1 // SPDX-License-Identifier: GPL-2.0+
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
5 * Copyright IBM Corporation, 2008
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
14 * For detailed explanation of Read-Copy Update mechanism see -
18 #define pr_fmt(fmt) "rcu: " fmt
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/panic.h>
36 #include <linux/panic_notifier.h>
37 #include <linux/percpu.h>
38 #include <linux/notifier.h>
39 #include <linux/cpu.h>
40 #include <linux/mutex.h>
41 #include <linux/time.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/wait.h>
44 #include <linux/kthread.h>
45 #include <uapi/linux/sched/types.h>
46 #include <linux/prefetch.h>
47 #include <linux/delay.h>
48 #include <linux/random.h>
49 #include <linux/trace_events.h>
50 #include <linux/suspend.h>
51 #include <linux/ftrace.h>
52 #include <linux/tick.h>
53 #include <linux/sysrq.h>
54 #include <linux/kprobes.h>
55 #include <linux/gfp.h>
56 #include <linux/oom.h>
57 #include <linux/smpboot.h>
58 #include <linux/jiffies.h>
59 #include <linux/slab.h>
60 #include <linux/sched/isolation.h>
61 #include <linux/sched/clock.h>
62 #include <linux/vmalloc.h>
64 #include <linux/kasan.h>
65 #include "../time/tick-internal.h"
70 #ifdef MODULE_PARAM_PREFIX
71 #undef MODULE_PARAM_PREFIX
73 #define MODULE_PARAM_PREFIX "rcutree."
75 /* Data structures. */
78 * Steal a bit from the bottom of ->dynticks for idle entry/exit
79 * control. Initially this is for TLB flushing.
81 #define RCU_DYNTICK_CTRL_MASK 0x1
82 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
84 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
85 .dynticks_nesting = 1,
86 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
87 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
88 #ifdef CONFIG_RCU_NOCB_CPU
89 .cblist.flags = SEGCBLIST_SOFTIRQ_ONLY,
92 static struct rcu_state rcu_state = {
93 .level = { &rcu_state.node[0] },
94 .gp_state = RCU_GP_IDLE,
95 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
96 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
99 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
100 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
101 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
104 /* Dump rcu_node combining tree at boot to verify correct setup. */
105 static bool dump_tree;
106 module_param(dump_tree, bool, 0444);
107 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
108 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
109 #ifndef CONFIG_PREEMPT_RT
110 module_param(use_softirq, bool, 0444);
112 /* Control rcu_node-tree auto-balancing at boot time. */
113 static bool rcu_fanout_exact;
114 module_param(rcu_fanout_exact, bool, 0444);
115 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
116 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
117 module_param(rcu_fanout_leaf, int, 0444);
118 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
119 /* Number of rcu_nodes at specified level. */
120 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
121 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
124 * The rcu_scheduler_active variable is initialized to the value
125 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
126 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
127 * RCU can assume that there is but one task, allowing RCU to (for example)
128 * optimize synchronize_rcu() to a simple barrier(). When this variable
129 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
130 * to detect real grace periods. This variable is also used to suppress
131 * boot-time false positives from lockdep-RCU error checking. Finally, it
132 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
133 * is fully initialized, including all of its kthreads having been spawned.
135 int rcu_scheduler_active __read_mostly;
136 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
139 * The rcu_scheduler_fully_active variable transitions from zero to one
140 * during the early_initcall() processing, which is after the scheduler
141 * is capable of creating new tasks. So RCU processing (for example,
142 * creating tasks for RCU priority boosting) must be delayed until after
143 * rcu_scheduler_fully_active transitions from zero to one. We also
144 * currently delay invocation of any RCU callbacks until after this point.
146 * It might later prove better for people registering RCU callbacks during
147 * early boot to take responsibility for these callbacks, but one step at
150 static int rcu_scheduler_fully_active __read_mostly;
152 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
153 unsigned long gps, unsigned long flags);
154 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
155 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
156 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
157 static void invoke_rcu_core(void);
158 static void rcu_report_exp_rdp(struct rcu_data *rdp);
159 static void sync_sched_exp_online_cleanup(int cpu);
160 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
161 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
163 /* rcuc/rcub kthread realtime priority */
164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165 module_param(kthread_prio, int, 0444);
167 /* Delay in jiffies for grace-period initialization delays, debug only. */
169 static int gp_preinit_delay;
170 module_param(gp_preinit_delay, int, 0444);
171 static int gp_init_delay;
172 module_param(gp_init_delay, int, 0444);
173 static int gp_cleanup_delay;
174 module_param(gp_cleanup_delay, int, 0444);
176 // Add delay to rcu_read_unlock() for strict grace periods.
177 static int rcu_unlock_delay;
178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179 module_param(rcu_unlock_delay, int, 0444);
183 * This rcu parameter is runtime-read-only. It reflects
184 * a minimum allowed number of objects which can be cached
185 * per-CPU. Object size is equal to one page. This value
186 * can be changed at boot time.
188 static int rcu_min_cached_objs = 5;
189 module_param(rcu_min_cached_objs, int, 0444);
191 /* Retrieve RCU kthreads priority for rcutorture */
192 int rcu_get_gp_kthreads_prio(void)
196 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
199 * Number of grace periods between delays, normalized by the duration of
200 * the delay. The longer the delay, the more the grace periods between
201 * each delay. The reason for this normalization is that it means that,
202 * for non-zero delays, the overall slowdown of grace periods is constant
203 * regardless of the duration of the delay. This arrangement balances
204 * the need for long delays to increase some race probabilities with the
205 * need for fast grace periods to increase other race probabilities.
207 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
210 * Compute the mask of online CPUs for the specified rcu_node structure.
211 * This will not be stable unless the rcu_node structure's ->lock is
212 * held, but the bit corresponding to the current CPU will be stable
215 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
217 return READ_ONCE(rnp->qsmaskinitnext);
221 * Return true if an RCU grace period is in progress. The READ_ONCE()s
222 * permit this function to be invoked without holding the root rcu_node
223 * structure's ->lock, but of course results can be subject to change.
225 static int rcu_gp_in_progress(void)
227 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
231 * Return the number of callbacks queued on the specified CPU.
232 * Handles both the nocbs and normal cases.
234 static long rcu_get_n_cbs_cpu(int cpu)
236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
238 if (rcu_segcblist_is_enabled(&rdp->cblist))
239 return rcu_segcblist_n_cbs(&rdp->cblist);
243 void rcu_softirq_qs(void)
246 rcu_preempt_deferred_qs(current);
250 * Record entry into an extended quiescent state. This is only to be
251 * called when not already in an extended quiescent state, that is,
252 * RCU is watching prior to the call to this function and is no longer
253 * watching upon return.
255 static noinstr void rcu_dynticks_eqs_enter(void)
257 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
261 * CPUs seeing atomic_add_return() must see prior RCU read-side
262 * critical sections, and we also must force ordering with the
265 rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
266 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
267 // RCU is no longer watching. Better be in extended quiescent state!
268 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
269 (seq & RCU_DYNTICK_CTRL_CTR));
270 /* Better not have special action (TLB flush) pending! */
271 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
272 (seq & RCU_DYNTICK_CTRL_MASK));
276 * Record exit from an extended quiescent state. This is only to be
277 * called from an extended quiescent state, that is, RCU is not watching
278 * prior to the call to this function and is watching upon return.
280 static noinstr void rcu_dynticks_eqs_exit(void)
282 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
286 * CPUs seeing atomic_add_return() must see prior idle sojourns,
287 * and we also must force ordering with the next RCU read-side
290 seq = arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
291 // RCU is now watching. Better not be in an extended quiescent state!
292 rcu_dynticks_task_trace_exit(); // After ->dynticks update!
293 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
294 !(seq & RCU_DYNTICK_CTRL_CTR));
295 if (seq & RCU_DYNTICK_CTRL_MASK) {
296 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
297 smp_mb__after_atomic(); /* _exit after clearing mask. */
302 * Reset the current CPU's ->dynticks counter to indicate that the
303 * newly onlined CPU is no longer in an extended quiescent state.
304 * This will either leave the counter unchanged, or increment it
305 * to the next non-quiescent value.
307 * The non-atomic test/increment sequence works because the upper bits
308 * of the ->dynticks counter are manipulated only by the corresponding CPU,
309 * or when the corresponding CPU is offline.
311 static void rcu_dynticks_eqs_online(void)
313 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
315 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
317 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
321 * Is the current CPU in an extended quiescent state?
323 * No ordering, as we are sampling CPU-local information.
325 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
327 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
329 return !(arch_atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
333 * Snapshot the ->dynticks counter with full ordering so as to allow
334 * stable comparison of this counter with past and future snapshots.
336 static int rcu_dynticks_snap(struct rcu_data *rdp)
338 int snap = atomic_add_return(0, &rdp->dynticks);
340 return snap & ~RCU_DYNTICK_CTRL_MASK;
344 * Return true if the snapshot returned from rcu_dynticks_snap()
345 * indicates that RCU is in an extended quiescent state.
347 static bool rcu_dynticks_in_eqs(int snap)
349 return !(snap & RCU_DYNTICK_CTRL_CTR);
352 /* Return true if the specified CPU is currently idle from an RCU viewpoint. */
353 bool rcu_is_idle_cpu(int cpu)
355 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
357 return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
361 * Return true if the CPU corresponding to the specified rcu_data
362 * structure has spent some time in an extended quiescent state since
363 * rcu_dynticks_snap() returned the specified snapshot.
365 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
367 return snap != rcu_dynticks_snap(rdp);
371 * Return true if the referenced integer is zero while the specified
372 * CPU remains within a single extended quiescent state.
374 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
376 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
379 // If not quiescent, force back to earlier extended quiescent state.
380 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
381 RCU_DYNTICK_CTRL_CTR);
383 smp_rmb(); // Order ->dynticks and *vp reads.
385 return false; // Non-zero, so report failure;
386 smp_rmb(); // Order *vp read and ->dynticks re-read.
388 // If still in the same extended quiescent state, we are good!
389 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
393 * Set the special (bottom) bit of the specified CPU so that it
394 * will take special action (such as flushing its TLB) on the
395 * next exit from an extended quiescent state. Returns true if
396 * the bit was successfully set, or false if the CPU was not in
397 * an extended quiescent state.
399 bool rcu_eqs_special_set(int cpu)
404 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
406 new_old = atomic_read(&rdp->dynticks);
409 if (old & RCU_DYNTICK_CTRL_CTR)
411 new = old | RCU_DYNTICK_CTRL_MASK;
412 new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
413 } while (new_old != old);
418 * Let the RCU core know that this CPU has gone through the scheduler,
419 * which is a quiescent state. This is called when the need for a
420 * quiescent state is urgent, so we burn an atomic operation and full
421 * memory barriers to let the RCU core know about it, regardless of what
422 * this CPU might (or might not) do in the near future.
424 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
426 * The caller must have disabled interrupts and must not be idle.
428 notrace void rcu_momentary_dyntick_idle(void)
432 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
433 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
434 &this_cpu_ptr(&rcu_data)->dynticks);
435 /* It is illegal to call this from idle state. */
436 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
437 rcu_preempt_deferred_qs(current);
439 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
442 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
444 * If the current CPU is idle and running at a first-level (not nested)
445 * interrupt, or directly, from idle, return true.
447 * The caller must have at least disabled IRQs.
449 static int rcu_is_cpu_rrupt_from_idle(void)
454 * Usually called from the tick; but also used from smp_function_call()
455 * for expedited grace periods. This latter can result in running from
456 * the idle task, instead of an actual IPI.
458 lockdep_assert_irqs_disabled();
460 /* Check for counter underflows */
461 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
462 "RCU dynticks_nesting counter underflow!");
463 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
464 "RCU dynticks_nmi_nesting counter underflow/zero!");
466 /* Are we at first interrupt nesting level? */
467 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
472 * If we're not in an interrupt, we must be in the idle task!
474 WARN_ON_ONCE(!nesting && !is_idle_task(current));
476 /* Does CPU appear to be idle from an RCU standpoint? */
477 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
480 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
481 // Maximum callbacks per rcu_do_batch ...
482 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
483 static long blimit = DEFAULT_RCU_BLIMIT;
484 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
485 static long qhimark = DEFAULT_RCU_QHIMARK;
486 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
487 static long qlowmark = DEFAULT_RCU_QLOMARK;
488 #define DEFAULT_RCU_QOVLD_MULT 2
489 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
490 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
491 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
493 module_param(blimit, long, 0444);
494 module_param(qhimark, long, 0444);
495 module_param(qlowmark, long, 0444);
496 module_param(qovld, long, 0444);
498 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
499 static ulong jiffies_till_next_fqs = ULONG_MAX;
500 static bool rcu_kick_kthreads;
501 static int rcu_divisor = 7;
502 module_param(rcu_divisor, int, 0644);
504 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
505 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
506 module_param(rcu_resched_ns, long, 0644);
509 * How long the grace period must be before we start recruiting
510 * quiescent-state help from rcu_note_context_switch().
512 static ulong jiffies_till_sched_qs = ULONG_MAX;
513 module_param(jiffies_till_sched_qs, ulong, 0444);
514 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
515 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
518 * Make sure that we give the grace-period kthread time to detect any
519 * idle CPUs before taking active measures to force quiescent states.
520 * However, don't go below 100 milliseconds, adjusted upwards for really
523 static void adjust_jiffies_till_sched_qs(void)
527 /* If jiffies_till_sched_qs was specified, respect the request. */
528 if (jiffies_till_sched_qs != ULONG_MAX) {
529 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
532 /* Otherwise, set to third fqs scan, but bound below on large system. */
533 j = READ_ONCE(jiffies_till_first_fqs) +
534 2 * READ_ONCE(jiffies_till_next_fqs);
535 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
536 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
537 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
538 WRITE_ONCE(jiffies_to_sched_qs, j);
541 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
544 int ret = kstrtoul(val, 0, &j);
547 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
548 adjust_jiffies_till_sched_qs();
553 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
556 int ret = kstrtoul(val, 0, &j);
559 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
560 adjust_jiffies_till_sched_qs();
565 static const struct kernel_param_ops first_fqs_jiffies_ops = {
566 .set = param_set_first_fqs_jiffies,
567 .get = param_get_ulong,
570 static const struct kernel_param_ops next_fqs_jiffies_ops = {
571 .set = param_set_next_fqs_jiffies,
572 .get = param_get_ulong,
575 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
576 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
577 module_param(rcu_kick_kthreads, bool, 0644);
579 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
580 static int rcu_pending(int user);
583 * Return the number of RCU GPs completed thus far for debug & stats.
585 unsigned long rcu_get_gp_seq(void)
587 return READ_ONCE(rcu_state.gp_seq);
589 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
592 * Return the number of RCU expedited batches completed thus far for
593 * debug & stats. Odd numbers mean that a batch is in progress, even
594 * numbers mean idle. The value returned will thus be roughly double
595 * the cumulative batches since boot.
597 unsigned long rcu_exp_batches_completed(void)
599 return rcu_state.expedited_sequence;
601 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
604 * Return the root node of the rcu_state structure.
606 static struct rcu_node *rcu_get_root(void)
608 return &rcu_state.node[0];
612 * Send along grace-period-related data for rcutorture diagnostics.
