1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
9 * SMP-threaded, sysctl's added
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
16 * Further wakeup optimizations, documentation
19 * support for audit of ipc object properties and permission changes
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/compat.h>
74 #include <linux/slab.h>
75 #include <linux/spinlock.h>
76 #include <linux/init.h>
77 #include <linux/proc_fs.h>
78 #include <linux/time.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/rwsem.h>
85 #include <linux/nsproxy.h>
86 #include <linux/ipc_namespace.h>
87 #include <linux/sched/wake_q.h>
88 #include <linux/nospec.h>
90 #include <linux/uaccess.h>
93 /* One semaphore structure for each semaphore in the system. */
95 int semval; /* current value */
97 * PID of the process that last modified the semaphore. For
98 * Linux, specifically these are:
100 * - semctl, via SETVAL and SETALL.
101 * - at task exit when performing undo adjustments (see exit_sem).
104 spinlock_t lock; /* spinlock for fine-grained semtimedop */
105 struct list_head pending_alter; /* pending single-sop operations */
106 /* that alter the semaphore */
107 struct list_head pending_const; /* pending single-sop operations */
108 /* that do not alter the semaphore*/
109 time64_t sem_otime; /* candidate for sem_otime */
110 } ____cacheline_aligned_in_smp;
112 /* One sem_array data structure for each set of semaphores in the system. */
114 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
115 time64_t sem_ctime; /* create/last semctl() time */
116 struct list_head pending_alter; /* pending operations */
117 /* that alter the array */
118 struct list_head pending_const; /* pending complex operations */
119 /* that do not alter semvals */
120 struct list_head list_id; /* undo requests on this array */
121 int sem_nsems; /* no. of semaphores in array */
122 int complex_count; /* pending complex operations */
123 unsigned int use_global_lock;/* >0: global lock required */
126 } __randomize_layout;
128 /* One queue for each sleeping process in the system. */
130 struct list_head list; /* queue of pending operations */
131 struct task_struct *sleeper; /* this process */
132 struct sem_undo *undo; /* undo structure */
133 struct pid *pid; /* process id of requesting process */
134 int status; /* completion status of operation */
135 struct sembuf *sops; /* array of pending operations */
136 struct sembuf *blocking; /* the operation that blocked */
137 int nsops; /* number of operations */
138 bool alter; /* does *sops alter the array? */
139 bool dupsop; /* sops on more than one sem_num */
142 /* Each task has a list of undo requests. They are executed automatically
143 * when the process exits.
146 struct list_head list_proc; /* per-process list: *
147 * all undos from one process
149 struct rcu_head rcu; /* rcu struct for sem_undo */
150 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
151 struct list_head list_id; /* per semaphore array list:
152 * all undos for one array */
153 int semid; /* semaphore set identifier */
154 short *semadj; /* array of adjustments */
155 /* one per semaphore */
158 /* sem_undo_list controls shared access to the list of sem_undo structures
159 * that may be shared among all a CLONE_SYSVSEM task group.
161 struct sem_undo_list {
164 struct list_head list_proc;
168 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
170 static int newary(struct ipc_namespace *, struct ipc_params *);
171 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
172 #ifdef CONFIG_PROC_FS
173 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
176 #define SEMMSL_FAST 256 /* 512 bytes on stack */
177 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
180 * Switching from the mode suitable for simple ops
181 * to the mode for complex ops is costly. Therefore:
182 * use some hysteresis
184 #define USE_GLOBAL_LOCK_HYSTERESIS 10
188 * a) global sem_lock() for read/write
190 * sem_array.complex_count,
191 * sem_array.pending{_alter,_const},
194 * b) global or semaphore sem_lock() for read/write:
195 * sem_array.sems[i].pending_{const,alter}:
198 * sem_undo_list.list_proc:
199 * * undo_list->lock for write
202 * * global sem_lock() for write
203 * * either local or global sem_lock() for read.
206 * Most ordering is enforced by using spin_lock() and spin_unlock().
207 * The special case is use_global_lock:
208 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
209 * using smp_store_release().
210 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
211 * smp_load_acquire().
212 * Setting it from 0 to non-zero must be ordered with regards to
213 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
214 * is inside a spin_lock() and after a write from 0 to non-zero a
215 * spin_lock()+spin_unlock() is done.
218 #define sc_semmsl sem_ctls[0]
219 #define sc_semmns sem_ctls[1]
220 #define sc_semopm sem_ctls[2]
221 #define sc_semmni sem_ctls[3]
223 int sem_init_ns(struct ipc_namespace *ns)
225 ns->sc_semmsl = SEMMSL;
226 ns->sc_semmns = SEMMNS;
227 ns->sc_semopm = SEMOPM;
228 ns->sc_semmni = SEMMNI;
230 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
234 void sem_exit_ns(struct ipc_namespace *ns)
236 free_ipcs(ns, &sem_ids(ns), freeary);
237 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
238 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
242 int __init sem_init(void)
244 const int err = sem_init_ns(&init_ipc_ns);
246 ipc_init_proc_interface("sysvipc/sem",
247 " key semid perms nsems uid gid cuid cgid otime ctime\n",
248 IPC_SEM_IDS, sysvipc_sem_proc_show);
253 * unmerge_queues - unmerge queues, if possible.
254 * @sma: semaphore array
256 * The function unmerges the wait queues if complex_count is 0.
257 * It must be called prior to dropping the global semaphore array lock.
259 static void unmerge_queues(struct sem_array *sma)
261 struct sem_queue *q, *tq;
263 /* complex operations still around? */
264 if (sma->complex_count)
267 * We will switch back to simple mode.
268 * Move all pending operation back into the per-semaphore
271 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
273 curr = &sma->sems[q->sops[0].sem_num];
275 list_add_tail(&q->list, &curr->pending_alter);
277 INIT_LIST_HEAD(&sma->pending_alter);
281 * merge_queues - merge single semop queues into global queue
282 * @sma: semaphore array
284 * This function merges all per-semaphore queues into the global queue.
285 * It is necessary to achieve FIFO ordering for the pending single-sop
286 * operations when a multi-semop operation must sleep.
287 * Only the alter operations must be moved, the const operations can stay.
289 static void merge_queues(struct sem_array *sma)
292 for (i = 0; i < sma->sem_nsems; i++) {
293 struct sem *sem = &sma->sems[i];
295 list_splice_init(&sem->pending_alter, &sma->pending_alter);
299 static void sem_rcu_free(struct rcu_head *head)
301 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
302 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
304 security_sem_free(&sma->sem_perm);
309 * Enter the mode suitable for non-simple operations:
310 * Caller must own sem_perm.lock.
