2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 #include <linux/module.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
57 #ifdef CONFIG_TLS_DEVICE
64 static struct proto *saved_tcpv6_prot;
65 static DEFINE_MUTEX(tcpv6_prot_mutex);
66 static LIST_HEAD(device_list);
67 static DEFINE_MUTEX(device_mutex);
68 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
69 static struct proto_ops tls_sw_proto_ops;
71 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
73 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
75 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
81 DEFINE_WAIT_FUNC(wait, woken_wake_function);
83 add_wait_queue(sk_sleep(sk), &wait);
90 if (signal_pending(current)) {
91 rc = sock_intr_errno(*timeo);
95 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
98 remove_wait_queue(sk_sleep(sk), &wait);
102 int tls_push_sg(struct sock *sk,
103 struct tls_context *ctx,
104 struct scatterlist *sg,
108 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
112 int offset = first_offset;
114 size = sg->length - offset;
115 offset += sg->offset;
117 ctx->in_tcp_sendpages = true;
120 sendpage_flags = flags;
122 /* is sending application-limited? */
123 tcp_rate_check_app_limited(sk);
126 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
135 offset -= sg->offset;
136 ctx->partially_sent_offset = offset;
137 ctx->partially_sent_record = (void *)sg;
138 ctx->in_tcp_sendpages = false;
143 sk_mem_uncharge(sk, sg->length);
152 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
153 ctx->in_tcp_sendpages = false;
154 ctx->sk_write_space(sk);
159 static int tls_handle_open_record(struct sock *sk, int flags)
161 struct tls_context *ctx = tls_get_ctx(sk);
163 if (tls_is_pending_open_record(ctx))
164 return ctx->push_pending_record(sk, flags);
169 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
170 unsigned char *record_type)
172 struct cmsghdr *cmsg;
175 for_each_cmsghdr(cmsg, msg) {
176 if (!CMSG_OK(msg, cmsg))
178 if (cmsg->cmsg_level != SOL_TLS)
181 switch (cmsg->cmsg_type) {
182 case TLS_SET_RECORD_TYPE:
183 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
186 if (msg->msg_flags & MSG_MORE)
189 rc = tls_handle_open_record(sk, msg->msg_flags);
193 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
204 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
205 int flags, long *timeo)
207 struct scatterlist *sg;
210 if (!tls_is_partially_sent_record(ctx))
211 return ctx->push_pending_record(sk, flags);
213 sg = ctx->partially_sent_record;
214 offset = ctx->partially_sent_offset;
216 ctx->partially_sent_record = NULL;
217 return tls_push_sg(sk, ctx, sg, offset, flags);
220 static void tls_write_space(struct sock *sk)
222 struct tls_context *ctx = tls_get_ctx(sk);
224 /* We are already sending pages, ignore notification */
225 if (ctx->in_tcp_sendpages)
228 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
229 gfp_t sk_allocation = sk->sk_allocation;
233 sk->sk_allocation = GFP_ATOMIC;
234 rc = tls_push_pending_closed_record(sk, ctx,
238 sk->sk_allocation = sk_allocation;
244 ctx->sk_write_space(sk);
247 static void tls_sk_proto_close(struct sock *sk, long timeout)
249 struct tls_context *ctx = tls_get_ctx(sk);
250 long timeo = sock_sndtimeo(sk, 0);
251 void (*sk_proto_close)(struct sock *sk, long timeout);
252 bool free_ctx = false;
255 sk_proto_close = ctx->sk_proto_close;
257 if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
258 (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
260 goto skip_tx_cleanup;
263 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
264 tls_handle_open_record(sk, 0);
266 if (ctx->partially_sent_record) {
267 struct scatterlist *sg = ctx->partially_sent_record;
270 put_page(sg_page(sg));
271 sk_mem_uncharge(sk, sg->length);
279 /* We need these for tls_sw_fallback handling of other packets */
280 if (ctx->tx_conf == TLS_SW) {
281 kfree(ctx->tx.rec_seq);
283 tls_sw_free_resources_tx(sk);
286 if (ctx->rx_conf == TLS_SW) {
287 kfree(ctx->rx.rec_seq);
289 tls_sw_free_resources_rx(sk);
292 #ifdef CONFIG_TLS_DEVICE
293 if (ctx->tx_conf != TLS_HW) {
