1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
11 Documentation available at:
12 http://www.stlinux.com
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
49 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
52 /* Module parameters */
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
66 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4)
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
82 #define DEFAULT_BUFSIZE 1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
87 #define STMMAC_RX_COPYBREAK 256
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 NETIF_MSG_LINK | NETIF_MSG_IFUP |
91 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
93 #define STMMAC_DEFAULT_LPI_TIMER 1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100 * but allow user to force to use the chain instead of the ring
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
108 #ifdef CONFIG_DEBUG_FS
109 static const struct net_device_ops stmmac_netdev_ops;
110 static void stmmac_init_fs(struct net_device *dev);
111 static void stmmac_exit_fs(struct net_device *dev);
114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
117 * stmmac_verify_args - verify the driver parameters.
118 * Description: it checks the driver parameters and set a default in case of
121 static void stmmac_verify_args(void)
123 if (unlikely(watchdog < 0))
125 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
126 buf_sz = DEFAULT_BUFSIZE;
127 if (unlikely(flow_ctrl > 1))
128 flow_ctrl = FLOW_AUTO;
129 else if (likely(flow_ctrl < 0))
130 flow_ctrl = FLOW_OFF;
131 if (unlikely((pause < 0) || (pause > 0xffff)))
134 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
138 * stmmac_disable_all_queues - Disable all queues
139 * @priv: driver private structure
141 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
143 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
144 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
145 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
148 for (queue = 0; queue < maxq; queue++) {
149 struct stmmac_channel *ch = &priv->channel[queue];
151 if (queue < rx_queues_cnt)
152 napi_disable(&ch->rx_napi);
153 if (queue < tx_queues_cnt)
154 napi_disable(&ch->tx_napi);
159 * stmmac_enable_all_queues - Enable all queues
160 * @priv: driver private structure
162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
164 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
166 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
169 for (queue = 0; queue < maxq; queue++) {
170 struct stmmac_channel *ch = &priv->channel[queue];
172 if (queue < rx_queues_cnt)
173 napi_enable(&ch->rx_napi);
174 if (queue < tx_queues_cnt)
175 napi_enable(&ch->tx_napi);
180 * stmmac_stop_all_queues - Stop all queues
181 * @priv: driver private structure
183 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
185 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
188 for (queue = 0; queue < tx_queues_cnt; queue++)
189 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
193 * stmmac_start_all_queues - Start all queues
194 * @priv: driver private structure
196 static void stmmac_start_all_queues(struct stmmac_priv *priv)
198 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
201 for (queue = 0; queue < tx_queues_cnt; queue++)
202 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
205 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
207 if (!test_bit(STMMAC_DOWN, &priv->state) &&
208 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
209 queue_work(priv->wq, &priv->service_task);
212 static void stmmac_global_err(struct stmmac_priv *priv)
214 netif_carrier_off(priv->dev);
215 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
216 stmmac_service_event_schedule(priv);
220 * stmmac_clk_csr_set - dynamically set the MDC clock
221 * @priv: driver private structure
222 * Description: this is to dynamically set the MDC clock according to the csr
225 * If a specific clk_csr value is passed from the platform
226 * this means that the CSR Clock Range selection cannot be
227 * changed at run-time and it is fixed (as reported in the driver
228 * documentation). Viceversa the driver will try to set the MDC
229 * clock dynamically according to the actual clock input.
231 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
235 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
237 /* Platform provided default clk_csr would be assumed valid
238 * for all other cases except for the below mentioned ones.
239 * For values higher than the IEEE 802.3 specified frequency
240 * we can not estimate the proper divider as it is not known
241 * the frequency of clk_csr_i. So we do not change the default
244 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
245 if (clk_rate < CSR_F_35M)
246 priv->clk_csr = STMMAC_CSR_20_35M;
247 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
248 priv->clk_csr = STMMAC_CSR_35_60M;
249 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
250 priv->clk_csr = STMMAC_CSR_60_100M;
251 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
252 priv->clk_csr = STMMAC_CSR_100_150M;
253 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
254 priv->clk_csr = STMMAC_CSR_150_250M;
255 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
256 priv->clk_csr = STMMAC_CSR_250_300M;
259 if (priv->plat->has_sun8i) {
260 if (clk_rate > 160000000)
261 priv->clk_csr = 0x03;
262 else if (clk_rate > 80000000)
263 priv->clk_csr = 0x02;
264 else if (clk_rate > 40000000)
265 priv->clk_csr = 0x01;
270 if (priv->plat->has_xgmac) {
271 if (clk_rate > 400000000)
273 else if (clk_rate > 350000000)
275 else if (clk_rate > 300000000)
277 else if (clk_rate > 250000000)
279 else if (clk_rate > 150000000)
286 static void print_pkt(unsigned char *buf, int len)
288 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
289 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
292 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
294 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
297 if (tx_q->dirty_tx > tx_q->cur_tx)
298 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
300 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
306 * stmmac_rx_dirty - Get RX queue dirty
307 * @priv: driver private structure
308 * @queue: RX queue index
310 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
312 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
315 if (rx_q->dirty_rx <= rx_q->cur_rx)
316 dirty = rx_q->cur_rx - rx_q->dirty_rx;
318 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
324 * stmmac_enable_eee_mode - check and enter in LPI mode
325 * @priv: driver private structure
326 * Description: this function is to verify and enter in LPI mode in case of
329 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
331 u32 tx_cnt = priv->plat->tx_queues_to_use;
334 /* check if all TX queues have the work finished */
335 for (queue = 0; queue < tx_cnt; queue++) {
336 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
338 if (tx_q->dirty_tx != tx_q->cur_tx)
339 return; /* still unfinished work */
342 /* Check and enter in LPI mode */
343 if (!priv->tx_path_in_lpi_mode)
344 stmmac_set_eee_mode(priv, priv->hw,
345 priv->plat->en_tx_lpi_clockgating);
349 * stmmac_disable_eee_mode - disable and exit from LPI mode
350 * @priv: driver private structure
351 * Description: this function is to exit and disable EEE in case of
352 * LPI state is true. This is called by the xmit.
354 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
356 stmmac_reset_eee_mode(priv, priv->hw);
357 del_timer_sync(&priv->eee_ctrl_timer);
358 priv->tx_path_in_lpi_mode = false;
362 * stmmac_eee_ctrl_timer - EEE TX SW timer.
365 * if there is no data transfer and if we are not in LPI state,
366 * then MAC Transmitter can be moved to LPI state.
368 static void stmmac_eee_ctrl_timer(struct timer_list *t)
370 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
372 stmmac_enable_eee_mode(priv);
373 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
377 * stmmac_eee_init - init EEE
378 * @priv: driver private structure
380 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
381 * can also manage EEE, this function enable the LPI state and start related
384 bool stmmac_eee_init(struct stmmac_priv *priv)
386 int tx_lpi_timer = priv->tx_lpi_timer;
388 /* Using PCS we cannot dial with the phy registers at this stage
389 * so we do not support extra feature like EEE.
391 if (priv->hw->pcs == STMMAC_PCS_TBI ||
392 priv->hw->pcs == STMMAC_PCS_RTBI)
395 /* Check if MAC core supports the EEE feature. */
396 if (!priv->dma_cap.eee)
399 mutex_lock(&priv->lock);
401 /* Check if it needs to be deactivated */
402 if (!priv->eee_active) {
403 if (priv->eee_enabled) {
404 netdev_dbg(priv->dev, "disable EEE\n");
405 del_timer_sync(&priv->eee_ctrl_timer);
406 stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
408 mutex_unlock(&priv->lock);
412 if (priv->eee_active && !priv->eee_enabled) {
413 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
415 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
419 mutex_unlock(&priv->lock);
420 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
425 * @priv: driver private structure
426 * @p : descriptor pointer
427 * @skb : the socket buffer
429 * This function will read timestamp from the descriptor & pass it to stack.
