2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h> /* To get host page size per arch */
63 #include <linux/aer.h>
66 #include "mpt3sas_base.h"
68 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
73 /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH 30000
75 #define MAX_CHAIN_DEPTH 100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100 "irq poll weight (default= one fourth of HBA queue depth)");
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104 " enable detection of firmware fault and halt firmware - (default=0)");
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109 "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110 "0 - balanced: high iops mode is enabled &\n\t\t"
111 "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112 "1 - iops: high iops mode is disabled &\n\t\t"
113 "interrupt coalescing is enabled on all queues,\n\t\t"
114 "2 - latency: high iops mode is disabled &\n\t\t"
115 "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116 "\t\tdefault - default perf_mode is 'balanced'"
119 enum mpt3sas_perf_mode {
120 MPT_PERF_MODE_DEFAULT = -1,
121 MPT_PERF_MODE_BALANCED = 0,
122 MPT_PERF_MODE_IOPS = 1,
123 MPT_PERF_MODE_LATENCY = 2,
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128 u32 ioc_state, int timeout);
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
132 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc);
134 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
137 * mpt3sas_base_check_cmd_timeout - Function
138 * to check timeout and command termination due
141 * @ioc: per adapter object.
142 * @status: Status of issued command.
143 * @mpi_request:mf request pointer.
144 * @sz: size of buffer.
146 * @Returns - 1/0 Reset to be done or Not
149 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
150 u8 status, void *mpi_request, int sz)
154 if (!(status & MPT3_CMD_RESET))
157 ioc_err(ioc, "Command %s\n",
158 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
159 _debug_dump_mf(mpi_request, sz);
165 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
172 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
174 int ret = param_set_int(val, kp);
175 struct MPT3SAS_ADAPTER *ioc;
180 /* global ioc spinlock to protect controller list on list operations */
181 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
182 spin_lock(&gioc_lock);
183 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
184 ioc->fwfault_debug = mpt3sas_fwfault_debug;
185 spin_unlock(&gioc_lock);
188 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
189 param_get_int, &mpt3sas_fwfault_debug, 0644);
192 * _base_readl_aero - retry readl for max three times.
193 * @addr: MPT Fusion system interface register address
195 * Retry the readl() for max three times if it gets zero value
196 * while reading the system interface register.
199 _base_readl_aero(const volatile void __iomem *addr)
204 ret_val = readl(addr);
206 } while (ret_val == 0 && i < 3);
212 _base_readl(const volatile void __iomem *addr)
218 * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
221 * @ioc: per adapter object
222 * @reply: reply message frame(lower 32bit addr)
223 * @index: System request message index.
226 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
230 * 256 is offset within sys register.
231 * 256 offset MPI frame starts. Max MPI frame supported is 32.
232 * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
234 u16 cmd_credit = ioc->facts.RequestCredit + 1;
235 void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
236 MPI_FRAME_START_OFFSET +
237 (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
239 writel(reply, reply_free_iomem);
243 * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
244 * to system/BAR0 region.
246 * @dst_iomem: Pointer to the destination location in BAR0 space.
247 * @src: Pointer to the Source data.
248 * @size: Size of data to be copied.
251 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
254 u32 *src_virt_mem = (u32 *)src;
256 for (i = 0; i < size/4; i++)
257 writel((u32)src_virt_mem[i],
258 (void __iomem *)dst_iomem + (i * 4));
262 * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
264 * @dst_iomem: Pointer to the destination location in BAR0 space.
265 * @src: Pointer to the Source data.
266 * @size: Size of data to be copied.
269 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
272 u32 *src_virt_mem = (u32 *)(src);
274 for (i = 0; i < size/4; i++)
275 writel((u32)src_virt_mem[i],
276 (void __iomem *)dst_iomem + (i * 4));
280 * _base_get_chain - Calculates and Returns virtual chain address
281 * for the provided smid in BAR0 space.
283 * @ioc: per adapter object
284 * @smid: system request message index
285 * @sge_chain_count: Scatter gather chain count.
287 * Return: the chain address.
289 static inline void __iomem*
290 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
293 void __iomem *base_chain, *chain_virt;
294 u16 cmd_credit = ioc->facts.RequestCredit + 1;
296 base_chain = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
297 (cmd_credit * ioc->request_sz) +
298 REPLY_FREE_POOL_SIZE;
299 chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
300 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
305 * _base_get_chain_phys - Calculates and Returns physical address
306 * in BAR0 for scatter gather chains, for
309 * @ioc: per adapter object
310 * @smid: system request message index
311 * @sge_chain_count: Scatter gather chain count.
313 * Return: Physical chain address.
315 static inline phys_addr_t
316 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
319 phys_addr_t base_chain_phys, chain_phys;
320 u16 cmd_credit = ioc->facts.RequestCredit + 1;
322 base_chain_phys = ioc->chip_phys + MPI_FRAME_START_OFFSET +
323 (cmd_credit * ioc->request_sz) +
324 REPLY_FREE_POOL_SIZE;
325 chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
326 ioc->request_sz) + (sge_chain_count * ioc->request_sz);
331 * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
332 * buffer address for the provided smid.
333 * (Each smid can have 64K starts from 17024)
335 * @ioc: per adapter object
336 * @smid: system request message index
338 * Return: Pointer to buffer location in BAR0.
341 static void __iomem *
342 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
344 u16 cmd_credit = ioc->facts.RequestCredit + 1;
345 // Added extra 1 to reach end of chain.
346 void __iomem *chain_end = _base_get_chain(ioc,
348 ioc->facts.MaxChainDepth);
349 return chain_end + (smid * 64 * 1024);
353 * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
354 * Host buffer Physical address for the provided smid.
355 * (Each smid can have 64K starts from 17024)
357 * @ioc: per adapter object
358 * @smid: system request message index
360 * Return: Pointer to buffer location in BAR0.
363 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
365 u16 cmd_credit = ioc->facts.RequestCredit + 1;
366 phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
368 ioc->facts.MaxChainDepth);
369 return chain_end_phys + (smid * 64 * 1024);
373 * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
374 * lookup list and Provides chain_buffer
375 * address for the matching dma address.
376 * (Each smid can have 64K starts from 17024)
378 * @ioc: per adapter object
379 * @chain_buffer_dma: Chain buffer dma address.
381 * Return: Pointer to chain buffer. Or Null on Failure.
384 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
385 dma_addr_t chain_buffer_dma)
388 struct chain_tracker *ct;
390 for (index = 0; index < ioc->scsiio_depth; index++) {
391 for (j = 0; j < ioc->chains_needed_per_io; j++) {
392 ct = &ioc->chain_lookup[index].chains_per_smid[j];
393 if (ct && ct->chain_buffer_dma == chain_buffer_dma)
394 return ct->chain_buffer;
397 ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
402 * _clone_sg_entries - MPI EP's scsiio and config requests
403 * are handled here. Base function for
404 * double buffering, before submitting
407 * @ioc: per adapter object.
408 * @mpi_request: mf request pointer.
409 * @smid: system request message index.
411 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
412 void *mpi_request, u16 smid)
414 Mpi2SGESimple32_t *sgel, *sgel_next;
415 u32 sgl_flags, sge_chain_count = 0;
416 bool is_write = false;
418 void __iomem *buffer_iomem;
419 phys_addr_t buffer_iomem_phys;
420 void __iomem *buff_ptr;
421 phys_addr_t buff_ptr_phys;
422 void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
423 void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
424 phys_addr_t dst_addr_phys;
425 MPI2RequestHeader_t *request_hdr;
426 struct scsi_cmnd *scmd;
427 struct scatterlist *sg_scmd = NULL;
428 int is_scsiio_req = 0;
430 request_hdr = (MPI2RequestHeader_t *) mpi_request;
432 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
433 Mpi25SCSIIORequest_t *scsiio_request =
434 (Mpi25SCSIIORequest_t *)mpi_request;
435 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
437 } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
438 Mpi2ConfigRequest_t *config_req =
439 (Mpi2ConfigRequest_t *)mpi_request;
440 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
444 /* From smid we can get scsi_cmd, once we have sg_scmd,
445 * we just need to get sg_virt and sg_next to get virual
446 * address associated with sgel->Address.
450 /* Get scsi_cmd using smid */
451 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
453 ioc_err(ioc, "scmd is NULL\n");
457 /* Get sg_scmd from scmd provided */
458 sg_scmd = scsi_sglist(scmd);
462 * 0 - 255 System register
463 * 256 - 4352 MPI Frame. (This is based on maxCredit 32)
464 * 4352 - 4864 Reply_free pool (512 byte is reserved
465 * considering maxCredit 32. Reply need extra
466 * room, for mCPU case kept four times of
468 * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
469 * 128 byte size = 12288)
470 * 17152 - x Host buffer mapped with smid.
471 * (Each smid can have 64K Max IO.)
472 * BAR0+Last 1K MSIX Addr and Data
473 * Total size in use 2113664 bytes of 4MB BAR0
476 buffer_iomem = _base_get_buffer_bar0(ioc, smid);
477 buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
479 buff_ptr = buffer_iomem;
480 buff_ptr_phys = buffer_iomem_phys;
481 WARN_ON(buff_ptr_phys > U32_MAX);
483 if (le32_to_cpu(sgel->FlagsLength) &
484 (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
487 for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
490 (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
492 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
493 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
495 * Helper function which on passing
496 * chain_buffer_dma returns chain_buffer. Get
497 * the virtual address for sgel->Address
500 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
501 le32_to_cpu(sgel->Address));
502 if (sgel_next == NULL)
505 * This is coping 128 byte chain
506 * frame (not a host buffer)
508 dst_chain_addr[sge_chain_count] =
510 smid, sge_chain_count);
511 src_chain_addr[sge_chain_count] =
513 dst_addr_phys = _base_get_chain_phys(ioc,
514 smid, sge_chain_count);
515 WARN_ON(dst_addr_phys > U32_MAX);
517 cpu_to_le32(lower_32_bits(dst_addr_phys));
521 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
524 _base_clone_to_sys_mem(buff_ptr,
526 (le32_to_cpu(sgel->FlagsLength) &
529 * FIXME: this relies on a a zero
533 cpu_to_le32((u32)buff_ptr_phys);
535 _base_clone_to_sys_mem(buff_ptr,
537 (le32_to_cpu(sgel->FlagsLength) &
540 cpu_to_le32((u32)buff_ptr_phys);
543 buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
545 buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
547 if ((le32_to_cpu(sgel->FlagsLength) &
548 (MPI2_SGE_FLAGS_END_OF_BUFFER
549 << MPI2_SGE_FLAGS_SHIFT)))
550 goto eob_clone_chain;
553 * Every single element in MPT will have
554 * associated sg_next. Better to sanity that
555 * sg_next is not NULL, but it will be a bug
559 sg_scmd = sg_next(sg_scmd);
563 goto eob_clone_chain;
571 for (i = 0; i < sge_chain_count; i++) {
573 _base_clone_to_sys_mem(dst_chain_addr[i],
574 src_chain_addr[i], ioc->request_sz);
579 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
580 * @arg: input argument, used to derive ioc
583 * 0 if controller is removed from pci subsystem.
586 static int mpt3sas_remove_dead_ioc_func(void *arg)
588 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
589 struct pci_dev *pdev;
597 pci_stop_and_remove_bus_device_locked(pdev);
602 * _base_fault_reset_work - workq handling ioc fault conditions
603 * @work: input argument, used to derive ioc
608 _base_fault_reset_work(struct work_struct *work)
610 struct MPT3SAS_ADAPTER *ioc =
611 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
615 struct task_struct *p;
618 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
619 if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
620 ioc->pci_error_recovery)
622 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
624 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
625 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
626 ioc_err(ioc, "SAS host is non-operational !!!!\n");
628 /* It may be possible that EEH recovery can resolve some of
629 * pci bus failure issues rather removing the dead ioc function
630 * by considering controller is in a non-operational state. So
631 * here priority is given to the EEH recovery. If it doesn't
632 * not resolve this issue, mpt3sas driver will consider this
633 * controller to non-operational state and remove the dead ioc
636 if (ioc->non_operational_loop++ < 5) {
637 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
643 * Call _scsih_flush_pending_cmds callback so that we flush all
644 * pending commands back to OS. This call is required to aovid
645 * deadlock at block layer. Dead IOC will fail to do diag reset,
646 * and this call is safe since dead ioc will never return any
647 * command back from HW.
649 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
651 * Set remove_host flag early since kernel thread will
652 * take some time to execute.
654 ioc->remove_host = 1;
655 /*Remove the Dead Host */
656 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
657 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
659 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
662 ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
664 return; /* don't rearm timer */
667 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
668 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
669 ioc->manu_pg11.CoreDumpTOSec :
670 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
672 timeout /= (FAULT_POLLING_INTERVAL/1000);
674 if (ioc->ioc_coredump_loop == 0) {
675 mpt3sas_print_coredump_info(ioc,
676 doorbell & MPI2_DOORBELL_DATA_MASK);
677 /* do not accept any IOs and disable the interrupts */
679 &ioc->ioc_reset_in_progress_lock, flags);
680 ioc->shost_recovery = 1;
681 spin_unlock_irqrestore(
682 &ioc->ioc_reset_in_progress_lock, flags);
683 _base_mask_interrupts(ioc);
684 _base_clear_outstanding_commands(ioc);
687 ioc_info(ioc, "%s: CoreDump loop %d.",
688 __func__, ioc->ioc_coredump_loop);
690 /* Wait until CoreDump completes or times out */
691 if (ioc->ioc_coredump_loop++ < timeout) {
693 &ioc->ioc_reset_in_progress_lock, flags);
698 if (ioc->ioc_coredump_loop) {
699 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
700 ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
701 __func__, ioc->ioc_coredump_loop);
703 ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
704 __func__, ioc->ioc_coredump_loop);
705 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
707 ioc->non_operational_loop = 0;
708 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
709 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
710 ioc_warn(ioc, "%s: hard reset: %s\n",
711 __func__, rc == 0 ? "success" : "failed");
712 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
713 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
714 mpt3sas_print_fault_code(ioc, doorbell &
715 MPI2_DOORBELL_DATA_MASK);
716 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
717 MPI2_IOC_STATE_COREDUMP)
718 mpt3sas_print_coredump_info(ioc, doorbell &
719 MPI2_DOORBELL_DATA_MASK);
720 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
721 MPI2_IOC_STATE_OPERATIONAL)
722 return; /* don't rearm timer */
724 ioc->ioc_coredump_loop = 0;
726 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
728 if (ioc->fault_reset_work_q)
729 queue_delayed_work(ioc->fault_reset_work_q,
730 &ioc->fault_reset_work,
731 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
732 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
736 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
737 * @ioc: per adapter object
742 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
746 if (ioc->fault_reset_work_q)
749 /* initialize fault polling */
751 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
752 snprintf(ioc->fault_reset_work_q_name,
753 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
754 ioc->driver_name, ioc->id);
755 ioc->fault_reset_work_q =
756 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
757 if (!ioc->fault_reset_work_q) {
758 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
761 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
762 if (ioc->fault_reset_work_q)
763 queue_delayed_work(ioc->fault_reset_work_q,
764 &ioc->fault_reset_work,
765 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
766 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
770 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
771 * @ioc: per adapter object
776 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
779 struct workqueue_struct *wq;
781 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
782 wq = ioc->fault_reset_work_q;
783 ioc->fault_reset_work_q = NULL;
784 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
786 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
788 destroy_workqueue(wq);
793 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
794 * @ioc: per adapter object
795 * @fault_code: fault code
798 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
800 ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
804 * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
805 * @ioc: per adapter object
806 * @fault_code: fault code
811 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
813 ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
817 * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
818 * completes or times out
819 * @ioc: per adapter object
820 * @caller: caller function name
822 * Returns 0 for success, non-zero for failure.
825 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
828 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
829 ioc->manu_pg11.CoreDumpTOSec :
830 MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
832 int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
837 "%s: CoreDump timed out. (ioc_state=0x%x)\n",
841 "%s: CoreDump completed. (ioc_state=0x%x)\n",
848 * mpt3sas_halt_firmware - halt's mpt controller firmware
849 * @ioc: per adapter object
851 * For debugging timeout related issues. Writing 0xCOFFEE00
852 * to the doorbell register will halt controller firmware. With
853 * the purpose to stop both driver and firmware, the enduser can
854 * obtain a ring buffer from controller UART.
857 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
861 if (!ioc->fwfault_debug)
866 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
867 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
868 mpt3sas_print_fault_code(ioc, doorbell &
869 MPI2_DOORBELL_DATA_MASK);
870 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
871 MPI2_IOC_STATE_COREDUMP) {
872 mpt3sas_print_coredump_info(ioc, doorbell &
873 MPI2_DOORBELL_DATA_MASK);
875 writel(0xC0FFEE00, &ioc->chip->Doorbell);
876 ioc_err(ioc, "Firmware is halted due to command timeout\n");
879 if (ioc->fwfault_debug == 2)
883 panic("panic in %s\n", __func__);
887 * _base_sas_ioc_info - verbose translation of the ioc status
888 * @ioc: per adapter object
889 * @mpi_reply: reply mf payload returned from firmware
890 * @request_hdr: request mf
893 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
894 MPI2RequestHeader_t *request_hdr)
896 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
900 char *func_str = NULL;
902 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
903 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
904 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
905 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
908 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
911 switch (ioc_status) {
913 /****************************************************************************
914 * Common IOCStatus values for all replies
915 ****************************************************************************/
917 case MPI2_IOCSTATUS_INVALID_FUNCTION:
918 desc = "invalid function";
920 case MPI2_IOCSTATUS_BUSY:
923 case MPI2_IOCSTATUS_INVALID_SGL:
924 desc = "invalid sgl";
926 case MPI2_IOCSTATUS_INTERNAL_ERROR:
927 desc = "internal error";
929 case MPI2_IOCSTATUS_INVALID_VPID:
930 desc = "invalid vpid";
932 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
933 desc = "insufficient resources";
935 case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
936 desc = "insufficient power";
938 case MPI2_IOCSTATUS_INVALID_FIELD:
939 desc = "invalid field";
941 case MPI2_IOCSTATUS_INVALID_STATE:
942 desc = "invalid state";
944 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
945 desc = "op state not supported";
948 /****************************************************************************
949 * Config IOCStatus values
950 ****************************************************************************/
952 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
953 desc = "config invalid action";
955 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
956 desc = "config invalid type";
958 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
959 desc = "config invalid page";
961 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
962 desc = "config invalid data";
964 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
965 desc = "config no defaults";
967 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
968 desc = "config cant commit";
971 /****************************************************************************
973 ****************************************************************************/
975 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
976 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
977 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
978 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
979 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
980 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
981 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
982 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
983 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
984 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
985 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
986 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
989 /****************************************************************************
990 * For use by SCSI Initiator and SCSI Target end-to-end data protection
991 ****************************************************************************/
993 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
994 desc = "eedp guard error";
996 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
997 desc = "eedp ref tag error";
999 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
1000 desc = "eedp app tag error";
1003 /****************************************************************************
1004 * SCSI Target values
1005 ****************************************************************************/
1007 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1008 desc = "target invalid io index";
1010 case MPI2_IOCSTATUS_TARGET_ABORTED:
1011 desc = "target aborted";
1013 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1014 desc = "target no conn retryable";
1016 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1017 desc = "target no connection";
1019 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1020 desc = "target xfer count mismatch";
1022 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1023 desc = "target data offset error";
1025 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1026 desc = "target too much write data";
1028 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1029 desc = "target iu too short";
1031 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1032 desc = "target ack nak timeout";
1034 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1035 desc = "target nak received";
1038 /****************************************************************************
1039 * Serial Attached SCSI values
1040 ****************************************************************************/
1042 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1043 desc = "smp request failed";
1045 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1046 desc = "smp data overrun";
1049 /****************************************************************************
1050 * Diagnostic Buffer Post / Diagnostic Release values
1051 ****************************************************************************/
1053 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1054 desc = "diagnostic released";
1063 switch (request_hdr->Function) {
1064 case MPI2_FUNCTION_CONFIG:
1065 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1066 func_str = "config_page";
1068 case MPI2_FUNCTION_SCSI_TASK_MGMT:
1069 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1070 func_str = "task_mgmt";
1072 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1073 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1074 func_str = "sas_iounit_ctl";
1076 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1077 frame_sz = sizeof(Mpi2SepRequest_t);
1078 func_str = "enclosure";
1080 case MPI2_FUNCTION_IOC_INIT:
1081 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1082 func_str = "ioc_init";
1084 case MPI2_FUNCTION_PORT_ENABLE:
1085 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1086 func_str = "port_enable";
1088 case MPI2_FUNCTION_SMP_PASSTHROUGH:
1089 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1090 func_str = "smp_passthru";
1092 case MPI2_FUNCTION_NVME_ENCAPSULATED:
1093 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1095 func_str = "nvme_encapsulated";
1099 func_str = "unknown";
1103 ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1104 desc, ioc_status, request_hdr, func_str);
1106 _debug_dump_mf(request_hdr, frame_sz/4);
1110 * _base_display_event_data - verbose translation of firmware asyn events
1111 * @ioc: per adapter object
1112 * @mpi_reply: reply mf payload returned from firmware
1115 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1116 Mpi2EventNotificationReply_t *mpi_reply)
1121 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1124 event = le16_to_cpu(mpi_reply->Event);
1127 case MPI2_EVENT_LOG_DATA:
1130 case MPI2_EVENT_STATE_CHANGE:
1131 desc = "Status Change";
1133 case MPI2_EVENT_HARD_RESET_RECEIVED:
1134 desc = "Hard Reset Received";
1136 case MPI2_EVENT_EVENT_CHANGE:
1137 desc = "Event Change";
1139 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1140 desc = "Device Status Change";
1142 case MPI2_EVENT_IR_OPERATION_STATUS:
1143 if (!ioc->hide_ir_msg)
1144 desc = "IR Operation Status";
1146 case MPI2_EVENT_SAS_DISCOVERY:
1148 Mpi2EventDataSasDiscovery_t *event_data =
1149 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1150 ioc_info(ioc, "Discovery: (%s)",
1151 event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1153 if (event_data->DiscoveryStatus)
1154 pr_cont(" discovery_status(0x%08x)",
1155 le32_to_cpu(event_data->DiscoveryStatus));
1159 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1160 desc = "SAS Broadcast Primitive";
1162 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1163 desc = "SAS Init Device Status Change";
1165 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1166 desc = "SAS Init Table Overflow";
1168 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1169 desc = "SAS Topology Change List";
1171 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1172 desc = "SAS Enclosure Device Status Change";
1174 case MPI2_EVENT_IR_VOLUME:
1175 if (!ioc->hide_ir_msg)
1178 case MPI2_EVENT_IR_PHYSICAL_DISK:
1179 if (!ioc->hide_ir_msg)
1180 desc = "IR Physical Disk";
1182 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1183 if (!ioc->hide_ir_msg)
1184 desc = "IR Configuration Change List";
1186 case MPI2_EVENT_LOG_ENTRY_ADDED:
1187 if (!ioc->hide_ir_msg)
1188 desc = "Log Entry Added";
1190 case MPI2_EVENT_TEMP_THRESHOLD:
1191 desc = "Temperature Threshold";
1193 case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1194 desc = "Cable Event";
1196 case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1197 desc = "SAS Device Discovery Error";
1199 case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1200 desc = "PCIE Device Status Change";
1202 case MPI2_EVENT_PCIE_ENUMERATION:
1204 Mpi26EventDataPCIeEnumeration_t *event_data =
1205 (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1206 ioc_info(ioc, "PCIE Enumeration: (%s)",
1207 event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1209 if (event_data->EnumerationStatus)
1210 pr_cont("enumeration_status(0x%08x)",
1211 le32_to_cpu(event_data->EnumerationStatus));
1215 case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1216 desc = "PCIE Topology Change List";
1223 ioc_info(ioc, "%s\n", desc);
1227 * _base_sas_log_info - verbose translation of firmware log info
1228 * @ioc: per adapter object
1229 * @log_info: log info
1232 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1234 union loginfo_type {
1243 union loginfo_type sas_loginfo;
1244 char *originator_str = NULL;
1246 sas_loginfo.loginfo = log_info;
1247 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1250 /* each nexus loss loginfo */
1251 if (log_info == 0x31170000)
1254 /* eat the loginfos associated with task aborts */
1255 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1256 0x31140000 || log_info == 0x31130000))
1259 switch (sas_loginfo.dw.originator) {
1261 originator_str = "IOP";
1264 originator_str = "PL";
1267 if (!ioc->hide_ir_msg)
1268 originator_str = "IR";
1270 originator_str = "WarpDrive";
1274 ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1276 originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1280 * _base_display_reply_info -
1281 * @ioc: per adapter object
1282 * @smid: system request message index
1283 * @msix_index: MSIX table index supplied by the OS
1284 * @reply: reply message frame(lower 32bit addr)
1287 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1290 MPI2DefaultReply_t *mpi_reply;
1294 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1295 if (unlikely(!mpi_reply)) {
1296 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1297 __FILE__, __LINE__, __func__);
1300 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1302 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1303 (ioc->logging_level & MPT_DEBUG_REPLY)) {
1304 _base_sas_ioc_info(ioc , mpi_reply,
1305 mpt3sas_base_get_msg_frame(ioc, smid));
1308 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1309 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1310 _base_sas_log_info(ioc, loginfo);
1313 if (ioc_status || loginfo) {
1314 ioc_status &= MPI2_IOCSTATUS_MASK;
1315 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1320 * mpt3sas_base_done - base internal command completion routine
1321 * @ioc: per adapter object
1322 * @smid: system request message index
1323 * @msix_index: MSIX table index supplied by the OS
1324 * @reply: reply message frame(lower 32bit addr)
1327 * 1 meaning mf should be freed from _base_interrupt
1328 * 0 means the mf is freed from this function.