614 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
615 unsigned long *gp_seq)
619 *flags = READ_ONCE(rcu_state.gp_flags);
620 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
626 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
629 * Enter an RCU extended quiescent state, which can be either the
630 * idle loop or adaptive-tickless usermode execution.
632 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
633 * the possibility of usermode upcalls having messed up our count
634 * of interrupt nesting level during the prior busy period.
636 static noinstr void rcu_eqs_enter(bool user)
638 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
640 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
641 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
642 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
643 rdp->dynticks_nesting == 0);
644 if (rdp->dynticks_nesting != 1) {
645 // RCU will still be watching, so just do accounting and leave.
646 rdp->dynticks_nesting--;
650 lockdep_assert_irqs_disabled();
651 instrumentation_begin();
652 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
653 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
654 rcu_prepare_for_idle();
655 rcu_preempt_deferred_qs(current);
657 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
658 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
660 instrumentation_end();
661 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
662 // RCU is watching here ...
663 rcu_dynticks_eqs_enter();
664 // ... but is no longer watching here.
665 rcu_dynticks_task_enter();
669 * rcu_idle_enter - inform RCU that current CPU is entering idle
671 * Enter idle mode, in other words, -leave- the mode in which RCU
672 * read-side critical sections can occur. (Though RCU read-side
673 * critical sections can occur in irq handlers in idle, a possibility
674 * handled by irq_enter() and irq_exit().)
676 * If you add or remove a call to rcu_idle_enter(), be sure to test with
677 * CONFIG_RCU_EQS_DEBUG=y.
679 void rcu_idle_enter(void)
681 lockdep_assert_irqs_disabled();
682 rcu_eqs_enter(false);
684 EXPORT_SYMBOL_GPL(rcu_idle_enter);
686 #ifdef CONFIG_NO_HZ_FULL
688 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)
690 * An empty function that will trigger a reschedule on
691 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
693 static void late_wakeup_func(struct irq_work *work)
697 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
698 IRQ_WORK_INIT(late_wakeup_func);
703 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
704 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
706 * In these cases the late RCU wake ups aren't supported in the resched loops and our
707 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
708 * get re-enabled again.
710 noinstr static void rcu_irq_work_resched(void)
712 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
714 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
717 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
720 instrumentation_begin();
721 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
722 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
724 instrumentation_end();
728 static inline void rcu_irq_work_resched(void) { }
732 * rcu_user_enter - inform RCU that we are resuming userspace.
734 * Enter RCU idle mode right before resuming userspace. No use of RCU
735 * is permitted between this call and rcu_user_exit(). This way the
736 * CPU doesn't need to maintain the tick for RCU maintenance purposes
737 * when the CPU runs in userspace.
739 * If you add or remove a call to rcu_user_enter(), be sure to test with
740 * CONFIG_RCU_EQS_DEBUG=y.
742 noinstr void rcu_user_enter(void)
744 lockdep_assert_irqs_disabled();
747 * Other than generic entry implementation, we may be past the last
748 * rescheduling opportunity in the entry code. Trigger a self IPI
749 * that will fire and reschedule once we resume in user/guest mode.
751 rcu_irq_work_resched();
755 #endif /* CONFIG_NO_HZ_FULL */
758 * rcu_nmi_exit - inform RCU of exit from NMI context
760 * If we are returning from the outermost NMI handler that interrupted an
761 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
762 * to let the RCU grace-period handling know that the CPU is back to
765 * If you add or remove a call to rcu_nmi_exit(), be sure to test
766 * with CONFIG_RCU_EQS_DEBUG=y.
768 noinstr void rcu_nmi_exit(void)
770 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
772 instrumentation_begin();
774 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
775 * (We are exiting an NMI handler, so RCU better be paying attention
778 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
779 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
782 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
783 * leave it in non-RCU-idle state.
785 if (rdp->dynticks_nmi_nesting != 1) {
786 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
787 atomic_read(&rdp->dynticks));
788 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
789 rdp->dynticks_nmi_nesting - 2);
790 instrumentation_end();
794 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
795 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
796 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
799 rcu_prepare_for_idle();
801 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
802 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
803 instrumentation_end();
805 // RCU is watching here ...
806 rcu_dynticks_eqs_enter();
807 // ... but is no longer watching here.
810 rcu_dynticks_task_enter();
814 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
816 * Exit from an interrupt handler, which might possibly result in entering
817 * idle mode, in other words, leaving the mode in which read-side critical
818 * sections can occur. The caller must have disabled interrupts.
820 * This code assumes that the idle loop never does anything that might
821 * result in unbalanced calls to irq_enter() and irq_exit(). If your
822 * architecture's idle loop violates this assumption, RCU will give you what
823 * you deserve, good and hard. But very infrequently and irreproducibly.
825 * Use things like work queues to work around this limitation.
827 * You have been warned.
829 * If you add or remove a call to rcu_irq_exit(), be sure to test with
830 * CONFIG_RCU_EQS_DEBUG=y.
832 void noinstr rcu_irq_exit(void)
834 lockdep_assert_irqs_disabled();
839 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
840 * towards in kernel preemption
842 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
843 * from RCU point of view. Invoked from return from interrupt before kernel
846 void rcu_irq_exit_preempt(void)
848 lockdep_assert_irqs_disabled();
851 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
852 "RCU dynticks_nesting counter underflow/zero!");
853 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
855 "Bad RCU dynticks_nmi_nesting counter\n");
856 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
857 "RCU in extended quiescent state!");
860 #ifdef CONFIG_PROVE_RCU
862 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
864 void rcu_irq_exit_check_preempt(void)
866 lockdep_assert_irqs_disabled();
868 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
869 "RCU dynticks_nesting counter underflow/zero!");
870 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
872 "Bad RCU dynticks_nmi_nesting counter\n");
873 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
874 "RCU in extended quiescent state!");
876 #endif /* #ifdef CONFIG_PROVE_RCU */
879 * Wrapper for rcu_irq_exit() where interrupts are enabled.
881 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
882 * with CONFIG_RCU_EQS_DEBUG=y.
884 void rcu_irq_exit_irqson(void)
888 local_irq_save(flags);
890 local_irq_restore(flags);
894 * Exit an RCU extended quiescent state, which can be either the
895 * idle loop or adaptive-tickless usermode execution.
897 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
898 * allow for the possibility of usermode upcalls messing up our count of
899 * interrupt nesting level during the busy period that is just now starting.
901 static void noinstr rcu_eqs_exit(bool user)
903 struct rcu_data *rdp;
906 lockdep_assert_irqs_disabled();
907 rdp = this_cpu_ptr(&rcu_data);
908 oldval = rdp->dynticks_nesting;
909 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
911 // RCU was already watching, so just do accounting and leave.
912 rdp->dynticks_nesting++;
915 rcu_dynticks_task_exit();
916 // RCU is not watching here ...
917 rcu_dynticks_eqs_exit();
918 // ... but is watching here.
919 instrumentation_begin();
921 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
922 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
924 rcu_cleanup_after_idle();
925 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
926 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
927 WRITE_ONCE(rdp->dynticks_nesting, 1);
928 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
929 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
930 instrumentation_end();
934 * rcu_idle_exit - inform RCU that current CPU is leaving idle
936 * Exit idle mode, in other words, -enter- the mode in which RCU
937 * read-side critical sections can occur.
939 * If you add or remove a call to rcu_idle_exit(), be sure to test with
940 * CONFIG_RCU_EQS_DEBUG=y.
942 void rcu_idle_exit(void)
946 local_irq_save(flags);
948 local_irq_restore(flags);
950 EXPORT_SYMBOL_GPL(rcu_idle_exit);
952 #ifdef CONFIG_NO_HZ_FULL
954 * rcu_user_exit - inform RCU that we are exiting userspace.
956 * Exit RCU idle mode while entering the kernel because it can
957 * run a RCU read side critical section anytime.
959 * If you add or remove a call to rcu_user_exit(), be sure to test with
960 * CONFIG_RCU_EQS_DEBUG=y.
962 void noinstr rcu_user_exit(void)
968 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
970 * The scheduler tick is not normally enabled when CPUs enter the kernel
971 * from nohz_full userspace execution. After all, nohz_full userspace
972 * execution is an RCU quiescent state and the time executing in the kernel
973 * is quite short. Except of course when it isn't. And it is not hard to
974 * cause a large system to spend tens of seconds or even minutes looping
975 * in the kernel, which can cause a number of problems, include RCU CPU
978 * Therefore, if a nohz_full CPU fails to report a quiescent state
979 * in a timely manner, the RCU grace-period kthread sets that CPU's
980 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
981 * exception will invoke this function, which will turn on the scheduler
982 * tick, which will enable RCU to detect that CPU's quiescent states,
983 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
984 * The tick will be disabled once a quiescent state is reported for
987 * Of course, in carefully tuned systems, there might never be an
988 * interrupt or exception. In that case, the RCU grace-period kthread
989 * will eventually cause one to happen. However, in less carefully
990 * controlled environments, this function allows RCU to get what it
991 * needs without creating otherwise useless interruptions.
993 void __rcu_irq_enter_check_tick(void)
995 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
997 // If we're here from NMI there's nothing to do.
1001 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
1002 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
1004 if (!tick_nohz_full_cpu(rdp->cpu) ||
1005 !READ_ONCE(rdp->rcu_urgent_qs) ||
1006 READ_ONCE(rdp->rcu_forced_tick)) {
1007 // RCU doesn't need nohz_full help from this CPU, or it is
1008 // already getting that help.
1012 // We get here only when not in an extended quiescent state and
1013 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
1014 // already watching and (2) The fact that we are in an interrupt
1015 // handler and that the rcu_node lock is an irq-disabled lock
1016 // prevents self-deadlock. So we can safely recheck under the lock.
1017 // Note that the nohz_full state currently cannot change.
1018 raw_spin_lock_rcu_node(rdp->mynode);
1019 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
1020 // A nohz_full CPU is in the kernel and RCU needs a
1021 // quiescent state. Turn on the tick!
1022 WRITE_ONCE(rdp->rcu_forced_tick, true);
1023 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1025 raw_spin_unlock_rcu_node(rdp->mynode);
1027 #endif /* CONFIG_NO_HZ_FULL */
1030 * rcu_nmi_enter - inform RCU of entry to NMI context
1032 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
1033 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
1034 * that the CPU is active. This implementation permits nested NMIs, as
1035 * long as the nesting level does not overflow an int. (You will probably
1036 * run out of stack space first.)
1038 * If you add or remove a call to rcu_nmi_enter(), be sure to test
1039 * with CONFIG_RCU_EQS_DEBUG=y.
1041 noinstr void rcu_nmi_enter(void)
1044 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1046 /* Complain about underflow. */
1047 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
1050 * If idle from RCU viewpoint, atomically increment ->dynticks
1051 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1052 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
1053 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1054 * to be in the outermost NMI handler that interrupted an RCU-idle
1055 * period (observation due to Andy Lutomirski).
1057 if (rcu_dynticks_curr_cpu_in_eqs()) {
1060 rcu_dynticks_task_exit();
1062 // RCU is not watching here ...
1063 rcu_dynticks_eqs_exit();
1064 // ... but is watching here.
1067 instrumentation_begin();
1068 rcu_cleanup_after_idle();
1069 instrumentation_end();
1072 instrumentation_begin();
1073 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1074 instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1075 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
1076 instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1079 } else if (!in_nmi()) {
1080 instrumentation_begin();
1081 rcu_irq_enter_check_tick();
1083 instrumentation_begin();
1086 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1087 rdp->dynticks_nmi_nesting,
1088 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1089 instrumentation_end();
1090 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1091 rdp->dynticks_nmi_nesting + incby);
1096 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1098 * Enter an interrupt handler, which might possibly result in exiting
1099 * idle mode, in other words, entering the mode in which read-side critical
1100 * sections can occur. The caller must have disabled interrupts.
1102 * Note that the Linux kernel is fully capable of entering an interrupt
1103 * handler that it never exits, for example when doing upcalls to user mode!
1104 * This code assumes that the idle loop never does upcalls to user mode.
1105 * If your architecture's idle loop does do upcalls to user mode (or does
1106 * anything else that results in unbalanced calls to the irq_enter() and
1107 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1108 * But very infrequently and irreproducibly.
1110 * Use things like work queues to work around this limitation.
1112 * You have been warned.
1114 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1115 * CONFIG_RCU_EQS_DEBUG=y.
1117 noinstr void rcu_irq_enter(void)
1119 lockdep_assert_irqs_disabled();
1124 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1126 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1127 * with CONFIG_RCU_EQS_DEBUG=y.
1129 void rcu_irq_enter_irqson(void)
1131 unsigned long flags;
1133 local_irq_save(flags);
1135 local_irq_restore(flags);
1139 * If any sort of urgency was applied to the current CPU (for example,
1140 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1141 * to get to a quiescent state, disable it.
1143 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1145 raw_lockdep_assert_held_rcu_node(rdp->mynode);
1146 WRITE_ONCE(rdp->rcu_urgent_qs, false);
1147 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1148 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1149 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1150 WRITE_ONCE(rdp->rcu_forced_tick, false);
1155 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1157 * Return true if RCU is watching the running CPU, which means that this
1158 * CPU can safely enter RCU read-side critical sections. In other words,
1159 * if the current CPU is not in its idle loop or is in an interrupt or
1160 * NMI handler, return true.
1162 * Make notrace because it can be called by the internal functions of
1163 * ftrace, and making this notrace removes unnecessary recursion calls.
1165 notrace bool rcu_is_watching(void)
1169 preempt_disable_notrace();
1170 ret = !rcu_dynticks_curr_cpu_in_eqs();
1171 preempt_enable_notrace();
1174 EXPORT_SYMBOL_GPL(rcu_is_watching);
1177 * If a holdout task is actually running, request an urgent quiescent
1178 * state from its CPU. This is unsynchronized, so migrations can cause
1179 * the request to go to the wrong CPU. Which is OK, all that will happen
1180 * is that the CPU's next context switch will be a bit slower and next
1181 * time around this task will generate another request.
1183 void rcu_request_urgent_qs_task(struct task_struct *t)
1190 return; /* This task is not running on that CPU. */
1191 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1194 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1197 * Is the current CPU online as far as RCU is concerned?
1199 * Disable preemption to avoid false positives that could otherwise
1200 * happen due to the current CPU number being sampled, this task being
1201 * preempted, its old CPU being taken offline, resuming on some other CPU,
1202 * then determining that its old CPU is now offline.
1204 * Disable checking if in an NMI handler because we cannot safely
1205 * report errors from NMI handlers anyway. In addition, it is OK to use
1206 * RCU on an offline processor during initial boot, hence the check for
1207 * rcu_scheduler_fully_active.