312 static void complexmode_enter(struct sem_array *sma)
317 if (sma->use_global_lock > 0) {
319 * We are already in global lock mode.
320 * Nothing to do, just reset the
321 * counter until we return to simple mode.
323 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
326 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
328 for (i = 0; i < sma->sem_nsems; i++) {
330 spin_lock(&sem->lock);
331 spin_unlock(&sem->lock);
336 * Try to leave the mode that disallows simple operations:
337 * Caller must own sem_perm.lock.
339 static void complexmode_tryleave(struct sem_array *sma)
341 if (sma->complex_count) {
342 /* Complex ops are sleeping.
343 * We must stay in complex mode
347 if (sma->use_global_lock == 1) {
349 * Immediately after setting use_global_lock to 0,
350 * a simple op can start. Thus: all memory writes
351 * performed by the current operation must be visible
352 * before we set use_global_lock to 0.
354 smp_store_release(&sma->use_global_lock, 0);
356 sma->use_global_lock--;
360 #define SEM_GLOBAL_LOCK (-1)
362 * If the request contains only one semaphore operation, and there are
363 * no complex transactions pending, lock only the semaphore involved.
364 * Otherwise, lock the entire semaphore array, since we either have
365 * multiple semaphores in our own semops, or we need to look at
366 * semaphores from other pending complex operations.
368 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
375 /* Complex operation - acquire a full lock */
376 ipc_lock_object(&sma->sem_perm);
378 /* Prevent parallel simple ops */
379 complexmode_enter(sma);
380 return SEM_GLOBAL_LOCK;
384 * Only one semaphore affected - try to optimize locking.
385 * Optimized locking is possible if no complex operation
386 * is either enqueued or processed right now.
388 * Both facts are tracked by use_global_mode.
390 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
391 sem = &sma->sems[idx];
394 * Initial check for use_global_lock. Just an optimization,
395 * no locking, no memory barrier.
397 if (!sma->use_global_lock) {
399 * It appears that no complex operation is around.
400 * Acquire the per-semaphore lock.
402 spin_lock(&sem->lock);
404 /* pairs with smp_store_release() */
405 if (!smp_load_acquire(&sma->use_global_lock)) {
406 /* fast path successful! */
407 return sops->sem_num;
409 spin_unlock(&sem->lock);
412 /* slow path: acquire the full lock */
413 ipc_lock_object(&sma->sem_perm);
415 if (sma->use_global_lock == 0) {
417 * The use_global_lock mode ended while we waited for
418 * sma->sem_perm.lock. Thus we must switch to locking
420 * Unlike in the fast path, there is no need to recheck
421 * sma->use_global_lock after we have acquired sem->lock:
422 * We own sma->sem_perm.lock, thus use_global_lock cannot
425 spin_lock(&sem->lock);
427 ipc_unlock_object(&sma->sem_perm);
428 return sops->sem_num;
431 * Not a false alarm, thus continue to use the global lock
432 * mode. No need for complexmode_enter(), this was done by
433 * the caller that has set use_global_mode to non-zero.
435 return SEM_GLOBAL_LOCK;
439 static inline void sem_unlock(struct sem_array *sma, int locknum)
441 if (locknum == SEM_GLOBAL_LOCK) {
443 complexmode_tryleave(sma);
444 ipc_unlock_object(&sma->sem_perm);
446 struct sem *sem = &sma->sems[locknum];
447 spin_unlock(&sem->lock);
452 * sem_lock_(check_) routines are called in the paths where the rwsem
455 * The caller holds the RCU read lock.
457 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
459 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
462 return ERR_CAST(ipcp);
464 return container_of(ipcp, struct sem_array, sem_perm);
467 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
470 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
473 return ERR_CAST(ipcp);
475 return container_of(ipcp, struct sem_array, sem_perm);
478 static inline void sem_lock_and_putref(struct sem_array *sma)
480 sem_lock(sma, NULL, -1);
481 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
484 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
486 ipc_rmid(&sem_ids(ns), &s->sem_perm);
489 static struct sem_array *sem_alloc(size_t nsems)
491 struct sem_array *sma;
494 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
497 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
498 sma = kvmalloc(size, GFP_KERNEL);
502 memset(sma, 0, size);
508 * newary - Create a new semaphore set
510 * @params: ptr to the structure that contains key, semflg and nsems
512 * Called with sem_ids.rwsem held (as a writer)
514 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
517 struct sem_array *sma;
518 key_t key = params->key;
519 int nsems = params->u.nsems;
520 int semflg = params->flg;
525 if (ns->used_sems + nsems > ns->sc_semmns)
528 sma = sem_alloc(nsems);
532 sma->sem_perm.mode = (semflg & S_IRWXUGO);
533 sma->sem_perm.key = key;
535 sma->sem_perm.security = NULL;
536 retval = security_sem_alloc(&sma->sem_perm);
542 for (i = 0; i < nsems; i++) {
543 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
544 INIT_LIST_HEAD(&sma->sems[i].pending_const);
545 spin_lock_init(&sma->sems[i].lock);
548 sma->complex_count = 0;
549 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
550 INIT_LIST_HEAD(&sma->pending_alter);
551 INIT_LIST_HEAD(&sma->pending_const);
552 INIT_LIST_HEAD(&sma->list_id);
553 sma->sem_nsems = nsems;
554 sma->sem_ctime = ktime_get_real_seconds();
556 /* ipc_addid() locks sma upon success. */
557 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
559 call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
562 ns->used_sems += nsems;
567 return sma->sem_perm.id;
572 * Called with sem_ids.rwsem and ipcp locked.
574 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
575 struct ipc_params *params)
577 struct sem_array *sma;
579 sma = container_of(ipcp, struct sem_array, sem_perm);
580 if (params->u.nsems > sma->sem_nsems)
586 long ksys_semget(key_t key, int nsems, int semflg)
588 struct ipc_namespace *ns;
589 static const struct ipc_ops sem_ops = {
591 .associate = security_sem_associate,
592 .more_checks = sem_more_checks,
594 struct ipc_params sem_params;
596 ns = current->nsproxy->ipc_ns;
598 if (nsems < 0 || nsems > ns->sc_semmsl)
601 sem_params.key = key;
602 sem_params.flg = semflg;
603 sem_params.u.nsems = nsems;
605 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
608 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
610 return ksys_semget(key, nsems, semflg);
614 * perform_atomic_semop[_slow] - Attempt to perform semaphore
615 * operations on a given array.