1331 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1334 MPI2DefaultReply_t *mpi_reply;
1336 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1337 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1338 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1340 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1343 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1345 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1346 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1348 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1350 complete(&ioc->base_cmds.done);
1355 * _base_async_event - main callback handler for firmware asyn events
1356 * @ioc: per adapter object
1357 * @msix_index: MSIX table index supplied by the OS
1358 * @reply: reply message frame(lower 32bit addr)
1361 * 1 meaning mf should be freed from _base_interrupt
1362 * 0 means the mf is freed from this function.
1365 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1367 Mpi2EventNotificationReply_t *mpi_reply;
1368 Mpi2EventAckRequest_t *ack_request;
1370 struct _event_ack_list *delayed_event_ack;
1372 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1375 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1378 _base_display_event_data(ioc, mpi_reply);
1380 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1382 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1384 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1386 if (!delayed_event_ack)
1388 INIT_LIST_HEAD(&delayed_event_ack->list);
1389 delayed_event_ack->Event = mpi_reply->Event;
1390 delayed_event_ack->EventContext = mpi_reply->EventContext;
1391 list_add_tail(&delayed_event_ack->list,
1392 &ioc->delayed_event_ack_list);
1394 ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1395 le16_to_cpu(mpi_reply->Event)));
1399 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1400 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1401 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1402 ack_request->Event = mpi_reply->Event;
1403 ack_request->EventContext = mpi_reply->EventContext;
1404 ack_request->VF_ID = 0; /* TODO */
1405 ack_request->VP_ID = 0;
1406 ioc->put_smid_default(ioc, smid);
1410 /* scsih callback handler */
1411 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1413 /* ctl callback handler */
1414 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1419 static struct scsiio_tracker *
1420 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1422 struct scsi_cmnd *cmd;
1424 if (WARN_ON(!smid) ||
1425 WARN_ON(smid >= ioc->hi_priority_smid))
1428 cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1430 return scsi_cmd_priv(cmd);
1436 * _base_get_cb_idx - obtain the callback index
1437 * @ioc: per adapter object
1438 * @smid: system request message index
1440 * Return: callback index.
1443 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1446 u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1449 if (smid < ioc->hi_priority_smid) {
1450 struct scsiio_tracker *st;
1452 if (smid < ctl_smid) {
1453 st = _get_st_from_smid(ioc, smid);
1455 cb_idx = st->cb_idx;
1456 } else if (smid == ctl_smid)
1457 cb_idx = ioc->ctl_cb_idx;
1458 } else if (smid < ioc->internal_smid) {
1459 i = smid - ioc->hi_priority_smid;
1460 cb_idx = ioc->hpr_lookup[i].cb_idx;
1461 } else if (smid <= ioc->hba_queue_depth) {
1462 i = smid - ioc->internal_smid;
1463 cb_idx = ioc->internal_lookup[i].cb_idx;
1469 * _base_mask_interrupts - disable interrupts
1470 * @ioc: per adapter object
1472 * Disabling ResetIRQ, Reply and Doorbell Interrupts
1475 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1479 ioc->mask_interrupts = 1;
1480 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1481 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1482 writel(him_register, &ioc->chip->HostInterruptMask);
1483 ioc->base_readl(&ioc->chip->HostInterruptMask);
1487 * _base_unmask_interrupts - enable interrupts
1488 * @ioc: per adapter object
1490 * Enabling only Reply Interrupts
1493 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1497 him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1498 him_register &= ~MPI2_HIM_RIM;
1499 writel(him_register, &ioc->chip->HostInterruptMask);
1500 ioc->mask_interrupts = 0;
1503 union reply_descriptor {
1511 static u32 base_mod64(u64 dividend, u32 divisor)
1516 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1517 remainder = do_div(dividend, divisor);
1522 * _base_process_reply_queue - Process reply descriptors from reply
1523 * descriptor post queue.
1524 * @reply_q: per IRQ's reply queue object.
1526 * Return: number of reply descriptors processed from reply
1530 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1532 union reply_descriptor rd;
1534 u8 request_descript_type;
1538 u8 msix_index = reply_q->msix_index;
1539 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1540 Mpi2ReplyDescriptorsUnion_t *rpf;
1544 if (!atomic_add_unless(&reply_q->busy, 1, 1))
1545 return completed_cmds;
1547 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1548 request_descript_type = rpf->Default.ReplyFlags
1549 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1550 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1551 atomic_dec(&reply_q->busy);
1552 return completed_cmds;
1557 rd.word = le64_to_cpu(rpf->Words);
1558 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1561 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1562 if (request_descript_type ==
1563 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1564 request_descript_type ==
1565 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1566 request_descript_type ==
1567 MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1568 cb_idx = _base_get_cb_idx(ioc, smid);
1569 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1570 (likely(mpt_callbacks[cb_idx] != NULL))) {
1571 rc = mpt_callbacks[cb_idx](ioc, smid,
1574 mpt3sas_base_free_smid(ioc, smid);
1576 } else if (request_descript_type ==
1577 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1578 reply = le32_to_cpu(
1579 rpf->AddressReply.ReplyFrameAddress);
1580 if (reply > ioc->reply_dma_max_address ||
1581 reply < ioc->reply_dma_min_address)
1584 cb_idx = _base_get_cb_idx(ioc, smid);
1585 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1586 (likely(mpt_callbacks[cb_idx] != NULL))) {
1587 rc = mpt_callbacks[cb_idx](ioc, smid,
1590 _base_display_reply_info(ioc,
1591 smid, msix_index, reply);
1593 mpt3sas_base_free_smid(ioc,
1597 _base_async_event(ioc, msix_index, reply);
1600 /* reply free queue handling */
1602 ioc->reply_free_host_index =
1603 (ioc->reply_free_host_index ==
1604 (ioc->reply_free_queue_depth - 1)) ?
1605 0 : ioc->reply_free_host_index + 1;
1606 ioc->reply_free[ioc->reply_free_host_index] =
1608 if (ioc->is_mcpu_endpoint)
1609 _base_clone_reply_to_sys_mem(ioc,
1611 ioc->reply_free_host_index);
1612 writel(ioc->reply_free_host_index,
1613 &ioc->chip->ReplyFreeHostIndex);
1617 rpf->Words = cpu_to_le64(ULLONG_MAX);
1618 reply_q->reply_post_host_index =
1619 (reply_q->reply_post_host_index ==
1620 (ioc->reply_post_queue_depth - 1)) ? 0 :
1621 reply_q->reply_post_host_index + 1;
1622 request_descript_type =
1623 reply_q->reply_post_free[reply_q->reply_post_host_index].
1624 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1626 /* Update the reply post host index after continuously
1627 * processing the threshold number of Reply Descriptors.
1628 * So that FW can find enough entries to post the Reply
1629 * Descriptors in the reply descriptor post queue.
1631 if (!base_mod64(completed_cmds, ioc->thresh_hold)) {
1632 if (ioc->combined_reply_queue) {
1633 writel(reply_q->reply_post_host_index |
1634 ((msix_index & 7) <<
1635 MPI2_RPHI_MSIX_INDEX_SHIFT),
1636 ioc->replyPostRegisterIndex[msix_index/8]);
1638 writel(reply_q->reply_post_host_index |
1640 MPI2_RPHI_MSIX_INDEX_SHIFT),
1641 &ioc->chip->ReplyPostHostIndex);
1643 if (!reply_q->irq_poll_scheduled) {
1644 reply_q->irq_poll_scheduled = true;
1645 irq_poll_sched(&reply_q->irqpoll);
1647 atomic_dec(&reply_q->busy);
1648 return completed_cmds;
1650 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1652 if (!reply_q->reply_post_host_index)
1653 rpf = reply_q->reply_post_free;
1660 if (!completed_cmds) {
1661 atomic_dec(&reply_q->busy);
1662 return completed_cmds;
1665 if (ioc->is_warpdrive) {
1666 writel(reply_q->reply_post_host_index,
1667 ioc->reply_post_host_index[msix_index]);
1668 atomic_dec(&reply_q->busy);
1669 return completed_cmds;
1672 /* Update Reply Post Host Index.
1673 * For those HBA's which support combined reply queue feature
1674 * 1. Get the correct Supplemental Reply Post Host Index Register.
1675 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1676 * Index Register address bank i.e replyPostRegisterIndex[],
1677 * 2. Then update this register with new reply host index value
1678 * in ReplyPostIndex field and the MSIxIndex field with
1679 * msix_index value reduced to a value between 0 and 7,
1680 * using a modulo 8 operation. Since each Supplemental Reply Post
1681 * Host Index Register supports 8 MSI-X vectors.
1683 * For other HBA's just update the Reply Post Host Index register with
1684 * new reply host index value in ReplyPostIndex Field and msix_index
1685 * value in MSIxIndex field.
1687 if (ioc->combined_reply_queue)
1688 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1689 MPI2_RPHI_MSIX_INDEX_SHIFT),
1690 ioc->replyPostRegisterIndex[msix_index/8]);
1692 writel(reply_q->reply_post_host_index | (msix_index <<
1693 MPI2_RPHI_MSIX_INDEX_SHIFT),
1694 &ioc->chip->ReplyPostHostIndex);
1695 atomic_dec(&reply_q->busy);
1696 return completed_cmds;
1700 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1701 * @irq: irq number (not used)
1702 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1704 * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1707 _base_interrupt(int irq, void *bus_id)
1709 struct adapter_reply_queue *reply_q = bus_id;
1710 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1712 if (ioc->mask_interrupts)
1714 if (reply_q->irq_poll_scheduled)
1716 return ((_base_process_reply_queue(reply_q) > 0) ?
1717 IRQ_HANDLED : IRQ_NONE);
1721 * _base_irqpoll - IRQ poll callback handler
1722 * @irqpoll: irq_poll object
1723 * @budget: irq poll weight
1725 * returns number of reply descriptors processed
1728 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1730 struct adapter_reply_queue *reply_q;
1731 int num_entries = 0;
1733 reply_q = container_of(irqpoll, struct adapter_reply_queue,
1735 if (reply_q->irq_line_enable) {
1736 disable_irq(reply_q->os_irq);
1737 reply_q->irq_line_enable = false;
1739 num_entries = _base_process_reply_queue(reply_q);
1740 if (num_entries < budget) {
1741 irq_poll_complete(irqpoll);
1742 reply_q->irq_poll_scheduled = false;
1743 reply_q->irq_line_enable = true;
1744 enable_irq(reply_q->os_irq);
1751 * _base_init_irqpolls - initliaze IRQ polls
1752 * @ioc: per adapter object
1757 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1759 struct adapter_reply_queue *reply_q, *next;
1761 if (list_empty(&ioc->reply_queue_list))
1764 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1765 irq_poll_init(&reply_q->irqpoll,
1766 ioc->hba_queue_depth/4, _base_irqpoll);
1767 reply_q->irq_poll_scheduled = false;
1768 reply_q->irq_line_enable = true;
1769 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1770 reply_q->msix_index);
1775 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1776 * @ioc: per adapter object
1778 * Return: Whether or not MSI/X is enabled.
1781 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1783 return (ioc->facts.IOCCapabilities &
1784 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1788 * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1789 * @ioc: per adapter object
1790 * Context: non ISR conext
1792 * Called when a Task Management request has completed.
1795 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc)
1797 struct adapter_reply_queue *reply_q;
1799 /* If MSIX capability is turned off
1800 * then multi-queues are not enabled
1802 if (!_base_is_controller_msix_enabled(ioc))
1805 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1806 if (ioc->shost_recovery || ioc->remove_host ||
1807 ioc->pci_error_recovery)
1809 /* TMs are on msix_index == 0 */
1810 if (reply_q->msix_index == 0)
1812 if (reply_q->irq_poll_scheduled) {
1813 /* Calling irq_poll_disable will wait for any pending
1814 * callbacks to have completed.
1816 irq_poll_disable(&reply_q->irqpoll);
1817 irq_poll_enable(&reply_q->irqpoll);
1818 reply_q->irq_poll_scheduled = false;
1819 reply_q->irq_line_enable = true;
1820 enable_irq(reply_q->os_irq);
1823 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1828 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1829 * @cb_idx: callback index
1832 mpt3sas_base_release_callback_handler(u8 cb_idx)
1834 mpt_callbacks[cb_idx] = NULL;
1838 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1839 * @cb_func: callback function
1841 * Return: Index of @cb_func.
1844 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1848 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1849 if (mpt_callbacks[cb_idx] == NULL)
1852 mpt_callbacks[cb_idx] = cb_func;
1857 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1860 mpt3sas_base_initialize_callback_handler(void)
1864 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1865 mpt3sas_base_release_callback_handler(cb_idx);
1870 * _base_build_zero_len_sge - build zero length sg entry
1871 * @ioc: per adapter object
1872 * @paddr: virtual address for SGE
1874 * Create a zero length scatter gather entry to insure the IOCs hardware has
1875 * something to use if the target device goes brain dead and tries
1876 * to send data even when none is asked for.
1879 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1881 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1882 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1883 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1884 MPI2_SGE_FLAGS_SHIFT);
1885 ioc->base_add_sg_single(paddr, flags_length, -1);
1889 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1890 * @paddr: virtual address for SGE
1891 * @flags_length: SGE flags and data transfer length
1892 * @dma_addr: Physical address
1895 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1897 Mpi2SGESimple32_t *sgel = paddr;
1899 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1900 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1901 sgel->FlagsLength = cpu_to_le32(flags_length);
1902 sgel->Address = cpu_to_le32(dma_addr);
1907 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1908 * @paddr: virtual address for SGE
1909 * @flags_length: SGE flags and data transfer length
1910 * @dma_addr: Physical address
1913 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1915 Mpi2SGESimple64_t *sgel = paddr;
1917 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1918 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1919 sgel->FlagsLength = cpu_to_le32(flags_length);
1920 sgel->Address = cpu_to_le64(dma_addr);
1924 * _base_get_chain_buffer_tracker - obtain chain tracker
1925 * @ioc: per adapter object
1926 * @scmd: SCSI commands of the IO request
1928 * Return: chain tracker from chain_lookup table using key as
1929 * smid and smid's chain_offset.
1931 static struct chain_tracker *
1932 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1933 struct scsi_cmnd *scmd)
1935 struct chain_tracker *chain_req;
1936 struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1937 u16 smid = st->smid;
1939 atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1941 if (chain_offset == ioc->chains_needed_per_io)
1944 chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1945 atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1951 * _base_build_sg - build generic sg
1952 * @ioc: per adapter object
1953 * @psge: virtual address for SGE
1954 * @data_out_dma: physical address for WRITES
1955 * @data_out_sz: data xfer size for WRITES
1956 * @data_in_dma: physical address for READS
1957 * @data_in_sz: data xfer size for READS
1960 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1961 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1966 if (!data_out_sz && !data_in_sz) {
1967 _base_build_zero_len_sge(ioc, psge);
1971 if (data_out_sz && data_in_sz) {
1972 /* WRITE sgel first */
1973 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1974 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1975 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1976 ioc->base_add_sg_single(psge, sgl_flags |
1977 data_out_sz, data_out_dma);
1980 psge += ioc->sge_size;
1982 /* READ sgel last */
1983 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1984 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1985 MPI2_SGE_FLAGS_END_OF_LIST);
1986 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1987 ioc->base_add_sg_single(psge, sgl_flags |
1988 data_in_sz, data_in_dma);
1989 } else if (data_out_sz) /* WRITE */ {
1990 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1991 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1992 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1993 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1994 ioc->base_add_sg_single(psge, sgl_flags |
1995 data_out_sz, data_out_dma);
1996 } else if (data_in_sz) /* READ */ {
1997 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1998 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1999 MPI2_SGE_FLAGS_END_OF_LIST);
2000 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2001 ioc->base_add_sg_single(psge, sgl_flags |
2002 data_in_sz, data_in_dma);
2006 /* IEEE format sgls */
2009 * _base_build_nvme_prp - This function is called for NVMe end devices to build
2010 * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2011 * entry of the NVMe message (PRP1). If the data buffer is small enough to be
2012 * described entirely using PRP1, then PRP2 is not used. If needed, PRP2 is
2013 * used to describe a larger data buffer. If the data buffer is too large to
2014 * describe using the two PRP entriess inside the NVMe message, then PRP1
2015 * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2016 * list located elsewhere in memory to describe the remaining data memory
2017 * segments. The PRP list will be contiguous.
2019 * The native SGL for NVMe devices is a Physical Region Page (PRP). A PRP
2020 * consists of a list of PRP entries to describe a number of noncontigous
2021 * physical memory segments as a single memory buffer, just as a SGL does. Note
2022 * however, that this function is only used by the IOCTL call, so the memory
2023 * given will be guaranteed to be contiguous. There is no need to translate
2024 * non-contiguous SGL into a PRP in this case. All PRPs will describe
2025 * contiguous space that is one page size each.
