1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
6 #include <linux/log2.h>
7 #include <linux/iversion.h>
11 #include "xfs_shared.h"
12 #include "xfs_format.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans_resv.h"
16 #include "xfs_mount.h"
17 #include "xfs_defer.h"
18 #include "xfs_inode.h"
19 #include "xfs_da_format.h"
20 #include "xfs_da_btree.h"
22 #include "xfs_attr_sf.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_trans.h"
26 #include "xfs_buf_item.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_ialloc.h"
30 #include "xfs_bmap_util.h"
31 #include "xfs_errortag.h"
32 #include "xfs_error.h"
33 #include "xfs_quota.h"
34 #include "xfs_filestream.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trace.h"
37 #include "xfs_icache.h"
38 #include "xfs_symlink.h"
39 #include "xfs_trans_priv.h"
41 #include "xfs_bmap_btree.h"
42 #include "xfs_reflink.h"
43 #include "xfs_dir2_priv.h"
45 kmem_zone_t *xfs_inode_zone;
48 * Used in xfs_itruncate_extents(). This is the maximum number of extents
49 * freed from a file in a single transaction.
51 #define XFS_ITRUNC_MAX_EXTENTS 2
53 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
54 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
55 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
58 * helper function to extract extent size hint from inode
64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 return ip->i_d.di_extsize;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return ip->i_mount->m_sb.sb_rextsize;
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
78 xfs_get_cowextsz_hint(
84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 a = ip->i_d.di_cowextsize;
86 b = xfs_get_extsz_hint(ip);
90 return XFS_DEFAULT_COWEXTSZ_HINT;
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
106 * The functions return a value which should be given to the corresponding
107 * xfs_iunlock() call.
110 xfs_ilock_data_map_shared(
111 struct xfs_inode *ip)
113 uint lock_mode = XFS_ILOCK_SHARED;
115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
117 lock_mode = XFS_ILOCK_EXCL;
118 xfs_ilock(ip, lock_mode);
123 xfs_ilock_attr_map_shared(
124 struct xfs_inode *ip)
126 uint lock_mode = XFS_ILOCK_SHARED;
128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
138 * various combinations of the locks to be obtained.
140 * The 3 locks should always be ordered so that the IO lock is obtained first,
141 * the mmap lock second and the ilock last in order to prevent deadlock.
143 * Basic locking order:
145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
147 * mmap_sem locking order:
149 * i_rwsem -> page lock -> mmap_sem
150 * mmap_sem -> i_mmap_lock -> page_lock
152 * The difference in mmap_sem locking order mean that we cannot hold the
153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155 * in get_user_pages() to map the user pages into the kernel address space for
156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157 * page faults already hold the mmap_sem.
159 * Hence to serialise fully against both syscall and mmap based IO, we need to
160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161 * taken in places where we need to invalidate the page cache in a race
162 * free manner (e.g. truncate, hole punch and other extent manipulation
170 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
173 * You can't set both SHARED and EXCL for the same lock,
174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
185 if (lock_flags & XFS_IOLOCK_EXCL) {
186 down_write_nested(&VFS_I(ip)->i_rwsem,
187 XFS_IOLOCK_DEP(lock_flags));
188 } else if (lock_flags & XFS_IOLOCK_SHARED) {
189 down_read_nested(&VFS_I(ip)->i_rwsem,
190 XFS_IOLOCK_DEP(lock_flags));
193 if (lock_flags & XFS_MMAPLOCK_EXCL)
194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
198 if (lock_flags & XFS_ILOCK_EXCL)
199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 else if (lock_flags & XFS_ILOCK_SHARED)
201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
205 * This is just like xfs_ilock(), except that the caller
206 * is guaranteed not to sleep. It returns 1 if it gets
207 * the requested locks and 0 otherwise. If the IO lock is
208 * obtained but the inode lock cannot be, then the IO lock
209 * is dropped before returning.
211 * ip -- the inode being locked
212 * lock_flags -- this parameter indicates the inode's locks to be
213 * to be locked. See the comment for xfs_ilock() for a list
221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
224 * You can't set both SHARED and EXCL for the same lock,
225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
236 if (lock_flags & XFS_IOLOCK_EXCL) {
237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239 } else if (lock_flags & XFS_IOLOCK_SHARED) {
240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
244 if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 if (!mrtryupdate(&ip->i_mmaplock))
246 goto out_undo_iolock;
247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 if (!mrtryaccess(&ip->i_mmaplock))
249 goto out_undo_iolock;
252 if (lock_flags & XFS_ILOCK_EXCL) {
253 if (!mrtryupdate(&ip->i_lock))
254 goto out_undo_mmaplock;
255 } else if (lock_flags & XFS_ILOCK_SHARED) {
256 if (!mrtryaccess(&ip->i_lock))
257 goto out_undo_mmaplock;
262 if (lock_flags & XFS_MMAPLOCK_EXCL)
263 mrunlock_excl(&ip->i_mmaplock);
264 else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 mrunlock_shared(&ip->i_mmaplock);
267 if (lock_flags & XFS_IOLOCK_EXCL)
268 up_write(&VFS_I(ip)->i_rwsem);
269 else if (lock_flags & XFS_IOLOCK_SHARED)
270 up_read(&VFS_I(ip)->i_rwsem);
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
293 * You can't set both SHARED and EXCL for the same lock,
294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 ASSERT(lock_flags != 0);
306 if (lock_flags & XFS_IOLOCK_EXCL)
307 up_write(&VFS_I(ip)->i_rwsem);
308 else if (lock_flags & XFS_IOLOCK_SHARED)
309 up_read(&VFS_I(ip)->i_rwsem);
311 if (lock_flags & XFS_MMAPLOCK_EXCL)
312 mrunlock_excl(&ip->i_mmaplock);
313 else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 mrunlock_shared(&ip->i_mmaplock);
316 if (lock_flags & XFS_ILOCK_EXCL)
317 mrunlock_excl(&ip->i_lock);
318 else if (lock_flags & XFS_ILOCK_SHARED)
319 mrunlock_shared(&ip->i_lock);
321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
325 * give up write locks. the i/o lock cannot be held nested
326 * if it is being demoted.
333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
337 if (lock_flags & XFS_ILOCK_EXCL)
338 mrdemote(&ip->i_lock);
339 if (lock_flags & XFS_MMAPLOCK_EXCL)
340 mrdemote(&ip->i_mmaplock);
341 if (lock_flags & XFS_IOLOCK_EXCL)
342 downgrade_write(&VFS_I(ip)->i_rwsem);
344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
347 #if defined(DEBUG) || defined(XFS_WARN)
353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 if (!(lock_flags & XFS_ILOCK_SHARED))
355 return !!ip->i_lock.mr_writer;
356 return rwsem_is_locked(&ip->i_lock.mr_lock);
359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 return !!ip->i_mmaplock.mr_writer;
362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 if (!(lock_flags & XFS_IOLOCK_SHARED))
367 return !debug_locks ||
368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381 * errors and warnings.
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
385 xfs_lockdep_subclass_ok(
388 return subclass < MAX_LOCKDEP_SUBCLASSES;
391 #define xfs_lockdep_subclass_ok(subclass) (true)
395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396 * value. This can be called for any type of inode lock combination, including
397 * parent locking. Care must be taken to ensure we don't overrun the subclass
398 * storage fields in the class mask we build.
401 xfs_lock_inumorder(int lock_mode, int subclass)
405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
407 ASSERT(xfs_lockdep_subclass_ok(subclass));
409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 class += subclass << XFS_IOLOCK_SHIFT;
414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 class += subclass << XFS_MMAPLOCK_SHIFT;
419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 class += subclass << XFS_ILOCK_SHIFT;
424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
428 * The following routine will lock n inodes in exclusive mode. We assume the
429 * caller calls us with the inodes in i_ino order.
431 * We need to detect deadlock where an inode that we lock is in the AIL and we
432 * start waiting for another inode that is locked by a thread in a long running
433 * transaction (such as truncate). This can result in deadlock since the long
434 * running trans might need to wait for the inode we just locked in order to
435 * push the tail and free space in the log.
437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439 * lock more than one at a time, lockdep will report false positives saying we
440 * have violated locking orders.
448 int attempts = 0, i, j, try_lock;
452 * Currently supports between 2 and 5 inodes with exclusive locking. We
453 * support an arbitrary depth of locking here, but absolute limits on
454 * inodes depend on the the type of locking and the limits placed by
455 * lockdep annotations in xfs_lock_inumorder. These are all checked by
458 ASSERT(ips && inodes >= 2 && inodes <= 5);
459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
468 if (lock_mode & XFS_IOLOCK_EXCL) {
469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
476 for (; i < inodes; i++) {
479 if (i && (ips[i] == ips[i - 1])) /* Already locked */
483 * If try_lock is not set yet, make sure all locked inodes are
484 * not in the AIL. If any are, set try_lock to be used later.
487 for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 lp = (xfs_log_item_t *)ips[j]->i_itemp;
489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
495 * If any of the previous locks we have locked is in the AIL,
496 * we must TRY to get the second and subsequent locks. If
497 * we can't get any, we must release all we have
501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
505 /* try_lock means we have an inode locked that is in the AIL. */
507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
511 * Unlock all previous guys and try again. xfs_iunlock will try
512 * to push the tail if the inode is in the AIL.