616 * @sma: semaphore array
617 * @q: struct sem_queue that describes the operation
619 * Caller blocking are as follows, based the value
620 * indicated by the semaphore operation (sem_op):
622 * (1) >0 never blocks.
623 * (2) 0 (wait-for-zero operation): semval is non-zero.
624 * (3) <0 attempting to decrement semval to a value smaller than zero.
626 * Returns 0 if the operation was possible.
627 * Returns 1 if the operation is impossible, the caller must sleep.
628 * Returns <0 for error codes.
630 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
632 int result, sem_op, nsops;
643 for (sop = sops; sop < sops + nsops; sop++) {
644 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
645 curr = &sma->sems[idx];
646 sem_op = sop->sem_op;
647 result = curr->semval;
649 if (!sem_op && result)
658 if (sop->sem_flg & SEM_UNDO) {
659 int undo = un->semadj[sop->sem_num] - sem_op;
660 /* Exceeding the undo range is an error. */
661 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
663 un->semadj[sop->sem_num] = undo;
666 curr->semval = result;
671 while (sop >= sops) {
672 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
685 if (sop->sem_flg & IPC_NOWAIT)
692 while (sop >= sops) {
693 sem_op = sop->sem_op;
694 sma->sems[sop->sem_num].semval -= sem_op;
695 if (sop->sem_flg & SEM_UNDO)
696 un->semadj[sop->sem_num] += sem_op;
703 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
705 int result, sem_op, nsops;
715 if (unlikely(q->dupsop))
716 return perform_atomic_semop_slow(sma, q);
719 * We scan the semaphore set twice, first to ensure that the entire
720 * operation can succeed, therefore avoiding any pointless writes
721 * to shared memory and having to undo such changes in order to block
722 * until the operations can go through.
724 for (sop = sops; sop < sops + nsops; sop++) {
725 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
727 curr = &sma->sems[idx];
728 sem_op = sop->sem_op;
729 result = curr->semval;
731 if (!sem_op && result)
732 goto would_block; /* wait-for-zero */
741 if (sop->sem_flg & SEM_UNDO) {
742 int undo = un->semadj[sop->sem_num] - sem_op;
744 /* Exceeding the undo range is an error. */
745 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
750 for (sop = sops; sop < sops + nsops; sop++) {
751 curr = &sma->sems[sop->sem_num];
752 sem_op = sop->sem_op;
753 result = curr->semval;
755 if (sop->sem_flg & SEM_UNDO) {
756 int undo = un->semadj[sop->sem_num] - sem_op;
758 un->semadj[sop->sem_num] = undo;
760 curr->semval += sem_op;
761 ipc_update_pid(&curr->sempid, q->pid);
768 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
771 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
772 struct wake_q_head *wake_q)
774 wake_q_add(wake_q, q->sleeper);
776 * Rely on the above implicit barrier, such that we can
777 * ensure that we hold reference to the task before setting
778 * q->status. Otherwise we could race with do_exit if the
779 * task is awoken by an external event before calling
782 WRITE_ONCE(q->status, error);
785 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
789 sma->complex_count--;
792 /** check_restart(sma, q)
793 * @sma: semaphore array
794 * @q: the operation that just completed
796 * update_queue is O(N^2) when it restarts scanning the whole queue of
797 * waiting operations. Therefore this function checks if the restart is
798 * really necessary. It is called after a previously waiting operation
799 * modified the array.
800 * Note that wait-for-zero operations are handled without restart.
802 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
804 /* pending complex alter operations are too difficult to analyse */
805 if (!list_empty(&sma->pending_alter))
808 /* we were a sleeping complex operation. Too difficult */
812 /* It is impossible that someone waits for the new value:
813 * - complex operations always restart.
814 * - wait-for-zero are handled seperately.
815 * - q is a previously sleeping simple operation that
816 * altered the array. It must be a decrement, because
817 * simple increments never sleep.
818 * - If there are older (higher priority) decrements
819 * in the queue, then they have observed the original
820 * semval value and couldn't proceed. The operation
821 * decremented to value - thus they won't proceed either.
827 * wake_const_ops - wake up non-alter tasks
828 * @sma: semaphore array.
829 * @semnum: semaphore that was modified.
830 * @wake_q: lockless wake-queue head.
832 * wake_const_ops must be called after a semaphore in a semaphore array
833 * was set to 0. If complex const operations are pending, wake_const_ops must
834 * be called with semnum = -1, as well as with the number of each modified
836 * The tasks that must be woken up are added to @wake_q. The return code
837 * is stored in q->pid.
838 * The function returns 1 if at least one operation was completed successfully.
840 static int wake_const_ops(struct sem_array *sma, int semnum,
841 struct wake_q_head *wake_q)
843 struct sem_queue *q, *tmp;
844 struct list_head *pending_list;
845 int semop_completed = 0;
848 pending_list = &sma->pending_const;
850 pending_list = &sma->sems[semnum].pending_const;
852 list_for_each_entry_safe(q, tmp, pending_list, list) {
853 int error = perform_atomic_semop(sma, q);
857 /* operation completed, remove from queue & wakeup */
858 unlink_queue(sma, q);
860 wake_up_sem_queue_prepare(q, error, wake_q);
865 return semop_completed;
869 * do_smart_wakeup_zero - wakeup all wait for zero tasks
870 * @sma: semaphore array
871 * @sops: operations that were performed
872 * @nsops: number of operations
873 * @wake_q: lockless wake-queue head
875 * Checks all required queue for wait-for-zero operations, based
876 * on the actual changes that were performed on the semaphore array.
877 * The function returns 1 if at least one operation was completed successfully.
879 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
880 int nsops, struct wake_q_head *wake_q)
883 int semop_completed = 0;
886 /* first: the per-semaphore queues, if known */
888 for (i = 0; i < nsops; i++) {
889 int num = sops[i].sem_num;
891 if (sma->sems[num].semval == 0) {
893 semop_completed |= wake_const_ops(sma, num, wake_q);
898 * No sops means modified semaphores not known.
899 * Assume all were changed.
901 for (i = 0; i < sma->sem_nsems; i++) {
902 if (sma->sems[i].semval == 0) {
904 semop_completed |= wake_const_ops(sma, i, wake_q);
909 * If one of the modified semaphores got 0,
910 * then check the global queue, too.