2027 * Each NVMe message contains two PRP entries. The first (PRP1) either contains
2028 * a PRP list pointer or a PRP element, depending upon the command. PRP2
2029 * contains the second PRP element if the memory being described fits within 2
2030 * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2032 * A PRP list pointer contains the address of a PRP list, structured as a linear
2033 * array of PRP entries. Each PRP entry in this list describes a segment of
2036 * Each 64-bit PRP entry comprises an address and an offset field. The address
2037 * always points at the beginning of a 4KB physical memory page, and the offset
2038 * describes where within that 4KB page the memory segment begins. Only the
2039 * first element in a PRP list may contain a non-zero offest, implying that all
2040 * memory segments following the first begin at the start of a 4KB page.
2042 * Each PRP element normally describes 4KB of physical memory, with exceptions
2043 * for the first and last elements in the list. If the memory being described
2044 * by the list begins at a non-zero offset within the first 4KB page, then the
2045 * first PRP element will contain a non-zero offset indicating where the region
2046 * begins within the 4KB page. The last memory segment may end before the end
2047 * of the 4KB segment, depending upon the overall size of the memory being
2048 * described by the PRP list.
2050 * Since PRP entries lack any indication of size, the overall data buffer length
2051 * is used to determine where the end of the data memory buffer is located, and
2052 * how many PRP entries are required to describe it.
2054 * @ioc: per adapter object
2055 * @smid: system request message index for getting asscociated SGL
2056 * @nvme_encap_request: the NVMe request msg frame pointer
2057 * @data_out_dma: physical address for WRITES
2058 * @data_out_sz: data xfer size for WRITES
2059 * @data_in_dma: physical address for READS
2060 * @data_in_sz: data xfer size for READS
2063 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2064 Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2065 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2068 int prp_size = NVME_PRP_SIZE;
2069 __le64 *prp_entry, *prp1_entry, *prp2_entry;
2071 dma_addr_t prp_entry_dma, prp_page_dma, dma_addr;
2072 u32 offset, entry_len;
2073 u32 page_mask_result, page_mask;
2075 struct mpt3sas_nvme_cmd *nvme_cmd =
2076 (void *)nvme_encap_request->NVMe_Command;
2079 * Not all commands require a data transfer. If no data, just return
2080 * without constructing any PRP.
2082 if (!data_in_sz && !data_out_sz)
2084 prp1_entry = &nvme_cmd->prp1;
2085 prp2_entry = &nvme_cmd->prp2;
2086 prp_entry = prp1_entry;
2088 * For the PRP entries, use the specially allocated buffer of
2089 * contiguous memory.
2091 prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2092 prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2095 * Check if we are within 1 entry of a page boundary we don't
2096 * want our first entry to be a PRP List entry.
2098 page_mask = ioc->page_size - 1;
2099 page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2100 if (!page_mask_result) {
2101 /* Bump up to next page boundary. */
2102 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2103 prp_page_dma = prp_page_dma + prp_size;
2107 * Set PRP physical pointer, which initially points to the current PRP
2110 prp_entry_dma = prp_page_dma;
2112 /* Get physical address and length of the data buffer. */
2114 dma_addr = data_in_dma;
2115 length = data_in_sz;
2117 dma_addr = data_out_dma;
2118 length = data_out_sz;
2121 /* Loop while the length is not zero. */
2124 * Check if we need to put a list pointer here if we are at
2125 * page boundary - prp_size (8 bytes).
2127 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2128 if (!page_mask_result) {
2130 * This is the last entry in a PRP List, so we need to
2131 * put a PRP list pointer here. What this does is:
2132 * - bump the current memory pointer to the next
2133 * address, which will be the next full page.
2134 * - set the PRP Entry to point to that page. This
2135 * is now the PRP List pointer.
2136 * - bump the PRP Entry pointer the start of the
2137 * next page. Since all of this PRP memory is
2138 * contiguous, no need to get a new page - it's
2139 * just the next address.
2142 *prp_entry = cpu_to_le64(prp_entry_dma);
2146 /* Need to handle if entry will be part of a page. */
2147 offset = dma_addr & page_mask;
2148 entry_len = ioc->page_size - offset;
2150 if (prp_entry == prp1_entry) {
2152 * Must fill in the first PRP pointer (PRP1) before
2155 *prp1_entry = cpu_to_le64(dma_addr);
2158 * Now point to the second PRP entry within the
2161 prp_entry = prp2_entry;
2162 } else if (prp_entry == prp2_entry) {
2164 * Should the PRP2 entry be a PRP List pointer or just
2165 * a regular PRP pointer? If there is more than one
2166 * more page of data, must use a PRP List pointer.
2168 if (length > ioc->page_size) {
2170 * PRP2 will contain a PRP List pointer because
2171 * more PRP's are needed with this command. The
2172 * list will start at the beginning of the
2173 * contiguous buffer.
2175 *prp2_entry = cpu_to_le64(prp_entry_dma);
2178 * The next PRP Entry will be the start of the
2181 prp_entry = prp_page;
2184 * After this, the PRP Entries are complete.
2185 * This command uses 2 PRP's and no PRP list.
2187 *prp2_entry = cpu_to_le64(dma_addr);
2191 * Put entry in list and bump the addresses.
2193 * After PRP1 and PRP2 are filled in, this will fill in
2194 * all remaining PRP entries in a PRP List, one per
2195 * each time through the loop.
2197 *prp_entry = cpu_to_le64(dma_addr);
2203 * Bump the phys address of the command's data buffer by the
2206 dma_addr += entry_len;
2208 /* Decrement length accounting for last partial page. */
2209 if (entry_len > length)
2212 length -= entry_len;
2217 * base_make_prp_nvme -
2218 * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2220 * @ioc: per adapter object
2221 * @scmd: SCSI command from the mid-layer
2222 * @mpi_request: mpi request
2224 * @sge_count: scatter gather element count.
2226 * Return: true: PRPs are built
2227 * false: IEEE SGLs needs to be built
2230 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2231 struct scsi_cmnd *scmd,
2232 Mpi25SCSIIORequest_t *mpi_request,
2233 u16 smid, int sge_count)
2235 int sge_len, num_prp_in_chain = 0;
2236 Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2238 dma_addr_t msg_dma, sge_addr, offset;
2239 u32 page_mask, page_mask_result;
2240 struct scatterlist *sg_scmd;
2242 int data_len = scsi_bufflen(scmd);
2245 nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2247 * Nvme has a very convoluted prp format. One prp is required
2248 * for each page or partial page. Driver need to split up OS sg_list
2249 * entries if it is longer than one page or cross a page
2250 * boundary. Driver also have to insert a PRP list pointer entry as
2251 * the last entry in each physical page of the PRP list.
2253 * NOTE: The first PRP "entry" is actually placed in the first
2254 * SGL entry in the main message as IEEE 64 format. The 2nd
2255 * entry in the main message is the chain element, and the rest
2256 * of the PRP entries are built in the contiguous pcie buffer.
2258 page_mask = nvme_pg_size - 1;
2261 * Native SGL is needed.
2262 * Put a chain element in main message frame that points to the first
2265 * NOTE: The ChainOffset field must be 0 when using a chain pointer to
2269 /* Set main message chain element pointer */
2270 main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2272 * For NVMe the chain element needs to be the 2nd SG entry in the main
2275 main_chain_element = (Mpi25IeeeSgeChain64_t *)
2276 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2279 * For the PRP entries, use the specially allocated buffer of
2280 * contiguous memory. Normal chain buffers can't be used
2281 * because each chain buffer would need to be the size of an OS
2284 curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2285 msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2287 main_chain_element->Address = cpu_to_le64(msg_dma);
2288 main_chain_element->NextChainOffset = 0;
2289 main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2290 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2291 MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2293 /* Build first prp, sge need not to be page aligned*/
2294 ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2295 sg_scmd = scsi_sglist(scmd);
2296 sge_addr = sg_dma_address(sg_scmd);
2297 sge_len = sg_dma_len(sg_scmd);
2299 offset = sge_addr & page_mask;
2300 first_prp_len = nvme_pg_size - offset;
2302 ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2303 ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2305 data_len -= first_prp_len;
2307 if (sge_len > first_prp_len) {
2308 sge_addr += first_prp_len;
2309 sge_len -= first_prp_len;
2310 } else if (data_len && (sge_len == first_prp_len)) {
2311 sg_scmd = sg_next(sg_scmd);
2312 sge_addr = sg_dma_address(sg_scmd);
2313 sge_len = sg_dma_len(sg_scmd);
2317 offset = sge_addr & page_mask;
2319 /* Put PRP pointer due to page boundary*/
2320 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2321 if (unlikely(!page_mask_result)) {
2322 scmd_printk(KERN_NOTICE,
2323 scmd, "page boundary curr_buff: 0x%p\n",
2326 *curr_buff = cpu_to_le64(msg_dma);
2331 *curr_buff = cpu_to_le64(sge_addr);
2336 sge_addr += nvme_pg_size;
2337 sge_len -= nvme_pg_size;
2338 data_len -= nvme_pg_size;
2346 sg_scmd = sg_next(sg_scmd);
2347 sge_addr = sg_dma_address(sg_scmd);
2348 sge_len = sg_dma_len(sg_scmd);
2351 main_chain_element->Length =
2352 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2357 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2358 struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2360 u32 data_length = 0;
2361 bool build_prp = true;
2363 data_length = scsi_bufflen(scmd);
2365 (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2370 /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2373 if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2380 * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2381 * determine if the driver needs to build a native SGL. If so, that native
2382 * SGL is built in the special contiguous buffers allocated especially for
2383 * PCIe SGL creation. If the driver will not build a native SGL, return
2384 * TRUE and a normal IEEE SGL will be built. Currently this routine
2386 * @ioc: per adapter object
2387 * @mpi_request: mf request pointer
2388 * @smid: system request message index
2389 * @scmd: scsi command
2390 * @pcie_device: points to the PCIe device's info
2392 * Return: 0 if native SGL was built, 1 if no SGL was built
2395 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2396 Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2397 struct _pcie_device *pcie_device)
2401 /* Get the SG list pointer and info. */
2402 sges_left = scsi_dma_map(scmd);
2403 if (sges_left < 0) {
2404 sdev_printk(KERN_ERR, scmd->device,
2405 "scsi_dma_map failed: request for %d bytes!\n",
2406 scsi_bufflen(scmd));
2410 /* Check if we need to build a native SG list. */
2411 if (base_is_prp_possible(ioc, pcie_device,
2412 scmd, sges_left) == 0) {
2413 /* We built a native SG list, just return. */
2418 * Build native NVMe PRP.
2420 base_make_prp_nvme(ioc, scmd, mpi_request,
2425 scsi_dma_unmap(scmd);
2430 * _base_add_sg_single_ieee - add sg element for IEEE format
2431 * @paddr: virtual address for SGE
2433 * @chain_offset: number of 128 byte elements from start of segment
2434 * @length: data transfer length
2435 * @dma_addr: Physical address
2438 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2439 dma_addr_t dma_addr)
2441 Mpi25IeeeSgeChain64_t *sgel = paddr;
2443 sgel->Flags = flags;
2444 sgel->NextChainOffset = chain_offset;
2445 sgel->Length = cpu_to_le32(length);
2446 sgel->Address = cpu_to_le64(dma_addr);
2450 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2451 * @ioc: per adapter object
2452 * @paddr: virtual address for SGE
2454 * Create a zero length scatter gather entry to insure the IOCs hardware has
2455 * something to use if the target device goes brain dead and tries
2456 * to send data even when none is asked for.
2459 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2461 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2462 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2463 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2465 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2469 * _base_build_sg_scmd - main sg creation routine
2470 * pcie_device is unused here!
2471 * @ioc: per adapter object
2472 * @scmd: scsi command
2473 * @smid: system request message index
2474 * @unused: unused pcie_device pointer
2477 * The main routine that builds scatter gather table from a given
2478 * scsi request sent via the .queuecommand main handler.
2480 * Return: 0 success, anything else error
2483 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2484 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2486 Mpi2SCSIIORequest_t *mpi_request;
2487 dma_addr_t chain_dma;
2488 struct scatterlist *sg_scmd;
2489 void *sg_local, *chain;
2494 u32 sges_in_segment;
2496 u32 sgl_flags_last_element;
2497 u32 sgl_flags_end_buffer;
2498 struct chain_tracker *chain_req;
2500 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2502 /* init scatter gather flags */
2503 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2504 if (scmd->sc_data_direction == DMA_TO_DEVICE)
2505 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2506 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2507 << MPI2_SGE_FLAGS_SHIFT;
2508 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2509 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2510 << MPI2_SGE_FLAGS_SHIFT;
2511 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2513 sg_scmd = scsi_sglist(scmd);
2514 sges_left = scsi_dma_map(scmd);
2515 if (sges_left < 0) {
2516 sdev_printk(KERN_ERR, scmd->device,
2517 "scsi_dma_map failed: request for %d bytes!\n",
2518 scsi_bufflen(scmd));
2522 sg_local = &mpi_request->SGL;
2523 sges_in_segment = ioc->max_sges_in_main_message;
2524 if (sges_left <= sges_in_segment)
2525 goto fill_in_last_segment;
2527 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2528 (sges_in_segment * ioc->sge_size))/4;
2530 /* fill in main message segment when there is a chain following */
2531 while (sges_in_segment) {
2532 if (sges_in_segment == 1)
2533 ioc->base_add_sg_single(sg_local,
2534 sgl_flags_last_element | sg_dma_len(sg_scmd),
2535 sg_dma_address(sg_scmd));
2537 ioc->base_add_sg_single(sg_local, sgl_flags |
2538 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2539 sg_scmd = sg_next(sg_scmd);
2540 sg_local += ioc->sge_size;
2545 /* initializing the chain flags and pointers */
2546 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2547 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2550 chain = chain_req->chain_buffer;
2551 chain_dma = chain_req->chain_buffer_dma;
2553 sges_in_segment = (sges_left <=
2554 ioc->max_sges_in_chain_message) ? sges_left :
2555 ioc->max_sges_in_chain_message;
2556 chain_offset = (sges_left == sges_in_segment) ?
2557 0 : (sges_in_segment * ioc->sge_size)/4;
2558 chain_length = sges_in_segment * ioc->sge_size;
2560 chain_offset = chain_offset <<
2561 MPI2_SGE_CHAIN_OFFSET_SHIFT;
2562 chain_length += ioc->sge_size;
2564 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2565 chain_length, chain_dma);
2568 goto fill_in_last_segment;
2570 /* fill in chain segments */
2571 while (sges_in_segment) {
2572 if (sges_in_segment == 1)
2573 ioc->base_add_sg_single(sg_local,
2574 sgl_flags_last_element |
2575 sg_dma_len(sg_scmd),
2576 sg_dma_address(sg_scmd));
2578 ioc->base_add_sg_single(sg_local, sgl_flags |
2579 sg_dma_len(sg_scmd),
2580 sg_dma_address(sg_scmd));
2581 sg_scmd = sg_next(sg_scmd);
2582 sg_local += ioc->sge_size;
2587 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2590 chain = chain_req->chain_buffer;
2591 chain_dma = chain_req->chain_buffer_dma;
2595 fill_in_last_segment:
2597 /* fill the last segment */
2600 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2601 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2603 ioc->base_add_sg_single(sg_local, sgl_flags |
2604 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2605 sg_scmd = sg_next(sg_scmd);
2606 sg_local += ioc->sge_size;
2614 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2615 * @ioc: per adapter object
2616 * @scmd: scsi command
2617 * @smid: system request message index
2618 * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2619 * constructed on need.
2622 * The main routine that builds scatter gather table from a given
2623 * scsi request sent via the .queuecommand main handler.
2625 * Return: 0 success, anything else error
2628 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2629 struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2631 Mpi25SCSIIORequest_t *mpi_request;
2632 dma_addr_t chain_dma;
2633 struct scatterlist *sg_scmd;
2634 void *sg_local, *chain;
2638 u32 sges_in_segment;
2639 u8 simple_sgl_flags;
2640 u8 simple_sgl_flags_last;
2642 struct chain_tracker *chain_req;
2644 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2646 /* init scatter gather flags */
2647 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2648 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2649 simple_sgl_flags_last = simple_sgl_flags |
2650 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2651 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2652 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2654 /* Check if we need to build a native SG list. */
2655 if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2656 smid, scmd, pcie_device) == 0)) {
2657 /* We built a native SG list, just return. */
2661 sg_scmd = scsi_sglist(scmd);
2662 sges_left = scsi_dma_map(scmd);
2663 if (sges_left < 0) {
2664 sdev_printk(KERN_ERR, scmd->device,
2665 "scsi_dma_map failed: request for %d bytes!\n",
2666 scsi_bufflen(scmd));
2670 sg_local = &mpi_request->SGL;
2671 sges_in_segment = (ioc->request_sz -
2672 offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2673 if (sges_left <= sges_in_segment)
2674 goto fill_in_last_segment;
2676 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2677 (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2679 /* fill in main message segment when there is a chain following */
2680 while (sges_in_segment > 1) {
2681 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2682 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2683 sg_scmd = sg_next(sg_scmd);
2684 sg_local += ioc->sge_size_ieee;
2689 /* initializing the pointers */
2690 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2693 chain = chain_req->chain_buffer;
2694 chain_dma = chain_req->chain_buffer_dma;
2696 sges_in_segment = (sges_left <=
2697 ioc->max_sges_in_chain_message) ? sges_left :
2698 ioc->max_sges_in_chain_message;
2699 chain_offset = (sges_left == sges_in_segment) ?
2700 0 : sges_in_segment;
2701 chain_length = sges_in_segment * ioc->sge_size_ieee;
2703 chain_length += ioc->sge_size_ieee;
2704 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2705 chain_offset, chain_length, chain_dma);
2709 goto fill_in_last_segment;
2711 /* fill in chain segments */
2712 while (sges_in_segment) {
2713 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2714 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2715 sg_scmd = sg_next(sg_scmd);
2716 sg_local += ioc->sge_size_ieee;
2721 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2724 chain = chain_req->chain_buffer;
2725 chain_dma = chain_req->chain_buffer_dma;
2729 fill_in_last_segment:
2731 /* fill the last segment */
2732 while (sges_left > 0) {
2734 _base_add_sg_single_ieee(sg_local,
2735 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2736 sg_dma_address(sg_scmd));
2738 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2739 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2740 sg_scmd = sg_next(sg_scmd);
2741 sg_local += ioc->sge_size_ieee;
2749 * _base_build_sg_ieee - build generic sg for IEEE format
2750 * @ioc: per adapter object
2751 * @psge: virtual address for SGE
2752 * @data_out_dma: physical address for WRITES
2753 * @data_out_sz: data xfer size for WRITES
2754 * @data_in_dma: physical address for READS
2755 * @data_in_sz: data xfer size for READS
2758 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2759 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2764 if (!data_out_sz && !data_in_sz) {
2765 _base_build_zero_len_sge_ieee(ioc, psge);
2769 if (data_out_sz && data_in_sz) {
2770 /* WRITE sgel first */
2771 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2772 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2773 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2777 psge += ioc->sge_size_ieee;
2779 /* READ sgel last */
2780 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2781 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2783 } else if (data_out_sz) /* WRITE */ {
2784 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2785 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2786 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2787 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2789 } else if (data_in_sz) /* READ */ {
2790 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2791 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2792 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2793 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2798 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2801 * _base_config_dma_addressing - set dma addressing
2802 * @ioc: per adapter object
2803 * @pdev: PCI device struct
2805 * Return: 0 for success, non-zero for failure.
2808 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2813 if (ioc->is_mcpu_endpoint ||
2814 sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2815 dma_get_required_mask(&pdev->dev) <= 32)
2817 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2818 else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
2823 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
2824 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)))
2827 if (dma_mask > 32) {
2828 ioc->base_add_sg_single = &_base_add_sg_single_64;
2829 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2831 ioc->base_add_sg_single = &_base_add_sg_single_32;
2832 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2836 ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2837 dma_mask, convert_to_kb(s.totalram));
2843 * _base_check_enable_msix - checks MSIX capabable.
2844 * @ioc: per adapter object
2846 * Check to see if card is capable of MSIX, and set number
2847 * of available msix vectors
2850 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2853 u16 message_control;
2855 /* Check whether controller SAS2008 B0 controller,
2856 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2858 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2859 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2863 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2865 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2869 /* get msix vector count */
2870 /* NUMA_IO not supported for older controllers */
2871 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2872 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2873 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2874 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2875 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2876 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2877 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2878 ioc->msix_vector_count = 1;
2880 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2881 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2883 dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2884 ioc->msix_vector_count));
2889 * _base_free_irq - free irq
2890 * @ioc: per adapter object
2892 * Freeing respective reply_queue from the list.
2895 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2897 struct adapter_reply_queue *reply_q, *next;
2899 if (list_empty(&ioc->reply_queue_list))
2902 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2903 list_del(&reply_q->list);
2904 if (ioc->smp_affinity_enable)
2905 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2906 reply_q->msix_index), NULL);
2907 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2914 * _base_request_irq - request irq
2915 * @ioc: per adapter object
2916 * @index: msix index into vector table
2918 * Inserting respective reply_queue into the list.