515 for (j = i - 1; j >= 0; j--) {
517 * Check to see if we've already unlocked this one. Not
518 * the first one going back, and the inode ptr is the
521 if (j != (i - 1) && ips[j] == ips[j + 1])
524 xfs_iunlock(ips[j], lock_mode);
527 if ((attempts % 5) == 0) {
528 delay(1); /* Don't just spin the CPU */
537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
539 * more than one at a time, lockdep will report false positives saying we have
540 * violated locking orders. The iolock must be double-locked separately since
541 * we use i_rwsem for that. We now support taking one lock EXCL and the other
546 struct xfs_inode *ip0,
548 struct xfs_inode *ip1,
551 struct xfs_inode *temp;
556 ASSERT(hweight32(ip0_mode) == 1);
557 ASSERT(hweight32(ip1_mode) == 1);
558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
569 ASSERT(ip0->i_ino != ip1->i_ino);
571 if (ip0->i_ino > ip1->i_ino) {
575 mode_temp = ip0_mode;
577 ip1_mode = mode_temp;
581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
584 * If the first lock we have locked is in the AIL, we must TRY to get
585 * the second lock. If we can't get it, we must release the first one
588 lp = (xfs_log_item_t *)ip0->i_itemp;
589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 xfs_iunlock(ip0, ip0_mode);
592 if ((++attempts % 5) == 0)
593 delay(1); /* Don't just spin the CPU */
597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
603 struct xfs_inode *ip)
605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
610 if (xfs_isiflocked(ip))
612 } while (!xfs_iflock_nowait(ip));
614 finish_wait(wq, &wait.wq_entry);
625 if (di_flags & XFS_DIFLAG_ANY) {
626 if (di_flags & XFS_DIFLAG_REALTIME)
627 flags |= FS_XFLAG_REALTIME;
628 if (di_flags & XFS_DIFLAG_PREALLOC)
629 flags |= FS_XFLAG_PREALLOC;
630 if (di_flags & XFS_DIFLAG_IMMUTABLE)
631 flags |= FS_XFLAG_IMMUTABLE;
632 if (di_flags & XFS_DIFLAG_APPEND)
633 flags |= FS_XFLAG_APPEND;
634 if (di_flags & XFS_DIFLAG_SYNC)
635 flags |= FS_XFLAG_SYNC;
636 if (di_flags & XFS_DIFLAG_NOATIME)
637 flags |= FS_XFLAG_NOATIME;
638 if (di_flags & XFS_DIFLAG_NODUMP)
639 flags |= FS_XFLAG_NODUMP;
640 if (di_flags & XFS_DIFLAG_RTINHERIT)
641 flags |= FS_XFLAG_RTINHERIT;
642 if (di_flags & XFS_DIFLAG_PROJINHERIT)
643 flags |= FS_XFLAG_PROJINHERIT;
644 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
645 flags |= FS_XFLAG_NOSYMLINKS;
646 if (di_flags & XFS_DIFLAG_EXTSIZE)
647 flags |= FS_XFLAG_EXTSIZE;
648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
649 flags |= FS_XFLAG_EXTSZINHERIT;
650 if (di_flags & XFS_DIFLAG_NODEFRAG)
651 flags |= FS_XFLAG_NODEFRAG;
652 if (di_flags & XFS_DIFLAG_FILESTREAM)
653 flags |= FS_XFLAG_FILESTREAM;
656 if (di_flags2 & XFS_DIFLAG2_ANY) {
657 if (di_flags2 & XFS_DIFLAG2_DAX)
658 flags |= FS_XFLAG_DAX;
659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
660 flags |= FS_XFLAG_COWEXTSIZE;
664 flags |= FS_XFLAG_HASATTR;
671 struct xfs_inode *ip)
673 struct xfs_icdinode *dic = &ip->i_d;
675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
687 struct xfs_name *name,
689 struct xfs_name *ci_name)
694 trace_xfs_lookup(dp, name);
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
711 kmem_free(ci_name->name);
718 * Allocate an inode on disk and return a copy of its in-core version.
719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
720 * appropriately within the inode. The uid and gid for the inode are
721 * set according to the contents of the given cred structure.
723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
724 * has a free inode available, call xfs_iget() to obtain the in-core
725 * version of the allocated inode. Finally, fill in the inode and
726 * log its initial contents. In this case, ialloc_context would be
729 * If xfs_dialloc() does not have an available inode, it will replenish
730 * its supply by doing an allocation. Since we can only do one
731 * allocation within a transaction without deadlocks, we must commit
732 * the current transaction before returning the inode itself.
733 * In this case, therefore, we will set ialloc_context and return.
734 * The caller should then commit the current transaction, start a new
735 * transaction, and call xfs_ialloc() again to actually get the inode.
737 * To ensure that some other process does not grab the inode that
738 * was allocated during the first call to xfs_ialloc(), this routine
739 * also returns the [locked] bp pointing to the head of the freelist
740 * as ialloc_context. The caller should hold this buffer across
741 * the commit and pass it back into this routine on the second call.
743 * If we are allocating quota inodes, we do not have a parent inode
744 * to attach to or associate with (i.e. pip == NULL) because they
745 * are not linked into the directory structure - they are attached
746 * directly to the superblock - and so have no parent.
756 xfs_buf_t **ialloc_context,
759 struct xfs_mount *mp = tp->t_mountp;
764 struct timespec64 tv;
768 * Call the space management code to pick
769 * the on-disk inode to be allocated.
771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
772 ialloc_context, &ino);
775 if (*ialloc_context || ino == NULLFSINO) {
779 ASSERT(*ialloc_context == NULL);
782 * Protect against obviously corrupt allocation btree records. Later
783 * xfs_iget checks will catch re-allocation of other active in-memory
784 * and on-disk inodes. If we don't catch reallocating the parent inode
785 * here we will deadlock in xfs_iget() so we have to do these checks
788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
790 return -EFSCORRUPTED;
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
799 XFS_ILOCK_EXCL, &ip);
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
810 if (ip->i_d.di_version == 1)
811 ip->i_d.di_version = 2;
813 inode->i_mode = mode;
814 set_nlink(inode, nlink);
815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
817 inode->i_rdev = rdev;
818 xfs_set_projid(ip, prid);
820 if (pip && XFS_INHERIT_GID(pip)) {
821 ip->i_d.di_gid = pip->i_d.di_gid;
822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 inode->i_mode |= S_ISGID;
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
831 if ((irix_sgid_inherit) &&
832 (inode->i_mode & S_ISGID) &&
833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 inode->i_mode &= ~S_ISGID;
837 ip->i_d.di_nextents = 0;
838 ASSERT(ip->i_d.di_nblocks == 0);
840 tv = current_time(inode);
845 ip->i_d.di_extsize = 0;
846 ip->i_d.di_dmevmask = 0;
847 ip->i_d.di_dmstate = 0;
848 ip->i_d.di_flags = 0;
850 if (ip->i_d.di_version == 3) {
851 inode_set_iversion(inode, 1);
852 ip->i_d.di_flags2 = 0;
853 ip->i_d.di_cowextsize = 0;
854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
859 flags = XFS_ILOG_CORE;
860 switch (mode & S_IFMT) {
865 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
866 ip->i_df.if_flags = 0;
867 flags |= XFS_ILOG_DEV;
871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 di_flags |= XFS_DIFLAG_RTINHERIT;
877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 ip->i_d.di_extsize = pip->i_d.di_extsize;
881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 di_flags |= XFS_DIFLAG_PROJINHERIT;
883 } else if (S_ISREG(mode)) {
884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
885 di_flags |= XFS_DIFLAG_REALTIME;
886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 di_flags |= XFS_DIFLAG_EXTSIZE;
888 ip->i_d.di_extsize = pip->i_d.di_extsize;
891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
893 di_flags |= XFS_DIFLAG_NOATIME;
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
896 di_flags |= XFS_DIFLAG_NODUMP;
897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
899 di_flags |= XFS_DIFLAG_SYNC;
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 xfs_inherit_nosymlinks)
902 di_flags |= XFS_DIFLAG_NOSYMLINKS;
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 xfs_inherit_nodefrag)
905 di_flags |= XFS_DIFLAG_NODEFRAG;
906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 di_flags |= XFS_DIFLAG_FILESTREAM;
909 ip->i_d.di_flags |= di_flags;
912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 pip->i_d.di_version == 3 &&
914 ip->i_d.di_version == 3) {
915 uint64_t di_flags2 = 0;
917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 di_flags2 |= XFS_DIFLAG2_DAX;
924 ip->i_d.di_flags2 |= di_flags2;
928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 ip->i_df.if_flags = XFS_IFEXTENTS;
930 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
931 ip->i_df.if_u1.if_root = NULL;
937 * Attribute fork settings for new inode.
939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 ip->i_d.di_anextents = 0;
943 * Log the new values stuffed into the inode.
945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
946 xfs_trans_log_inode(tp, ip, flags);
948 /* now that we have an i_mode we can setup the inode structure */
956 * Allocates a new inode from disk and return a pointer to the
957 * incore copy. This routine will internally commit the current
958 * transaction and allocate a new one if the Space Manager needed
959 * to do an allocation to replenish the inode free-list.
961 * This routine is designed to be called from xfs_create and
967 xfs_trans_t **tpp, /* input: current transaction;
968 output: may be a new transaction. */
969 xfs_inode_t *dp, /* directory within whose allocate
974 prid_t prid, /* project id */
975 xfs_inode_t **ipp) /* pointer to inode; it will be
980 xfs_buf_t *ialloc_context = NULL;
986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
989 * xfs_ialloc will return a pointer to an incore inode if
990 * the Space Manager has an available inode on the free
991 * list. Otherwise, it will do an allocation and replenish
992 * the freelist. Since we can only do one allocation per
993 * transaction without deadlocks, we will need to commit the
994 * current transaction and start a new one. We will then
995 * need to call xfs_ialloc again to get the inode.
997 * If xfs_ialloc did an allocation to replenish the freelist,
998 * it returns the bp containing the head of the freelist as
999 * ialloc_context. We will hold a lock on it across the
1000 * transaction commit so that no other process can steal
1001 * the inode(s) that we've just allocated.
1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1007 * Return an error if we were unable to allocate a new inode.
1008 * This should only happen if we run out of space on disk or
1009 * encounter a disk error.
