswapd or
501 * workqueues. They may be required for reclaim to make
502 * forward progress (e.g. journalling workqueues or kthreads).
504 if (!current_is_kswapd() &&
505 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
511 * These figures are pulled out of thin air.
512 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
513 * parallel reclaimers which is a short-lived event so the timeout is
514 * short. Failing to make progress or waiting on writeback are
515 * potentially long-lived events so use a longer timeout. This is shaky
516 * logic as a failure to make progress could be due to anything from
517 * writeback to a slow device to excessive referenced folios at the tail
518 * of the inactive LRU.
521 case VMSCAN_THROTTLE_WRITEBACK:
524 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
525 WRITE_ONCE(pgdat->nr_reclaim_start,
526 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
530 case VMSCAN_THROTTLE_CONGESTED:
532 case VMSCAN_THROTTLE_NOPROGRESS:
533 if (skip_throttle_noprogress(pgdat)) {
541 case VMSCAN_THROTTLE_ISOLATED:
550 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
551 ret = schedule_timeout(timeout);
552 finish_wait(wqh, &wait);
554 if (reason == VMSCAN_THROTTLE_WRITEBACK)
555 atomic_dec(&pgdat->nr_writeback_throttled);
557 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
558 jiffies_to_usecs(timeout - ret),
563 * Account for folios written if tasks are throttled waiting on dirty
564 * folios to clean. If enough folios have been cleaned since throttling
565 * started then wakeup the throttled tasks.
567 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
570 unsigned long nr_written;
572 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
575 * This is an inaccurate read as the per-cpu deltas may not
576 * be synchronised. However, given that the system is
577 * writeback throttled, it is not worth taking the penalty
578 * of getting an accurate count. At worst, the throttle
579 * timeout guarantees forward progress.
581 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
582 READ_ONCE(pgdat->nr_reclaim_start);
584 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
585 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
588 /* possible outcome of pageout() */
590 /* failed to write folio out, folio is locked */
592 /* move folio to the active list, folio is locked */
594 /* folio has been sent to the disk successfully, folio is unlocked */
596 /* folio is clean and locked */
601 * pageout is called by shrink_folio_list() for each dirty folio.
602 * Calls ->writepage().
604 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
605 struct swap_iocb **plug)
608 * If the folio is dirty, only perform writeback if that write
609 * will be non-blocking. To prevent this allocation from being
610 * stalled by pagecache activity. But note that there may be
611 * stalls if we need to run get_block(). We could test
612 * PagePrivate for that.
614 * If this process is currently in __generic_file_write_iter() against
615 * this folio's queue, we can perform writeback even if that
618 * If the folio is swapcache, write it back even if that would
619 * block, for some throttling. This happens by accident, because
620 * swap_backing_dev_info is bust: it doesn't reflect the
621 * congestion state of the swapdevs. Easy to fix, if needed.
623 if (!is_page_cache_freeable(folio))
627 * Some data journaling orphaned folios can have
628 * folio->mapping == NULL while being dirty with clean buffers.
630 if (folio_test_private(folio)) {
631 if (try_to_free_buffers(folio)) {
632 folio_clear_dirty(folio);
633 pr_info("%s: orphaned folio\n", __func__);
639 if (mapping->a_ops->writepage == NULL)
640 return PAGE_ACTIVATE;
642 if (folio_clear_dirty_for_io(folio)) {
644 struct writeback_control wbc = {
645 .sync_mode = WB_SYNC_NONE,
646 .nr_to_write = SWAP_CLUSTER_MAX,
648 .range_end = LLONG_MAX,
653 folio_set_reclaim(folio);
654 res = mapping->a_ops->writepage(&folio->page, &wbc);
656 handle_write_error(mapping, folio, res);
657 if (res == AOP_WRITEPAGE_ACTIVATE) {
658 folio_clear_reclaim(folio);
659 return PAGE_ACTIVATE;
662 if (!folio_test_writeback(folio)) {
663 /* synchronous write or broken a_ops? */
664 folio_clear_reclaim(folio);
666 trace_mm_vmscan_write_folio(folio);
667 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
675 * Same as remove_mapping, but if the folio is removed from the mapping, it
676 * gets returned with a refcount of 0.
678 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
679 bool reclaimed, struct mem_cgroup *target_memcg)
684 BUG_ON(!folio_test_locked(folio));
685 BUG_ON(mapping != folio_mapping(folio));
687 if (!folio_test_swapcache(folio))
688 spin_lock(&mapping->host->i_lock);
689 xa_lock_irq(&mapping->i_pages);
691 * The non racy check for a busy folio.
693 * Must be careful with the order of the tests. When someone has
694 * a ref to the folio, it may be possible that they dirty it then
695 * drop the reference. So if the dirty flag is tested before the
696 * refcount here, then the following race may occur:
698 * get_user_pages(&page);
699 * [user mapping goes away]
701 * !folio_test_dirty(folio) [good]
702 * folio_set_dirty(folio);
704 * !refcount(folio) [good, discard it]
706 * [oops, our write_to data is lost]
708 * Reversing the order of the tests ensures such a situation cannot
709 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
710 * load is not satisfied before that of folio->_refcount.
712 * Note that if the dirty flag is always set via folio_mark_dirty,
713 * and thus under the i_pages lock, then this ordering is not required.
715 refcount = 1 + folio_nr_pages(folio);
716 if (!folio_ref_freeze(folio, refcount))
718 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
719 if (unlikely(folio_test_dirty(folio))) {
720 folio_ref_unfreeze(folio, refcount);
724 if (folio_test_swapcache(folio)) {
725 swp_entry_t swap = folio->swap;
727 if (reclaimed && !mapping_exiting(mapping))
728 shadow = workingset_eviction(folio, target_memcg);
729 __delete_from_swap_cache(folio, swap, shadow);
730 mem_cgroup_swapout(folio, swap);
731 xa_unlock_irq(&mapping->i_pages);
732 put_swap_folio(folio, swap);
734 void (*free_folio)(struct folio *);
736 free_folio = mapping->a_ops->free_folio;
738 * Remember a shadow entry for reclaimed file cache in
739 * order to detect refaults, thus thrashing, later on.
741 * But don't store shadows in an address space that is
742 * already exiting. This is not just an optimization,
743 * inode reclaim needs to empty out the radix tree or
744 * the nodes are lost. Don't plant shadows behind its
747 * We also don't store shadows for DAX mappings because the
748 * only page cache folios found in these are zero pages
749 * covering holes, and because we don't want to mix DAX
750 * exceptional entries and shadow exceptional entries in the
751 * same address_space.
753 if (reclaimed && folio_is_file_lru(folio) &&
754 !mapping_exiting(mapping) && !dax_mapping(mapping))
755 shadow = workingset_eviction(folio, target_memcg);
756 __filemap_remove_folio(folio, shadow);
757 xa_unlock_irq(&mapping->i_pages);
758 if (mapping_shrinkable(mapping))
759 inode_add_lru(mapping->host);
760 spin_unlock(&mapping->host->i_lock);
769 xa_unlock_irq(&mapping->i_pages);
770 if (!folio_test_swapcache(folio))
771 spin_unlock(&mapping->host->i_lock);
776 * remove_mapping() - Attempt to remove a folio from its mapping.
777 * @mapping: The address space.
778 * @folio: The folio to remove.
780 * If the folio is dirty, under writeback or if someone else has a ref
781 * on it, removal will fail.
782 * Return: The number of pages removed from the mapping. 0 if the folio
783 * could not be removed.
784 * Context: The caller should have a single refcount on the folio and
787 long remove_mapping(struct address_space *mapping, struct folio *folio)
789 if (__remove_mapping(mapping, folio, false, NULL)) {
791 * Unfreezing the refcount with 1 effectively
792 * drops the pagecache ref for us without requiring another
795 folio_ref_unfreeze(folio, 1);
796 return folio_nr_pages(folio);
802 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
803 * @folio: Folio to be returned to an LRU list.
805 * Add previously isolated @folio to appropriate LRU list.
806 * The folio may still be unevictable for other reasons.
808 * Context: lru_lock must not be held, interrupts must be enabled.
810 void folio_putback_lru(struct folio *folio)
812 folio_add_lru(folio);
813 folio_put(folio); /* drop ref from isolate */
816 enum folio_references {
818 FOLIOREF_RECLAIM_CLEAN,
823 static enum folio_references folio_check_references(struct folio *folio,
824 struct scan_control *sc)
826 int referenced_ptes, referenced_folio;
827 unsigned long vm_flags;
829 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
831 referenced_folio = folio_test_clear_referenced(folio);
834 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
835 * Let the folio, now marked Mlocked, be moved to the unevictable list.
837 if (vm_flags & VM_LOCKED)
838 return FOLIOREF_ACTIVATE;
840 /* rmap lock contention: rotate */
841 if (referenced_ptes == -1)
842 return FOLIOREF_KEEP;
844 if (referenced_ptes) {
846 * All mapped folios start out with page table
847 * references from the instantiating fault, so we need
848 * to look twice if a mapped file/anon folio is used more
851 * Mark it and spare it for another trip around the
852 * inactive list. Another page table reference will
853 * lead to its activation.
855 * Note: the mark is set for activated folios as well
856 * so that recently deactivated but used folios are
859 folio_set_referenced(folio);
861 if (referenced_folio || referenced_ptes > 1)
862 return FOLIOREF_ACTIVATE;
865 * Activate file-backed executable folios after first usage.
867 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
868 return FOLIOREF_ACTIVATE;
870 return FOLIOREF_KEEP;
873 /* Reclaim if clean, defer dirty folios to writeback */
874 if (referenced_folio && folio_is_file_lru(folio))
875 return FOLIOREF_RECLAIM_CLEAN;
877 return FOLIOREF_RECLAIM;
880 /* Check if a folio is dirty or under writeback */
881 static void folio_check_dirty_writeback(struct folio *folio,
882 bool *dirty, bool *writeback)
884 struct address_space *mapping;
887 * Anonymous folios are not handled by flushers and must be written
888 * from reclaim context. Do not stall reclaim based on them.
889 * MADV_FREE anonymous folios are put into inactive file list too.
890 * They could be mistakenly treated as file lru. So further anon
893 if (!folio_is_file_lru(folio) ||
894 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
900 /* By default assume that the folio flags are accurate */
901 *dirty = folio_test_dirty(folio);
902 *writeback = folio_test_writeback(folio);
904 /* Verify dirty/writeback state if the filesystem supports it */
905 if (!folio_test_private(folio))
908 mapping = folio_mapping(folio);
909 if (mapping && mapping->a_ops->is_dirty_writeback)
910 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
913 static struct folio *alloc_demote_folio(struct folio *src,
914 unsigned long private)
917 nodemask_t *allowed_mask;
918 struct migration_target_control *mtc;
920 mtc = (struct migration_target_control *)private;
922 allowed_mask = mtc->nmask;
924 * make sure we allocate from the target node first also trying to
925 * demote or reclaim pages from the target node via kswapd if we are
926 * low on free memory on target node. If we don't do this and if
927 * we have free memory on the slower(lower) memtier, we would start
928 * allocating pages from slower(lower) memory tiers without even forcing
929 * a demotion of cold pages from the target memtier. This can result
930 * in the kernel placing hot pages in slower(lower) memory tiers.
933 mtc->gfp_mask |= __GFP_THISNODE;
934 dst = alloc_migration_target(src, (unsigned long)mtc);
938 mtc->gfp_mask &= ~__GFP_THISNODE;
939 mtc->nmask = allowed_mask;
941 return alloc_migration_target(src, (unsigned long)mtc);
945 * Take folios on @demote_folios and attempt to demote them to another node.
946 * Folios which are not demoted are left on @demote_folios.
948 static unsigned int demote_folio_list(struct list_head *demote_folios,
949 struct pglist_data *pgdat)
951 int target_nid = next_demotion_node(pgdat->node_id);
952 unsigned int nr_succeeded;
953 nodemask_t allowed_mask;
955 struct migration_target_control mtc = {
957 * Allocate from 'node', or fail quickly and quietly.
958 * When this happens, 'page' will likely just be discarded
959 * instead of migrated.
961 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
962 __GFP_NOMEMALLOC | GFP_NOWAIT,
964 .nmask = &allowed_mask
967 if (list_empty(demote_folios))
970 if (target_nid == NUMA_NO_NODE)
973 node_get_allowed_targets(pgdat, &allowed_mask);
975 /* Demotion ignores all cpuset and mempolicy settings */
976 migrate_pages(demote_folios, alloc_demote_folio, NULL,
977 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
980 mod_node_page_state(pgdat, PGDEMOTE_KSWAPD + reclaimer_offset(),
986 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
988 if (gfp_mask & __GFP_FS)
990 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
993 * We can "enter_fs" for swap-cache with only __GFP_IO
994 * providing this isn't SWP_FS_OPS.
995 * ->flags can be updated non-atomicially (scan_swap_map_slots),
996 * but that will never affect SWP_FS_OPS, so the data_race
999 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1003 * shrink_folio_list() returns the number of reclaimed pages
1005 static unsigned int shrink_folio_list(struct list_head *folio_list,
1006 struct pglist_data *pgdat, struct scan_control *sc,
1007 struct reclaim_stat *stat, bool ignore_references)
1009 LIST_HEAD(ret_folios);
1010 LIST_HEAD(free_folios);
1011 LIST_HEAD(demote_folios);
1012 unsigned int nr_reclaimed = 0;
1013 unsigned int pgactivate = 0;
1014 bool do_demote_pass;
1015 struct swap_iocb *plug = NULL;
1017 memset(stat, 0, sizeof(*stat));
1019 do_demote_pass = can_demote(pgdat->node_id, sc);
1022 while (!list_empty(folio_list)) {
1023 struct address_space *mapping;
1024 struct folio *folio;
1025 enum folio_references references = FOLIOREF_RECLAIM;
1026 bool dirty, writeback;
1027 unsigned int nr_pages;
1031 folio = lru_to_folio(folio_list);
1032 list_del(&folio->lru);
1034 if (!folio_trylock(folio))
1037 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1039 nr_pages = folio_nr_pages(folio);
1041 /* Account the number of base pages */
1042 sc->nr_scanned += nr_pages;
1044 if (unlikely(!folio_evictable(folio)))
1045 goto activate_locked;
1047 if (!sc->may_unmap && folio_mapped(folio))
1050 /* folio_update_gen() tried to promote this page? */
1051 if (lru_gen_enabled() && !ignore_references &&
1052 folio_mapped(folio) && folio_test_referenced(folio))
1056 * The number of dirty pages determines if a node is marked
1057 * reclaim_congested. kswapd will stall and start writing
1058 * folios if the tail of the LRU is all dirty unqueued folios.
1060 folio_check_dirty_writeback(folio, &dirty, &writeback);
1061 if (dirty || writeback)
1062 stat->nr_dirty += nr_pages;
1064 if (dirty && !writeback)
1065 stat->nr_unqueued_dirty += nr_pages;
1068 * Treat this folio as congested if folios are cycling
1069 * through the LRU so quickly that the folios marked
1070 * for immediate reclaim are making it to the end of
1071 * the LRU a second time.
1073 if (writeback && folio_test_reclaim(folio))
1074 stat->nr_congested += nr_pages;
1077 * If a folio at the tail of the LRU is under writeback, there
1078 * are three cases to consider.
1080 * 1) If reclaim is encountering an excessive number
1081 * of folios under writeback and this folio has both
1082 * the writeback and reclaim flags set, then it
1083 * indicates that folios are being queued for I/O but
1084 * are being recycled through the LRU before the I/O
1085 * can complete. Waiting on the folio itself risks an
1086 * indefinite stall if it is impossible to writeback
1087 * the folio due to I/O error or disconnected storage
1088 * so instead note that the LRU is being scanned too
1089 * quickly and the caller can stall after the folio
1090 * list has been processed.
1092 * 2) Global or new memcg reclaim encounters a folio that is
1093 * not marked for immediate reclaim, or the caller does not
1094 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1095 * not to fs). In this case mark the folio for immediate
1096 * reclaim and continue scanning.
1098 * Require may_enter_fs() because we would wait on fs, which
1099 * may not have submitted I/O yet. And the loop driver might
1100 * enter reclaim, and deadlock if it waits on a folio for
1101 * which it is needed to do the write (loop masks off
1102 * __GFP_IO|__GFP_FS for this reason); but more thought
1103 * would probably show more reasons.
1105 * 3) Legacy memcg encounters a folio that already has the
1106 * reclaim flag set. memcg does not have any dirty folio
1107 * throttling so we could easily OOM just because too many
1108 * folios are in writeback and there is nothing else to
1109 * reclaim. Wait for the writeback to complete.
1111 * In cases 1) and 2) we activate the folios to get them out of
1112 * the way while we continue scanning for clean folios on the
1113 * inactive list and refilling from the active list. The
1114 * observation here is that waiting for disk writes is more
1115 * expensive than potentially causing reloads down the line.
1116 * Since they're marked for immediate reclaim, they won't put
1117 * memory pressure on the cache working set any longer than it
1118 * takes to write them to disk.
1120 if (folio_test_writeback(folio)) {
1122 if (current_is_kswapd() &&
1123 folio_test_reclaim(folio) &&
1124 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1125 stat->nr_immediate += nr_pages;
1126 goto activate_locked;
1129 } else if (writeback_throttling_sane(sc) ||
1130 !folio_test_reclaim(folio) ||
1131 !may_enter_fs(folio, sc->gfp_mask)) {
1133 * This is slightly racy -
1134 * folio_end_writeback() might have
1135 * just cleared the reclaim flag, then
1136 * setting the reclaim flag here ends up
1137 * interpreted as the readahead flag - but
1138 * that does not matter enough to care.
1139 * What we do want is for this folio to
1140 * have the reclaim flag set next time
1141 * memcg reclaim reaches the tests above,
1142 * so it will then wait for writeback to
1143 * avoid OOM; and it's also appropriate
1144 * in global reclaim.
1146 folio_set_reclaim(folio);
1147 stat->nr_writeback += nr_pages;
1148 goto activate_locked;
1152 folio_unlock(folio);
1153 folio_wait_writeback(folio);
1154 /* then go back and try same folio again */
1155 list_add_tail(&folio->lru, folio_list);
1160 if (!ignore_references)
1161 references = folio_check_references(folio, sc);
1163 switch (references) {
1164 case FOLIOREF_ACTIVATE:
1165 goto activate_locked;
1167 stat->nr_ref_keep += nr_pages;
1169 case FOLIOREF_RECLAIM:
1170 case FOLIOREF_RECLAIM_CLEAN:
1171 ; /* try to reclaim the folio below */
1175 * Before reclaiming the folio, try to relocate
1176 * its contents to another node.
1178 if (do_demote_pass &&
1179 (thp_migration_supported() || !folio_test_large(folio))) {
1180 list_add(&folio->lru, &demote_folios);
1181 folio_unlock(folio);
1186 * Anonymous process memory has backing store?
1187 * Try to allocate it some swap space here.
1188 * Lazyfree folio could be freed directly
1190 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1191 if (!folio_test_swapcache(folio)) {
1192 if (!(sc->gfp_mask & __GFP_IO))
1194 if (folio_maybe_dma_pinned(folio))
1196 if (folio_test_large(folio)) {
1197 /* cannot split folio, skip it */
1198 if (!can_split_folio(folio, NULL))
1199 goto activate_locked;
1201 * Split folios without a PMD map right
1202 * away. Chances are some or all of the
1203 * tail pages can be freed without IO.