1209 bool rcu_lockdep_current_cpu_online(void)
1211 struct rcu_data *rdp;
1212 struct rcu_node *rnp;
1215 if (in_nmi() || !rcu_scheduler_fully_active)
1217 preempt_disable_notrace();
1218 rdp = this_cpu_ptr(&rcu_data);
1220 if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1222 preempt_enable_notrace();
1225 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1227 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1230 * We are reporting a quiescent state on behalf of some other CPU, so
1231 * it is our responsibility to check for and handle potential overflow
1232 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1233 * After all, the CPU might be in deep idle state, and thus executing no
1236 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1238 raw_lockdep_assert_held_rcu_node(rnp);
1239 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1241 WRITE_ONCE(rdp->gpwrap, true);
1242 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1243 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1247 * Snapshot the specified CPU's dynticks counter so that we can later
1248 * credit them with an implicit quiescent state. Return 1 if this CPU
1249 * is in dynticks idle mode, which is an extended quiescent state.
1251 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1253 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1254 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1255 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1256 rcu_gpnum_ovf(rdp->mynode, rdp);
1263 * Return true if the specified CPU has passed through a quiescent
1264 * state by virtue of being in or having passed through an dynticks
1265 * idle state since the last call to dyntick_save_progress_counter()
1266 * for this same CPU, or by virtue of having been offline.
1268 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1273 struct rcu_node *rnp = rdp->mynode;
1276 * If the CPU passed through or entered a dynticks idle phase with
1277 * no active irq/NMI handlers, then we can safely pretend that the CPU
1278 * already acknowledged the request to pass through a quiescent
1279 * state. Either way, that CPU cannot possibly be in an RCU
1280 * read-side critical section that started before the beginning
1281 * of the current RCU grace period.
1283 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1284 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1285 rcu_gpnum_ovf(rnp, rdp);
1290 * Complain if a CPU that is considered to be offline from RCU's
1291 * perspective has not yet reported a quiescent state. After all,
1292 * the offline CPU should have reported a quiescent state during
1293 * the CPU-offline process, or, failing that, by rcu_gp_init()
1294 * if it ran concurrently with either the CPU going offline or the
1295 * last task on a leaf rcu_node structure exiting its RCU read-side
1296 * critical section while all CPUs corresponding to that structure
1297 * are offline. This added warning detects bugs in any of these
1300 * The rcu_node structure's ->lock is held here, which excludes
1301 * the relevant portions the CPU-hotplug code, the grace-period
1302 * initialization code, and the rcu_read_unlock() code paths.
1304 * For more detail, please refer to the "Hotplug CPU" section
1305 * of RCU's Requirements documentation.
1307 if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1309 struct rcu_node *rnp1;
1311 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1312 __func__, rnp->grplo, rnp->grphi, rnp->level,
1313 (long)rnp->gp_seq, (long)rnp->completedqs);
1314 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1315 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1316 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1317 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1318 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1319 __func__, rdp->cpu, ".o"[onl],
1320 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1321 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1322 return 1; /* Break things loose after complaining. */
1326 * A CPU running for an extended time within the kernel can
1327 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1328 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1329 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1330 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1331 * variable are safe because the assignments are repeated if this
1332 * CPU failed to pass through a quiescent state. This code
1333 * also checks .jiffies_resched in case jiffies_to_sched_qs
1336 jtsq = READ_ONCE(jiffies_to_sched_qs);
1337 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1338 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
1339 if (!READ_ONCE(*rnhqp) &&
1340 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1341 time_after(jiffies, rcu_state.jiffies_resched) ||
1342 rcu_state.cbovld)) {
1343 WRITE_ONCE(*rnhqp, true);
1344 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1345 smp_store_release(ruqp, true);
1346 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1347 WRITE_ONCE(*ruqp, true);
1351 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1352 * The above code handles this, but only for straight cond_resched().
1353 * And some in-kernel loops check need_resched() before calling
1354 * cond_resched(), which defeats the above code for CPUs that are
1355 * running in-kernel with scheduling-clock interrupts disabled.
1356 * So hit them over the head with the resched_cpu() hammer!
1358 if (tick_nohz_full_cpu(rdp->cpu) &&
1359 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1360 rcu_state.cbovld)) {
1361 WRITE_ONCE(*ruqp, true);
1362 resched_cpu(rdp->cpu);
1363 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1367 * If more than halfway to RCU CPU stall-warning time, invoke
1368 * resched_cpu() more frequently to try to loosen things up a bit.
1369 * Also check to see if the CPU is getting hammered with interrupts,
1370 * but only once per grace period, just to keep the IPIs down to
1373 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1374 if (time_after(jiffies,
1375 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1376 resched_cpu(rdp->cpu);
1377 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1379 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1380 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1381 (rnp->ffmask & rdp->grpmask)) {
1382 rdp->rcu_iw_pending = true;
1383 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1384 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1391 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1392 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1393 unsigned long gp_seq_req, const char *s)
1395 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1396 gp_seq_req, rnp->level,
1397 rnp->grplo, rnp->grphi, s);
1401 * rcu_start_this_gp - Request the start of a particular grace period
1402 * @rnp_start: The leaf node of the CPU from which to start.
1403 * @rdp: The rcu_data corresponding to the CPU from which to start.
1404 * @gp_seq_req: The gp_seq of the grace period to start.
1406 * Start the specified grace period, as needed to handle newly arrived
1407 * callbacks. The required future grace periods are recorded in each
1408 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1409 * is reason to awaken the grace-period kthread.
1411 * The caller must hold the specified rcu_node structure's ->lock, which
1412 * is why the caller is responsible for waking the grace-period kthread.
1414 * Returns true if the GP thread needs to be awakened else false.
1416 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1417 unsigned long gp_seq_req)
1420 struct rcu_node *rnp;
1423 * Use funnel locking to either acquire the root rcu_node
1424 * structure's lock or bail out if the need for this grace period
1425 * has already been recorded -- or if that grace period has in
1426 * fact already started. If there is already a grace period in
1427 * progress in a non-leaf node, no recording is needed because the
1428 * end of the grace period will scan the leaf rcu_node structures.
1429 * Note that rnp_start->lock must not be released.
1431 raw_lockdep_assert_held_rcu_node(rnp_start);
1432 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1433 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1434 if (rnp != rnp_start)
1435 raw_spin_lock_rcu_node(rnp);
1436 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1437 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1438 (rnp != rnp_start &&
1439 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1440 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1444 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1445 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1447 * We just marked the leaf or internal node, and a
1448 * grace period is in progress, which means that
1449 * rcu_gp_cleanup() will see the marking. Bail to
1450 * reduce contention.
1452 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1453 TPS("Startedleaf"));
1456 if (rnp != rnp_start && rnp->parent != NULL)
1457 raw_spin_unlock_rcu_node(rnp);
1459 break; /* At root, and perhaps also leaf. */
1462 /* If GP already in progress, just leave, otherwise start one. */
1463 if (rcu_gp_in_progress()) {
1464 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1467 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1468 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1469 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1470 if (!READ_ONCE(rcu_state.gp_kthread)) {
1471 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1474 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1475 ret = true; /* Caller must wake GP kthread. */
1477 /* Push furthest requested GP to leaf node and rcu_data structure. */
1478 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1479 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1480 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1482 if (rnp != rnp_start)
1483 raw_spin_unlock_rcu_node(rnp);
1488 * Clean up any old requests for the just-ended grace period. Also return
1489 * whether any additional grace periods have been requested.
1491 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1494 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1496 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1498 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1499 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1500 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1505 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1506 * interrupt or softirq handler, in which case we just might immediately
1507 * sleep upon return, resulting in a grace-period hang), and don't bother
1508 * awakening when there is nothing for the grace-period kthread to do
1509 * (as in several CPUs raced to awaken, we lost), and finally don't try
1510 * to awaken a kthread that has not yet been created. If all those checks
1511 * are passed, track some debug information and awaken.
1513 * So why do the self-wakeup when in an interrupt or softirq handler
1514 * in the grace-period kthread's context? Because the kthread might have
1515 * been interrupted just as it was going to sleep, and just after the final
1516 * pre-sleep check of the awaken condition. In this case, a wakeup really
1517 * is required, and is therefore supplied.
1519 static void rcu_gp_kthread_wake(void)
1521 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1523 if ((current == t && !in_irq() && !in_serving_softirq()) ||
1524 !READ_ONCE(rcu_state.gp_flags) || !t)
1526 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1527 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1528 swake_up_one(&rcu_state.gp_wq);
1532 * If there is room, assign a ->gp_seq number to any callbacks on this
1533 * CPU that have not already been assigned. Also accelerate any callbacks
1534 * that were previously assigned a ->gp_seq number that has since proven
1535 * to be too conservative, which can happen if callbacks get assigned a
1536 * ->gp_seq number while RCU is idle, but with reference to a non-root
1537 * rcu_node structure. This function is idempotent, so it does not hurt
1538 * to call it repeatedly. Returns an flag saying that we should awaken
1539 * the RCU grace-period kthread.
1541 * The caller must hold rnp->lock with interrupts disabled.
1543 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1545 unsigned long gp_seq_req;
1548 rcu_lockdep_assert_cblist_protected(rdp);
1549 raw_lockdep_assert_held_rcu_node(rnp);
1551 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1552 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1555 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1558 * Callbacks are often registered with incomplete grace-period
1559 * information. Something about the fact that getting exact
1560 * information requires acquiring a global lock... RCU therefore
1561 * makes a conservative estimate of the grace period number at which
1562 * a given callback will become ready to invoke. The following
1563 * code checks this estimate and improves it when possible, thus
1564 * accelerating callback invocation to an earlier grace-period
1567 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1568 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1569 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1571 /* Trace depending on how much we were able to accelerate. */
1572 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1573 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1575 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1577 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1583 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1584 * rcu_node structure's ->lock be held. It consults the cached value
1585 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1586 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1587 * while holding the leaf rcu_node structure's ->lock.
1589 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1590 struct rcu_data *rdp)
1595 rcu_lockdep_assert_cblist_protected(rdp);
1596 c = rcu_seq_snap(&rcu_state.gp_seq);
1597 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1598 /* Old request still live, so mark recent callbacks. */
1599 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1602 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1603 needwake = rcu_accelerate_cbs(rnp, rdp);
1604 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1606 rcu_gp_kthread_wake();
1610 * Move any callbacks whose grace period has completed to the
1611 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1612 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1613 * sublist. This function is idempotent, so it does not hurt to
1614 * invoke it repeatedly. As long as it is not invoked -too- often...
1615 * Returns true if the RCU grace-period kthread needs to be awakened.
1617 * The caller must hold rnp->lock with interrupts disabled.
1619 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1621 rcu_lockdep_assert_cblist_protected(rdp);
1622 raw_lockdep_assert_held_rcu_node(rnp);
1624 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1625 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1629 * Find all callbacks whose ->gp_seq numbers indicate that they
1630 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1632 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1634 /* Classify any remaining callbacks. */
1635 return rcu_accelerate_cbs(rnp, rdp);
1639 * Move and classify callbacks, but only if doing so won't require
1640 * that the RCU grace-period kthread be awakened.
1642 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1643 struct rcu_data *rdp)
1645 rcu_lockdep_assert_cblist_protected(rdp);
1646 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1647 !raw_spin_trylock_rcu_node(rnp))
1649 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1650 raw_spin_unlock_rcu_node(rnp);
1654 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1655 * quiescent state. This is intended to be invoked when the CPU notices
1656 * a new grace period.
1658 static void rcu_strict_gp_check_qs(void)
1660 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1667 * Update CPU-local rcu_data state to record the beginnings and ends of
1668 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1669 * structure corresponding to the current CPU, and must have irqs disabled.
1670 * Returns true if the grace-period kthread needs to be awakened.
1672 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1676 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1678 raw_lockdep_assert_held_rcu_node(rnp);
1680 if (rdp->gp_seq == rnp->gp_seq)
1681 return false; /* Nothing to do. */
1683 /* Handle the ends of any preceding grace periods first. */
1684 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1685 unlikely(READ_ONCE(rdp->gpwrap))) {
1687 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1688 rdp->core_needs_qs = false;
1689 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1692 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1693 if (rdp->core_needs_qs)
1694 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1697 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1698 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1699 unlikely(READ_ONCE(rdp->gpwrap))) {
1701 * If the current grace period is waiting for this CPU,
1702 * set up to detect a quiescent state, otherwise don't
1703 * go looking for one.
1705 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1706 need_qs = !!(rnp->qsmask & rdp->grpmask);
1707 rdp->cpu_no_qs.b.norm = need_qs;
1708 rdp->core_needs_qs = need_qs;
1709 zero_cpu_stall_ticks(rdp);
1711 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1712 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1713 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1714 WRITE_ONCE(rdp->gpwrap, false);
1715 rcu_gpnum_ovf(rnp, rdp);
1719 static void note_gp_changes(struct rcu_data *rdp)
1721 unsigned long flags;
1723 struct rcu_node *rnp;
1725 local_irq_save(flags);
1727 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1728 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1729 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1730 local_irq_restore(flags);
1733 needwake = __note_gp_changes(rnp, rdp);
1734 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1735 rcu_strict_gp_check_qs();
1737 rcu_gp_kthread_wake();
1740 static void rcu_gp_slow(int delay)
1743 !(rcu_seq_ctr(rcu_state.gp_seq) %
1744 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1745 schedule_timeout_idle(delay);
1748 static unsigned long sleep_duration;
1750 /* Allow rcutorture to stall the grace-period kthread. */
1751 void rcu_gp_set_torture_wait(int duration)
1753 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1754 WRITE_ONCE(sleep_duration, duration);
1756 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1758 /* Actually implement the aforementioned wait. */
1759 static void rcu_gp_torture_wait(void)
1761 unsigned long duration;
1763 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1765 duration = xchg(&sleep_duration, 0UL);
1767 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1768 schedule_timeout_idle(duration);
1769 pr_alert("%s: Wait complete\n", __func__);
1774 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1777 static void rcu_strict_gp_boundary(void *unused)
1783 * Initialize a new grace period. Return false if no grace period required.
1785 static bool rcu_gp_init(void)
1787 unsigned long firstseq;
1788 unsigned long flags;
1789 unsigned long oldmask;
1791 struct rcu_data *rdp;
1792 struct rcu_node *rnp = rcu_get_root();
1794 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1795 raw_spin_lock_irq_rcu_node(rnp);
1796 if (!READ_ONCE(rcu_state.gp_flags)) {
1797 /* Spurious wakeup, tell caller to go back to sleep. */
1798 raw_spin_unlock_irq_rcu_node(rnp);
1801 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1803 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1805 * Grace period already in progress, don't start another.
1806 * Not supposed to be able to happen.
1808 raw_spin_unlock_irq_rcu_node(rnp);
1812 /* Advance to a new grace period and initialize state. */
1813 record_gp_stall_check_time();
1814 /* Record GP times before starting GP, hence rcu_seq_start(). */
1815 rcu_seq_start(&rcu_state.gp_seq);
1816 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1817 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1818 raw_spin_unlock_irq_rcu_node(rnp);
1821 * Apply per-leaf buffered online and offline operations to
1822 * the rcu_node tree. Note that this new grace period need not
1823 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1824 * offlining path, when combined with checks in this function,
1825 * will handle CPUs that are currently going offline or that will
1826 * go offline later. Please also refer to "Hotplug CPU" section
1827 * of RCU's Requirements documentation.
1829 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1830 rcu_for_each_leaf_node(rnp) {
1831 smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1832 firstseq = READ_ONCE(rnp->ofl_seq);
1834 while (firstseq == READ_ONCE(rnp->ofl_seq))
1835 schedule_timeout_idle(1); // Can't wake unless RCU is watching.