1015 if (!ialloc_context && !ip) {
1021 * If the AGI buffer is non-NULL, then we were unable to get an
1022 * inode in one operation. We need to commit the current
1023 * transaction and call xfs_ialloc() again. It is guaranteed
1024 * to succeed the second time.
1026 if (ialloc_context) {
1028 * Normally, xfs_trans_commit releases all the locks.
1029 * We call bhold to hang on to the ialloc_context across
1030 * the commit. Holding this buffer prevents any other
1031 * processes from doing any allocations in this
1034 xfs_trans_bhold(tp, ialloc_context);
1037 * We want the quota changes to be associated with the next
1038 * transaction, NOT this one. So, detach the dqinfo from this
1039 * and attach it to the next transaction.
1044 dqinfo = (void *)tp->t_dqinfo;
1045 tp->t_dqinfo = NULL;
1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1050 code = xfs_trans_roll(&tp);
1053 * Re-attach the quota info that we detached from prev trx.
1056 tp->t_dqinfo = dqinfo;
1057 tp->t_flags |= tflags;
1061 xfs_buf_relse(ialloc_context);
1066 xfs_trans_bjoin(tp, ialloc_context);
1069 * Call ialloc again. Since we've locked out all
1070 * other allocations in this allocation group,
1071 * this call should always succeed.
1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074 &ialloc_context, &ip);
1077 * If we get an error at this point, return to the caller
1078 * so that the current transaction can be aborted.
1085 ASSERT(!ialloc_context && ip);
1096 * Decrement the link count on an inode & log the change. If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
1100 static int /* error */
1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1107 drop_nlink(VFS_I(ip));
1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1110 if (VFS_I(ip)->i_nlink)
1113 return xfs_iunlink(tp, ip);
1117 * Increment the link count on an inode & log the change.
1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1126 ASSERT(ip->i_d.di_version > 1);
1127 inc_nlink(VFS_I(ip));
1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1135 struct xfs_name *name,
1140 int is_dir = S_ISDIR(mode);
1141 struct xfs_mount *mp = dp->i_mount;
1142 struct xfs_inode *ip = NULL;
1143 struct xfs_trans *tp = NULL;
1145 struct xfs_defer_ops dfops;
1146 xfs_fsblock_t first_block;
1147 bool unlock_dp_on_error = false;
1149 struct xfs_dquot *udqp = NULL;
1150 struct xfs_dquot *gdqp = NULL;
1151 struct xfs_dquot *pdqp = NULL;
1152 struct xfs_trans_res *tres;
1155 trace_xfs_create(dp, name);
1157 if (XFS_FORCED_SHUTDOWN(mp))
1160 prid = xfs_get_initial_prid(dp);
1163 * Make sure that we have allocated dquot(s) on disk.
1165 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1166 xfs_kgid_to_gid(current_fsgid()), prid,
1167 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1168 &udqp, &gdqp, &pdqp);
1173 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1174 tres = &M_RES(mp)->tr_mkdir;
1176 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1177 tres = &M_RES(mp)->tr_create;
1181 * Initially assume that the file does not exist and
1182 * reserve the resources for that case. If that is not
1183 * the case we'll drop the one we have and get a more
1184 * appropriate transaction later.
1186 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1187 if (error == -ENOSPC) {
1188 /* flush outstanding delalloc blocks and retry */
1189 xfs_flush_inodes(mp);
1190 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1193 goto out_release_inode;
1195 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1196 unlock_dp_on_error = true;
1198 xfs_defer_init(&dfops, &first_block);
1199 tp->t_agfl_dfops = &dfops;
1202 * Reserve disk quota and the inode.
1204 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1205 pdqp, resblks, 1, 0);
1207 goto out_trans_cancel;
1210 * A newly created regular or special file just has one directory
1211 * entry pointing to them, but a directory also the "." entry
1212 * pointing to itself.
1214 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1216 goto out_trans_cancel;
1219 * Now we join the directory inode to the transaction. We do not do it
1220 * earlier because xfs_dir_ialloc might commit the previous transaction
1221 * (and release all the locks). An error from here on will result in
1222 * the transaction cancel unlocking dp so don't do it explicitly in the
1225 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1226 unlock_dp_on_error = false;
1228 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1229 &first_block, &dfops, resblks ?
1230 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1232 ASSERT(error != -ENOSPC);
1233 goto out_trans_cancel;
1235 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1236 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1239 error = xfs_dir_init(tp, ip, dp);
1241 goto out_bmap_cancel;
1243 error = xfs_bumplink(tp, dp);
1245 goto out_bmap_cancel;
1249 * If this is a synchronous mount, make sure that the
1250 * create transaction goes to disk before returning to
1253 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1254 xfs_trans_set_sync(tp);
1257 * Attach the dquot(s) to the inodes and modify them incore.
1258 * These ids of the inode couldn't have changed since the new
1259 * inode has been locked ever since it was created.
1261 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1263 error = xfs_defer_finish(&tp, &dfops);
1265 goto out_bmap_cancel;
1267 error = xfs_trans_commit(tp);
1269 goto out_release_inode;
1271 xfs_qm_dqrele(udqp);
1272 xfs_qm_dqrele(gdqp);
1273 xfs_qm_dqrele(pdqp);
1279 xfs_defer_cancel(&dfops);
1281 xfs_trans_cancel(tp);
1284 * Wait until after the current transaction is aborted to finish the
1285 * setup of the inode and release the inode. This prevents recursive
1286 * transactions and deadlocks from xfs_inactive.
1289 xfs_finish_inode_setup(ip);
1293 xfs_qm_dqrele(udqp);
1294 xfs_qm_dqrele(gdqp);
1295 xfs_qm_dqrele(pdqp);
1297 if (unlock_dp_on_error)
1298 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1304 struct xfs_inode *dp,
1306 struct xfs_inode **ipp)
1308 struct xfs_mount *mp = dp->i_mount;
1309 struct xfs_inode *ip = NULL;
1310 struct xfs_trans *tp = NULL;
1313 struct xfs_dquot *udqp = NULL;
1314 struct xfs_dquot *gdqp = NULL;
1315 struct xfs_dquot *pdqp = NULL;
1316 struct xfs_trans_res *tres;
1319 if (XFS_FORCED_SHUTDOWN(mp))
1322 prid = xfs_get_initial_prid(dp);
1325 * Make sure that we have allocated dquot(s) on disk.
1327 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1328 xfs_kgid_to_gid(current_fsgid()), prid,
1329 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1330 &udqp, &gdqp, &pdqp);
1334 resblks = XFS_IALLOC_SPACE_RES(mp);
1335 tres = &M_RES(mp)->tr_create_tmpfile;
1337 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1339 goto out_release_inode;
1341 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1342 pdqp, resblks, 1, 0);
1344 goto out_trans_cancel;
1346 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
1348 goto out_trans_cancel;
1350 if (mp->m_flags & XFS_MOUNT_WSYNC)
1351 xfs_trans_set_sync(tp);
1354 * Attach the dquot(s) to the inodes and modify them incore.
1355 * These ids of the inode couldn't have changed since the new
1356 * inode has been locked ever since it was created.
1358 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1360 error = xfs_iunlink(tp, ip);
1362 goto out_trans_cancel;
1364 error = xfs_trans_commit(tp);
1366 goto out_release_inode;
1368 xfs_qm_dqrele(udqp);
1369 xfs_qm_dqrele(gdqp);
1370 xfs_qm_dqrele(pdqp);
1376 xfs_trans_cancel(tp);
1379 * Wait until after the current transaction is aborted to finish the
1380 * setup of the inode and release the inode. This prevents recursive
1381 * transactions and deadlocks from xfs_inactive.
1384 xfs_finish_inode_setup(ip);
1388 xfs_qm_dqrele(udqp);
1389 xfs_qm_dqrele(gdqp);
1390 xfs_qm_dqrele(pdqp);
1399 struct xfs_name *target_name)
1401 xfs_mount_t *mp = tdp->i_mount;
1404 struct xfs_defer_ops dfops;
1405 xfs_fsblock_t first_block;
1408 trace_xfs_link(tdp, target_name);
1410 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1412 if (XFS_FORCED_SHUTDOWN(mp))
1415 error = xfs_qm_dqattach(sip);
1419 error = xfs_qm_dqattach(tdp);
1423 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1424 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1425 if (error == -ENOSPC) {
1427 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1432 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1434 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1435 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1438 * If we are using project inheritance, we only allow hard link
1439 * creation in our tree when the project IDs are the same; else
1440 * the tree quota mechanism could be circumvented.
1442 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1443 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1449 error = xfs_dir_canenter(tp, tdp, target_name);
1454 xfs_defer_init(&dfops, &first_block);
1455 tp->t_agfl_dfops = &dfops;
1458 * Handle initial link state of O_TMPFILE inode
1460 if (VFS_I(sip)->i_nlink == 0) {
1461 error = xfs_iunlink_remove(tp, sip);
1466 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1467 &first_block, &dfops, resblks);
1470 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1471 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1473 error = xfs_bumplink(tp, sip);
1478 * If this is a synchronous mount, make sure that the
1479 * link transaction goes to disk before returning to
1482 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1483 xfs_trans_set_sync(tp);
1485 error = xfs_defer_finish(&tp, &dfops);
1487 xfs_defer_cancel(&dfops);
1491 return xfs_trans_commit(tp);
1494 xfs_trans_cancel(tp);
1499 /* Clear the reflink flag and the cowblocks tag if possible. */
1501 xfs_itruncate_clear_reflink_flags(
1502 struct xfs_inode *ip)
1504 struct xfs_ifork *dfork;
1505 struct xfs_ifork *cfork;
1507 if (!xfs_is_reflink_inode(ip))
1509 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1510 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1511 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1512 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1513 if (cfork->if_bytes == 0)
1514 xfs_inode_clear_cowblocks_tag(ip);
1518 * Free up the underlying blocks past new_size. The new size must be smaller
1519 * than the current size. This routine can be used both for the attribute and
1520 * data fork, and does not modify the inode size, which is left to the caller.
