]> Git Repo - linux.git/blob - drivers/soc/ti/knav_qmss_queue.c
ASoC: simple-card: Use snd_soc_of_parse_aux_devs()
[linux.git] / drivers / soc / ti / knav_qmss_queue.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Keystone Queue Manager subsystem driver
4  *
5  * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com
6  * Authors:     Sandeep Nair <[email protected]>
7  *              Cyril Chemparathy <[email protected]>
8  *              Santosh Shilimkar <[email protected]>
9  */
10
11 #include <linux/debugfs.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/firmware.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/of_irq.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/slab.h>
22 #include <linux/soc/ti/knav_qmss.h>
23
24 #include "knav_qmss.h"
25
26 static struct knav_device *kdev;
27 static DEFINE_MUTEX(knav_dev_lock);
28 #define knav_dev_lock_held() \
29         lockdep_is_held(&knav_dev_lock)
30
31 /* Queue manager register indices in DTS */
32 #define KNAV_QUEUE_PEEK_REG_INDEX       0
33 #define KNAV_QUEUE_STATUS_REG_INDEX     1
34 #define KNAV_QUEUE_CONFIG_REG_INDEX     2
35 #define KNAV_QUEUE_REGION_REG_INDEX     3
36 #define KNAV_QUEUE_PUSH_REG_INDEX       4
37 #define KNAV_QUEUE_POP_REG_INDEX        5
38
39 /* Queue manager register indices in DTS for QMSS in K2G NAVSS.
40  * There are no status and vbusm push registers on this version
41  * of QMSS. Push registers are same as pop, So all indices above 1
42  * are to be re-defined
43  */
44 #define KNAV_L_QUEUE_CONFIG_REG_INDEX   1
45 #define KNAV_L_QUEUE_REGION_REG_INDEX   2
46 #define KNAV_L_QUEUE_PUSH_REG_INDEX     3
47
48 /* PDSP register indices in DTS */
49 #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX  0
50 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX  1
51 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX  2
52 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX   3
53
54 #define knav_queue_idx_to_inst(kdev, idx)                       \
55         (kdev->instances + (idx << kdev->inst_shift))
56
57 #define for_each_handle_rcu(qh, inst)                           \
58         list_for_each_entry_rcu(qh, &inst->handles, list,       \
59                                 knav_dev_lock_held())
60
61 #define for_each_instance(idx, inst, kdev)              \
62         for (idx = 0, inst = kdev->instances;           \
63              idx < (kdev)->num_queues_in_use;                   \
64              idx++, inst = knav_queue_idx_to_inst(kdev, idx))
65
66 /* All firmware file names end up here. List the firmware file names below.
67  * Newest followed by older ones. Search is done from start of the array
68  * until a firmware file is found.
69  */
70 const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"};
71
72 static bool device_ready;
73 bool knav_qmss_device_ready(void)
74 {
75         return device_ready;
76 }
77 EXPORT_SYMBOL_GPL(knav_qmss_device_ready);
78
79 /**
80  * knav_queue_notify: qmss queue notfier call
81  *
82  * @inst:               qmss queue instance like accumulator
83  */
84 void knav_queue_notify(struct knav_queue_inst *inst)
85 {
86         struct knav_queue *qh;
87
88         if (!inst)
89                 return;
90
91         rcu_read_lock();
92         for_each_handle_rcu(qh, inst) {
93                 if (atomic_read(&qh->notifier_enabled) <= 0)
94                         continue;
95                 if (WARN_ON(!qh->notifier_fn))
96                         continue;
97                 this_cpu_inc(qh->stats->notifies);
98                 qh->notifier_fn(qh->notifier_fn_arg);
99         }
100         rcu_read_unlock();
101 }
102 EXPORT_SYMBOL_GPL(knav_queue_notify);
103
104 static irqreturn_t knav_queue_int_handler(int irq, void *_instdata)
105 {
106         struct knav_queue_inst *inst = _instdata;
107
108         knav_queue_notify(inst);
109         return IRQ_HANDLED;
110 }
111
112 static int knav_queue_setup_irq(struct knav_range_info *range,
113                           struct knav_queue_inst *inst)
114 {
115         unsigned queue = inst->id - range->queue_base;
116         int ret = 0, irq;
117
118         if (range->flags & RANGE_HAS_IRQ) {
119                 irq = range->irqs[queue].irq;
120                 ret = request_irq(irq, knav_queue_int_handler, 0,
121                                         inst->irq_name, inst);
122                 if (ret)
123                         return ret;
124                 disable_irq(irq);
125                 if (range->irqs[queue].cpu_mask) {
126                         ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask);
127                         if (ret) {
128                                 dev_warn(range->kdev->dev,
129                                          "Failed to set IRQ affinity\n");
130                                 return ret;
131                         }
132                 }
133         }
134         return ret;
135 }
136
137 static void knav_queue_free_irq(struct knav_queue_inst *inst)
138 {
139         struct knav_range_info *range = inst->range;
140         unsigned queue = inst->id - inst->range->queue_base;
141         int irq;
142
143         if (range->flags & RANGE_HAS_IRQ) {
144                 irq = range->irqs[queue].irq;
145                 irq_set_affinity_hint(irq, NULL);
146                 free_irq(irq, inst);
147         }
148 }
149
150 static inline bool knav_queue_is_busy(struct knav_queue_inst *inst)
151 {
152         return !list_empty(&inst->handles);
153 }
154
155 static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst)
156 {
157         return inst->range->flags & RANGE_RESERVED;
158 }
159
160 static inline bool knav_queue_is_shared(struct knav_queue_inst *inst)
161 {
162         struct knav_queue *tmp;
163
164         rcu_read_lock();
165         for_each_handle_rcu(tmp, inst) {
166                 if (tmp->flags & KNAV_QUEUE_SHARED) {
167                         rcu_read_unlock();
168                         return true;
169                 }
170         }
171         rcu_read_unlock();
172         return false;
173 }
174
175 static inline bool knav_queue_match_type(struct knav_queue_inst *inst,
176                                                 unsigned type)
177 {
178         if ((type == KNAV_QUEUE_QPEND) &&
179             (inst->range->flags & RANGE_HAS_IRQ)) {
180                 return true;
181         } else if ((type == KNAV_QUEUE_ACC) &&
182                 (inst->range->flags & RANGE_HAS_ACCUMULATOR)) {
183                 return true;
184         } else if ((type == KNAV_QUEUE_GP) &&
185                 !(inst->range->flags &
186                         (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) {
187                 return true;
188         }
189         return false;
190 }
191
192 static inline struct knav_queue_inst *
193 knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id)
194 {
195         struct knav_queue_inst *inst;
196         int idx;
197
198         for_each_instance(idx, inst, kdev) {
199                 if (inst->id == id)
200                         return inst;
201         }
202         return NULL;
203 }
204
205 static inline struct knav_queue_inst *knav_queue_find_by_id(int id)
206 {
207         if (kdev->base_id <= id &&
208             kdev->base_id + kdev->num_queues > id) {
209                 id -= kdev->base_id;
210                 return knav_queue_match_id_to_inst(kdev, id);
211         }
212         return NULL;
213 }
214
215 static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst,
216                                       const char *name, unsigned flags)
217 {
218         struct knav_queue *qh;
219         unsigned id;
220         int ret = 0;
221
222         qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL);
223         if (!qh)
224                 return ERR_PTR(-ENOMEM);
225
226         qh->stats = alloc_percpu(struct knav_queue_stats);
227         if (!qh->stats) {
228                 ret = -ENOMEM;
229                 goto err;
230         }
231
232         qh->flags = flags;
233         qh->inst = inst;
234         id = inst->id - inst->qmgr->start_queue;
235         qh->reg_push = &inst->qmgr->reg_push[id];
236         qh->reg_pop = &inst->qmgr->reg_pop[id];
237         qh->reg_peek = &inst->qmgr->reg_peek[id];
238
239         /* first opener? */
240         if (!knav_queue_is_busy(inst)) {
241                 struct knav_range_info *range = inst->range;
242
243                 inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
244                 if (range->ops && range->ops->open_queue)
245                         ret = range->ops->open_queue(range, inst, flags);
246
247                 if (ret)
248                         goto err;
249         }
250         list_add_tail_rcu(&qh->list, &inst->handles);
251         return qh;
252
253 err:
254         if (qh->stats)
255                 free_percpu(qh->stats);
256         devm_kfree(inst->kdev->dev, qh);
257         return ERR_PTR(ret);
258 }
259
260 static struct knav_queue *
261 knav_queue_open_by_id(const char *name, unsigned id, unsigned flags)