1205 if (!folio_entire_mapcount(folio) &&
1206 split_folio_to_list(folio,
1208 goto activate_locked;
1210 if (!add_to_swap(folio)) {
1211 if (!folio_test_large(folio))
1212 goto activate_locked_split;
1213 /* Fallback to swap normal pages */
1214 if (split_folio_to_list(folio,
1216 goto activate_locked;
1217 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1218 count_memcg_folio_events(folio, THP_SWPOUT_FALLBACK, 1);
1219 count_vm_event(THP_SWPOUT_FALLBACK);
1221 if (!add_to_swap(folio))
1222 goto activate_locked_split;
1225 } else if (folio_test_swapbacked(folio) &&
1226 folio_test_large(folio)) {
1227 /* Split shmem folio */
1228 if (split_folio_to_list(folio, folio_list))
1233 * If the folio was split above, the tail pages will make
1234 * their own pass through this function and be accounted
1237 if ((nr_pages > 1) && !folio_test_large(folio)) {
1238 sc->nr_scanned -= (nr_pages - 1);
1243 * The folio is mapped into the page tables of one or more
1244 * processes. Try to unmap it here.
1246 if (folio_mapped(folio)) {
1247 enum ttu_flags flags = TTU_BATCH_FLUSH;
1248 bool was_swapbacked = folio_test_swapbacked(folio);
1250 if (folio_test_pmd_mappable(folio))
1251 flags |= TTU_SPLIT_HUGE_PMD;
1253 try_to_unmap(folio, flags);
1254 if (folio_mapped(folio)) {
1255 stat->nr_unmap_fail += nr_pages;
1256 if (!was_swapbacked &&
1257 folio_test_swapbacked(folio))
1258 stat->nr_lazyfree_fail += nr_pages;
1259 goto activate_locked;
1264 * Folio is unmapped now so it cannot be newly pinned anymore.
1265 * No point in trying to reclaim folio if it is pinned.
1266 * Furthermore we don't want to reclaim underlying fs metadata
1267 * if the folio is pinned and thus potentially modified by the
1268 * pinning process as that may upset the filesystem.
1270 if (folio_maybe_dma_pinned(folio))
1271 goto activate_locked;
1273 mapping = folio_mapping(folio);
1274 if (folio_test_dirty(folio)) {
1276 * Only kswapd can writeback filesystem folios
1277 * to avoid risk of stack overflow. But avoid
1278 * injecting inefficient single-folio I/O into
1279 * flusher writeback as much as possible: only
1280 * write folios when we've encountered many
1281 * dirty folios, and when we've already scanned
1282 * the rest of the LRU for clean folios and see
1283 * the same dirty folios again (with the reclaim
1286 if (folio_is_file_lru(folio) &&
1287 (!current_is_kswapd() ||
1288 !folio_test_reclaim(folio) ||
1289 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1291 * Immediately reclaim when written back.
1292 * Similar in principle to folio_deactivate()
1293 * except we already have the folio isolated
1294 * and know it's dirty
1296 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1298 folio_set_reclaim(folio);
1300 goto activate_locked;
1303 if (references == FOLIOREF_RECLAIM_CLEAN)
1305 if (!may_enter_fs(folio, sc->gfp_mask))
1307 if (!sc->may_writepage)
1311 * Folio is dirty. Flush the TLB if a writable entry
1312 * potentially exists to avoid CPU writes after I/O
1313 * starts and then write it out here.
1315 try_to_unmap_flush_dirty();
1316 switch (pageout(folio, mapping, &plug)) {
1320 goto activate_locked;
1322 stat->nr_pageout += nr_pages;
1324 if (folio_test_writeback(folio))
1326 if (folio_test_dirty(folio))
1330 * A synchronous write - probably a ramdisk. Go
1331 * ahead and try to reclaim the folio.
1333 if (!folio_trylock(folio))
1335 if (folio_test_dirty(folio) ||
1336 folio_test_writeback(folio))
1338 mapping = folio_mapping(folio);
1341 ; /* try to free the folio below */
1346 * If the folio has buffers, try to free the buffer
1347 * mappings associated with this folio. If we succeed
1348 * we try to free the folio as well.
1350 * We do this even if the folio is dirty.
1351 * filemap_release_folio() does not perform I/O, but it
1352 * is possible for a folio to have the dirty flag set,
1353 * but it is actually clean (all its buffers are clean).
1354 * This happens if the buffers were written out directly,
1355 * with submit_bh(). ext3 will do this, as well as
1356 * the blockdev mapping. filemap_release_folio() will
1357 * discover that cleanness and will drop the buffers
1358 * and mark the folio clean - it can be freed.
1360 * Rarely, folios can have buffers and no ->mapping.
1361 * These are the folios which were not successfully
1362 * invalidated in truncate_cleanup_folio(). We try to
1363 * drop those buffers here and if that worked, and the
1364 * folio is no longer mapped into process address space
1365 * (refcount == 1) it can be freed. Otherwise, leave
1366 * the folio on the LRU so it is swappable.
1368 if (folio_needs_release(folio)) {
1369 if (!filemap_release_folio(folio, sc->gfp_mask))
1370 goto activate_locked;
1371 if (!mapping && folio_ref_count(folio) == 1) {
1372 folio_unlock(folio);
1373 if (folio_put_testzero(folio))
1377 * rare race with speculative reference.
1378 * the speculative reference will free
1379 * this folio shortly, so we may
1380 * increment nr_reclaimed here (and
1381 * leave it off the LRU).
1383 nr_reclaimed += nr_pages;
1389 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1390 /* follow __remove_mapping for reference */
1391 if (!folio_ref_freeze(folio, 1))
1394 * The folio has only one reference left, which is
1395 * from the isolation. After the caller puts the
1396 * folio back on the lru and drops the reference, the
1397 * folio will be freed anyway. It doesn't matter
1398 * which lru it goes on. So we don't bother checking
1399 * the dirty flag here.
1401 count_vm_events(PGLAZYFREED, nr_pages);
1402 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1403 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1404 sc->target_mem_cgroup))
1407 folio_unlock(folio);
1410 * Folio may get swapped out as a whole, need to account
1413 nr_reclaimed += nr_pages;
1416 * Is there need to periodically free_folio_list? It would
1417 * appear not as the counts should be low
1419 if (unlikely(folio_test_large(folio)))
1420 destroy_large_folio(folio);
1422 list_add(&folio->lru, &free_folios);
1425 activate_locked_split:
1427 * The tail pages that are failed to add into swap cache
1428 * reach here. Fixup nr_scanned and nr_pages.
1431 sc->nr_scanned -= (nr_pages - 1);
1435 /* Not a candidate for swapping, so reclaim swap space. */
1436 if (folio_test_swapcache(folio) &&
1437 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1438 folio_free_swap(folio);
1439 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1440 if (!folio_test_mlocked(folio)) {
1441 int type = folio_is_file_lru(folio);
1442 folio_set_active(folio);
1443 stat->nr_activate[type] += nr_pages;
1444 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1447 folio_unlock(folio);
1449 list_add(&folio->lru, &ret_folios);
1450 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1451 folio_test_unevictable(folio), folio);
1453 /* 'folio_list' is always empty here */
1455 /* Migrate folios selected for demotion */
1456 nr_reclaimed += demote_folio_list(&demote_folios, pgdat);
1457 /* Folios that could not be demoted are still in @demote_folios */
1458 if (!list_empty(&demote_folios)) {
1459 /* Folios which weren't demoted go back on @folio_list */
1460 list_splice_init(&demote_folios, folio_list);
1463 * goto retry to reclaim the undemoted folios in folio_list if
1466 * Reclaiming directly from top tier nodes is not often desired
1467 * due to it breaking the LRU ordering: in general memory
1468 * should be reclaimed from lower tier nodes and demoted from
1471 * However, disabling reclaim from top tier nodes entirely
1472 * would cause ooms in edge scenarios where lower tier memory
1473 * is unreclaimable for whatever reason, eg memory being
1474 * mlocked or too hot to reclaim. We can disable reclaim
1475 * from top tier nodes in proactive reclaim though as that is
1476 * not real memory pressure.
1478 if (!sc->proactive) {
1479 do_demote_pass = false;
1484 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1486 mem_cgroup_uncharge_list(&free_folios);
1487 try_to_unmap_flush();
1488 free_unref_page_list(&free_folios);
1490 list_splice(&ret_folios, folio_list);
1491 count_vm_events(PGACTIVATE, pgactivate);
1494 swap_write_unplug(plug);
1495 return nr_reclaimed;
1498 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1499 struct list_head *folio_list)
1501 struct scan_control sc = {
1502 .gfp_mask = GFP_KERNEL,
1505 struct reclaim_stat stat;
1506 unsigned int nr_reclaimed;
1507 struct folio *folio, *next;
1508 LIST_HEAD(clean_folios);
1509 unsigned int noreclaim_flag;
1511 list_for_each_entry_safe(folio, next, folio_list, lru) {
1512 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1513 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1514 !folio_test_unevictable(folio)) {
1515 folio_clear_active(folio);
1516 list_move(&folio->lru, &clean_folios);
1521 * We should be safe here since we are only dealing with file pages and
1522 * we are not kswapd and therefore cannot write dirty file pages. But
1523 * call memalloc_noreclaim_save() anyway, just in case these conditions
1524 * change in the future.
1526 noreclaim_flag = memalloc_noreclaim_save();
1527 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1529 memalloc_noreclaim_restore(noreclaim_flag);
1531 list_splice(&clean_folios, folio_list);
1532 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1533 -(long)nr_reclaimed);
1535 * Since lazyfree pages are isolated from file LRU from the beginning,
1536 * they will rotate back to anonymous LRU in the end if it failed to
1537 * discard so isolated count will be mismatched.
1538 * Compensate the isolated count for both LRU lists.
1540 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1541 stat.nr_lazyfree_fail);
1542 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1543 -(long)stat.nr_lazyfree_fail);
1544 return nr_reclaimed;
1548 * Update LRU sizes after isolating pages. The LRU size updates must
1549 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1551 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1552 enum lru_list lru, unsigned long *nr_zone_taken)
1556 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1557 if (!nr_zone_taken[zid])
1560 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1567 * It is waste of effort to scan and reclaim CMA pages if it is not available
1568 * for current allocation context. Kswapd can not be enrolled as it can not
1569 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1571 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1573 return !current_is_kswapd() &&
1574 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1575 folio_migratetype(folio) == MIGRATE_CMA;
1578 static bool skip_cma(struct folio *folio, struct scan_control *sc)
1585 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1587 * lruvec->lru_lock is heavily contended. Some of the functions that
1588 * shrink the lists perform better by taking out a batch of pages
1589 * and working on them outside the LRU lock.
1591 * For pagecache intensive workloads, this function is the hottest
1592 * spot in the kernel (apart from copy_*_user functions).
1594 * Lru_lock must be held before calling this function.
1596 * @nr_to_scan: The number of eligible pages to look through on the list.
1597 * @lruvec: The LRU vector to pull pages from.
1598 * @dst: The temp list to put pages on to.
1599 * @nr_scanned: The number of pages that were scanned.
1600 * @sc: The scan_control struct for this reclaim session
1601 * @lru: LRU list id for isolating
1603 * returns how many pages were moved onto *@dst.
1605 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1606 struct lruvec *lruvec, struct list_head *dst,
1607 unsigned long *nr_scanned, struct scan_control *sc,
1610 struct list_head *src = &lruvec->lists[lru];
1611 unsigned long nr_taken = 0;
1612 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1613 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1614 unsigned long skipped = 0;
1615 unsigned long scan, total_scan, nr_pages;
1616 LIST_HEAD(folios_skipped);
1620 while (scan < nr_to_scan && !list_empty(src)) {
1621 struct list_head *move_to = src;
1622 struct folio *folio;
1624 folio = lru_to_folio(src);
1625 prefetchw_prev_lru_folio(folio, src, flags);
1627 nr_pages = folio_nr_pages(folio);
1628 total_scan += nr_pages;
1630 if (folio_zonenum(folio) > sc->reclaim_idx ||
1631 skip_cma(folio, sc)) {
1632 nr_skipped[folio_zonenum(folio)] += nr_pages;
1633 move_to = &folios_skipped;
1638 * Do not count skipped folios because that makes the function
1639 * return with no isolated folios if the LRU mostly contains
1640 * ineligible folios. This causes the VM to not reclaim any
1641 * folios, triggering a premature OOM.
1642 * Account all pages in a folio.
1646 if (!folio_test_lru(folio))
1648 if (!sc->may_unmap && folio_mapped(folio))
1652 * Be careful not to clear the lru flag until after we're
1653 * sure the folio is not being freed elsewhere -- the
1654 * folio release code relies on it.
1656 if (unlikely(!folio_try_get(folio)))
1659 if (!folio_test_clear_lru(folio)) {
1660 /* Another thread is already isolating this folio */
1665 nr_taken += nr_pages;
1666 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1669 list_move(&folio->lru, move_to);
1673 * Splice any skipped folios to the start of the LRU list. Note that
1674 * this disrupts the LRU order when reclaiming for lower zones but
1675 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1676 * scanning would soon rescan the same folios to skip and waste lots
1679 if (!list_empty(&folios_skipped)) {
1682 list_splice(&folios_skipped, src);
1683 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1684 if (!nr_skipped[zid])
1687 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1688 skipped += nr_skipped[zid];
1691 *nr_scanned = total_scan;
1692 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1693 total_scan, skipped, nr_taken, lru);
1694 update_lru_sizes(lruvec, lru, nr_zone_taken);
1699 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1700 * @folio: Folio to isolate from its LRU list.
1702 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1703 * corresponding to whatever LRU list the folio was on.
1705 * The folio will have its LRU flag cleared. If it was found on the
1706 * active list, it will have the Active flag set. If it was found on the
1707 * unevictable list, it will have the Unevictable flag set. These flags
1708 * may need to be cleared by the caller before letting the page go.
1712 * (1) Must be called with an elevated refcount on the folio. This is a
1713 * fundamental difference from isolate_lru_folios() (which is called
1714 * without a stable reference).
1715 * (2) The lru_lock must not be held.
1716 * (3) Interrupts must be enabled.
1718 * Return: true if the folio was removed from an LRU list.
1719 * false if the folio was not on an LRU list.
1721 bool folio_isolate_lru(struct folio *folio)
1725 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1727 if (folio_test_clear_lru(folio)) {
1728 struct lruvec *lruvec;
1731 lruvec = folio_lruvec_lock_irq(folio);
1732 lruvec_del_folio(lruvec, folio);
1733 unlock_page_lruvec_irq(lruvec);
1741 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1742 * then get rescheduled. When there are massive number of tasks doing page
1743 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1744 * the LRU list will go small and be scanned faster than necessary, leading to
1745 * unnecessary swapping, thrashing and OOM.
1747 static int too_many_isolated(struct pglist_data *pgdat, int file,
1748 struct scan_control *sc)
1750 unsigned long inactive, isolated;
1753 if (current_is_kswapd())
1756 if (!writeback_throttling_sane(sc))
1760 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1761 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1763 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1764 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1768 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1769 * won't get blocked by normal direct-reclaimers, forming a circular
1772 if (gfp_has_io_fs(sc->gfp_mask))
1775 too_many = isolated > inactive;
1777 /* Wake up tasks throttled due to too_many_isolated. */
1779 wake_throttle_isolated(pgdat);
1785 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1786 * On return, @list is reused as a list of folios to be freed by the caller.
1788 * Returns the number of pages moved to the given lruvec.
1790 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1791 struct list_head *list)
1793 int nr_pages, nr_moved = 0;
1794 LIST_HEAD(folios_to_free);
1796 while (!list_empty(list)) {
1797 struct folio *folio = lru_to_folio(list);
1799 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1800 list_del(&folio->lru);
1801 if (unlikely(!folio_evictable(folio))) {
1802 spin_unlock_irq(&lruvec->lru_lock);
1803 folio_putback_lru(folio);
1804 spin_lock_irq(&lruvec->lru_lock);
1809 * The folio_set_lru needs to be kept here for list integrity.
1811 * #0 move_folios_to_lru #1 release_pages
1812 * if (!folio_put_testzero())
1813 * if (folio_put_testzero())
1814 * !lru //skip lru_lock
1816 * list_add(&folio->lru,)
1817 * list_add(&folio->lru,)
1819 folio_set_lru(folio);
1821 if (unlikely(folio_put_testzero(folio))) {
1822 __folio_clear_lru_flags(folio);
1824 if (unlikely(folio_test_large(folio))) {
1825 spin_unlock_irq(&lruvec->lru_lock);
1826 destroy_large_folio(folio);
1827 spin_lock_irq(&lruvec->lru_lock);
1829 list_add(&folio->lru, &folios_to_free);
1835 * All pages were isolated from the same lruvec (and isolation
1836 * inhibits memcg migration).
1838 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1839 lruvec_add_folio(lruvec, folio);
1840 nr_pages = folio_nr_pages(folio);
1841 nr_moved += nr_pages;
1842 if (folio_test_active(folio))
1843 workingset_age_nonresident(lruvec, nr_pages);
1847 * To save our caller's stack, now use input list for pages to free.
1849 list_splice(&folios_to_free, list);
1855 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1856 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1857 * we should not throttle. Otherwise it is safe to do so.
1859 static int current_may_throttle(void)
1861 return !(current->flags & PF_LOCAL_THROTTLE);
1865 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1866 * of reclaimed pages
1868 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1869 struct lruvec *lruvec, struct scan_control *sc,
1872 LIST_HEAD(folio_list);
1873 unsigned long nr_scanned;
1874 unsigned int nr_reclaimed = 0;
1875 unsigned long nr_taken;
1876 struct reclaim_stat stat;
1877 bool file = is_file_lru(lru);
1878 enum vm_event_item item;
1879 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1880 bool stalled = false;
1882 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1886 /* wait a bit for the reclaimer. */
1888 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1890 /* We are about to die and free our memory. Return now. */
1891 if (fatal_signal_pending(current))
1892 return SWAP_CLUSTER_MAX;
1897 spin_lock_irq(&lruvec->lru_lock);
1899 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1900 &nr_scanned, sc, lru);
1902 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1903 item = PGSCAN_KSWAPD + reclaimer_offset();
1904 if (!cgroup_reclaim(sc))
1905 __count_vm_events(item, nr_scanned);
1906 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1907 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1909 spin_unlock_irq(&lruvec->lru_lock);
1914 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1916 spin_lock_irq(&lruvec->lru_lock);
1917 move_folios_to_lru(lruvec, &folio_list);
1919 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1920 item = PGSTEAL_KSWAPD + reclaimer_offset();
1921 if (!cgroup_reclaim(sc))
1922 __count_vm_events(item, nr_reclaimed);
1923 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1924 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1925 spin_unlock_irq(&lruvec->lru_lock);
1927 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1928 mem_cgroup_uncharge_list(&folio_list);
1929 free_unref_page_list(&folio_list);
1932 * If dirty folios are scanned that are not queued for IO, it
1933 * implies that flushers are not doing their job. This can
1934 * happen when memory pressure pushes dirty folios to the end of
1935 * the LRU before the dirty limits are breached and the dirty
1936 * data has expired. It can also happen when the proportion of
1937 * dirty folios grows not through writes but through memory
1938 * pressure reclaiming all the clean cache. And in some cases,
1939 * the flushers simply cannot keep up with the allocation
1940 * rate. Nudge the flusher threads in case they are asleep.
1942 if (stat.nr_unqueued_dirty == nr_taken) {
1943 wakeup_flusher_threads(WB_REASON_VMSCAN);
1945 * For cgroupv1 dirty throttling is achieved by waking up
1946 * the kernel flusher here and later waiting on folios
1947 * which are in writeback to finish (see shrink_folio_list()).