1522 * The transaction passed to this routine must have made a permanent log
1523 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1524 * given transaction and start new ones, so make sure everything involved in
1525 * the transaction is tidy before calling here. Some transaction will be
1526 * returned to the caller to be committed. The incoming transaction must
1527 * already include the inode, and both inode locks must be held exclusively.
1528 * The inode must also be "held" within the transaction. On return the inode
1529 * will be "held" within the returned transaction. This routine does NOT
1530 * require any disk space to be reserved for it within the transaction.
1532 * If we get an error, we must return with the inode locked and linked into the
1533 * current transaction. This keeps things simple for the higher level code,
1534 * because it always knows that the inode is locked and held in the transaction
1535 * that returns to it whether errors occur or not. We don't mark the inode
1536 * dirty on error so that transactions can be easily aborted if possible.
1539 xfs_itruncate_extents_flags(
1540 struct xfs_trans **tpp,
1541 struct xfs_inode *ip,
1543 xfs_fsize_t new_size,
1546 struct xfs_mount *mp = ip->i_mount;
1547 struct xfs_trans *tp = *tpp;
1548 struct xfs_defer_ops dfops;
1549 xfs_fsblock_t first_block;
1550 xfs_fileoff_t first_unmap_block;
1551 xfs_fileoff_t last_block;
1552 xfs_filblks_t unmap_len;
1556 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1557 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1558 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1559 ASSERT(new_size <= XFS_ISIZE(ip));
1560 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1561 ASSERT(ip->i_itemp != NULL);
1562 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1563 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1565 trace_xfs_itruncate_extents_start(ip, new_size);
1567 flags |= xfs_bmapi_aflag(whichfork);
1570 * Since it is possible for space to become allocated beyond
1571 * the end of the file (in a crash where the space is allocated
1572 * but the inode size is not yet updated), simply remove any
1573 * blocks which show up between the new EOF and the maximum
1574 * possible file size. If the first block to be removed is
1575 * beyond the maximum file size (ie it is the same as last_block),
1576 * then there is nothing to do.
1578 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1579 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1580 if (first_unmap_block == last_block)
1583 ASSERT(first_unmap_block < last_block);
1584 unmap_len = last_block - first_unmap_block + 1;
1586 xfs_defer_init(&dfops, &first_block);
1587 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1588 XFS_ITRUNC_MAX_EXTENTS, &first_block,
1591 goto out_bmap_cancel;
1594 * Duplicate the transaction that has the permanent
1595 * reservation and commit the old transaction.
1597 xfs_defer_ijoin(&dfops, ip);
1598 error = xfs_defer_finish(&tp, &dfops);
1600 goto out_bmap_cancel;
1602 error = xfs_trans_roll_inode(&tp, ip);
1607 if (whichfork == XFS_DATA_FORK) {
1608 /* Remove all pending CoW reservations. */
1609 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1610 first_unmap_block, last_block, true);
1614 xfs_itruncate_clear_reflink_flags(ip);
1618 * Always re-log the inode so that our permanent transaction can keep
1619 * on rolling it forward in the log.
1621 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1623 trace_xfs_itruncate_extents_end(ip, new_size);
1630 * If the bunmapi call encounters an error, return to the caller where
1631 * the transaction can be properly aborted. We just need to make sure
1632 * we're not holding any resources that we were not when we came in.
1634 xfs_defer_cancel(&dfops);
1642 xfs_mount_t *mp = ip->i_mount;
1645 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1648 /* If this is a read-only mount, don't do this (would generate I/O) */
1649 if (mp->m_flags & XFS_MOUNT_RDONLY)
1652 if (!XFS_FORCED_SHUTDOWN(mp)) {
1656 * If we previously truncated this file and removed old data
1657 * in the process, we want to initiate "early" writeout on
1658 * the last close. This is an attempt to combat the notorious
1659 * NULL files problem which is particularly noticeable from a
1660 * truncate down, buffered (re-)write (delalloc), followed by
1661 * a crash. What we are effectively doing here is
1662 * significantly reducing the time window where we'd otherwise
1663 * be exposed to that problem.
1665 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1667 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1668 if (ip->i_delayed_blks > 0) {
1669 error = filemap_flush(VFS_I(ip)->i_mapping);
1676 if (VFS_I(ip)->i_nlink == 0)
1679 if (xfs_can_free_eofblocks(ip, false)) {
1682 * Check if the inode is being opened, written and closed
1683 * frequently and we have delayed allocation blocks outstanding
1684 * (e.g. streaming writes from the NFS server), truncating the
1685 * blocks past EOF will cause fragmentation to occur.
1687 * In this case don't do the truncation, but we have to be
1688 * careful how we detect this case. Blocks beyond EOF show up as
1689 * i_delayed_blks even when the inode is clean, so we need to
1690 * truncate them away first before checking for a dirty release.
1691 * Hence on the first dirty close we will still remove the
1692 * speculative allocation, but after that we will leave it in
1695 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1698 * If we can't get the iolock just skip truncating the blocks
1699 * past EOF because we could deadlock with the mmap_sem
1700 * otherwise. We'll get another chance to drop them once the
1701 * last reference to the inode is dropped, so we'll never leak
1702 * blocks permanently.
1704 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1705 error = xfs_free_eofblocks(ip);
1706 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1711 /* delalloc blocks after truncation means it really is dirty */
1712 if (ip->i_delayed_blks)
1713 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1719 * xfs_inactive_truncate
1721 * Called to perform a truncate when an inode becomes unlinked.
1724 xfs_inactive_truncate(
1725 struct xfs_inode *ip)
1727 struct xfs_mount *mp = ip->i_mount;
1728 struct xfs_trans *tp;
1731 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1733 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1737 xfs_ilock(ip, XFS_ILOCK_EXCL);
1738 xfs_trans_ijoin(tp, ip, 0);
1741 * Log the inode size first to prevent stale data exposure in the event
1742 * of a system crash before the truncate completes. See the related
1743 * comment in xfs_vn_setattr_size() for details.
1745 ip->i_d.di_size = 0;
1746 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1748 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1750 goto error_trans_cancel;
1752 ASSERT(ip->i_d.di_nextents == 0);
1754 error = xfs_trans_commit(tp);
1758 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1762 xfs_trans_cancel(tp);
1764 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1769 * xfs_inactive_ifree()
1771 * Perform the inode free when an inode is unlinked.
1775 struct xfs_inode *ip)
1777 struct xfs_defer_ops dfops;
1778 xfs_fsblock_t first_block;
1779 struct xfs_mount *mp = ip->i_mount;
1780 struct xfs_trans *tp;
1784 * We try to use a per-AG reservation for any block needed by the finobt
1785 * tree, but as the finobt feature predates the per-AG reservation
1786 * support a degraded file system might not have enough space for the
1787 * reservation at mount time. In that case try to dip into the reserved
1790 * Send a warning if the reservation does happen to fail, as the inode
1791 * now remains allocated and sits on the unlinked list until the fs is
1794 if (unlikely(mp->m_inotbt_nores)) {
1795 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1796 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1799 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1802 if (error == -ENOSPC) {
1803 xfs_warn_ratelimited(mp,
1804 "Failed to remove inode(s) from unlinked list. "
1805 "Please free space, unmount and run xfs_repair.");
1807 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1812 xfs_ilock(ip, XFS_ILOCK_EXCL);
1813 xfs_trans_ijoin(tp, ip, 0);
1815 xfs_defer_init(&dfops, &first_block);
1816 tp->t_agfl_dfops = &dfops;
1817 error = xfs_ifree(tp, ip, &dfops);
1820 * If we fail to free the inode, shut down. The cancel
1821 * might do that, we need to make sure. Otherwise the
1822 * inode might be lost for a long time or forever.
1824 if (!XFS_FORCED_SHUTDOWN(mp)) {
1825 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1827 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1829 xfs_trans_cancel(tp);
1830 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1835 * Credit the quota account(s). The inode is gone.
1837 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1840 * Just ignore errors at this point. There is nothing we can do except
1841 * to try to keep going. Make sure it's not a silent error.
1843 error = xfs_defer_finish(&tp, &dfops);
1845 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1847 xfs_defer_cancel(&dfops);
1849 error = xfs_trans_commit(tp);
1851 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1854 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1861 * This is called when the vnode reference count for the vnode
1862 * goes to zero. If the file has been unlinked, then it must
1863 * now be truncated. Also, we clear all of the read-ahead state
1864 * kept for the inode here since the file is now closed.
1870 struct xfs_mount *mp;
1871 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1876 * If the inode is already free, then there can be nothing
1879 if (VFS_I(ip)->i_mode == 0) {
1880 ASSERT(ip->i_df.if_real_bytes == 0);
1881 ASSERT(ip->i_df.if_broot_bytes == 0);
1886 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1888 /* If this is a read-only mount, don't do this (would generate I/O) */
1889 if (mp->m_flags & XFS_MOUNT_RDONLY)
1892 /* Try to clean out the cow blocks if there are any. */
1893 if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
1894 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1896 if (VFS_I(ip)->i_nlink != 0) {
1898 * force is true because we are evicting an inode from the
1899 * cache. Post-eof blocks must be freed, lest we end up with
1900 * broken free space accounting.
1902 * Note: don't bother with iolock here since lockdep complains
1903 * about acquiring it in reclaim context. We have the only
1904 * reference to the inode at this point anyways.