262 {
263         struct knav_queue_inst *inst;
264         struct knav_queue *qh;
265
266         mutex_lock(&knav_dev_lock);
267
268         qh = ERR_PTR(-ENODEV);
269         inst = knav_queue_find_by_id(id);
270         if (!inst)
271                 goto unlock_ret;
272
273         qh = ERR_PTR(-EEXIST);
274         if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst))
275                 goto unlock_ret;
276
277         qh = ERR_PTR(-EBUSY);
278         if ((flags & KNAV_QUEUE_SHARED) &&
279             (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst)))
280                 goto unlock_ret;
281
282         qh = __knav_queue_open(inst, name, flags);
283
284 unlock_ret:
285         mutex_unlock(&knav_dev_lock);
286
287         return qh;
288 }
289
290 static struct knav_queue *knav_queue_open_by_type(const char *name,
291                                                 unsigned type, unsigned flags)
292 {
293         struct knav_queue_inst *inst;
294         struct knav_queue *qh = ERR_PTR(-EINVAL);
295         int idx;
296
297         mutex_lock(&knav_dev_lock);
298
299         for_each_instance(idx, inst, kdev) {
300                 if (knav_queue_is_reserved(inst))
301                         continue;
302                 if (!knav_queue_match_type(inst, type))
303                         continue;
304                 if (knav_queue_is_busy(inst))
305                         continue;
306                 qh = __knav_queue_open(inst, name, flags);
307                 goto unlock_ret;
308         }
309
310 unlock_ret:
311         mutex_unlock(&knav_dev_lock);
312         return qh;
313 }
314
315 static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled)
316 {
317         struct knav_range_info *range = inst->range;
318
319         if (range->ops && range->ops->set_notify)
320                 range->ops->set_notify(range, inst, enabled);
321 }
322
323 static int knav_queue_enable_notifier(struct knav_queue *qh)
324 {
325         struct knav_queue_inst *inst = qh->inst;
326         bool first;
327
328         if (WARN_ON(!qh->notifier_fn))
329                 return -EINVAL;
330
331         /* Adjust the per handle notifier count */
332         first = (atomic_inc_return(&qh->notifier_enabled) == 1);
333         if (!first)
334                 return 0; /* nothing to do */
335
336         /* Now adjust the per instance notifier count */
337         first = (atomic_inc_return(&inst->num_notifiers) == 1);
338         if (first)
339                 knav_queue_set_notify(inst, true);
340
341         return 0;
342 }
343
344 static int knav_queue_disable_notifier(struct knav_queue *qh)
345 {
346         struct knav_queue_inst *inst = qh->inst;
347         bool last;
348
349         last = (atomic_dec_return(&qh->notifier_enabled) == 0);
350         if (!last)
351                 return 0; /* nothing to do */
352
353         last = (atomic_dec_return(&inst->num_notifiers) == 0);
354         if (last)
355                 knav_queue_set_notify(inst, false);
356
357         return 0;
358 }
359
360 static int knav_queue_set_notifier(struct knav_queue *qh,
361                                 struct knav_queue_notify_config *cfg)
362 {
363         knav_queue_notify_fn old_fn = qh->notifier_fn;
364
365         if (!cfg)
366                 return -EINVAL;
367
368         if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ)))
369                 return -ENOTSUPP;
370
371         if (!cfg->fn && old_fn)
372                 knav_queue_disable_notifier(qh);
373
374         qh->notifier_fn = cfg->fn;
375         qh->notifier_fn_arg = cfg->fn_arg;
376
377         if (cfg->fn && !old_fn)
378                 knav_queue_enable_notifier(qh);
379
380         return 0;
381 }
382
383 static int knav_gp_set_notify(struct knav_range_info *range,
384                                struct knav_queue_inst *inst,
385                                bool enabled)
386 {
387         unsigned queue;
388
389         if (range->flags & RANGE_HAS_IRQ) {
390                 queue = inst->id - range->queue_base;
391                 if (enabled)
392                         enable_irq(range->irqs[queue].irq);
393                 else
394                         disable_irq_nosync(range->irqs[queue].irq);
395         }
396         return 0;
397 }
398
399 static int knav_gp_open_queue(struct knav_range_info *range,
400                                 struct knav_queue_inst *inst, unsigned flags)
401 {
402         return knav_queue_setup_irq(range, inst);
403 }
404
405 static int knav_gp_close_queue(struct knav_range_info *range,
406                                 struct knav_queue_inst *inst)
407 {
408         knav_queue_free_irq(inst);
409         return 0;
410 }
411
412 static struct knav_range_ops knav_gp_range_ops = {
413         .set_notify     = knav_gp_set_notify,
414         .open_queue     = knav_gp_open_queue,
415         .close_queue    = knav_gp_close_queue,
416 };
417
418
419 static int knav_queue_get_count(void *qhandle)
420 {
421         struct knav_queue *qh = qhandle;
422         struct knav_queue_inst *inst = qh->inst;
423
424         return readl_relaxed(&qh->reg_peek[0].entry_count) +
425                 atomic_read(&inst->desc_count);
426 }
427
428 static void knav_queue_debug_show_instance(struct seq_file *s,
429                                         struct knav_queue_inst *inst)
430 {
431         struct knav_device *kdev = inst->kdev;
432         struct knav_queue *qh;
433         int cpu = 0;
434         int pushes = 0;
435         int pops = 0;
436         int push_errors = 0;
437         int pop_errors = 0;
438         int notifies = 0;
439
440         if (!knav_queue_is_busy(inst))
441                 return;
442
443         seq_printf(s, "\tqueue id %d (%s)\n",
444                    kdev->base_id + inst->id, inst->name);
445         for_each_handle_rcu(qh, inst) {
446                 for_each_possible_cpu(cpu) {
447                         pushes += per_cpu_ptr(qh->stats, cpu)->pushes;
448                         pops += per_cpu_ptr(qh->stats, cpu)->pops;
449                         push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors;
450                         pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors;
451                         notifies += per_cpu_ptr(qh->stats, cpu)->notifies;
452                 }
453
454                 seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n",
455                                 qh,
456                                 pushes,
457                                 pops,
458                                 knav_queue_get_count(qh),
459                                 notifies,
460                                 push_errors,
461                                 pop_errors);
462         }
463 }
464
465 static int knav_queue_debug_show(struct seq_file *s, void *v)
466 {
467         struct knav_queue_inst *inst;
468         int idx;
469
470         mutex_lock(&knav_dev_lock);
471         seq_printf(s, "%s: %u-%u\n",
472                    dev_name(kdev->dev), kdev->base_id,
473                    kdev->base_id + kdev->num_queues - 1);
474         for_each_instance(idx, inst, kdev)
475                 knav_queue_debug_show_instance(s, inst);
476         mutex_unlock(&knav_dev_lock);
477
478         return 0;
479 }
480
481 static int knav_queue_debug_open(struct inode *inode, struct file *file)
482 {
483         return single_open(file, knav_queue_debug_show, NULL);
484 }
485
486 static const struct file_operations knav_queue_debug_ops = {
487         .open           = knav_queue_debug_open,
488         .read           = seq_read,
489         .llseek         = seq_lseek,
490         .release        = single_release,
491 };
492
493 static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout,
494                                         u32 flags)
495 {
496         unsigned long end;
497         u32 val = 0;
498
499         end = jiffies + msecs_to_jiffies(timeout);
500         while (time_after(end, jiffies)) {
501                 val = readl_relaxed(addr);
502                 if (flags)
503                         val &= flags;
504                 if (!val)
505                         break;
506                 cpu_relax();
507         }
508         return val ? -ETIMEDOUT : 0;
509 }
510
511
512 static int knav_queue_flush(struct knav_queue *qh)
513 {
514         struct knav_queue_inst *inst = qh->inst;
515         unsigned id = inst->id - inst->qmgr->start_queue;
516
517         atomic_set(&inst->desc_count, 0);
518         writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh);
519         return 0;
520 }
521
522 /**
523  * knav_queue_open()    - open a hardware queue
524  * @name                - name to give the queue handle
525  * @id                  - desired queue number if any or specifes the type
526  *                        of queue
527  * @flags               - the following flags are applicable to queues:
528  *      KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are
529  *                           exclusive by default.