1949 * Flusher may not be able to issue writeback quickly
1950 * enough for cgroupv1 writeback throttling to work
1951 * on a large system.
1953 if (!writeback_throttling_sane(sc))
1954 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
1957 sc->nr.dirty += stat.nr_dirty;
1958 sc->nr.congested += stat.nr_congested;
1959 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1960 sc->nr.writeback += stat.nr_writeback;
1961 sc->nr.immediate += stat.nr_immediate;
1962 sc->nr.taken += nr_taken;
1964 sc->nr.file_taken += nr_taken;
1966 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1967 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
1968 return nr_reclaimed;
1972 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
1974 * We move them the other way if the folio is referenced by one or more
1977 * If the folios are mostly unmapped, the processing is fast and it is
1978 * appropriate to hold lru_lock across the whole operation. But if
1979 * the folios are mapped, the processing is slow (folio_referenced()), so
1980 * we should drop lru_lock around each folio. It's impossible to balance
1981 * this, so instead we remove the folios from the LRU while processing them.
1982 * It is safe to rely on the active flag against the non-LRU folios in here
1983 * because nobody will play with that bit on a non-LRU folio.
1985 * The downside is that we have to touch folio->_refcount against each folio.
1986 * But we had to alter folio->flags anyway.
1988 static void shrink_active_list(unsigned long nr_to_scan,
1989 struct lruvec *lruvec,
1990 struct scan_control *sc,
1993 unsigned long nr_taken;
1994 unsigned long nr_scanned;
1995 unsigned long vm_flags;
1996 LIST_HEAD(l_hold); /* The folios which were snipped off */
1997 LIST_HEAD(l_active);
1998 LIST_HEAD(l_inactive);
1999 unsigned nr_deactivate, nr_activate;
2000 unsigned nr_rotated = 0;
2001 int file = is_file_lru(lru);
2002 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2006 spin_lock_irq(&lruvec->lru_lock);
2008 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2009 &nr_scanned, sc, lru);
2011 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2013 if (!cgroup_reclaim(sc))
2014 __count_vm_events(PGREFILL, nr_scanned);
2015 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2017 spin_unlock_irq(&lruvec->lru_lock);
2019 while (!list_empty(&l_hold)) {
2020 struct folio *folio;
2023 folio = lru_to_folio(&l_hold);
2024 list_del(&folio->lru);
2026 if (unlikely(!folio_evictable(folio))) {
2027 folio_putback_lru(folio);
2031 if (unlikely(buffer_heads_over_limit)) {
2032 if (folio_needs_release(folio) &&
2033 folio_trylock(folio)) {
2034 filemap_release_folio(folio, 0);
2035 folio_unlock(folio);
2039 /* Referenced or rmap lock contention: rotate */
2040 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2043 * Identify referenced, file-backed active folios and
2044 * give them one more trip around the active list. So
2045 * that executable code get better chances to stay in
2046 * memory under moderate memory pressure. Anon folios
2047 * are not likely to be evicted by use-once streaming
2048 * IO, plus JVM can create lots of anon VM_EXEC folios,
2049 * so we ignore them here.
2051 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2052 nr_rotated += folio_nr_pages(folio);
2053 list_add(&folio->lru, &l_active);
2058 folio_clear_active(folio); /* we are de-activating */
2059 folio_set_workingset(folio);
2060 list_add(&folio->lru, &l_inactive);
2064 * Move folios back to the lru list.
2066 spin_lock_irq(&lruvec->lru_lock);
2068 nr_activate = move_folios_to_lru(lruvec, &l_active);
2069 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2070 /* Keep all free folios in l_active list */
2071 list_splice(&l_inactive, &l_active);
2073 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2074 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2076 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2077 spin_unlock_irq(&lruvec->lru_lock);
2080 lru_note_cost(lruvec, file, 0, nr_rotated);
2081 mem_cgroup_uncharge_list(&l_active);
2082 free_unref_page_list(&l_active);
2083 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2084 nr_deactivate, nr_rotated, sc->priority, file);
2087 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2088 struct pglist_data *pgdat)
2090 struct reclaim_stat dummy_stat;
2091 unsigned int nr_reclaimed;
2092 struct folio *folio;
2093 struct scan_control sc = {
2094 .gfp_mask = GFP_KERNEL,
2101 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &dummy_stat, false);
2102 while (!list_empty(folio_list)) {
2103 folio = lru_to_folio(folio_list);
2104 list_del(&folio->lru);
2105 folio_putback_lru(folio);
2108 return nr_reclaimed;
2111 unsigned long reclaim_pages(struct list_head *folio_list)
2114 unsigned int nr_reclaimed = 0;
2115 LIST_HEAD(node_folio_list);
2116 unsigned int noreclaim_flag;
2118 if (list_empty(folio_list))
2119 return nr_reclaimed;
2121 noreclaim_flag = memalloc_noreclaim_save();
2123 nid = folio_nid(lru_to_folio(folio_list));
2125 struct folio *folio = lru_to_folio(folio_list);
2127 if (nid == folio_nid(folio)) {
2128 folio_clear_active(folio);
2129 list_move(&folio->lru, &node_folio_list);
2133 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2134 nid = folio_nid(lru_to_folio(folio_list));
2135 } while (!list_empty(folio_list));
2137 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2139 memalloc_noreclaim_restore(noreclaim_flag);
2141 return nr_reclaimed;
2144 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2145 struct lruvec *lruvec, struct scan_control *sc)
2147 if (is_active_lru(lru)) {
2148 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2149 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2151 sc->skipped_deactivate = 1;
2155 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2159 * The inactive anon list should be small enough that the VM never has
2160 * to do too much work.
2162 * The inactive file list should be small enough to leave most memory
2163 * to the established workingset on the scan-resistant active list,
2164 * but large enough to avoid thrashing the aggregate readahead window.
2166 * Both inactive lists should also be large enough that each inactive
2167 * folio has a chance to be referenced again before it is reclaimed.
2169 * If that fails and refaulting is observed, the inactive list grows.
2171 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2172 * on this LRU, maintained by the pageout code. An inactive_ratio
2173 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2176 * memory ratio inactive
2177 * -------------------------------------
2186 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2188 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2189 unsigned long inactive, active;
2190 unsigned long inactive_ratio;
2193 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2194 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2196 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2198 inactive_ratio = int_sqrt(10 * gb);
2202 return inactive * inactive_ratio < active;
2212 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2215 struct lruvec *target_lruvec;
2217 if (lru_gen_enabled())
2220 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2223 * Flush the memory cgroup stats, so that we read accurate per-memcg
2224 * lruvec stats for heuristics.
2226 mem_cgroup_flush_stats(sc->target_mem_cgroup);
2229 * Determine the scan balance between anon and file LRUs.
2231 spin_lock_irq(&target_lruvec->lru_lock);
2232 sc->anon_cost = target_lruvec->anon_cost;
2233 sc->file_cost = target_lruvec->file_cost;
2234 spin_unlock_irq(&target_lruvec->lru_lock);
2237 * Target desirable inactive:active list ratios for the anon
2238 * and file LRU lists.
2240 if (!sc->force_deactivate) {
2241 unsigned long refaults;
2244 * When refaults are being observed, it means a new
2245 * workingset is being established. Deactivate to get
2246 * rid of any stale active pages quickly.
2248 refaults = lruvec_page_state(target_lruvec,
2249 WORKINGSET_ACTIVATE_ANON);
2250 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2251 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2252 sc->may_deactivate |= DEACTIVATE_ANON;
2254 sc->may_deactivate &= ~DEACTIVATE_ANON;
2256 refaults = lruvec_page_state(target_lruvec,
2257 WORKINGSET_ACTIVATE_FILE);
2258 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2259 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2260 sc->may_deactivate |= DEACTIVATE_FILE;
2262 sc->may_deactivate &= ~DEACTIVATE_FILE;
2264 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2267 * If we have plenty of inactive file pages that aren't
2268 * thrashing, try to reclaim those first before touching
2271 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2272 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2273 sc->cache_trim_mode = 1;
2275 sc->cache_trim_mode = 0;
2278 * Prevent the reclaimer from falling into the cache trap: as
2279 * cache pages start out inactive, every cache fault will tip
2280 * the scan balance towards the file LRU. And as the file LRU
2281 * shrinks, so does the window for rotation from references.
2282 * This means we have a runaway feedback loop where a tiny
2283 * thrashing file LRU becomes infinitely more attractive than
2284 * anon pages. Try to detect this based on file LRU size.
2286 if (!cgroup_reclaim(sc)) {
2287 unsigned long total_high_wmark = 0;
2288 unsigned long free, anon;
2291 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2292 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2293 node_page_state(pgdat, NR_INACTIVE_FILE);
2295 for (z = 0; z < MAX_NR_ZONES; z++) {
2296 struct zone *zone = &pgdat->node_zones[z];
2298 if (!managed_zone(zone))
2301 total_high_wmark += high_wmark_pages(zone);
2305 * Consider anon: if that's low too, this isn't a
2306 * runaway file reclaim problem, but rather just
2307 * extreme pressure. Reclaim as per usual then.
2309 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2312 file + free <= total_high_wmark &&
2313 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2314 anon >> sc->priority;
2319 * Determine how aggressively the anon and file LRU lists should be
2322 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2323 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2325 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2328 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2329 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2330 unsigned long anon_cost, file_cost, total_cost;
2331 int swappiness = mem_cgroup_swappiness(memcg);
2332 u64 fraction[ANON_AND_FILE];
2333 u64 denominator = 0; /* gcc */
2334 enum scan_balance scan_balance;
2335 unsigned long ap, fp;
2338 /* If we have no swap space, do not bother scanning anon folios. */
2339 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2340 scan_balance = SCAN_FILE;
2345 * Global reclaim will swap to prevent OOM even with no
2346 * swappiness, but memcg users want to use this knob to
2347 * disable swapping for individual groups completely when
2348 * using the memory controller's swap limit feature would be
2351 if (cgroup_reclaim(sc) && !swappiness) {
2352 scan_balance = SCAN_FILE;
2357 * Do not apply any pressure balancing cleverness when the
2358 * system is close to OOM, scan both anon and file equally
2359 * (unless the swappiness setting disagrees with swapping).
2361 if (!sc->priority && swappiness) {
2362 scan_balance = SCAN_EQUAL;
2367 * If the system is almost out of file pages, force-scan anon.
2369 if (sc->file_is_tiny) {
2370 scan_balance = SCAN_ANON;
2375 * If there is enough inactive page cache, we do not reclaim
2376 * anything from the anonymous working right now.
2378 if (sc->cache_trim_mode) {
2379 scan_balance = SCAN_FILE;
2383 scan_balance = SCAN_FRACT;
2385 * Calculate the pressure balance between anon and file pages.
2387 * The amount of pressure we put on each LRU is inversely
2388 * proportional to the cost of reclaiming each list, as
2389 * determined by the share of pages that are refaulting, times
2390 * the relative IO cost of bringing back a swapped out
2391 * anonymous page vs reloading a filesystem page (swappiness).
2393 * Although we limit that influence to ensure no list gets
2394 * left behind completely: at least a third of the pressure is
2395 * applied, before swappiness.
2397 * With swappiness at 100, anon and file have equal IO cost.
2399 total_cost = sc->anon_cost + sc->file_cost;
2400 anon_cost = total_cost + sc->anon_cost;
2401 file_cost = total_cost + sc->file_cost;
2402 total_cost = anon_cost + file_cost;
2404 ap = swappiness * (total_cost + 1);
2405 ap /= anon_cost + 1;
2407 fp = (200 - swappiness) * (total_cost + 1);
2408 fp /= file_cost + 1;
2412 denominator = ap + fp;
2414 for_each_evictable_lru(lru) {
2415 int file = is_file_lru(lru);
2416 unsigned long lruvec_size;
2417 unsigned long low, min;
2420 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2421 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2426 * Scale a cgroup's reclaim pressure by proportioning
2427 * its current usage to its memory.low or memory.min
2430 * This is important, as otherwise scanning aggression
2431 * becomes extremely binary -- from nothing as we
2432 * approach the memory protection threshold, to totally
2433 * nominal as we exceed it. This results in requiring
2434 * setting extremely liberal protection thresholds. It
2435 * also means we simply get no protection at all if we
2436 * set it too low, which is not ideal.
2438 * If there is any protection in place, we reduce scan
2439 * pressure by how much of the total memory used is
2440 * within protection thresholds.
2442 * There is one special case: in the first reclaim pass,
2443 * we skip over all groups that are within their low
2444 * protection. If that fails to reclaim enough pages to
2445 * satisfy the reclaim goal, we come back and override
2446 * the best-effort low protection. However, we still
2447 * ideally want to honor how well-behaved groups are in
2448 * that case instead of simply punishing them all
2449 * equally. As such, we reclaim them based on how much
2450 * memory they are using, reducing the scan pressure
2451 * again by how much of the total memory used is under
2454 unsigned long cgroup_size = mem_cgroup_size(memcg);
2455 unsigned long protection;
2457 /* memory.low scaling, make sure we retry before OOM */
2458 if (!sc->memcg_low_reclaim && low > min) {
2460 sc->memcg_low_skipped = 1;
2465 /* Avoid TOCTOU with earlier protection check */
2466 cgroup_size = max(cgroup_size, protection);
2468 scan = lruvec_size - lruvec_size * protection /
2472 * Minimally target SWAP_CLUSTER_MAX pages to keep
2473 * reclaim moving forwards, avoiding decrementing
2474 * sc->priority further than desirable.
2476 scan = max(scan, SWAP_CLUSTER_MAX);
2481 scan >>= sc->priority;
2484 * If the cgroup's already been deleted, make sure to
2485 * scrape out the remaining cache.
2487 if (!scan && !mem_cgroup_online(memcg))
2488 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2490 switch (scan_balance) {
2492 /* Scan lists relative to size */
2496 * Scan types proportional to swappiness and
2497 * their relative recent reclaim efficiency.
2498 * Make sure we don't miss the last page on
2499 * the offlined memory cgroups because of a
2502 scan = mem_cgroup_online(memcg) ?
2503 div64_u64(scan * fraction[file], denominator) :
2504 DIV64_U64_ROUND_UP(scan * fraction[file],
2509 /* Scan one type exclusively */
2510 if ((scan_balance == SCAN_FILE) != file)
2514 /* Look ma, no brain */
2523 * Anonymous LRU management is a waste if there is
2524 * ultimately no way to reclaim the memory.
2526 static bool can_age_anon_pages(struct pglist_data *pgdat,
2527 struct scan_control *sc)
2529 /* Aging the anon LRU is valuable if swap is present: */
2530 if (total_swap_pages > 0)
2533 /* Also valuable if anon pages can be demoted: */
2534 return can_demote(pgdat->node_id, sc);
2537 #ifdef CONFIG_LRU_GEN
2539 #ifdef CONFIG_LRU_GEN_ENABLED
2540 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2541 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2543 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2544 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2547 static bool should_walk_mmu(void)
2549 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2552 static bool should_clear_pmd_young(void)
2554 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2557 /******************************************************************************
2559 ******************************************************************************/
2561 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
2563 #define DEFINE_MAX_SEQ(lruvec) \
2564 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2566 #define DEFINE_MIN_SEQ(lruvec) \
2567 unsigned long min_seq[ANON_AND_FILE] = { \
2568 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2569 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2572 #define for_each_gen_type_zone(gen, type, zone) \
2573 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2574 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2575 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2577 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2578 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2580 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2582 struct pglist_data *pgdat = NODE_DATA(nid);
2586 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2588 /* see the comment in mem_cgroup_lruvec() */
2590 lruvec->pgdat = pgdat;
2595 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2597 return &pgdat->__lruvec;
2600 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2602 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2603 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2608 if (!can_demote(pgdat->node_id, sc) &&
2609 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2612 return mem_cgroup_swappiness(memcg);
2615 static int get_nr_gens(struct lruvec *lruvec, int type)
2617 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2620 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2622 /* see the comment on lru_gen_folio */
2623 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2624 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2625 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2628 /******************************************************************************
2630 ******************************************************************************/
2633 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2634 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2635 * bits in a bitmap, k is the number of hash functions and n is the number of
2638 * Page table walkers use one of the two filters to reduce their search space.
2639 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2640 * aging uses the double-buffering technique to flip to the other filter each
2641 * time it produces a new generation. For non-leaf entries that have enough
2642 * leaf entries, the aging carries them over to the next generation in
2643 * walk_pmd_range(); the eviction also report them when walking the rmap
2644 * in lru_gen_look_around().
2646 * For future optimizations:
2647 * 1. It's not necessary to keep both filters all the time. The spare one can be
2648 * freed after the RCU grace period and reallocated if needed again.
2649 * 2. And when reallocating, it's worth scaling its size according to the number
2650 * of inserted entries in the other filter, to reduce the memory overhead on
2651 * small systems and false positives on large systems.
2652 * 3. Jenkins' hash function is an alternative to Knuth's.
2654 #define BLOOM_FILTER_SHIFT 15
2656 static inline int filter_gen_from_seq(unsigned long seq)
2658 return seq % NR_BLOOM_FILTERS;
2661 static void get_item_key(void *item, int *key)
2663 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2665 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2667 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2668 key[1] = hash >> BLOOM_FILTER_SHIFT;
2671 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2675 unsigned long *filter;
2676 int gen = filter_gen_from_seq(seq);
2678 filter = READ_ONCE(mm_state->filters[gen]);
2682 get_item_key(item, key);
2684 return test_bit(key[0], filter) && test_bit(key[1], filter);
2687 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2691 unsigned long *filter;
2692 int gen = filter_gen_from_seq(seq);
2694 filter = READ_ONCE(mm_state->filters[gen]);
2698 get_item_key(item, key);
2700 if (!test_bit(key[0], filter))
2701 set_bit(key[0], filter);
2702 if (!test_bit(key[1], filter))
2703 set_bit(key[1], filter);
2706 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2708 unsigned long *filter;
2709 int gen = filter_gen_from_seq(seq);
2711 filter = mm_state->filters[gen];
2713 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2717 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2718 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2719 WRITE_ONCE(mm_state->filters[gen], filter);
2722 /******************************************************************************
2724 ******************************************************************************/
2726 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2728 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2730 static struct lru_gen_mm_list mm_list = {
2731 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2732 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2737 return &memcg->mm_list;
2739 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2744 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2746 return &lruvec->mm_state;
2749 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2752 struct mm_struct *mm;
2753 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2754 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2756 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2757 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2759 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2762 clear_bit(key, &mm->lru_gen.bitmap);
2764 return mmget_not_zero(mm) ? mm : NULL;
2767 void lru_gen_add_mm(struct mm_struct *mm)
2770 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2771 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2773 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2775 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2776 mm->lru_gen.memcg = memcg;
2778 spin_lock(&mm_list->lock);
2780 for_each_node_state(nid, N_MEMORY) {
2781 struct lruvec *lruvec = get_lruvec(memcg, nid);
2782 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2784 /* the first addition since the last iteration */
2785 if (mm_state->tail == &mm_list->fifo)
2786 mm_state->tail = &mm->lru_gen.list;
2789 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2791 spin_unlock(&mm_list->lock);
2794 void lru_gen_del_mm(struct mm_struct *mm)
2797 struct lru_gen_mm_list *mm_list;
2798 struct mem_cgroup *memcg = NULL;
2800 if (list_empty(&mm->lru_gen.list))
2804 memcg = mm->lru_gen.memcg;
2806 mm_list = get_mm_list(memcg);
2808 spin_lock(&mm_list->lock);
2810 for_each_node(nid) {
2811 struct lruvec *lruvec = get_lruvec(memcg, nid);
2812 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2814 /* where the current iteration continues after */
2815 if (mm_state->head == &mm->lru_gen.list)
2816 mm_state->head = mm_state->head->prev;
2818 /* where the last iteration ended before */
2819 if (mm_state->tail == &mm->lru_gen.list)
2820 mm_state->tail = mm_state->tail->next;
2823 list_del_init(&mm->lru_gen.list);
2825 spin_unlock(&mm_list->lock);
2828 mem_cgroup_put(mm->lru_gen.memcg);
2829 mm->lru_gen.memcg = NULL;
2834 void lru_gen_migrate_mm(struct mm_struct *mm)
2836 struct mem_cgroup *memcg;
2837 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2839 VM_WARN_ON_ONCE(task->mm != mm);
2840 lockdep_assert_held(&task->alloc_lock);
2842 /* for mm_update_next_owner() */
2843 if (mem_cgroup_disabled())
2846 /* migration can happen before addition */
2847 if (!mm->lru_gen.memcg)
2851 memcg = mem_cgroup_from_task(task);
2853 if (memcg == mm->lru_gen.memcg)
2856 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2863 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2865 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2870 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2875 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2882 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
2886 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2888 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2891 hist = lru_hist_from_seq(walk->max_seq);
2893 for (i = 0; i < NR_MM_STATS; i++) {
2894 WRITE_ONCE(mm_state->stats[hist][i],
2895 mm_state->stats[hist][i] + walk->mm_stats[i]);
2896 walk->mm_stats[i] = 0;
2900 if (NR_HIST_GENS > 1 && last) {
2901 hist = lru_hist_from_seq(mm_state->seq + 1);
2903 for (i = 0; i < NR_MM_STATS; i++)
2904 WRITE_ONCE(mm_state->stats[hist][i], 0);
2908 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
2909 struct mm_struct **iter)
2913 struct mm_struct *mm = NULL;
2914 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2915 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2916 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2919 * mm_state->seq is incremented after each iteration of mm_list. There
2920 * are three interesting cases for this page table walker:
2921 * 1. It tries to start a new iteration with a stale max_seq: there is
2922 * nothing left to do.