2921 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2923 struct pci_dev *pdev = ioc->pdev;
2924 struct adapter_reply_queue *reply_q;
2927 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2929 ioc_err(ioc, "unable to allocate memory %zu!\n",
2930 sizeof(struct adapter_reply_queue));
2934 reply_q->msix_index = index;
2936 atomic_set(&reply_q->busy, 0);
2937 if (ioc->msix_enable)
2938 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2939 ioc->driver_name, ioc->id, index);
2941 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2942 ioc->driver_name, ioc->id);
2943 r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2944 IRQF_SHARED, reply_q->name, reply_q);
2946 pr_err("%s: unable to allocate interrupt %d!\n",
2947 reply_q->name, pci_irq_vector(pdev, index));
2952 INIT_LIST_HEAD(&reply_q->list);
2953 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2958 * _base_assign_reply_queues - assigning msix index for each cpu
2959 * @ioc: per adapter object
2961 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2963 * It would nice if we could call irq_set_affinity, however it is not
2964 * an exported symbol
2967 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2969 unsigned int cpu, nr_cpus, nr_msix, index = 0;
2970 struct adapter_reply_queue *reply_q;
2971 int local_numa_node;
2973 if (!_base_is_controller_msix_enabled(ioc))
2976 if (ioc->msix_load_balance)
2979 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2981 nr_cpus = num_online_cpus();
2982 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2983 ioc->facts.MaxMSIxVectors);
2987 if (ioc->smp_affinity_enable) {
2990 * set irq affinity to local numa node for those irqs
2991 * corresponding to high iops queues.
2993 if (ioc->high_iops_queues) {
2994 local_numa_node = dev_to_node(&ioc->pdev->dev);
2995 for (index = 0; index < ioc->high_iops_queues;
2997 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2998 index), cpumask_of_node(local_numa_node));
3002 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3003 const cpumask_t *mask;
3005 if (reply_q->msix_index < ioc->high_iops_queues)
3008 mask = pci_irq_get_affinity(ioc->pdev,
3009 reply_q->msix_index);
3011 ioc_warn(ioc, "no affinity for msi %x\n",
3012 reply_q->msix_index);
3016 for_each_cpu_and(cpu, mask, cpu_online_mask) {
3017 if (cpu >= ioc->cpu_msix_table_sz)
3019 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3026 cpu = cpumask_first(cpu_online_mask);
3027 nr_msix -= ioc->high_iops_queues;
3030 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3031 unsigned int i, group = nr_cpus / nr_msix;
3033 if (reply_q->msix_index < ioc->high_iops_queues)
3039 if (index < nr_cpus % nr_msix)
3042 for (i = 0 ; i < group ; i++) {
3043 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3044 cpu = cpumask_next(cpu, cpu_online_mask);
3051 * _base_check_and_enable_high_iops_queues - enable high iops mode
3052 * @ioc: per adapter object
3053 * @hba_msix_vector_count: msix vectors supported by HBA
3055 * Enable high iops queues only if
3056 * - HBA is a SEA/AERO controller and
3057 * - MSI-Xs vector supported by the HBA is 128 and
3058 * - total CPU count in the system >=16 and
3059 * - loaded driver with default max_msix_vectors module parameter and
3060 * - system booted in non kdump mode
3065 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3066 int hba_msix_vector_count)
3070 if (perf_mode == MPT_PERF_MODE_IOPS ||
3071 perf_mode == MPT_PERF_MODE_LATENCY) {
3072 ioc->high_iops_queues = 0;
3076 if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3078 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3079 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3082 ioc->high_iops_queues = 0;
3087 if (!reset_devices && ioc->is_aero_ioc &&
3088 hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3089 num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3090 max_msix_vectors == -1)
3091 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3093 ioc->high_iops_queues = 0;
3097 * _base_disable_msix - disables msix
3098 * @ioc: per adapter object
3102 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3104 if (!ioc->msix_enable)
3106 pci_free_irq_vectors(ioc->pdev);
3107 ioc->msix_enable = 0;
3111 * _base_alloc_irq_vectors - allocate msix vectors
3112 * @ioc: per adapter object
3116 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3118 int i, irq_flags = PCI_IRQ_MSIX;
3119 struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3120 struct irq_affinity *descp = &desc;
3122 if (ioc->smp_affinity_enable)
3123 irq_flags |= PCI_IRQ_AFFINITY;
3127 ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3128 ioc->reply_queue_count);
3130 i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3131 ioc->high_iops_queues,
3132 ioc->reply_queue_count, irq_flags, descp);
3138 * _base_enable_msix - enables msix, failback to io_apic
3139 * @ioc: per adapter object
3143 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3146 int i, local_max_msix_vectors;
3149 ioc->msix_load_balance = false;
3151 if (msix_disable == -1 || msix_disable == 0)
3157 if (_base_check_enable_msix(ioc) != 0)
3160 ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3161 pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3162 ioc->cpu_count, max_msix_vectors);
3163 if (ioc->is_aero_ioc)
3164 _base_check_and_enable_high_iops_queues(ioc,
3165 ioc->msix_vector_count);
3166 ioc->reply_queue_count =
3167 min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3168 ioc->msix_vector_count);
3170 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3171 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3173 local_max_msix_vectors = max_msix_vectors;
3175 if (local_max_msix_vectors > 0)
3176 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3177 ioc->reply_queue_count);
3178 else if (local_max_msix_vectors == 0)
3182 * Enable msix_load_balance only if combined reply queue mode is
3183 * disabled on SAS3 & above generation HBA devices.
3185 if (!ioc->combined_reply_queue &&
3186 ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3188 "combined ReplyQueue is off, Enabling msix load balance\n");
3189 ioc->msix_load_balance = true;
3193 * smp affinity setting is not need when msix load balance
3196 if (ioc->msix_load_balance)
3197 ioc->smp_affinity_enable = 0;
3199 r = _base_alloc_irq_vectors(ioc);
3201 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3205 ioc->msix_enable = 1;
3206 ioc->reply_queue_count = r;
3207 for (i = 0; i < ioc->reply_queue_count; i++) {
3208 r = _base_request_irq(ioc, i);
3210 _base_free_irq(ioc);
3211 _base_disable_msix(ioc);
3216 ioc_info(ioc, "High IOPs queues : %s\n",
3217 ioc->high_iops_queues ? "enabled" : "disabled");
3221 /* failback to io_apic interrupt routing */
3223 ioc->high_iops_queues = 0;
3224 ioc_info(ioc, "High IOPs queues : disabled\n");
3225 ioc->reply_queue_count = 1;
3226 r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3229 ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3232 r = _base_request_irq(ioc, 0);
3238 * mpt3sas_base_unmap_resources - free controller resources
3239 * @ioc: per adapter object
3242 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3244 struct pci_dev *pdev = ioc->pdev;
3246 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3248 _base_free_irq(ioc);
3249 _base_disable_msix(ioc);
3251 kfree(ioc->replyPostRegisterIndex);
3252 ioc->replyPostRegisterIndex = NULL;
3255 if (ioc->chip_phys) {
3260 if (pci_is_enabled(pdev)) {
3261 pci_release_selected_regions(ioc->pdev, ioc->bars);
3262 pci_disable_pcie_error_reporting(pdev);
3263 pci_disable_device(pdev);
3268 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3271 * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3272 * and if it is in fault state then issue diag reset.
3273 * @ioc: per adapter object
3275 * Returns: 0 for success, non-zero for failure.
3278 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3283 dinitprintk(ioc, pr_info("%s\n", __func__));
3284 if (ioc->pci_error_recovery)
3286 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3287 dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3289 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3290 mpt3sas_print_fault_code(ioc, ioc_state &
3291 MPI2_DOORBELL_DATA_MASK);
3292 rc = _base_diag_reset(ioc);
3293 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3294 MPI2_IOC_STATE_COREDUMP) {
3295 mpt3sas_print_coredump_info(ioc, ioc_state &
3296 MPI2_DOORBELL_DATA_MASK);
3297 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3298 rc = _base_diag_reset(ioc);
3305 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3306 * @ioc: per adapter object
3308 * Return: 0 for success, non-zero for failure.
3311 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3313 struct pci_dev *pdev = ioc->pdev;
3318 phys_addr_t chip_phys = 0;
3319 struct adapter_reply_queue *reply_q;
3321 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3323 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3324 if (pci_enable_device_mem(pdev)) {
3325 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3331 if (pci_request_selected_regions(pdev, ioc->bars,
3332 ioc->driver_name)) {
3333 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3339 /* AER (Advanced Error Reporting) hooks */
3340 pci_enable_pcie_error_reporting(pdev);
3342 pci_set_master(pdev);
3345 if (_base_config_dma_addressing(ioc, pdev) != 0) {
3346 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3351 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3352 (!memap_sz || !pio_sz); i++) {
3353 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3356 pio_chip = (u64)pci_resource_start(pdev, i);
3357 pio_sz = pci_resource_len(pdev, i);
3358 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3361 ioc->chip_phys = pci_resource_start(pdev, i);
3362 chip_phys = ioc->chip_phys;
3363 memap_sz = pci_resource_len(pdev, i);
3364 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3368 if (ioc->chip == NULL) {
3370 "unable to map adapter memory! or resource not found\n");
3375 _base_mask_interrupts(ioc);
3377 r = _base_get_ioc_facts(ioc);
3379 rc = _base_check_for_fault_and_issue_reset(ioc);
3380 if (rc || (_base_get_ioc_facts(ioc)))
3384 if (!ioc->rdpq_array_enable_assigned) {
3385 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3386 ioc->rdpq_array_enable_assigned = 1;
3389 r = _base_enable_msix(ioc);
3393 if (!ioc->is_driver_loading)
3394 _base_init_irqpolls(ioc);
3395 /* Use the Combined reply queue feature only for SAS3 C0 & higher
3396 * revision HBAs and also only when reply queue count is greater than 8
3398 if (ioc->combined_reply_queue) {
3399 /* Determine the Supplemental Reply Post Host Index Registers
3400 * Addresse. Supplemental Reply Post Host Index Registers
3401 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3402 * each register is at offset bytes of
3403 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3405 ioc->replyPostRegisterIndex = kcalloc(
3406 ioc->combined_reply_index_count,
3407 sizeof(resource_size_t *), GFP_KERNEL);
3408 if (!ioc->replyPostRegisterIndex) {
3410 "allocation for replyPostRegisterIndex failed!\n");
3415 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3416 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3417 ((u8 __force *)&ioc->chip->Doorbell +
3418 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3419 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3423 if (ioc->is_warpdrive) {
3424 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3425 &ioc->chip->ReplyPostHostIndex;
3427 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3428 ioc->reply_post_host_index[i] =
3429 (resource_size_t __iomem *)
3430 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3434 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3435 pr_info("%s: %s enabled: IRQ %d\n",
3437 ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3438 pci_irq_vector(ioc->pdev, reply_q->msix_index));
3440 ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3441 &chip_phys, ioc->chip, memap_sz);
3442 ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3443 (unsigned long long)pio_chip, pio_sz);
3445 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3446 pci_save_state(pdev);
3450 mpt3sas_base_unmap_resources(ioc);
3455 * mpt3sas_base_get_msg_frame - obtain request mf pointer
3456 * @ioc: per adapter object
3457 * @smid: system request message index(smid zero is invalid)
3459 * Return: virt pointer to message frame.
3462 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3464 return (void *)(ioc->request + (smid * ioc->request_sz));
3468 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3469 * @ioc: per adapter object
3470 * @smid: system request message index
3472 * Return: virt pointer to sense buffer.
3475 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3477 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3481 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3482 * @ioc: per adapter object
3483 * @smid: system request message index
3485 * Return: phys pointer to the low 32bit address of the sense buffer.
3488 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3490 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3491 SCSI_SENSE_BUFFERSIZE));
3495 * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3496 * @ioc: per adapter object
3497 * @smid: system request message index
3499 * Return: virt pointer to a PCIe SGL.
3502 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3504 return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3508 * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3509 * @ioc: per adapter object
3510 * @smid: system request message index
3512 * Return: phys pointer to the address of the PCIe buffer.
3515 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3517 return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3521 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3522 * @ioc: per adapter object
3523 * @phys_addr: lower 32 physical addr of the reply
3525 * Converts 32bit lower physical addr into a virt address.
3528 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3532 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3536 * _base_get_msix_index - get the msix index
3537 * @ioc: per adapter object
3538 * @scmd: scsi_cmnd object
3540 * returns msix index of general reply queues,
3541 * i.e. reply queue on which IO request's reply
3542 * should be posted by the HBA firmware.
3545 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3546 struct scsi_cmnd *scmd)
3548 /* Enables reply_queue load balancing */
3549 if (ioc->msix_load_balance)
3550 return ioc->reply_queue_count ?
3551 base_mod64(atomic64_add_return(1,
3552 &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3554 return ioc->cpu_msix_table[raw_smp_processor_id()];
3558 * _base_sdev_nr_inflight_request -get number of inflight requests
3559 * of a request queue.
3560 * @q: request_queue object
3562 * returns number of inflight request of a request queue.
3564 inline unsigned long
3565 _base_sdev_nr_inflight_request(struct request_queue *q)
3567 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3569 return atomic_read(&hctx->nr_active);
3574 * _base_get_high_iops_msix_index - get the msix index of
3576 * @ioc: per adapter object
3577 * @scmd: scsi_cmnd object
3579 * Returns: msix index of high iops reply queues.
3580 * i.e. high iops reply queue on which IO request's
3581 * reply should be posted by the HBA firmware.
3584 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3585 struct scsi_cmnd *scmd)
3588 * Round robin the IO interrupts among the high iops
3589 * reply queues in terms of batch count 16 when outstanding
3590 * IOs on the target device is >=8.
3592 if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3593 MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3595 atomic64_add_return(1, &ioc->high_iops_outstanding) /
3596 MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3597 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3599 return _base_get_msix_index(ioc, scmd);
3603 * mpt3sas_base_get_smid - obtain a free smid from internal queue
3604 * @ioc: per adapter object
3605 * @cb_idx: callback index
3607 * Return: smid (zero is invalid)
3610 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3612 unsigned long flags;
3613 struct request_tracker *request;
3616 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3617 if (list_empty(&ioc->internal_free_list)) {
3618 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3619 ioc_err(ioc, "%s: smid not available\n", __func__);
3623 request = list_entry(ioc->internal_free_list.next,
3624 struct request_tracker, tracker_list);
3625 request->cb_idx = cb_idx;
3626 smid = request->smid;
3627 list_del(&request->tracker_list);
3628 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3633 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3634 * @ioc: per adapter object
3635 * @cb_idx: callback index
3636 * @scmd: pointer to scsi command object
3638 * Return: smid (zero is invalid)
3641 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3642 struct scsi_cmnd *scmd)
3644 struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3645 unsigned int tag = scmd->request->tag;
3649 request->cb_idx = cb_idx;
3650 request->smid = smid;
3651 request->scmd = scmd;
3652 INIT_LIST_HEAD(&request->chain_list);
3657 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3658 * @ioc: per adapter object
3659 * @cb_idx: callback index
3661 * Return: smid (zero is invalid)
3664 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3666 unsigned long flags;
3667 struct request_tracker *request;
3670 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3671 if (list_empty(&ioc->hpr_free_list)) {
3672 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3676 request = list_entry(ioc->hpr_free_list.next,
3677 struct request_tracker, tracker_list);
3678 request->cb_idx = cb_idx;
3679 smid = request->smid;
3680 list_del(&request->tracker_list);
3681 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3686 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3689 * See _wait_for_commands_to_complete() call with regards to this code.
3691 if (ioc->shost_recovery && ioc->pending_io_count) {
3692 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3693 if (ioc->pending_io_count == 0)
3694 wake_up(&ioc->reset_wq);
3698 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3699 struct scsiio_tracker *st)
3701 if (WARN_ON(st->smid == 0))
3706 atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3711 * mpt3sas_base_free_smid - put smid back on free_list
3712 * @ioc: per adapter object
3713 * @smid: system request message index
3716 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3718 unsigned long flags;
3721 if (smid < ioc->hi_priority_smid) {
3722 struct scsiio_tracker *st;
3725 st = _get_st_from_smid(ioc, smid);
3727 _base_recovery_check(ioc);
3731 /* Clear MPI request frame */
3732 request = mpt3sas_base_get_msg_frame(ioc, smid);
3733 memset(request, 0, ioc->request_sz);
3735 mpt3sas_base_clear_st(ioc, st);
3736 _base_recovery_check(ioc);
3740 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3741 if (smid < ioc->internal_smid) {
3743 i = smid - ioc->hi_priority_smid;
3744 ioc->hpr_lookup[i].cb_idx = 0xFF;
3745 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3746 } else if (smid <= ioc->hba_queue_depth) {
3747 /* internal queue */
3748 i = smid - ioc->internal_smid;
3749 ioc->internal_lookup[i].cb_idx = 0xFF;
3750 list_add(&ioc->internal_lookup[i].tracker_list,
3751 &ioc->internal_free_list);
3753 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3757 * _base_mpi_ep_writeq - 32 bit write to MMIO
3759 * @addr: address in MMIO space
3760 * @writeq_lock: spin lock
3762 * This special handling for MPI EP to take care of 32 bit
3763 * environment where its not quarenteed to send the entire word
3767 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3768 spinlock_t *writeq_lock)
3770 unsigned long flags;
3772 spin_lock_irqsave(writeq_lock, flags);
3773 __raw_writel((u32)(b), addr);
3774 __raw_writel((u32)(b >> 32), (addr + 4));
3775 spin_unlock_irqrestore(writeq_lock, flags);
3779 * _base_writeq - 64 bit write to MMIO
3781 * @addr: address in MMIO space
3782 * @writeq_lock: spin lock
3784 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3785 * care of 32 bit environment where its not quarenteed to send the entire word
3788 #if defined(writeq) && defined(CONFIG_64BIT)
3790 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3793 __raw_writeq(b, addr);
3798 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3800 _base_mpi_ep_writeq(b, addr, writeq_lock);
3805 * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3806 * variable of scsi tracker
3807 * @ioc: per adapter object
3808 * @smid: system request message index
3810 * returns msix index.