530  *                           Subsequent attempts to open a shared queue should
531  *                           also have this flag.
532  *
533  * Returns a handle to the open hardware queue if successful. Use IS_ERR()
534  * to check the returned value for error codes.
535  */
536 void *knav_queue_open(const char *name, unsigned id,
537                                         unsigned flags)
538 {
539         struct knav_queue *qh = ERR_PTR(-EINVAL);
540
541         switch (id) {
542         case KNAV_QUEUE_QPEND:
543         case KNAV_QUEUE_ACC:
544         case KNAV_QUEUE_GP:
545                 qh = knav_queue_open_by_type(name, id, flags);
546                 break;
547
548         default:
549                 qh = knav_queue_open_by_id(name, id, flags);
550                 break;
551         }
552         return qh;
553 }
554 EXPORT_SYMBOL_GPL(knav_queue_open);
555
556 /**
557  * knav_queue_close()   - close a hardware queue handle
558  * @qh                  - handle to close
559  */
560 void knav_queue_close(void *qhandle)
561 {
562         struct knav_queue *qh = qhandle;
563         struct knav_queue_inst *inst = qh->inst;
564
565         while (atomic_read(&qh->notifier_enabled) > 0)
566                 knav_queue_disable_notifier(qh);
567
568         mutex_lock(&knav_dev_lock);
569         list_del_rcu(&qh->list);
570         mutex_unlock(&knav_dev_lock);
571         synchronize_rcu();
572         if (!knav_queue_is_busy(inst)) {
573                 struct knav_range_info *range = inst->range;
574
575                 if (range->ops && range->ops->close_queue)
576                         range->ops->close_queue(range, inst);
577         }
578         free_percpu(qh->stats);
579         devm_kfree(inst->kdev->dev, qh);
580 }
581 EXPORT_SYMBOL_GPL(knav_queue_close);
582
583 /**
584  * knav_queue_device_control()  - Perform control operations on a queue
585  * @qh                          - queue handle
586  * @cmd                         - control commands
587  * @arg                         - command argument
588  *
589  * Returns 0 on success, errno otherwise.
590  */
591 int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd,
592                                 unsigned long arg)
593 {
594         struct knav_queue *qh = qhandle;
595         struct knav_queue_notify_config *cfg;
596         int ret;
597
598         switch ((int)cmd) {
599         case KNAV_QUEUE_GET_ID:
600                 ret = qh->inst->kdev->base_id + qh->inst->id;
601                 break;
602
603         case KNAV_QUEUE_FLUSH:
604                 ret = knav_queue_flush(qh);
605                 break;
606
607         case KNAV_QUEUE_SET_NOTIFIER:
608                 cfg = (void *)arg;
609                 ret = knav_queue_set_notifier(qh, cfg);
610                 break;
611
612         case KNAV_QUEUE_ENABLE_NOTIFY:
613                 ret = knav_queue_enable_notifier(qh);
614                 break;
615
616         case KNAV_QUEUE_DISABLE_NOTIFY:
617                 ret = knav_queue_disable_notifier(qh);
618                 break;
619
620         case KNAV_QUEUE_GET_COUNT:
621                 ret = knav_queue_get_count(qh);
622                 break;
623
624         default:
625                 ret = -ENOTSUPP;
626                 break;
627         }
628         return ret;
629 }
630 EXPORT_SYMBOL_GPL(knav_queue_device_control);
631
632
633
634 /**
635  * knav_queue_push()    - push data (or descriptor) to the tail of a queue
636  * @qh                  - hardware queue handle
637  * @data                - data to push
638  * @size                - size of data to push
639  * @flags               - can be used to pass additional information
640  *
641  * Returns 0 on success, errno otherwise.
642  */
643 int knav_queue_push(void *qhandle, dma_addr_t dma,
644                                         unsigned size, unsigned flags)
645 {
646         struct knav_queue *qh = qhandle;
647         u32 val;
648
649         val = (u32)dma | ((size / 16) - 1);
650         writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh);
651
652         this_cpu_inc(qh->stats->pushes);
653         return 0;
654 }
655 EXPORT_SYMBOL_GPL(knav_queue_push);
656
657 /**
658  * knav_queue_pop()     - pop data (or descriptor) from the head of a queue
659  * @qh                  - hardware queue handle
660  * @size                - (optional) size of the data pop'ed.
661  *
662  * Returns a DMA address on success, 0 on failure.
663  */
664 dma_addr_t knav_queue_pop(void *qhandle, unsigned *size)
665 {
666         struct knav_queue *qh = qhandle;
667         struct knav_queue_inst *inst = qh->inst;
668         dma_addr_t dma;
669         u32 val, idx;
670
671         /* are we accumulated? */
672         if (inst->descs) {
673                 if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) {
674                         atomic_inc(&inst->desc_count);
675                         return 0;
676                 }
677                 idx  = atomic_inc_return(&inst->desc_head);
678                 idx &= ACC_DESCS_MASK;
679                 val = inst->descs[idx];
680         } else {
681                 val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh);
682                 if (unlikely(!val))
683                         return 0;
684         }
685
686         dma = val & DESC_PTR_MASK;
687         if (size)
688                 *size = ((val & DESC_SIZE_MASK) + 1) * 16;
689
690         this_cpu_inc(qh->stats->pops);
691         return dma;
692 }
693 EXPORT_SYMBOL_GPL(knav_queue_pop);
694
695 /* carve out descriptors and push into queue */
696 static void kdesc_fill_pool(struct knav_pool *pool)
697 {
698         struct knav_region *region;
699         int i;
700
701         region = pool->region;
702         pool->desc_size = region->desc_size;
703         for (i = 0; i < pool->num_desc; i++) {
704                 int index = pool->region_offset + i;
705                 dma_addr_t dma_addr;
706                 unsigned dma_size;
707                 dma_addr = region->dma_start + (region->desc_size * index);
708                 dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES);
709                 dma_sync_single_for_device(pool->dev, dma_addr, dma_size,
710                                            DMA_TO_DEVICE);
711                 knav_queue_push(pool->queue, dma_addr, dma_size, 0);
712         }
713 }
714
715 /* pop out descriptors and close the queue */
716 static void kdesc_empty_pool(struct knav_pool *pool)
717 {
718         dma_addr_t dma;
719         unsigned size;
720         void *desc;
721         int i;
722
723         if (!pool->queue)
724                 return;
725
726         for (i = 0;; i++) {
727                 dma = knav_queue_pop(pool->queue, &size);
728                 if (!dma)
729                         break;
730                 desc = knav_pool_desc_dma_to_virt(pool, dma);
731                 if (!desc) {
732                         dev_dbg(pool->kdev->dev,
733                                 "couldn't unmap desc, continuing\n");
734                         continue;
735                 }
736         }
737         WARN_ON(i != pool->num_desc);
738         knav_queue_close(pool->queue);
739 }
740
741
742 /* Get the DMA address of a descriptor */
743 dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt)
744 {
745         struct knav_pool *pool = ph;
746         return pool->region->dma_start + (virt - pool->region->virt_start);
747 }
748 EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma);
749
750 void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma)
751 {
752         struct knav_pool *pool = ph;
753         return pool->region->virt_start + (dma - pool->region->dma_start);
754 }
755 EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt);
756
757 /**
758  * knav_pool_create()   - Create a pool of descriptors
759  * @name                - name to give the pool handle
760  * @num_desc            - numbers of descriptors in the pool
761  * @region_id           - QMSS region id from which the descriptors are to be
762  *                        allocated.
763  *
764  * Returns a pool handle on success.
765  * Use IS_ERR_OR_NULL() to identify error values on return.