2923 * 2. It started the next iteration: it needs to reset the Bloom filter
2924 * so that a fresh set of PTE tables can be recorded.
2925 * 3. It ended the current iteration: it needs to reset the mm stats
2926 * counters and tell its caller to increment max_seq.
2928 spin_lock(&mm_list->lock);
2930 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
2932 if (walk->max_seq <= mm_state->seq)
2935 if (!mm_state->head)
2936 mm_state->head = &mm_list->fifo;
2938 if (mm_state->head == &mm_list->fifo)
2942 mm_state->head = mm_state->head->next;
2943 if (mm_state->head == &mm_list->fifo) {
2944 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2949 /* force scan for those added after the last iteration */
2950 if (!mm_state->tail || mm_state->tail == mm_state->head) {
2951 mm_state->tail = mm_state->head->next;
2952 walk->force_scan = true;
2954 } while (!(mm = get_next_mm(walk)));
2957 reset_mm_stats(lruvec, walk, last);
2959 spin_unlock(&mm_list->lock);
2962 reset_bloom_filter(mm_state, walk->max_seq + 1);
2972 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
2974 bool success = false;
2975 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2976 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2977 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2979 spin_lock(&mm_list->lock);
2981 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
2983 if (max_seq > mm_state->seq) {
2984 mm_state->head = NULL;
2985 mm_state->tail = NULL;
2986 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2987 reset_mm_stats(lruvec, NULL, true);
2991 spin_unlock(&mm_list->lock);
2996 /******************************************************************************
2998 ******************************************************************************/
3001 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3003 * The P term is refaulted/(evicted+protected) from a tier in the generation
3004 * currently being evicted; the I term is the exponential moving average of the
3005 * P term over the generations previously evicted, using the smoothing factor
3006 * 1/2; the D term isn't supported.
3008 * The setpoint (SP) is always the first tier of one type; the process variable
3009 * (PV) is either any tier of the other type or any other tier of the same
3012 * The error is the difference between the SP and the PV; the correction is to
3013 * turn off protection when SP>PV or turn on protection when SP<PV.
3015 * For future optimizations:
3016 * 1. The D term may discount the other two terms over time so that long-lived
3017 * generations can resist stale information.
3020 unsigned long refaulted;
3021 unsigned long total;
3025 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3026 struct ctrl_pos *pos)
3028 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3029 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3031 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3032 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3033 pos->total = lrugen->avg_total[type][tier] +
3034 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3036 pos->total += lrugen->protected[hist][type][tier - 1];
3040 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3043 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3044 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3045 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3047 lockdep_assert_held(&lruvec->lru_lock);
3049 if (!carryover && !clear)
3052 hist = lru_hist_from_seq(seq);
3054 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3058 sum = lrugen->avg_refaulted[type][tier] +
3059 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3060 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3062 sum = lrugen->avg_total[type][tier] +
3063 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3065 sum += lrugen->protected[hist][type][tier - 1];
3066 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3070 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3071 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3073 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3078 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3081 * Return true if the PV has a limited number of refaults or a lower
3082 * refaulted/total than the SP.
3084 return pv->refaulted < MIN_LRU_BATCH ||
3085 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3086 (sp->refaulted + 1) * pv->total * pv->gain;
3089 /******************************************************************************
3091 ******************************************************************************/
3093 /* promote pages accessed through page tables */
3094 static int folio_update_gen(struct folio *folio, int gen)
3096 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3098 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3099 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3102 /* lru_gen_del_folio() has isolated this page? */
3103 if (!(old_flags & LRU_GEN_MASK)) {
3104 /* for shrink_folio_list() */
3105 new_flags = old_flags | BIT(PG_referenced);
3109 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3110 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3111 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3113 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3116 /* protect pages accessed multiple times through file descriptors */
3117 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3119 int type = folio_is_file_lru(folio);
3120 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3121 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3122 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3124 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3127 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3128 /* folio_update_gen() has promoted this page? */
3129 if (new_gen >= 0 && new_gen != old_gen)
3132 new_gen = (old_gen + 1) % MAX_NR_GENS;
3134 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3135 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3136 /* for folio_end_writeback() */
3138 new_flags |= BIT(PG_reclaim);
3139 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3141 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3146 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3147 int old_gen, int new_gen)
3149 int type = folio_is_file_lru(folio);
3150 int zone = folio_zonenum(folio);
3151 int delta = folio_nr_pages(folio);
3153 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3154 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3158 walk->nr_pages[old_gen][type][zone] -= delta;
3159 walk->nr_pages[new_gen][type][zone] += delta;
3162 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3164 int gen, type, zone;
3165 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3169 for_each_gen_type_zone(gen, type, zone) {
3170 enum lru_list lru = type * LRU_INACTIVE_FILE;
3171 int delta = walk->nr_pages[gen][type][zone];
3176 walk->nr_pages[gen][type][zone] = 0;
3177 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3178 lrugen->nr_pages[gen][type][zone] + delta);
3180 if (lru_gen_is_active(lruvec, gen))
3182 __update_lru_size(lruvec, lru, zone, delta);
3186 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3188 struct address_space *mapping;
3189 struct vm_area_struct *vma = args->vma;
3190 struct lru_gen_mm_walk *walk = args->private;
3192 if (!vma_is_accessible(vma))
3195 if (is_vm_hugetlb_page(vma))
3198 if (!vma_has_recency(vma))
3201 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3204 if (vma == get_gate_vma(vma->vm_mm))
3207 if (vma_is_anonymous(vma))
3208 return !walk->can_swap;
3210 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3213 mapping = vma->vm_file->f_mapping;
3214 if (mapping_unevictable(mapping))
3217 if (shmem_mapping(mapping))
3218 return !walk->can_swap;
3220 /* to exclude special mappings like dax, etc. */
3221 return !mapping->a_ops->read_folio;
3225 * Some userspace memory allocators map many single-page VMAs. Instead of
3226 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3227 * table to reduce zigzags and improve cache performance.
3229 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3230 unsigned long *vm_start, unsigned long *vm_end)
3232 unsigned long start = round_up(*vm_end, size);
3233 unsigned long end = (start | ~mask) + 1;
3234 VMA_ITERATOR(vmi, args->mm, start);
3236 VM_WARN_ON_ONCE(mask & size);
3237 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3239 for_each_vma(vmi, args->vma) {
3240 if (end && end <= args->vma->vm_start)
3243 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3246 *vm_start = max(start, args->vma->vm_start);
3247 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3255 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3257 unsigned long pfn = pte_pfn(pte);
3259 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3261 if (!pte_present(pte) || is_zero_pfn(pfn))
3264 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3267 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3273 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3275 unsigned long pfn = pmd_pfn(pmd);
3277 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3279 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3282 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3285 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3291 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3292 struct pglist_data *pgdat, bool can_swap)
3294 struct folio *folio;
3296 /* try to avoid unnecessary memory loads */
3297 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3300 folio = pfn_folio(pfn);
3301 if (folio_nid(folio) != pgdat->node_id)
3304 if (folio_memcg_rcu(folio) != memcg)
3307 /* file VMAs can contain anon pages from COW */
3308 if (!folio_is_file_lru(folio) && !can_swap)
3314 static bool suitable_to_scan(int total, int young)
3316 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3318 /* suitable if the average number of young PTEs per cacheline is >=1 */
3319 return young * n >= total;
3322 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3323 struct mm_walk *args)
3331 struct lru_gen_mm_walk *walk = args->private;
3332 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3333 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3334 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3336 pte = pte_offset_map_nolock(args->mm, pmd, start & PMD_MASK, &ptl);
3339 if (!spin_trylock(ptl)) {
3344 arch_enter_lazy_mmu_mode();
3346 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3348 struct folio *folio;
3349 pte_t ptent = ptep_get(pte + i);
3352 walk->mm_stats[MM_LEAF_TOTAL]++;
3354 pfn = get_pte_pfn(ptent, args->vma, addr);
3358 if (!pte_young(ptent)) {
3359 walk->mm_stats[MM_LEAF_OLD]++;
3363 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3367 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3368 VM_WARN_ON_ONCE(true);
3371 walk->mm_stats[MM_LEAF_YOUNG]++;
3373 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3374 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3375 !folio_test_swapcache(folio)))
3376 folio_mark_dirty(folio);
3378 old_gen = folio_update_gen(folio, new_gen);
3379 if (old_gen >= 0 && old_gen != new_gen)
3380 update_batch_size(walk, folio, old_gen, new_gen);
3383 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3386 arch_leave_lazy_mmu_mode();
3387 pte_unmap_unlock(pte, ptl);
3389 return suitable_to_scan(total, young);
3392 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3393 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3398 struct lru_gen_mm_walk *walk = args->private;
3399 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3400 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3401 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3403 VM_WARN_ON_ONCE(pud_leaf(*pud));
3405 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3408 bitmap_zero(bitmap, MIN_LRU_BATCH);
3412 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3413 if (i && i <= MIN_LRU_BATCH) {
3414 __set_bit(i - 1, bitmap);
3418 pmd = pmd_offset(pud, *first);
3420 ptl = pmd_lockptr(args->mm, pmd);
3421 if (!spin_trylock(ptl))
3424 arch_enter_lazy_mmu_mode();
3428 struct folio *folio;
3430 /* don't round down the first address */
3431 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3433 pfn = get_pmd_pfn(pmd[i], vma, addr);
3437 if (!pmd_trans_huge(pmd[i])) {
3438 if (should_clear_pmd_young())
3439 pmdp_test_and_clear_young(vma, addr, pmd + i);
3443 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3447 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3450 walk->mm_stats[MM_LEAF_YOUNG]++;
3452 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3453 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3454 !folio_test_swapcache(folio)))
3455 folio_mark_dirty(folio);
3457 old_gen = folio_update_gen(folio, new_gen);
3458 if (old_gen >= 0 && old_gen != new_gen)
3459 update_batch_size(walk, folio, old_gen, new_gen);
3461 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3462 } while (i <= MIN_LRU_BATCH);
3464 arch_leave_lazy_mmu_mode();
3470 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3471 struct mm_walk *args)
3477 struct vm_area_struct *vma;
3478 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3479 unsigned long first = -1;
3480 struct lru_gen_mm_walk *walk = args->private;
3481 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3483 VM_WARN_ON_ONCE(pud_leaf(*pud));
3486 * Finish an entire PMD in two passes: the first only reaches to PTE
3487 * tables to avoid taking the PMD lock; the second, if necessary, takes
3488 * the PMD lock to clear the accessed bit in PMD entries.
3490 pmd = pmd_offset(pud, start & PUD_MASK);
3492 /* walk_pte_range() may call get_next_vma() */
3494 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3495 pmd_t val = pmdp_get_lockless(pmd + i);
3497 next = pmd_addr_end(addr, end);
3499 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3500 walk->mm_stats[MM_LEAF_TOTAL]++;
3504 if (pmd_trans_huge(val)) {
3505 unsigned long pfn = pmd_pfn(val);
3506 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3508 walk->mm_stats[MM_LEAF_TOTAL]++;
3510 if (!pmd_young(val)) {
3511 walk->mm_stats[MM_LEAF_OLD]++;
3515 /* try to avoid unnecessary memory loads */
3516 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3519 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3523 walk->mm_stats[MM_NONLEAF_TOTAL]++;
3525 if (should_clear_pmd_young()) {
3526 if (!pmd_young(val))
3529 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3532 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->max_seq, pmd + i))
3535 walk->mm_stats[MM_NONLEAF_FOUND]++;
3537 if (!walk_pte_range(&val, addr, next, args))
3540 walk->mm_stats[MM_NONLEAF_ADDED]++;
3542 /* carry over to the next generation */
3543 update_bloom_filter(mm_state, walk->max_seq + 1, pmd + i);
3546 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3548 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3552 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3553 struct mm_walk *args)
3559 struct lru_gen_mm_walk *walk = args->private;
3561 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3563 pud = pud_offset(p4d, start & P4D_MASK);
3565 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3566 pud_t val = READ_ONCE(pud[i]);
3568 next = pud_addr_end(addr, end);
3570 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3573 walk_pmd_range(&val, addr, next, args);
3575 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3576 end = (addr | ~PUD_MASK) + 1;
3581 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3584 end = round_up(end, P4D_SIZE);
3586 if (!end || !args->vma)
3589 walk->next_addr = max(end, args->vma->vm_start);
3594 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3596 static const struct mm_walk_ops mm_walk_ops = {
3597 .test_walk = should_skip_vma,
3598 .p4d_entry = walk_pud_range,
3599 .walk_lock = PGWALK_RDLOCK,
3603 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3605 walk->next_addr = FIRST_USER_ADDRESS;
3608 DEFINE_MAX_SEQ(lruvec);
3612 /* another thread might have called inc_max_seq() */
3613 if (walk->max_seq != max_seq)
3616 /* folio_update_gen() requires stable folio_memcg() */
3617 if (!mem_cgroup_trylock_pages(memcg))
3620 /* the caller might be holding the lock for write */
3621 if (mmap_read_trylock(mm)) {
3622 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3624 mmap_read_unlock(mm);
3627 mem_cgroup_unlock_pages();
3629 if (walk->batched) {
3630 spin_lock_irq(&lruvec->lru_lock);
3631 reset_batch_size(lruvec, walk);
3632 spin_unlock_irq(&lruvec->lru_lock);
3636 } while (err == -EAGAIN);
3639 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3641 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3643 if (pgdat && current_is_kswapd()) {
3644 VM_WARN_ON_ONCE(walk);
3646 walk = &pgdat->mm_walk;
3647 } else if (!walk && force_alloc) {
3648 VM_WARN_ON_ONCE(current_is_kswapd());
3650 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3653 current->reclaim_state->mm_walk = walk;
3658 static void clear_mm_walk(void)
3660 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3662 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3663 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3665 current->reclaim_state->mm_walk = NULL;
3667 if (!current_is_kswapd())
3671 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3674 int remaining = MAX_LRU_BATCH;
3675 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3676 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3678 if (type == LRU_GEN_ANON && !can_swap)
3681 /* prevent cold/hot inversion if force_scan is true */
3682 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3683 struct list_head *head = &lrugen->folios[old_gen][type][zone];
3685 while (!list_empty(head)) {
3686 struct folio *folio = lru_to_folio(head);
3688 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3689 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3690 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3691 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3693 new_gen = folio_inc_gen(lruvec, folio, false);
3694 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3701 reset_ctrl_pos(lruvec, type, true);
3702 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3707 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3709 int gen, type, zone;
3710 bool success = false;
3711 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3712 DEFINE_MIN_SEQ(lruvec);
3714 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3716 /* find the oldest populated generation */
3717 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3718 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3719 gen = lru_gen_from_seq(min_seq[type]);
3721 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3722 if (!list_empty(&lrugen->folios[gen][type][zone]))
3732 /* see the comment on lru_gen_folio */
3734 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3735 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3738 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3739 if (min_seq[type] == lrugen->min_seq[type])
3742 reset_ctrl_pos(lruvec, type, true);
3743 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3750 static bool inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
3751 bool can_swap, bool force_scan)
3756 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3758 if (max_seq < READ_ONCE(lrugen->max_seq))
3761 spin_lock_irq(&lruvec->lru_lock);
3763 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3765 success = max_seq == lrugen->max_seq;
3769 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3770 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3773 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3775 if (inc_min_seq(lruvec, type, can_swap))
3778 spin_unlock_irq(&lruvec->lru_lock);
3784 * Update the active/inactive LRU sizes for compatibility. Both sides of
3785 * the current max_seq need to be covered, since max_seq+1 can overlap
3786 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3787 * overlap, cold/hot inversion happens.
3789 prev = lru_gen_from_seq(lrugen->max_seq - 1);
3790 next = lru_gen_from_seq(lrugen->max_seq + 1);
3792 for (type = 0; type < ANON_AND_FILE; type++) {
3793 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3794 enum lru_list lru = type * LRU_INACTIVE_FILE;
3795 long delta = lrugen->nr_pages[prev][type][zone] -
3796 lrugen->nr_pages[next][type][zone];
3801 __update_lru_size(lruvec, lru, zone, delta);
3802 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3806 for (type = 0; type < ANON_AND_FILE; type++)
3807 reset_ctrl_pos(lruvec, type, false);
3809 WRITE_ONCE(lrugen->timestamps[next], jiffies);
3810 /* make sure preceding modifications appear */
3811 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3813 spin_unlock_irq(&lruvec->lru_lock);
3818 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
3819 struct scan_control *sc, bool can_swap, bool force_scan)
3822 struct lru_gen_mm_walk *walk;
3823 struct mm_struct *mm = NULL;
3824 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3825 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3827 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
3830 return inc_max_seq(lruvec, max_seq, can_swap, force_scan);
3832 /* see the comment in iterate_mm_list() */
3833 if (max_seq <= READ_ONCE(mm_state->seq))
3837 * If the hardware doesn't automatically set the accessed bit, fallback
3838 * to lru_gen_look_around(), which only clears the accessed bit in a
3839 * handful of PTEs. Spreading the work out over a period of time usually
3840 * is less efficient, but it avoids bursty page faults.