430 * and also perform some sanity checks.
432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
433 struct dma_desc *p, struct sk_buff *skb)
435 struct skb_shared_hwtstamps shhwtstamp;
439 if (!priv->hwts_tx_en)
442 /* exit if skb doesn't support hw tstamp */
443 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
446 /* check tx tstamp status */
447 if (stmmac_get_tx_timestamp_status(priv, p)) {
448 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
450 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
455 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
456 shhwtstamp.hwtstamp = ns_to_ktime(ns);
458 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
459 /* pass tstamp to stack */
460 skb_tstamp_tx(skb, &shhwtstamp);
464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
465 * @priv: driver private structure
466 * @p : descriptor pointer
467 * @np : next descriptor pointer
468 * @skb : the socket buffer
470 * This function will read received packet's timestamp from the descriptor
471 * and pass it to stack. It also perform some sanity checks.
473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
474 struct dma_desc *np, struct sk_buff *skb)
476 struct skb_shared_hwtstamps *shhwtstamp = NULL;
477 struct dma_desc *desc = p;
480 if (!priv->hwts_rx_en)
482 /* For GMAC4, the valid timestamp is from CTX next desc. */
483 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
486 /* Check if timestamp is available */
487 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
488 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
489 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
490 shhwtstamp = skb_hwtstamps(skb);
491 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 shhwtstamp->hwtstamp = ns_to_ktime(ns);
494 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
499 * stmmac_hwtstamp_set - control hardware timestamping.
500 * @dev: device pointer.
501 * @ifr: An IOCTL specific structure, that can contain a pointer to
502 * a proprietary structure used to pass information to the driver.
504 * This function configures the MAC to enable/disable both outgoing(TX)
505 * and incoming(RX) packets time stamping based on user input.
507 * 0 on success and an appropriate -ve integer on failure.
509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
511 struct stmmac_priv *priv = netdev_priv(dev);
512 struct hwtstamp_config config;
513 struct timespec64 now;
517 u32 ptp_over_ipv4_udp = 0;
518 u32 ptp_over_ipv6_udp = 0;
519 u32 ptp_over_ethernet = 0;
520 u32 snap_type_sel = 0;
521 u32 ts_master_en = 0;
527 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
529 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
530 netdev_alert(priv->dev, "No support for HW time stamping\n");
531 priv->hwts_tx_en = 0;
532 priv->hwts_rx_en = 0;
537 if (copy_from_user(&config, ifr->ifr_data,
541 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
542 __func__, config.flags, config.tx_type, config.rx_filter);
544 /* reserved for future extensions */
548 if (config.tx_type != HWTSTAMP_TX_OFF &&
549 config.tx_type != HWTSTAMP_TX_ON)
553 switch (config.rx_filter) {
554 case HWTSTAMP_FILTER_NONE:
555 /* time stamp no incoming packet at all */
556 config.rx_filter = HWTSTAMP_FILTER_NONE;
559 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
560 /* PTP v1, UDP, any kind of event packet */
561 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
562 /* 'xmac' hardware can support Sync, Pdelay_Req and
563 * Pdelay_resp by setting bit14 and bits17/16 to 01
564 * This leaves Delay_Req timestamps out.
565 * Enable all events *and* general purpose message
568 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
569 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
570 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
573 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574 /* PTP v1, UDP, Sync packet */
575 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
576 /* take time stamp for SYNC messages only */
577 ts_event_en = PTP_TCR_TSEVNTENA;
579 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
580 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
583 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584 /* PTP v1, UDP, Delay_req packet */
585 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
586 /* take time stamp for Delay_Req messages only */
587 ts_master_en = PTP_TCR_TSMSTRENA;
588 ts_event_en = PTP_TCR_TSEVNTENA;
590 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
591 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
594 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
595 /* PTP v2, UDP, any kind of event packet */
596 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
597 ptp_v2 = PTP_TCR_TSVER2ENA;
598 /* take time stamp for all event messages */
599 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
601 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
605 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
606 /* PTP v2, UDP, Sync packet */
607 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
608 ptp_v2 = PTP_TCR_TSVER2ENA;
609 /* take time stamp for SYNC messages only */
610 ts_event_en = PTP_TCR_TSEVNTENA;
612 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
616 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
617 /* PTP v2, UDP, Delay_req packet */
618 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
619 ptp_v2 = PTP_TCR_TSVER2ENA;
620 /* take time stamp for Delay_Req messages only */
621 ts_master_en = PTP_TCR_TSMSTRENA;
622 ts_event_en = PTP_TCR_TSEVNTENA;
624 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
628 case HWTSTAMP_FILTER_PTP_V2_EVENT:
629 /* PTP v2/802.AS1 any layer, any kind of event packet */
630 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
631 ptp_v2 = PTP_TCR_TSVER2ENA;
632 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
633 if (priv->synopsys_id != DWMAC_CORE_5_10)
634 ts_event_en = PTP_TCR_TSEVNTENA;
635 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
636 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
637 ptp_over_ethernet = PTP_TCR_TSIPENA;
640 case HWTSTAMP_FILTER_PTP_V2_SYNC:
641 /* PTP v2/802.AS1, any layer, Sync packet */
642 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
643 ptp_v2 = PTP_TCR_TSVER2ENA;
644 /* take time stamp for SYNC messages only */
645 ts_event_en = PTP_TCR_TSEVNTENA;
647 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
648 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
649 ptp_over_ethernet = PTP_TCR_TSIPENA;
652 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
653 /* PTP v2/802.AS1, any layer, Delay_req packet */
654 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
655 ptp_v2 = PTP_TCR_TSVER2ENA;
656 /* take time stamp for Delay_Req messages only */
657 ts_master_en = PTP_TCR_TSMSTRENA;
658 ts_event_en = PTP_TCR_TSEVNTENA;
660 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
661 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
662 ptp_over_ethernet = PTP_TCR_TSIPENA;
665 case HWTSTAMP_FILTER_NTP_ALL:
666 case HWTSTAMP_FILTER_ALL:
667 /* time stamp any incoming packet */
668 config.rx_filter = HWTSTAMP_FILTER_ALL;
669 tstamp_all = PTP_TCR_TSENALL;
676 switch (config.rx_filter) {
677 case HWTSTAMP_FILTER_NONE:
678 config.rx_filter = HWTSTAMP_FILTER_NONE;
681 /* PTP v1, UDP, any kind of event packet */
682 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
686 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
687 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
689 if (!priv->hwts_tx_en && !priv->hwts_rx_en)
690 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
692 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
693 tstamp_all | ptp_v2 | ptp_over_ethernet |
694 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
695 ts_master_en | snap_type_sel);
696 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
698 /* program Sub Second Increment reg */
699 stmmac_config_sub_second_increment(priv,
700 priv->ptpaddr, priv->plat->clk_ptp_rate,
702 temp = div_u64(1000000000ULL, sec_inc);
704 /* Store sub second increment and flags for later use */
705 priv->sub_second_inc = sec_inc;
706 priv->systime_flags = value;
708 /* calculate default added value:
710 * addend = (2^32)/freq_div_ratio;
711 * where, freq_div_ratio = 1e9ns/sec_inc
713 temp = (u64)(temp << 32);
714 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
715 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
717 /* initialize system time */
718 ktime_get_real_ts64(&now);
720 /* lower 32 bits of tv_sec are safe until y2106 */
721 stmmac_init_systime(priv, priv->ptpaddr,
722 (u32)now.tv_sec, now.tv_nsec);
725 memcpy(&priv->tstamp_config, &config, sizeof(config));
727 return copy_to_user(ifr->ifr_data, &config,
728 sizeof(config)) ? -EFAULT : 0;
732 * stmmac_hwtstamp_get - read hardware timestamping.