766  */
767 void *knav_pool_create(const char *name,
768                                         int num_desc, int region_id)
769 {
770         struct knav_region *reg_itr, *region = NULL;
771         struct knav_pool *pool, *pi;
772         struct list_head *node;
773         unsigned last_offset;
774         bool slot_found;
775         int ret;
776
777         if (!kdev)
778                 return ERR_PTR(-EPROBE_DEFER);
779
780         if (!kdev->dev)
781                 return ERR_PTR(-ENODEV);
782
783         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
784         if (!pool) {
785                 dev_err(kdev->dev, "out of memory allocating pool\n");
786                 return ERR_PTR(-ENOMEM);
787         }
788
789         for_each_region(kdev, reg_itr) {
790                 if (reg_itr->id != region_id)
791                         continue;
792                 region = reg_itr;
793                 break;
794         }
795
796         if (!region) {
797                 dev_err(kdev->dev, "region-id(%d) not found\n", region_id);
798                 ret = -EINVAL;
799                 goto err;
800         }
801
802         pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0);
803         if (IS_ERR_OR_NULL(pool->queue)) {
804                 dev_err(kdev->dev,
805                         "failed to open queue for pool(%s), error %ld\n",
806                         name, PTR_ERR(pool->queue));
807                 ret = PTR_ERR(pool->queue);
808                 goto err;
809         }
810
811         pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL);
812         pool->kdev = kdev;
813         pool->dev = kdev->dev;
814
815         mutex_lock(&knav_dev_lock);
816
817         if (num_desc > (region->num_desc - region->used_desc)) {
818                 dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n",
819                         region_id, name);
820                 ret = -ENOMEM;
821                 goto err_unlock;
822         }
823
824         /* Region maintains a sorted (by region offset) list of pools
825          * use the first free slot which is large enough to accomodate
826          * the request
827          */
828         last_offset = 0;
829         slot_found = false;
830         node = &region->pools;
831         list_for_each_entry(pi, &region->pools, region_inst) {
832                 if ((pi->region_offset - last_offset) >= num_desc) {
833                         slot_found = true;
834                         break;
835                 }
836                 last_offset = pi->region_offset + pi->num_desc;
837         }
838         node = &pi->region_inst;
839
840         if (slot_found) {
841                 pool->region = region;
842                 pool->num_desc = num_desc;
843                 pool->region_offset = last_offset;
844                 region->used_desc += num_desc;
845                 list_add_tail(&pool->list, &kdev->pools);
846                 list_add_tail(&pool->region_inst, node);
847         } else {
848                 dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n",
849                         name, region_id);
850                 ret = -ENOMEM;
851                 goto err_unlock;
852         }
853
854         mutex_unlock(&knav_dev_lock);
855         kdesc_fill_pool(pool);
856         return pool;
857
858 err_unlock:
859         mutex_unlock(&knav_dev_lock);
860 err:
861         kfree(pool->name);
862         devm_kfree(kdev->dev, pool);
863         return ERR_PTR(ret);
864 }
865 EXPORT_SYMBOL_GPL(knav_pool_create);
866
867 /**
868  * knav_pool_destroy()  - Free a pool of descriptors
869  * @pool                - pool handle
870  */
871 void knav_pool_destroy(void *ph)
872 {
873         struct knav_pool *pool = ph;
874
875         if (!pool)
876                 return;
877
878         if (!pool->region)
879                 return;
880
881         kdesc_empty_pool(pool);
882         mutex_lock(&knav_dev_lock);
883
884         pool->region->used_desc -= pool->num_desc;
885         list_del(&pool->region_inst);
886         list_del(&pool->list);
887
888         mutex_unlock(&knav_dev_lock);
889         kfree(pool->name);
890         devm_kfree(kdev->dev, pool);
891 }
892 EXPORT_SYMBOL_GPL(knav_pool_destroy);
893
894
895 /**
896  * knav_pool_desc_get() - Get a descriptor from the pool
897  * @pool                        - pool handle
898  *
899  * Returns descriptor from the pool.
900  */
901 void *knav_pool_desc_get(void *ph)
902 {
903         struct knav_pool *pool = ph;
904         dma_addr_t dma;
905         unsigned size;
906         void *data;
907
908         dma = knav_queue_pop(pool->queue, &size);
909         if (unlikely(!dma))
910                 return ERR_PTR(-ENOMEM);
911         data = knav_pool_desc_dma_to_virt(pool, dma);
912         return data;
913 }
914 EXPORT_SYMBOL_GPL(knav_pool_desc_get);
915
916 /**
917  * knav_pool_desc_put() - return a descriptor to the pool
918  * @pool                        - pool handle
919  */
920 void knav_pool_desc_put(void *ph, void *desc)
921 {
922         struct knav_pool *pool = ph;
923         dma_addr_t dma;
924         dma = knav_pool_desc_virt_to_dma(pool, desc);
925         knav_queue_push(pool->queue, dma, pool->region->desc_size, 0);
926 }
927 EXPORT_SYMBOL_GPL(knav_pool_desc_put);
928
929 /**
930  * knav_pool_desc_map() - Map descriptor for DMA transfer
931  * @pool                        - pool handle
932  * @desc                        - address of descriptor to map
933  * @size                        - size of descriptor to map
934  * @dma                         - DMA address return pointer
935  * @dma_sz                      - adjusted return pointer
936  *
937  * Returns 0 on success, errno otherwise.
938  */
939 int knav_pool_desc_map(void *ph, void *desc, unsigned size,
940                                         dma_addr_t *dma, unsigned *dma_sz)
941 {
942         struct knav_pool *pool = ph;
943         *dma = knav_pool_desc_virt_to_dma(pool, desc);
944         size = min(size, pool->region->desc_size);
945         size = ALIGN(size, SMP_CACHE_BYTES);
946         *dma_sz = size;
947         dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE);
948
949         /* Ensure the descriptor reaches to the memory */
950         __iowmb();
951
952         return 0;
953 }
954 EXPORT_SYMBOL_GPL(knav_pool_desc_map);
955
956 /**
957  * knav_pool_desc_unmap()       - Unmap descriptor after DMA transfer
958  * @pool                        - pool handle
959  * @dma                         - DMA address of descriptor to unmap
960  * @dma_sz                      - size of descriptor to unmap
961  *
962  * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify
963  * error values on return.
964  */
965 void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz)
966 {
967         struct knav_pool *pool = ph;
968         unsigned desc_sz;
969         void *desc;
970
971         desc_sz = min(dma_sz, pool->region->desc_size);
972         desc = knav_pool_desc_dma_to_virt(pool, dma);
973         dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE);
974         prefetch(desc);
975         return desc;
976 }
977 EXPORT_SYMBOL_GPL(knav_pool_desc_unmap);
978
979 /**
980  * knav_pool_count()    - Get the number of descriptors in pool.
981  * @pool                - pool handle
982  * Returns number of elements in the pool.