1836 smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1837 raw_spin_lock(&rcu_state.ofl_lock);
1838 raw_spin_lock_irq_rcu_node(rnp);
1839 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1840 !rnp->wait_blkd_tasks) {
1841 /* Nothing to do on this leaf rcu_node structure. */
1842 raw_spin_unlock_irq_rcu_node(rnp);
1843 raw_spin_unlock(&rcu_state.ofl_lock);
1847 /* Record old state, apply changes to ->qsmaskinit field. */
1848 oldmask = rnp->qsmaskinit;
1849 rnp->qsmaskinit = rnp->qsmaskinitnext;
1851 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1852 if (!oldmask != !rnp->qsmaskinit) {
1853 if (!oldmask) { /* First online CPU for rcu_node. */
1854 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1855 rcu_init_new_rnp(rnp);
1856 } else if (rcu_preempt_has_tasks(rnp)) {
1857 rnp->wait_blkd_tasks = true; /* blocked tasks */
1858 } else { /* Last offline CPU and can propagate. */
1859 rcu_cleanup_dead_rnp(rnp);
1864 * If all waited-on tasks from prior grace period are
1865 * done, and if all this rcu_node structure's CPUs are
1866 * still offline, propagate up the rcu_node tree and
1867 * clear ->wait_blkd_tasks. Otherwise, if one of this
1868 * rcu_node structure's CPUs has since come back online,
1869 * simply clear ->wait_blkd_tasks.
1871 if (rnp->wait_blkd_tasks &&
1872 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1873 rnp->wait_blkd_tasks = false;
1874 if (!rnp->qsmaskinit)
1875 rcu_cleanup_dead_rnp(rnp);
1878 raw_spin_unlock_irq_rcu_node(rnp);
1879 raw_spin_unlock(&rcu_state.ofl_lock);
1881 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1884 * Set the quiescent-state-needed bits in all the rcu_node
1885 * structures for all currently online CPUs in breadth-first
1886 * order, starting from the root rcu_node structure, relying on the
1887 * layout of the tree within the rcu_state.node[] array. Note that
1888 * other CPUs will access only the leaves of the hierarchy, thus
1889 * seeing that no grace period is in progress, at least until the
1890 * corresponding leaf node has been initialized.
1892 * The grace period cannot complete until the initialization
1893 * process finishes, because this kthread handles both.
1895 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1896 rcu_for_each_node_breadth_first(rnp) {
1897 rcu_gp_slow(gp_init_delay);
1898 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1899 rdp = this_cpu_ptr(&rcu_data);
1900 rcu_preempt_check_blocked_tasks(rnp);
1901 rnp->qsmask = rnp->qsmaskinit;
1902 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1903 if (rnp == rdp->mynode)
1904 (void)__note_gp_changes(rnp, rdp);
1905 rcu_preempt_boost_start_gp(rnp);
1906 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1907 rnp->level, rnp->grplo,
1908 rnp->grphi, rnp->qsmask);
1909 /* Quiescent states for tasks on any now-offline CPUs. */
1910 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1911 rnp->rcu_gp_init_mask = mask;
1912 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1913 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1915 raw_spin_unlock_irq_rcu_node(rnp);
1916 cond_resched_tasks_rcu_qs();
1917 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1920 // If strict, make all CPUs aware of new grace period.
1921 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1922 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1928 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1931 static bool rcu_gp_fqs_check_wake(int *gfp)
1933 struct rcu_node *rnp = rcu_get_root();
1935 // If under overload conditions, force an immediate FQS scan.
1936 if (*gfp & RCU_GP_FLAG_OVLD)
1939 // Someone like call_rcu() requested a force-quiescent-state scan.
1940 *gfp = READ_ONCE(rcu_state.gp_flags);
1941 if (*gfp & RCU_GP_FLAG_FQS)
1944 // The current grace period has completed.
1945 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1952 * Do one round of quiescent-state forcing.
1954 static void rcu_gp_fqs(bool first_time)
1956 struct rcu_node *rnp = rcu_get_root();
1958 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1959 rcu_state.n_force_qs++;
1961 /* Collect dyntick-idle snapshots. */
1962 force_qs_rnp(dyntick_save_progress_counter);
1964 /* Handle dyntick-idle and offline CPUs. */
1965 force_qs_rnp(rcu_implicit_dynticks_qs);
1967 /* Clear flag to prevent immediate re-entry. */
1968 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1969 raw_spin_lock_irq_rcu_node(rnp);
1970 WRITE_ONCE(rcu_state.gp_flags,
1971 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1972 raw_spin_unlock_irq_rcu_node(rnp);
1977 * Loop doing repeated quiescent-state forcing until the grace period ends.
1979 static void rcu_gp_fqs_loop(void)
1985 struct rcu_node *rnp = rcu_get_root();
1987 first_gp_fqs = true;
1988 j = READ_ONCE(jiffies_till_first_fqs);
1989 if (rcu_state.cbovld)
1990 gf = RCU_GP_FLAG_OVLD;
1994 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1996 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1997 * update; required for stall checks.
2000 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
2001 jiffies + (j ? 3 * j : 2));
2003 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2005 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
2006 ret = swait_event_idle_timeout_exclusive(
2007 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
2008 rcu_gp_torture_wait();
2009 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2010 /* Locking provides needed memory barriers. */
2011 /* If grace period done, leave loop. */
2012 if (!READ_ONCE(rnp->qsmask) &&
2013 !rcu_preempt_blocked_readers_cgp(rnp))
2015 /* If time for quiescent-state forcing, do it. */
2016 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2017 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2018 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2020 rcu_gp_fqs(first_gp_fqs);
2023 first_gp_fqs = false;
2024 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2026 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2028 cond_resched_tasks_rcu_qs();
2029 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2030 ret = 0; /* Force full wait till next FQS. */
2031 j = READ_ONCE(jiffies_till_next_fqs);
2033 /* Deal with stray signal. */
2034 cond_resched_tasks_rcu_qs();
2035 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2036 WARN_ON(signal_pending(current));
2037 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2039 ret = 1; /* Keep old FQS timing. */
2041 if (time_after(jiffies, rcu_state.jiffies_force_qs))
2044 j = rcu_state.jiffies_force_qs - j;
2051 * Clean up after the old grace period.
2053 static void rcu_gp_cleanup(void)
2056 bool needgp = false;
2057 unsigned long gp_duration;
2058 unsigned long new_gp_seq;
2060 struct rcu_data *rdp;
2061 struct rcu_node *rnp = rcu_get_root();
2062 struct swait_queue_head *sq;
2064 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2065 raw_spin_lock_irq_rcu_node(rnp);
2066 rcu_state.gp_end = jiffies;
2067 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2068 if (gp_duration > rcu_state.gp_max)
2069 rcu_state.gp_max = gp_duration;
2072 * We know the grace period is complete, but to everyone else
2073 * it appears to still be ongoing. But it is also the case
2074 * that to everyone else it looks like there is nothing that
2075 * they can do to advance the grace period. It is therefore
2076 * safe for us to drop the lock in order to mark the grace
2077 * period as completed in all of the rcu_node structures.
2079 raw_spin_unlock_irq_rcu_node(rnp);
2082 * Propagate new ->gp_seq value to rcu_node structures so that
2083 * other CPUs don't have to wait until the start of the next grace
2084 * period to process their callbacks. This also avoids some nasty
2085 * RCU grace-period initialization races by forcing the end of
2086 * the current grace period to be completely recorded in all of
2087 * the rcu_node structures before the beginning of the next grace
2088 * period is recorded in any of the rcu_node structures.
2090 new_gp_seq = rcu_state.gp_seq;
2091 rcu_seq_end(&new_gp_seq);
2092 rcu_for_each_node_breadth_first(rnp) {
2093 raw_spin_lock_irq_rcu_node(rnp);
2094 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2095 dump_blkd_tasks(rnp, 10);
2096 WARN_ON_ONCE(rnp->qsmask);
2097 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2098 rdp = this_cpu_ptr(&rcu_data);
2099 if (rnp == rdp->mynode)
2100 needgp = __note_gp_changes(rnp, rdp) || needgp;
2101 /* smp_mb() provided by prior unlock-lock pair. */
2102 needgp = rcu_future_gp_cleanup(rnp) || needgp;
2103 // Reset overload indication for CPUs no longer overloaded
2104 if (rcu_is_leaf_node(rnp))
2105 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2106 rdp = per_cpu_ptr(&rcu_data, cpu);
2107 check_cb_ovld_locked(rdp, rnp);
2109 sq = rcu_nocb_gp_get(rnp);
2110 raw_spin_unlock_irq_rcu_node(rnp);
2111 rcu_nocb_gp_cleanup(sq);
2112 cond_resched_tasks_rcu_qs();
2113 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2114 rcu_gp_slow(gp_cleanup_delay);
2116 rnp = rcu_get_root();
2117 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2119 /* Declare grace period done, trace first to use old GP number. */
2120 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2121 rcu_seq_end(&rcu_state.gp_seq);
2122 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2123 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2124 /* Check for GP requests since above loop. */
2125 rdp = this_cpu_ptr(&rcu_data);
2126 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2127 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2128 TPS("CleanupMore"));
2131 /* Advance CBs to reduce false positives below. */
2132 offloaded = rcu_rdp_is_offloaded(rdp);
2133 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2134 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2135 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2136 trace_rcu_grace_period(rcu_state.name,
2140 WRITE_ONCE(rcu_state.gp_flags,
2141 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2143 raw_spin_unlock_irq_rcu_node(rnp);
2145 // If strict, make all CPUs aware of the end of the old grace period.
2146 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2147 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2151 * Body of kthread that handles grace periods.
2153 static int __noreturn rcu_gp_kthread(void *unused)
2155 rcu_bind_gp_kthread();
2158 /* Handle grace-period start. */
2160 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2162 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2163 swait_event_idle_exclusive(rcu_state.gp_wq,
2164 READ_ONCE(rcu_state.gp_flags) &
2166 rcu_gp_torture_wait();
2167 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2168 /* Locking provides needed memory barrier. */
2171 cond_resched_tasks_rcu_qs();
2172 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2173 WARN_ON(signal_pending(current));
2174 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2178 /* Handle quiescent-state forcing. */
2181 /* Handle grace-period end. */
2182 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2184 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2189 * Report a full set of quiescent states to the rcu_state data structure.
2190 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2191 * another grace period is required. Whether we wake the grace-period
2192 * kthread or it awakens itself for the next round of quiescent-state
2193 * forcing, that kthread will clean up after the just-completed grace
2194 * period. Note that the caller must hold rnp->lock, which is released
2197 static void rcu_report_qs_rsp(unsigned long flags)
2198 __releases(rcu_get_root()->lock)
2200 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2201 WARN_ON_ONCE(!rcu_gp_in_progress());
2202 WRITE_ONCE(rcu_state.gp_flags,
2203 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2204 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2205 rcu_gp_kthread_wake();
2209 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2210 * Allows quiescent states for a group of CPUs to be reported at one go
2211 * to the specified rcu_node structure, though all the CPUs in the group
2212 * must be represented by the same rcu_node structure (which need not be a
2213 * leaf rcu_node structure, though it often will be). The gps parameter
2214 * is the grace-period snapshot, which means that the quiescent states
2215 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2216 * must be held upon entry, and it is released before return.
2218 * As a special case, if mask is zero, the bit-already-cleared check is
2219 * disabled. This allows propagating quiescent state due to resumed tasks
2220 * during grace-period initialization.
2222 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2223 unsigned long gps, unsigned long flags)
2224 __releases(rnp->lock)
2226 unsigned long oldmask = 0;
2227 struct rcu_node *rnp_c;
2229 raw_lockdep_assert_held_rcu_node(rnp);
2231 /* Walk up the rcu_node hierarchy. */
2233 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2236 * Our bit has already been cleared, or the
2237 * relevant grace period is already over, so done.
2239 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2242 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2243 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2244 rcu_preempt_blocked_readers_cgp(rnp));
2245 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2246 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2247 mask, rnp->qsmask, rnp->level,
2248 rnp->grplo, rnp->grphi,
2250 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2252 /* Other bits still set at this level, so done. */
2253 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2256 rnp->completedqs = rnp->gp_seq;
2257 mask = rnp->grpmask;
2258 if (rnp->parent == NULL) {
2260 /* No more levels. Exit loop holding root lock. */
2264 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2267 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2268 oldmask = READ_ONCE(rnp_c->qsmask);
2272 * Get here if we are the last CPU to pass through a quiescent
2273 * state for this grace period. Invoke rcu_report_qs_rsp()
2274 * to clean up and start the next grace period if one is needed.
2276 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2280 * Record a quiescent state for all tasks that were previously queued
2281 * on the specified rcu_node structure and that were blocking the current
2282 * RCU grace period. The caller must hold the corresponding rnp->lock with
2283 * irqs disabled, and this lock is released upon return, but irqs remain
2286 static void __maybe_unused
2287 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2288 __releases(rnp->lock)
2292 struct rcu_node *rnp_p;
2294 raw_lockdep_assert_held_rcu_node(rnp);
2295 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2296 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2298 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2299 return; /* Still need more quiescent states! */
2302 rnp->completedqs = rnp->gp_seq;
2303 rnp_p = rnp->parent;
2304 if (rnp_p == NULL) {
2306 * Only one rcu_node structure in the tree, so don't
2307 * try to report up to its nonexistent parent!
2309 rcu_report_qs_rsp(flags);
2313 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2315 mask = rnp->grpmask;
2316 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2317 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2318 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2322 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2323 * structure. This must be called from the specified CPU.
2326 rcu_report_qs_rdp(struct rcu_data *rdp)
2328 unsigned long flags;
2330 bool needwake = false;
2331 const bool offloaded = rcu_rdp_is_offloaded(rdp);
2332 struct rcu_node *rnp;
2334 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2336 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2337 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2341 * The grace period in which this quiescent state was
2342 * recorded has ended, so don't report it upwards.
2343 * We will instead need a new quiescent state that lies
2344 * within the current grace period.
2346 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2347 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2350 mask = rdp->grpmask;
2351 rdp->core_needs_qs = false;
2352 if ((rnp->qsmask & mask) == 0) {
2353 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2356 * This GP can't end until cpu checks in, so all of our
2357 * callbacks can be processed during the next GP.
2360 needwake = rcu_accelerate_cbs(rnp, rdp);
2362 rcu_disable_urgency_upon_qs(rdp);
2363 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2364 /* ^^^ Released rnp->lock */
2366 rcu_gp_kthread_wake();
2371 * Check to see if there is a new grace period of which this CPU
2372 * is not yet aware, and if so, set up local rcu_data state for it.
2373 * Otherwise, see if this CPU has just passed through its first
2374 * quiescent state for this grace period, and record that fact if so.
2377 rcu_check_quiescent_state(struct rcu_data *rdp)
2379 /* Check for grace-period ends and beginnings. */
2380 note_gp_changes(rdp);
2383 * Does this CPU still need to do its part for current grace period?
2384 * If no, return and let the other CPUs do their part as well.
2386 if (!rdp->core_needs_qs)
2390 * Was there a quiescent state since the beginning of the grace
2391 * period? If no, then exit and wait for the next call.