303 sk_proto_close(sk, timeout);
304 /* free ctx for TLS_HW_RECORD, used by tcp_set_state
305 * for sk->sk_prot->unhash [tls_hw_unhash]
311 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
315 struct tls_context *ctx = tls_get_ctx(sk);
316 struct tls_crypto_info *crypto_info;
319 if (get_user(len, optlen))
322 if (!optval || (len < sizeof(*crypto_info))) {
332 /* get user crypto info */
333 crypto_info = &ctx->crypto_send;
335 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
340 if (len == sizeof(*crypto_info)) {
341 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
346 switch (crypto_info->cipher_type) {
347 case TLS_CIPHER_AES_GCM_128: {
348 struct tls12_crypto_info_aes_gcm_128 *
349 crypto_info_aes_gcm_128 =
350 container_of(crypto_info,
351 struct tls12_crypto_info_aes_gcm_128,
354 if (len != sizeof(*crypto_info_aes_gcm_128)) {
359 memcpy(crypto_info_aes_gcm_128->iv,
360 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
361 TLS_CIPHER_AES_GCM_128_IV_SIZE);
362 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
363 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
365 if (copy_to_user(optval,
366 crypto_info_aes_gcm_128,
367 sizeof(*crypto_info_aes_gcm_128)))
379 static int do_tls_getsockopt(struct sock *sk, int optname,
380 char __user *optval, int __user *optlen)
386 rc = do_tls_getsockopt_tx(sk, optval, optlen);
395 static int tls_getsockopt(struct sock *sk, int level, int optname,
396 char __user *optval, int __user *optlen)
398 struct tls_context *ctx = tls_get_ctx(sk);
400 if (level != SOL_TLS)
401 return ctx->getsockopt(sk, level, optname, optval, optlen);
403 return do_tls_getsockopt(sk, optname, optval, optlen);
406 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
407 unsigned int optlen, int tx)
409 struct tls_crypto_info *crypto_info;
410 struct tls_context *ctx = tls_get_ctx(sk);
414 if (!optval || (optlen < sizeof(*crypto_info))) {
420 crypto_info = &ctx->crypto_send;
422 crypto_info = &ctx->crypto_recv;
424 /* Currently we don't support set crypto info more than one time */
425 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
430 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
433 goto err_crypto_info;
437 if (crypto_info->version != TLS_1_2_VERSION) {
439 goto err_crypto_info;
442 switch (crypto_info->cipher_type) {
443 case TLS_CIPHER_AES_GCM_128: {
444 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
446 goto err_crypto_info;
448 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
449 optlen - sizeof(*crypto_info));
452 goto err_crypto_info;
458 goto err_crypto_info;
462 #ifdef CONFIG_TLS_DEVICE
463 rc = tls_set_device_offload(sk, ctx);
469 rc = tls_set_sw_offload(sk, ctx, 1);
473 rc = tls_set_sw_offload(sk, ctx, 0);
478 goto err_crypto_info;
484 update_sk_prot(sk, ctx);
486 ctx->sk_write_space = sk->sk_write_space;
487 sk->sk_write_space = tls_write_space;
489 sk->sk_socket->ops = &tls_sw_proto_ops;
494 memset(crypto_info, 0, sizeof(*crypto_info));
499 static int do_tls_setsockopt(struct sock *sk, int optname,
500 char __user *optval, unsigned int optlen)
508 rc = do_tls_setsockopt_conf(sk, optval, optlen,
519 static int tls_setsockopt(struct sock *sk, int level, int optname,
520 char __user *optval, unsigned int optlen)
522 struct tls_context *ctx = tls_get_ctx(sk);
524 if (level != SOL_TLS)
525 return ctx->setsockopt(sk, level, optname, optval, optlen);
527 return do_tls_setsockopt(sk, optname, optval, optlen);
530 static struct tls_context *create_ctx(struct sock *sk)
532 struct inet_connection_sock *icsk = inet_csk(sk);
533 struct tls_context *ctx;
535 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
539 icsk->icsk_ulp_data = ctx;
543 static int tls_hw_prot(struct sock *sk)
545 struct tls_context *ctx;
546 struct tls_device *dev;
549 mutex_lock(&device_mutex);
550 list_for_each_entry(dev, &device_list, dev_list) {
551 if (dev->feature && dev->feature(dev)) {
552 ctx = create_ctx(sk);
556 ctx->hash = sk->sk_prot->hash;
557 ctx->unhash = sk->sk_prot->unhash;
558 ctx->sk_proto_close = sk->sk_prot->close;
559 ctx->rx_conf = TLS_HW_RECORD;
560 ctx->tx_conf = TLS_HW_RECORD;