913 semop_completed |= wake_const_ops(sma, -1, wake_q);
915 return semop_completed;
920 * update_queue - look for tasks that can be completed.
921 * @sma: semaphore array.
922 * @semnum: semaphore that was modified.
923 * @wake_q: lockless wake-queue head.
925 * update_queue must be called after a semaphore in a semaphore array
926 * was modified. If multiple semaphores were modified, update_queue must
927 * be called with semnum = -1, as well as with the number of each modified
929 * The tasks that must be woken up are added to @wake_q. The return code
930 * is stored in q->pid.
931 * The function internally checks if const operations can now succeed.
933 * The function return 1 if at least one semop was completed successfully.
935 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
937 struct sem_queue *q, *tmp;
938 struct list_head *pending_list;
939 int semop_completed = 0;
942 pending_list = &sma->pending_alter;
944 pending_list = &sma->sems[semnum].pending_alter;
947 list_for_each_entry_safe(q, tmp, pending_list, list) {
950 /* If we are scanning the single sop, per-semaphore list of
951 * one semaphore and that semaphore is 0, then it is not
952 * necessary to scan further: simple increments
953 * that affect only one entry succeed immediately and cannot
954 * be in the per semaphore pending queue, and decrements
955 * cannot be successful if the value is already 0.
957 if (semnum != -1 && sma->sems[semnum].semval == 0)
960 error = perform_atomic_semop(sma, q);
962 /* Does q->sleeper still need to sleep? */
966 unlink_queue(sma, q);
972 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
973 restart = check_restart(sma, q);
976 wake_up_sem_queue_prepare(q, error, wake_q);
980 return semop_completed;
984 * set_semotime - set sem_otime
985 * @sma: semaphore array
986 * @sops: operations that modified the array, may be NULL
988 * sem_otime is replicated to avoid cache line trashing.
989 * This function sets one instance to the current time.
991 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
994 sma->sems[0].sem_otime = ktime_get_real_seconds();
996 sma->sems[sops[0].sem_num].sem_otime =
997 ktime_get_real_seconds();
1002 * do_smart_update - optimized update_queue
1003 * @sma: semaphore array
1004 * @sops: operations that were performed
1005 * @nsops: number of operations
1006 * @otime: force setting otime
1007 * @wake_q: lockless wake-queue head
1009 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1010 * based on the actual changes that were performed on the semaphore array.
1011 * Note that the function does not do the actual wake-up: the caller is
1012 * responsible for calling wake_up_q().
1013 * It is safe to perform this call after dropping all locks.
1015 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1016 int otime, struct wake_q_head *wake_q)
1020 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1022 if (!list_empty(&sma->pending_alter)) {
1023 /* semaphore array uses the global queue - just process it. */
1024 otime |= update_queue(sma, -1, wake_q);
1028 * No sops, thus the modified semaphores are not
1031 for (i = 0; i < sma->sem_nsems; i++)
1032 otime |= update_queue(sma, i, wake_q);
1035 * Check the semaphores that were increased:
1036 * - No complex ops, thus all sleeping ops are
1038 * - if we decreased the value, then any sleeping
1039 * semaphore ops wont be able to run: If the
1040 * previous value was too small, then the new
1041 * value will be too small, too.
1043 for (i = 0; i < nsops; i++) {
1044 if (sops[i].sem_op > 0) {
1045 otime |= update_queue(sma,
1046 sops[i].sem_num, wake_q);
1052 set_semotime(sma, sops);
1056 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1058 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1061 struct sembuf *sop = q->blocking;
1064 * Linux always (since 0.99.10) reported a task as sleeping on all
1065 * semaphores. This violates SUS, therefore it was changed to the
1066 * standard compliant behavior.
1067 * Give the administrators a chance to notice that an application
1068 * might misbehave because it relies on the Linux behavior.
1070 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1071 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1072 current->comm, task_pid_nr(current));
1074 if (sop->sem_num != semnum)
1077 if (count_zero && sop->sem_op == 0)
1079 if (!count_zero && sop->sem_op < 0)
1085 /* The following counts are associated to each semaphore:
1086 * semncnt number of tasks waiting on semval being nonzero
1087 * semzcnt number of tasks waiting on semval being zero
1089 * Per definition, a task waits only on the semaphore of the first semop
1090 * that cannot proceed, even if additional operation would block, too.
1092 static int count_semcnt(struct sem_array *sma, ushort semnum,
1095 struct list_head *l;
1096 struct sem_queue *q;
1100 /* First: check the simple operations. They are easy to evaluate */
1102 l = &sma->sems[semnum].pending_const;
1104 l = &sma->sems[semnum].pending_alter;
1106 list_for_each_entry(q, l, list) {
1107 /* all task on a per-semaphore list sleep on exactly
1113 /* Then: check the complex operations. */
1114 list_for_each_entry(q, &sma->pending_alter, list) {
1115 semcnt += check_qop(sma, semnum, q, count_zero);
1118 list_for_each_entry(q, &sma->pending_const, list) {
1119 semcnt += check_qop(sma, semnum, q, count_zero);
1125 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1126 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1127 * remains locked on exit.