2393 if (rdp->cpu_no_qs.b.norm)
2397 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2400 rcu_report_qs_rdp(rdp);
2404 * Near the end of the offline process. Trace the fact that this CPU
2407 int rcutree_dying_cpu(unsigned int cpu)
2410 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2411 struct rcu_node *rnp = rdp->mynode;
2413 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2416 blkd = !!(rnp->qsmask & rdp->grpmask);
2417 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2418 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2423 * All CPUs for the specified rcu_node structure have gone offline,
2424 * and all tasks that were preempted within an RCU read-side critical
2425 * section while running on one of those CPUs have since exited their RCU
2426 * read-side critical section. Some other CPU is reporting this fact with
2427 * the specified rcu_node structure's ->lock held and interrupts disabled.
2428 * This function therefore goes up the tree of rcu_node structures,
2429 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2430 * the leaf rcu_node structure's ->qsmaskinit field has already been
2433 * This function does check that the specified rcu_node structure has
2434 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2435 * prematurely. That said, invoking it after the fact will cost you
2436 * a needless lock acquisition. So once it has done its work, don't
2439 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2442 struct rcu_node *rnp = rnp_leaf;
2444 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2445 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2446 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2447 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2450 mask = rnp->grpmask;
2454 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2455 rnp->qsmaskinit &= ~mask;
2456 /* Between grace periods, so better already be zero! */
2457 WARN_ON_ONCE(rnp->qsmask);
2458 if (rnp->qsmaskinit) {
2459 raw_spin_unlock_rcu_node(rnp);
2460 /* irqs remain disabled. */
2463 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2468 * The CPU has been completely removed, and some other CPU is reporting
2469 * this fact from process context. Do the remainder of the cleanup.
2470 * There can only be one CPU hotplug operation at a time, so no need for
2473 int rcutree_dead_cpu(unsigned int cpu)
2475 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2476 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2478 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2481 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2482 /* Adjust any no-longer-needed kthreads. */
2483 rcu_boost_kthread_setaffinity(rnp, -1);
2484 /* Do any needed no-CB deferred wakeups from this CPU. */
2485 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
2487 // Stop-machine done, so allow nohz_full to disable tick.
2488 tick_dep_clear(TICK_DEP_BIT_RCU);
2493 * Invoke any RCU callbacks that have made it to the end of their grace
2494 * period. Thottle as specified by rdp->blimit.
2496 static void rcu_do_batch(struct rcu_data *rdp)
2499 bool __maybe_unused empty;
2500 unsigned long flags;
2501 const bool offloaded = rcu_rdp_is_offloaded(rdp);
2502 struct rcu_head *rhp;
2503 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2505 long pending, tlimit = 0;
2507 /* If no callbacks are ready, just return. */
2508 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2509 trace_rcu_batch_start(rcu_state.name,
2510 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2511 trace_rcu_batch_end(rcu_state.name, 0,
2512 !rcu_segcblist_empty(&rdp->cblist),
2513 need_resched(), is_idle_task(current),
2514 rcu_is_callbacks_kthread());
2519 * Extract the list of ready callbacks, disabling to prevent
2520 * races with call_rcu() from interrupt handlers. Leave the
2521 * callback counts, as rcu_barrier() needs to be conservative.
2523 local_irq_save(flags);
2525 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2526 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2527 div = READ_ONCE(rcu_divisor);
2528 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2529 bl = max(rdp->blimit, pending >> div);
2530 if (unlikely(bl > 100)) {
2531 long rrn = READ_ONCE(rcu_resched_ns);
2533 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2534 tlimit = local_clock() + rrn;
2536 trace_rcu_batch_start(rcu_state.name,
2537 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2538 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2540 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2542 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2543 rcu_nocb_unlock_irqrestore(rdp, flags);
2545 /* Invoke callbacks. */
2546 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2547 rhp = rcu_cblist_dequeue(&rcl);
2549 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2553 debug_rcu_head_unqueue(rhp);
2555 rcu_lock_acquire(&rcu_callback_map);
2556 trace_rcu_invoke_callback(rcu_state.name, rhp);
2559 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2562 rcu_lock_release(&rcu_callback_map);
2565 * Stop only if limit reached and CPU has something to do.
2567 if (count >= bl && !offloaded &&
2569 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2571 if (unlikely(tlimit)) {
2572 /* only call local_clock() every 32 callbacks */
2573 if (likely((count & 31) || local_clock() < tlimit))
2575 /* Exceeded the time limit, so leave. */
2578 if (!in_serving_softirq()) {
2580 lockdep_assert_irqs_enabled();
2581 cond_resched_tasks_rcu_qs();
2582 lockdep_assert_irqs_enabled();
2587 local_irq_save(flags);
2589 rdp->n_cbs_invoked += count;
2590 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2591 is_idle_task(current), rcu_is_callbacks_kthread());
2593 /* Update counts and requeue any remaining callbacks. */
2594 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2595 rcu_segcblist_add_len(&rdp->cblist, -count);
2597 /* Reinstate batch limit if we have worked down the excess. */
2598 count = rcu_segcblist_n_cbs(&rdp->cblist);
2599 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2600 rdp->blimit = blimit;
2602 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2603 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2604 rdp->qlen_last_fqs_check = 0;
2605 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2606 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2607 rdp->qlen_last_fqs_check = count;
2610 * The following usually indicates a double call_rcu(). To track
2611 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2613 empty = rcu_segcblist_empty(&rdp->cblist);
2614 WARN_ON_ONCE(count == 0 && !empty);
2615 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2616 count != 0 && empty);
2617 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2618 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2620 rcu_nocb_unlock_irqrestore(rdp, flags);
2622 /* Re-invoke RCU core processing if there are callbacks remaining. */
2623 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2625 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2629 * This function is invoked from each scheduling-clock interrupt,
2630 * and checks to see if this CPU is in a non-context-switch quiescent
2631 * state, for example, user mode or idle loop. It also schedules RCU
2632 * core processing. If the current grace period has gone on too long,
2633 * it will ask the scheduler to manufacture a context switch for the sole
2634 * purpose of providing a providing the needed quiescent state.
2636 void rcu_sched_clock_irq(int user)
2638 trace_rcu_utilization(TPS("Start scheduler-tick"));
2639 lockdep_assert_irqs_disabled();
2640 raw_cpu_inc(rcu_data.ticks_this_gp);
2641 /* The load-acquire pairs with the store-release setting to true. */
2642 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2643 /* Idle and userspace execution already are quiescent states. */
2644 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2645 set_tsk_need_resched(current);
2646 set_preempt_need_resched();
2648 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2650 rcu_flavor_sched_clock_irq(user);
2651 if (rcu_pending(user))
2653 lockdep_assert_irqs_disabled();
2655 trace_rcu_utilization(TPS("End scheduler-tick"));
2659 * Scan the leaf rcu_node structures. For each structure on which all
2660 * CPUs have reported a quiescent state and on which there are tasks
2661 * blocking the current grace period, initiate RCU priority boosting.
2662 * Otherwise, invoke the specified function to check dyntick state for
2663 * each CPU that has not yet reported a quiescent state.
2665 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2668 unsigned long flags;
2670 struct rcu_data *rdp;
2671 struct rcu_node *rnp;
2673 rcu_state.cbovld = rcu_state.cbovldnext;
2674 rcu_state.cbovldnext = false;
2675 rcu_for_each_leaf_node(rnp) {
2676 cond_resched_tasks_rcu_qs();
2678 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2679 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2680 if (rnp->qsmask == 0) {
2681 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2683 * No point in scanning bits because they
2684 * are all zero. But we might need to
2685 * priority-boost blocked readers.
2687 rcu_initiate_boost(rnp, flags);
2688 /* rcu_initiate_boost() releases rnp->lock */
2691 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2694 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2695 rdp = per_cpu_ptr(&rcu_data, cpu);
2697 mask |= rdp->grpmask;
2698 rcu_disable_urgency_upon_qs(rdp);
2702 /* Idle/offline CPUs, report (releases rnp->lock). */
2703 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2705 /* Nothing to do here, so just drop the lock. */
2706 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2712 * Force quiescent states on reluctant CPUs, and also detect which
2713 * CPUs are in dyntick-idle mode.
2715 void rcu_force_quiescent_state(void)
2717 unsigned long flags;
2719 struct rcu_node *rnp;
2720 struct rcu_node *rnp_old = NULL;
2722 /* Funnel through hierarchy to reduce memory contention. */
2723 rnp = __this_cpu_read(rcu_data.mynode);
2724 for (; rnp != NULL; rnp = rnp->parent) {
2725 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2726 !raw_spin_trylock(&rnp->fqslock);
2727 if (rnp_old != NULL)
2728 raw_spin_unlock(&rnp_old->fqslock);
2733 /* rnp_old == rcu_get_root(), rnp == NULL. */
2735 /* Reached the root of the rcu_node tree, acquire lock. */
2736 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2737 raw_spin_unlock(&rnp_old->fqslock);
2738 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2739 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2740 return; /* Someone beat us to it. */
2742 WRITE_ONCE(rcu_state.gp_flags,
2743 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2744 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2745 rcu_gp_kthread_wake();
2747 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2749 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2751 static void strict_work_handler(struct work_struct *work)
2757 /* Perform RCU core processing work for the current CPU. */
2758 static __latent_entropy void rcu_core(void)
2760 unsigned long flags;
2761 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2762 struct rcu_node *rnp = rdp->mynode;
2763 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2765 if (cpu_is_offline(smp_processor_id()))
2767 trace_rcu_utilization(TPS("Start RCU core"));
2768 WARN_ON_ONCE(!rdp->beenonline);
2770 /* Report any deferred quiescent states if preemption enabled. */
2771 if (!(preempt_count() & PREEMPT_MASK)) {
2772 rcu_preempt_deferred_qs(current);
2773 } else if (rcu_preempt_need_deferred_qs(current)) {
2774 set_tsk_need_resched(current);
2775 set_preempt_need_resched();
2778 /* Update RCU state based on any recent quiescent states. */
2779 rcu_check_quiescent_state(rdp);
2781 /* No grace period and unregistered callbacks? */
2782 if (!rcu_gp_in_progress() &&
2783 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2784 rcu_nocb_lock_irqsave(rdp, flags);
2785 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2786 rcu_accelerate_cbs_unlocked(rnp, rdp);
2787 rcu_nocb_unlock_irqrestore(rdp, flags);
2790 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2792 /* If there are callbacks ready, invoke them. */
2793 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2794 likely(READ_ONCE(rcu_scheduler_fully_active)))
2797 /* Do any needed deferred wakeups of rcuo kthreads. */
2798 do_nocb_deferred_wakeup(rdp);
2799 trace_rcu_utilization(TPS("End RCU core"));
2801 // If strict GPs, schedule an RCU reader in a clean environment.
2802 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2803 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2806 static void rcu_core_si(struct softirq_action *h)
2811 static void rcu_wake_cond(struct task_struct *t, int status)
2814 * If the thread is yielding, only wake it when this
2815 * is invoked from idle
2817 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2821 static void invoke_rcu_core_kthread(void)
2823 struct task_struct *t;
2824 unsigned long flags;
2826 local_irq_save(flags);
2827 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2828 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2829 if (t != NULL && t != current)
2830 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2831 local_irq_restore(flags);
2835 * Wake up this CPU's rcuc kthread to do RCU core processing.
2837 static void invoke_rcu_core(void)
2839 if (!cpu_online(smp_processor_id()))
2842 raise_softirq(RCU_SOFTIRQ);
2844 invoke_rcu_core_kthread();
2847 static void rcu_cpu_kthread_park(unsigned int cpu)
2849 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2852 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2854 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2858 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2859 * the RCU softirq used in configurations of RCU that do not support RCU
2860 * priority boosting.
2862 static void rcu_cpu_kthread(unsigned int cpu)
2864 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2865 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2868 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2869 for (spincnt = 0; spincnt < 10; spincnt++) {
2871 *statusp = RCU_KTHREAD_RUNNING;
2872 local_irq_disable();
2880 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2881 *statusp = RCU_KTHREAD_WAITING;
2885 *statusp = RCU_KTHREAD_YIELDING;
2886 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2887 schedule_timeout_idle(2);
2888 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2889 *statusp = RCU_KTHREAD_WAITING;
2892 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2893 .store = &rcu_data.rcu_cpu_kthread_task,
2894 .thread_should_run = rcu_cpu_kthread_should_run,
2895 .thread_fn = rcu_cpu_kthread,
2896 .thread_comm = "rcuc/%u",
2897 .setup = rcu_cpu_kthread_setup,
2898 .park = rcu_cpu_kthread_park,
2902 * Spawn per-CPU RCU core processing kthreads.
2904 static int __init rcu_spawn_core_kthreads(void)
2908 for_each_possible_cpu(cpu)
2909 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2910 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2912 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2913 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2916 early_initcall(rcu_spawn_core_kthreads);
2919 * Handle any core-RCU processing required by a call_rcu() invocation.
2921 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2922 unsigned long flags)
2925 * If called from an extended quiescent state, invoke the RCU
2926 * core in order to force a re-evaluation of RCU's idleness.
2928 if (!rcu_is_watching())
2931 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2932 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2936 * Force the grace period if too many callbacks or too long waiting.
2937 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2938 * if some other CPU has recently done so. Also, don't bother
2939 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2940 * is the only one waiting for a grace period to complete.
2942 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2943 rdp->qlen_last_fqs_check + qhimark)) {
2945 /* Are we ignoring a completed grace period? */
2946 note_gp_changes(rdp);
2948 /* Start a new grace period if one not already started. */
2949 if (!rcu_gp_in_progress()) {
2950 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2952 /* Give the grace period a kick. */
2953 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2954 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
2955 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2956 rcu_force_quiescent_state();
2957 rdp->n_force_qs_snap = rcu_state.n_force_qs;
2958 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2964 * RCU callback function to leak a callback.
2966 static void rcu_leak_callback(struct rcu_head *rhp)
2971 * Check and if necessary update the leaf rcu_node structure's
2972 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2973 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2974 * structure's ->lock.
2976 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2978 raw_lockdep_assert_held_rcu_node(rnp);
2979 if (qovld_calc <= 0)
2980 return; // Early boot and wildcard value set.
2981 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2982 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2984 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2988 * Check and if necessary update the leaf rcu_node structure's
2989 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2990 * number of queued RCU callbacks. No locks need be held, but the
2991 * caller must have disabled interrupts.
2993 * Note that this function ignores the possibility that there are a lot
2994 * of callbacks all of which have already seen the end of their respective
2995 * grace periods. This omission is due to the need for no-CBs CPUs to
2996 * be holding ->nocb_lock to do this check, which is too heavy for a
2997 * common-case operation.
2999 static void check_cb_ovld(struct rcu_data *rdp)
3001 struct rcu_node *const rnp = rdp->mynode;
3003 if (qovld_calc <= 0 ||
3004 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
3005 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
3006 return; // Early boot wildcard value or already set correctly.