3813 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3815 struct scsiio_tracker *st = NULL;
3817 if (smid < ioc->hi_priority_smid)
3818 st = _get_st_from_smid(ioc, smid);
3821 return _base_get_msix_index(ioc, NULL);
3823 st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3828 * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3829 * @ioc: per adapter object
3830 * @smid: system request message index
3831 * @handle: device handle
3834 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3835 u16 smid, u16 handle)
3837 Mpi2RequestDescriptorUnion_t descriptor;
3838 u64 *request = (u64 *)&descriptor;
3839 void *mpi_req_iomem;
3840 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3842 _clone_sg_entries(ioc, (void *) mfp, smid);
3843 mpi_req_iomem = (void __force *)ioc->chip +
3844 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3845 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3847 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3848 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3849 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3850 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3851 descriptor.SCSIIO.LMID = 0;
3852 _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3853 &ioc->scsi_lookup_lock);
3857 * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3858 * @ioc: per adapter object
3859 * @smid: system request message index
3860 * @handle: device handle
3863 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3865 Mpi2RequestDescriptorUnion_t descriptor;
3866 u64 *request = (u64 *)&descriptor;
3869 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3870 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3871 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3872 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3873 descriptor.SCSIIO.LMID = 0;
3874 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3875 &ioc->scsi_lookup_lock);
3879 * _base_put_smid_fast_path - send fast path request to firmware
3880 * @ioc: per adapter object
3881 * @smid: system request message index
3882 * @handle: device handle
3885 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3888 Mpi2RequestDescriptorUnion_t descriptor;
3889 u64 *request = (u64 *)&descriptor;
3891 descriptor.SCSIIO.RequestFlags =
3892 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3893 descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3894 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3895 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3896 descriptor.SCSIIO.LMID = 0;
3897 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3898 &ioc->scsi_lookup_lock);
3902 * _base_put_smid_hi_priority - send Task Management request to firmware
3903 * @ioc: per adapter object
3904 * @smid: system request message index
3905 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3908 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3911 Mpi2RequestDescriptorUnion_t descriptor;
3912 void *mpi_req_iomem;
3915 if (ioc->is_mcpu_endpoint) {
3916 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3918 /* TBD 256 is offset within sys register. */
3919 mpi_req_iomem = (void __force *)ioc->chip
3920 + MPI_FRAME_START_OFFSET
3921 + (smid * ioc->request_sz);
3922 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3926 request = (u64 *)&descriptor;
3928 descriptor.HighPriority.RequestFlags =
3929 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3930 descriptor.HighPriority.MSIxIndex = msix_task;
3931 descriptor.HighPriority.SMID = cpu_to_le16(smid);
3932 descriptor.HighPriority.LMID = 0;
3933 descriptor.HighPriority.Reserved1 = 0;
3934 if (ioc->is_mcpu_endpoint)
3935 _base_mpi_ep_writeq(*request,
3936 &ioc->chip->RequestDescriptorPostLow,
3937 &ioc->scsi_lookup_lock);
3939 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3940 &ioc->scsi_lookup_lock);
3944 * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3946 * @ioc: per adapter object
3947 * @smid: system request message index
3950 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3952 Mpi2RequestDescriptorUnion_t descriptor;
3953 u64 *request = (u64 *)&descriptor;
3955 descriptor.Default.RequestFlags =
3956 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3957 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3958 descriptor.Default.SMID = cpu_to_le16(smid);
3959 descriptor.Default.LMID = 0;
3960 descriptor.Default.DescriptorTypeDependent = 0;
3961 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3962 &ioc->scsi_lookup_lock);
3966 * _base_put_smid_default - Default, primarily used for config pages
3967 * @ioc: per adapter object
3968 * @smid: system request message index
3971 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3973 Mpi2RequestDescriptorUnion_t descriptor;
3974 void *mpi_req_iomem;
3977 if (ioc->is_mcpu_endpoint) {
3978 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3980 _clone_sg_entries(ioc, (void *) mfp, smid);
3981 /* TBD 256 is offset within sys register */
3982 mpi_req_iomem = (void __force *)ioc->chip +
3983 MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3984 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3987 request = (u64 *)&descriptor;
3988 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
3989 descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3990 descriptor.Default.SMID = cpu_to_le16(smid);
3991 descriptor.Default.LMID = 0;
3992 descriptor.Default.DescriptorTypeDependent = 0;
3993 if (ioc->is_mcpu_endpoint)
3994 _base_mpi_ep_writeq(*request,
3995 &ioc->chip->RequestDescriptorPostLow,
3996 &ioc->scsi_lookup_lock);
3998 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3999 &ioc->scsi_lookup_lock);
4003 * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4004 * Atomic Request Descriptor
4005 * @ioc: per adapter object
4006 * @smid: system request message index
4007 * @handle: device handle, unused in this function, for function type match
4012 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4015 Mpi26AtomicRequestDescriptor_t descriptor;
4016 u32 *request = (u32 *)&descriptor;
4018 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4019 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4020 descriptor.SMID = cpu_to_le16(smid);
4022 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4026 * _base_put_smid_fast_path_atomic - send fast path request to firmware
4027 * using Atomic Request Descriptor
4028 * @ioc: per adapter object
4029 * @smid: system request message index
4030 * @handle: device handle, unused in this function, for function type match
4034 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4037 Mpi26AtomicRequestDescriptor_t descriptor;
4038 u32 *request = (u32 *)&descriptor;
4040 descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4041 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4042 descriptor.SMID = cpu_to_le16(smid);
4044 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4048 * _base_put_smid_hi_priority_atomic - send Task Management request to
4049 * firmware using Atomic Request Descriptor
4050 * @ioc: per adapter object
4051 * @smid: system request message index
4052 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4057 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4060 Mpi26AtomicRequestDescriptor_t descriptor;
4061 u32 *request = (u32 *)&descriptor;
4063 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4064 descriptor.MSIxIndex = msix_task;
4065 descriptor.SMID = cpu_to_le16(smid);
4067 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4071 * _base_put_smid_default - Default, primarily used for config pages
4072 * use Atomic Request Descriptor
4073 * @ioc: per adapter object
4074 * @smid: system request message index
4079 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4081 Mpi26AtomicRequestDescriptor_t descriptor;
4082 u32 *request = (u32 *)&descriptor;
4084 descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4085 descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4086 descriptor.SMID = cpu_to_le16(smid);
4088 writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4092 * _base_display_OEMs_branding - Display branding string
4093 * @ioc: per adapter object
4096 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4098 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4101 switch (ioc->pdev->subsystem_vendor) {
4102 case PCI_VENDOR_ID_INTEL:
4103 switch (ioc->pdev->device) {
4104 case MPI2_MFGPAGE_DEVID_SAS2008:
4105 switch (ioc->pdev->subsystem_device) {
4106 case MPT2SAS_INTEL_RMS2LL080_SSDID:
4107 ioc_info(ioc, "%s\n",
4108 MPT2SAS_INTEL_RMS2LL080_BRANDING);
4110 case MPT2SAS_INTEL_RMS2LL040_SSDID:
4111 ioc_info(ioc, "%s\n",
4112 MPT2SAS_INTEL_RMS2LL040_BRANDING);
4114 case MPT2SAS_INTEL_SSD910_SSDID:
4115 ioc_info(ioc, "%s\n",
4116 MPT2SAS_INTEL_SSD910_BRANDING);
4119 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4120 ioc->pdev->subsystem_device);
4124 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4125 switch (ioc->pdev->subsystem_device) {
4126 case MPT2SAS_INTEL_RS25GB008_SSDID:
4127 ioc_info(ioc, "%s\n",
4128 MPT2SAS_INTEL_RS25GB008_BRANDING);
4130 case MPT2SAS_INTEL_RMS25JB080_SSDID:
4131 ioc_info(ioc, "%s\n",
4132 MPT2SAS_INTEL_RMS25JB080_BRANDING);
4134 case MPT2SAS_INTEL_RMS25JB040_SSDID:
4135 ioc_info(ioc, "%s\n",
4136 MPT2SAS_INTEL_RMS25JB040_BRANDING);
4138 case MPT2SAS_INTEL_RMS25KB080_SSDID:
4139 ioc_info(ioc, "%s\n",
4140 MPT2SAS_INTEL_RMS25KB080_BRANDING);
4142 case MPT2SAS_INTEL_RMS25KB040_SSDID:
4143 ioc_info(ioc, "%s\n",
4144 MPT2SAS_INTEL_RMS25KB040_BRANDING);
4146 case MPT2SAS_INTEL_RMS25LB040_SSDID:
4147 ioc_info(ioc, "%s\n",
4148 MPT2SAS_INTEL_RMS25LB040_BRANDING);
4150 case MPT2SAS_INTEL_RMS25LB080_SSDID:
4151 ioc_info(ioc, "%s\n",
4152 MPT2SAS_INTEL_RMS25LB080_BRANDING);
4155 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4156 ioc->pdev->subsystem_device);
4160 case MPI25_MFGPAGE_DEVID_SAS3008:
4161 switch (ioc->pdev->subsystem_device) {
4162 case MPT3SAS_INTEL_RMS3JC080_SSDID:
4163 ioc_info(ioc, "%s\n",
4164 MPT3SAS_INTEL_RMS3JC080_BRANDING);
4167 case MPT3SAS_INTEL_RS3GC008_SSDID:
4168 ioc_info(ioc, "%s\n",
4169 MPT3SAS_INTEL_RS3GC008_BRANDING);
4171 case MPT3SAS_INTEL_RS3FC044_SSDID:
4172 ioc_info(ioc, "%s\n",
4173 MPT3SAS_INTEL_RS3FC044_BRANDING);
4175 case MPT3SAS_INTEL_RS3UC080_SSDID:
4176 ioc_info(ioc, "%s\n",
4177 MPT3SAS_INTEL_RS3UC080_BRANDING);
4180 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4181 ioc->pdev->subsystem_device);
4186 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4187 ioc->pdev->subsystem_device);
4191 case PCI_VENDOR_ID_DELL:
4192 switch (ioc->pdev->device) {
4193 case MPI2_MFGPAGE_DEVID_SAS2008:
4194 switch (ioc->pdev->subsystem_device) {
4195 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4196 ioc_info(ioc, "%s\n",
4197 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4199 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4200 ioc_info(ioc, "%s\n",
4201 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4203 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4204 ioc_info(ioc, "%s\n",
4205 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4207 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4208 ioc_info(ioc, "%s\n",
4209 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4211 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4212 ioc_info(ioc, "%s\n",
4213 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4215 case MPT2SAS_DELL_PERC_H200_SSDID:
4216 ioc_info(ioc, "%s\n",
4217 MPT2SAS_DELL_PERC_H200_BRANDING);
4219 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4220 ioc_info(ioc, "%s\n",
4221 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4224 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4225 ioc->pdev->subsystem_device);
4229 case MPI25_MFGPAGE_DEVID_SAS3008:
4230 switch (ioc->pdev->subsystem_device) {
4231 case MPT3SAS_DELL_12G_HBA_SSDID:
4232 ioc_info(ioc, "%s\n",
4233 MPT3SAS_DELL_12G_HBA_BRANDING);
4236 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4237 ioc->pdev->subsystem_device);
4242 ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4243 ioc->pdev->subsystem_device);
4247 case PCI_VENDOR_ID_CISCO:
4248 switch (ioc->pdev->device) {
4249 case MPI25_MFGPAGE_DEVID_SAS3008:
4250 switch (ioc->pdev->subsystem_device) {
4251 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4252 ioc_info(ioc, "%s\n",
4253 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4255 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4256 ioc_info(ioc, "%s\n",
4257 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4259 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4260 ioc_info(ioc, "%s\n",
4261 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4264 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4265 ioc->pdev->subsystem_device);
4269 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4270 switch (ioc->pdev->subsystem_device) {
4271 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4272 ioc_info(ioc, "%s\n",
4273 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4275 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4276 ioc_info(ioc, "%s\n",
4277 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4280 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4281 ioc->pdev->subsystem_device);
4286 ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4287 ioc->pdev->subsystem_device);
4291 case MPT2SAS_HP_3PAR_SSVID:
4292 switch (ioc->pdev->device) {
4293 case MPI2_MFGPAGE_DEVID_SAS2004:
4294 switch (ioc->pdev->subsystem_device) {
4295 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4296 ioc_info(ioc, "%s\n",
4297 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4300 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4301 ioc->pdev->subsystem_device);
4305 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4306 switch (ioc->pdev->subsystem_device) {
4307 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4308 ioc_info(ioc, "%s\n",
4309 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4311 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4312 ioc_info(ioc, "%s\n",
4313 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4315 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4316 ioc_info(ioc, "%s\n",
4317 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4319 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4320 ioc_info(ioc, "%s\n",
4321 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4324 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4325 ioc->pdev->subsystem_device);
4330 ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4331 ioc->pdev->subsystem_device);
4340 * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4341 * version from FW Image Header.
4342 * @ioc: per adapter object
4344 * Return: 0 for success, non-zero for failure.
4347 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4349 Mpi2FWImageHeader_t *fw_img_hdr;
4350 Mpi26ComponentImageHeader_t *cmp_img_hdr;
4351 Mpi25FWUploadRequest_t *mpi_request;
4352 Mpi2FWUploadReply_t mpi_reply;
4354 u32 package_version = 0;
4355 void *fwpkg_data = NULL;
4356 dma_addr_t fwpkg_data_dma;
4357 u16 smid, ioc_status;
4360 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4362 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4363 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4367 data_length = sizeof(Mpi2FWImageHeader_t);
4368 fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4369 &fwpkg_data_dma, GFP_KERNEL);
4372 "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4373 __FILE__, __LINE__, __func__);
4377 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4379 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4384 ioc->base_cmds.status = MPT3_CMD_PENDING;
4385 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4386 ioc->base_cmds.smid = smid;
4387 memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4388 mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4389 mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4390 mpi_request->ImageSize = cpu_to_le32(data_length);
4391 ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4393 init_completion(&ioc->base_cmds.done);
4394 ioc->put_smid_default(ioc, smid);
4395 /* Wait for 15 seconds */
4396 wait_for_completion_timeout(&ioc->base_cmds.done,
4397 FW_IMG_HDR_READ_TIMEOUT*HZ);
4398 ioc_info(ioc, "%s: complete\n", __func__);
4399 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4400 ioc_err(ioc, "%s: timeout\n", __func__);
4401 _debug_dump_mf(mpi_request,
4402 sizeof(Mpi25FWUploadRequest_t)/4);
4405 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4406 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4407 memcpy(&mpi_reply, ioc->base_cmds.reply,
4408 sizeof(Mpi2FWUploadReply_t));
4409 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4410 MPI2_IOCSTATUS_MASK;
4411 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4412 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4413 if (le32_to_cpu(fw_img_hdr->Signature) ==
4414 MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4416 (Mpi26ComponentImageHeader_t *)
4420 cmp_img_hdr->ApplicationSpecific);
4424 fw_img_hdr->PackageVersion.Word);
4425 if (package_version)
4427 "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4428 ((package_version) & 0xFF000000) >> 24,
4429 ((package_version) & 0x00FF0000) >> 16,
4430 ((package_version) & 0x0000FF00) >> 8,
4431 (package_version) & 0x000000FF);
4433 _debug_dump_mf(&mpi_reply,
4434 sizeof(Mpi2FWUploadReply_t)/4);
4438 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4441 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4447 * _base_display_ioc_capabilities - Disply IOC's capabilities.
4448 * @ioc: per adapter object
4451 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4455 u32 iounit_pg1_flags;
4458 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4459 strncpy(desc, ioc->manu_pg0.ChipName, 16);
4460 ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4462 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4463 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4464 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4465 ioc->facts.FWVersion.Word & 0x000000FF,
4466 ioc->pdev->revision,
4467 (bios_version & 0xFF000000) >> 24,
4468 (bios_version & 0x00FF0000) >> 16,
4469 (bios_version & 0x0000FF00) >> 8,
4470 bios_version & 0x000000FF);
4472 _base_display_OEMs_branding(ioc);
4474 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4475 pr_info("%sNVMe", i ? "," : "");
4479 ioc_info(ioc, "Protocol=(");
4481 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4482 pr_cont("Initiator");
4486 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4487 pr_cont("%sTarget", i ? "," : "");
4492 pr_cont("), Capabilities=(");
4494 if (!ioc->hide_ir_msg) {
4495 if (ioc->facts.IOCCapabilities &
4496 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4502 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4503 pr_cont("%sTLR", i ? "," : "");
4507 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4508 pr_cont("%sMulticast", i ? "," : "");
4512 if (ioc->facts.IOCCapabilities &
4513 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4514 pr_cont("%sBIDI Target", i ? "," : "");
4518 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4519 pr_cont("%sEEDP", i ? "," : "");
4523 if (ioc->facts.IOCCapabilities &
4524 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4525 pr_cont("%sSnapshot Buffer", i ? "," : "");
4529 if (ioc->facts.IOCCapabilities &
4530 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4531 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4535 if (ioc->facts.IOCCapabilities &
4536 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4537 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4541 if (ioc->facts.IOCCapabilities &
4542 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4543 pr_cont("%sTask Set Full", i ? "," : "");
4547 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4548 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4549 pr_cont("%sNCQ", i ? "," : "");
4557 * mpt3sas_base_update_missing_delay - change the missing delay timers
4558 * @ioc: per adapter object
4559 * @device_missing_delay: amount of time till device is reported missing
4560 * @io_missing_delay: interval IO is returned when there is a missing device
4562 * Passed on the command line, this function will modify the device missing
4563 * delay, as well as the io missing delay. This should be called at driver
4567 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4568 u16 device_missing_delay, u8 io_missing_delay)
4570 u16 dmd, dmd_new, dmd_orignal;
4571 u8 io_missing_delay_original;
4573 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4574 Mpi2ConfigReply_t mpi_reply;
4578 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4582 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4583 sizeof(Mpi2SasIOUnit1PhyData_t));
4584 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4585 if (!sas_iounit_pg1) {
4586 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4587 __FILE__, __LINE__, __func__);
4590 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4591 sas_iounit_pg1, sz))) {
4592 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4593 __FILE__, __LINE__, __func__);
4596 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4597 MPI2_IOCSTATUS_MASK;
4598 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4599 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4600 __FILE__, __LINE__, __func__);
4604 /* device missing delay */
4605 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4606 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4607 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4609 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4611 if (device_missing_delay > 0x7F) {
4612 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4613 device_missing_delay;
4615 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4617 dmd = device_missing_delay;
4618 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4620 /* io missing delay */
4621 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4622 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4624 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4626 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4628 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4631 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4632 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4633 dmd_orignal, dmd_new);
4634 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4635 io_missing_delay_original,
4637 ioc->device_missing_delay = dmd_new;
4638 ioc->io_missing_delay = io_missing_delay;
4642 kfree(sas_iounit_pg1);
4646 * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4647 * according to performance mode.
4648 * @ioc : per adapter object
4653 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4655 Mpi2IOCPage1_t ioc_pg1;
4656 Mpi2ConfigReply_t mpi_reply;
4658 mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4659 memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4661 switch (perf_mode) {
4662 case MPT_PERF_MODE_DEFAULT:
4663 case MPT_PERF_MODE_BALANCED:
4664 if (ioc->high_iops_queues) {
4666 "Enable interrupt coalescing only for first\t"
4667 "%d reply queues\n",
4668 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4670 * If 31st bit is zero then interrupt coalescing is
4671 * enabled for all reply descriptor post queues.
4672 * If 31st bit is set to one then user can
4673 * enable/disable interrupt coalescing on per reply
4674 * descriptor post queue group(8) basis. So to enable
4675 * interrupt coalescing only on first reply descriptor
4676 * post queue group 31st bit and zero th bit is enabled.
4678 ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4679 ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4680 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4681 ioc_info(ioc, "performance mode: balanced\n");
4685 case MPT_PERF_MODE_LATENCY:
4687 * Enable interrupt coalescing on all reply queues
4688 * with timeout value 0xA
4690 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4691 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4692 ioc_pg1.ProductSpecific = 0;
4693 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4694 ioc_info(ioc, "performance mode: latency\n");
4696 case MPT_PERF_MODE_IOPS:
4698 * Enable interrupt coalescing on all reply queues.
4701 "performance mode: iops with coalescing timeout: 0x%x\n",
4702 le32_to_cpu(ioc_pg1.CoalescingTimeout));
4703 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4704 ioc_pg1.ProductSpecific = 0;
4705 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4711 * _base_static_config_pages - static start of day config pages
4712 * @ioc: per adapter object
4715 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4717 Mpi2ConfigReply_t mpi_reply;
4718 u32 iounit_pg1_flags;
4720 ioc->nvme_abort_timeout = 30;
4721 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4722 if (ioc->ir_firmware)
4723 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4727 * Ensure correct T10 PI operation if vendor left EEDPTagMode
4728 * flag unset in NVDATA.
4730 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4731 if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4732 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4734 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4735 ioc->manu_pg11.EEDPTagMode |= 0x1;
4736 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4739 if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4740 ioc->tm_custom_handling = 1;
4742 ioc->tm_custom_handling = 0;
4743 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4744 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4745 else if (ioc->manu_pg11.NVMeAbortTO >
4746 NVME_TASK_ABORT_MAX_TIMEOUT)
4747 ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4749 ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4752 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4753 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4754 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4755 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4756 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4757 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4758 _base_display_ioc_capabilities(ioc);
4761 * Enable task_set_full handling in iounit_pg1 when the
4762 * facts capabilities indicate that its supported.
4764 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4765 if ((ioc->facts.IOCCapabilities &
4766 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4768 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4771 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4772 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4773 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4775 if (ioc->iounit_pg8.NumSensors)
4776 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4777 if (ioc->is_aero_ioc)
4778 _base_update_ioc_page1_inlinewith_perf_mode(ioc);
4782 * mpt3sas_free_enclosure_list - release memory
4783 * @ioc: per adapter object
4785 * Free memory allocated during encloure add.
4788 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4790 struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4792 /* Free enclosure list */
4793 list_for_each_entry_safe(enclosure_dev,
4794 enclosure_dev_next, &ioc->enclosure_list, list) {
4795 list_del(&enclosure_dev->list);
4796 kfree(enclosure_dev);
4801 * _base_release_memory_pools - release memory
4802 * @ioc: per adapter object
4804 * Free memory allocated from _base_allocate_memory_pools.
4807 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4811 int dma_alloc_count = 0;
4812 struct chain_tracker *ct;
4813 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4815 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4818 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4819 ioc->request, ioc->request_dma);
4821 ioc_info(ioc, "request_pool(0x%p): free\n",
4823 ioc->request = NULL;
4827 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4828 dma_pool_destroy(ioc->sense_dma_pool);
4830 ioc_info(ioc, "sense_pool(0x%p): free\n",
4836 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4837 dma_pool_destroy(ioc->reply_dma_pool);
4839 ioc_info(ioc, "reply_pool(0x%p): free\n",
4844 if (ioc->reply_free) {
4845 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4846 ioc->reply_free_dma);
4847 dma_pool_destroy(ioc->reply_free_dma_pool);
4849 ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4851 ioc->reply_free = NULL;
4854 if (ioc->reply_post) {
4855 dma_alloc_count = DIV_ROUND_UP(count,
4856 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4857 for (i = 0; i < count; i++) {
4858 if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
4859 && dma_alloc_count) {
4860 if (ioc->reply_post[i].reply_post_free) {
4862 ioc->reply_post_free_dma_pool,
4863 ioc->reply_post[i].reply_post_free,
4864 ioc->reply_post[i].reply_post_free_dma);
4865 dexitprintk(ioc, ioc_info(ioc,
4866 "reply_post_free_pool(0x%p): free\n",
4867 ioc->reply_post[i].reply_post_free));
4868 ioc->reply_post[i].reply_post_free =
4874 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4875 if (ioc->reply_post_free_array &&
4876 ioc->rdpq_array_enable) {
4877 dma_pool_free(ioc->reply_post_free_array_dma_pool,
4878 ioc->reply_post_free_array,
4879 ioc->reply_post_free_array_dma);
4880 ioc->reply_post_free_array = NULL;
4882 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4883 kfree(ioc->reply_post);
4886 if (ioc->pcie_sgl_dma_pool) {
4887 for (i = 0; i < ioc->scsiio_depth; i++) {
4888 dma_pool_free(ioc->pcie_sgl_dma_pool,
4889 ioc->pcie_sg_lookup[i].pcie_sgl,
4890 ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4892 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4895 if (ioc->config_page) {
4897 ioc_info(ioc, "config_page(0x%p): free\n",
4899 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4900 ioc->config_page, ioc->config_page_dma);
4903 kfree(ioc->hpr_lookup);
4904 ioc->hpr_lookup = NULL;
4905 kfree(ioc->internal_lookup);
4906 ioc->internal_lookup = NULL;
4907 if (ioc->chain_lookup) {
4908 for (i = 0; i < ioc->scsiio_depth; i++) {
4909 for (j = ioc->chains_per_prp_buffer;
4910 j < ioc->chains_needed_per_io; j++) {
4911 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4912 if (ct && ct->chain_buffer)
4913 dma_pool_free(ioc->chain_dma_pool,
4915 ct->chain_buffer_dma);
4917 kfree(ioc->chain_lookup[i].chains_per_smid);
4919 dma_pool_destroy(ioc->chain_dma_pool);
4920 kfree(ioc->chain_lookup);
4921 ioc->chain_lookup = NULL;
4926 * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
4927 * having same upper 32bits in their base memory address.