1906 if (xfs_can_free_eofblocks(ip, true))
1907 xfs_free_eofblocks(ip);
1912 if (S_ISREG(VFS_I(ip)->i_mode) &&
1913 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1914 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1917 error = xfs_qm_dqattach(ip);
1921 if (S_ISLNK(VFS_I(ip)->i_mode))
1922 error = xfs_inactive_symlink(ip);
1924 error = xfs_inactive_truncate(ip);
1929 * If there are attributes associated with the file then blow them away
1930 * now. The code calls a routine that recursively deconstructs the
1931 * attribute fork. If also blows away the in-core attribute fork.
1933 if (XFS_IFORK_Q(ip)) {
1934 error = xfs_attr_inactive(ip);
1940 ASSERT(ip->i_d.di_anextents == 0);
1941 ASSERT(ip->i_d.di_forkoff == 0);
1946 error = xfs_inactive_ifree(ip);
1951 * Release the dquots held by inode, if any.
1953 xfs_qm_dqdetach(ip);
1957 * This is called when the inode's link count goes to 0 or we are creating a
1958 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1959 * set to true as the link count is dropped to zero by the VFS after we've
1960 * created the file successfully, so we have to add it to the unlinked list
1961 * while the link count is non-zero.
1963 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1964 * list when the inode is freed.
1968 struct xfs_trans *tp,
1969 struct xfs_inode *ip)
1971 xfs_mount_t *mp = tp->t_mountp;
1981 ASSERT(VFS_I(ip)->i_mode != 0);
1984 * Get the agi buffer first. It ensures lock ordering
1987 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1990 agi = XFS_BUF_TO_AGI(agibp);
1993 * Get the index into the agi hash table for the
1994 * list this inode will go on.
1996 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1998 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1999 ASSERT(agi->agi_unlinked[bucket_index]);
2000 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2002 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2004 * There is already another inode in the bucket we need
2005 * to add ourselves to. Add us at the front of the list.
2006 * Here we put the head pointer into our next pointer,
2007 * and then we fall through to point the head at us.
2009 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2014 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2015 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2016 offset = ip->i_imap.im_boffset +
2017 offsetof(xfs_dinode_t, di_next_unlinked);
2019 /* need to recalc the inode CRC if appropriate */
2020 xfs_dinode_calc_crc(mp, dip);
2022 xfs_trans_inode_buf(tp, ibp);
2023 xfs_trans_log_buf(tp, ibp, offset,
2024 (offset + sizeof(xfs_agino_t) - 1));
2025 xfs_inobp_check(mp, ibp);
2029 * Point the bucket head pointer at the inode being inserted.
2032 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2033 offset = offsetof(xfs_agi_t, agi_unlinked) +
2034 (sizeof(xfs_agino_t) * bucket_index);
2035 xfs_trans_log_buf(tp, agibp, offset,
2036 (offset + sizeof(xfs_agino_t) - 1));
2041 * Pull the on-disk inode from the AGI unlinked list.
2054 xfs_agnumber_t agno;
2056 xfs_agino_t next_agino;
2057 xfs_buf_t *last_ibp;
2058 xfs_dinode_t *last_dip = NULL;
2060 int offset, last_offset = 0;
2064 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2067 * Get the agi buffer first. It ensures lock ordering
2070 error = xfs_read_agi(mp, tp, agno, &agibp);
2074 agi = XFS_BUF_TO_AGI(agibp);
2077 * Get the index into the agi hash table for the
2078 * list this inode will go on.
2080 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2081 if (!xfs_verify_agino(mp, agno, agino))
2082 return -EFSCORRUPTED;
2083 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2084 if (!xfs_verify_agino(mp, agno,
2085 be32_to_cpu(agi->agi_unlinked[bucket_index]))) {
2086 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2088 return -EFSCORRUPTED;
2091 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2093 * We're at the head of the list. Get the inode's on-disk
2094 * buffer to see if there is anyone after us on the list.
2095 * Only modify our next pointer if it is not already NULLAGINO.
2096 * This saves us the overhead of dealing with the buffer when
2097 * there is no need to change it.
2099 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2102 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2106 next_agino = be32_to_cpu(dip->di_next_unlinked);
2107 ASSERT(next_agino != 0);
2108 if (next_agino != NULLAGINO) {
2109 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2110 offset = ip->i_imap.im_boffset +
2111 offsetof(xfs_dinode_t, di_next_unlinked);
2113 /* need to recalc the inode CRC if appropriate */
2114 xfs_dinode_calc_crc(mp, dip);
2116 xfs_trans_inode_buf(tp, ibp);
2117 xfs_trans_log_buf(tp, ibp, offset,
2118 (offset + sizeof(xfs_agino_t) - 1));
2119 xfs_inobp_check(mp, ibp);
2121 xfs_trans_brelse(tp, ibp);
2124 * Point the bucket head pointer at the next inode.
2126 ASSERT(next_agino != 0);
2127 ASSERT(next_agino != agino);
2128 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2129 offset = offsetof(xfs_agi_t, agi_unlinked) +
2130 (sizeof(xfs_agino_t) * bucket_index);
2131 xfs_trans_log_buf(tp, agibp, offset,
2132 (offset + sizeof(xfs_agino_t) - 1));
2135 * We need to search the list for the inode being freed.
2137 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2139 while (next_agino != agino) {
2140 struct xfs_imap imap;
2143 xfs_trans_brelse(tp, last_ibp);
2146 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2148 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2151 "%s: xfs_imap returned error %d.",
2156 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2160 "%s: xfs_imap_to_bp returned error %d.",
2165 last_offset = imap.im_boffset;
2166 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2167 if (!xfs_verify_agino(mp, agno, next_agino)) {
2168 XFS_CORRUPTION_ERROR(__func__,
2169 XFS_ERRLEVEL_LOW, mp,
2170 last_dip, sizeof(*last_dip));
2171 return -EFSCORRUPTED;
2176 * Now last_ibp points to the buffer previous to us on the
2177 * unlinked list. Pull us from the list.
2179 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2182 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2186 next_agino = be32_to_cpu(dip->di_next_unlinked);
2187 ASSERT(next_agino != 0);
2188 ASSERT(next_agino != agino);
2189 if (next_agino != NULLAGINO) {
2190 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2191 offset = ip->i_imap.im_boffset +
2192 offsetof(xfs_dinode_t, di_next_unlinked);
2194 /* need to recalc the inode CRC if appropriate */
2195 xfs_dinode_calc_crc(mp, dip);
2197 xfs_trans_inode_buf(tp, ibp);
2198 xfs_trans_log_buf(tp, ibp, offset,
2199 (offset + sizeof(xfs_agino_t) - 1));
2200 xfs_inobp_check(mp, ibp);
2202 xfs_trans_brelse(tp, ibp);
2205 * Point the previous inode on the list to the next inode.
2207 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2208 ASSERT(next_agino != 0);
2209 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2211 /* need to recalc the inode CRC if appropriate */
2212 xfs_dinode_calc_crc(mp, last_dip);
2214 xfs_trans_inode_buf(tp, last_ibp);
2215 xfs_trans_log_buf(tp, last_ibp, offset,
2216 (offset + sizeof(xfs_agino_t) - 1));
2217 xfs_inobp_check(mp, last_ibp);
2223 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2224 * inodes that are in memory - they all must be marked stale and attached to
2225 * the cluster buffer.
2229 xfs_inode_t *free_ip,
2231 struct xfs_icluster *xic)
2233 xfs_mount_t *mp = free_ip->i_mount;
2234 int blks_per_cluster;
2235 int inodes_per_cluster;
2242 xfs_inode_log_item_t *iip;
2243 struct xfs_log_item *lip;
2244 struct xfs_perag *pag;
2247 inum = xic->first_ino;
2248 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2249 blks_per_cluster = xfs_icluster_size_fsb(mp);
2250 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2251 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2253 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2255 * The allocation bitmap tells us which inodes of the chunk were
2256 * physically allocated. Skip the cluster if an inode falls into
2259 ioffset = inum - xic->first_ino;
2260 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2261 ASSERT(ioffset % inodes_per_cluster == 0);
2265 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2266 XFS_INO_TO_AGBNO(mp, inum));
2269 * We obtain and lock the backing buffer first in the process
2270 * here, as we have to ensure that any dirty inode that we
2271 * can't get the flush lock on is attached to the buffer.
2272 * If we scan the in-memory inodes first, then buffer IO can
2273 * complete before we get a lock on it, and hence we may fail
2274 * to mark all the active inodes on the buffer stale.
2276 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2277 mp->m_bsize * blks_per_cluster,
2284 * This buffer may not have been correctly initialised as we
2285 * didn't read it from disk. That's not important because we are
2286 * only using to mark the buffer as stale in the log, and to
2287 * attach stale cached inodes on it. That means it will never be
2288 * dispatched for IO. If it is, we want to know about it, and we
2289 * want it to fail. We can acheive this by adding a write
2290 * verifier to the buffer.
2292 bp->b_ops = &xfs_inode_buf_ops;
2295 * Walk the inodes already attached to the buffer and mark them
2296 * stale. These will all have the flush locks held, so an
2297 * in-memory inode walk can't lock them. By marking them all
2298 * stale first, we will not attempt to lock them in the loop
2299 * below as the XFS_ISTALE flag will be set.
2301 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2302 if (lip->li_type == XFS_LI_INODE) {
2303 iip = (xfs_inode_log_item_t *)lip;
2304 ASSERT(iip->ili_logged == 1);
2305 lip->li_cb = xfs_istale_done;
2306 xfs_trans_ail_copy_lsn(mp->m_ail,
2307 &iip->ili_flush_lsn,
2308 &iip->ili_item.li_lsn);
2309 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2315 * For each inode in memory attempt to add it to the inode
2316 * buffer and set it up for being staled on buffer IO
2317 * completion. This is safe as we've locked out tail pushing
2318 * and flushing by locking the buffer.
2320 * We have already marked every inode that was part of a
2321 * transaction stale above, which means there is no point in
2322 * even trying to lock them.