1129 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1131 struct sem_undo *un, *tu;
1132 struct sem_queue *q, *tq;
1133 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1135 DEFINE_WAKE_Q(wake_q);
1137 /* Free the existing undo structures for this semaphore set. */
1138 ipc_assert_locked_object(&sma->sem_perm);
1139 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1140 list_del(&un->list_id);
1141 spin_lock(&un->ulp->lock);
1143 list_del_rcu(&un->list_proc);
1144 spin_unlock(&un->ulp->lock);
1148 /* Wake up all pending processes and let them fail with EIDRM. */
1149 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1150 unlink_queue(sma, q);
1151 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1154 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1155 unlink_queue(sma, q);
1156 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1158 for (i = 0; i < sma->sem_nsems; i++) {
1159 struct sem *sem = &sma->sems[i];
1160 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1161 unlink_queue(sma, q);
1162 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1164 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1165 unlink_queue(sma, q);
1166 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1168 ipc_update_pid(&sem->sempid, NULL);
1171 /* Remove the semaphore set from the IDR */
1173 sem_unlock(sma, -1);
1177 ns->used_sems -= sma->sem_nsems;
1178 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1181 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1185 return copy_to_user(buf, in, sizeof(*in));
1188 struct semid_ds out;
1190 memset(&out, 0, sizeof(out));
1192 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1194 out.sem_otime = in->sem_otime;
1195 out.sem_ctime = in->sem_ctime;
1196 out.sem_nsems = in->sem_nsems;
1198 return copy_to_user(buf, &out, sizeof(out));
1205 static time64_t get_semotime(struct sem_array *sma)
1210 res = sma->sems[0].sem_otime;
1211 for (i = 1; i < sma->sem_nsems; i++) {
1212 time64_t to = sma->sems[i].sem_otime;
1220 static int semctl_stat(struct ipc_namespace *ns, int semid,
1221 int cmd, struct semid64_ds *semid64)
1223 struct sem_array *sma;
1228 memset(semid64, 0, sizeof(*semid64));
1231 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1232 sma = sem_obtain_object(ns, semid);
1237 id = sma->sem_perm.id;
1238 } else { /* IPC_STAT */
1239 sma = sem_obtain_object_check(ns, semid);
1246 /* see comment for SHM_STAT_ANY */
1247 if (cmd == SEM_STAT_ANY)
1248 audit_ipc_obj(&sma->sem_perm);
1251 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1255 err = security_sem_semctl(&sma->sem_perm, cmd);
1259 ipc_lock_object(&sma->sem_perm);
1261 if (!ipc_valid_object(&sma->sem_perm)) {
1262 ipc_unlock_object(&sma->sem_perm);
1267 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1268 semotime = get_semotime(sma);
1269 semid64->sem_otime = semotime;
1270 semid64->sem_ctime = sma->sem_ctime;
1271 #ifndef CONFIG_64BIT
1272 semid64->sem_otime_high = semotime >> 32;
1273 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1275 semid64->sem_nsems = sma->sem_nsems;
1277 ipc_unlock_object(&sma->sem_perm);
1286 static int semctl_info(struct ipc_namespace *ns, int semid,
1287 int cmd, void __user *p)
1289 struct seminfo seminfo;
1293 err = security_sem_semctl(NULL, cmd);
1297 memset(&seminfo, 0, sizeof(seminfo));
1298 seminfo.semmni = ns->sc_semmni;
1299 seminfo.semmns = ns->sc_semmns;
1300 seminfo.semmsl = ns->sc_semmsl;
1301 seminfo.semopm = ns->sc_semopm;
1302 seminfo.semvmx = SEMVMX;
1303 seminfo.semmnu = SEMMNU;
1304 seminfo.semmap = SEMMAP;
1305 seminfo.semume = SEMUME;
1306 down_read(&sem_ids(ns).rwsem);
1307 if (cmd == SEM_INFO) {
1308 seminfo.semusz = sem_ids(ns).in_use;
1309 seminfo.semaem = ns->used_sems;
1311 seminfo.semusz = SEMUSZ;
1312 seminfo.semaem = SEMAEM;
1314 max_id = ipc_get_maxid(&sem_ids(ns));
1315 up_read(&sem_ids(ns).rwsem);
1316 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1318 return (max_id < 0) ? 0 : max_id;
1321 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1324 struct sem_undo *un;
1325 struct sem_array *sma;
1328 DEFINE_WAKE_Q(wake_q);
1330 if (val > SEMVMX || val < 0)
1334 sma = sem_obtain_object_check(ns, semid);
1337 return PTR_ERR(sma);
1340 if (semnum < 0 || semnum >= sma->sem_nsems) {
1346 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1351 err = security_sem_semctl(&sma->sem_perm, SETVAL);
1357 sem_lock(sma, NULL, -1);
1359 if (!ipc_valid_object(&sma->sem_perm)) {
1360 sem_unlock(sma, -1);
1365 semnum = array_index_nospec(semnum, sma->sem_nsems);
1366 curr = &sma->sems[semnum];
1368 ipc_assert_locked_object(&sma->sem_perm);
1369 list_for_each_entry(un, &sma->list_id, list_id)
1370 un->semadj[semnum] = 0;
1373 ipc_update_pid(&curr->sempid, task_tgid(current));
1374 sma->sem_ctime = ktime_get_real_seconds();
1375 /* maybe some queued-up processes were waiting for this */
1376 do_smart_update(sma, NULL, 0, 0, &wake_q);
1377 sem_unlock(sma, -1);
1383 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1384 int cmd, void __user *p)
1386 struct sem_array *sma;
1389 ushort fast_sem_io[SEMMSL_FAST];
1390 ushort *sem_io = fast_sem_io;
1391 DEFINE_WAKE_Q(wake_q);
1394 sma = sem_obtain_object_check(ns, semid);
1397 return PTR_ERR(sma);
1400 nsems = sma->sem_nsems;
1403 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1404 goto out_rcu_wakeup;
1406 err = security_sem_semctl(&sma->sem_perm, cmd);
1408 goto out_rcu_wakeup;
1414 ushort __user *array = p;
1417 sem_lock(sma, NULL, -1);
1418 if (!ipc_valid_object(&sma->sem_perm)) {
1422 if (nsems > SEMMSL_FAST) {
1423 if (!ipc_rcu_getref(&sma->sem_perm)) {
1427 sem_unlock(sma, -1);
1429 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1431 if (sem_io == NULL) {
1432 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1437 sem_lock_and_putref(sma);
1438 if (!ipc_valid_object(&sma->sem_perm)) {
1443 for (i = 0; i < sma->sem_nsems; i++)
1444 sem_io[i] = sma->sems[i].semval;
1445 sem_unlock(sma, -1);
1448 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1455 struct sem_undo *un;
1457 if (!ipc_rcu_getref(&sma->sem_perm)) {
1459 goto out_rcu_wakeup;
1463 if (nsems > SEMMSL_FAST) {
1464 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1466 if (sem_io == NULL) {
1467 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1472 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1473 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1478 for (i = 0; i < nsems; i++) {
1479 if (sem_io[i] > SEMVMX) {
1480 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1486 sem_lock_and_putref(sma);
1487 if (!ipc_valid_object(&sma->sem_perm)) {
1492 for (i = 0; i < nsems; i++) {
1493 sma->sems[i].semval = sem_io[i];
1494 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1497 ipc_assert_locked_object(&sma->sem_perm);
1498 list_for_each_entry(un, &sma->list_id, list_id) {
1499 for (i = 0; i < nsems; i++)
1502 sma->sem_ctime = ktime_get_real_seconds();
1503 /* maybe some queued-up processes were waiting for this */
1504 do_smart_update(sma, NULL, 0, 0, &wake_q);
1508 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1511 if (semnum < 0 || semnum >= nsems)
1512 goto out_rcu_wakeup;
1514 sem_lock(sma, NULL, -1);
1515 if (!ipc_valid_object(&sma->sem_perm)) {
1520 semnum = array_index_nospec(semnum, nsems);
1521 curr = &sma->sems[semnum];
1528 err = pid_vnr(curr->sempid);
1531 err = count_semcnt(sma, semnum, 0);
1534 err = count_semcnt(sma, semnum, 1);
1539 sem_unlock(sma, -1);
1544 if (sem_io != fast_sem_io)
1549 static inline unsigned long
1550 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1554 if (copy_from_user(out, buf, sizeof(*out)))
1559 struct semid_ds tbuf_old;
1561 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1564 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1565 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1566 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1576 * This function handles some semctl commands which require the rwsem
1577 * to be held in write mode.