3007 raw_spin_lock_rcu_node(rnp);
3008 check_cb_ovld_locked(rdp, rnp);
3009 raw_spin_unlock_rcu_node(rnp);
3012 /* Helper function for call_rcu() and friends. */
3014 __call_rcu(struct rcu_head *head, rcu_callback_t func)
3016 static atomic_t doublefrees;
3017 unsigned long flags;
3018 struct rcu_data *rdp;
3021 /* Misaligned rcu_head! */
3022 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3024 if (debug_rcu_head_queue(head)) {
3026 * Probable double call_rcu(), so leak the callback.
3027 * Use rcu:rcu_callback trace event to find the previous
3028 * time callback was passed to __call_rcu().
3030 if (atomic_inc_return(&doublefrees) < 4) {
3031 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
3034 WRITE_ONCE(head->func, rcu_leak_callback);
3039 local_irq_save(flags);
3040 kasan_record_aux_stack(head);
3041 rdp = this_cpu_ptr(&rcu_data);
3043 /* Add the callback to our list. */
3044 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3045 // This can trigger due to call_rcu() from offline CPU:
3046 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3047 WARN_ON_ONCE(!rcu_is_watching());
3048 // Very early boot, before rcu_init(). Initialize if needed
3049 // and then drop through to queue the callback.
3050 if (rcu_segcblist_empty(&rdp->cblist))
3051 rcu_segcblist_init(&rdp->cblist);
3055 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
3056 return; // Enqueued onto ->nocb_bypass, so just leave.
3057 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
3058 rcu_segcblist_enqueue(&rdp->cblist, head);
3059 if (__is_kvfree_rcu_offset((unsigned long)func))
3060 trace_rcu_kvfree_callback(rcu_state.name, head,
3061 (unsigned long)func,
3062 rcu_segcblist_n_cbs(&rdp->cblist));
3064 trace_rcu_callback(rcu_state.name, head,
3065 rcu_segcblist_n_cbs(&rdp->cblist));
3067 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
3069 /* Go handle any RCU core processing required. */
3070 if (unlikely(rcu_rdp_is_offloaded(rdp))) {
3071 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3073 __call_rcu_core(rdp, head, flags);
3074 local_irq_restore(flags);
3079 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3080 * @head: structure to be used for queueing the RCU updates.
3081 * @func: actual callback function to be invoked after the grace period
3083 * The callback function will be invoked some time after a full grace
3084 * period elapses, in other words after all pre-existing RCU read-side
3085 * critical sections have completed. However, the callback function
3086 * might well execute concurrently with RCU read-side critical sections
3087 * that started after call_rcu() was invoked. RCU read-side critical
3088 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
3089 * may be nested. In addition, regions of code across which interrupts,
3090 * preemption, or softirqs have been disabled also serve as RCU read-side
3091 * critical sections. This includes hardware interrupt handlers, softirq
3092 * handlers, and NMI handlers.
3094 * Note that all CPUs must agree that the grace period extended beyond
3095 * all pre-existing RCU read-side critical section. On systems with more
3096 * than one CPU, this means that when "func()" is invoked, each CPU is
3097 * guaranteed to have executed a full memory barrier since the end of its
3098 * last RCU read-side critical section whose beginning preceded the call
3099 * to call_rcu(). It also means that each CPU executing an RCU read-side
3100 * critical section that continues beyond the start of "func()" must have
3101 * executed a memory barrier after the call_rcu() but before the beginning
3102 * of that RCU read-side critical section. Note that these guarantees
3103 * include CPUs that are offline, idle, or executing in user mode, as
3104 * well as CPUs that are executing in the kernel.
3106 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3107 * resulting RCU callback function "func()", then both CPU A and CPU B are
3108 * guaranteed to execute a full memory barrier during the time interval
3109 * between the call to call_rcu() and the invocation of "func()" -- even
3110 * if CPU A and CPU B are the same CPU (but again only if the system has
3111 * more than one CPU).
3113 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3115 __call_rcu(head, func);
3117 EXPORT_SYMBOL_GPL(call_rcu);
3120 /* Maximum number of jiffies to wait before draining a batch. */
3121 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3122 #define KFREE_N_BATCHES 2
3123 #define FREE_N_CHANNELS 2
3126 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3127 * @nr_records: Number of active pointers in the array
3128 * @next: Next bulk object in the block chain
3129 * @records: Array of the kvfree_rcu() pointers
3131 struct kvfree_rcu_bulk_data {
3132 unsigned long nr_records;
3133 struct kvfree_rcu_bulk_data *next;
3138 * This macro defines how many entries the "records" array
3139 * will contain. It is based on the fact that the size of
3140 * kvfree_rcu_bulk_data structure becomes exactly one page.
3142 #define KVFREE_BULK_MAX_ENTR \
3143 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3146 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3147 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3148 * @head_free: List of kfree_rcu() objects waiting for a grace period
3149 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3150 * @krcp: Pointer to @kfree_rcu_cpu structure
3153 struct kfree_rcu_cpu_work {
3154 struct rcu_work rcu_work;
3155 struct rcu_head *head_free;
3156 struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3157 struct kfree_rcu_cpu *krcp;
3161 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3162 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3163 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3164 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3165 * @lock: Synchronize access to this structure
3166 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3167 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3168 * @initialized: The @rcu_work fields have been initialized
3169 * @count: Number of objects for which GP not started
3171 * A simple cache list that contains objects for reuse purpose.
3172 * In order to save some per-cpu space the list is singular.
3173 * Even though it is lockless an access has to be protected by the
3175 * @page_cache_work: A work to refill the cache when it is empty
3176 * @work_in_progress: Indicates that page_cache_work is running
3177 * @hrtimer: A hrtimer for scheduling a page_cache_work
3178 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3180 * This is a per-CPU structure. The reason that it is not included in
3181 * the rcu_data structure is to permit this code to be extracted from
3182 * the RCU files. Such extraction could allow further optimization of
3183 * the interactions with the slab allocators.
3185 struct kfree_rcu_cpu {
3186 struct rcu_head *head;
3187 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3188 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3189 raw_spinlock_t lock;
3190 struct delayed_work monitor_work;
3195 struct work_struct page_cache_work;
3196 atomic_t work_in_progress;
3197 struct hrtimer hrtimer;
3199 struct llist_head bkvcache;
3203 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3204 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3207 static __always_inline void
3208 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3210 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3213 for (i = 0; i < bhead->nr_records; i++)
3214 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3218 static inline struct kfree_rcu_cpu *
3219 krc_this_cpu_lock(unsigned long *flags)
3221 struct kfree_rcu_cpu *krcp;
3223 local_irq_save(*flags); // For safely calling this_cpu_ptr().
3224 krcp = this_cpu_ptr(&krc);
3225 raw_spin_lock(&krcp->lock);
3231 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3233 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3236 static inline struct kvfree_rcu_bulk_data *
3237 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3239 if (!krcp->nr_bkv_objs)
3242 krcp->nr_bkv_objs--;
3243 return (struct kvfree_rcu_bulk_data *)
3244 llist_del_first(&krcp->bkvcache);
3248 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3249 struct kvfree_rcu_bulk_data *bnode)
3252 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3255 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3256 krcp->nr_bkv_objs++;
3262 * This function is invoked in workqueue context after a grace period.
3263 * It frees all the objects queued on ->bhead_free or ->head_free.
3265 static void kfree_rcu_work(struct work_struct *work)
3267 unsigned long flags;
3268 struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3269 struct rcu_head *head, *next;
3270 struct kfree_rcu_cpu *krcp;
3271 struct kfree_rcu_cpu_work *krwp;
3274 krwp = container_of(to_rcu_work(work),
3275 struct kfree_rcu_cpu_work, rcu_work);
3278 raw_spin_lock_irqsave(&krcp->lock, flags);
3279 // Channels 1 and 2.
3280 for (i = 0; i < FREE_N_CHANNELS; i++) {
3281 bkvhead[i] = krwp->bkvhead_free[i];
3282 krwp->bkvhead_free[i] = NULL;
3286 head = krwp->head_free;
3287 krwp->head_free = NULL;
3288 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3290 // Handle two first channels.
3291 for (i = 0; i < FREE_N_CHANNELS; i++) {
3292 for (; bkvhead[i]; bkvhead[i] = bnext) {
3293 bnext = bkvhead[i]->next;
3294 debug_rcu_bhead_unqueue(bkvhead[i]);
3296 rcu_lock_acquire(&rcu_callback_map);
3297 if (i == 0) { // kmalloc() / kfree().
3298 trace_rcu_invoke_kfree_bulk_callback(
3299 rcu_state.name, bkvhead[i]->nr_records,
3300 bkvhead[i]->records);
3302 kfree_bulk(bkvhead[i]->nr_records,
3303 bkvhead[i]->records);
3304 } else { // vmalloc() / vfree().
3305 for (j = 0; j < bkvhead[i]->nr_records; j++) {
3306 trace_rcu_invoke_kvfree_callback(
3308 bkvhead[i]->records[j], 0);
3310 vfree(bkvhead[i]->records[j]);
3313 rcu_lock_release(&rcu_callback_map);
3315 raw_spin_lock_irqsave(&krcp->lock, flags);
3316 if (put_cached_bnode(krcp, bkvhead[i]))
3318 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3321 free_page((unsigned long) bkvhead[i]);
3323 cond_resched_tasks_rcu_qs();
3328 * Emergency case only. It can happen under low memory
3329 * condition when an allocation gets failed, so the "bulk"
3330 * path can not be temporary maintained.
3332 for (; head; head = next) {
3333 unsigned long offset = (unsigned long)head->func;
3334 void *ptr = (void *)head - offset;
3337 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3338 rcu_lock_acquire(&rcu_callback_map);
3339 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3341 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3344 rcu_lock_release(&rcu_callback_map);
3345 cond_resched_tasks_rcu_qs();
3350 * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3352 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3353 * timeout has been reached.
3355 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3357 struct kfree_rcu_cpu_work *krwp;
3358 bool repeat = false;
3361 lockdep_assert_held(&krcp->lock);
3363 for (i = 0; i < KFREE_N_BATCHES; i++) {
3364 krwp = &(krcp->krw_arr[i]);
3367 * Try to detach bkvhead or head and attach it over any
3368 * available corresponding free channel. It can be that
3369 * a previous RCU batch is in progress, it means that
3370 * immediately to queue another one is not possible so
3371 * return false to tell caller to retry.
3373 if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3374 (krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3375 (krcp->head && !krwp->head_free)) {
3376 // Channel 1 corresponds to SLAB ptrs.
3377 // Channel 2 corresponds to vmalloc ptrs.
3378 for (j = 0; j < FREE_N_CHANNELS; j++) {
3379 if (!krwp->bkvhead_free[j]) {
3380 krwp->bkvhead_free[j] = krcp->bkvhead[j];
3381 krcp->bkvhead[j] = NULL;
3385 // Channel 3 corresponds to emergency path.
3386 if (!krwp->head_free) {
3387 krwp->head_free = krcp->head;
3391 WRITE_ONCE(krcp->count, 0);
3394 * One work is per one batch, so there are three
3395 * "free channels", the batch can handle. It can
3396 * be that the work is in the pending state when
3397 * channels have been detached following by each
3400 queue_rcu_work(system_wq, &krwp->rcu_work);
3403 // Repeat if any "free" corresponding channel is still busy.
3404 if (krcp->bkvhead[0] || krcp->bkvhead[1] || krcp->head)
3411 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3412 unsigned long flags)
3414 // Attempt to start a new batch.
3415 krcp->monitor_todo = false;
3416 if (queue_kfree_rcu_work(krcp)) {
3417 // Success! Our job is done here.
3418 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3422 // Previous RCU batch still in progress, try again later.
3423 krcp->monitor_todo = true;
3424 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3425 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3429 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3430 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3432 static void kfree_rcu_monitor(struct work_struct *work)
3434 unsigned long flags;
3435 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3438 raw_spin_lock_irqsave(&krcp->lock, flags);
3439 if (krcp->monitor_todo)
3440 kfree_rcu_drain_unlock(krcp, flags);
3442 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3445 static enum hrtimer_restart
3446 schedule_page_work_fn(struct hrtimer *t)
3448 struct kfree_rcu_cpu *krcp =
3449 container_of(t, struct kfree_rcu_cpu, hrtimer);
3451 queue_work(system_highpri_wq, &krcp->page_cache_work);
3452 return HRTIMER_NORESTART;
3455 static void fill_page_cache_func(struct work_struct *work)
3457 struct kvfree_rcu_bulk_data *bnode;
3458 struct kfree_rcu_cpu *krcp =
3459 container_of(work, struct kfree_rcu_cpu,
3461 unsigned long flags;
3465 for (i = 0; i < rcu_min_cached_objs; i++) {
3466 bnode = (struct kvfree_rcu_bulk_data *)
3467 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3470 raw_spin_lock_irqsave(&krcp->lock, flags);
3471 pushed = put_cached_bnode(krcp, bnode);
3472 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3475 free_page((unsigned long) bnode);
3481 atomic_set(&krcp->work_in_progress, 0);
3485 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3487 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3488 !atomic_xchg(&krcp->work_in_progress, 1)) {
3489 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC,
3491 krcp->hrtimer.function = schedule_page_work_fn;
3492 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3496 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3497 // state specified by flags. If can_alloc is true, the caller must
3498 // be schedulable and not be holding any locks or mutexes that might be
3499 // acquired by the memory allocator or anything that it might invoke.
3500 // Returns true if ptr was successfully recorded, else the caller must
3503 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3504 unsigned long *flags, void *ptr, bool can_alloc)
3506 struct kvfree_rcu_bulk_data *bnode;
3509 *krcp = krc_this_cpu_lock(flags);
3510 if (unlikely(!(*krcp)->initialized))
3513 idx = !!is_vmalloc_addr(ptr);
3515 /* Check if a new block is required. */
3516 if (!(*krcp)->bkvhead[idx] ||
3517 (*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3518 bnode = get_cached_bnode(*krcp);
3519 if (!bnode && can_alloc) {
3520 krc_this_cpu_unlock(*krcp, *flags);
3522 // __GFP_NORETRY - allows a light-weight direct reclaim
3523 // what is OK from minimizing of fallback hitting point of
3524 // view. Apart of that it forbids any OOM invoking what is
3525 // also beneficial since we are about to release memory soon.
3527 // __GFP_NOMEMALLOC - prevents from consuming of all the
3528 // memory reserves. Please note we have a fallback path.
3530 // __GFP_NOWARN - it is supposed that an allocation can
3531 // be failed under low memory or high memory pressure
3533 bnode = (struct kvfree_rcu_bulk_data *)
3534 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3535 *krcp = krc_this_cpu_lock(flags);
3541 /* Initialize the new block. */
3542 bnode->nr_records = 0;
3543 bnode->next = (*krcp)->bkvhead[idx];
3545 /* Attach it to the head. */
3546 (*krcp)->bkvhead[idx] = bnode;
3549 /* Finally insert. */
3550 (*krcp)->bkvhead[idx]->records
3551 [(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3557 * Queue a request for lazy invocation of appropriate free routine after a
3558 * grace period. Please note there are three paths are maintained, two are the
3559 * main ones that use array of pointers interface and third one is emergency
3560 * one, that is used only when the main path can not be maintained temporary,
3561 * due to memory pressure.