3842 if (!should_walk_mmu()) {
3843 success = iterate_mm_list_nowalk(lruvec, max_seq);
3847 walk = set_mm_walk(NULL, true);
3849 success = iterate_mm_list_nowalk(lruvec, max_seq);
3853 walk->lruvec = lruvec;
3854 walk->max_seq = max_seq;
3855 walk->can_swap = can_swap;
3856 walk->force_scan = force_scan;
3859 success = iterate_mm_list(lruvec, walk, &mm);
3861 walk_mm(lruvec, mm, walk);
3865 success = inc_max_seq(lruvec, max_seq, can_swap, force_scan);
3866 WARN_ON_ONCE(!success);
3872 /******************************************************************************
3873 * working set protection
3874 ******************************************************************************/
3876 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3878 int gen, type, zone;
3879 unsigned long total = 0;
3880 bool can_swap = get_swappiness(lruvec, sc);
3881 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3882 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3883 DEFINE_MAX_SEQ(lruvec);
3884 DEFINE_MIN_SEQ(lruvec);
3886 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3889 for (seq = min_seq[type]; seq <= max_seq; seq++) {
3890 gen = lru_gen_from_seq(seq);
3892 for (zone = 0; zone < MAX_NR_ZONES; zone++)
3893 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3897 /* whether the size is big enough to be helpful */
3898 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3901 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3902 unsigned long min_ttl)
3905 unsigned long birth;
3906 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3907 DEFINE_MIN_SEQ(lruvec);
3909 /* see the comment on lru_gen_folio */
3910 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3911 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3913 if (time_is_after_jiffies(birth + min_ttl))
3916 if (!lruvec_is_sizable(lruvec, sc))
3919 mem_cgroup_calculate_protection(NULL, memcg);
3921 return !mem_cgroup_below_min(NULL, memcg);
3924 /* to protect the working set of the last N jiffies */
3925 static unsigned long lru_gen_min_ttl __read_mostly;
3927 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
3929 struct mem_cgroup *memcg;
3930 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
3932 VM_WARN_ON_ONCE(!current_is_kswapd());
3934 /* check the order to exclude compaction-induced reclaim */
3935 if (!min_ttl || sc->order || sc->priority == DEF_PRIORITY)
3938 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3940 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3942 if (lruvec_is_reclaimable(lruvec, sc, min_ttl)) {
3943 mem_cgroup_iter_break(NULL, memcg);
3948 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
3951 * The main goal is to OOM kill if every generation from all memcgs is
3952 * younger than min_ttl. However, another possibility is all memcgs are
3953 * either too small or below min.
3955 if (mutex_trylock(&oom_lock)) {
3956 struct oom_control oc = {
3957 .gfp_mask = sc->gfp_mask,
3962 mutex_unlock(&oom_lock);
3966 /******************************************************************************
3967 * rmap/PT walk feedback
3968 ******************************************************************************/
3971 * This function exploits spatial locality when shrink_folio_list() walks the
3972 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
3973 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
3974 * the PTE table to the Bloom filter. This forms a feedback loop between the
3975 * eviction and the aging.
3977 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
3980 unsigned long start;
3982 struct lru_gen_mm_walk *walk;
3984 pte_t *pte = pvmw->pte;
3985 unsigned long addr = pvmw->address;
3986 struct vm_area_struct *vma = pvmw->vma;
3987 struct folio *folio = pfn_folio(pvmw->pfn);
3988 bool can_swap = !folio_is_file_lru(folio);
3989 struct mem_cgroup *memcg = folio_memcg(folio);
3990 struct pglist_data *pgdat = folio_pgdat(folio);
3991 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3992 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3993 DEFINE_MAX_SEQ(lruvec);
3994 int old_gen, new_gen = lru_gen_from_seq(max_seq);
3996 lockdep_assert_held(pvmw->ptl);
3997 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
3999 if (spin_is_contended(pvmw->ptl))
4002 /* exclude special VMAs containing anon pages from COW */
4003 if (vma->vm_flags & VM_SPECIAL)
4006 /* avoid taking the LRU lock under the PTL when possible */
4007 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4009 start = max(addr & PMD_MASK, vma->vm_start);
4010 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4012 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4013 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4014 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4015 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4016 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4018 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4019 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4023 /* folio_update_gen() requires stable folio_memcg() */
4024 if (!mem_cgroup_trylock_pages(memcg))
4027 arch_enter_lazy_mmu_mode();
4029 pte -= (addr - start) / PAGE_SIZE;
4031 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4033 pte_t ptent = ptep_get(pte + i);
4035 pfn = get_pte_pfn(ptent, vma, addr);
4039 if (!pte_young(ptent))
4042 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4046 if (!ptep_test_and_clear_young(vma, addr, pte + i))
4047 VM_WARN_ON_ONCE(true);
4051 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4052 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4053 !folio_test_swapcache(folio)))
4054 folio_mark_dirty(folio);
4057 old_gen = folio_update_gen(folio, new_gen);
4058 if (old_gen >= 0 && old_gen != new_gen)
4059 update_batch_size(walk, folio, old_gen, new_gen);
4064 old_gen = folio_lru_gen(folio);
4066 folio_set_referenced(folio);
4067 else if (old_gen != new_gen)
4068 folio_activate(folio);
4071 arch_leave_lazy_mmu_mode();
4072 mem_cgroup_unlock_pages();
4074 /* feedback from rmap walkers to page table walkers */
4075 if (mm_state && suitable_to_scan(i, young))
4076 update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4079 /******************************************************************************
4081 ******************************************************************************/
4083 /* see the comment on MEMCG_NR_GENS */
4092 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4096 unsigned long flags;
4097 int bin = get_random_u32_below(MEMCG_NR_BINS);
4098 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4100 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4102 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4105 new = old = lruvec->lrugen.gen;
4107 /* see the comment on MEMCG_NR_GENS */
4108 if (op == MEMCG_LRU_HEAD)
4109 seg = MEMCG_LRU_HEAD;
4110 else if (op == MEMCG_LRU_TAIL)
4111 seg = MEMCG_LRU_TAIL;
4112 else if (op == MEMCG_LRU_OLD)
4113 new = get_memcg_gen(pgdat->memcg_lru.seq);
4114 else if (op == MEMCG_LRU_YOUNG)
4115 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4117 VM_WARN_ON_ONCE(true);
4119 WRITE_ONCE(lruvec->lrugen.seg, seg);
4120 WRITE_ONCE(lruvec->lrugen.gen, new);
4122 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4124 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4125 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4127 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4129 pgdat->memcg_lru.nr_memcgs[old]--;
4130 pgdat->memcg_lru.nr_memcgs[new]++;
4132 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4133 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4135 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4140 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4144 int bin = get_random_u32_below(MEMCG_NR_BINS);
4146 for_each_node(nid) {
4147 struct pglist_data *pgdat = NODE_DATA(nid);
4148 struct lruvec *lruvec = get_lruvec(memcg, nid);
4150 spin_lock_irq(&pgdat->memcg_lru.lock);
4152 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4154 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4156 lruvec->lrugen.gen = gen;
4158 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4159 pgdat->memcg_lru.nr_memcgs[gen]++;
4161 spin_unlock_irq(&pgdat->memcg_lru.lock);
4165 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4169 for_each_node(nid) {
4170 struct lruvec *lruvec = get_lruvec(memcg, nid);
4172 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4176 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4181 for_each_node(nid) {
4182 struct pglist_data *pgdat = NODE_DATA(nid);
4183 struct lruvec *lruvec = get_lruvec(memcg, nid);
4185 spin_lock_irq(&pgdat->memcg_lru.lock);
4187 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4190 gen = lruvec->lrugen.gen;
4192 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4193 pgdat->memcg_lru.nr_memcgs[gen]--;
4195 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4196 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4198 spin_unlock_irq(&pgdat->memcg_lru.lock);
4202 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4204 struct lruvec *lruvec = get_lruvec(memcg, nid);
4206 /* see the comment on MEMCG_NR_GENS */
4207 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4208 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4211 #endif /* CONFIG_MEMCG */
4213 /******************************************************************************
4215 ******************************************************************************/
4217 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4221 int gen = folio_lru_gen(folio);
4222 int type = folio_is_file_lru(folio);
4223 int zone = folio_zonenum(folio);
4224 int delta = folio_nr_pages(folio);
4225 int refs = folio_lru_refs(folio);
4226 int tier = lru_tier_from_refs(refs);
4227 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4229 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4232 if (!folio_evictable(folio)) {
4233 success = lru_gen_del_folio(lruvec, folio, true);
4234 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4235 folio_set_unevictable(folio);
4236 lruvec_add_folio(lruvec, folio);
4237 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4241 /* dirty lazyfree */
4242 if (type == LRU_GEN_FILE && folio_test_anon(folio) && folio_test_dirty(folio)) {
4243 success = lru_gen_del_folio(lruvec, folio, true);
4244 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4245 folio_set_swapbacked(folio);
4246 lruvec_add_folio_tail(lruvec, folio);
4251 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4252 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4257 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4258 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4260 gen = folio_inc_gen(lruvec, folio, false);
4261 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4263 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4264 lrugen->protected[hist][type][tier - 1] + delta);
4269 if (zone > sc->reclaim_idx || skip_cma(folio, sc)) {
4270 gen = folio_inc_gen(lruvec, folio, false);
4271 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4275 /* waiting for writeback */
4276 if (folio_test_locked(folio) || folio_test_writeback(folio) ||
4277 (type == LRU_GEN_FILE && folio_test_dirty(folio))) {
4278 gen = folio_inc_gen(lruvec, folio, true);
4279 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4286 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4290 /* swapping inhibited */
4291 if (!(sc->gfp_mask & __GFP_IO) &&
4292 (folio_test_dirty(folio) ||
4293 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4296 /* raced with release_pages() */
4297 if (!folio_try_get(folio))
4300 /* raced with another isolation */
4301 if (!folio_test_clear_lru(folio)) {
4306 /* see the comment on MAX_NR_TIERS */
4307 if (!folio_test_referenced(folio))
4308 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4310 /* for shrink_folio_list() */
4311 folio_clear_reclaim(folio);
4312 folio_clear_referenced(folio);
4314 success = lru_gen_del_folio(lruvec, folio, true);
4315 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4320 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4321 int type, int tier, struct list_head *list)
4325 enum vm_event_item item;
4330 int remaining = MAX_LRU_BATCH;
4331 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4332 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4334 VM_WARN_ON_ONCE(!list_empty(list));
4336 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4339 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4341 for (i = MAX_NR_ZONES; i > 0; i--) {
4343 int skipped_zone = 0;
4344 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4345 struct list_head *head = &lrugen->folios[gen][type][zone];
4347 while (!list_empty(head)) {
4348 struct folio *folio = lru_to_folio(head);
4349 int delta = folio_nr_pages(folio);
4351 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4352 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4353 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4354 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4358 if (sort_folio(lruvec, folio, sc, tier))
4360 else if (isolate_folio(lruvec, folio, sc)) {
4361 list_add(&folio->lru, list);
4364 list_move(&folio->lru, &moved);
4365 skipped_zone += delta;
4368 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4373 list_splice(&moved, head);
4374 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4375 skipped += skipped_zone;
4378 if (!remaining || isolated >= MIN_LRU_BATCH)
4382 item = PGSCAN_KSWAPD + reclaimer_offset();
4383 if (!cgroup_reclaim(sc)) {
4384 __count_vm_events(item, isolated);
4385 __count_vm_events(PGREFILL, sorted);
4387 __count_memcg_events(memcg, item, isolated);
4388 __count_memcg_events(memcg, PGREFILL, sorted);
4389 __count_vm_events(PGSCAN_ANON + type, isolated);
4390 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4391 scanned, skipped, isolated,
4392 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4395 * There might not be eligible folios due to reclaim_idx. Check the
4396 * remaining to prevent livelock if it's not making progress.
4398 return isolated || !remaining ? scanned : 0;
4401 static int get_tier_idx(struct lruvec *lruvec, int type)
4404 struct ctrl_pos sp, pv;
4407 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4408 * This value is chosen because any other tier would have at least twice
4409 * as many refaults as the first tier.
4411 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4412 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4413 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4414 if (!positive_ctrl_err(&sp, &pv))
4421 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4424 struct ctrl_pos sp, pv;
4425 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4428 * Compare the first tier of anon with that of file to determine which
4429 * type to scan. Also need to compare other tiers of the selected type
4430 * with the first tier of the other type to determine the last tier (of
4431 * the selected type) to evict.
4433 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4434 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4435 type = positive_ctrl_err(&sp, &pv);
4437 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4438 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4439 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4440 if (!positive_ctrl_err(&sp, &pv))
4444 *tier_idx = tier - 1;
4449 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4450 int *type_scanned, struct list_head *list)
4456 DEFINE_MIN_SEQ(lruvec);
4459 * Try to make the obvious choice first. When anon and file are both
4460 * available from the same generation, interpret swappiness 1 as file
4461 * first and 200 as anon first.
4464 type = LRU_GEN_FILE;
4465 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4466 type = LRU_GEN_ANON;
4467 else if (swappiness == 1)
4468 type = LRU_GEN_FILE;
4469 else if (swappiness == 200)
4470 type = LRU_GEN_ANON;
4472 type = get_type_to_scan(lruvec, swappiness, &tier);
4474 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4476 tier = get_tier_idx(lruvec, type);
4478 scanned = scan_folios(lruvec, sc, type, tier, list);
4486 *type_scanned = type;
4491 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4498 struct folio *folio;
4500 enum vm_event_item item;
4501 struct reclaim_stat stat;
4502 struct lru_gen_mm_walk *walk;
4503 bool skip_retry = false;
4504 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4505 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4507 spin_lock_irq(&lruvec->lru_lock);
4509 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4511 scanned += try_to_inc_min_seq(lruvec, swappiness);
4513 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4516 spin_unlock_irq(&lruvec->lru_lock);
4518 if (list_empty(&list))
4521 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4522 sc->nr_reclaimed += reclaimed;
4523 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4524 scanned, reclaimed, &stat, sc->priority,
4525 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4527 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4528 if (!folio_evictable(folio)) {
4529 list_del(&folio->lru);
4530 folio_putback_lru(folio);
4534 if (folio_test_reclaim(folio) &&
4535 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4536 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4537 if (folio_test_workingset(folio))
4538 folio_set_referenced(folio);
4542 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4543 folio_mapped(folio) || folio_test_locked(folio) ||
4544 folio_test_dirty(folio) || folio_test_writeback(folio)) {
4545 /* don't add rejected folios to the oldest generation */
4546 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4551 /* retry folios that may have missed folio_rotate_reclaimable() */
4552 list_move(&folio->lru, &clean);
4553 sc->nr_scanned -= folio_nr_pages(folio);
4556 spin_lock_irq(&lruvec->lru_lock);
4558 move_folios_to_lru(lruvec, &list);
4560 walk = current->reclaim_state->mm_walk;
4561 if (walk && walk->batched)
4562 reset_batch_size(lruvec, walk);
4564 item = PGSTEAL_KSWAPD + reclaimer_offset();
4565 if (!cgroup_reclaim(sc))
4566 __count_vm_events(item, reclaimed);
4567 __count_memcg_events(memcg, item, reclaimed);
4568 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4570 spin_unlock_irq(&lruvec->lru_lock);
4572 mem_cgroup_uncharge_list(&list);
4573 free_unref_page_list(&list);
4575 INIT_LIST_HEAD(&list);
4576 list_splice_init(&clean, &list);
4578 if (!list_empty(&list)) {
4586 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4587 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
4589 int gen, type, zone;
4590 unsigned long old = 0;
4591 unsigned long young = 0;
4592 unsigned long total = 0;
4593 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4594 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4595 DEFINE_MIN_SEQ(lruvec);
4597 /* whether this lruvec is completely out of cold folios */
4598 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4603 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4606 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4607 unsigned long size = 0;
4609 gen = lru_gen_from_seq(seq);
4611 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4612 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4617 else if (seq + MIN_NR_GENS == max_seq)
4622 /* try to scrape all its memory if this memcg was deleted */
4623 if (!mem_cgroup_online(memcg)) {
4624 *nr_to_scan = total;
4628 *nr_to_scan = total >> sc->priority;
4631 * The aging tries to be lazy to reduce the overhead, while the eviction
4632 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4633 * ideal number of generations is MIN_NR_GENS+1.
4635 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4639 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4640 * of the total number of pages for each generation. A reasonable range
4641 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4642 * aging cares about the upper bound of hot pages, while the eviction
4643 * cares about the lower bound of cold pages.
4645 if (young * MIN_NR_GENS > total)
4647 if (old * (MIN_NR_GENS + 2) < total)
4654 * For future optimizations:
4655 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4658 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4660 unsigned long nr_to_scan;
4661 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4662 DEFINE_MAX_SEQ(lruvec);
4664 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4667 if (!should_run_aging(lruvec, max_seq, sc, can_swap, &nr_to_scan))
4670 /* skip the aging path at the default priority */
4671 if (sc->priority == DEF_PRIORITY)
4674 /* skip this lruvec as it's low on cold folios */
4675 return try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false) ? -1 : 0;
4678 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4681 enum zone_watermarks mark;
4683 /* don't abort memcg reclaim to ensure fairness */
4684 if (!root_reclaim(sc))
4687 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4690 /* check the order to exclude compaction-induced reclaim */
4691 if (!current_is_kswapd() || sc->order)
4694 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4695 WMARK_PROMO : WMARK_HIGH;
4697 for (i = 0; i <= sc->reclaim_idx; i++) {
4698 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4699 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4701 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4705 /* kswapd should abort if all eligible zones are safe */
4709 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4712 unsigned long scanned = 0;
4713 int swappiness = get_swappiness(lruvec, sc);
4715 /* clean file folios are more likely to exist */
4716 if (swappiness && !(sc->gfp_mask & __GFP_IO))
4722 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4723 if (nr_to_scan <= 0)
4726 delta = evict_folios(lruvec, sc, swappiness);
4731 if (scanned >= nr_to_scan)
4734 if (should_abort_scan(lruvec, sc))
4740 /* whether this lruvec should be rotated */
4741 return nr_to_scan < 0;
4744 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4747 unsigned long scanned = sc->nr_scanned;
4748 unsigned long reclaimed = sc->nr_reclaimed;
4749 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4750 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4752 mem_cgroup_calculate_protection(NULL, memcg);
4754 if (mem_cgroup_below_min(NULL, memcg))
4755 return MEMCG_LRU_YOUNG;
4757 if (mem_cgroup_below_low(NULL, memcg)) {
4758 /* see the comment on MEMCG_NR_GENS */
4759 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4760 return MEMCG_LRU_TAIL;
4762 memcg_memory_event(memcg, MEMCG_LOW);
4765 success = try_to_shrink_lruvec(lruvec, sc);
4767 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4770 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4771 sc->nr_reclaimed - reclaimed);
4773 flush_reclaim_state(sc);
4775 if (success && mem_cgroup_online(memcg))
4776 return MEMCG_LRU_YOUNG;
4778 if (!success && lruvec_is_sizable(lruvec, sc))
4781 /* one retry if offlined or too small */
4782 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4783 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4786 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4792 struct lruvec *lruvec;
4793 struct lru_gen_folio *lrugen;
4794 struct mem_cgroup *memcg;
4795 struct hlist_nulls_node *pos;
4797 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4798 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4805 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4807 lru_gen_rotate_memcg(lruvec, op);
4811 mem_cgroup_put(memcg);
4814 if (gen != READ_ONCE(lrugen->gen))
4817 lruvec = container_of(lrugen, struct lruvec, lrugen);
4818 memcg = lruvec_memcg(lruvec);
4820 if (!mem_cgroup_tryget(memcg)) {
4821 lru_gen_release_memcg(memcg);
4828 op = shrink_one(lruvec, sc);
4832 if (should_abort_scan(lruvec, sc))
4839 lru_gen_rotate_memcg(lruvec, op);
4841 mem_cgroup_put(memcg);
4843 if (!is_a_nulls(pos))
4846 /* restart if raced with lru_gen_rotate_memcg() */
4847 if (gen != get_nulls_value(pos))
4850 /* try the rest of the bins of the current generation */
4851 bin = get_memcg_bin(bin + 1);
4852 if (bin != first_bin)
4856 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4858 struct blk_plug plug;
4860 VM_WARN_ON_ONCE(root_reclaim(sc));
4861 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4865 blk_start_plug(&plug);
4867 set_mm_walk(NULL, sc->proactive);
4869 if (try_to_shrink_lruvec(lruvec, sc))
4870 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4874 blk_finish_plug(&plug);
4877 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4880 unsigned long reclaimable;
4881 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
4883 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4886 * Determine the initial priority based on
4887 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4888 * where reclaimed_to_scanned_ratio = inactive / total.