733 * @dev: device pointer.
734 * @ifr: An IOCTL specific structure, that can contain a pointer to
735 * a proprietary structure used to pass information to the driver.
737 * This function obtain the current hardware timestamping settings
740 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
742 struct stmmac_priv *priv = netdev_priv(dev);
743 struct hwtstamp_config *config = &priv->tstamp_config;
745 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
748 return copy_to_user(ifr->ifr_data, config,
749 sizeof(*config)) ? -EFAULT : 0;
753 * stmmac_init_ptp - init PTP
754 * @priv: driver private structure
755 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
756 * This is done by looking at the HW cap. register.
757 * This function also registers the ptp driver.
759 static int stmmac_init_ptp(struct stmmac_priv *priv)
761 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
763 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
767 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
768 if (xmac && priv->dma_cap.atime_stamp)
770 /* Dwmac 3.x core with extend_desc can support adv_ts */
771 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
774 if (priv->dma_cap.time_stamp)
775 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
778 netdev_info(priv->dev,
779 "IEEE 1588-2008 Advanced Timestamp supported\n");
781 priv->hwts_tx_en = 0;
782 priv->hwts_rx_en = 0;
784 stmmac_ptp_register(priv);
789 static void stmmac_release_ptp(struct stmmac_priv *priv)
791 if (priv->plat->clk_ptp_ref)
792 clk_disable_unprepare(priv->plat->clk_ptp_ref);
793 stmmac_ptp_unregister(priv);
797 * stmmac_mac_flow_ctrl - Configure flow control in all queues
798 * @priv: driver private structure
799 * Description: It is used for configuring the flow control in all queues
801 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
803 u32 tx_cnt = priv->plat->tx_queues_to_use;
805 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
806 priv->pause, tx_cnt);
809 static void stmmac_validate(struct phylink_config *config,
810 unsigned long *supported,
811 struct phylink_link_state *state)
813 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
814 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
815 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
816 int tx_cnt = priv->plat->tx_queues_to_use;
817 int max_speed = priv->plat->max_speed;
819 phylink_set(mac_supported, 10baseT_Half);
820 phylink_set(mac_supported, 10baseT_Full);
821 phylink_set(mac_supported, 100baseT_Half);
822 phylink_set(mac_supported, 100baseT_Full);
823 phylink_set(mac_supported, 1000baseT_Half);
824 phylink_set(mac_supported, 1000baseT_Full);
825 phylink_set(mac_supported, 1000baseKX_Full);
827 phylink_set(mac_supported, Autoneg);
828 phylink_set(mac_supported, Pause);
829 phylink_set(mac_supported, Asym_Pause);
830 phylink_set_port_modes(mac_supported);
832 /* Cut down 1G if asked to */
833 if ((max_speed > 0) && (max_speed < 1000)) {
834 phylink_set(mask, 1000baseT_Full);
835 phylink_set(mask, 1000baseX_Full);
836 } else if (priv->plat->has_xgmac) {
837 if (!max_speed || (max_speed >= 2500)) {
838 phylink_set(mac_supported, 2500baseT_Full);
839 phylink_set(mac_supported, 2500baseX_Full);
841 if (!max_speed || (max_speed >= 5000)) {
842 phylink_set(mac_supported, 5000baseT_Full);
844 if (!max_speed || (max_speed >= 10000)) {
845 phylink_set(mac_supported, 10000baseSR_Full);
846 phylink_set(mac_supported, 10000baseLR_Full);
847 phylink_set(mac_supported, 10000baseER_Full);
848 phylink_set(mac_supported, 10000baseLRM_Full);
849 phylink_set(mac_supported, 10000baseT_Full);
850 phylink_set(mac_supported, 10000baseKX4_Full);
851 phylink_set(mac_supported, 10000baseKR_Full);
853 if (!max_speed || (max_speed >= 25000)) {
854 phylink_set(mac_supported, 25000baseCR_Full);
855 phylink_set(mac_supported, 25000baseKR_Full);
856 phylink_set(mac_supported, 25000baseSR_Full);
858 if (!max_speed || (max_speed >= 40000)) {
859 phylink_set(mac_supported, 40000baseKR4_Full);
860 phylink_set(mac_supported, 40000baseCR4_Full);
861 phylink_set(mac_supported, 40000baseSR4_Full);
862 phylink_set(mac_supported, 40000baseLR4_Full);
864 if (!max_speed || (max_speed >= 50000)) {
865 phylink_set(mac_supported, 50000baseCR2_Full);
866 phylink_set(mac_supported, 50000baseKR2_Full);
867 phylink_set(mac_supported, 50000baseSR2_Full);
868 phylink_set(mac_supported, 50000baseKR_Full);
869 phylink_set(mac_supported, 50000baseSR_Full);
870 phylink_set(mac_supported, 50000baseCR_Full);
871 phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
872 phylink_set(mac_supported, 50000baseDR_Full);
874 if (!max_speed || (max_speed >= 100000)) {
875 phylink_set(mac_supported, 100000baseKR4_Full);
876 phylink_set(mac_supported, 100000baseSR4_Full);
877 phylink_set(mac_supported, 100000baseCR4_Full);
878 phylink_set(mac_supported, 100000baseLR4_ER4_Full);
879 phylink_set(mac_supported, 100000baseKR2_Full);
880 phylink_set(mac_supported, 100000baseSR2_Full);
881 phylink_set(mac_supported, 100000baseCR2_Full);
882 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
883 phylink_set(mac_supported, 100000baseDR2_Full);
887 /* Half-Duplex can only work with single queue */
889 phylink_set(mask, 10baseT_Half);
890 phylink_set(mask, 100baseT_Half);
891 phylink_set(mask, 1000baseT_Half);
894 linkmode_and(supported, supported, mac_supported);
895 linkmode_andnot(supported, supported, mask);
897 linkmode_and(state->advertising, state->advertising, mac_supported);
898 linkmode_andnot(state->advertising, state->advertising, mask);
900 /* If PCS is supported, check which modes it supports. */
901 stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
904 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
905 struct phylink_link_state *state)
907 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
910 stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
913 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
914 const struct phylink_link_state *state)
916 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
918 stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
921 static void stmmac_mac_an_restart(struct phylink_config *config)
926 static void stmmac_mac_link_down(struct phylink_config *config,
927 unsigned int mode, phy_interface_t interface)
929 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
931 stmmac_mac_set(priv, priv->ioaddr, false);
932 priv->eee_active = false;
933 stmmac_eee_init(priv);
934 stmmac_set_eee_pls(priv, priv->hw, false);
937 static void stmmac_mac_link_up(struct phylink_config *config,
938 struct phy_device *phy,
939 unsigned int mode, phy_interface_t interface,
940 int speed, int duplex,
941 bool tx_pause, bool rx_pause)
943 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
946 stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
948 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
949 ctrl &= ~priv->hw->link.speed_mask;
951 if (interface == PHY_INTERFACE_MODE_USXGMII) {
954 ctrl |= priv->hw->link.xgmii.speed10000;
957 ctrl |= priv->hw->link.xgmii.speed5000;
960 ctrl |= priv->hw->link.xgmii.speed2500;
965 } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
968 ctrl |= priv->hw->link.xlgmii.speed100000;
971 ctrl |= priv->hw->link.xlgmii.speed50000;
974 ctrl |= priv->hw->link.xlgmii.speed40000;
977 ctrl |= priv->hw->link.xlgmii.speed25000;
980 ctrl |= priv->hw->link.xgmii.speed10000;
983 ctrl |= priv->hw->link.speed2500;
986 ctrl |= priv->hw->link.speed1000;
994 ctrl |= priv->hw->link.speed2500;
997 ctrl |= priv->hw->link.speed1000;
1000 ctrl |= priv->hw->link.speed100;
1003 ctrl |= priv->hw->link.speed10;
1010 priv->speed = speed;
1012 if (priv->plat->fix_mac_speed)
1013 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1016 ctrl &= ~priv->hw->link.duplex;
1018 ctrl |= priv->hw->link.duplex;
1020 /* Flow Control operation */
1021 if (tx_pause && rx_pause)
1022 stmmac_mac_flow_ctrl(priv, duplex);
1024 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1026 stmmac_mac_set(priv, priv->ioaddr, true);
1027 if (phy && priv->dma_cap.eee) {
1028 priv->eee_active = phy_init_eee(phy, 1) >= 0;
1029 priv->eee_enabled = stmmac_eee_init(priv);
1030 stmmac_set_eee_pls(priv, priv->hw, true);
1034 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1035 .validate = stmmac_validate,
1036 .mac_pcs_get_state = stmmac_mac_pcs_get_state,
1037 .mac_config = stmmac_mac_config,
1038 .mac_an_restart = stmmac_mac_an_restart,
1039 .mac_link_down = stmmac_mac_link_down,
1040 .mac_link_up = stmmac_mac_link_up,
1044 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1045 * @priv: driver private structure
1046 * Description: this is to verify if the HW supports the PCS.