2324 for (i = 0; i < inodes_per_cluster; i++) {
2327 ip = radix_tree_lookup(&pag->pag_ici_root,
2328 XFS_INO_TO_AGINO(mp, (inum + i)));
2330 /* Inode not in memory, nothing to do */
2337 * because this is an RCU protected lookup, we could
2338 * find a recently freed or even reallocated inode
2339 * during the lookup. We need to check under the
2340 * i_flags_lock for a valid inode here. Skip it if it
2341 * is not valid, the wrong inode or stale.
2343 spin_lock(&ip->i_flags_lock);
2344 if (ip->i_ino != inum + i ||
2345 __xfs_iflags_test(ip, XFS_ISTALE)) {
2346 spin_unlock(&ip->i_flags_lock);
2350 spin_unlock(&ip->i_flags_lock);
2353 * Don't try to lock/unlock the current inode, but we
2354 * _cannot_ skip the other inodes that we did not find
2355 * in the list attached to the buffer and are not
2356 * already marked stale. If we can't lock it, back off
2359 if (ip != free_ip) {
2360 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2367 * Check the inode number again in case we're
2368 * racing with freeing in xfs_reclaim_inode().
2369 * See the comments in that function for more
2370 * information as to why the initial check is
2373 if (ip->i_ino != inum + i) {
2374 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2382 xfs_iflags_set(ip, XFS_ISTALE);
2385 * we don't need to attach clean inodes or those only
2386 * with unlogged changes (which we throw away, anyway).
2389 if (!iip || xfs_inode_clean(ip)) {
2390 ASSERT(ip != free_ip);
2392 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2396 iip->ili_last_fields = iip->ili_fields;
2397 iip->ili_fields = 0;
2398 iip->ili_fsync_fields = 0;
2399 iip->ili_logged = 1;
2400 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2401 &iip->ili_item.li_lsn);
2403 xfs_buf_attach_iodone(bp, xfs_istale_done,
2407 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2410 xfs_trans_stale_inode_buf(tp, bp);
2411 xfs_trans_binval(tp, bp);
2419 * Free any local-format buffers sitting around before we reset to
2423 xfs_ifree_local_data(
2424 struct xfs_inode *ip,
2427 struct xfs_ifork *ifp;
2429 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2432 ifp = XFS_IFORK_PTR(ip, whichfork);
2433 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2437 * This is called to return an inode to the inode free list.
2438 * The inode should already be truncated to 0 length and have
2439 * no pages associated with it. This routine also assumes that
2440 * the inode is already a part of the transaction.
2442 * The on-disk copy of the inode will have been added to the list
2443 * of unlinked inodes in the AGI. We need to remove the inode from
2444 * that list atomically with respect to freeing it here.
2450 struct xfs_defer_ops *dfops)
2453 struct xfs_icluster xic = { 0 };
2455 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2456 ASSERT(VFS_I(ip)->i_nlink == 0);
2457 ASSERT(ip->i_d.di_nextents == 0);
2458 ASSERT(ip->i_d.di_anextents == 0);
2459 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2460 ASSERT(ip->i_d.di_nblocks == 0);
2463 * Pull the on-disk inode from the AGI unlinked list.
2465 error = xfs_iunlink_remove(tp, ip);
2469 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2473 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2474 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2476 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2477 ip->i_d.di_flags = 0;
2478 ip->i_d.di_flags2 = 0;
2479 ip->i_d.di_dmevmask = 0;
2480 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2481 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2482 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2484 /* Don't attempt to replay owner changes for a deleted inode */
2485 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2488 * Bump the generation count so no one will be confused
2489 * by reincarnations of this inode.
2491 VFS_I(ip)->i_generation++;
2492 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2495 error = xfs_ifree_cluster(ip, tp, &xic);
2501 * This is called to unpin an inode. The caller must have the inode locked
2502 * in at least shared mode so that the buffer cannot be subsequently pinned
2503 * once someone is waiting for it to be unpinned.
2507 struct xfs_inode *ip)
2509 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2511 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2513 /* Give the log a push to start the unpinning I/O */
2514 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2520 struct xfs_inode *ip)
2522 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2523 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2528 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2529 if (xfs_ipincount(ip))
2531 } while (xfs_ipincount(ip));
2532 finish_wait(wq, &wait.wq_entry);
2537 struct xfs_inode *ip)
2539 if (xfs_ipincount(ip))
2540 __xfs_iunpin_wait(ip);
2544 * Removing an inode from the namespace involves removing the directory entry
2545 * and dropping the link count on the inode. Removing the directory entry can
2546 * result in locking an AGF (directory blocks were freed) and removing a link
2547 * count can result in placing the inode on an unlinked list which results in
2550 * The big problem here is that we have an ordering constraint on AGF and AGI
2551 * locking - inode allocation locks the AGI, then can allocate a new extent for
2552 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2553 * removes the inode from the unlinked list, requiring that we lock the AGI
2554 * first, and then freeing the inode can result in an inode chunk being freed
2555 * and hence freeing disk space requiring that we lock an AGF.
2557 * Hence the ordering that is imposed by other parts of the code is AGI before
2558 * AGF. This means we cannot remove the directory entry before we drop the inode
2559 * reference count and put it on the unlinked list as this results in a lock
2560 * order of AGF then AGI, and this can deadlock against inode allocation and
2561 * freeing. Therefore we must drop the link counts before we remove the
2564 * This is still safe from a transactional point of view - it is not until we
2565 * get to xfs_defer_finish() that we have the possibility of multiple
2566 * transactions in this operation. Hence as long as we remove the directory
2567 * entry and drop the link count in the first transaction of the remove
2568 * operation, there are no transactional constraints on the ordering here.
2573 struct xfs_name *name,
2576 xfs_mount_t *mp = dp->i_mount;
2577 xfs_trans_t *tp = NULL;
2578 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2580 struct xfs_defer_ops dfops;
2581 xfs_fsblock_t first_block;
2584 trace_xfs_remove(dp, name);
2586 if (XFS_FORCED_SHUTDOWN(mp))
2589 error = xfs_qm_dqattach(dp);
2593 error = xfs_qm_dqattach(ip);
2598 * We try to get the real space reservation first,
2599 * allowing for directory btree deletion(s) implying
2600 * possible bmap insert(s). If we can't get the space
2601 * reservation then we use 0 instead, and avoid the bmap
2602 * btree insert(s) in the directory code by, if the bmap
2603 * insert tries to happen, instead trimming the LAST
2604 * block from the directory.
2606 resblks = XFS_REMOVE_SPACE_RES(mp);
2607 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2608 if (error == -ENOSPC) {
2610 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2614 ASSERT(error != -ENOSPC);
2618 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2620 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2621 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2624 * If we're removing a directory perform some additional validation.
2627 ASSERT(VFS_I(ip)->i_nlink >= 2);
2628 if (VFS_I(ip)->i_nlink != 2) {
2630 goto out_trans_cancel;
2632 if (!xfs_dir_isempty(ip)) {
2634 goto out_trans_cancel;
2637 /* Drop the link from ip's "..". */
2638 error = xfs_droplink(tp, dp);
2640 goto out_trans_cancel;
2642 /* Drop the "." link from ip to self. */
2643 error = xfs_droplink(tp, ip);
2645 goto out_trans_cancel;
2648 * When removing a non-directory we need to log the parent
2649 * inode here. For a directory this is done implicitly
2650 * by the xfs_droplink call for the ".." entry.
2652 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2654 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2656 /* Drop the link from dp to ip. */
2657 error = xfs_droplink(tp, ip);
2659 goto out_trans_cancel;
2661 xfs_defer_init(&dfops, &first_block);
2662 tp->t_agfl_dfops = &dfops;
2663 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2664 &first_block, &dfops, resblks);
2666 ASSERT(error != -ENOENT);
2667 goto out_bmap_cancel;
2671 * If this is a synchronous mount, make sure that the
2672 * remove transaction goes to disk before returning to
2675 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2676 xfs_trans_set_sync(tp);
2678 error = xfs_defer_finish(&tp, &dfops);
2680 goto out_bmap_cancel;
2682 error = xfs_trans_commit(tp);
2686 if (is_dir && xfs_inode_is_filestream(ip))
2687 xfs_filestream_deassociate(ip);
2692 xfs_defer_cancel(&dfops);
2694 xfs_trans_cancel(tp);
2700 * Enter all inodes for a rename transaction into a sorted array.
2702 #define __XFS_SORT_INODES 5
2704 xfs_sort_for_rename(
2705 struct xfs_inode *dp1, /* in: old (source) directory inode */
2706 struct xfs_inode *dp2, /* in: new (target) directory inode */
2707 struct xfs_inode *ip1, /* in: inode of old entry */
2708 struct xfs_inode *ip2, /* in: inode of new entry */
2709 struct xfs_inode *wip, /* in: whiteout inode */
2710 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2711 int *num_inodes) /* in/out: inodes in array */
2715 ASSERT(*num_inodes == __XFS_SORT_INODES);
2716 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2719 * i_tab contains a list of pointers to inodes. We initialize
2720 * the table here & we'll sort it. We will then use it to
2721 * order the acquisition of the inode locks.
2723 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2736 * Sort the elements via bubble sort. (Remember, there are at
2737 * most 5 elements to sort, so this is adequate.)
2739 for (i = 0; i < *num_inodes; i++) {
2740 for (j = 1; j < *num_inodes; j++) {
2741 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2742 struct xfs_inode *temp = i_tab[j];
2743 i_tab[j] = i_tab[j-1];
2752 struct xfs_trans *tp,
2753 struct xfs_defer_ops *dfops)
2758 * If this is a synchronous mount, make sure that the rename transaction
2759 * goes to disk before returning to the user.