1578 * NOTE: no locks must be held, the rwsem is taken inside this function.
1580 static int semctl_down(struct ipc_namespace *ns, int semid,
1581 int cmd, struct semid64_ds *semid64)
1583 struct sem_array *sma;
1585 struct kern_ipc_perm *ipcp;
1587 down_write(&sem_ids(ns).rwsem);
1590 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1591 &semid64->sem_perm, 0);
1593 err = PTR_ERR(ipcp);
1597 sma = container_of(ipcp, struct sem_array, sem_perm);
1599 err = security_sem_semctl(&sma->sem_perm, cmd);
1605 sem_lock(sma, NULL, -1);
1606 /* freeary unlocks the ipc object and rcu */
1610 sem_lock(sma, NULL, -1);
1611 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1614 sma->sem_ctime = ktime_get_real_seconds();
1622 sem_unlock(sma, -1);
1626 up_write(&sem_ids(ns).rwsem);
1630 long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg)
1633 struct ipc_namespace *ns;
1634 void __user *p = (void __user *)arg;
1635 struct semid64_ds semid64;
1641 version = ipc_parse_version(&cmd);
1642 ns = current->nsproxy->ipc_ns;
1647 return semctl_info(ns, semid, cmd, p);
1651 err = semctl_stat(ns, semid, cmd, &semid64);
1654 if (copy_semid_to_user(p, &semid64, version))
1663 return semctl_main(ns, semid, semnum, cmd, p);
1666 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1667 /* big-endian 64bit */
1670 /* 32bit or little-endian 64bit */
1673 return semctl_setval(ns, semid, semnum, val);
1676 if (copy_semid_from_user(&semid64, p, version))
1679 return semctl_down(ns, semid, cmd, &semid64);
1685 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1687 return ksys_semctl(semid, semnum, cmd, arg);
1690 #ifdef CONFIG_COMPAT
1692 struct compat_semid_ds {
1693 struct compat_ipc_perm sem_perm;
1694 compat_time_t sem_otime;
1695 compat_time_t sem_ctime;
1696 compat_uptr_t sem_base;
1697 compat_uptr_t sem_pending;
1698 compat_uptr_t sem_pending_last;
1700 unsigned short sem_nsems;
1703 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1706 memset(out, 0, sizeof(*out));
1707 if (version == IPC_64) {
1708 struct compat_semid64_ds __user *p = buf;
1709 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1711 struct compat_semid_ds __user *p = buf;
1712 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1716 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1719 if (version == IPC_64) {
1720 struct compat_semid64_ds v;
1721 memset(&v, 0, sizeof(v));
1722 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1723 v.sem_otime = lower_32_bits(in->sem_otime);
1724 v.sem_otime_high = upper_32_bits(in->sem_otime);
1725 v.sem_ctime = lower_32_bits(in->sem_ctime);
1726 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1727 v.sem_nsems = in->sem_nsems;
1728 return copy_to_user(buf, &v, sizeof(v));
1730 struct compat_semid_ds v;
1731 memset(&v, 0, sizeof(v));
1732 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1733 v.sem_otime = in->sem_otime;
1734 v.sem_ctime = in->sem_ctime;
1735 v.sem_nsems = in->sem_nsems;
1736 return copy_to_user(buf, &v, sizeof(v));
1740 long compat_ksys_semctl(int semid, int semnum, int cmd, int arg)
1742 void __user *p = compat_ptr(arg);
1743 struct ipc_namespace *ns;
1744 struct semid64_ds semid64;
1745 int version = compat_ipc_parse_version(&cmd);
1748 ns = current->nsproxy->ipc_ns;
1753 switch (cmd & (~IPC_64)) {
1756 return semctl_info(ns, semid, cmd, p);
1760 err = semctl_stat(ns, semid, cmd, &semid64);
1763 if (copy_compat_semid_to_user(p, &semid64, version))
1772 return semctl_main(ns, semid, semnum, cmd, p);
1774 return semctl_setval(ns, semid, semnum, arg);
1776 if (copy_compat_semid_from_user(&semid64, p, version))
1780 return semctl_down(ns, semid, cmd, &semid64);
1786 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1788 return compat_ksys_semctl(semid, semnum, cmd, arg);
1792 /* If the task doesn't already have a undo_list, then allocate one
1793 * here. We guarantee there is only one thread using this undo list,
1794 * and current is THE ONE
1796 * If this allocation and assignment succeeds, but later
1797 * portions of this code fail, there is no need to free the sem_undo_list.
1798 * Just let it stay associated with the task, and it'll be freed later
1801 * This can block, so callers must hold no locks.
1803 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1805 struct sem_undo_list *undo_list;
1807 undo_list = current->sysvsem.undo_list;
1809 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1810 if (undo_list == NULL)
1812 spin_lock_init(&undo_list->lock);
1813 refcount_set(&undo_list->refcnt, 1);
1814 INIT_LIST_HEAD(&undo_list->list_proc);
1816 current->sysvsem.undo_list = undo_list;
1818 *undo_listp = undo_list;
1822 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1824 struct sem_undo *un;
1826 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1827 if (un->semid == semid)
1833 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1835 struct sem_undo *un;
1837 assert_spin_locked(&ulp->lock);
1839 un = __lookup_undo(ulp, semid);
1841 list_del_rcu(&un->list_proc);
1842 list_add_rcu(&un->list_proc, &ulp->list_proc);
1848 * find_alloc_undo - lookup (and if not present create) undo array
1850 * @semid: semaphore array id
1852 * The function looks up (and if not present creates) the undo structure.