1047 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1048 * configured for the TBI, RTBI, or SGMII PHY interface.
1050 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1052 int interface = priv->plat->interface;
1054 if (priv->dma_cap.pcs) {
1055 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1056 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1057 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1058 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1059 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1060 priv->hw->pcs = STMMAC_PCS_RGMII;
1061 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1062 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1063 priv->hw->pcs = STMMAC_PCS_SGMII;
1069 * stmmac_init_phy - PHY initialization
1070 * @dev: net device structure
1071 * Description: it initializes the driver's PHY state, and attaches the PHY
1072 * to the mac driver.
1076 static int stmmac_init_phy(struct net_device *dev)
1078 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1079 struct stmmac_priv *priv = netdev_priv(dev);
1080 struct device_node *node;
1083 node = priv->plat->phylink_node;
1086 ret = phylink_of_phy_connect(priv->phylink, node, 0);
1088 /* Some DT bindings do not set-up the PHY handle. Let's try to
1092 int addr = priv->plat->phy_addr;
1093 struct phy_device *phydev;
1095 phydev = mdiobus_get_phy(priv->mii, addr);
1097 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1101 ret = phylink_connect_phy(priv->phylink, phydev);
1104 phylink_ethtool_get_wol(priv->phylink, &wol);
1105 device_set_wakeup_capable(priv->device, !!wol.supported);
1110 static int stmmac_phy_setup(struct stmmac_priv *priv)
1112 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1113 int mode = priv->plat->phy_interface;
1114 struct phylink *phylink;
1116 priv->phylink_config.dev = &priv->dev->dev;
1117 priv->phylink_config.type = PHYLINK_NETDEV;
1118 priv->phylink_config.pcs_poll = true;
1121 fwnode = dev_fwnode(priv->device);
1123 phylink = phylink_create(&priv->phylink_config, fwnode,
1124 mode, &stmmac_phylink_mac_ops);
1125 if (IS_ERR(phylink))
1126 return PTR_ERR(phylink);
1128 priv->phylink = phylink;
1132 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1134 u32 rx_cnt = priv->plat->rx_queues_to_use;
1138 /* Display RX rings */
1139 for (queue = 0; queue < rx_cnt; queue++) {
1140 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1142 pr_info("\tRX Queue %u rings\n", queue);
1144 if (priv->extend_desc)
1145 head_rx = (void *)rx_q->dma_erx;
1147 head_rx = (void *)rx_q->dma_rx;
1149 /* Display RX ring */
1150 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1154 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1156 u32 tx_cnt = priv->plat->tx_queues_to_use;
1160 /* Display TX rings */
1161 for (queue = 0; queue < tx_cnt; queue++) {
1162 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1164 pr_info("\tTX Queue %d rings\n", queue);
1166 if (priv->extend_desc)
1167 head_tx = (void *)tx_q->dma_etx;
1168 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1169 head_tx = (void *)tx_q->dma_entx;
1171 head_tx = (void *)tx_q->dma_tx;
1173 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1177 static void stmmac_display_rings(struct stmmac_priv *priv)
1179 /* Display RX ring */
1180 stmmac_display_rx_rings(priv);
1182 /* Display TX ring */
1183 stmmac_display_tx_rings(priv);
1186 static int stmmac_set_bfsize(int mtu, int bufsize)
1190 if (mtu >= BUF_SIZE_8KiB)
1191 ret = BUF_SIZE_16KiB;
1192 else if (mtu >= BUF_SIZE_4KiB)
1193 ret = BUF_SIZE_8KiB;
1194 else if (mtu >= BUF_SIZE_2KiB)
1195 ret = BUF_SIZE_4KiB;
1196 else if (mtu > DEFAULT_BUFSIZE)
1197 ret = BUF_SIZE_2KiB;
1199 ret = DEFAULT_BUFSIZE;
1205 * stmmac_clear_rx_descriptors - clear RX descriptors
1206 * @priv: driver private structure
1207 * @queue: RX queue index
1208 * Description: this function is called to clear the RX descriptors
1209 * in case of both basic and extended descriptors are used.
1211 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1213 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1216 /* Clear the RX descriptors */
1217 for (i = 0; i < DMA_RX_SIZE; i++)
1218 if (priv->extend_desc)
1219 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1220 priv->use_riwt, priv->mode,
1221 (i == DMA_RX_SIZE - 1),
1224 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1225 priv->use_riwt, priv->mode,
1226 (i == DMA_RX_SIZE - 1),
1231 * stmmac_clear_tx_descriptors - clear tx descriptors
1232 * @priv: driver private structure
1233 * @queue: TX queue index.
1234 * Description: this function is called to clear the TX descriptors
1235 * in case of both basic and extended descriptors are used.
1237 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1239 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1242 /* Clear the TX descriptors */
1243 for (i = 0; i < DMA_TX_SIZE; i++) {
1244 int last = (i == (DMA_TX_SIZE - 1));
1247 if (priv->extend_desc)
1248 p = &tx_q->dma_etx[i].basic;
1249 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1250 p = &tx_q->dma_entx[i].basic;
1252 p = &tx_q->dma_tx[i];
1254 stmmac_init_tx_desc(priv, p, priv->mode, last);
1259 * stmmac_clear_descriptors - clear descriptors
1260 * @priv: driver private structure
1261 * Description: this function is called to clear the TX and RX descriptors
1262 * in case of both basic and extended descriptors are used.