561 update_sk_prot(sk, ctx);
567 mutex_unlock(&device_mutex);
571 static void tls_hw_unhash(struct sock *sk)
573 struct tls_context *ctx = tls_get_ctx(sk);
574 struct tls_device *dev;
576 mutex_lock(&device_mutex);
577 list_for_each_entry(dev, &device_list, dev_list) {
579 dev->unhash(dev, sk);
581 mutex_unlock(&device_mutex);
585 static int tls_hw_hash(struct sock *sk)
587 struct tls_context *ctx = tls_get_ctx(sk);
588 struct tls_device *dev;
592 mutex_lock(&device_mutex);
593 list_for_each_entry(dev, &device_list, dev_list) {
595 err |= dev->hash(dev, sk);
597 mutex_unlock(&device_mutex);
604 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
607 prot[TLS_BASE][TLS_BASE] = *base;
608 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
609 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
610 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
612 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
613 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
614 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
616 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
617 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
618 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
620 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
621 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
622 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
624 #ifdef CONFIG_TLS_DEVICE
625 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
626 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
627 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
629 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
630 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
631 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
634 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
635 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
636 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
637 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close;
640 static int tls_init(struct sock *sk)
642 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
643 struct tls_context *ctx;
649 /* The TLS ulp is currently supported only for TCP sockets
650 * in ESTABLISHED state.
651 * Supporting sockets in LISTEN state will require us
652 * to modify the accept implementation to clone rather then
653 * share the ulp context.
655 if (sk->sk_state != TCP_ESTABLISHED)
658 /* allocate tls context */
659 ctx = create_ctx(sk);
664 ctx->setsockopt = sk->sk_prot->setsockopt;
665 ctx->getsockopt = sk->sk_prot->getsockopt;
666 ctx->sk_proto_close = sk->sk_prot->close;
668 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
669 if (ip_ver == TLSV6 &&
670 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
671 mutex_lock(&tcpv6_prot_mutex);
672 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
673 build_protos(tls_prots[TLSV6], sk->sk_prot);
674 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
676 mutex_unlock(&tcpv6_prot_mutex);
679 ctx->tx_conf = TLS_BASE;
680 ctx->rx_conf = TLS_BASE;
681 update_sk_prot(sk, ctx);
686 void tls_register_device(struct tls_device *device)
688 mutex_lock(&device_mutex);
689 list_add_tail(&device->dev_list, &device_list);
690 mutex_unlock(&device_mutex);
692 EXPORT_SYMBOL(tls_register_device);
694 void tls_unregister_device(struct tls_device *device)
696 mutex_lock(&device_mutex);
697 list_del(&device->dev_list);
698 mutex_unlock(&device_mutex);
700 EXPORT_SYMBOL(tls_unregister_device);
702 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
705 .user_visible = true,
706 .owner = THIS_MODULE,
710 static int __init tls_register(void)
712 build_protos(tls_prots[TLSV4], &tcp_prot);
714 tls_sw_proto_ops = inet_stream_ops;
715 tls_sw_proto_ops.poll_mask = tls_sw_poll_mask;
716 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
718 #ifdef CONFIG_TLS_DEVICE
721 tcp_register_ulp(&tcp_tls_ulp_ops);
726 static void __exit tls_unregister(void)
728 tcp_unregister_ulp(&tcp_tls_ulp_ops);
729 #ifdef CONFIG_TLS_DEVICE
730 tls_device_cleanup();
734 module_init(tls_register);
735 module_exit(tls_unregister);