4928 * @reply_pool_start_address: Base address of a reply queue set
4929 * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4931 * Return: 1 if reply queues in a set have a same upper 32bits in their base
4932 * memory address, else 0.
4936 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
4938 long reply_pool_end_address;
4940 reply_pool_end_address = reply_pool_start_address + pool_sz;
4942 if (upper_32_bits(reply_pool_start_address) ==
4943 upper_32_bits(reply_pool_end_address))
4950 * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
4952 * @ioc: per adapter object
4953 * @sz: DMA Pool size
4954 * Return: 0 for success, non-zero for failure.
4957 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
4960 u32 dma_alloc_count = 0;
4961 int reply_post_free_sz = ioc->reply_post_queue_depth *
4962 sizeof(Mpi2DefaultReplyDescriptor_t);
4963 int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4965 ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
4967 if (!ioc->reply_post)
4970 * For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
4971 * VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
4972 * be within 4GB boundary i.e reply queues in a set must have same
4973 * upper 32-bits in their memory address. so here driver is allocating
4974 * the DMA'able memory for reply queues according.
4975 * Driver uses limitation of
4976 * VENTURA_SERIES to manage INVADER_SERIES as well.
4978 dma_alloc_count = DIV_ROUND_UP(count,
4979 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4980 ioc->reply_post_free_dma_pool =
4981 dma_pool_create("reply_post_free pool",
4982 &ioc->pdev->dev, sz, 16, 0);
4983 if (!ioc->reply_post_free_dma_pool)
4985 for (i = 0; i < count; i++) {
4986 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
4987 ioc->reply_post[i].reply_post_free =
4988 dma_pool_zalloc(ioc->reply_post_free_dma_pool,
4990 &ioc->reply_post[i].reply_post_free_dma);
4991 if (!ioc->reply_post[i].reply_post_free)
4994 * Each set of RDPQ pool must satisfy 4gb boundary
4996 * 1) Check if allocated resources for RDPQ pool are in
4997 * the same 4GB range.
4998 * 2) If #1 is true, continue with 64 bit DMA.
4999 * 3) If #1 is false, return 1. which means free all the
5000 * resources and set DMA mask to 32 and allocate.
5002 if (!mpt3sas_check_same_4gb_region(
5003 (long)ioc->reply_post[i].reply_post_free, sz)) {
5005 ioc_err(ioc, "bad Replypost free pool(0x%p)"
5006 "reply_post_free_dma = (0x%llx)\n",
5007 ioc->reply_post[i].reply_post_free,
5008 (unsigned long long)
5009 ioc->reply_post[i].reply_post_free_dma));
5015 ioc->reply_post[i].reply_post_free =
5016 (Mpi2ReplyDescriptorsUnion_t *)
5017 ((long)ioc->reply_post[i-1].reply_post_free
5018 + reply_post_free_sz);
5019 ioc->reply_post[i].reply_post_free_dma =
5021 (ioc->reply_post[i-1].reply_post_free_dma +
5022 reply_post_free_sz);
5029 * _base_allocate_memory_pools - allocate start of day memory pools
5030 * @ioc: per adapter object
5032 * Return: 0 success, anything else error.
5035 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5037 struct mpt3sas_facts *facts;
5038 u16 max_sge_elements;
5039 u16 chains_needed_per_io;
5040 u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5043 u16 max_request_credit, nvme_blocks_needed;
5044 unsigned short sg_tablesize;
5048 struct chain_tracker *ct;
5050 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5054 facts = &ioc->facts;
5056 /* command line tunables for max sgl entries */
5057 if (max_sgl_entries != -1)
5058 sg_tablesize = max_sgl_entries;
5060 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5061 sg_tablesize = MPT2SAS_SG_DEPTH;
5063 sg_tablesize = MPT3SAS_SG_DEPTH;
5066 /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5068 sg_tablesize = min_t(unsigned short, sg_tablesize,
5069 MPT_KDUMP_MIN_PHYS_SEGMENTS);
5071 if (ioc->is_mcpu_endpoint)
5072 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5074 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5075 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5076 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5077 sg_tablesize = min_t(unsigned short, sg_tablesize,
5079 ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5080 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5082 ioc->shost->sg_tablesize = sg_tablesize;
5085 ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5086 (facts->RequestCredit / 4));
5087 if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5088 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5089 INTERNAL_SCSIIO_CMDS_COUNT)) {
5090 ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5091 facts->RequestCredit);
5094 ioc->internal_depth = 10;
5097 ioc->hi_priority_depth = ioc->internal_depth - (5);
5098 /* command line tunables for max controller queue depth */
5099 if (max_queue_depth != -1 && max_queue_depth != 0) {
5100 max_request_credit = min_t(u16, max_queue_depth +
5101 ioc->internal_depth, facts->RequestCredit);
5102 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5103 max_request_credit = MAX_HBA_QUEUE_DEPTH;
5104 } else if (reset_devices)
5105 max_request_credit = min_t(u16, facts->RequestCredit,
5106 (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5108 max_request_credit = min_t(u16, facts->RequestCredit,
5109 MAX_HBA_QUEUE_DEPTH);
5111 /* Firmware maintains additional facts->HighPriorityCredit number of
5112 * credits for HiPriprity Request messages, so hba queue depth will be
5113 * sum of max_request_credit and high priority queue depth.
5115 ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5117 /* request frame size */
5118 ioc->request_sz = facts->IOCRequestFrameSize * 4;
5120 /* reply frame size */
5121 ioc->reply_sz = facts->ReplyFrameSize * 4;
5123 /* chain segment size */
5124 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5125 if (facts->IOCMaxChainSegmentSize)
5126 ioc->chain_segment_sz =
5127 facts->IOCMaxChainSegmentSize *
5130 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5131 ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5134 ioc->chain_segment_sz = ioc->request_sz;
5136 /* calculate the max scatter element size */
5137 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5141 /* calculate number of sg elements left over in the 1st frame */
5142 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5143 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5144 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5146 /* now do the same for a chain buffer */
5147 max_sge_elements = ioc->chain_segment_sz - sge_size;
5148 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5151 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5153 chains_needed_per_io = ((ioc->shost->sg_tablesize -
5154 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5156 if (chains_needed_per_io > facts->MaxChainDepth) {
5157 chains_needed_per_io = facts->MaxChainDepth;
5158 ioc->shost->sg_tablesize = min_t(u16,
5159 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5160 * chains_needed_per_io), ioc->shost->sg_tablesize);
5162 ioc->chains_needed_per_io = chains_needed_per_io;
5164 /* reply free queue sizing - taking into account for 64 FW events */
5165 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5167 /* mCPU manage single counters for simplicity */
5168 if (ioc->is_mcpu_endpoint)
5169 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5171 /* calculate reply descriptor post queue depth */
5172 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5173 ioc->reply_free_queue_depth + 1;
5174 /* align the reply post queue on the next 16 count boundary */
5175 if (ioc->reply_post_queue_depth % 16)
5176 ioc->reply_post_queue_depth += 16 -
5177 (ioc->reply_post_queue_depth % 16);
5180 if (ioc->reply_post_queue_depth >
5181 facts->MaxReplyDescriptorPostQueueDepth) {
5182 ioc->reply_post_queue_depth =
5183 facts->MaxReplyDescriptorPostQueueDepth -
5184 (facts->MaxReplyDescriptorPostQueueDepth % 16);
5185 ioc->hba_queue_depth =
5186 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
5187 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5191 "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5192 "sge_per_io(%d), chains_per_io(%d)\n",
5193 ioc->max_sges_in_main_message,
5194 ioc->max_sges_in_chain_message,
5195 ioc->shost->sg_tablesize,
5196 ioc->chains_needed_per_io);
5198 /* reply post queue, 16 byte align */
5199 reply_post_free_sz = ioc->reply_post_queue_depth *
5200 sizeof(Mpi2DefaultReplyDescriptor_t);
5201 rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
5202 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5203 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
5204 ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
5205 if (ret == -EAGAIN) {
5207 * Free allocated bad RDPQ memory pools.
5208 * Change dma coherent mask to 32 bit and reallocate RDPQ
5210 _base_release_memory_pools(ioc);
5211 ioc->use_32bit_dma = true;
5212 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5214 "32 DMA mask failed %s\n", pci_name(ioc->pdev));
5217 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
5219 } else if (ret == -ENOMEM)
5221 total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
5222 DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
5223 ioc->scsiio_depth = ioc->hba_queue_depth -
5224 ioc->hi_priority_depth - ioc->internal_depth;
5226 /* set the scsi host can_queue depth
5227 * with some internal commands that could be outstanding
5229 ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5231 ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5232 ioc->shost->can_queue));
5234 /* contiguous pool for request and chains, 16 byte align, one extra "
5237 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5238 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5240 /* hi-priority queue */
5241 sz += (ioc->hi_priority_depth * ioc->request_sz);
5243 /* internal queue */
5244 sz += (ioc->internal_depth * ioc->request_sz);
5246 ioc->request_dma_sz = sz;
5247 ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5248 &ioc->request_dma, GFP_KERNEL);
5249 if (!ioc->request) {
5250 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5251 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5252 ioc->request_sz, sz / 1024);
5253 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5256 ioc->hba_queue_depth -= retry_sz;
5257 _base_release_memory_pools(ioc);
5258 goto retry_allocation;
5260 memset(ioc->request, 0, sz);
5263 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5264 ioc->hba_queue_depth, ioc->chains_needed_per_io,
5265 ioc->request_sz, sz / 1024);
5267 /* hi-priority queue */
5268 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5270 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5273 /* internal queue */
5274 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5276 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5280 "request pool(0x%p) - dma(0x%llx): "
5281 "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5282 ioc->request, (unsigned long long) ioc->request_dma,
5283 ioc->hba_queue_depth, ioc->request_sz,
5284 (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5289 ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5290 ioc->request, ioc->scsiio_depth));
5292 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5293 sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5294 ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5295 if (!ioc->chain_lookup) {
5296 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5300 sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5301 for (i = 0; i < ioc->scsiio_depth; i++) {
5302 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5303 if (!ioc->chain_lookup[i].chains_per_smid) {
5304 ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5309 /* initialize hi-priority queue smid's */
5310 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5311 sizeof(struct request_tracker), GFP_KERNEL);
5312 if (!ioc->hpr_lookup) {
5313 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5316 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5318 ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5320 ioc->hi_priority_depth, ioc->hi_priority_smid));
5322 /* initialize internal queue smid's */
5323 ioc->internal_lookup = kcalloc(ioc->internal_depth,
5324 sizeof(struct request_tracker), GFP_KERNEL);
5325 if (!ioc->internal_lookup) {
5326 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5329 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5331 ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5333 ioc->internal_depth, ioc->internal_smid));
5335 * The number of NVMe page sized blocks needed is:
5336 * (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5337 * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5338 * that is placed in the main message frame. 8 is the size of each PRP
5339 * entry or PRP list pointer entry. 8 is subtracted from page_size
5340 * because of the PRP list pointer entry at the end of a page, so this
5341 * is not counted as a PRP entry. The 1 added page is a round up.
5343 * To avoid allocation failures due to the amount of memory that could
5344 * be required for NVMe PRP's, only each set of NVMe blocks will be
5345 * contiguous, so a new set is allocated for each possible I/O.
5347 ioc->chains_per_prp_buffer = 0;
5348 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5349 nvme_blocks_needed =
5350 (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5351 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5352 nvme_blocks_needed++;
5354 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5355 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5356 if (!ioc->pcie_sg_lookup) {
5357 ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5360 sz = nvme_blocks_needed * ioc->page_size;
5361 ioc->pcie_sgl_dma_pool =
5362 dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5363 if (!ioc->pcie_sgl_dma_pool) {
5364 ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5368 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5369 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5370 ioc->chains_needed_per_io);
5372 for (i = 0; i < ioc->scsiio_depth; i++) {
5373 ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5374 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5375 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5376 if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5377 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5380 for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5381 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5383 ioc->pcie_sg_lookup[i].pcie_sgl +
5384 (j * ioc->chain_segment_sz);
5385 ct->chain_buffer_dma =
5386 ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5387 (j * ioc->chain_segment_sz);
5392 ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5393 ioc->scsiio_depth, sz,
5394 (sz * ioc->scsiio_depth) / 1024));
5396 ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5397 ioc->chains_per_prp_buffer));
5398 total_sz += sz * ioc->scsiio_depth;
5401 ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5402 ioc->chain_segment_sz, 16, 0);
5403 if (!ioc->chain_dma_pool) {
5404 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5407 for (i = 0; i < ioc->scsiio_depth; i++) {
5408 for (j = ioc->chains_per_prp_buffer;
5409 j < ioc->chains_needed_per_io; j++) {
5410 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5411 ct->chain_buffer = dma_pool_alloc(
5412 ioc->chain_dma_pool, GFP_KERNEL,
5413 &ct->chain_buffer_dma);
5414 if (!ct->chain_buffer) {
5415 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5419 total_sz += ioc->chain_segment_sz;
5423 ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5424 ioc->chain_depth, ioc->chain_segment_sz,
5425 (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5427 /* sense buffers, 4 byte align */
5428 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5429 ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5431 if (!ioc->sense_dma_pool) {
5432 ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5435 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5438 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5441 /* sense buffer requires to be in same 4 gb region.
5442 * Below function will check the same.
5443 * In case of failure, new pci pool will be created with updated
5444 * alignment. Older allocation and pool will be destroyed.
5445 * Alignment will be used such a way that next allocation if
5446 * success, will always meet same 4gb region requirement.
5447 * Actual requirement is not alignment, but we need start and end of
5448 * DMA address must have same upper 32 bit address.
5450 if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5451 //Release Sense pool & Reallocate
5452 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5453 dma_pool_destroy(ioc->sense_dma_pool);
5456 ioc->sense_dma_pool =
5457 dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5458 roundup_pow_of_two(sz), 0);
5459 if (!ioc->sense_dma_pool) {
5460 ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5463 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5466 ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5471 "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5472 "element_size(%d), pool_size(%d kB)\n",
5473 ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5474 SCSI_SENSE_BUFFERSIZE, sz / 1024);
5478 /* reply pool, 4 byte align */
5479 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5480 ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5482 if (!ioc->reply_dma_pool) {
5483 ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5486 ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5489 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5492 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5493 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5495 ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5496 ioc->reply, ioc->reply_free_queue_depth,
5497 ioc->reply_sz, sz / 1024));
5499 ioc_info(ioc, "reply_dma(0x%llx)\n",
5500 (unsigned long long)ioc->reply_dma));
5503 /* reply free queue, 16 byte align */
5504 sz = ioc->reply_free_queue_depth * 4;
5505 ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5506 &ioc->pdev->dev, sz, 16, 0);
5507 if (!ioc->reply_free_dma_pool) {
5508 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5511 ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5512 &ioc->reply_free_dma);
5513 if (!ioc->reply_free) {
5514 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5518 ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5519 ioc->reply_free, ioc->reply_free_queue_depth,
5522 ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5523 (unsigned long long)ioc->reply_free_dma));
5526 if (ioc->rdpq_array_enable) {
5527 reply_post_free_array_sz = ioc->reply_queue_count *
5528 sizeof(Mpi2IOCInitRDPQArrayEntry);
5529 ioc->reply_post_free_array_dma_pool =
5530 dma_pool_create("reply_post_free_array pool",
5531 &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5532 if (!ioc->reply_post_free_array_dma_pool) {
5534 ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5537 ioc->reply_post_free_array =
5538 dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5539 GFP_KERNEL, &ioc->reply_post_free_array_dma);
5540 if (!ioc->reply_post_free_array) {
5542 ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5546 ioc->config_page_sz = 512;
5547 ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5548 ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5549 if (!ioc->config_page) {
5550 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5554 ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5555 ioc->config_page, (unsigned long long)ioc->config_page_dma,
5556 ioc->config_page_sz);
5557 total_sz += ioc->config_page_sz;
5559 ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5561 ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5562 ioc->shost->can_queue, facts->RequestCredit);
5563 ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5564 ioc->shost->sg_tablesize);
5572 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5573 * @ioc: Pointer to MPT_ADAPTER structure
5574 * @cooked: Request raw or cooked IOC state
5576 * Return: all IOC Doorbell register bits if cooked==0, else just the
5577 * Doorbell bits in MPI_IOC_STATE_MASK.
5580 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5584 s = ioc->base_readl(&ioc->chip->Doorbell);
5585 sc = s & MPI2_IOC_STATE_MASK;
5586 return cooked ? sc : s;
5590 * _base_wait_on_iocstate - waiting on a particular ioc state
5592 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5593 * @timeout: timeout in second
5595 * Return: 0 for success, non-zero for failure.
5598 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5604 cntdn = 1000 * timeout;
5606 current_state = mpt3sas_base_get_iocstate(ioc, 1);
5607 if (current_state == ioc_state)
5609 if (count && current_state == MPI2_IOC_STATE_FAULT)
5611 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
5614 usleep_range(1000, 1500);
5618 return current_state;
5622 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5623 * a write to the doorbell)
5624 * @ioc: per adapter object
5625 * @timeout: timeout in seconds
5627 * Return: 0 for success, non-zero for failure.
5629 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5633 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5639 cntdn = 1000 * timeout;
5641 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5642 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5644 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5645 __func__, count, timeout));
5649 usleep_range(1000, 1500);
5653 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5654 __func__, count, int_status);
5659 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5665 cntdn = 2000 * timeout;
5667 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5668 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5670 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5671 __func__, count, timeout));
5679 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5680 __func__, count, int_status);
5686 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5687 * @ioc: per adapter object
5688 * @timeout: timeout in second
5690 * Return: 0 for success, non-zero for failure.
5692 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5696 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5703 cntdn = 1000 * timeout;
5705 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5706 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5708 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5709 __func__, count, timeout));
5711 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5712 doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5713 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5714 MPI2_IOC_STATE_FAULT) {
5715 mpt3sas_print_fault_code(ioc, doorbell);
5718 if ((doorbell & MPI2_IOC_STATE_MASK) ==
5719 MPI2_IOC_STATE_COREDUMP) {
5720 mpt3sas_print_coredump_info(ioc, doorbell);
5723 } else if (int_status == 0xFFFFFFFF)
5726 usleep_range(1000, 1500);
5731 ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5732 __func__, count, int_status);
5737 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5738 * @ioc: per adapter object
5739 * @timeout: timeout in second
5741 * Return: 0 for success, non-zero for failure.
5744 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5750 cntdn = 1000 * timeout;
5752 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5753 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5755 ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5756 __func__, count, timeout));
5760 usleep_range(1000, 1500);
5764 ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5765 __func__, count, doorbell_reg);
5770 * _base_send_ioc_reset - send doorbell reset
5771 * @ioc: per adapter object
5772 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5773 * @timeout: timeout in second
5775 * Return: 0 for success, non-zero for failure.
5778 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5782 unsigned long flags;
5784 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5785 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5789 if (!(ioc->facts.IOCCapabilities &
5790 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5793 ioc_info(ioc, "sending message unit reset !!\n");
5795 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5796 &ioc->chip->Doorbell);
5797 if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5802 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5804 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5805 __func__, ioc_state);
5811 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5812 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5814 * Wait for IOC state CoreDump to clear only during
5815 * HBA initialization & release time.
5817 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
5818 MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
5819 ioc->fault_reset_work_q == NULL)) {
5820 spin_unlock_irqrestore(
5821 &ioc->ioc_reset_in_progress_lock, flags);
5822 mpt3sas_print_coredump_info(ioc, ioc_state);
5823 mpt3sas_base_wait_for_coredump_completion(ioc,
5826 &ioc->ioc_reset_in_progress_lock, flags);
5828 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5830 ioc_info(ioc, "message unit reset: %s\n",
5831 r == 0 ? "SUCCESS" : "FAILED");
5836 * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5837 * @ioc: per adapter object
5838 * @timeout: timeout in seconds
5840 * Return: Waits up to timeout seconds for the IOC to
5841 * become operational. Returns 0 if IOC is present
5842 * and operational; otherwise returns -EFAULT.