1264 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1266 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1267 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1270 /* Clear the RX descriptors */
1271 for (queue = 0; queue < rx_queue_cnt; queue++)
1272 stmmac_clear_rx_descriptors(priv, queue);
1274 /* Clear the TX descriptors */
1275 for (queue = 0; queue < tx_queue_cnt; queue++)
1276 stmmac_clear_tx_descriptors(priv, queue);
1280 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1281 * @priv: driver private structure
1282 * @p: descriptor pointer
1283 * @i: descriptor index
1285 * @queue: RX queue index
1286 * Description: this function is called to allocate a receive buffer, perform
1287 * the DMA mapping and init the descriptor.
1289 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1290 int i, gfp_t flags, u32 queue)
1292 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1293 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1295 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1300 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1304 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1305 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1307 buf->sec_page = NULL;
1310 buf->addr = page_pool_get_dma_addr(buf->page);
1311 stmmac_set_desc_addr(priv, p, buf->addr);
1312 if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1313 stmmac_init_desc3(priv, p);
1319 * stmmac_free_rx_buffer - free RX dma buffers
1320 * @priv: private structure
1321 * @queue: RX queue index
1324 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1326 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1327 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1330 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1334 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1335 buf->sec_page = NULL;
1339 * stmmac_free_tx_buffer - free RX dma buffers
1340 * @priv: private structure
1341 * @queue: RX queue index
1344 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1346 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1348 if (tx_q->tx_skbuff_dma[i].buf) {
1349 if (tx_q->tx_skbuff_dma[i].map_as_page)
1350 dma_unmap_page(priv->device,
1351 tx_q->tx_skbuff_dma[i].buf,
1352 tx_q->tx_skbuff_dma[i].len,
1355 dma_unmap_single(priv->device,
1356 tx_q->tx_skbuff_dma[i].buf,
1357 tx_q->tx_skbuff_dma[i].len,
1361 if (tx_q->tx_skbuff[i]) {
1362 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1363 tx_q->tx_skbuff[i] = NULL;
1364 tx_q->tx_skbuff_dma[i].buf = 0;
1365 tx_q->tx_skbuff_dma[i].map_as_page = false;
1370 * init_dma_rx_desc_rings - init the RX descriptor rings
1371 * @dev: net device structure
1373 * Description: this function initializes the DMA RX descriptors
1374 * and allocates the socket buffers. It supports the chained and ring
1377 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1379 struct stmmac_priv *priv = netdev_priv(dev);
1380 u32 rx_count = priv->plat->rx_queues_to_use;
1385 /* RX INITIALIZATION */
1386 netif_dbg(priv, probe, priv->dev,
1387 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1389 for (queue = 0; queue < rx_count; queue++) {
1390 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1392 netif_dbg(priv, probe, priv->dev,
1393 "(%s) dma_rx_phy=0x%08x\n", __func__,
1394 (u32)rx_q->dma_rx_phy);
1396 stmmac_clear_rx_descriptors(priv, queue);
1398 for (i = 0; i < DMA_RX_SIZE; i++) {
1401 if (priv->extend_desc)
1402 p = &((rx_q->dma_erx + i)->basic);
1404 p = rx_q->dma_rx + i;
1406 ret = stmmac_init_rx_buffers(priv, p, i, flags,
1409 goto err_init_rx_buffers;
1413 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1415 /* Setup the chained descriptor addresses */
1416 if (priv->mode == STMMAC_CHAIN_MODE) {
1417 if (priv->extend_desc)
1418 stmmac_mode_init(priv, rx_q->dma_erx,
1419 rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1421 stmmac_mode_init(priv, rx_q->dma_rx,
1422 rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1428 err_init_rx_buffers:
1429 while (queue >= 0) {
1431 stmmac_free_rx_buffer(priv, queue, i);
1444 * init_dma_tx_desc_rings - init the TX descriptor rings
1445 * @dev: net device structure.
1446 * Description: this function initializes the DMA TX descriptors
1447 * and allocates the socket buffers. It supports the chained and ring
1450 static int init_dma_tx_desc_rings(struct net_device *dev)
1452 struct stmmac_priv *priv = netdev_priv(dev);
1453 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1457 for (queue = 0; queue < tx_queue_cnt; queue++) {
1458 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1460 netif_dbg(priv, probe, priv->dev,
1461 "(%s) dma_tx_phy=0x%08x\n", __func__,
1462 (u32)tx_q->dma_tx_phy);
1464 /* Setup the chained descriptor addresses */
1465 if (priv->mode == STMMAC_CHAIN_MODE) {
1466 if (priv->extend_desc)
1467 stmmac_mode_init(priv, tx_q->dma_etx,
1468 tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1469 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1470 stmmac_mode_init(priv, tx_q->dma_tx,
1471 tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1474 for (i = 0; i < DMA_TX_SIZE; i++) {
1476 if (priv->extend_desc)
1477 p = &((tx_q->dma_etx + i)->basic);
1478 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1479 p = &((tx_q->dma_entx + i)->basic);
1481 p = tx_q->dma_tx + i;
1483 stmmac_clear_desc(priv, p);
1485 tx_q->tx_skbuff_dma[i].buf = 0;
1486 tx_q->tx_skbuff_dma[i].map_as_page = false;
1487 tx_q->tx_skbuff_dma[i].len = 0;
1488 tx_q->tx_skbuff_dma[i].last_segment = false;
1489 tx_q->tx_skbuff[i] = NULL;
1496 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1503 * init_dma_desc_rings - init the RX/TX descriptor rings
1504 * @dev: net device structure
1506 * Description: this function initializes the DMA RX/TX descriptors
1507 * and allocates the socket buffers. It supports the chained and ring
1510 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1512 struct stmmac_priv *priv = netdev_priv(dev);
1515 ret = init_dma_rx_desc_rings(dev, flags);
1519 ret = init_dma_tx_desc_rings(dev);
1521 stmmac_clear_descriptors(priv);
1523 if (netif_msg_hw(priv))
1524 stmmac_display_rings(priv);
1530 * dma_free_rx_skbufs - free RX dma buffers
1531 * @priv: private structure
1532 * @queue: RX queue index
1534 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1538 for (i = 0; i < DMA_RX_SIZE; i++)
1539 stmmac_free_rx_buffer(priv, queue, i);
1543 * dma_free_tx_skbufs - free TX dma buffers
1544 * @priv: private structure
1545 * @queue: TX queue index
1547 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1551 for (i = 0; i < DMA_TX_SIZE; i++)
1552 stmmac_free_tx_buffer(priv, queue, i);
1556 * free_dma_rx_desc_resources - free RX dma desc resources
1557 * @priv: private structure
1559 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1561 u32 rx_count = priv->plat->rx_queues_to_use;
1564 /* Free RX queue resources */
1565 for (queue = 0; queue < rx_count; queue++) {
1566 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1568 /* Release the DMA RX socket buffers */
1569 dma_free_rx_skbufs(priv, queue);
1571 /* Free DMA regions of consistent memory previously allocated */
1572 if (!priv->extend_desc)
1573 dma_free_coherent(priv->device,
1574 DMA_RX_SIZE * sizeof(struct dma_desc),
1575 rx_q->dma_rx, rx_q->dma_rx_phy);
1577 dma_free_coherent(priv->device, DMA_RX_SIZE *
1578 sizeof(struct dma_extended_desc),
1579 rx_q->dma_erx, rx_q->dma_rx_phy);
1581 kfree(rx_q->buf_pool);
1582 if (rx_q->page_pool)
1583 page_pool_destroy(rx_q->page_pool);
1588 * free_dma_tx_desc_resources - free TX dma desc resources
1589 * @priv: private structure
1591 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1593 u32 tx_count = priv->plat->tx_queues_to_use;
1596 /* Free TX queue resources */
1597 for (queue = 0; queue < tx_count; queue++) {
1598 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1602 /* Release the DMA TX socket buffers */
1603 dma_free_tx_skbufs(priv, queue);
1605 if (priv->extend_desc) {
1606 size = sizeof(struct dma_extended_desc);
1607 addr = tx_q->dma_etx;
1608 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1609 size = sizeof(struct dma_edesc);
1610 addr = tx_q->dma_entx;
1612 size = sizeof(struct dma_desc);
1613 addr = tx_q->dma_tx;
1616 size *= DMA_TX_SIZE;
1618 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1620 kfree(tx_q->tx_skbuff_dma);
1621 kfree(tx_q->tx_skbuff);
1626 * alloc_dma_rx_desc_resources - alloc RX resources.