983  */
984 int knav_pool_count(void *ph)
985 {
986         struct knav_pool *pool = ph;
987         return knav_queue_get_count(pool->queue);
988 }
989 EXPORT_SYMBOL_GPL(knav_pool_count);
990
991 static void knav_queue_setup_region(struct knav_device *kdev,
992                                         struct knav_region *region)
993 {
994         unsigned hw_num_desc, hw_desc_size, size;
995         struct knav_reg_region __iomem  *regs;
996         struct knav_qmgr_info *qmgr;
997         struct knav_pool *pool;
998         int id = region->id;
999         struct page *page;
1000
1001         /* unused region? */
1002         if (!region->num_desc) {
1003                 dev_warn(kdev->dev, "unused region %s\n", region->name);
1004                 return;
1005         }
1006
1007         /* get hardware descriptor value */
1008         hw_num_desc = ilog2(region->num_desc - 1) + 1;
1009
1010         /* did we force fit ourselves into nothingness? */
1011         if (region->num_desc < 32) {
1012                 region->num_desc = 0;
1013                 dev_warn(kdev->dev, "too few descriptors in region %s\n",
1014                          region->name);
1015                 return;
1016         }
1017
1018         size = region->num_desc * region->desc_size;
1019         region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA |
1020                                                 GFP_DMA32);
1021         if (!region->virt_start) {
1022                 region->num_desc = 0;
1023                 dev_err(kdev->dev, "memory alloc failed for region %s\n",
1024                         region->name);
1025                 return;
1026         }
1027         region->virt_end = region->virt_start + size;
1028         page = virt_to_page(region->virt_start);
1029
1030         region->dma_start = dma_map_page(kdev->dev, page, 0, size,
1031                                          DMA_BIDIRECTIONAL);
1032         if (dma_mapping_error(kdev->dev, region->dma_start)) {
1033                 dev_err(kdev->dev, "dma map failed for region %s\n",
1034                         region->name);
1035                 goto fail;
1036         }
1037         region->dma_end = region->dma_start + size;
1038
1039         pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL);
1040         if (!pool) {
1041                 dev_err(kdev->dev, "out of memory allocating dummy pool\n");
1042                 goto fail;
1043         }
1044         pool->num_desc = 0;
1045         pool->region_offset = region->num_desc;
1046         list_add(&pool->region_inst, &region->pools);
1047
1048         dev_dbg(kdev->dev,
1049                 "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n",
1050                 region->name, id, region->desc_size, region->num_desc,
1051                 region->link_index, &region->dma_start, &region->dma_end,
1052                 region->virt_start, region->virt_end);
1053
1054         hw_desc_size = (region->desc_size / 16) - 1;
1055         hw_num_desc -= 5;
1056
1057         for_each_qmgr(kdev, qmgr) {
1058                 regs = qmgr->reg_region + id;
1059                 writel_relaxed((u32)region->dma_start, &regs->base);
1060                 writel_relaxed(region->link_index, &regs->start_index);
1061                 writel_relaxed(hw_desc_size << 16 | hw_num_desc,
1062                                &regs->size_count);
1063         }
1064         return;
1065
1066 fail:
1067         if (region->dma_start)
1068                 dma_unmap_page(kdev->dev, region->dma_start, size,
1069                                 DMA_BIDIRECTIONAL);
1070         if (region->virt_start)
1071                 free_pages_exact(region->virt_start, size);
1072         region->num_desc = 0;
1073         return;
1074 }
1075
1076 static const char *knav_queue_find_name(struct device_node *node)
1077 {
1078         const char *name;
1079
1080         if (of_property_read_string(node, "label", &name) < 0)
1081                 name = node->name;
1082         if (!name)
1083                 name = "unknown";
1084         return name;
1085 }
1086
1087 static int knav_queue_setup_regions(struct knav_device *kdev,
1088                                         struct device_node *regions)
1089 {
1090         struct device *dev = kdev->dev;
1091         struct knav_region *region;
1092         struct device_node *child;
1093         u32 temp[2];
1094         int ret;
1095
1096         for_each_child_of_node(regions, child) {
1097                 region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL);
1098                 if (!region) {
1099                         dev_err(dev, "out of memory allocating region\n");
1100                         return -ENOMEM;
1101                 }
1102
1103                 region->name = knav_queue_find_name(child);
1104                 of_property_read_u32(child, "id", &region->id);
1105                 ret = of_property_read_u32_array(child, "region-spec", temp, 2);
1106                 if (!ret) {
1107                         region->num_desc  = temp[0];
1108                         region->desc_size = temp[1];
1109                 } else {
1110                         dev_err(dev, "invalid region info %s\n", region->name);
1111                         devm_kfree(dev, region);
1112                         continue;
1113                 }
1114
1115                 if (!of_get_property(child, "link-index", NULL)) {
1116                         dev_err(dev, "No link info for %s\n", region->name);
1117                         devm_kfree(dev, region);
1118                         continue;
1119                 }
1120                 ret = of_property_read_u32(child, "link-index",
1121                                            &region->link_index);
1122                 if (ret) {
1123                         dev_err(dev, "link index not found for %s\n",
1124                                 region->name);
1125                         devm_kfree(dev, region);
1126                         continue;
1127                 }
1128
1129                 INIT_LIST_HEAD(&region->pools);
1130                 list_add_tail(&region->list, &kdev->regions);
1131         }
1132         if (list_empty(&kdev->regions)) {
1133                 dev_err(dev, "no valid region information found\n");
1134                 return -ENODEV;
1135         }
1136
1137         /* Next, we run through the regions and set things up */
1138         for_each_region(kdev, region)
1139                 knav_queue_setup_region(kdev, region);
1140
1141         return 0;
1142 }
1143
1144 static int knav_get_link_ram(struct knav_device *kdev,
1145                                        const char *name,
1146                                        struct knav_link_ram_block *block)
1147 {
1148         struct platform_device *pdev = to_platform_device(kdev->dev);
1149         struct device_node *node = pdev->dev.of_node;
1150         u32 temp[2];
1151
1152         /*
1153          * Note: link ram resources are specified in "entry" sized units. In
1154          * reality, although entries are ~40bits in hardware, we treat them as
1155          * 64-bit entities here.
1156          *
1157          * For example, to specify the internal link ram for Keystone-I class
1158          * devices, we would set the linkram0 resource to 0x80000-0x83fff.
1159          *
1160          * This gets a bit weird when other link rams are used.  For example,
1161          * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries
1162          * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000,
1163          * which accounts for 64-bits per entry, for 16K entries.
1164          */
1165         if (!of_property_read_u32_array(node, name , temp, 2)) {
1166                 if (temp[0]) {
1167                         /*
1168                          * queue_base specified => using internal or onchip
1169                          * link ram WARNING - we do not "reserve" this block
1170                          */
1171                         block->dma = (dma_addr_t)temp[0];
1172                         block->virt = NULL;
1173                         block->size = temp[1];
1174                 } else {
1175                         block->size = temp[1];
1176                         /* queue_base not specific => allocate requested size */
1177                         block->virt = dmam_alloc_coherent(kdev->dev,
1178                                                   8 * block->size, &block->dma,
1179                                                   GFP_KERNEL);
1180                         if (!block->virt) {
1181                                 dev_err(kdev->dev, "failed to alloc linkram\n");
1182                                 return -ENOMEM;
1183                         }
1184                 }
1185         } else {
1186                 return -ENODEV;
1187         }
1188         return 0;
1189 }
1190
1191 static int knav_queue_setup_link_ram(struct knav_device *kdev)
1192 {
1193         struct knav_link_ram_block *block;
1194         struct knav_qmgr_info *qmgr;
1195
1196         for_each_qmgr(kdev, qmgr) {
1197                 block = &kdev->link_rams[0];
1198                 dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n",
1199                         &block->dma, block->virt, block->size);
1200                 writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0);
1201                 if (kdev->version == QMSS_66AK2G)
1202                         writel_relaxed(block->size,
1203                                        &qmgr->reg_config->link_ram_size0);
1204                 else
1205                         writel_relaxed(block->size - 1,
1206                                        &qmgr->reg_config->link_ram_size0);
1207                 block++;
1208                 if (!block->size)
1209                         continue;
1210
1211                 dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n",
1212                         &block->dma, block->virt, block->size);