1853 * The size of the undo structure depends on the size of the semaphore
1854 * array, thus the alloc path is not that straightforward.
1855 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1856 * performs a rcu_read_lock().
1858 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1860 struct sem_array *sma;
1861 struct sem_undo_list *ulp;
1862 struct sem_undo *un, *new;
1865 error = get_undo_list(&ulp);
1867 return ERR_PTR(error);
1870 spin_lock(&ulp->lock);
1871 un = lookup_undo(ulp, semid);
1872 spin_unlock(&ulp->lock);
1873 if (likely(un != NULL))
1876 /* no undo structure around - allocate one. */
1877 /* step 1: figure out the size of the semaphore array */
1878 sma = sem_obtain_object_check(ns, semid);
1881 return ERR_CAST(sma);
1884 nsems = sma->sem_nsems;
1885 if (!ipc_rcu_getref(&sma->sem_perm)) {
1887 un = ERR_PTR(-EIDRM);
1892 /* step 2: allocate new undo structure */
1893 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1895 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1896 return ERR_PTR(-ENOMEM);
1899 /* step 3: Acquire the lock on semaphore array */
1901 sem_lock_and_putref(sma);
1902 if (!ipc_valid_object(&sma->sem_perm)) {
1903 sem_unlock(sma, -1);
1906 un = ERR_PTR(-EIDRM);
1909 spin_lock(&ulp->lock);
1912 * step 4: check for races: did someone else allocate the undo struct?
1914 un = lookup_undo(ulp, semid);
1919 /* step 5: initialize & link new undo structure */
1920 new->semadj = (short *) &new[1];
1923 assert_spin_locked(&ulp->lock);
1924 list_add_rcu(&new->list_proc, &ulp->list_proc);
1925 ipc_assert_locked_object(&sma->sem_perm);
1926 list_add(&new->list_id, &sma->list_id);
1930 spin_unlock(&ulp->lock);
1931 sem_unlock(sma, -1);
1936 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1937 unsigned nsops, const struct timespec64 *timeout)
1939 int error = -EINVAL;
1940 struct sem_array *sma;
1941 struct sembuf fast_sops[SEMOPM_FAST];
1942 struct sembuf *sops = fast_sops, *sop;
1943 struct sem_undo *un;
1945 bool undos = false, alter = false, dupsop = false;
1946 struct sem_queue queue;
1947 unsigned long dup = 0, jiffies_left = 0;
1948 struct ipc_namespace *ns;
1950 ns = current->nsproxy->ipc_ns;
1952 if (nsops < 1 || semid < 0)
1954 if (nsops > ns->sc_semopm)
1956 if (nsops > SEMOPM_FAST) {
1957 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
1962 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1968 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1969 timeout->tv_nsec >= 1000000000L) {
1973 jiffies_left = timespec64_to_jiffies(timeout);
1977 for (sop = sops; sop < sops + nsops; sop++) {
1978 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1980 if (sop->sem_num >= max)
1982 if (sop->sem_flg & SEM_UNDO)
1986 * There was a previous alter access that appears
1987 * to have accessed the same semaphore, thus use
1988 * the dupsop logic. "appears", because the detection
1989 * can only check % BITS_PER_LONG.
1993 if (sop->sem_op != 0) {
2000 /* On success, find_alloc_undo takes the rcu_read_lock */
2001 un = find_alloc_undo(ns, semid);
2003 error = PTR_ERR(un);
2011 sma = sem_obtain_object_check(ns, semid);
2014 error = PTR_ERR(sma);
2019 if (max >= sma->sem_nsems) {
2025 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2030 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2037 locknum = sem_lock(sma, sops, nsops);
2039 * We eventually might perform the following check in a lockless
2040 * fashion, considering ipc_valid_object() locking constraints.
2041 * If nsops == 1 and there is no contention for sem_perm.lock, then
2042 * only a per-semaphore lock is held and it's OK to proceed with the
2043 * check below. More details on the fine grained locking scheme
2044 * entangled here and why it's RMID race safe on comments at sem_lock()
2046 if (!ipc_valid_object(&sma->sem_perm))
2047 goto out_unlock_free;
2049 * semid identifiers are not unique - find_alloc_undo may have
2050 * allocated an undo structure, it was invalidated by an RMID
2051 * and now a new array with received the same id. Check and fail.
2052 * This case can be detected checking un->semid. The existence of
2053 * "un" itself is guaranteed by rcu.
2055 if (un && un->semid == -1)
2056 goto out_unlock_free;
2059 queue.nsops = nsops;
2061 queue.pid = task_tgid(current);
2062 queue.alter = alter;
2063 queue.dupsop = dupsop;
2065 error = perform_atomic_semop(sma, &queue);
2066 if (error == 0) { /* non-blocking succesfull path */
2067 DEFINE_WAKE_Q(wake_q);
2070 * If the operation was successful, then do
2071 * the required updates.
2074 do_smart_update(sma, sops, nsops, 1, &wake_q);
2076 set_semotime(sma, sops);
2078 sem_unlock(sma, locknum);
2084 if (error < 0) /* non-blocking error path */
2085 goto out_unlock_free;
2088 * We need to sleep on this operation, so we put the current
2089 * task into the pending queue and go to sleep.
2093 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2094 curr = &sma->sems[idx];
2097 if (sma->complex_count) {
2098 list_add_tail(&queue.list,
2099 &sma->pending_alter);
2102 list_add_tail(&queue.list,
2103 &curr->pending_alter);
2106 list_add_tail(&queue.list, &curr->pending_const);
2109 if (!sma->complex_count)
2113 list_add_tail(&queue.list, &sma->pending_alter);
2115 list_add_tail(&queue.list, &sma->pending_const);
2117 sma->complex_count++;
2121 queue.status = -EINTR;
2122 queue.sleeper = current;
2124 __set_current_state(TASK_INTERRUPTIBLE);
2125 sem_unlock(sma, locknum);
2129 jiffies_left = schedule_timeout(jiffies_left);
2134 * fastpath: the semop has completed, either successfully or
2135 * not, from the syscall pov, is quite irrelevant to us at this
2136 * point; we're done.
2138 * We _do_ care, nonetheless, about being awoken by a signal or
2139 * spuriously. The queue.status is checked again in the
2140 * slowpath (aka after taking sem_lock), such that we can detect
2141 * scenarios where we were awakened externally, during the
2142 * window between wake_q_add() and wake_up_q().