4890 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4891 if (get_swappiness(lruvec, sc))
4892 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4894 /* round down reclaimable and round up sc->nr_to_reclaim */
4895 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4897 sc->priority = clamp(priority, 0, DEF_PRIORITY);
4900 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4902 struct blk_plug plug;
4903 unsigned long reclaimed = sc->nr_reclaimed;
4905 VM_WARN_ON_ONCE(!root_reclaim(sc));
4908 * Unmapped clean folios are already prioritized. Scanning for more of
4909 * them is likely futile and can cause high reclaim latency when there
4910 * is a large number of memcgs.
4912 if (!sc->may_writepage || !sc->may_unmap)
4917 blk_start_plug(&plug);
4919 set_mm_walk(pgdat, sc->proactive);
4921 set_initial_priority(pgdat, sc);
4923 if (current_is_kswapd())
4924 sc->nr_reclaimed = 0;
4926 if (mem_cgroup_disabled())
4927 shrink_one(&pgdat->__lruvec, sc);
4929 shrink_many(pgdat, sc);
4931 if (current_is_kswapd())
4932 sc->nr_reclaimed += reclaimed;
4936 blk_finish_plug(&plug);
4938 /* kswapd should never fail */
4939 pgdat->kswapd_failures = 0;
4942 /******************************************************************************
4944 ******************************************************************************/
4946 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4948 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4950 if (lrugen->enabled) {
4953 for_each_evictable_lru(lru) {
4954 if (!list_empty(&lruvec->lists[lru]))
4958 int gen, type, zone;
4960 for_each_gen_type_zone(gen, type, zone) {
4961 if (!list_empty(&lrugen->folios[gen][type][zone]))
4969 static bool fill_evictable(struct lruvec *lruvec)
4972 int remaining = MAX_LRU_BATCH;
4974 for_each_evictable_lru(lru) {
4975 int type = is_file_lru(lru);
4976 bool active = is_active_lru(lru);
4977 struct list_head *head = &lruvec->lists[lru];
4979 while (!list_empty(head)) {
4981 struct folio *folio = lru_to_folio(head);
4983 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4984 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
4985 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4986 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
4988 lruvec_del_folio(lruvec, folio);
4989 success = lru_gen_add_folio(lruvec, folio, false);
4990 VM_WARN_ON_ONCE(!success);
5000 static bool drain_evictable(struct lruvec *lruvec)
5002 int gen, type, zone;
5003 int remaining = MAX_LRU_BATCH;
5005 for_each_gen_type_zone(gen, type, zone) {
5006 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5008 while (!list_empty(head)) {
5010 struct folio *folio = lru_to_folio(head);
5012 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5013 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5014 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5015 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5017 success = lru_gen_del_folio(lruvec, folio, false);
5018 VM_WARN_ON_ONCE(!success);
5019 lruvec_add_folio(lruvec, folio);
5029 static void lru_gen_change_state(bool enabled)
5031 static DEFINE_MUTEX(state_mutex);
5033 struct mem_cgroup *memcg;
5038 mutex_lock(&state_mutex);
5040 if (enabled == lru_gen_enabled())
5044 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5046 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5048 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5052 for_each_node(nid) {
5053 struct lruvec *lruvec = get_lruvec(memcg, nid);
5055 spin_lock_irq(&lruvec->lru_lock);
5057 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5058 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5060 lruvec->lrugen.enabled = enabled;
5062 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5063 spin_unlock_irq(&lruvec->lru_lock);
5065 spin_lock_irq(&lruvec->lru_lock);
5068 spin_unlock_irq(&lruvec->lru_lock);
5072 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5074 mutex_unlock(&state_mutex);
5080 /******************************************************************************
5082 ******************************************************************************/
5084 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5086 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5089 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5090 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5091 const char *buf, size_t len)
5095 if (kstrtouint(buf, 0, &msecs))
5098 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5103 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5105 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5107 unsigned int caps = 0;
5109 if (get_cap(LRU_GEN_CORE))
5110 caps |= BIT(LRU_GEN_CORE);
5112 if (should_walk_mmu())
5113 caps |= BIT(LRU_GEN_MM_WALK);
5115 if (should_clear_pmd_young())
5116 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5118 return sysfs_emit(buf, "0x%04x\n", caps);
5121 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5122 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5123 const char *buf, size_t len)
5128 if (tolower(*buf) == 'n')
5130 else if (tolower(*buf) == 'y')
5132 else if (kstrtouint(buf, 0, &caps))
5135 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5136 bool enabled = caps & BIT(i);
5138 if (i == LRU_GEN_CORE)
5139 lru_gen_change_state(enabled);
5141 static_branch_enable(&lru_gen_caps[i]);
5143 static_branch_disable(&lru_gen_caps[i]);
5149 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5151 static struct attribute *lru_gen_attrs[] = {
5152 &lru_gen_min_ttl_attr.attr,
5153 &lru_gen_enabled_attr.attr,
5157 static const struct attribute_group lru_gen_attr_group = {
5159 .attrs = lru_gen_attrs,
5162 /******************************************************************************
5164 ******************************************************************************/
5166 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5168 struct mem_cgroup *memcg;
5169 loff_t nr_to_skip = *pos;
5171 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5173 return ERR_PTR(-ENOMEM);
5175 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5179 for_each_node_state(nid, N_MEMORY) {
5181 return get_lruvec(memcg, nid);
5183 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5188 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5190 if (!IS_ERR_OR_NULL(v))
5191 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5197 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5199 int nid = lruvec_pgdat(v)->node_id;
5200 struct mem_cgroup *memcg = lruvec_memcg(v);
5204 nid = next_memory_node(nid);
5205 if (nid == MAX_NUMNODES) {
5206 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5210 nid = first_memory_node;
5213 return get_lruvec(memcg, nid);
5216 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5217 unsigned long max_seq, unsigned long *min_seq,
5222 int hist = lru_hist_from_seq(seq);
5223 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5224 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5226 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5227 seq_printf(m, " %10d", tier);
5228 for (type = 0; type < ANON_AND_FILE; type++) {
5229 const char *s = " ";
5230 unsigned long n[3] = {};
5232 if (seq == max_seq) {
5234 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5235 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5236 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5238 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5239 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5241 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5244 for (i = 0; i < 3; i++)
5245 seq_printf(m, " %10lu%c", n[i], s[i]);
5254 for (i = 0; i < NR_MM_STATS; i++) {
5255 const char *s = " ";
5256 unsigned long n = 0;
5258 if (seq == max_seq && NR_HIST_GENS == 1) {
5260 n = READ_ONCE(mm_state->stats[hist][i]);
5261 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5263 n = READ_ONCE(mm_state->stats[hist][i]);
5266 seq_printf(m, " %10lu%c", n, s[i]);
5271 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5272 static int lru_gen_seq_show(struct seq_file *m, void *v)
5275 bool full = !debugfs_real_fops(m->file)->write;
5276 struct lruvec *lruvec = v;
5277 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5278 int nid = lruvec_pgdat(lruvec)->node_id;
5279 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5280 DEFINE_MAX_SEQ(lruvec);
5281 DEFINE_MIN_SEQ(lruvec);
5283 if (nid == first_memory_node) {
5284 const char *path = memcg ? m->private : "";
5288 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5290 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5293 seq_printf(m, " node %5d\n", nid);
5296 seq = min_seq[LRU_GEN_ANON];
5297 else if (max_seq >= MAX_NR_GENS)
5298 seq = max_seq - MAX_NR_GENS + 1;
5302 for (; seq <= max_seq; seq++) {
5304 int gen = lru_gen_from_seq(seq);
5305 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5307 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5309 for (type = 0; type < ANON_AND_FILE; type++) {
5310 unsigned long size = 0;
5311 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5313 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5314 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5316 seq_printf(m, " %10lu%c", size, mark);
5322 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5328 static const struct seq_operations lru_gen_seq_ops = {
5329 .start = lru_gen_seq_start,
5330 .stop = lru_gen_seq_stop,
5331 .next = lru_gen_seq_next,
5332 .show = lru_gen_seq_show,
5335 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5336 bool can_swap, bool force_scan)
5338 DEFINE_MAX_SEQ(lruvec);
5339 DEFINE_MIN_SEQ(lruvec);
5347 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5350 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, force_scan);
5355 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5356 int swappiness, unsigned long nr_to_reclaim)
5358 DEFINE_MAX_SEQ(lruvec);
5360 if (seq + MIN_NR_GENS > max_seq)
5363 sc->nr_reclaimed = 0;
5365 while (!signal_pending(current)) {
5366 DEFINE_MIN_SEQ(lruvec);
5368 if (seq < min_seq[!swappiness])
5371 if (sc->nr_reclaimed >= nr_to_reclaim)
5374 if (!evict_folios(lruvec, sc, swappiness))
5383 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5384 struct scan_control *sc, int swappiness, unsigned long opt)
5386 struct lruvec *lruvec;
5388 struct mem_cgroup *memcg = NULL;
5390 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5393 if (!mem_cgroup_disabled()) {
5396 memcg = mem_cgroup_from_id(memcg_id);
5397 if (!mem_cgroup_tryget(memcg))
5406 if (memcg_id != mem_cgroup_id(memcg))
5409 lruvec = get_lruvec(memcg, nid);
5412 swappiness = get_swappiness(lruvec, sc);
5413 else if (swappiness > 200)
5418 err = run_aging(lruvec, seq, sc, swappiness, opt);
5421 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5425 mem_cgroup_put(memcg);
5430 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5431 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5432 size_t len, loff_t *pos)
5437 struct blk_plug plug;
5439 struct scan_control sc = {
5440 .may_writepage = true,
5443 .reclaim_idx = MAX_NR_ZONES - 1,
5444 .gfp_mask = GFP_KERNEL,
5447 buf = kvmalloc(len + 1, GFP_KERNEL);
5451 if (copy_from_user(buf, src, len)) {
5456 set_task_reclaim_state(current, &sc.reclaim_state);
5457 flags = memalloc_noreclaim_save();
5458 blk_start_plug(&plug);
5459 if (!set_mm_walk(NULL, true)) {
5467 while ((cur = strsep(&next, ",;\n"))) {
5471 unsigned int memcg_id;
5474 unsigned int swappiness = -1;
5475 unsigned long opt = -1;
5477 cur = skip_spaces(cur);
5481 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5482 &seq, &end, &swappiness, &end, &opt, &end);
5483 if (n < 4 || cur[end]) {
5488 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5494 blk_finish_plug(&plug);
5495 memalloc_noreclaim_restore(flags);
5496 set_task_reclaim_state(current, NULL);
5503 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5505 return seq_open(file, &lru_gen_seq_ops);
5508 static const struct file_operations lru_gen_rw_fops = {
5509 .open = lru_gen_seq_open,
5511 .write = lru_gen_seq_write,
5512 .llseek = seq_lseek,
5513 .release = seq_release,
5516 static const struct file_operations lru_gen_ro_fops = {
5517 .open = lru_gen_seq_open,
5519 .llseek = seq_lseek,
5520 .release = seq_release,
5523 /******************************************************************************
5525 ******************************************************************************/
5527 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5531 spin_lock_init(&pgdat->memcg_lru.lock);
5533 for (i = 0; i < MEMCG_NR_GENS; i++) {
5534 for (j = 0; j < MEMCG_NR_BINS; j++)
5535 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5539 void lru_gen_init_lruvec(struct lruvec *lruvec)
5542 int gen, type, zone;
5543 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5544 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5546 lrugen->max_seq = MIN_NR_GENS + 1;
5547 lrugen->enabled = lru_gen_enabled();
5549 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5550 lrugen->timestamps[i] = jiffies;
5552 for_each_gen_type_zone(gen, type, zone)
5553 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5556 mm_state->seq = MIN_NR_GENS;
5561 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5563 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5568 INIT_LIST_HEAD(&mm_list->fifo);
5569 spin_lock_init(&mm_list->lock);
5572 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5576 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5578 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5580 for_each_node(nid) {
5581 struct lruvec *lruvec = get_lruvec(memcg, nid);
5582 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5584 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5585 sizeof(lruvec->lrugen.nr_pages)));
5587 lruvec->lrugen.list.next = LIST_POISON1;
5592 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5593 bitmap_free(mm_state->filters[i]);
5594 mm_state->filters[i] = NULL;
5599 #endif /* CONFIG_MEMCG */
5601 static int __init init_lru_gen(void)
5603 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5604 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5606 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5607 pr_err("lru_gen: failed to create sysfs group\n");
5609 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5610 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5614 late_initcall(init_lru_gen);
5616 #else /* !CONFIG_LRU_GEN */
5618 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5623 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5628 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5633 #endif /* CONFIG_LRU_GEN */
5635 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5637 unsigned long nr[NR_LRU_LISTS];
5638 unsigned long targets[NR_LRU_LISTS];
5639 unsigned long nr_to_scan;
5641 unsigned long nr_reclaimed = 0;
5642 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5643 bool proportional_reclaim;
5644 struct blk_plug plug;
5646 if (lru_gen_enabled() && !root_reclaim(sc)) {
5647 lru_gen_shrink_lruvec(lruvec, sc);
5651 get_scan_count(lruvec, sc, nr);
5653 /* Record the original scan target for proportional adjustments later */
5654 memcpy(targets, nr, sizeof(nr));
5657 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5658 * event that can occur when there is little memory pressure e.g.
5659 * multiple streaming readers/writers. Hence, we do not abort scanning
5660 * when the requested number of pages are reclaimed when scanning at
5661 * DEF_PRIORITY on the assumption that the fact we are direct
5662 * reclaiming implies that kswapd is not keeping up and it is best to
5663 * do a batch of work at once. For memcg reclaim one check is made to
5664 * abort proportional reclaim if either the file or anon lru has already
5665 * dropped to zero at the first pass.
5667 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5668 sc->priority == DEF_PRIORITY);
5670 blk_start_plug(&plug);
5671 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5672 nr[LRU_INACTIVE_FILE]) {
5673 unsigned long nr_anon, nr_file, percentage;
5674 unsigned long nr_scanned;
5676 for_each_evictable_lru(lru) {
5678 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5679 nr[lru] -= nr_to_scan;
5681 nr_reclaimed += shrink_list(lru, nr_to_scan,
5688 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5692 * For kswapd and memcg, reclaim at least the number of pages
5693 * requested. Ensure that the anon and file LRUs are scanned
5694 * proportionally what was requested by get_scan_count(). We
5695 * stop reclaiming one LRU and reduce the amount scanning
5696 * proportional to the original scan target.
5698 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5699 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5702 * It's just vindictive to attack the larger once the smaller
5703 * has gone to zero. And given the way we stop scanning the
5704 * smaller below, this makes sure that we only make one nudge
5705 * towards proportionality once we've got nr_to_reclaim.
5707 if (!nr_file || !nr_anon)
5710 if (nr_file > nr_anon) {
5711 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5712 targets[LRU_ACTIVE_ANON] + 1;
5714 percentage = nr_anon * 100 / scan_target;
5716 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5717 targets[LRU_ACTIVE_FILE] + 1;
5719 percentage = nr_file * 100 / scan_target;
5722 /* Stop scanning the smaller of the LRU */
5724 nr[lru + LRU_ACTIVE] = 0;
5727 * Recalculate the other LRU scan count based on its original
5728 * scan target and the percentage scanning already complete
5730 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5731 nr_scanned = targets[lru] - nr[lru];
5732 nr[lru] = targets[lru] * (100 - percentage) / 100;
5733 nr[lru] -= min(nr[lru], nr_scanned);
5736 nr_scanned = targets[lru] - nr[lru];
5737 nr[lru] = targets[lru] * (100 - percentage) / 100;
5738 nr[lru] -= min(nr[lru], nr_scanned);
5740 blk_finish_plug(&plug);
5741 sc->nr_reclaimed += nr_reclaimed;
5744 * Even if we did not try to evict anon pages at all, we want to
5745 * rebalance the anon lru active/inactive ratio.
5747 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5748 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5749 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5750 sc, LRU_ACTIVE_ANON);
5753 /* Use reclaim/compaction for costly allocs or under memory pressure */
5754 static bool in_reclaim_compaction(struct scan_control *sc)
5756 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
5757 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5758 sc->priority < DEF_PRIORITY - 2))
5765 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5766 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5767 * true if more pages should be reclaimed such that when the page allocator
5768 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5769 * It will give up earlier than that if there is difficulty reclaiming pages.
5771 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5772 unsigned long nr_reclaimed,
5773 struct scan_control *sc)
5775 unsigned long pages_for_compaction;
5776 unsigned long inactive_lru_pages;
5779 /* If not in reclaim/compaction mode, stop */
5780 if (!in_reclaim_compaction(sc))
5784 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5785 * number of pages that were scanned. This will return to the caller
5786 * with the risk reclaim/compaction and the resulting allocation attempt
5787 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5788 * allocations through requiring that the full LRU list has been scanned
5789 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5790 * scan, but that approximation was wrong, and there were corner cases
5791 * where always a non-zero amount of pages were scanned.
5796 /* If compaction would go ahead or the allocation would succeed, stop */
5797 for (z = 0; z <= sc->reclaim_idx; z++) {
5798 struct zone *zone = &pgdat->node_zones[z];
5799 if (!managed_zone(zone))
5802 /* Allocation can already succeed, nothing to do */
5803 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5804 sc->reclaim_idx, 0))
5807 if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5812 * If we have not reclaimed enough pages for compaction and the
5813 * inactive lists are large enough, continue reclaiming
5815 pages_for_compaction = compact_gap(sc->order);
5816 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5817 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5818 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5820 return inactive_lru_pages > pages_for_compaction;
5823 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5825 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5826 struct mem_cgroup *memcg;
5828 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
5830 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5831 unsigned long reclaimed;
5832 unsigned long scanned;
5835 * This loop can become CPU-bound when target memcgs
5836 * aren't eligible for reclaim - either because they
5837 * don't have any reclaimable pages, or because their
5838 * memory is explicitly protected. Avoid soft lockups.
5842 mem_cgroup_calculate_protection(target_memcg, memcg);
5844 if (mem_cgroup_below_min(target_memcg, memcg)) {
5847 * If there is no reclaimable memory, OOM.
5850 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
5853 * Respect the protection only as long as
5854 * there is an unprotected supply
5855 * of reclaimable memory from other cgroups.