1213                 writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1);
1214         }
1215
1216         return 0;
1217 }
1218
1219 static int knav_setup_queue_range(struct knav_device *kdev,
1220                                         struct device_node *node)
1221 {
1222         struct device *dev = kdev->dev;
1223         struct knav_range_info *range;
1224         struct knav_qmgr_info *qmgr;
1225         u32 temp[2], start, end, id, index;
1226         int ret, i;
1227
1228         range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
1229         if (!range) {
1230                 dev_err(dev, "out of memory allocating range\n");
1231                 return -ENOMEM;
1232         }
1233
1234         range->kdev = kdev;
1235         range->name = knav_queue_find_name(node);
1236         ret = of_property_read_u32_array(node, "qrange", temp, 2);
1237         if (!ret) {
1238                 range->queue_base = temp[0] - kdev->base_id;
1239                 range->num_queues = temp[1];
1240         } else {
1241                 dev_err(dev, "invalid queue range %s\n", range->name);
1242                 devm_kfree(dev, range);
1243                 return -EINVAL;
1244         }
1245
1246         for (i = 0; i < RANGE_MAX_IRQS; i++) {
1247                 struct of_phandle_args oirq;
1248
1249                 if (of_irq_parse_one(node, i, &oirq))
1250                         break;
1251
1252                 range->irqs[i].irq = irq_create_of_mapping(&oirq);
1253                 if (range->irqs[i].irq == IRQ_NONE)
1254                         break;
1255
1256                 range->num_irqs++;
1257
1258                 if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) {
1259                         unsigned long mask;
1260                         int bit;
1261
1262                         range->irqs[i].cpu_mask = devm_kzalloc(dev,
1263                                                                cpumask_size(), GFP_KERNEL);
1264                         if (!range->irqs[i].cpu_mask)
1265                                 return -ENOMEM;
1266
1267                         mask = (oirq.args[2] & 0x0000ff00) >> 8;
1268                         for_each_set_bit(bit, &mask, BITS_PER_LONG)
1269                                 cpumask_set_cpu(bit, range->irqs[i].cpu_mask);
1270                 }
1271         }
1272
1273         range->num_irqs = min(range->num_irqs, range->num_queues);
1274         if (range->num_irqs)
1275                 range->flags |= RANGE_HAS_IRQ;
1276
1277         if (of_get_property(node, "qalloc-by-id", NULL))
1278                 range->flags |= RANGE_RESERVED;
1279
1280         if (of_get_property(node, "accumulator", NULL)) {
1281                 ret = knav_init_acc_range(kdev, node, range);
1282                 if (ret < 0) {
1283                         devm_kfree(dev, range);
1284                         return ret;
1285                 }
1286         } else {
1287                 range->ops = &knav_gp_range_ops;
1288         }
1289
1290         /* set threshold to 1, and flush out the queues */
1291         for_each_qmgr(kdev, qmgr) {
1292                 start = max(qmgr->start_queue, range->queue_base);
1293                 end   = min(qmgr->start_queue + qmgr->num_queues,
1294                             range->queue_base + range->num_queues);
1295                 for (id = start; id < end; id++) {
1296                         index = id - qmgr->start_queue;
1297                         writel_relaxed(THRESH_GTE | 1,
1298                                        &qmgr->reg_peek[index].ptr_size_thresh);
1299                         writel_relaxed(0,
1300                                        &qmgr->reg_push[index].ptr_size_thresh);
1301                 }
1302         }
1303
1304         list_add_tail(&range->list, &kdev->queue_ranges);
1305         dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n",
1306                 range->name, range->queue_base,
1307                 range->queue_base + range->num_queues - 1,
1308                 range->num_irqs,
1309                 (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "",
1310                 (range->flags & RANGE_RESERVED) ? ", reserved" : "",
1311                 (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : "");
1312         kdev->num_queues_in_use += range->num_queues;
1313         return 0;
1314 }
1315
1316 static int knav_setup_queue_pools(struct knav_device *kdev,
1317                                    struct device_node *queue_pools)
1318 {
1319         struct device_node *type, *range;
1320         int ret;
1321
1322         for_each_child_of_node(queue_pools, type) {
1323                 for_each_child_of_node(type, range) {
1324                         ret = knav_setup_queue_range(kdev, range);
1325                         /* return value ignored, we init the rest... */
1326                 }
1327         }
1328
1329         /* ... and barf if they all failed! */
1330         if (list_empty(&kdev->queue_ranges)) {
1331                 dev_err(kdev->dev, "no valid queue range found\n");
1332                 return -ENODEV;
1333         }
1334         return 0;
1335 }
1336
1337 static void knav_free_queue_range(struct knav_device *kdev,
1338                                   struct knav_range_info *range)
1339 {
1340         if (range->ops && range->ops->free_range)
1341                 range->ops->free_range(range);
1342         list_del(&range->list);
1343         devm_kfree(kdev->dev, range);
1344 }
1345
1346 static void knav_free_queue_ranges(struct knav_device *kdev)
1347 {
1348         struct knav_range_info *range;
1349
1350         for (;;) {
1351                 range = first_queue_range(kdev);
1352                 if (!range)
1353                         break;
1354                 knav_free_queue_range(kdev, range);
1355         }
1356 }
1357
1358 static void knav_queue_free_regions(struct knav_device *kdev)
1359 {
1360         struct knav_region *region;
1361         struct knav_pool *pool, *tmp;
1362         unsigned size;
1363
1364         for (;;) {
1365                 region = first_region(kdev);
1366                 if (!region)
1367                         break;
1368                 list_for_each_entry_safe(pool, tmp, &region->pools, region_inst)
1369                         knav_pool_destroy(pool);
1370
1371                 size = region->virt_end - region->virt_start;
1372                 if (size)
1373                         free_pages_exact(region->virt_start, size);
1374                 list_del(&region->list);
1375                 devm_kfree(kdev->dev, region);
1376         }
1377 }
1378
1379 static void __iomem *knav_queue_map_reg(struct knav_device *kdev,
1380                                         struct device_node *node, int index)
1381 {
1382         struct resource res;
1383         void __iomem *regs;
1384         int ret;
1385
1386         ret = of_address_to_resource(node, index, &res);
1387         if (ret) {
1388                 dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n",
1389                         node, index);
1390                 return ERR_PTR(ret);
1391         }
1392
1393         regs = devm_ioremap_resource(kdev->dev, &res);
1394         if (IS_ERR(regs))
1395                 dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n",
1396                         index, node);
1397         return regs;
1398 }
1399
1400 static int knav_queue_init_qmgrs(struct knav_device *kdev,
1401                                         struct device_node *qmgrs)
1402 {
1403         struct device *dev = kdev->dev;
1404         struct knav_qmgr_info *qmgr;
1405         struct device_node *child;
1406         u32 temp[2];
1407         int ret;
1408
1409         for_each_child_of_node(qmgrs, child) {
1410                 qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL);
1411                 if (!qmgr) {
1412                         dev_err(dev, "out of memory allocating qmgr\n");
1413                         return -ENOMEM;
1414                 }
1415
1416                 ret = of_property_read_u32_array(child, "managed-queues",
1417                                                  temp, 2);
1418                 if (!ret) {
1419                         qmgr->start_queue = temp[0];
1420                         qmgr->num_queues = temp[1];
1421                 } else {
1422                         dev_err(dev, "invalid qmgr queue range\n");
1423                         devm_kfree(dev, qmgr);
1424                         continue;
1425                 }
1426
1427                 dev_info(dev, "qmgr start queue %d, number of queues %d\n",
1428                          qmgr->start_queue, qmgr->num_queues);
1429
1430                 qmgr->reg_peek =
1431                         knav_queue_map_reg(kdev, child,
1432                                            KNAV_QUEUE_PEEK_REG_INDEX);
1433
1434                 if (kdev->version == QMSS) {
1435                         qmgr->reg_status =
1436                                 knav_queue_map_reg(kdev, child,
1437                                                    KNAV_QUEUE_STATUS_REG_INDEX);
1438                 }
1439
1440                 qmgr->reg_config =
1441                         knav_queue_map_reg(kdev, child,
1442                                            (kdev->version == QMSS_66AK2G) ?
1443                                            KNAV_L_QUEUE_CONFIG_REG_INDEX :
1444                                            KNAV_QUEUE_CONFIG_REG_INDEX);
1445                 qmgr->reg_region =
1446                         knav_queue_map_reg(kdev, child,
1447                                            (kdev->version == QMSS_66AK2G) ?
1448                                            KNAV_L_QUEUE_REGION_REG_INDEX :
1449                                            KNAV_QUEUE_REGION_REG_INDEX);
1450
1451                 qmgr->reg_push =
1452                         knav_queue_map_reg(kdev, child,
1453                                            (kdev->version == QMSS_66AK2G) ?