5846 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5848 int wait_state_count = 0;
5852 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5853 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5856 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5857 __func__, ++wait_state_count);
5858 } while (--timeout);
5860 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5863 if (wait_state_count)
5864 ioc_info(ioc, "ioc is operational\n");
5869 * _base_handshake_req_reply_wait - send request thru doorbell interface
5870 * @ioc: per adapter object
5871 * @request_bytes: request length
5872 * @request: pointer having request payload
5873 * @reply_bytes: reply length
5874 * @reply: pointer to reply payload
5875 * @timeout: timeout in second
5877 * Return: 0 for success, non-zero for failure.
5880 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5881 u32 *request, int reply_bytes, u16 *reply, int timeout)
5883 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5888 /* make sure doorbell is not in use */
5889 if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5890 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5894 /* clear pending doorbell interrupts from previous state changes */
5895 if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5896 MPI2_HIS_IOC2SYS_DB_STATUS)
5897 writel(0, &ioc->chip->HostInterruptStatus);
5899 /* send message to ioc */
5900 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5901 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5902 &ioc->chip->Doorbell);
5904 if ((_base_spin_on_doorbell_int(ioc, 5))) {
5905 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5909 writel(0, &ioc->chip->HostInterruptStatus);
5911 if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5912 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5917 /* send message 32-bits at a time */
5918 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5919 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5920 if ((_base_wait_for_doorbell_ack(ioc, 5)))
5925 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5930 /* now wait for the reply */
5931 if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5932 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5937 /* read the first two 16-bits, it gives the total length of the reply */
5938 reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5939 & MPI2_DOORBELL_DATA_MASK);
5940 writel(0, &ioc->chip->HostInterruptStatus);
5941 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5942 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5946 reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5947 & MPI2_DOORBELL_DATA_MASK);
5948 writel(0, &ioc->chip->HostInterruptStatus);
5950 for (i = 2; i < default_reply->MsgLength * 2; i++) {
5951 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5952 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5956 if (i >= reply_bytes/2) /* overflow case */
5957 ioc->base_readl(&ioc->chip->Doorbell);
5959 reply[i] = le16_to_cpu(
5960 ioc->base_readl(&ioc->chip->Doorbell)
5961 & MPI2_DOORBELL_DATA_MASK);
5962 writel(0, &ioc->chip->HostInterruptStatus);
5965 _base_wait_for_doorbell_int(ioc, 5);
5966 if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5968 ioc_info(ioc, "doorbell is in use (line=%d)\n",
5971 writel(0, &ioc->chip->HostInterruptStatus);
5973 if (ioc->logging_level & MPT_DEBUG_INIT) {
5974 mfp = (__le32 *)reply;
5975 pr_info("\toffset:data\n");
5976 for (i = 0; i < reply_bytes/4; i++)
5977 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
5978 le32_to_cpu(mfp[i]));
5984 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
5985 * @ioc: per adapter object
5986 * @mpi_reply: the reply payload from FW
5987 * @mpi_request: the request payload sent to FW
5989 * The SAS IO Unit Control Request message allows the host to perform low-level
5990 * operations, such as resets on the PHYs of the IO Unit, also allows the host
5991 * to obtain the IOC assigned device handles for a device if it has other
5992 * identifying information about the device, in addition allows the host to
5993 * remove IOC resources associated with the device.
5995 * Return: 0 for success, non-zero for failure.
5998 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
5999 Mpi2SasIoUnitControlReply_t *mpi_reply,
6000 Mpi2SasIoUnitControlRequest_t *mpi_request)
6007 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6009 mutex_lock(&ioc->base_cmds.mutex);
6011 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6012 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6017 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6021 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6023 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6029 ioc->base_cmds.status = MPT3_CMD_PENDING;
6030 request = mpt3sas_base_get_msg_frame(ioc, smid);
6031 ioc->base_cmds.smid = smid;
6032 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6033 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6034 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6035 ioc->ioc_link_reset_in_progress = 1;
6036 init_completion(&ioc->base_cmds.done);
6037 ioc->put_smid_default(ioc, smid);
6038 wait_for_completion_timeout(&ioc->base_cmds.done,
6039 msecs_to_jiffies(10000));
6040 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6041 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6042 ioc->ioc_link_reset_in_progress)
6043 ioc->ioc_link_reset_in_progress = 0;
6044 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6045 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6046 mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6048 goto issue_host_reset;
6050 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6051 memcpy(mpi_reply, ioc->base_cmds.reply,
6052 sizeof(Mpi2SasIoUnitControlReply_t));
6054 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6055 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6060 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6061 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6064 mutex_unlock(&ioc->base_cmds.mutex);
6069 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6070 * @ioc: per adapter object
6071 * @mpi_reply: the reply payload from FW
6072 * @mpi_request: the request payload sent to FW
6074 * The SCSI Enclosure Processor request message causes the IOC to
6075 * communicate with SES devices to control LED status signals.
6077 * Return: 0 for success, non-zero for failure.
6080 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6081 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6088 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6090 mutex_lock(&ioc->base_cmds.mutex);
6092 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6093 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6098 rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6102 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6104 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6110 ioc->base_cmds.status = MPT3_CMD_PENDING;
6111 request = mpt3sas_base_get_msg_frame(ioc, smid);
6112 ioc->base_cmds.smid = smid;
6113 memset(request, 0, ioc->request_sz);
6114 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6115 init_completion(&ioc->base_cmds.done);
6116 ioc->put_smid_default(ioc, smid);
6117 wait_for_completion_timeout(&ioc->base_cmds.done,
6118 msecs_to_jiffies(10000));
6119 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6120 mpt3sas_check_cmd_timeout(ioc,
6121 ioc->base_cmds.status, mpi_request,
6122 sizeof(Mpi2SepRequest_t)/4, issue_reset);
6123 goto issue_host_reset;
6125 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6126 memcpy(mpi_reply, ioc->base_cmds.reply,
6127 sizeof(Mpi2SepReply_t));
6129 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6130 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6135 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6136 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6139 mutex_unlock(&ioc->base_cmds.mutex);
6144 * _base_get_port_facts - obtain port facts reply and save in ioc
6145 * @ioc: per adapter object
6148 * Return: 0 for success, non-zero for failure.
6151 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6153 Mpi2PortFactsRequest_t mpi_request;
6154 Mpi2PortFactsReply_t mpi_reply;
6155 struct mpt3sas_port_facts *pfacts;
6156 int mpi_reply_sz, mpi_request_sz, r;
6158 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6160 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6161 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6162 memset(&mpi_request, 0, mpi_request_sz);
6163 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6164 mpi_request.PortNumber = port;
6165 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6166 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6169 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6173 pfacts = &ioc->pfacts[port];
6174 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6175 pfacts->PortNumber = mpi_reply.PortNumber;
6176 pfacts->VP_ID = mpi_reply.VP_ID;
6177 pfacts->VF_ID = mpi_reply.VF_ID;
6178 pfacts->MaxPostedCmdBuffers =
6179 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6185 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6186 * @ioc: per adapter object
6189 * Return: 0 for success, non-zero for failure.
6192 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6197 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6199 if (ioc->pci_error_recovery) {
6201 ioc_info(ioc, "%s: host in pci error recovery\n",
6206 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6208 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6209 __func__, ioc_state));
6211 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6212 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6215 if (ioc_state & MPI2_DOORBELL_USED) {
6216 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6217 goto issue_diag_reset;
6220 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6221 mpt3sas_print_fault_code(ioc, ioc_state &
6222 MPI2_DOORBELL_DATA_MASK);
6223 goto issue_diag_reset;
6224 } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6225 MPI2_IOC_STATE_COREDUMP) {
6227 "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6228 __func__, ioc_state);
6232 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6235 ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6236 __func__, ioc_state));
6241 rc = _base_diag_reset(ioc);
6246 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6247 * @ioc: per adapter object
6249 * Return: 0 for success, non-zero for failure.
6252 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6254 Mpi2IOCFactsRequest_t mpi_request;
6255 Mpi2IOCFactsReply_t mpi_reply;
6256 struct mpt3sas_facts *facts;
6257 int mpi_reply_sz, mpi_request_sz, r;
6259 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6261 r = _base_wait_for_iocstate(ioc, 10);
6264 ioc_info(ioc, "%s: failed getting to correct state\n",
6268 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6269 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6270 memset(&mpi_request, 0, mpi_request_sz);
6271 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6272 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6273 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6276 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6280 facts = &ioc->facts;
6281 memset(facts, 0, sizeof(struct mpt3sas_facts));
6282 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6283 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6284 facts->VP_ID = mpi_reply.VP_ID;
6285 facts->VF_ID = mpi_reply.VF_ID;
6286 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6287 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6288 facts->WhoInit = mpi_reply.WhoInit;
6289 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6290 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6291 if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6292 MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6293 ioc->combined_reply_queue = 0;
6294 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6295 facts->MaxReplyDescriptorPostQueueDepth =
6296 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6297 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6298 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6299 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6300 ioc->ir_firmware = 1;
6301 if ((facts->IOCCapabilities &
6302 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6303 ioc->rdpq_array_capable = 1;
6304 if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6305 && ioc->is_aero_ioc)
6306 ioc->atomic_desc_capable = 1;
6307 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6308 facts->IOCRequestFrameSize =
6309 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6310 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6311 facts->IOCMaxChainSegmentSize =
6312 le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6314 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6315 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6316 ioc->shost->max_id = -1;
6317 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6318 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6319 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6320 facts->HighPriorityCredit =
6321 le16_to_cpu(mpi_reply.HighPriorityCredit);
6322 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6323 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6324 facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6327 * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6329 ioc->page_size = 1 << facts->CurrentHostPageSize;
6330 if (ioc->page_size == 1) {
6331 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6332 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6335 ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6336 facts->CurrentHostPageSize));
6339 ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6340 facts->RequestCredit, facts->MaxChainDepth));
6342 ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6343 facts->IOCRequestFrameSize * 4,
6344 facts->ReplyFrameSize * 4));
6349 * _base_send_ioc_init - send ioc_init to firmware
6350 * @ioc: per adapter object
6352 * Return: 0 for success, non-zero for failure.
6355 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6357 Mpi2IOCInitRequest_t mpi_request;
6358 Mpi2IOCInitReply_t mpi_reply;
6360 ktime_t current_time;
6362 u32 reply_post_free_array_sz = 0;
6364 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6366 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6367 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6368 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6369 mpi_request.VF_ID = 0; /* TODO */
6370 mpi_request.VP_ID = 0;
6371 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6372 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6373 mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6375 if (_base_is_controller_msix_enabled(ioc))
6376 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6377 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6378 mpi_request.ReplyDescriptorPostQueueDepth =
6379 cpu_to_le16(ioc->reply_post_queue_depth);
6380 mpi_request.ReplyFreeQueueDepth =
6381 cpu_to_le16(ioc->reply_free_queue_depth);
6383 mpi_request.SenseBufferAddressHigh =
6384 cpu_to_le32((u64)ioc->sense_dma >> 32);
6385 mpi_request.SystemReplyAddressHigh =
6386 cpu_to_le32((u64)ioc->reply_dma >> 32);
6387 mpi_request.SystemRequestFrameBaseAddress =
6388 cpu_to_le64((u64)ioc->request_dma);
6389 mpi_request.ReplyFreeQueueAddress =
6390 cpu_to_le64((u64)ioc->reply_free_dma);
6392 if (ioc->rdpq_array_enable) {
6393 reply_post_free_array_sz = ioc->reply_queue_count *
6394 sizeof(Mpi2IOCInitRDPQArrayEntry);
6395 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6396 for (i = 0; i < ioc->reply_queue_count; i++)
6397 ioc->reply_post_free_array[i].RDPQBaseAddress =
6399 (u64)ioc->reply_post[i].reply_post_free_dma);
6400 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6401 mpi_request.ReplyDescriptorPostQueueAddress =
6402 cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6404 mpi_request.ReplyDescriptorPostQueueAddress =
6405 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6409 * Set the flag to enable CoreDump state feature in IOC firmware.
6411 mpi_request.ConfigurationFlags |=
6412 cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6414 /* This time stamp specifies number of milliseconds
6415 * since epoch ~ midnight January 1, 1970.
6417 current_time = ktime_get_real();
6418 mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6420 if (ioc->logging_level & MPT_DEBUG_INIT) {
6424 mfp = (__le32 *)&mpi_request;
6425 ioc_info(ioc, "\toffset:data\n");
6426 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6427 ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6428 le32_to_cpu(mfp[i]));
6431 r = _base_handshake_req_reply_wait(ioc,
6432 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6433 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10);
6436 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6440 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6441 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6442 mpi_reply.IOCLogInfo) {
6443 ioc_err(ioc, "%s: failed\n", __func__);
6451 * mpt3sas_port_enable_done - command completion routine for port enable
6452 * @ioc: per adapter object
6453 * @smid: system request message index
6454 * @msix_index: MSIX table index supplied by the OS
6455 * @reply: reply message frame(lower 32bit addr)
6457 * Return: 1 meaning mf should be freed from _base_interrupt
6458 * 0 means the mf is freed from this function.
6461 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6464 MPI2DefaultReply_t *mpi_reply;
6467 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6470 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6474 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6477 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6478 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6479 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6480 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6481 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6482 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6483 ioc->port_enable_failed = 1;
6485 if (ioc->is_driver_loading) {
6486 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6487 mpt3sas_port_enable_complete(ioc);
6490 ioc->start_scan_failed = ioc_status;
6491 ioc->start_scan = 0;
6495 complete(&ioc->port_enable_cmds.done);
6500 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6501 * @ioc: per adapter object
6503 * Return: 0 for success, non-zero for failure.
6506 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6508 Mpi2PortEnableRequest_t *mpi_request;
6509 Mpi2PortEnableReply_t *mpi_reply;
6514 ioc_info(ioc, "sending port enable !!\n");
6516 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6517 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6521 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6523 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6527 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6528 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6529 ioc->port_enable_cmds.smid = smid;
6530 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6531 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6533 init_completion(&ioc->port_enable_cmds.done);
6534 ioc->put_smid_default(ioc, smid);
6535 wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6536 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6537 ioc_err(ioc, "%s: timeout\n", __func__);
6538 _debug_dump_mf(mpi_request,
6539 sizeof(Mpi2PortEnableRequest_t)/4);
6540 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6547 mpi_reply = ioc->port_enable_cmds.reply;
6548 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6549 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6550 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6551 __func__, ioc_status);
6557 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6558 ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6563 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6564 * @ioc: per adapter object
6566 * Return: 0 for success, non-zero for failure.
6569 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6571 Mpi2PortEnableRequest_t *mpi_request;
6574 ioc_info(ioc, "sending port enable !!\n");
6576 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6577 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6581 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6583 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6587 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6588 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6589 ioc->port_enable_cmds.smid = smid;
6590 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6591 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6593 ioc->put_smid_default(ioc, smid);
6598 * _base_determine_wait_on_discovery - desposition
6599 * @ioc: per adapter object
6601 * Decide whether to wait on discovery to complete. Used to either
6602 * locate boot device, or report volumes ahead of physical devices.
6604 * Return: 1 for wait, 0 for don't wait.
6607 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6609 /* We wait for discovery to complete if IR firmware is loaded.
6610 * The sas topology events arrive before PD events, so we need time to
6611 * turn on the bit in ioc->pd_handles to indicate PD
6612 * Also, it maybe required to report Volumes ahead of physical
6613 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6615 if (ioc->ir_firmware)
6618 /* if no Bios, then we don't need to wait */
6619 if (!ioc->bios_pg3.BiosVersion)
6622 /* Bios is present, then we drop down here.
6624 * If there any entries in the Bios Page 2, then we wait
6625 * for discovery to complete.
6628 /* Current Boot Device */
6629 if ((ioc->bios_pg2.CurrentBootDeviceForm &
6630 MPI2_BIOSPAGE2_FORM_MASK) ==
6631 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6632 /* Request Boot Device */
6633 (ioc->bios_pg2.ReqBootDeviceForm &
6634 MPI2_BIOSPAGE2_FORM_MASK) ==
6635 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6636 /* Alternate Request Boot Device */
6637 (ioc->bios_pg2.ReqAltBootDeviceForm &
6638 MPI2_BIOSPAGE2_FORM_MASK) ==
6639 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6646 * _base_unmask_events - turn on notification for this event
6647 * @ioc: per adapter object
6648 * @event: firmware event
6650 * The mask is stored in ioc->event_masks.
6653 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6660 desired_event = (1 << (event % 32));
6663 ioc->event_masks[0] &= ~desired_event;
6664 else if (event < 64)
6665 ioc->event_masks[1] &= ~desired_event;
6666 else if (event < 96)
6667 ioc->event_masks[2] &= ~desired_event;
6668 else if (event < 128)
6669 ioc->event_masks[3] &= ~desired_event;
6673 * _base_event_notification - send event notification
6674 * @ioc: per adapter object
6676 * Return: 0 for success, non-zero for failure.
6679 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6681 Mpi2EventNotificationRequest_t *mpi_request;
6686 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6688 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6689 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6693 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6695 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6698 ioc->base_cmds.status = MPT3_CMD_PENDING;
6699 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6700 ioc->base_cmds.smid = smid;
6701 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6702 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6703 mpi_request->VF_ID = 0; /* TODO */
6704 mpi_request->VP_ID = 0;
6705 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6706 mpi_request->EventMasks[i] =
6707 cpu_to_le32(ioc->event_masks[i]);
6708 init_completion(&ioc->base_cmds.done);
6709 ioc->put_smid_default(ioc, smid);
6710 wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6711 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6712 ioc_err(ioc, "%s: timeout\n", __func__);
6713 _debug_dump_mf(mpi_request,
6714 sizeof(Mpi2EventNotificationRequest_t)/4);
6715 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6720 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6721 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6726 * mpt3sas_base_validate_event_type - validating event types
6727 * @ioc: per adapter object
6728 * @event_type: firmware event
6730 * This will turn on firmware event notification when application
6731 * ask for that event. We don't mask events that are already enabled.
6734 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6737 u32 event_mask, desired_event;
6738 u8 send_update_to_fw;
6740 for (i = 0, send_update_to_fw = 0; i <
6741 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6742 event_mask = ~event_type[i];
6744 for (j = 0; j < 32; j++) {
6745 if (!(event_mask & desired_event) &&
6746 (ioc->event_masks[i] & desired_event)) {
6747 ioc->event_masks[i] &= ~desired_event;
6748 send_update_to_fw = 1;
6750 desired_event = (desired_event << 1);
6754 if (!send_update_to_fw)
6757 mutex_lock(&ioc->base_cmds.mutex);
6758 _base_event_notification(ioc);
6759 mutex_unlock(&ioc->base_cmds.mutex);
6763 * _base_diag_reset - the "big hammer" start of day reset
6764 * @ioc: per adapter object
6766 * Return: 0 for success, non-zero for failure.
6769 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6771 u32 host_diagnostic;
6776 ioc_info(ioc, "sending diag reset !!\n");
6778 drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6782 /* Write magic sequence to WriteSequence register
6783 * Loop until in diagnostic mode
6785 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6786 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6787 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6788 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6789 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6790 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6791 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6792 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6799 "Stop writing magic sequence after 20 retries\n");
6803 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6805 ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6806 count, host_diagnostic));
6808 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6810 hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6812 drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6813 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6814 &ioc->chip->HostDiagnostic);
6816 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6817 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6819 /* Approximately 300 second max wait */
6820 for (count = 0; count < (300000000 /
6821 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6823 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6825 if (host_diagnostic == 0xFFFFFFFF) {
6827 "Invalid host diagnostic register value\n");
6830 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6833 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6836 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6839 ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6840 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6841 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6842 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6844 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6845 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6846 &ioc->chip->HCBSize);
6849 drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6850 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6851 &ioc->chip->HostDiagnostic);
6854 ioc_info(ioc, "disable writes to the diagnostic register\n"));
6855 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6857 drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6858 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6860 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6861 __func__, ioc_state);
6865 ioc_info(ioc, "diag reset: SUCCESS\n");
6869 ioc_err(ioc, "diag reset: FAILED\n");
6874 * _base_make_ioc_ready - put controller in READY state
6875 * @ioc: per adapter object
6876 * @type: FORCE_BIG_HAMMER or SOFT_RESET
6878 * Return: 0 for success, non-zero for failure.
6881 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6887 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6889 if (ioc->pci_error_recovery)
6892 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6894 ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6895 __func__, ioc_state));
6897 /* if in RESET state, it should move to READY state shortly */
6899 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6900 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6901 MPI2_IOC_STATE_READY) {
6902 if (count++ == 10) {
6903 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6904 __func__, ioc_state);
6908 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6912 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6915 if (ioc_state & MPI2_DOORBELL_USED) {
6916 ioc_info(ioc, "unexpected doorbell active!\n");
6917 goto issue_diag_reset;
6920 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6921 mpt3sas_print_fault_code(ioc, ioc_state &
6922 MPI2_DOORBELL_DATA_MASK);
6923 goto issue_diag_reset;
6926 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
6928 * if host reset is invoked while watch dog thread is waiting
6929 * for IOC state to be changed to Fault state then driver has
6930 * to wait here for CoreDump state to clear otherwise reset
6931 * will be issued to the FW and FW move the IOC state to
6932 * reset state without copying the FW logs to coredump region.