1627 * @priv: private structure
1628 * Description: according to which descriptor can be used (extend or basic)
1629 * this function allocates the resources for TX and RX paths. In case of
1630 * reception, for example, it pre-allocated the RX socket buffer in order to
1631 * allow zero-copy mechanism.
1633 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1635 u32 rx_count = priv->plat->rx_queues_to_use;
1639 /* RX queues buffers and DMA */
1640 for (queue = 0; queue < rx_count; queue++) {
1641 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1642 struct page_pool_params pp_params = { 0 };
1643 unsigned int num_pages;
1645 rx_q->queue_index = queue;
1646 rx_q->priv_data = priv;
1648 pp_params.flags = PP_FLAG_DMA_MAP;
1649 pp_params.pool_size = DMA_RX_SIZE;
1650 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1651 pp_params.order = ilog2(num_pages);
1652 pp_params.nid = dev_to_node(priv->device);
1653 pp_params.dev = priv->device;
1654 pp_params.dma_dir = DMA_FROM_DEVICE;
1656 rx_q->page_pool = page_pool_create(&pp_params);
1657 if (IS_ERR(rx_q->page_pool)) {
1658 ret = PTR_ERR(rx_q->page_pool);
1659 rx_q->page_pool = NULL;
1663 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1665 if (!rx_q->buf_pool)
1668 if (priv->extend_desc) {
1669 rx_q->dma_erx = dma_alloc_coherent(priv->device,
1670 DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1677 rx_q->dma_rx = dma_alloc_coherent(priv->device,
1678 DMA_RX_SIZE * sizeof(struct dma_desc),
1689 free_dma_rx_desc_resources(priv);
1695 * alloc_dma_tx_desc_resources - alloc TX resources.
1696 * @priv: private structure
1697 * Description: according to which descriptor can be used (extend or basic)
1698 * this function allocates the resources for TX and RX paths. In case of
1699 * reception, for example, it pre-allocated the RX socket buffer in order to
1700 * allow zero-copy mechanism.
1702 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1704 u32 tx_count = priv->plat->tx_queues_to_use;
1708 /* TX queues buffers and DMA */
1709 for (queue = 0; queue < tx_count; queue++) {
1710 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1714 tx_q->queue_index = queue;
1715 tx_q->priv_data = priv;
1717 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1718 sizeof(*tx_q->tx_skbuff_dma),
1720 if (!tx_q->tx_skbuff_dma)
1723 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1724 sizeof(struct sk_buff *),
1726 if (!tx_q->tx_skbuff)
1729 if (priv->extend_desc)
1730 size = sizeof(struct dma_extended_desc);
1731 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1732 size = sizeof(struct dma_edesc);
1734 size = sizeof(struct dma_desc);
1736 size *= DMA_TX_SIZE;
1738 addr = dma_alloc_coherent(priv->device, size,
1739 &tx_q->dma_tx_phy, GFP_KERNEL);
1743 if (priv->extend_desc)
1744 tx_q->dma_etx = addr;
1745 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1746 tx_q->dma_entx = addr;
1748 tx_q->dma_tx = addr;
1754 free_dma_tx_desc_resources(priv);
1759 * alloc_dma_desc_resources - alloc TX/RX resources.
1760 * @priv: private structure
1761 * Description: according to which descriptor can be used (extend or basic)
1762 * this function allocates the resources for TX and RX paths. In case of
1763 * reception, for example, it pre-allocated the RX socket buffer in order to
1764 * allow zero-copy mechanism.
1766 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1769 int ret = alloc_dma_rx_desc_resources(priv);
1774 ret = alloc_dma_tx_desc_resources(priv);
1780 * free_dma_desc_resources - free dma desc resources
1781 * @priv: private structure
1783 static void free_dma_desc_resources(struct stmmac_priv *priv)
1785 /* Release the DMA RX socket buffers */
1786 free_dma_rx_desc_resources(priv);
1788 /* Release the DMA TX socket buffers */
1789 free_dma_tx_desc_resources(priv);
1793 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
1794 * @priv: driver private structure
1795 * Description: It is used for enabling the rx queues in the MAC
1797 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1799 u32 rx_queues_count = priv->plat->rx_queues_to_use;
1803 for (queue = 0; queue < rx_queues_count; queue++) {
1804 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1805 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1810 * stmmac_start_rx_dma - start RX DMA channel
1811 * @priv: driver private structure
1812 * @chan: RX channel index
1814 * This starts a RX DMA channel
1816 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1818 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1819 stmmac_start_rx(priv, priv->ioaddr, chan);
1823 * stmmac_start_tx_dma - start TX DMA channel
1824 * @priv: driver private structure
1825 * @chan: TX channel index
1827 * This starts a TX DMA channel
1829 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1831 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1832 stmmac_start_tx(priv, priv->ioaddr, chan);
1836 * stmmac_stop_rx_dma - stop RX DMA channel
1837 * @priv: driver private structure
1838 * @chan: RX channel index
1840 * This stops a RX DMA channel
1842 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1844 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1845 stmmac_stop_rx(priv, priv->ioaddr, chan);
1849 * stmmac_stop_tx_dma - stop TX DMA channel
1850 * @priv: driver private structure
1851 * @chan: TX channel index
1853 * This stops a TX DMA channel
1855 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1857 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1858 stmmac_stop_tx(priv, priv->ioaddr, chan);
1862 * stmmac_start_all_dma - start all RX and TX DMA channels
1863 * @priv: driver private structure
1865 * This starts all the RX and TX DMA channels
1867 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1869 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1870 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1873 for (chan = 0; chan < rx_channels_count; chan++)
1874 stmmac_start_rx_dma(priv, chan);
1876 for (chan = 0; chan < tx_channels_count; chan++)
1877 stmmac_start_tx_dma(priv, chan);
1881 * stmmac_stop_all_dma - stop all RX and TX DMA channels
1882 * @priv: driver private structure
1884 * This stops the RX and TX DMA channels
1886 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1888 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1889 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1892 for (chan = 0; chan < rx_channels_count; chan++)
1893 stmmac_stop_rx_dma(priv, chan);
1895 for (chan = 0; chan < tx_channels_count; chan++)
1896 stmmac_stop_tx_dma(priv, chan);
1900 * stmmac_dma_operation_mode - HW DMA operation mode
1901 * @priv: driver private structure
1902 * Description: it is used for configuring the DMA operation mode register in
1903 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1905 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1907 u32 rx_channels_count = priv->plat->rx_queues_to_use;
1908 u32 tx_channels_count = priv->plat->tx_queues_to_use;
1909 int rxfifosz = priv->plat->rx_fifo_size;
1910 int txfifosz = priv->plat->tx_fifo_size;
1917 rxfifosz = priv->dma_cap.rx_fifo_size;
1919 txfifosz = priv->dma_cap.tx_fifo_size;
1921 /* Adjust for real per queue fifo size */
1922 rxfifosz /= rx_channels_count;
1923 txfifosz /= tx_channels_count;
1925 if (priv->plat->force_thresh_dma_mode) {
1928 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1930 * In case of GMAC, SF mode can be enabled
1931 * to perform the TX COE in HW. This depends on:
1932 * 1) TX COE if actually supported
1933 * 2) There is no bugged Jumbo frame support
1934 * that needs to not insert csum in the TDES.