1454                                             KNAV_L_QUEUE_PUSH_REG_INDEX :
1455                                             KNAV_QUEUE_PUSH_REG_INDEX);
1456
1457                 if (kdev->version == QMSS) {
1458                         qmgr->reg_pop =
1459                                 knav_queue_map_reg(kdev, child,
1460                                                    KNAV_QUEUE_POP_REG_INDEX);
1461                 }
1462
1463                 if (IS_ERR(qmgr->reg_peek) ||
1464                     ((kdev->version == QMSS) &&
1465                     (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) ||
1466                     IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) ||
1467                     IS_ERR(qmgr->reg_push)) {
1468                         dev_err(dev, "failed to map qmgr regs\n");
1469                         if (kdev->version == QMSS) {
1470                                 if (!IS_ERR(qmgr->reg_status))
1471                                         devm_iounmap(dev, qmgr->reg_status);
1472                                 if (!IS_ERR(qmgr->reg_pop))
1473                                         devm_iounmap(dev, qmgr->reg_pop);
1474                         }
1475                         if (!IS_ERR(qmgr->reg_peek))
1476                                 devm_iounmap(dev, qmgr->reg_peek);
1477                         if (!IS_ERR(qmgr->reg_config))
1478                                 devm_iounmap(dev, qmgr->reg_config);
1479                         if (!IS_ERR(qmgr->reg_region))
1480                                 devm_iounmap(dev, qmgr->reg_region);
1481                         if (!IS_ERR(qmgr->reg_push))
1482                                 devm_iounmap(dev, qmgr->reg_push);
1483                         devm_kfree(dev, qmgr);
1484                         continue;
1485                 }
1486
1487                 /* Use same push register for pop as well */
1488                 if (kdev->version == QMSS_66AK2G)
1489                         qmgr->reg_pop = qmgr->reg_push;
1490
1491                 list_add_tail(&qmgr->list, &kdev->qmgrs);
1492                 dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n",
1493                          qmgr->start_queue, qmgr->num_queues,
1494                          qmgr->reg_peek, qmgr->reg_status,
1495                          qmgr->reg_config, qmgr->reg_region,
1496                          qmgr->reg_push, qmgr->reg_pop);
1497         }
1498         return 0;
1499 }
1500
1501 static int knav_queue_init_pdsps(struct knav_device *kdev,
1502                                         struct device_node *pdsps)
1503 {
1504         struct device *dev = kdev->dev;
1505         struct knav_pdsp_info *pdsp;
1506         struct device_node *child;
1507
1508         for_each_child_of_node(pdsps, child) {
1509                 pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL);
1510                 if (!pdsp) {
1511                         dev_err(dev, "out of memory allocating pdsp\n");
1512                         return -ENOMEM;
1513                 }
1514                 pdsp->name = knav_queue_find_name(child);
1515                 pdsp->iram =
1516                         knav_queue_map_reg(kdev, child,
1517                                            KNAV_QUEUE_PDSP_IRAM_REG_INDEX);
1518                 pdsp->regs =
1519                         knav_queue_map_reg(kdev, child,
1520                                            KNAV_QUEUE_PDSP_REGS_REG_INDEX);
1521                 pdsp->intd =
1522                         knav_queue_map_reg(kdev, child,
1523                                            KNAV_QUEUE_PDSP_INTD_REG_INDEX);
1524                 pdsp->command =
1525                         knav_queue_map_reg(kdev, child,
1526                                            KNAV_QUEUE_PDSP_CMD_REG_INDEX);
1527
1528                 if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) ||
1529                     IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) {
1530                         dev_err(dev, "failed to map pdsp %s regs\n",
1531                                 pdsp->name);
1532                         if (!IS_ERR(pdsp->command))
1533                                 devm_iounmap(dev, pdsp->command);
1534                         if (!IS_ERR(pdsp->iram))
1535                                 devm_iounmap(dev, pdsp->iram);
1536                         if (!IS_ERR(pdsp->regs))
1537                                 devm_iounmap(dev, pdsp->regs);
1538                         if (!IS_ERR(pdsp->intd))
1539                                 devm_iounmap(dev, pdsp->intd);
1540                         devm_kfree(dev, pdsp);
1541                         continue;
1542                 }
1543                 of_property_read_u32(child, "id", &pdsp->id);
1544                 list_add_tail(&pdsp->list, &kdev->pdsps);
1545                 dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n",
1546                         pdsp->name, pdsp->command, pdsp->iram, pdsp->regs,
1547                         pdsp->intd);
1548         }
1549         return 0;
1550 }
1551
1552 static int knav_queue_stop_pdsp(struct knav_device *kdev,
1553                           struct knav_pdsp_info *pdsp)
1554 {
1555         u32 val, timeout = 1000;
1556         int ret;
1557
1558         val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE;
1559         writel_relaxed(val, &pdsp->regs->control);
1560         ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout,
1561                                         PDSP_CTRL_RUNNING);
1562         if (ret < 0) {
1563                 dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name);
1564                 return ret;
1565         }
1566         pdsp->loaded = false;
1567         pdsp->started = false;
1568         return 0;
1569 }
1570
1571 static int knav_queue_load_pdsp(struct knav_device *kdev,
1572                           struct knav_pdsp_info *pdsp)
1573 {
1574         int i, ret, fwlen;
1575         const struct firmware *fw;
1576         bool found = false;
1577         u32 *fwdata;
1578
1579         for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) {
1580                 if (knav_acc_firmwares[i]) {
1581                         ret = request_firmware_direct(&fw,
1582                                                       knav_acc_firmwares[i],
1583                                                       kdev->dev);
1584                         if (!ret) {
1585                                 found = true;
1586                                 break;
1587                         }
1588                 }
1589         }
1590
1591         if (!found) {
1592                 dev_err(kdev->dev, "failed to get firmware for pdsp\n");
1593                 return -ENODEV;
1594         }
1595
1596         dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n",
1597                  knav_acc_firmwares[i]);
1598
1599         writel_relaxed(pdsp->id + 1, pdsp->command + 0x18);
1600         /* download the firmware */
1601         fwdata = (u32 *)fw->data;
1602         fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32);
1603         for (i = 0; i < fwlen; i++)
1604                 writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i);
1605
1606         release_firmware(fw);
1607         return 0;
1608 }
1609
1610 static int knav_queue_start_pdsp(struct knav_device *kdev,
1611                            struct knav_pdsp_info *pdsp)
1612 {
1613         u32 val, timeout = 1000;
1614         int ret;
1615
1616         /* write a command for sync */
1617         writel_relaxed(0xffffffff, pdsp->command);
1618         while (readl_relaxed(pdsp->command) != 0xffffffff)
1619                 cpu_relax();
1620
1621         /* soft reset the PDSP */
1622         val  = readl_relaxed(&pdsp->regs->control);
1623         val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET);
1624         writel_relaxed(val, &pdsp->regs->control);
1625
1626         /* enable pdsp */
1627         val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE;
1628         writel_relaxed(val, &pdsp->regs->control);
1629
1630         /* wait for command register to clear */
1631         ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0);
1632         if (ret < 0) {
1633                 dev_err(kdev->dev,
1634                         "timed out on pdsp %s command register wait\n",
1635                         pdsp->name);
1636                 return ret;
1637         }
1638         return 0;
1639 }
1640
1641 static void knav_queue_stop_pdsps(struct knav_device *kdev)
1642 {
1643         struct knav_pdsp_info *pdsp;
1644
1645         /* disable all pdsps */
1646         for_each_pdsp(kdev, pdsp)
1647                 knav_queue_stop_pdsp(kdev, pdsp);
1648 }
1649
1650 static int knav_queue_start_pdsps(struct knav_device *kdev)
1651 {
1652         struct knav_pdsp_info *pdsp;
1653         int ret;
1654
1655         knav_queue_stop_pdsps(kdev);
1656         /* now load them all. We return success even if pdsp
1657          * is not loaded as acc channels are optional on having
1658          * firmware availability in the system. We set the loaded
1659          * and stated flag and when initialize the acc range, check
1660          * it and init the range only if pdsp is started.