5857 if (!sc->memcg_low_reclaim) {
5858 sc->memcg_low_skipped = 1;
5861 memcg_memory_event(memcg, MEMCG_LOW);
5864 reclaimed = sc->nr_reclaimed;
5865 scanned = sc->nr_scanned;
5867 shrink_lruvec(lruvec, sc);
5869 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5872 /* Record the group's reclaim efficiency */
5874 vmpressure(sc->gfp_mask, memcg, false,
5875 sc->nr_scanned - scanned,
5876 sc->nr_reclaimed - reclaimed);
5878 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
5881 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5883 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5884 struct lruvec *target_lruvec;
5885 bool reclaimable = false;
5887 if (lru_gen_enabled() && root_reclaim(sc)) {
5888 lru_gen_shrink_node(pgdat, sc);
5892 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5895 memset(&sc->nr, 0, sizeof(sc->nr));
5897 nr_reclaimed = sc->nr_reclaimed;
5898 nr_scanned = sc->nr_scanned;
5900 prepare_scan_control(pgdat, sc);
5902 shrink_node_memcgs(pgdat, sc);
5904 flush_reclaim_state(sc);
5906 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5908 /* Record the subtree's reclaim efficiency */
5910 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5911 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5913 if (nr_node_reclaimed)
5916 if (current_is_kswapd()) {
5918 * If reclaim is isolating dirty pages under writeback,
5919 * it implies that the long-lived page allocation rate
5920 * is exceeding the page laundering rate. Either the
5921 * global limits are not being effective at throttling
5922 * processes due to the page distribution throughout
5923 * zones or there is heavy usage of a slow backing
5924 * device. The only option is to throttle from reclaim
5925 * context which is not ideal as there is no guarantee
5926 * the dirtying process is throttled in the same way
5927 * balance_dirty_pages() manages.
5929 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5930 * count the number of pages under pages flagged for
5931 * immediate reclaim and stall if any are encountered
5932 * in the nr_immediate check below.
5934 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5935 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5937 /* Allow kswapd to start writing pages during reclaim.*/
5938 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5939 set_bit(PGDAT_DIRTY, &pgdat->flags);
5942 * If kswapd scans pages marked for immediate
5943 * reclaim and under writeback (nr_immediate), it
5944 * implies that pages are cycling through the LRU
5945 * faster than they are written so forcibly stall
5946 * until some pages complete writeback.
5948 if (sc->nr.immediate)
5949 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
5953 * Tag a node/memcg as congested if all the dirty pages were marked
5954 * for writeback and immediate reclaim (counted in nr.congested).
5956 * Legacy memcg will stall in page writeback so avoid forcibly
5957 * stalling in reclaim_throttle().
5959 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
5960 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
5961 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
5963 if (current_is_kswapd())
5964 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
5968 * Stall direct reclaim for IO completions if the lruvec is
5969 * node is congested. Allow kswapd to continue until it
5970 * starts encountering unqueued dirty pages or cycling through
5971 * the LRU too quickly.
5973 if (!current_is_kswapd() && current_may_throttle() &&
5974 !sc->hibernation_mode &&
5975 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
5976 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
5977 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
5979 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
5983 * Kswapd gives up on balancing particular nodes after too
5984 * many failures to reclaim anything from them and goes to
5985 * sleep. On reclaim progress, reset the failure counter. A
5986 * successful direct reclaim run will revive a dormant kswapd.
5989 pgdat->kswapd_failures = 0;
5993 * Returns true if compaction should go ahead for a costly-order request, or
5994 * the allocation would already succeed without compaction. Return false if we
5995 * should reclaim first.
5997 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
5999 unsigned long watermark;
6001 /* Allocation can already succeed, nothing to do */
6002 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6003 sc->reclaim_idx, 0))
6006 /* Compaction cannot yet proceed. Do reclaim. */
6007 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6011 * Compaction is already possible, but it takes time to run and there
6012 * are potentially other callers using the pages just freed. So proceed
6013 * with reclaim to make a buffer of free pages available to give
6014 * compaction a reasonable chance of completing and allocating the page.
6015 * Note that we won't actually reclaim the whole buffer in one attempt
6016 * as the target watermark in should_continue_reclaim() is lower. But if
6017 * we are already above the high+gap watermark, don't reclaim at all.
6019 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6021 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6024 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6027 * If reclaim is making progress greater than 12% efficiency then
6028 * wake all the NOPROGRESS throttled tasks.
6030 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6031 wait_queue_head_t *wqh;
6033 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6034 if (waitqueue_active(wqh))
6041 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6042 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6043 * under writeback and marked for immediate reclaim at the tail of the
6046 if (current_is_kswapd() || cgroup_reclaim(sc))
6049 /* Throttle if making no progress at high prioities. */
6050 if (sc->priority == 1 && !sc->nr_reclaimed)
6051 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6055 * This is the direct reclaim path, for page-allocating processes. We only
6056 * try to reclaim pages from zones which will satisfy the caller's allocation
6059 * If a zone is deemed to be full of pinned pages then just give it a light
6060 * scan then give up on it.
6062 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6066 unsigned long nr_soft_reclaimed;
6067 unsigned long nr_soft_scanned;
6069 pg_data_t *last_pgdat = NULL;
6070 pg_data_t *first_pgdat = NULL;
6073 * If the number of buffer_heads in the machine exceeds the maximum
6074 * allowed level, force direct reclaim to scan the highmem zone as
6075 * highmem pages could be pinning lowmem pages storing buffer_heads
6077 orig_mask = sc->gfp_mask;
6078 if (buffer_heads_over_limit) {
6079 sc->gfp_mask |= __GFP_HIGHMEM;
6080 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6083 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6084 sc->reclaim_idx, sc->nodemask) {
6086 * Take care memory controller reclaiming has small influence
6089 if (!cgroup_reclaim(sc)) {
6090 if (!cpuset_zone_allowed(zone,
6091 GFP_KERNEL | __GFP_HARDWALL))
6095 * If we already have plenty of memory free for
6096 * compaction in this zone, don't free any more.
6097 * Even though compaction is invoked for any
6098 * non-zero order, only frequent costly order
6099 * reclamation is disruptive enough to become a
6100 * noticeable problem, like transparent huge
6103 if (IS_ENABLED(CONFIG_COMPACTION) &&
6104 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6105 compaction_ready(zone, sc)) {
6106 sc->compaction_ready = true;
6111 * Shrink each node in the zonelist once. If the
6112 * zonelist is ordered by zone (not the default) then a
6113 * node may be shrunk multiple times but in that case
6114 * the user prefers lower zones being preserved.
6116 if (zone->zone_pgdat == last_pgdat)
6120 * This steals pages from memory cgroups over softlimit
6121 * and returns the number of reclaimed pages and
6122 * scanned pages. This works for global memory pressure
6123 * and balancing, not for a memcg's limit.
6125 nr_soft_scanned = 0;
6126 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
6127 sc->order, sc->gfp_mask,
6129 sc->nr_reclaimed += nr_soft_reclaimed;
6130 sc->nr_scanned += nr_soft_scanned;
6131 /* need some check for avoid more shrink_zone() */
6135 first_pgdat = zone->zone_pgdat;
6137 /* See comment about same check for global reclaim above */
6138 if (zone->zone_pgdat == last_pgdat)
6140 last_pgdat = zone->zone_pgdat;
6141 shrink_node(zone->zone_pgdat, sc);
6145 consider_reclaim_throttle(first_pgdat, sc);
6148 * Restore to original mask to avoid the impact on the caller if we
6149 * promoted it to __GFP_HIGHMEM.
6151 sc->gfp_mask = orig_mask;
6154 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6156 struct lruvec *target_lruvec;
6157 unsigned long refaults;
6159 if (lru_gen_enabled())
6162 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6163 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6164 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6165 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6166 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6170 * This is the main entry point to direct page reclaim.
6172 * If a full scan of the inactive list fails to free enough memory then we
6173 * are "out of memory" and something needs to be killed.
6175 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6176 * high - the zone may be full of dirty or under-writeback pages, which this
6177 * caller can't do much about. We kick the writeback threads and take explicit
6178 * naps in the hope that some of these pages can be written. But if the
6179 * allocating task holds filesystem locks which prevent writeout this might not
6180 * work, and the allocation attempt will fail.
6182 * returns: 0, if no pages reclaimed
6183 * else, the number of pages reclaimed
6185 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6186 struct scan_control *sc)
6188 int initial_priority = sc->priority;
6189 pg_data_t *last_pgdat;
6193 delayacct_freepages_start();
6195 if (!cgroup_reclaim(sc))
6196 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6200 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6203 shrink_zones(zonelist, sc);
6205 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6208 if (sc->compaction_ready)
6212 * If we're getting trouble reclaiming, start doing
6213 * writepage even in laptop mode.
6215 if (sc->priority < DEF_PRIORITY - 2)
6216 sc->may_writepage = 1;
6217 } while (--sc->priority >= 0);
6220 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6222 if (zone->zone_pgdat == last_pgdat)
6224 last_pgdat = zone->zone_pgdat;
6226 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6228 if (cgroup_reclaim(sc)) {
6229 struct lruvec *lruvec;
6231 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6233 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6237 delayacct_freepages_end();
6239 if (sc->nr_reclaimed)
6240 return sc->nr_reclaimed;
6242 /* Aborted reclaim to try compaction? don't OOM, then */
6243 if (sc->compaction_ready)
6247 * We make inactive:active ratio decisions based on the node's
6248 * composition of memory, but a restrictive reclaim_idx or a
6249 * memory.low cgroup setting can exempt large amounts of
6250 * memory from reclaim. Neither of which are very common, so
6251 * instead of doing costly eligibility calculations of the
6252 * entire cgroup subtree up front, we assume the estimates are
6253 * good, and retry with forcible deactivation if that fails.
6255 if (sc->skipped_deactivate) {
6256 sc->priority = initial_priority;
6257 sc->force_deactivate = 1;
6258 sc->skipped_deactivate = 0;
6262 /* Untapped cgroup reserves? Don't OOM, retry. */
6263 if (sc->memcg_low_skipped) {
6264 sc->priority = initial_priority;
6265 sc->force_deactivate = 0;
6266 sc->memcg_low_reclaim = 1;
6267 sc->memcg_low_skipped = 0;
6274 static bool allow_direct_reclaim(pg_data_t *pgdat)
6277 unsigned long pfmemalloc_reserve = 0;
6278 unsigned long free_pages = 0;
6282 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6285 for (i = 0; i <= ZONE_NORMAL; i++) {
6286 zone = &pgdat->node_zones[i];
6287 if (!managed_zone(zone))
6290 if (!zone_reclaimable_pages(zone))
6293 pfmemalloc_reserve += min_wmark_pages(zone);
6294 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6297 /* If there are no reserves (unexpected config) then do not throttle */
6298 if (!pfmemalloc_reserve)
6301 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6303 /* kswapd must be awake if processes are being throttled */
6304 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6305 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6306 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6308 wake_up_interruptible(&pgdat->kswapd_wait);
6315 * Throttle direct reclaimers if backing storage is backed by the network
6316 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6317 * depleted. kswapd will continue to make progress and wake the processes
6318 * when the low watermark is reached.
6320 * Returns true if a fatal signal was delivered during throttling. If this
6321 * happens, the page allocator should not consider triggering the OOM killer.
6323 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6324 nodemask_t *nodemask)
6328 pg_data_t *pgdat = NULL;
6331 * Kernel threads should not be throttled as they may be indirectly
6332 * responsible for cleaning pages necessary for reclaim to make forward
6333 * progress. kjournald for example may enter direct reclaim while
6334 * committing a transaction where throttling it could forcing other
6335 * processes to block on log_wait_commit().
6337 if (current->flags & PF_KTHREAD)
6341 * If a fatal signal is pending, this process should not throttle.
6342 * It should return quickly so it can exit and free its memory
6344 if (fatal_signal_pending(current))
6348 * Check if the pfmemalloc reserves are ok by finding the first node
6349 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6350 * GFP_KERNEL will be required for allocating network buffers when
6351 * swapping over the network so ZONE_HIGHMEM is unusable.
6353 * Throttling is based on the first usable node and throttled processes
6354 * wait on a queue until kswapd makes progress and wakes them. There
6355 * is an affinity then between processes waking up and where reclaim
6356 * progress has been made assuming the process wakes on the same node.
6357 * More importantly, processes running on remote nodes will not compete
6358 * for remote pfmemalloc reserves and processes on different nodes
6359 * should make reasonable progress.
6361 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6362 gfp_zone(gfp_mask), nodemask) {
6363 if (zone_idx(zone) > ZONE_NORMAL)
6366 /* Throttle based on the first usable node */
6367 pgdat = zone->zone_pgdat;
6368 if (allow_direct_reclaim(pgdat))
6373 /* If no zone was usable by the allocation flags then do not throttle */
6377 /* Account for the throttling */
6378 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6381 * If the caller cannot enter the filesystem, it's possible that it
6382 * is due to the caller holding an FS lock or performing a journal
6383 * transaction in the case of a filesystem like ext[3|4]. In this case,
6384 * it is not safe to block on pfmemalloc_wait as kswapd could be
6385 * blocked waiting on the same lock. Instead, throttle for up to a
6386 * second before continuing.
6388 if (!(gfp_mask & __GFP_FS))
6389 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6390 allow_direct_reclaim(pgdat), HZ);
6392 /* Throttle until kswapd wakes the process */
6393 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6394 allow_direct_reclaim(pgdat));
6396 if (fatal_signal_pending(current))
6403 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6404 gfp_t gfp_mask, nodemask_t *nodemask)
6406 unsigned long nr_reclaimed;
6407 struct scan_control sc = {
6408 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6409 .gfp_mask = current_gfp_context(gfp_mask),
6410 .reclaim_idx = gfp_zone(gfp_mask),
6412 .nodemask = nodemask,
6413 .priority = DEF_PRIORITY,
6414 .may_writepage = !laptop_mode,
6420 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6421 * Confirm they are large enough for max values.
6423 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6424 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6425 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6428 * Do not enter reclaim if fatal signal was delivered while throttled.
6429 * 1 is returned so that the page allocator does not OOM kill at this
6432 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6435 set_task_reclaim_state(current, &sc.reclaim_state);
6436 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6438 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6440 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6441 set_task_reclaim_state(current, NULL);
6443 return nr_reclaimed;
6448 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6449 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6450 gfp_t gfp_mask, bool noswap,
6452 unsigned long *nr_scanned)
6454 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6455 struct scan_control sc = {
6456 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6457 .target_mem_cgroup = memcg,
6458 .may_writepage = !laptop_mode,
6460 .reclaim_idx = MAX_NR_ZONES - 1,
6461 .may_swap = !noswap,
6464 WARN_ON_ONCE(!current->reclaim_state);
6466 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6467 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6469 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6473 * NOTE: Although we can get the priority field, using it
6474 * here is not a good idea, since it limits the pages we can scan.
6475 * if we don't reclaim here, the shrink_node from balance_pgdat
6476 * will pick up pages from other mem cgroup's as well. We hack
6477 * the priority and make it zero.
6479 shrink_lruvec(lruvec, &sc);
6481 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6483 *nr_scanned = sc.nr_scanned;
6485 return sc.nr_reclaimed;
6488 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6489 unsigned long nr_pages,
6491 unsigned int reclaim_options)
6493 unsigned long nr_reclaimed;
6494 unsigned int noreclaim_flag;
6495 struct scan_control sc = {
6496 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6497 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6498 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6499 .reclaim_idx = MAX_NR_ZONES - 1,
6500 .target_mem_cgroup = memcg,
6501 .priority = DEF_PRIORITY,
6502 .may_writepage = !laptop_mode,
6504 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6505 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6508 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6509 * equal pressure on all the nodes. This is based on the assumption that
6510 * the reclaim does not bail out early.
6512 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6514 set_task_reclaim_state(current, &sc.reclaim_state);
6515 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6516 noreclaim_flag = memalloc_noreclaim_save();
6518 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6520 memalloc_noreclaim_restore(noreclaim_flag);
6521 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6522 set_task_reclaim_state(current, NULL);
6524 return nr_reclaimed;
6528 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6530 struct mem_cgroup *memcg;
6531 struct lruvec *lruvec;
6533 if (lru_gen_enabled()) {
6534 lru_gen_age_node(pgdat, sc);
6538 if (!can_age_anon_pages(pgdat, sc))
6541 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6542 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6545 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6547 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6548 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6549 sc, LRU_ACTIVE_ANON);
6550 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6554 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6560 * Check for watermark boosts top-down as the higher zones
6561 * are more likely to be boosted. Both watermarks and boosts
6562 * should not be checked at the same time as reclaim would
6563 * start prematurely when there is no boosting and a lower
6566 for (i = highest_zoneidx; i >= 0; i--) {
6567 zone = pgdat->node_zones + i;
6568 if (!managed_zone(zone))
6571 if (zone->watermark_boost)
6579 * Returns true if there is an eligible zone balanced for the request order
6580 * and highest_zoneidx
6582 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6585 unsigned long mark = -1;
6589 * Check watermarks bottom-up as lower zones are more likely to
6592 for (i = 0; i <= highest_zoneidx; i++) {
6593 zone = pgdat->node_zones + i;
6595 if (!managed_zone(zone))
6598 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6599 mark = wmark_pages(zone, WMARK_PROMO);
6601 mark = high_wmark_pages(zone);
6602 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6607 * If a node has no managed zone within highest_zoneidx, it does not
6608 * need balancing by definition. This can happen if a zone-restricted
6609 * allocation tries to wake a remote kswapd.
6617 /* Clear pgdat state for congested, dirty or under writeback. */
6618 static void clear_pgdat_congested(pg_data_t *pgdat)
6620 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6622 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6623 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6624 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6625 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6629 * Prepare kswapd for sleeping. This verifies that there are no processes
6630 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6632 * Returns true if kswapd is ready to sleep
6634 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6635 int highest_zoneidx)
6638 * The throttled processes are normally woken up in balance_pgdat() as
6639 * soon as allow_direct_reclaim() is true. But there is a potential
6640 * race between when kswapd checks the watermarks and a process gets
6641 * throttled. There is also a potential race if processes get
6642 * throttled, kswapd wakes, a large process exits thereby balancing the
6643 * zones, which causes kswapd to exit balance_pgdat() before reaching
6644 * the wake up checks. If kswapd is going to sleep, no process should
6645 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6646 * the wake up is premature, processes will wake kswapd and get
6647 * throttled again. The difference from wake ups in balance_pgdat() is
6648 * that here we are under prepare_to_wait().
6650 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6651 wake_up_all(&pgdat->pfmemalloc_wait);
6653 /* Hopeless node, leave it to direct reclaim */
6654 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6657 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6658 clear_pgdat_congested(pgdat);
6666 * kswapd shrinks a node of pages that are at or below the highest usable
6667 * zone that is currently unbalanced.
6669 * Returns true if kswapd scanned at least the requested number of pages to
6670 * reclaim or if the lack of progress was due to pages under writeback.
6671 * This is used to determine if the scanning priority needs to be raised.
6673 static bool kswapd_shrink_node(pg_data_t *pgdat,
6674 struct scan_control *sc)
6679 /* Reclaim a number of pages proportional to the number of zones */
6680 sc->nr_to_reclaim = 0;
6681 for (z = 0; z <= sc->reclaim_idx; z++) {
6682 zone = pgdat->node_zones + z;
6683 if (!managed_zone(zone))
6686 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6690 * Historically care was taken to put equal pressure on all zones but
6691 * now pressure is applied based on node LRU order.
6693 shrink_node(pgdat, sc);
6696 * Fragmentation may mean that the system cannot be rebalanced for
6697 * high-order allocations. If twice the allocation size has been
6698 * reclaimed then recheck watermarks only at order-0 to prevent
6699 * excessive reclaim. Assume that a process requested a high-order
6700 * can direct reclaim/compact.