3563 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3564 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3565 * be free'd in workqueue context. This allows us to: batch requests together to
3566 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3568 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3570 unsigned long flags;
3571 struct kfree_rcu_cpu *krcp;
3576 ptr = (void *) head - (unsigned long) func;
3579 * Please note there is a limitation for the head-less
3580 * variant, that is why there is a clear rule for such
3581 * objects: it can be used from might_sleep() context
3582 * only. For other places please embed an rcu_head to
3586 ptr = (unsigned long *) func;
3589 // Queue the object but don't yet schedule the batch.
3590 if (debug_rcu_head_queue(ptr)) {
3591 // Probable double kfree_rcu(), just leak.
3592 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3595 // Mark as success and leave.
3599 kasan_record_aux_stack(ptr);
3600 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3602 run_page_cache_worker(krcp);
3605 // Inline if kvfree_rcu(one_arg) call.
3609 head->next = krcp->head;
3614 WRITE_ONCE(krcp->count, krcp->count + 1);
3616 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3617 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3618 !krcp->monitor_todo) {
3619 krcp->monitor_todo = true;
3620 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3624 krc_this_cpu_unlock(krcp, flags);
3627 * Inline kvfree() after synchronize_rcu(). We can do
3628 * it from might_sleep() context only, so the current
3629 * CPU can pass the QS state.
3632 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3637 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3639 static unsigned long
3640 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3643 unsigned long count = 0;
3645 /* Snapshot count of all CPUs */
3646 for_each_possible_cpu(cpu) {
3647 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3649 count += READ_ONCE(krcp->count);
3655 static unsigned long
3656 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3659 unsigned long flags;
3661 for_each_possible_cpu(cpu) {
3663 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3665 count = krcp->count;
3666 raw_spin_lock_irqsave(&krcp->lock, flags);
3667 if (krcp->monitor_todo)
3668 kfree_rcu_drain_unlock(krcp, flags);
3670 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3672 sc->nr_to_scan -= count;
3675 if (sc->nr_to_scan <= 0)
3679 return freed == 0 ? SHRINK_STOP : freed;
3682 static struct shrinker kfree_rcu_shrinker = {
3683 .count_objects = kfree_rcu_shrink_count,
3684 .scan_objects = kfree_rcu_shrink_scan,
3686 .seeks = DEFAULT_SEEKS,
3689 void __init kfree_rcu_scheduler_running(void)
3692 unsigned long flags;
3694 for_each_possible_cpu(cpu) {
3695 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3697 raw_spin_lock_irqsave(&krcp->lock, flags);
3698 if (!krcp->head || krcp->monitor_todo) {
3699 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3702 krcp->monitor_todo = true;
3703 schedule_delayed_work_on(cpu, &krcp->monitor_work,
3704 KFREE_DRAIN_JIFFIES);
3705 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3710 * During early boot, any blocking grace-period wait automatically
3711 * implies a grace period. Later on, this is never the case for PREEMPTION.
3713 * However, because a context switch is a grace period for !PREEMPTION, any
3714 * blocking grace-period wait automatically implies a grace period if
3715 * there is only one CPU online at any point time during execution of
3716 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3717 * occasionally incorrectly indicate that there are multiple CPUs online
3718 * when there was in fact only one the whole time, as this just adds some
3719 * overhead: RCU still operates correctly.
3721 static int rcu_blocking_is_gp(void)
3725 if (IS_ENABLED(CONFIG_PREEMPTION))
3726 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3727 might_sleep(); /* Check for RCU read-side critical section. */
3730 * If the rcu_state.n_online_cpus counter is equal to one,
3731 * there is only one CPU, and that CPU sees all prior accesses
3732 * made by any CPU that was online at the time of its access.
3733 * Furthermore, if this counter is equal to one, its value cannot
3734 * change until after the preempt_enable() below.
3736 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3737 * all later CPUs (both this one and any that come online later
3738 * on) are guaranteed to see all accesses prior to this point
3739 * in the code, without the need for additional memory barriers.
3740 * Those memory barriers are provided by CPU-hotplug code.
3742 ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3748 * synchronize_rcu - wait until a grace period has elapsed.
3750 * Control will return to the caller some time after a full grace
3751 * period has elapsed, in other words after all currently executing RCU
3752 * read-side critical sections have completed. Note, however, that
3753 * upon return from synchronize_rcu(), the caller might well be executing
3754 * concurrently with new RCU read-side critical sections that began while
3755 * synchronize_rcu() was waiting. RCU read-side critical sections are
3756 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3757 * In addition, regions of code across which interrupts, preemption, or
3758 * softirqs have been disabled also serve as RCU read-side critical
3759 * sections. This includes hardware interrupt handlers, softirq handlers,
3762 * Note that this guarantee implies further memory-ordering guarantees.
3763 * On systems with more than one CPU, when synchronize_rcu() returns,
3764 * each CPU is guaranteed to have executed a full memory barrier since
3765 * the end of its last RCU read-side critical section whose beginning
3766 * preceded the call to synchronize_rcu(). In addition, each CPU having
3767 * an RCU read-side critical section that extends beyond the return from
3768 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3769 * after the beginning of synchronize_rcu() and before the beginning of
3770 * that RCU read-side critical section. Note that these guarantees include
3771 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3772 * that are executing in the kernel.
3774 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3775 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3776 * to have executed a full memory barrier during the execution of
3777 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3778 * again only if the system has more than one CPU).
3780 void synchronize_rcu(void)
3782 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3783 lock_is_held(&rcu_lock_map) ||
3784 lock_is_held(&rcu_sched_lock_map),
3785 "Illegal synchronize_rcu() in RCU read-side critical section");
3786 if (rcu_blocking_is_gp())
3787 return; // Context allows vacuous grace periods.
3788 if (rcu_gp_is_expedited())
3789 synchronize_rcu_expedited();
3791 wait_rcu_gp(call_rcu);
3793 EXPORT_SYMBOL_GPL(synchronize_rcu);
3796 * get_state_synchronize_rcu - Snapshot current RCU state
3798 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3799 * or poll_state_synchronize_rcu() to determine whether or not a full
3800 * grace period has elapsed in the meantime.
3802 unsigned long get_state_synchronize_rcu(void)
3805 * Any prior manipulation of RCU-protected data must happen
3806 * before the load from ->gp_seq.
3809 return rcu_seq_snap(&rcu_state.gp_seq);
3811 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3814 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3816 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3817 * or poll_state_synchronize_rcu() to determine whether or not a full
3818 * grace period has elapsed in the meantime. If the needed grace period
3819 * is not already slated to start, notifies RCU core of the need for that
3822 * Interrupts must be enabled for the case where it is necessary to awaken
3823 * the grace-period kthread.
3825 unsigned long start_poll_synchronize_rcu(void)
3827 unsigned long flags;
3828 unsigned long gp_seq = get_state_synchronize_rcu();
3830 struct rcu_data *rdp;
3831 struct rcu_node *rnp;
3833 lockdep_assert_irqs_enabled();
3834 local_irq_save(flags);
3835 rdp = this_cpu_ptr(&rcu_data);
3837 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3838 needwake = rcu_start_this_gp(rnp, rdp, gp_seq);
3839 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3841 rcu_gp_kthread_wake();
3844 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3847 * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3849 * @oldstate: return from call to get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3851 * If a full RCU grace period has elapsed since the earlier call from
3852 * which oldstate was obtained, return @true, otherwise return @false.
3853 * If @false is returned, it is the caller's responsibilty to invoke this
3854 * function later on until it does return @true. Alternatively, the caller
3855 * can explicitly wait for a grace period, for example, by passing @oldstate
3856 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3858 * Yes, this function does not take counter wrap into account.
3859 * But counter wrap is harmless. If the counter wraps, we have waited for
3860 * more than 2 billion grace periods (and way more on a 64-bit system!).
3861 * Those needing to keep oldstate values for very long time periods
3862 * (many hours even on 32-bit systems) should check them occasionally
3863 * and either refresh them or set a flag indicating that the grace period
3866 bool poll_state_synchronize_rcu(unsigned long oldstate)
3868 if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) {
3869 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3874 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3877 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3879 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3881 * If a full RCU grace period has elapsed since the earlier call to
3882 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3883 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3885 * Yes, this function does not take counter wrap into account. But
3886 * counter wrap is harmless. If the counter wraps, we have waited for
3887 * more than 2 billion grace periods (and way more on a 64-bit system!),
3888 * so waiting for one additional grace period should be just fine.
3890 void cond_synchronize_rcu(unsigned long oldstate)
3892 if (!poll_state_synchronize_rcu(oldstate))
3895 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3898 * Check to see if there is any immediate RCU-related work to be done by
3899 * the current CPU, returning 1 if so and zero otherwise. The checks are
3900 * in order of increasing expense: checks that can be carried out against
3901 * CPU-local state are performed first. However, we must check for CPU
3902 * stalls first, else we might not get a chance.
3904 static int rcu_pending(int user)
3906 bool gp_in_progress;
3907 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3908 struct rcu_node *rnp = rdp->mynode;
3910 lockdep_assert_irqs_disabled();
3912 /* Check for CPU stalls, if enabled. */
3913 check_cpu_stall(rdp);
3915 /* Does this CPU need a deferred NOCB wakeup? */
3916 if (rcu_nocb_need_deferred_wakeup(rdp))
3919 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3920 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3923 /* Is the RCU core waiting for a quiescent state from this CPU? */
3924 gp_in_progress = rcu_gp_in_progress();
3925 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3928 /* Does this CPU have callbacks ready to invoke? */
3929 if (!rcu_rdp_is_offloaded(rdp) &&
3930 rcu_segcblist_ready_cbs(&rdp->cblist))
3933 /* Has RCU gone idle with this CPU needing another grace period? */
3934 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3935 !rcu_rdp_is_offloaded(rdp) &&
3936 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3939 /* Have RCU grace period completed or started? */
3940 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3941 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3949 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3950 * the compiler is expected to optimize this away.
3952 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3954 trace_rcu_barrier(rcu_state.name, s, cpu,
3955 atomic_read(&rcu_state.barrier_cpu_count), done);
3959 * RCU callback function for rcu_barrier(). If we are last, wake
3960 * up the task executing rcu_barrier().
3962 * Note that the value of rcu_state.barrier_sequence must be captured
3963 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3964 * other CPUs might count the value down to zero before this CPU gets
3965 * around to invoking rcu_barrier_trace(), which might result in bogus
3966 * data from the next instance of rcu_barrier().
3968 static void rcu_barrier_callback(struct rcu_head *rhp)
3970 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3972 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3973 rcu_barrier_trace(TPS("LastCB"), -1, s);
3974 complete(&rcu_state.barrier_completion);
3976 rcu_barrier_trace(TPS("CB"), -1, s);
3981 * Called with preemption disabled, and from cross-cpu IRQ context.
3983 static void rcu_barrier_func(void *cpu_in)
3985 uintptr_t cpu = (uintptr_t)cpu_in;
3986 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3988 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3989 rdp->barrier_head.func = rcu_barrier_callback;
3990 debug_rcu_head_queue(&rdp->barrier_head);
3992 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
3993 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3994 atomic_inc(&rcu_state.barrier_cpu_count);
3996 debug_rcu_head_unqueue(&rdp->barrier_head);
3997 rcu_barrier_trace(TPS("IRQNQ"), -1,
3998 rcu_state.barrier_sequence);
4000 rcu_nocb_unlock(rdp);
4004 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4006 * Note that this primitive does not necessarily wait for an RCU grace period
4007 * to complete. For example, if there are no RCU callbacks queued anywhere
4008 * in the system, then rcu_barrier() is within its rights to return
4009 * immediately, without waiting for anything, much less an RCU grace period.
4011 void rcu_barrier(void)
4014 struct rcu_data *rdp;
4015 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4017 rcu_barrier_trace(TPS("Begin"), -1, s);
4019 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4020 mutex_lock(&rcu_state.barrier_mutex);
4022 /* Did someone else do our work for us? */
4023 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4024 rcu_barrier_trace(TPS("EarlyExit"), -1,
4025 rcu_state.barrier_sequence);
4026 smp_mb(); /* caller's subsequent code after above check. */
4027 mutex_unlock(&rcu_state.barrier_mutex);
4031 /* Mark the start of the barrier operation. */
4032 rcu_seq_start(&rcu_state.barrier_sequence);
4033 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4036 * Initialize the count to two rather than to zero in order
4037 * to avoid a too-soon return to zero in case of an immediate
4038 * invocation of the just-enqueued callback (or preemption of
4039 * this task). Exclude CPU-hotplug operations to ensure that no
4040 * offline non-offloaded CPU has callbacks queued.
4042 init_completion(&rcu_state.barrier_completion);
4043 atomic_set(&rcu_state.barrier_cpu_count, 2);
4047 * Force each CPU with callbacks to register a new callback.
4048 * When that callback is invoked, we will know that all of the
4049 * corresponding CPU's preceding callbacks have been invoked.
4051 for_each_possible_cpu(cpu) {
4052 rdp = per_cpu_ptr(&rcu_data, cpu);
4053 if (cpu_is_offline(cpu) &&
4054 !rcu_rdp_is_offloaded(rdp))
4056 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
4057 rcu_barrier_trace(TPS("OnlineQ"), cpu,
4058 rcu_state.barrier_sequence);
4059 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
4060 } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
4061 cpu_is_offline(cpu)) {
4062 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
4063 rcu_state.barrier_sequence);
4064 local_irq_disable();
4065 rcu_barrier_func((void *)cpu);
4067 } else if (cpu_is_offline(cpu)) {
4068 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
4069 rcu_state.barrier_sequence);
4071 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
4072 rcu_state.barrier_sequence);
4078 * Now that we have an rcu_barrier_callback() callback on each
4079 * CPU, and thus each counted, remove the initial count.
4081 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4082 complete(&rcu_state.barrier_completion);
4084 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4085 wait_for_completion(&rcu_state.barrier_completion);
4087 /* Mark the end of the barrier operation. */
4088 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4089 rcu_seq_end(&rcu_state.barrier_sequence);
4091 /* Other rcu_barrier() invocations can now safely proceed. */
4092 mutex_unlock(&rcu_state.barrier_mutex);
4094 EXPORT_SYMBOL_GPL(rcu_barrier);
4097 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4098 * first CPU in a given leaf rcu_node structure coming online. The caller
4099 * must hold the corresponding leaf rcu_node ->lock with interrrupts
4102 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4106 struct rcu_node *rnp = rnp_leaf;
4108 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4109 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4111 mask = rnp->grpmask;
4115 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4116 oldmask = rnp->qsmaskinit;
4117 rnp->qsmaskinit |= mask;
4118 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4125 * Do boot-time initialization of a CPU's per-CPU RCU data.
4128 rcu_boot_init_percpu_data(int cpu)
4130 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4132 /* Set up local state, ensuring consistent view of global state. */
4133 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4134 INIT_WORK(&rdp->strict_work, strict_work_handler);
4135 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4136 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4137 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4138 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4139 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4140 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4142 rcu_boot_init_nocb_percpu_data(rdp);
4146 * Invoked early in the CPU-online process, when pretty much all services
4147 * are available. The incoming CPU is not present.
4149 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4150 * offline event can be happening at a given time. Note also that we can
4151 * accept some slop in the rsp->gp_seq access due to the fact that this
4152 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4153 * And any offloaded callbacks are being numbered elsewhere.