1936 txmode = SF_DMA_MODE;
1937 rxmode = SF_DMA_MODE;
1938 priv->xstats.threshold = SF_DMA_MODE;
1941 rxmode = SF_DMA_MODE;
1944 /* configure all channels */
1945 for (chan = 0; chan < rx_channels_count; chan++) {
1946 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1948 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1950 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1954 for (chan = 0; chan < tx_channels_count; chan++) {
1955 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1957 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1963 * stmmac_tx_clean - to manage the transmission completion
1964 * @priv: driver private structure
1965 * @queue: TX queue index
1966 * Description: it reclaims the transmit resources after transmission completes.
1968 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1970 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1971 unsigned int bytes_compl = 0, pkts_compl = 0;
1972 unsigned int entry, count = 0;
1974 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1976 priv->xstats.tx_clean++;
1978 entry = tx_q->dirty_tx;
1979 while ((entry != tx_q->cur_tx) && (count < budget)) {
1980 struct sk_buff *skb = tx_q->tx_skbuff[entry];
1984 if (priv->extend_desc)
1985 p = (struct dma_desc *)(tx_q->dma_etx + entry);
1986 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1987 p = &tx_q->dma_entx[entry].basic;
1989 p = tx_q->dma_tx + entry;
1991 status = stmmac_tx_status(priv, &priv->dev->stats,
1992 &priv->xstats, p, priv->ioaddr);
1993 /* Check if the descriptor is owned by the DMA */
1994 if (unlikely(status & tx_dma_own))
1999 /* Make sure descriptor fields are read after reading
2004 /* Just consider the last segment and ...*/
2005 if (likely(!(status & tx_not_ls))) {
2006 /* ... verify the status error condition */
2007 if (unlikely(status & tx_err)) {
2008 priv->dev->stats.tx_errors++;
2010 priv->dev->stats.tx_packets++;
2011 priv->xstats.tx_pkt_n++;
2013 stmmac_get_tx_hwtstamp(priv, p, skb);
2016 if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2017 if (tx_q->tx_skbuff_dma[entry].map_as_page)
2018 dma_unmap_page(priv->device,
2019 tx_q->tx_skbuff_dma[entry].buf,
2020 tx_q->tx_skbuff_dma[entry].len,
2023 dma_unmap_single(priv->device,
2024 tx_q->tx_skbuff_dma[entry].buf,
2025 tx_q->tx_skbuff_dma[entry].len,
2027 tx_q->tx_skbuff_dma[entry].buf = 0;
2028 tx_q->tx_skbuff_dma[entry].len = 0;
2029 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2032 stmmac_clean_desc3(priv, tx_q, p);
2034 tx_q->tx_skbuff_dma[entry].last_segment = false;
2035 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2037 if (likely(skb != NULL)) {
2039 bytes_compl += skb->len;
2040 dev_consume_skb_any(skb);
2041 tx_q->tx_skbuff[entry] = NULL;
2044 stmmac_release_tx_desc(priv, p, priv->mode);
2046 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2048 tx_q->dirty_tx = entry;
2050 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2051 pkts_compl, bytes_compl);
2053 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2055 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
2057 netif_dbg(priv, tx_done, priv->dev,
2058 "%s: restart transmit\n", __func__);
2059 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2062 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2063 stmmac_enable_eee_mode(priv);
2064 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
2067 /* We still have pending packets, let's call for a new scheduling */
2068 if (tx_q->dirty_tx != tx_q->cur_tx)
2069 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2071 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2077 * stmmac_tx_err - to manage the tx error
2078 * @priv: driver private structure
2079 * @chan: channel index
2080 * Description: it cleans the descriptors and restarts the transmission
2081 * in case of transmission errors.
2083 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2085 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2087 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2089 stmmac_stop_tx_dma(priv, chan);
2090 dma_free_tx_skbufs(priv, chan);
2091 stmmac_clear_tx_descriptors(priv, chan);
2095 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2096 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2097 tx_q->dma_tx_phy, chan);
2098 stmmac_start_tx_dma(priv, chan);
2100 priv->dev->stats.tx_errors++;
2101 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2105 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2106 * @priv: driver private structure
2107 * @txmode: TX operating mode
2108 * @rxmode: RX operating mode
2109 * @chan: channel index
2110 * Description: it is used for configuring of the DMA operation mode in
2111 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2114 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2115 u32 rxmode, u32 chan)
2117 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2118 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2119 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2120 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2121 int rxfifosz = priv->plat->rx_fifo_size;
2122 int txfifosz = priv->plat->tx_fifo_size;
2125 rxfifosz = priv->dma_cap.rx_fifo_size;
2127 txfifosz = priv->dma_cap.tx_fifo_size;
2129 /* Adjust for real per queue fifo size */
2130 rxfifosz /= rx_channels_count;
2131 txfifosz /= tx_channels_count;
2133 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2134 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2137 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2141 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2142 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2143 if (ret && (ret != -EINVAL)) {
2144 stmmac_global_err(priv);
2151 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2153 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2154 &priv->xstats, chan);
2155 struct stmmac_channel *ch = &priv->channel[chan];
2156 unsigned long flags;
2158 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2159 if (napi_schedule_prep(&ch->rx_napi)) {
2160 spin_lock_irqsave(&ch->lock, flags);
2161 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2162 spin_unlock_irqrestore(&ch->lock, flags);
2163 __napi_schedule_irqoff(&ch->rx_napi);
2167 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2168 if (napi_schedule_prep(&ch->tx_napi)) {
2169 spin_lock_irqsave(&ch->lock, flags);
2170 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2171 spin_unlock_irqrestore(&ch->lock, flags);
2172 __napi_schedule_irqoff(&ch->tx_napi);
2180 * stmmac_dma_interrupt - DMA ISR
2181 * @priv: driver private structure
2182 * Description: this is the DMA ISR. It is called by the main ISR.
2183 * It calls the dwmac dma routine and schedule poll method in case of some
2186 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2188 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2189 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2190 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2191 tx_channel_count : rx_channel_count;
2193 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2195 /* Make sure we never check beyond our status buffer. */
2196 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2197 channels_to_check = ARRAY_SIZE(status);
2199 for (chan = 0; chan < channels_to_check; chan++)
2200 status[chan] = stmmac_napi_check(priv, chan);
2202 for (chan = 0; chan < tx_channel_count; chan++) {
2203 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2204 /* Try to bump up the dma threshold on this failure */
2205 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2208 if (priv->plat->force_thresh_dma_mode)
2209 stmmac_set_dma_operation_mode(priv,
2214 stmmac_set_dma_operation_mode(priv,
2218 priv->xstats.threshold = tc;
2220 } else if (unlikely(status[chan] == tx_hard_error)) {
2221 stmmac_tx_err(priv, chan);
2227 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2228 * @priv: driver private structure
2229 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2231 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2233 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2234 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2236 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2238 if (priv->dma_cap.rmon) {
2239 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2240 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2242 netdev_info(priv->dev, "No MAC Management Counters available\n");
2246 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2247 * @priv: driver private structure
2249 * new GMAC chip generations have a new register to indicate the
2250 * presence of the optional feature/functions.
2251 * This can be also used to override the value passed through the
2252 * platform and necessary for old MAC10/100 and GMAC chips.