2144 error = READ_ONCE(queue.status);
2145 if (error != -EINTR) {
2147 * User space could assume that semop() is a memory
2148 * barrier: Without the mb(), the cpu could
2149 * speculatively read in userspace stale data that was
2150 * overwritten by the previous owner of the semaphore.
2157 locknum = sem_lock(sma, sops, nsops);
2159 if (!ipc_valid_object(&sma->sem_perm))
2160 goto out_unlock_free;
2162 error = READ_ONCE(queue.status);
2165 * If queue.status != -EINTR we are woken up by another process.
2166 * Leave without unlink_queue(), but with sem_unlock().
2168 if (error != -EINTR)
2169 goto out_unlock_free;
2172 * If an interrupt occurred we have to clean up the queue.
2174 if (timeout && jiffies_left == 0)
2176 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2178 unlink_queue(sma, &queue);
2181 sem_unlock(sma, locknum);
2184 if (sops != fast_sops)
2189 long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2190 unsigned int nsops, const struct __kernel_timespec __user *timeout)
2193 struct timespec64 ts;
2194 if (get_timespec64(&ts, timeout))
2196 return do_semtimedop(semid, tsops, nsops, &ts);
2198 return do_semtimedop(semid, tsops, nsops, NULL);
2201 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2202 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2204 return ksys_semtimedop(semid, tsops, nsops, timeout);
2207 #ifdef CONFIG_COMPAT_32BIT_TIME
2208 long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2210 const struct compat_timespec __user *timeout)
2213 struct timespec64 ts;
2214 if (compat_get_timespec64(&ts, timeout))
2216 return do_semtimedop(semid, tsems, nsops, &ts);
2218 return do_semtimedop(semid, tsems, nsops, NULL);
2221 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2222 unsigned int, nsops,
2223 const struct compat_timespec __user *, timeout)
2225 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2229 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2232 return do_semtimedop(semid, tsops, nsops, NULL);
2235 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2236 * parent and child tasks.
2239 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2241 struct sem_undo_list *undo_list;
2244 if (clone_flags & CLONE_SYSVSEM) {
2245 error = get_undo_list(&undo_list);
2248 refcount_inc(&undo_list->refcnt);
2249 tsk->sysvsem.undo_list = undo_list;
2251 tsk->sysvsem.undo_list = NULL;
2257 * add semadj values to semaphores, free undo structures.
2258 * undo structures are not freed when semaphore arrays are destroyed
2259 * so some of them may be out of date.
2260 * IMPLEMENTATION NOTE: There is some confusion over whether the
2261 * set of adjustments that needs to be done should be done in an atomic
2262 * manner or not. That is, if we are attempting to decrement the semval
2263 * should we queue up and wait until we can do so legally?
2264 * The original implementation attempted to do this (queue and wait).
2265 * The current implementation does not do so. The POSIX standard
2266 * and SVID should be consulted to determine what behavior is mandated.
2268 void exit_sem(struct task_struct *tsk)
2270 struct sem_undo_list *ulp;
2272 ulp = tsk->sysvsem.undo_list;
2275 tsk->sysvsem.undo_list = NULL;
2277 if (!refcount_dec_and_test(&ulp->refcnt))
2281 struct sem_array *sma;
2282 struct sem_undo *un;
2284 DEFINE_WAKE_Q(wake_q);
2289 un = list_entry_rcu(ulp->list_proc.next,
2290 struct sem_undo, list_proc);
2291 if (&un->list_proc == &ulp->list_proc) {
2293 * We must wait for freeary() before freeing this ulp,
2294 * in case we raced with last sem_undo. There is a small
2295 * possibility where we exit while freeary() didn't
2296 * finish unlocking sem_undo_list.
2298 spin_lock(&ulp->lock);
2299 spin_unlock(&ulp->lock);
2303 spin_lock(&ulp->lock);
2305 spin_unlock(&ulp->lock);
2307 /* exit_sem raced with IPC_RMID, nothing to do */
2313 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2314 /* exit_sem raced with IPC_RMID, nothing to do */
2320 sem_lock(sma, NULL, -1);
2321 /* exit_sem raced with IPC_RMID, nothing to do */
2322 if (!ipc_valid_object(&sma->sem_perm)) {
2323 sem_unlock(sma, -1);
2327 un = __lookup_undo(ulp, semid);
2329 /* exit_sem raced with IPC_RMID+semget() that created
2330 * exactly the same semid. Nothing to do.
2332 sem_unlock(sma, -1);
2337 /* remove un from the linked lists */
2338 ipc_assert_locked_object(&sma->sem_perm);
2339 list_del(&un->list_id);
2341 /* we are the last process using this ulp, acquiring ulp->lock
2342 * isn't required. Besides that, we are also protected against
2343 * IPC_RMID as we hold sma->sem_perm lock now
2345 list_del_rcu(&un->list_proc);
2347 /* perform adjustments registered in un */
2348 for (i = 0; i < sma->sem_nsems; i++) {
2349 struct sem *semaphore = &sma->sems[i];
2350 if (un->semadj[i]) {
2351 semaphore->semval += un->semadj[i];
2353 * Range checks of the new semaphore value,
2354 * not defined by sus:
2355 * - Some unices ignore the undo entirely
2356 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2357 * - some cap the value (e.g. FreeBSD caps
2358 * at 0, but doesn't enforce SEMVMX)
2360 * Linux caps the semaphore value, both at 0
2365 if (semaphore->semval < 0)
2366 semaphore->semval = 0;
2367 if (semaphore->semval > SEMVMX)
2368 semaphore->semval = SEMVMX;
2369 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2372 /* maybe some queued-up processes were waiting for this */
2373 do_smart_update(sma, NULL, 0, 1, &wake_q);
2374 sem_unlock(sma, -1);
2383 #ifdef CONFIG_PROC_FS
2384 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2386 struct user_namespace *user_ns = seq_user_ns(s);
2387 struct kern_ipc_perm *ipcp = it;
2388 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2392 * The proc interface isn't aware of sem_lock(), it calls
2393 * ipc_lock_object() directly (in sysvipc_find_ipc).
2394 * In order to stay compatible with sem_lock(), we must
2395 * enter / leave complex_mode.
2397 complexmode_enter(sma);
2399 sem_otime = get_semotime(sma);
2402 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2407 from_kuid_munged(user_ns, sma->sem_perm.uid),
2408 from_kgid_munged(user_ns, sma->sem_perm.gid),
2409 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2410 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2414 complexmode_tryleave(sma);