2761 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2762 xfs_trans_set_sync(tp);
2764 error = xfs_defer_finish(&tp, dfops);
2766 xfs_defer_cancel(dfops);
2767 xfs_trans_cancel(tp);
2771 return xfs_trans_commit(tp);
2775 * xfs_cross_rename()
2777 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2781 struct xfs_trans *tp,
2782 struct xfs_inode *dp1,
2783 struct xfs_name *name1,
2784 struct xfs_inode *ip1,
2785 struct xfs_inode *dp2,
2786 struct xfs_name *name2,
2787 struct xfs_inode *ip2,
2788 struct xfs_defer_ops *dfops,
2789 xfs_fsblock_t *first_block,
2797 /* Swap inode number for dirent in first parent */
2798 error = xfs_dir_replace(tp, dp1, name1,
2800 first_block, dfops, spaceres);
2802 goto out_trans_abort;
2804 /* Swap inode number for dirent in second parent */
2805 error = xfs_dir_replace(tp, dp2, name2,
2807 first_block, dfops, spaceres);
2809 goto out_trans_abort;
2812 * If we're renaming one or more directories across different parents,
2813 * update the respective ".." entries (and link counts) to match the new
2817 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2819 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2820 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2821 dp1->i_ino, first_block,
2824 goto out_trans_abort;
2826 /* transfer ip2 ".." reference to dp1 */
2827 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2828 error = xfs_droplink(tp, dp2);
2830 goto out_trans_abort;
2831 error = xfs_bumplink(tp, dp1);
2833 goto out_trans_abort;
2837 * Although ip1 isn't changed here, userspace needs
2838 * to be warned about the change, so that applications
2839 * relying on it (like backup ones), will properly
2842 ip1_flags |= XFS_ICHGTIME_CHG;
2843 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2846 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2847 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2848 dp2->i_ino, first_block,
2851 goto out_trans_abort;
2853 /* transfer ip1 ".." reference to dp2 */
2854 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2855 error = xfs_droplink(tp, dp1);
2857 goto out_trans_abort;
2858 error = xfs_bumplink(tp, dp2);
2860 goto out_trans_abort;
2864 * Although ip2 isn't changed here, userspace needs
2865 * to be warned about the change, so that applications
2866 * relying on it (like backup ones), will properly
2869 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2870 ip2_flags |= XFS_ICHGTIME_CHG;
2875 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2876 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2879 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2880 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2883 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2884 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2886 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2887 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2888 return xfs_finish_rename(tp, dfops);
2891 xfs_defer_cancel(dfops);
2892 xfs_trans_cancel(tp);
2897 * xfs_rename_alloc_whiteout()
2899 * Return a referenced, unlinked, unlocked inode that that can be used as a
2900 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2901 * crash between allocating the inode and linking it into the rename transaction
2902 * recovery will free the inode and we won't leak it.
2905 xfs_rename_alloc_whiteout(
2906 struct xfs_inode *dp,
2907 struct xfs_inode **wip)
2909 struct xfs_inode *tmpfile;
2912 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2917 * Prepare the tmpfile inode as if it were created through the VFS.
2918 * Otherwise, the link increment paths will complain about nlink 0->1.
2919 * Drop the link count as done by d_tmpfile(), complete the inode setup
2920 * and flag it as linkable.
2922 drop_nlink(VFS_I(tmpfile));
2923 xfs_setup_iops(tmpfile);
2924 xfs_finish_inode_setup(tmpfile);
2925 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2936 struct xfs_inode *src_dp,
2937 struct xfs_name *src_name,
2938 struct xfs_inode *src_ip,
2939 struct xfs_inode *target_dp,
2940 struct xfs_name *target_name,
2941 struct xfs_inode *target_ip,
2944 struct xfs_mount *mp = src_dp->i_mount;
2945 struct xfs_trans *tp;
2946 struct xfs_defer_ops dfops;
2947 xfs_fsblock_t first_block;
2948 struct xfs_inode *wip = NULL; /* whiteout inode */
2949 struct xfs_inode *inodes[__XFS_SORT_INODES];
2950 int num_inodes = __XFS_SORT_INODES;
2951 bool new_parent = (src_dp != target_dp);
2952 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2956 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2958 if ((flags & RENAME_EXCHANGE) && !target_ip)
2962 * If we are doing a whiteout operation, allocate the whiteout inode
2963 * we will be placing at the target and ensure the type is set
2966 if (flags & RENAME_WHITEOUT) {
2967 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2968 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2972 /* setup target dirent info as whiteout */
2973 src_name->type = XFS_DIR3_FT_CHRDEV;
2976 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2977 inodes, &num_inodes);
2979 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2980 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2981 if (error == -ENOSPC) {
2983 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2987 goto out_release_wip;
2990 * Attach the dquots to the inodes
2992 error = xfs_qm_vop_rename_dqattach(inodes);
2994 goto out_trans_cancel;
2997 * Lock all the participating inodes. Depending upon whether
2998 * the target_name exists in the target directory, and
2999 * whether the target directory is the same as the source
3000 * directory, we can lock from 2 to 4 inodes.
3002 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3005 * Join all the inodes to the transaction. From this point on,
3006 * we can rely on either trans_commit or trans_cancel to unlock
3009 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3011 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3012 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3014 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3016 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3019 * If we are using project inheritance, we only allow renames
3020 * into our tree when the project IDs are the same; else the
3021 * tree quota mechanism would be circumvented.
3023 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3024 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3026 goto out_trans_cancel;
3029 xfs_defer_init(&dfops, &first_block);
3030 tp->t_agfl_dfops = &dfops;
3032 /* RENAME_EXCHANGE is unique from here on. */
3033 if (flags & RENAME_EXCHANGE)
3034 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3035 target_dp, target_name, target_ip,
3036 &dfops, &first_block, spaceres);
3039 * Set up the target.
3041 if (target_ip == NULL) {
3043 * If there's no space reservation, check the entry will
3044 * fit before actually inserting it.
3047 error = xfs_dir_canenter(tp, target_dp, target_name);
3049 goto out_trans_cancel;
3052 * If target does not exist and the rename crosses
3053 * directories, adjust the target directory link count
3054 * to account for the ".." reference from the new entry.
3056 error = xfs_dir_createname(tp, target_dp, target_name,
3057 src_ip->i_ino, &first_block,
3060 goto out_bmap_cancel;
3062 xfs_trans_ichgtime(tp, target_dp,
3063 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3065 if (new_parent && src_is_directory) {
3066 error = xfs_bumplink(tp, target_dp);
3068 goto out_bmap_cancel;
3070 } else { /* target_ip != NULL */
3072 * If target exists and it's a directory, check that both
3073 * target and source are directories and that target can be
3074 * destroyed, or that neither is a directory.
3076 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3078 * Make sure target dir is empty.
3080 if (!(xfs_dir_isempty(target_ip)) ||
3081 (VFS_I(target_ip)->i_nlink > 2)) {
3083 goto out_trans_cancel;
3088 * Link the source inode under the target name.
3089 * If the source inode is a directory and we are moving
3090 * it across directories, its ".." entry will be
3091 * inconsistent until we replace that down below.
3093 * In case there is already an entry with the same
3094 * name at the destination directory, remove it first.
3096 error = xfs_dir_replace(tp, target_dp, target_name,
3098 &first_block, &dfops, spaceres);
3100 goto out_bmap_cancel;
3102 xfs_trans_ichgtime(tp, target_dp,
3103 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3106 * Decrement the link count on the target since the target
3107 * dir no longer points to it.
3109 error = xfs_droplink(tp, target_ip);
3111 goto out_bmap_cancel;
3113 if (src_is_directory) {
3115 * Drop the link from the old "." entry.
3117 error = xfs_droplink(tp, target_ip);
3119 goto out_bmap_cancel;
3121 } /* target_ip != NULL */
3124 * Remove the source.
3126 if (new_parent && src_is_directory) {
3128 * Rewrite the ".." entry to point to the new
3131 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3133 &first_block, &dfops, spaceres);
3134 ASSERT(error != -EEXIST);
3136 goto out_bmap_cancel;
3140 * We always want to hit the ctime on the source inode.
3142 * This isn't strictly required by the standards since the source
3143 * inode isn't really being changed, but old unix file systems did
3144 * it and some incremental backup programs won't work without it.
3146 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3147 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3150 * Adjust the link count on src_dp. This is necessary when
3151 * renaming a directory, either within one parent when
3152 * the target existed, or across two parent directories.
3154 if (src_is_directory && (new_parent || target_ip != NULL)) {
3157 * Decrement link count on src_directory since the
3158 * entry that's moved no longer points to it.
3160 error = xfs_droplink(tp, src_dp);
3162 goto out_bmap_cancel;
3166 * For whiteouts, we only need to update the source dirent with the
3167 * inode number of the whiteout inode rather than removing it
3171 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3172 &first_block, &dfops, spaceres);
3174 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3175 &first_block, &dfops, spaceres);
3177 goto out_bmap_cancel;
3180 * For whiteouts, we need to bump the link count on the whiteout inode.
3181 * This means that failures all the way up to this point leave the inode
3182 * on the unlinked list and so cleanup is a simple matter of dropping
3183 * the remaining reference to it. If we fail here after bumping the link
3184 * count, we're shutting down the filesystem so we'll never see the
3185 * intermediate state on disk.
3188 ASSERT(VFS_I(wip)->i_nlink == 0);
3189 error = xfs_bumplink(tp, wip);
3191 goto out_bmap_cancel;
3192 error = xfs_iunlink_remove(tp, wip);
3194 goto out_bmap_cancel;
3195 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3198 * Now we have a real link, clear the "I'm a tmpfile" state
3199 * flag from the inode so it doesn't accidentally get misused in
3202 VFS_I(wip)->i_state &= ~I_LINKABLE;
3205 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3206 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3208 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3210 error = xfs_finish_rename(tp, &dfops);
3216 xfs_defer_cancel(&dfops);
3218 xfs_trans_cancel(tp);
3227 struct xfs_inode *ip,
3230 struct xfs_mount *mp = ip->i_mount;
3231 struct xfs_perag *pag;
3232 unsigned long first_index, mask;
3233 unsigned long inodes_per_cluster;
3235 struct xfs_inode **cilist;
3236 struct xfs_inode *cip;
3242 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3244 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3245 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3246 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3250 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3251 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3253 /* really need a gang lookup range call here */
3254 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3255 first_index, inodes_per_cluster);
3259 for (i = 0; i < nr_found; i++) {
3265 * because this is an RCU protected lookup, we could find a
3266 * recently freed or even reallocated inode during the lookup.