6702 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6705 return sc->nr_scanned >= sc->nr_to_reclaim;
6708 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6710 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6715 for (i = 0; i <= highest_zoneidx; i++) {
6716 zone = pgdat->node_zones + i;
6718 if (!managed_zone(zone))
6722 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6724 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6729 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6731 update_reclaim_active(pgdat, highest_zoneidx, true);
6735 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6737 update_reclaim_active(pgdat, highest_zoneidx, false);
6741 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6742 * that are eligible for use by the caller until at least one zone is
6745 * Returns the order kswapd finished reclaiming at.
6747 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6748 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6749 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6750 * or lower is eligible for reclaim until at least one usable zone is
6753 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6756 unsigned long nr_soft_reclaimed;
6757 unsigned long nr_soft_scanned;
6758 unsigned long pflags;
6759 unsigned long nr_boost_reclaim;
6760 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6763 struct scan_control sc = {
6764 .gfp_mask = GFP_KERNEL,
6769 set_task_reclaim_state(current, &sc.reclaim_state);
6770 psi_memstall_enter(&pflags);
6771 __fs_reclaim_acquire(_THIS_IP_);
6773 count_vm_event(PAGEOUTRUN);
6776 * Account for the reclaim boost. Note that the zone boost is left in
6777 * place so that parallel allocations that are near the watermark will
6778 * stall or direct reclaim until kswapd is finished.
6780 nr_boost_reclaim = 0;
6781 for (i = 0; i <= highest_zoneidx; i++) {
6782 zone = pgdat->node_zones + i;
6783 if (!managed_zone(zone))
6786 nr_boost_reclaim += zone->watermark_boost;
6787 zone_boosts[i] = zone->watermark_boost;
6789 boosted = nr_boost_reclaim;
6792 set_reclaim_active(pgdat, highest_zoneidx);
6793 sc.priority = DEF_PRIORITY;
6795 unsigned long nr_reclaimed = sc.nr_reclaimed;
6796 bool raise_priority = true;
6800 sc.reclaim_idx = highest_zoneidx;
6803 * If the number of buffer_heads exceeds the maximum allowed
6804 * then consider reclaiming from all zones. This has a dual
6805 * purpose -- on 64-bit systems it is expected that
6806 * buffer_heads are stripped during active rotation. On 32-bit
6807 * systems, highmem pages can pin lowmem memory and shrinking
6808 * buffers can relieve lowmem pressure. Reclaim may still not
6809 * go ahead if all eligible zones for the original allocation
6810 * request are balanced to avoid excessive reclaim from kswapd.
6812 if (buffer_heads_over_limit) {
6813 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6814 zone = pgdat->node_zones + i;
6815 if (!managed_zone(zone))
6824 * If the pgdat is imbalanced then ignore boosting and preserve
6825 * the watermarks for a later time and restart. Note that the
6826 * zone watermarks will be still reset at the end of balancing
6827 * on the grounds that the normal reclaim should be enough to
6828 * re-evaluate if boosting is required when kswapd next wakes.
6830 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6831 if (!balanced && nr_boost_reclaim) {
6832 nr_boost_reclaim = 0;
6837 * If boosting is not active then only reclaim if there are no
6838 * eligible zones. Note that sc.reclaim_idx is not used as
6839 * buffer_heads_over_limit may have adjusted it.
6841 if (!nr_boost_reclaim && balanced)
6844 /* Limit the priority of boosting to avoid reclaim writeback */
6845 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6846 raise_priority = false;
6849 * Do not writeback or swap pages for boosted reclaim. The
6850 * intent is to relieve pressure not issue sub-optimal IO
6851 * from reclaim context. If no pages are reclaimed, the
6852 * reclaim will be aborted.
6854 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6855 sc.may_swap = !nr_boost_reclaim;
6858 * Do some background aging, to give pages a chance to be
6859 * referenced before reclaiming. All pages are rotated
6860 * regardless of classzone as this is about consistent aging.
6862 kswapd_age_node(pgdat, &sc);
6865 * If we're getting trouble reclaiming, start doing writepage
6866 * even in laptop mode.
6868 if (sc.priority < DEF_PRIORITY - 2)
6869 sc.may_writepage = 1;
6871 /* Call soft limit reclaim before calling shrink_node. */
6873 nr_soft_scanned = 0;
6874 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
6875 sc.gfp_mask, &nr_soft_scanned);
6876 sc.nr_reclaimed += nr_soft_reclaimed;
6879 * There should be no need to raise the scanning priority if
6880 * enough pages are already being scanned that that high
6881 * watermark would be met at 100% efficiency.
6883 if (kswapd_shrink_node(pgdat, &sc))
6884 raise_priority = false;
6887 * If the low watermark is met there is no need for processes
6888 * to be throttled on pfmemalloc_wait as they should not be
6889 * able to safely make forward progress. Wake them
6891 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6892 allow_direct_reclaim(pgdat))
6893 wake_up_all(&pgdat->pfmemalloc_wait);
6895 /* Check if kswapd should be suspending */
6896 __fs_reclaim_release(_THIS_IP_);
6897 ret = try_to_freeze();
6898 __fs_reclaim_acquire(_THIS_IP_);
6899 if (ret || kthread_should_stop())
6903 * Raise priority if scanning rate is too low or there was no
6904 * progress in reclaiming pages
6906 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6907 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6910 * If reclaim made no progress for a boost, stop reclaim as
6911 * IO cannot be queued and it could be an infinite loop in
6912 * extreme circumstances.
6914 if (nr_boost_reclaim && !nr_reclaimed)
6917 if (raise_priority || !nr_reclaimed)
6919 } while (sc.priority >= 1);
6921 if (!sc.nr_reclaimed)
6922 pgdat->kswapd_failures++;
6925 clear_reclaim_active(pgdat, highest_zoneidx);
6927 /* If reclaim was boosted, account for the reclaim done in this pass */
6929 unsigned long flags;
6931 for (i = 0; i <= highest_zoneidx; i++) {
6932 if (!zone_boosts[i])
6935 /* Increments are under the zone lock */
6936 zone = pgdat->node_zones + i;
6937 spin_lock_irqsave(&zone->lock, flags);
6938 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
6939 spin_unlock_irqrestore(&zone->lock, flags);
6943 * As there is now likely space, wakeup kcompact to defragment
6946 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
6949 snapshot_refaults(NULL, pgdat);
6950 __fs_reclaim_release(_THIS_IP_);
6951 psi_memstall_leave(&pflags);
6952 set_task_reclaim_state(current, NULL);
6955 * Return the order kswapd stopped reclaiming at as
6956 * prepare_kswapd_sleep() takes it into account. If another caller
6957 * entered the allocator slow path while kswapd was awake, order will
6958 * remain at the higher level.
6964 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
6965 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
6966 * not a valid index then either kswapd runs for first time or kswapd couldn't
6967 * sleep after previous reclaim attempt (node is still unbalanced). In that
6968 * case return the zone index of the previous kswapd reclaim cycle.
6970 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
6971 enum zone_type prev_highest_zoneidx)
6973 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
6975 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
6978 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
6979 unsigned int highest_zoneidx)
6984 if (freezing(current) || kthread_should_stop())
6987 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
6990 * Try to sleep for a short interval. Note that kcompactd will only be
6991 * woken if it is possible to sleep for a short interval. This is
6992 * deliberate on the assumption that if reclaim cannot keep an
6993 * eligible zone balanced that it's also unlikely that compaction will
6996 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
6998 * Compaction records what page blocks it recently failed to
6999 * isolate pages from and skips them in the future scanning.
7000 * When kswapd is going to sleep, it is reasonable to assume
7001 * that pages and compaction may succeed so reset the cache.
7003 reset_isolation_suitable(pgdat);
7006 * We have freed the memory, now we should compact it to make
7007 * allocation of the requested order possible.
7009 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7011 remaining = schedule_timeout(HZ/10);
7014 * If woken prematurely then reset kswapd_highest_zoneidx and
7015 * order. The values will either be from a wakeup request or
7016 * the previous request that slept prematurely.
7019 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7020 kswapd_highest_zoneidx(pgdat,
7023 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7024 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7027 finish_wait(&pgdat->kswapd_wait, &wait);
7028 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7032 * After a short sleep, check if it was a premature sleep. If not, then
7033 * go fully to sleep until explicitly woken up.
7036 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7037 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7040 * vmstat counters are not perfectly accurate and the estimated
7041 * value for counters such as NR_FREE_PAGES can deviate from the
7042 * true value by nr_online_cpus * threshold. To avoid the zone
7043 * watermarks being breached while under pressure, we reduce the
7044 * per-cpu vmstat threshold while kswapd is awake and restore
7045 * them before going back to sleep.
7047 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7049 if (!kthread_should_stop())
7052 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7055 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7057 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7059 finish_wait(&pgdat->kswapd_wait, &wait);
7063 * The background pageout daemon, started as a kernel thread
7064 * from the init process.
7066 * This basically trickles out pages so that we have _some_
7067 * free memory available even if there is no other activity
7068 * that frees anything up. This is needed for things like routing
7069 * etc, where we otherwise might have all activity going on in
7070 * asynchronous contexts that cannot page things out.
7072 * If there are applications that are active memory-allocators
7073 * (most normal use), this basically shouldn't matter.
7075 static int kswapd(void *p)
7077 unsigned int alloc_order, reclaim_order;
7078 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7079 pg_data_t *pgdat = (pg_data_t *)p;
7080 struct task_struct *tsk = current;
7081 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7083 if (!cpumask_empty(cpumask))
7084 set_cpus_allowed_ptr(tsk, cpumask);
7087 * Tell the memory management that we're a "memory allocator",
7088 * and that if we need more memory we should get access to it
7089 * regardless (see "__alloc_pages()"). "kswapd" should
7090 * never get caught in the normal page freeing logic.
7092 * (Kswapd normally doesn't need memory anyway, but sometimes
7093 * you need a small amount of memory in order to be able to
7094 * page out something else, and this flag essentially protects
7095 * us from recursively trying to free more memory as we're
7096 * trying to free the first piece of memory in the first place).
7098 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7101 WRITE_ONCE(pgdat->kswapd_order, 0);
7102 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7103 atomic_set(&pgdat->nr_writeback_throttled, 0);
7107 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7108 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7112 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7115 /* Read the new order and highest_zoneidx */
7116 alloc_order = READ_ONCE(pgdat->kswapd_order);
7117 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7119 WRITE_ONCE(pgdat->kswapd_order, 0);
7120 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7122 ret = try_to_freeze();
7123 if (kthread_should_stop())
7127 * We can speed up thawing tasks if we don't call balance_pgdat
7128 * after returning from the refrigerator
7134 * Reclaim begins at the requested order but if a high-order
7135 * reclaim fails then kswapd falls back to reclaiming for
7136 * order-0. If that happens, kswapd will consider sleeping
7137 * for the order it finished reclaiming at (reclaim_order)
7138 * but kcompactd is woken to compact for the original
7139 * request (alloc_order).
7141 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7143 reclaim_order = balance_pgdat(pgdat, alloc_order,
7145 if (reclaim_order < alloc_order)
7146 goto kswapd_try_sleep;
7149 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7155 * A zone is low on free memory or too fragmented for high-order memory. If
7156 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7157 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7158 * has failed or is not needed, still wake up kcompactd if only compaction is
7161 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7162 enum zone_type highest_zoneidx)
7165 enum zone_type curr_idx;
7167 if (!managed_zone(zone))
7170 if (!cpuset_zone_allowed(zone, gfp_flags))
7173 pgdat = zone->zone_pgdat;
7174 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7176 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7177 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7179 if (READ_ONCE(pgdat->kswapd_order) < order)
7180 WRITE_ONCE(pgdat->kswapd_order, order);
7182 if (!waitqueue_active(&pgdat->kswapd_wait))
7185 /* Hopeless node, leave it to direct reclaim if possible */
7186 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7187 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7188 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7190 * There may be plenty of free memory available, but it's too
7191 * fragmented for high-order allocations. Wake up kcompactd
7192 * and rely on compaction_suitable() to determine if it's
7193 * needed. If it fails, it will defer subsequent attempts to
7194 * ratelimit its work.
7196 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7197 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7201 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7203 wake_up_interruptible(&pgdat->kswapd_wait);
7206 #ifdef CONFIG_HIBERNATION
7208 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7211 * Rather than trying to age LRUs the aim is to preserve the overall
7212 * LRU order by reclaiming preferentially
7213 * inactive > active > active referenced > active mapped
7215 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7217 struct scan_control sc = {
7218 .nr_to_reclaim = nr_to_reclaim,
7219 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7220 .reclaim_idx = MAX_NR_ZONES - 1,
7221 .priority = DEF_PRIORITY,
7225 .hibernation_mode = 1,
7227 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7228 unsigned long nr_reclaimed;
7229 unsigned int noreclaim_flag;
7231 fs_reclaim_acquire(sc.gfp_mask);
7232 noreclaim_flag = memalloc_noreclaim_save();
7233 set_task_reclaim_state(current, &sc.reclaim_state);
7235 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7237 set_task_reclaim_state(current, NULL);
7238 memalloc_noreclaim_restore(noreclaim_flag);
7239 fs_reclaim_release(sc.gfp_mask);
7241 return nr_reclaimed;
7243 #endif /* CONFIG_HIBERNATION */
7246 * This kswapd start function will be called by init and node-hot-add.
7248 void __meminit kswapd_run(int nid)
7250 pg_data_t *pgdat = NODE_DATA(nid);
7252 pgdat_kswapd_lock(pgdat);
7253 if (!pgdat->kswapd) {
7254 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7255 if (IS_ERR(pgdat->kswapd)) {
7256 /* failure at boot is fatal */
7257 pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7258 nid, PTR_ERR(pgdat->kswapd));
7259 BUG_ON(system_state < SYSTEM_RUNNING);
7260 pgdat->kswapd = NULL;
7263 pgdat_kswapd_unlock(pgdat);
7267 * Called by memory hotplug when all memory in a node is offlined. Caller must
7268 * be holding mem_hotplug_begin/done().
7270 void __meminit kswapd_stop(int nid)
7272 pg_data_t *pgdat = NODE_DATA(nid);
7273 struct task_struct *kswapd;
7275 pgdat_kswapd_lock(pgdat);
7276 kswapd = pgdat->kswapd;
7278 kthread_stop(kswapd);
7279 pgdat->kswapd = NULL;
7281 pgdat_kswapd_unlock(pgdat);
7284 static int __init kswapd_init(void)
7289 for_each_node_state(nid, N_MEMORY)
7294 module_init(kswapd_init)
7300 * If non-zero call node_reclaim when the number of free pages falls below
7303 int node_reclaim_mode __read_mostly;
7306 * Priority for NODE_RECLAIM. This determines the fraction of pages
7307 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7310 #define NODE_RECLAIM_PRIORITY 4
7313 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7316 int sysctl_min_unmapped_ratio = 1;
7319 * If the number of slab pages in a zone grows beyond this percentage then
7320 * slab reclaim needs to occur.
7322 int sysctl_min_slab_ratio = 5;
7324 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7326 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7327 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7328 node_page_state(pgdat, NR_ACTIVE_FILE);
7331 * It's possible for there to be more file mapped pages than
7332 * accounted for by the pages on the file LRU lists because
7333 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7335 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7338 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7339 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7341 unsigned long nr_pagecache_reclaimable;
7342 unsigned long delta = 0;
7345 * If RECLAIM_UNMAP is set, then all file pages are considered
7346 * potentially reclaimable. Otherwise, we have to worry about
7347 * pages like swapcache and node_unmapped_file_pages() provides
7350 if (node_reclaim_mode & RECLAIM_UNMAP)
7351 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7353 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7355 /* If we can't clean pages, remove dirty pages from consideration */
7356 if (!(node_reclaim_mode & RECLAIM_WRITE))
7357 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7359 /* Watch for any possible underflows due to delta */
7360 if (unlikely(delta > nr_pagecache_reclaimable))
7361 delta = nr_pagecache_reclaimable;
7363 return nr_pagecache_reclaimable - delta;
7367 * Try to free up some pages from this node through reclaim.
7369 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7371 /* Minimum pages needed in order to stay on node */
7372 const unsigned long nr_pages = 1 << order;
7373 struct task_struct *p = current;
7374 unsigned int noreclaim_flag;
7375 struct scan_control sc = {
7376 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7377 .gfp_mask = current_gfp_context(gfp_mask),
7379 .priority = NODE_RECLAIM_PRIORITY,
7380 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7381 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7383 .reclaim_idx = gfp_zone(gfp_mask),
7385 unsigned long pflags;
7387 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7391 psi_memstall_enter(&pflags);
7392 delayacct_freepages_start();
7393 fs_reclaim_acquire(sc.gfp_mask);
7395 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7397 noreclaim_flag = memalloc_noreclaim_save();
7398 set_task_reclaim_state(p, &sc.reclaim_state);
7400 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7401 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7403 * Free memory by calling shrink node with increasing
7404 * priorities until we have enough memory freed.
7407 shrink_node(pgdat, &sc);
7408 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7411 set_task_reclaim_state(p, NULL);
7412 memalloc_noreclaim_restore(noreclaim_flag);
7413 fs_reclaim_release(sc.gfp_mask);
7414 psi_memstall_leave(&pflags);
7415 delayacct_freepages_end();
7417 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7419 return sc.nr_reclaimed >= nr_pages;
7422 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7427 * Node reclaim reclaims unmapped file backed pages and
7428 * slab pages if we are over the defined limits.
7430 * A small portion of unmapped file backed pages is needed for
7431 * file I/O otherwise pages read by file I/O will be immediately
7432 * thrown out if the node is overallocated. So we do not reclaim
7433 * if less than a specified percentage of the node is used by
7434 * unmapped file backed pages.
7436 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7437 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7438 pgdat->min_slab_pages)
7439 return NODE_RECLAIM_FULL;
7442 * Do not scan if the allocation should not be delayed.
7444 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7445 return NODE_RECLAIM_NOSCAN;
7448 * Only run node reclaim on the local node or on nodes that do not
7449 * have associated processors. This will favor the local processor
7450 * over remote processors and spread off node memory allocations
7451 * as wide as possible.
7453 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7454 return NODE_RECLAIM_NOSCAN;
7456 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7457 return NODE_RECLAIM_NOSCAN;
7459 ret = __node_reclaim(pgdat, gfp_mask, order);
7460 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7463 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7470 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7472 * @fbatch: Batch of lru folios to check.
7474 * Checks folios for evictability, if an evictable folio is in the unevictable
7475 * lru list, moves it to the appropriate evictable lru list. This function
7476 * should be only used for lru folios.
7478 void check_move_unevictable_folios(struct folio_batch *fbatch)
7480 struct lruvec *lruvec = NULL;
7485 for (i = 0; i < fbatch->nr; i++) {
7486 struct folio *folio = fbatch->folios[i];
7487 int nr_pages = folio_nr_pages(folio);
7489 pgscanned += nr_pages;
7491 /* block memcg migration while the folio moves between lrus */
7492 if (!folio_test_clear_lru(folio))
7495 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7496 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7497 lruvec_del_folio(lruvec, folio);
7498 folio_clear_unevictable(folio);
7499 lruvec_add_folio(lruvec, folio);
7500 pgrescued += nr_pages;
7502 folio_set_lru(folio);
7506 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7507 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7508 unlock_page_lruvec_irq(lruvec);
7509 } else if (pgscanned) {
7510 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7513 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);