1661          */
1662         for_each_pdsp(kdev, pdsp) {
1663                 ret = knav_queue_load_pdsp(kdev, pdsp);
1664                 if (!ret)
1665                         pdsp->loaded = true;
1666         }
1667
1668         for_each_pdsp(kdev, pdsp) {
1669                 if (pdsp->loaded) {
1670                         ret = knav_queue_start_pdsp(kdev, pdsp);
1671                         if (!ret)
1672                                 pdsp->started = true;
1673                 }
1674         }
1675         return 0;
1676 }
1677
1678 static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id)
1679 {
1680         struct knav_qmgr_info *qmgr;
1681
1682         for_each_qmgr(kdev, qmgr) {
1683                 if ((id >= qmgr->start_queue) &&
1684                     (id < qmgr->start_queue + qmgr->num_queues))
1685                         return qmgr;
1686         }
1687         return NULL;
1688 }
1689
1690 static int knav_queue_init_queue(struct knav_device *kdev,
1691                                         struct knav_range_info *range,
1692                                         struct knav_queue_inst *inst,
1693                                         unsigned id)
1694 {
1695         char irq_name[KNAV_NAME_SIZE];
1696         inst->qmgr = knav_find_qmgr(id);
1697         if (!inst->qmgr)
1698                 return -1;
1699
1700         INIT_LIST_HEAD(&inst->handles);
1701         inst->kdev = kdev;
1702         inst->range = range;
1703         inst->irq_num = -1;
1704         inst->id = id;
1705         scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id);
1706         inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL);
1707
1708         if (range->ops && range->ops->init_queue)
1709                 return range->ops->init_queue(range, inst);
1710         else
1711                 return 0;
1712 }
1713
1714 static int knav_queue_init_queues(struct knav_device *kdev)
1715 {
1716         struct knav_range_info *range;
1717         int size, id, base_idx;
1718         int idx = 0, ret = 0;
1719
1720         /* how much do we need for instance data? */
1721         size = sizeof(struct knav_queue_inst);
1722
1723         /* round this up to a power of 2, keep the index to instance
1724          * arithmetic fast.
1725          * */
1726         kdev->inst_shift = order_base_2(size);
1727         size = (1 << kdev->inst_shift) * kdev->num_queues_in_use;
1728         kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL);
1729         if (!kdev->instances)
1730                 return -ENOMEM;
1731
1732         for_each_queue_range(kdev, range) {
1733                 if (range->ops && range->ops->init_range)
1734                         range->ops->init_range(range);
1735                 base_idx = idx;
1736                 for (id = range->queue_base;
1737                      id < range->queue_base + range->num_queues; id++, idx++) {
1738                         ret = knav_queue_init_queue(kdev, range,
1739                                         knav_queue_idx_to_inst(kdev, idx), id);
1740                         if (ret < 0)
1741                                 return ret;
1742                 }
1743                 range->queue_base_inst =
1744                         knav_queue_idx_to_inst(kdev, base_idx);
1745         }
1746         return 0;
1747 }
1748
1749 /* Match table for of_platform binding */
1750 static const struct of_device_id keystone_qmss_of_match[] = {
1751         {
1752                 .compatible = "ti,keystone-navigator-qmss",
1753         },
1754         {
1755                 .compatible = "ti,66ak2g-navss-qm",
1756                 .data   = (void *)QMSS_66AK2G,
1757         },
1758         {},
1759 };
1760 MODULE_DEVICE_TABLE(of, keystone_qmss_of_match);
1761
1762 static int knav_queue_probe(struct platform_device *pdev)
1763 {
1764         struct device_node *node = pdev->dev.of_node;
1765         struct device_node *qmgrs, *queue_pools, *regions, *pdsps;
1766         const struct of_device_id *match;
1767         struct device *dev = &pdev->dev;
1768         u32 temp[2];
1769         int ret;
1770
1771         if (!node) {
1772                 dev_err(dev, "device tree info unavailable\n");
1773                 return -ENODEV;
1774         }
1775
1776         kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL);
1777         if (!kdev) {
1778                 dev_err(dev, "memory allocation failed\n");
1779                 return -ENOMEM;
1780         }
1781
1782         match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev);
1783         if (match && match->data)
1784                 kdev->version = QMSS_66AK2G;
1785
1786         platform_set_drvdata(pdev, kdev);
1787         kdev->dev = dev;
1788         INIT_LIST_HEAD(&kdev->queue_ranges);
1789         INIT_LIST_HEAD(&kdev->qmgrs);
1790         INIT_LIST_HEAD(&kdev->pools);
1791         INIT_LIST_HEAD(&kdev->regions);
1792         INIT_LIST_HEAD(&kdev->pdsps);
1793
1794         pm_runtime_enable(&pdev->dev);
1795         ret = pm_runtime_get_sync(&pdev->dev);
1796         if (ret < 0) {
1797                 dev_err(dev, "Failed to enable QMSS\n");
1798                 return ret;
1799         }
1800
1801         if (of_property_read_u32_array(node, "queue-range", temp, 2)) {
1802                 dev_err(dev, "queue-range not specified\n");
1803                 ret = -ENODEV;
1804                 goto err;
1805         }
1806         kdev->base_id    = temp[0];
1807         kdev->num_queues = temp[1];
1808
1809         /* Initialize queue managers using device tree configuration */
1810         qmgrs =  of_get_child_by_name(node, "qmgrs");
1811         if (!qmgrs) {
1812                 dev_err(dev, "queue manager info not specified\n");
1813                 ret = -ENODEV;
1814                 goto err;
1815         }
1816         ret = knav_queue_init_qmgrs(kdev, qmgrs);
1817         of_node_put(qmgrs);
1818         if (ret)
1819                 goto err;
1820
1821         /* get pdsp configuration values from device tree */
1822         pdsps =  of_get_child_by_name(node, "pdsps");
1823         if (pdsps) {
1824                 ret = knav_queue_init_pdsps(kdev, pdsps);
1825                 if (ret)
1826                         goto err;
1827
1828                 ret = knav_queue_start_pdsps(kdev);
1829                 if (ret)
1830                         goto err;
1831         }
1832         of_node_put(pdsps);
1833
1834         /* get usable queue range values from device tree */
1835         queue_pools = of_get_child_by_name(node, "queue-pools");
1836         if (!queue_pools) {
1837                 dev_err(dev, "queue-pools not specified\n");
1838                 ret = -ENODEV;
1839                 goto err;
1840         }
1841         ret = knav_setup_queue_pools(kdev, queue_pools);
1842         of_node_put(queue_pools);
1843         if (ret)
1844                 goto err;
1845
1846         ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]);
1847         if (ret) {
1848                 dev_err(kdev->dev, "could not setup linking ram\n");
1849                 goto err;
1850         }
1851
1852         ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]);
1853         if (ret) {
1854                 /*
1855                  * nothing really, we have one linking ram already, so we just
1856                  * live within our means
1857                  */
1858         }
1859
1860         ret = knav_queue_setup_link_ram(kdev);
1861         if (ret)
1862                 goto err;
1863
1864         regions =  of_get_child_by_name(node, "descriptor-regions");
1865         if (!regions) {
1866                 dev_err(dev, "descriptor-regions not specified\n");
1867                 goto err;
1868         }
1869         ret = knav_queue_setup_regions(kdev, regions);
1870         of_node_put(regions);
1871         if (ret)
1872                 goto err;
1873
1874         ret = knav_queue_init_queues(kdev);
1875         if (ret < 0) {
1876                 dev_err(dev, "hwqueue initialization failed\n");
1877                 goto err;
1878         }
1879
1880         debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL,
1881                             &knav_queue_debug_ops);
1882         device_ready = true;
1883         return 0;
1884
1885 err:
1886         knav_queue_stop_pdsps(kdev);
1887         knav_queue_free_regions(kdev);
1888         knav_free_queue_ranges(kdev);
1889         pm_runtime_put_sync(&pdev->dev);
1890         pm_runtime_disable(&pdev->dev);
1891         return ret;
1892 }
1893
1894 static int knav_queue_remove(struct platform_device *pdev)
1895 {
1896         /* TODO: Free resources */
1897         pm_runtime_put_sync(&pdev->dev);
1898         pm_runtime_disable(&pdev->dev);
1899         return 0;
1900 }
1901
1902 static struct platform_driver keystone_qmss_driver = {
1903         .probe          = knav_queue_probe,
1904         .remove         = knav_queue_remove,
1905         .driver         = {
1906                 .name   = "keystone-navigator-qmss",
1907                 .of_match_table = keystone_qmss_of_match,
1908         },
1909 };
1910 module_platform_driver(keystone_qmss_driver);
1911
1912 MODULE_LICENSE("GPL v2");
1913 MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs");
1914 MODULE_AUTHOR("Sandeep Nair <[email protected]>");
1915 MODULE_AUTHOR("Santosh Shilimkar <[email protected]>");
This page took 0.153997 seconds and 4 git commands to generate.