3267 * We need to check under the i_flags_lock for a valid inode
3268 * here. Skip it if it is not valid or the wrong inode.
3270 spin_lock(&cip->i_flags_lock);
3272 __xfs_iflags_test(cip, XFS_ISTALE)) {
3273 spin_unlock(&cip->i_flags_lock);
3278 * Once we fall off the end of the cluster, no point checking
3279 * any more inodes in the list because they will also all be
3280 * outside the cluster.
3282 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3283 spin_unlock(&cip->i_flags_lock);
3286 spin_unlock(&cip->i_flags_lock);
3289 * Do an un-protected check to see if the inode is dirty and
3290 * is a candidate for flushing. These checks will be repeated
3291 * later after the appropriate locks are acquired.
3293 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3297 * Try to get locks. If any are unavailable or it is pinned,
3298 * then this inode cannot be flushed and is skipped.
3301 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3303 if (!xfs_iflock_nowait(cip)) {
3304 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3307 if (xfs_ipincount(cip)) {
3309 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3315 * Check the inode number again, just to be certain we are not
3316 * racing with freeing in xfs_reclaim_inode(). See the comments
3317 * in that function for more information as to why the initial
3318 * check is not sufficient.
3322 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3327 * arriving here means that this inode can be flushed. First
3328 * re-check that it's dirty before flushing.
3330 if (!xfs_inode_clean(cip)) {
3332 error = xfs_iflush_int(cip, bp);
3334 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3335 goto cluster_corrupt_out;
3341 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3345 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3346 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3357 cluster_corrupt_out:
3359 * Corruption detected in the clustering loop. Invalidate the
3360 * inode buffer and shut down the filesystem.
3364 * Clean up the buffer. If it was delwri, just release it --
3365 * brelse can handle it with no problems. If not, shut down the
3366 * filesystem before releasing the buffer.
3368 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3372 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3374 if (!bufwasdelwri) {
3376 * Just like incore_relse: if we have b_iodone functions,
3377 * mark the buffer as an error and call them. Otherwise
3378 * mark it as stale and brelse.
3381 bp->b_flags &= ~XBF_DONE;
3383 xfs_buf_ioerror(bp, -EIO);
3392 * Unlocks the flush lock
3394 xfs_iflush_abort(cip, false);
3397 return -EFSCORRUPTED;
3401 * Flush dirty inode metadata into the backing buffer.
3403 * The caller must have the inode lock and the inode flush lock held. The
3404 * inode lock will still be held upon return to the caller, and the inode
3405 * flush lock will be released after the inode has reached the disk.
3407 * The caller must write out the buffer returned in *bpp and release it.
3411 struct xfs_inode *ip,
3412 struct xfs_buf **bpp)
3414 struct xfs_mount *mp = ip->i_mount;
3415 struct xfs_buf *bp = NULL;
3416 struct xfs_dinode *dip;
3419 XFS_STATS_INC(mp, xs_iflush_count);
3421 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3422 ASSERT(xfs_isiflocked(ip));
3423 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3424 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3428 xfs_iunpin_wait(ip);
3431 * For stale inodes we cannot rely on the backing buffer remaining
3432 * stale in cache for the remaining life of the stale inode and so
3433 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3434 * inodes below. We have to check this after ensuring the inode is
3435 * unpinned so that it is safe to reclaim the stale inode after the
3438 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3444 * This may have been unpinned because the filesystem is shutting
3445 * down forcibly. If that's the case we must not write this inode
3446 * to disk, because the log record didn't make it to disk.
3448 * We also have to remove the log item from the AIL in this case,
3449 * as we wait for an empty AIL as part of the unmount process.
3451 if (XFS_FORCED_SHUTDOWN(mp)) {
3457 * Get the buffer containing the on-disk inode. We are doing a try-lock
3458 * operation here, so we may get an EAGAIN error. In that case, we
3459 * simply want to return with the inode still dirty.
3461 * If we get any other error, we effectively have a corruption situation
3462 * and we cannot flush the inode, so we treat it the same as failing
3465 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3467 if (error == -EAGAIN) {
3475 * First flush out the inode that xfs_iflush was called with.
3477 error = xfs_iflush_int(ip, bp);
3482 * If the buffer is pinned then push on the log now so we won't
3483 * get stuck waiting in the write for too long.
3485 if (xfs_buf_ispinned(bp))
3486 xfs_log_force(mp, 0);
3490 * see if other inodes can be gathered into this write
3492 error = xfs_iflush_cluster(ip, bp);
3494 goto cluster_corrupt_out;
3502 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3503 cluster_corrupt_out:
3504 error = -EFSCORRUPTED;
3507 * Unlocks the flush lock
3509 xfs_iflush_abort(ip, false);
3514 * If there are inline format data / attr forks attached to this inode,
3515 * make sure they're not corrupt.
3518 xfs_inode_verify_forks(
3519 struct xfs_inode *ip)
3521 struct xfs_ifork *ifp;
3524 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3526 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3527 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3528 ifp->if_u1.if_data, ifp->if_bytes, fa);
3532 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3534 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3535 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3536 ifp ? ifp->if_u1.if_data : NULL,
3537 ifp ? ifp->if_bytes : 0, fa);
3545 struct xfs_inode *ip,
3548 struct xfs_inode_log_item *iip = ip->i_itemp;
3549 struct xfs_dinode *dip;
3550 struct xfs_mount *mp = ip->i_mount;
3552 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3553 ASSERT(xfs_isiflocked(ip));
3554 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3555 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3556 ASSERT(iip != NULL && iip->ili_fields != 0);
3557 ASSERT(ip->i_d.di_version > 1);
3559 /* set *dip = inode's place in the buffer */
3560 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3562 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3563 mp, XFS_ERRTAG_IFLUSH_1)) {
3564 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3565 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3566 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3569 if (S_ISREG(VFS_I(ip)->i_mode)) {
3571 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3572 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3573 mp, XFS_ERRTAG_IFLUSH_3)) {
3574 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3575 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3576 __func__, ip->i_ino, ip);
3579 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3581 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3582 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3583 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3584 mp, XFS_ERRTAG_IFLUSH_4)) {
3585 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3586 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3587 __func__, ip->i_ino, ip);
3591 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3592 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3593 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3594 "%s: detected corrupt incore inode %Lu, "
3595 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3596 __func__, ip->i_ino,
3597 ip->i_d.di_nextents + ip->i_d.di_anextents,
3598 ip->i_d.di_nblocks, ip);
3601 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3602 mp, XFS_ERRTAG_IFLUSH_6)) {
3603 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3604 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3605 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3610 * Inode item log recovery for v2 inodes are dependent on the
3611 * di_flushiter count for correct sequencing. We bump the flush
3612 * iteration count so we can detect flushes which postdate a log record
3613 * during recovery. This is redundant as we now log every change and
3614 * hence this can't happen but we need to still do it to ensure
3615 * backwards compatibility with old kernels that predate logging all
3618 if (ip->i_d.di_version < 3)
3619 ip->i_d.di_flushiter++;
3621 /* Check the inline fork data before we write out. */
3622 if (!xfs_inode_verify_forks(ip))
3626 * Copy the dirty parts of the inode into the on-disk inode. We always
3627 * copy out the core of the inode, because if the inode is dirty at all
3630 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3632 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3633 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3634 ip->i_d.di_flushiter = 0;
3636 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3637 if (XFS_IFORK_Q(ip))
3638 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3639 xfs_inobp_check(mp, bp);
3642 * We've recorded everything logged in the inode, so we'd like to clear
3643 * the ili_fields bits so we don't log and flush things unnecessarily.
3644 * However, we can't stop logging all this information until the data
3645 * we've copied into the disk buffer is written to disk. If we did we
3646 * might overwrite the copy of the inode in the log with all the data
3647 * after re-logging only part of it, and in the face of a crash we
3648 * wouldn't have all the data we need to recover.
3650 * What we do is move the bits to the ili_last_fields field. When
3651 * logging the inode, these bits are moved back to the ili_fields field.
3652 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3653 * know that the information those bits represent is permanently on
3654 * disk. As long as the flush completes before the inode is logged
3655 * again, then both ili_fields and ili_last_fields will be cleared.
3657 * We can play with the ili_fields bits here, because the inode lock
3658 * must be held exclusively in order to set bits there and the flush
3659 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3660 * done routine can tell whether or not to look in the AIL. Also, store
3661 * the current LSN of the inode so that we can tell whether the item has
3662 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3663 * need the AIL lock, because it is a 64 bit value that cannot be read
3666 iip->ili_last_fields = iip->ili_fields;
3667 iip->ili_fields = 0;
3668 iip->ili_fsync_fields = 0;
3669 iip->ili_logged = 1;
3671 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3672 &iip->ili_item.li_lsn);
3675 * Attach the function xfs_iflush_done to the inode's
3676 * buffer. This will remove the inode from the AIL
3677 * and unlock the inode's flush lock when the inode is
3678 * completely written to disk.
3680 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3682 /* generate the checksum. */
3683 xfs_dinode_calc_crc(mp, dip);
3685 ASSERT(!list_empty(&bp->b_li_list));
3686 ASSERT(bp->b_iodone != NULL);
3690 return -EFSCORRUPTED;