6934 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
6935 mpt3sas_print_coredump_info(ioc, ioc_state &
6936 MPI2_DOORBELL_DATA_MASK);
6937 mpt3sas_base_wait_for_coredump_completion(ioc,
6940 goto issue_diag_reset;
6943 if (type == FORCE_BIG_HAMMER)
6944 goto issue_diag_reset;
6946 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6947 if (!(_base_send_ioc_reset(ioc,
6948 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6953 rc = _base_diag_reset(ioc);
6958 * _base_make_ioc_operational - put controller in OPERATIONAL state
6959 * @ioc: per adapter object
6961 * Return: 0 for success, non-zero for failure.
6964 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6966 int r, i, index, rc;
6967 unsigned long flags;
6970 struct _tr_list *delayed_tr, *delayed_tr_next;
6971 struct _sc_list *delayed_sc, *delayed_sc_next;
6972 struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
6974 struct adapter_reply_queue *reply_q;
6975 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
6977 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6979 /* clean the delayed target reset list */
6980 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6981 &ioc->delayed_tr_list, list) {
6982 list_del(&delayed_tr->list);
6987 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
6988 &ioc->delayed_tr_volume_list, list) {
6989 list_del(&delayed_tr->list);
6993 list_for_each_entry_safe(delayed_sc, delayed_sc_next,
6994 &ioc->delayed_sc_list, list) {
6995 list_del(&delayed_sc->list);
6999 list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7000 &ioc->delayed_event_ack_list, list) {
7001 list_del(&delayed_event_ack->list);
7002 kfree(delayed_event_ack);
7005 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7007 /* hi-priority queue */
7008 INIT_LIST_HEAD(&ioc->hpr_free_list);
7009 smid = ioc->hi_priority_smid;
7010 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7011 ioc->hpr_lookup[i].cb_idx = 0xFF;
7012 ioc->hpr_lookup[i].smid = smid;
7013 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7014 &ioc->hpr_free_list);
7017 /* internal queue */
7018 INIT_LIST_HEAD(&ioc->internal_free_list);
7019 smid = ioc->internal_smid;
7020 for (i = 0; i < ioc->internal_depth; i++, smid++) {
7021 ioc->internal_lookup[i].cb_idx = 0xFF;
7022 ioc->internal_lookup[i].smid = smid;
7023 list_add_tail(&ioc->internal_lookup[i].tracker_list,
7024 &ioc->internal_free_list);
7027 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7029 /* initialize Reply Free Queue */
7030 for (i = 0, reply_address = (u32)ioc->reply_dma ;
7031 i < ioc->reply_free_queue_depth ; i++, reply_address +=
7033 ioc->reply_free[i] = cpu_to_le32(reply_address);
7034 if (ioc->is_mcpu_endpoint)
7035 _base_clone_reply_to_sys_mem(ioc,
7039 /* initialize reply queues */
7040 if (ioc->is_driver_loading)
7041 _base_assign_reply_queues(ioc);
7043 /* initialize Reply Post Free Queue */
7045 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7046 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7048 * If RDPQ is enabled, switch to the next allocation.
7049 * Otherwise advance within the contiguous region.
7051 if (ioc->rdpq_array_enable) {
7052 reply_q->reply_post_free =
7053 ioc->reply_post[index++].reply_post_free;
7055 reply_q->reply_post_free = reply_post_free_contig;
7056 reply_post_free_contig += ioc->reply_post_queue_depth;
7059 reply_q->reply_post_host_index = 0;
7060 for (i = 0; i < ioc->reply_post_queue_depth; i++)
7061 reply_q->reply_post_free[i].Words =
7062 cpu_to_le64(ULLONG_MAX);
7063 if (!_base_is_controller_msix_enabled(ioc))
7064 goto skip_init_reply_post_free_queue;
7066 skip_init_reply_post_free_queue:
7068 r = _base_send_ioc_init(ioc);
7071 * No need to check IOC state for fault state & issue
7072 * diag reset during host reset. This check is need
7073 * only during driver load time.
7075 if (!ioc->is_driver_loading)
7078 rc = _base_check_for_fault_and_issue_reset(ioc);
7079 if (rc || (_base_send_ioc_init(ioc)))
7083 /* initialize reply free host index */
7084 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7085 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7087 /* initialize reply post host index */
7088 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7089 if (ioc->combined_reply_queue)
7090 writel((reply_q->msix_index & 7)<<
7091 MPI2_RPHI_MSIX_INDEX_SHIFT,
7092 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7094 writel(reply_q->msix_index <<
7095 MPI2_RPHI_MSIX_INDEX_SHIFT,
7096 &ioc->chip->ReplyPostHostIndex);
7098 if (!_base_is_controller_msix_enabled(ioc))
7099 goto skip_init_reply_post_host_index;
7102 skip_init_reply_post_host_index:
7104 _base_unmask_interrupts(ioc);
7106 if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7107 r = _base_display_fwpkg_version(ioc);
7112 _base_static_config_pages(ioc);
7113 r = _base_event_notification(ioc);
7117 if (ioc->is_driver_loading) {
7119 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7122 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7123 MFG_PAGE10_HIDE_SSDS_MASK);
7124 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7125 ioc->mfg_pg10_hide_flag = hide_flag;
7128 ioc->wait_for_discovery_to_complete =
7129 _base_determine_wait_on_discovery(ioc);
7131 return r; /* scan_start and scan_finished support */
7134 r = _base_send_port_enable(ioc);
7142 * mpt3sas_base_free_resources - free resources controller resources
7143 * @ioc: per adapter object
7146 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7148 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7150 /* synchronizing freeing resource with pci_access_mutex lock */
7151 mutex_lock(&ioc->pci_access_mutex);
7152 if (ioc->chip_phys && ioc->chip) {
7153 _base_mask_interrupts(ioc);
7154 ioc->shost_recovery = 1;
7155 _base_make_ioc_ready(ioc, SOFT_RESET);
7156 ioc->shost_recovery = 0;
7159 mpt3sas_base_unmap_resources(ioc);
7160 mutex_unlock(&ioc->pci_access_mutex);
7165 * mpt3sas_base_attach - attach controller instance
7166 * @ioc: per adapter object
7168 * Return: 0 for success, non-zero for failure.
7171 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7174 int cpu_id, last_cpu_id = 0;
7176 dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7178 /* setup cpu_msix_table */
7179 ioc->cpu_count = num_online_cpus();
7180 for_each_online_cpu(cpu_id)
7181 last_cpu_id = cpu_id;
7182 ioc->cpu_msix_table_sz = last_cpu_id + 1;
7183 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7184 ioc->reply_queue_count = 1;
7185 if (!ioc->cpu_msix_table) {
7186 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7188 goto out_free_resources;
7191 if (ioc->is_warpdrive) {
7192 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7193 sizeof(resource_size_t *), GFP_KERNEL);
7194 if (!ioc->reply_post_host_index) {
7195 ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7197 goto out_free_resources;
7201 ioc->smp_affinity_enable = smp_affinity_enable;
7203 ioc->rdpq_array_enable_assigned = 0;
7204 ioc->use_32bit_dma = false;
7205 if (ioc->is_aero_ioc)
7206 ioc->base_readl = &_base_readl_aero;
7208 ioc->base_readl = &_base_readl;
7209 r = mpt3sas_base_map_resources(ioc);
7211 goto out_free_resources;
7213 pci_set_drvdata(ioc->pdev, ioc->shost);
7214 r = _base_get_ioc_facts(ioc);
7216 rc = _base_check_for_fault_and_issue_reset(ioc);
7217 if (rc || (_base_get_ioc_facts(ioc)))
7218 goto out_free_resources;
7221 switch (ioc->hba_mpi_version_belonged) {
7223 ioc->build_sg_scmd = &_base_build_sg_scmd;
7224 ioc->build_sg = &_base_build_sg;
7225 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7226 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7232 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7233 * Target Status - all require the IEEE formated scatter gather
7236 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7237 ioc->build_sg = &_base_build_sg_ieee;
7238 ioc->build_nvme_prp = &_base_build_nvme_prp;
7239 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7240 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7241 if (ioc->high_iops_queues)
7242 ioc->get_msix_index_for_smlio =
7243 &_base_get_high_iops_msix_index;
7245 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7248 if (ioc->atomic_desc_capable) {
7249 ioc->put_smid_default = &_base_put_smid_default_atomic;
7250 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7251 ioc->put_smid_fast_path =
7252 &_base_put_smid_fast_path_atomic;
7253 ioc->put_smid_hi_priority =
7254 &_base_put_smid_hi_priority_atomic;
7256 ioc->put_smid_default = &_base_put_smid_default;
7257 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7258 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7259 if (ioc->is_mcpu_endpoint)
7260 ioc->put_smid_scsi_io =
7261 &_base_put_smid_mpi_ep_scsi_io;
7263 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7266 * These function pointers for other requests that don't
7267 * the require IEEE scatter gather elements.
7269 * For example Configuration Pages and SAS IOUNIT Control don't.
7271 ioc->build_sg_mpi = &_base_build_sg;
7272 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7274 r = _base_make_ioc_ready(ioc, SOFT_RESET);
7276 goto out_free_resources;
7278 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7279 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7282 goto out_free_resources;
7285 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7286 r = _base_get_port_facts(ioc, i);
7288 rc = _base_check_for_fault_and_issue_reset(ioc);
7289 if (rc || (_base_get_port_facts(ioc, i)))
7290 goto out_free_resources;
7294 r = _base_allocate_memory_pools(ioc);
7296 goto out_free_resources;
7298 if (irqpoll_weight > 0)
7299 ioc->thresh_hold = irqpoll_weight;
7301 ioc->thresh_hold = ioc->hba_queue_depth/4;
7303 _base_init_irqpolls(ioc);
7304 init_waitqueue_head(&ioc->reset_wq);
7306 /* allocate memory pd handle bitmask list */
7307 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7308 if (ioc->facts.MaxDevHandle % 8)
7309 ioc->pd_handles_sz++;
7310 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7312 if (!ioc->pd_handles) {
7314 goto out_free_resources;
7316 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7318 if (!ioc->blocking_handles) {
7320 goto out_free_resources;
7323 /* allocate memory for pending OS device add list */
7324 ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7325 if (ioc->facts.MaxDevHandle % 8)
7326 ioc->pend_os_device_add_sz++;
7327 ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7329 if (!ioc->pend_os_device_add)
7330 goto out_free_resources;
7332 ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7333 ioc->device_remove_in_progress =
7334 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7335 if (!ioc->device_remove_in_progress)
7336 goto out_free_resources;
7338 ioc->fwfault_debug = mpt3sas_fwfault_debug;
7340 /* base internal command bits */
7341 mutex_init(&ioc->base_cmds.mutex);
7342 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7343 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7345 /* port_enable command bits */
7346 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7347 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7349 /* transport internal command bits */
7350 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7351 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7352 mutex_init(&ioc->transport_cmds.mutex);
7354 /* scsih internal command bits */
7355 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7356 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7357 mutex_init(&ioc->scsih_cmds.mutex);
7359 /* task management internal command bits */
7360 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7361 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7362 mutex_init(&ioc->tm_cmds.mutex);
7364 /* config page internal command bits */
7365 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7366 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7367 mutex_init(&ioc->config_cmds.mutex);
7369 /* ctl module internal command bits */
7370 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7371 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7372 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7373 mutex_init(&ioc->ctl_cmds.mutex);
7375 if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7376 !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7377 !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7378 !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7380 goto out_free_resources;
7383 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7384 ioc->event_masks[i] = -1;
7386 /* here we enable the events we care about */
7387 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7388 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7389 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7390 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7391 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7392 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7393 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7394 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7395 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7396 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7397 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7398 _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7399 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7400 if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7401 if (ioc->is_gen35_ioc) {
7402 _base_unmask_events(ioc,
7403 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7404 _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7405 _base_unmask_events(ioc,
7406 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7409 r = _base_make_ioc_operational(ioc);
7411 goto out_free_resources;
7414 * Copy current copy of IOCFacts in prev_fw_facts
7415 * and it will be used during online firmware upgrade.
7417 memcpy(&ioc->prev_fw_facts, &ioc->facts,
7418 sizeof(struct mpt3sas_facts));
7420 ioc->non_operational_loop = 0;
7421 ioc->ioc_coredump_loop = 0;
7422 ioc->got_task_abort_from_ioctl = 0;
7427 ioc->remove_host = 1;
7429 mpt3sas_base_free_resources(ioc);
7430 _base_release_memory_pools(ioc);
7431 pci_set_drvdata(ioc->pdev, NULL);
7432 kfree(ioc->cpu_msix_table);
7433 if (ioc->is_warpdrive)
7434 kfree(ioc->reply_post_host_index);
7435 kfree(ioc->pd_handles);
7436 kfree(ioc->blocking_handles);
7437 kfree(ioc->device_remove_in_progress);
7438 kfree(ioc->pend_os_device_add);
7439 kfree(ioc->tm_cmds.reply);
7440 kfree(ioc->transport_cmds.reply);
7441 kfree(ioc->scsih_cmds.reply);
7442 kfree(ioc->config_cmds.reply);
7443 kfree(ioc->base_cmds.reply);
7444 kfree(ioc->port_enable_cmds.reply);
7445 kfree(ioc->ctl_cmds.reply);
7446 kfree(ioc->ctl_cmds.sense);
7448 ioc->ctl_cmds.reply = NULL;
7449 ioc->base_cmds.reply = NULL;
7450 ioc->tm_cmds.reply = NULL;
7451 ioc->scsih_cmds.reply = NULL;
7452 ioc->transport_cmds.reply = NULL;
7453 ioc->config_cmds.reply = NULL;
7460 * mpt3sas_base_detach - remove controller instance
7461 * @ioc: per adapter object
7464 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7466 dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7468 mpt3sas_base_stop_watchdog(ioc);
7469 mpt3sas_base_free_resources(ioc);
7470 _base_release_memory_pools(ioc);
7471 mpt3sas_free_enclosure_list(ioc);
7472 pci_set_drvdata(ioc->pdev, NULL);
7473 kfree(ioc->cpu_msix_table);
7474 if (ioc->is_warpdrive)
7475 kfree(ioc->reply_post_host_index);
7476 kfree(ioc->pd_handles);
7477 kfree(ioc->blocking_handles);
7478 kfree(ioc->device_remove_in_progress);
7479 kfree(ioc->pend_os_device_add);
7481 kfree(ioc->ctl_cmds.reply);
7482 kfree(ioc->ctl_cmds.sense);
7483 kfree(ioc->base_cmds.reply);
7484 kfree(ioc->port_enable_cmds.reply);
7485 kfree(ioc->tm_cmds.reply);
7486 kfree(ioc->transport_cmds.reply);
7487 kfree(ioc->scsih_cmds.reply);
7488 kfree(ioc->config_cmds.reply);
7492 * _base_pre_reset_handler - pre reset handler
7493 * @ioc: per adapter object
7495 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7497 mpt3sas_scsih_pre_reset_handler(ioc);
7498 mpt3sas_ctl_pre_reset_handler(ioc);
7499 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7503 * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7504 * @ioc: per adapter object
7507 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7510 ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7511 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7512 ioc->transport_cmds.status |= MPT3_CMD_RESET;
7513 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7514 complete(&ioc->transport_cmds.done);
7516 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7517 ioc->base_cmds.status |= MPT3_CMD_RESET;
7518 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7519 complete(&ioc->base_cmds.done);
7521 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7522 ioc->port_enable_failed = 1;
7523 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7524 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7525 if (ioc->is_driver_loading) {
7526 ioc->start_scan_failed =
7527 MPI2_IOCSTATUS_INTERNAL_ERROR;
7528 ioc->start_scan = 0;
7529 ioc->port_enable_cmds.status =
7532 complete(&ioc->port_enable_cmds.done);
7535 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7536 ioc->config_cmds.status |= MPT3_CMD_RESET;
7537 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7538 ioc->config_cmds.smid = USHRT_MAX;
7539 complete(&ioc->config_cmds.done);
7544 * _base_clear_outstanding_commands - clear all outstanding commands
7545 * @ioc: per adapter object
7547 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
7549 mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
7550 mpt3sas_ctl_clear_outstanding_ioctls(ioc);
7551 _base_clear_outstanding_mpt_commands(ioc);
7555 * _base_reset_done_handler - reset done handler
7556 * @ioc: per adapter object
7558 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7560 mpt3sas_scsih_reset_done_handler(ioc);
7561 mpt3sas_ctl_reset_done_handler(ioc);
7562 dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7566 * mpt3sas_wait_for_commands_to_complete - reset controller
7567 * @ioc: Pointer to MPT_ADAPTER structure
7569 * This function is waiting 10s for all pending commands to complete
7570 * prior to putting controller in reset.
7573 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7577 ioc->pending_io_count = 0;
7579 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7580 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7583 /* pending command count */
7584 ioc->pending_io_count = scsi_host_busy(ioc->shost);
7586 if (!ioc->pending_io_count)
7589 /* wait for pending commands to complete */
7590 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7594 * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7595 * attributes during online firmware upgrade and update the corresponding
7596 * IOC variables accordingly.
7598 * @ioc: Pointer to MPT_ADAPTER structure
7601 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7604 void *pd_handles = NULL, *blocking_handles = NULL;
7605 void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7606 struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7608 if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7609 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7610 if (ioc->facts.MaxDevHandle % 8)
7613 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7617 "Unable to allocate the memory for pd_handles of sz: %d\n",
7621 memset(pd_handles + ioc->pd_handles_sz, 0,
7622 (pd_handles_sz - ioc->pd_handles_sz));
7623 ioc->pd_handles = pd_handles;
7625 blocking_handles = krealloc(ioc->blocking_handles,
7626 pd_handles_sz, GFP_KERNEL);
7627 if (!blocking_handles) {
7629 "Unable to allocate the memory for "
7630 "blocking_handles of sz: %d\n",
7634 memset(blocking_handles + ioc->pd_handles_sz, 0,
7635 (pd_handles_sz - ioc->pd_handles_sz));
7636 ioc->blocking_handles = blocking_handles;
7637 ioc->pd_handles_sz = pd_handles_sz;
7639 pend_os_device_add = krealloc(ioc->pend_os_device_add,
7640 pd_handles_sz, GFP_KERNEL);
7641 if (!pend_os_device_add) {
7643 "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7647 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7648 (pd_handles_sz - ioc->pend_os_device_add_sz));
7649 ioc->pend_os_device_add = pend_os_device_add;
7650 ioc->pend_os_device_add_sz = pd_handles_sz;
7652 device_remove_in_progress = krealloc(
7653 ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7654 if (!device_remove_in_progress) {
7656 "Unable to allocate the memory for "
7657 "device_remove_in_progress of sz: %d\n "
7661 memset(device_remove_in_progress +
7662 ioc->device_remove_in_progress_sz, 0,
7663 (pd_handles_sz - ioc->device_remove_in_progress_sz));
7664 ioc->device_remove_in_progress = device_remove_in_progress;
7665 ioc->device_remove_in_progress_sz = pd_handles_sz;
7668 memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7673 * mpt3sas_base_hard_reset_handler - reset controller
7674 * @ioc: Pointer to MPT_ADAPTER structure
7675 * @type: FORCE_BIG_HAMMER or SOFT_RESET
7677 * Return: 0 for success, non-zero for failure.
7680 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7681 enum reset_type type)
7684 unsigned long flags;
7686 u8 is_fault = 0, is_trigger = 0;
7688 dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7690 if (ioc->pci_error_recovery) {
7691 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7696 if (mpt3sas_fwfault_debug)
7697 mpt3sas_halt_firmware(ioc);
7699 /* wait for an active reset in progress to complete */
7700 mutex_lock(&ioc->reset_in_progress_mutex);
7702 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7703 ioc->shost_recovery = 1;
7704 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7706 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7707 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7708 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7709 MPT3_DIAG_BUFFER_IS_RELEASED))) {
7711 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7712 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
7713 (ioc_state & MPI2_IOC_STATE_MASK) ==
7714 MPI2_IOC_STATE_COREDUMP)
7717 _base_pre_reset_handler(ioc);
7718 mpt3sas_wait_for_commands_to_complete(ioc);
7719 _base_mask_interrupts(ioc);
7720 r = _base_make_ioc_ready(ioc, type);
7723 _base_clear_outstanding_commands(ioc);
7725 /* If this hard reset is called while port enable is active, then
7726 * there is no reason to call make_ioc_operational
7728 if (ioc->is_driver_loading && ioc->port_enable_failed) {
7729 ioc->remove_host = 1;
7733 r = _base_get_ioc_facts(ioc);
7737 r = _base_check_ioc_facts_changes(ioc);
7740 "Some of the parameters got changed in this new firmware"
7741 " image and it requires system reboot\n");
7744 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7745 panic("%s: Issue occurred with flashing controller firmware."
7746 "Please reboot the system and ensure that the correct"
7747 " firmware version is running\n", ioc->name);
7749 r = _base_make_ioc_operational(ioc);
7751 _base_reset_done_handler(ioc);
7754 ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
7756 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7757 ioc->shost_recovery = 0;
7758 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7759 ioc->ioc_reset_count++;
7760 mutex_unlock(&ioc->reset_in_progress_mutex);
7763 if ((r == 0) && is_trigger) {
7765 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7767 mpt3sas_trigger_master(ioc,
7768 MASTER_TRIGGER_ADAPTER_RESET);
7770 dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));