4155 int rcutree_prepare_cpu(unsigned int cpu)
4157 unsigned long flags;
4158 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4159 struct rcu_node *rnp = rcu_get_root();
4161 /* Set up local state, ensuring consistent view of global state. */
4162 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4163 rdp->qlen_last_fqs_check = 0;
4164 rdp->n_force_qs_snap = rcu_state.n_force_qs;
4165 rdp->blimit = blimit;
4166 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
4167 rcu_dynticks_eqs_online();
4168 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4171 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4174 if (!rcu_segcblist_is_enabled(&rdp->cblist))
4175 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4178 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4179 * propagation up the rcu_node tree will happen at the beginning
4180 * of the next grace period.
4183 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4184 rdp->beenonline = true; /* We have now been online. */
4185 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4186 rdp->gp_seq_needed = rdp->gp_seq;
4187 rdp->cpu_no_qs.b.norm = true;
4188 rdp->core_needs_qs = false;
4189 rdp->rcu_iw_pending = false;
4190 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4191 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4192 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4193 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4194 rcu_prepare_kthreads(cpu);
4195 rcu_spawn_cpu_nocb_kthread(cpu);
4196 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4202 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4204 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4206 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4208 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4212 * Near the end of the CPU-online process. Pretty much all services
4213 * enabled, and the CPU is now very much alive.
4215 int rcutree_online_cpu(unsigned int cpu)
4217 unsigned long flags;
4218 struct rcu_data *rdp;
4219 struct rcu_node *rnp;
4221 rdp = per_cpu_ptr(&rcu_data, cpu);
4223 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4224 rnp->ffmask |= rdp->grpmask;
4225 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4226 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4227 return 0; /* Too early in boot for scheduler work. */
4228 sync_sched_exp_online_cleanup(cpu);
4229 rcutree_affinity_setting(cpu, -1);
4231 // Stop-machine done, so allow nohz_full to disable tick.
4232 tick_dep_clear(TICK_DEP_BIT_RCU);
4237 * Near the beginning of the process. The CPU is still very much alive
4238 * with pretty much all services enabled.
4240 int rcutree_offline_cpu(unsigned int cpu)
4242 unsigned long flags;
4243 struct rcu_data *rdp;
4244 struct rcu_node *rnp;
4246 rdp = per_cpu_ptr(&rcu_data, cpu);
4248 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4249 rnp->ffmask &= ~rdp->grpmask;
4250 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4252 rcutree_affinity_setting(cpu, cpu);
4254 // nohz_full CPUs need the tick for stop-machine to work quickly
4255 tick_dep_set(TICK_DEP_BIT_RCU);
4260 * Mark the specified CPU as being online so that subsequent grace periods
4261 * (both expedited and normal) will wait on it. Note that this means that
4262 * incoming CPUs are not allowed to use RCU read-side critical sections
4263 * until this function is called. Failing to observe this restriction
4264 * will result in lockdep splats.
4266 * Note that this function is special in that it is invoked directly
4267 * from the incoming CPU rather than from the cpuhp_step mechanism.
4268 * This is because this function must be invoked at a precise location.
4270 void rcu_cpu_starting(unsigned int cpu)
4272 unsigned long flags;
4274 struct rcu_data *rdp;
4275 struct rcu_node *rnp;
4278 rdp = per_cpu_ptr(&rcu_data, cpu);
4279 if (rdp->cpu_started)
4281 rdp->cpu_started = true;
4284 mask = rdp->grpmask;
4285 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4286 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4287 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4288 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4289 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4290 newcpu = !(rnp->expmaskinitnext & mask);
4291 rnp->expmaskinitnext |= mask;
4292 /* Allow lockless access for expedited grace periods. */
4293 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4294 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4295 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4296 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4297 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4299 /* An incoming CPU should never be blocking a grace period. */
4300 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4301 rcu_disable_urgency_upon_qs(rdp);
4302 /* Report QS -after- changing ->qsmaskinitnext! */
4303 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4305 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4307 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4308 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4309 WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4310 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4314 * The outgoing function has no further need of RCU, so remove it from
4315 * the rcu_node tree's ->qsmaskinitnext bit masks.
4317 * Note that this function is special in that it is invoked directly
4318 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4319 * This is because this function must be invoked at a precise location.
4321 void rcu_report_dead(unsigned int cpu)
4323 unsigned long flags;
4325 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4326 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4328 // Do any dangling deferred wakeups.
4329 do_nocb_deferred_wakeup(rdp);
4331 /* QS for any half-done expedited grace period. */
4333 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4335 rcu_preempt_deferred_qs(current);
4337 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4338 mask = rdp->grpmask;
4339 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4340 WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4341 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4342 raw_spin_lock(&rcu_state.ofl_lock);
4343 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4344 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4345 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4346 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4347 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4348 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4349 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4351 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4352 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4353 raw_spin_unlock(&rcu_state.ofl_lock);
4354 smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4355 WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4356 WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4358 rdp->cpu_started = false;
4361 #ifdef CONFIG_HOTPLUG_CPU
4363 * The outgoing CPU has just passed through the dying-idle state, and we
4364 * are being invoked from the CPU that was IPIed to continue the offline
4365 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4367 void rcutree_migrate_callbacks(int cpu)
4369 unsigned long flags;
4370 struct rcu_data *my_rdp;
4371 struct rcu_node *my_rnp;
4372 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4375 if (rcu_rdp_is_offloaded(rdp) ||
4376 rcu_segcblist_empty(&rdp->cblist))
4377 return; /* No callbacks to migrate. */
4379 local_irq_save(flags);
4380 my_rdp = this_cpu_ptr(&rcu_data);
4381 my_rnp = my_rdp->mynode;
4382 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4383 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4384 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4385 /* Leverage recent GPs and set GP for new callbacks. */
4386 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4387 rcu_advance_cbs(my_rnp, my_rdp);
4388 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4389 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4390 rcu_segcblist_disable(&rdp->cblist);
4391 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4392 !rcu_segcblist_n_cbs(&my_rdp->cblist));
4393 if (rcu_rdp_is_offloaded(my_rdp)) {
4394 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4395 __call_rcu_nocb_wake(my_rdp, true, flags);
4397 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4398 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4401 rcu_gp_kthread_wake();
4402 lockdep_assert_irqs_enabled();
4403 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4404 !rcu_segcblist_empty(&rdp->cblist),
4405 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4406 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4407 rcu_segcblist_first_cb(&rdp->cblist));
4412 * On non-huge systems, use expedited RCU grace periods to make suspend
4413 * and hibernation run faster.
4415 static int rcu_pm_notify(struct notifier_block *self,
4416 unsigned long action, void *hcpu)
4419 case PM_HIBERNATION_PREPARE:
4420 case PM_SUSPEND_PREPARE:
4423 case PM_POST_HIBERNATION:
4424 case PM_POST_SUSPEND:
4425 rcu_unexpedite_gp();
4434 * Spawn the kthreads that handle RCU's grace periods.
4436 static int __init rcu_spawn_gp_kthread(void)
4438 unsigned long flags;
4439 int kthread_prio_in = kthread_prio;
4440 struct rcu_node *rnp;
4441 struct sched_param sp;
4442 struct task_struct *t;
4444 /* Force priority into range. */
4445 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4446 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4448 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4450 else if (kthread_prio < 0)
4452 else if (kthread_prio > 99)
4455 if (kthread_prio != kthread_prio_in)
4456 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4457 kthread_prio, kthread_prio_in);
4459 rcu_scheduler_fully_active = 1;
4460 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4461 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4464 sp.sched_priority = kthread_prio;
4465 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4467 rnp = rcu_get_root();
4468 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4469 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4470 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4471 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4472 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4473 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4475 rcu_spawn_nocb_kthreads();
4476 rcu_spawn_boost_kthreads();
4479 early_initcall(rcu_spawn_gp_kthread);
4482 * This function is invoked towards the end of the scheduler's
4483 * initialization process. Before this is called, the idle task might
4484 * contain synchronous grace-period primitives (during which time, this idle
4485 * task is booting the system, and such primitives are no-ops). After this
4486 * function is called, any synchronous grace-period primitives are run as
4487 * expedited, with the requesting task driving the grace period forward.
4488 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4489 * runtime RCU functionality.
4491 void rcu_scheduler_starting(void)
4493 WARN_ON(num_online_cpus() != 1);
4494 WARN_ON(nr_context_switches() > 0);
4495 rcu_test_sync_prims();
4496 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4497 rcu_test_sync_prims();
4501 * Helper function for rcu_init() that initializes the rcu_state structure.
4503 static void __init rcu_init_one(void)
4505 static const char * const buf[] = RCU_NODE_NAME_INIT;
4506 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4507 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4508 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4510 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4514 struct rcu_node *rnp;
4516 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4518 /* Silence gcc 4.8 false positive about array index out of range. */
4519 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4520 panic("rcu_init_one: rcu_num_lvls out of range");
4522 /* Initialize the level-tracking arrays. */
4524 for (i = 1; i < rcu_num_lvls; i++)
4525 rcu_state.level[i] =
4526 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4527 rcu_init_levelspread(levelspread, num_rcu_lvl);
4529 /* Initialize the elements themselves, starting from the leaves. */
4531 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4532 cpustride *= levelspread[i];
4533 rnp = rcu_state.level[i];
4534 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4535 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4536 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4537 &rcu_node_class[i], buf[i]);
4538 raw_spin_lock_init(&rnp->fqslock);
4539 lockdep_set_class_and_name(&rnp->fqslock,
4540 &rcu_fqs_class[i], fqs[i]);
4541 rnp->gp_seq = rcu_state.gp_seq;
4542 rnp->gp_seq_needed = rcu_state.gp_seq;
4543 rnp->completedqs = rcu_state.gp_seq;
4545 rnp->qsmaskinit = 0;
4546 rnp->grplo = j * cpustride;
4547 rnp->grphi = (j + 1) * cpustride - 1;
4548 if (rnp->grphi >= nr_cpu_ids)
4549 rnp->grphi = nr_cpu_ids - 1;
4555 rnp->grpnum = j % levelspread[i - 1];
4556 rnp->grpmask = BIT(rnp->grpnum);
4557 rnp->parent = rcu_state.level[i - 1] +
4558 j / levelspread[i - 1];
4561 INIT_LIST_HEAD(&rnp->blkd_tasks);
4562 rcu_init_one_nocb(rnp);
4563 init_waitqueue_head(&rnp->exp_wq[0]);
4564 init_waitqueue_head(&rnp->exp_wq[1]);
4565 init_waitqueue_head(&rnp->exp_wq[2]);
4566 init_waitqueue_head(&rnp->exp_wq[3]);
4567 spin_lock_init(&rnp->exp_lock);
4571 init_swait_queue_head(&rcu_state.gp_wq);
4572 init_swait_queue_head(&rcu_state.expedited_wq);
4573 rnp = rcu_first_leaf_node();
4574 for_each_possible_cpu(i) {
4575 while (i > rnp->grphi)
4577 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4578 rcu_boot_init_percpu_data(i);
4583 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4584 * replace the definitions in tree.h because those are needed to size
4585 * the ->node array in the rcu_state structure.
4587 static void __init rcu_init_geometry(void)
4591 int rcu_capacity[RCU_NUM_LVLS];
4594 * Initialize any unspecified boot parameters.
4595 * The default values of jiffies_till_first_fqs and
4596 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4597 * value, which is a function of HZ, then adding one for each
4598 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4600 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4601 if (jiffies_till_first_fqs == ULONG_MAX)
4602 jiffies_till_first_fqs = d;
4603 if (jiffies_till_next_fqs == ULONG_MAX)
4604 jiffies_till_next_fqs = d;
4605 adjust_jiffies_till_sched_qs();
4607 /* If the compile-time values are accurate, just leave. */
4608 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4609 nr_cpu_ids == NR_CPUS)
4611 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4612 rcu_fanout_leaf, nr_cpu_ids);
4615 * The boot-time rcu_fanout_leaf parameter must be at least two
4616 * and cannot exceed the number of bits in the rcu_node masks.
4617 * Complain and fall back to the compile-time values if this
4618 * limit is exceeded.
4620 if (rcu_fanout_leaf < 2 ||
4621 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4622 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4628 * Compute number of nodes that can be handled an rcu_node tree
4629 * with the given number of levels.
4631 rcu_capacity[0] = rcu_fanout_leaf;
4632 for (i = 1; i < RCU_NUM_LVLS; i++)
4633 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4636 * The tree must be able to accommodate the configured number of CPUs.
4637 * If this limit is exceeded, fall back to the compile-time values.
4639 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4640 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4645 /* Calculate the number of levels in the tree. */
4646 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4648 rcu_num_lvls = i + 1;
4650 /* Calculate the number of rcu_nodes at each level of the tree. */
4651 for (i = 0; i < rcu_num_lvls; i++) {
4652 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4653 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4656 /* Calculate the total number of rcu_node structures. */
4658 for (i = 0; i < rcu_num_lvls; i++)
4659 rcu_num_nodes += num_rcu_lvl[i];
4663 * Dump out the structure of the rcu_node combining tree associated
4664 * with the rcu_state structure.
4666 static void __init rcu_dump_rcu_node_tree(void)
4669 struct rcu_node *rnp;
4671 pr_info("rcu_node tree layout dump\n");
4673 rcu_for_each_node_breadth_first(rnp) {
4674 if (rnp->level != level) {
4679 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4684 struct workqueue_struct *rcu_gp_wq;
4685 struct workqueue_struct *rcu_par_gp_wq;
4687 static void __init kfree_rcu_batch_init(void)
4692 for_each_possible_cpu(cpu) {
4693 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4695 for (i = 0; i < KFREE_N_BATCHES; i++) {
4696 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4697 krcp->krw_arr[i].krcp = krcp;
4700 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4701 INIT_WORK(&krcp->page_cache_work, fill_page_cache_func);
4702 krcp->initialized = true;
4704 if (register_shrinker(&kfree_rcu_shrinker))
4705 pr_err("Failed to register kfree_rcu() shrinker!\n");
4708 void __init rcu_init(void)
4712 rcu_early_boot_tests();
4714 kfree_rcu_batch_init();
4715 rcu_bootup_announce();
4716 rcu_init_geometry();
4719 rcu_dump_rcu_node_tree();
4721 open_softirq(RCU_SOFTIRQ, rcu_core_si);
4724 * We don't need protection against CPU-hotplug here because
4725 * this is called early in boot, before either interrupts
4726 * or the scheduler are operational.
4728 pm_notifier(rcu_pm_notify, 0);
4729 for_each_online_cpu(cpu) {
4730 rcutree_prepare_cpu(cpu);
4731 rcu_cpu_starting(cpu);
4732 rcutree_online_cpu(cpu);
4735 /* Create workqueue for expedited GPs and for Tree SRCU. */
4736 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4737 WARN_ON(!rcu_gp_wq);
4738 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4739 WARN_ON(!rcu_par_gp_wq);
4742 /* Fill in default value for rcutree.qovld boot parameter. */
4743 /* -After- the rcu_node ->lock fields are initialized! */
4745 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4750 #include "tree_stall.h"
4751 #include "tree_exp.h"
4752 #include "tree_plugin.h"