2254 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2256 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2260 * stmmac_check_ether_addr - check if the MAC addr is valid
2261 * @priv: driver private structure
2263 * it is to verify if the MAC address is valid, in case of failures it
2264 * generates a random MAC address
2266 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2268 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2269 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2270 if (!is_valid_ether_addr(priv->dev->dev_addr))
2271 eth_hw_addr_random(priv->dev);
2272 dev_info(priv->device, "device MAC address %pM\n",
2273 priv->dev->dev_addr);
2278 * stmmac_init_dma_engine - DMA init.
2279 * @priv: driver private structure
2281 * It inits the DMA invoking the specific MAC/GMAC callback.
2282 * Some DMA parameters can be passed from the platform;
2283 * in case of these are not passed a default is kept for the MAC or GMAC.
2285 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2287 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2288 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2289 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2290 struct stmmac_rx_queue *rx_q;
2291 struct stmmac_tx_queue *tx_q;
2296 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2297 dev_err(priv->device, "Invalid DMA configuration\n");
2301 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2304 ret = stmmac_reset(priv, priv->ioaddr);
2306 dev_err(priv->device, "Failed to reset the dma\n");
2310 /* DMA Configuration */
2311 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2313 if (priv->plat->axi)
2314 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2316 /* DMA CSR Channel configuration */
2317 for (chan = 0; chan < dma_csr_ch; chan++)
2318 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2320 /* DMA RX Channel Configuration */
2321 for (chan = 0; chan < rx_channels_count; chan++) {
2322 rx_q = &priv->rx_queue[chan];
2324 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2325 rx_q->dma_rx_phy, chan);
2327 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2328 (DMA_RX_SIZE * sizeof(struct dma_desc));
2329 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2330 rx_q->rx_tail_addr, chan);
2333 /* DMA TX Channel Configuration */
2334 for (chan = 0; chan < tx_channels_count; chan++) {
2335 tx_q = &priv->tx_queue[chan];
2337 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2338 tx_q->dma_tx_phy, chan);
2340 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2341 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2342 tx_q->tx_tail_addr, chan);
2348 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2350 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2352 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2356 * stmmac_tx_timer - mitigation sw timer for tx.
2357 * @data: data pointer
2359 * This is the timer handler to directly invoke the stmmac_tx_clean.
2361 static void stmmac_tx_timer(struct timer_list *t)
2363 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2364 struct stmmac_priv *priv = tx_q->priv_data;
2365 struct stmmac_channel *ch;
2367 ch = &priv->channel[tx_q->queue_index];
2369 if (likely(napi_schedule_prep(&ch->tx_napi))) {
2370 unsigned long flags;
2372 spin_lock_irqsave(&ch->lock, flags);
2373 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2374 spin_unlock_irqrestore(&ch->lock, flags);
2375 __napi_schedule(&ch->tx_napi);
2380 * stmmac_init_coalesce - init mitigation options.
2381 * @priv: driver private structure
2383 * This inits the coalesce parameters: i.e. timer rate,
2384 * timer handler and default threshold used for enabling the
2385 * interrupt on completion bit.
2387 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2389 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2392 priv->tx_coal_frames = STMMAC_TX_FRAMES;
2393 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2394 priv->rx_coal_frames = STMMAC_RX_FRAMES;
2396 for (chan = 0; chan < tx_channel_count; chan++) {
2397 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2399 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2403 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2405 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2406 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2409 /* set TX ring length */
2410 for (chan = 0; chan < tx_channels_count; chan++)
2411 stmmac_set_tx_ring_len(priv, priv->ioaddr,
2412 (DMA_TX_SIZE - 1), chan);
2414 /* set RX ring length */
2415 for (chan = 0; chan < rx_channels_count; chan++)
2416 stmmac_set_rx_ring_len(priv, priv->ioaddr,
2417 (DMA_RX_SIZE - 1), chan);
2421 * stmmac_set_tx_queue_weight - Set TX queue weight
2422 * @priv: driver private structure
2423 * Description: It is used for setting TX queues weight
2425 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2427 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2431 for (queue = 0; queue < tx_queues_count; queue++) {
2432 weight = priv->plat->tx_queues_cfg[queue].weight;
2433 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2438 * stmmac_configure_cbs - Configure CBS in TX queue
2439 * @priv: driver private structure
2440 * Description: It is used for configuring CBS in AVB TX queues
2442 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2444 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2448 /* queue 0 is reserved for legacy traffic */
2449 for (queue = 1; queue < tx_queues_count; queue++) {
2450 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2451 if (mode_to_use == MTL_QUEUE_DCB)
2454 stmmac_config_cbs(priv, priv->hw,
2455 priv->plat->tx_queues_cfg[queue].send_slope,
2456 priv->plat->tx_queues_cfg[queue].idle_slope,
2457 priv->plat->tx_queues_cfg[queue].high_credit,
2458 priv->plat->tx_queues_cfg[queue].low_credit,
2464 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2465 * @priv: driver private structure
2466 * Description: It is used for mapping RX queues to RX dma channels
2468 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2470 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2474 for (queue = 0; queue < rx_queues_count; queue++) {
2475 chan = priv->plat->rx_queues_cfg[queue].chan;
2476 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2481 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2482 * @priv: driver private structure
2483 * Description: It is used for configuring the RX Queue Priority
2485 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2487 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2491 for (queue = 0; queue < rx_queues_count; queue++) {
2492 if (!priv->plat->rx_queues_cfg[queue].use_prio)
2495 prio = priv->plat->rx_queues_cfg[queue].prio;
2496 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2501 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2502 * @priv: driver private structure
2503 * Description: It is used for configuring the TX Queue Priority
2505 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2507 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2511 for (queue = 0; queue < tx_queues_count; queue++) {
2512 if (!priv->plat->tx_queues_cfg[queue].use_prio)
2515 prio = priv->plat->tx_queues_cfg[queue].prio;
2516 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2521 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2522 * @priv: driver private structure
2523 * Description: It is used for configuring the RX queue routing
2525 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2527 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2531 for (queue = 0; queue < rx_queues_count; queue++) {
2532 /* no specific packet type routing specified for the queue */
2533 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2536 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2537 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2541 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2543 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2544 priv->rss.enable = false;
2548 if (priv->dev->features & NETIF_F_RXHASH)
2549 priv->rss.enable = true;
2551 priv->rss.enable = false;
2553 stmmac_rss_configure(priv, priv->hw, &priv->rss,
2554 priv->plat->rx_queues_to_use);
2558 * stmmac_mtl_configuration - Configure MTL
2559 * @priv: driver private structure
2560 * Description: It is used for configurring MTL
2562 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2564 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2565 u32 tx_queues_count = priv->plat->tx_queues_to_use;
2567 if (tx_queues_count > 1)
2568 stmmac_set_tx_queue_weight(priv);
2570 /* Configure MTL RX algorithms */
2571 if (rx_queues_count > 1)
2572 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2573 priv->plat->rx_sched_algorithm);
2575 /* Configure MTL TX algorithms */
2576 if (tx_queues_count > 1)
2577 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2578 priv->plat->tx_sched_algorithm);
2580 /* Configure CBS in AVB TX queues */
2581 if (tx_queues_count > 1)
2582 stmmac_configure_cbs(priv);
2584 /* Map RX MTL to DMA channels */
2585 stmmac_rx_queue_dma_chan_map(priv);
2587 /* Enable MAC RX Queues */
2588 stmmac_mac_enable_rx_queues(priv);
2590 /* Set RX priorities */
2591 if (rx_queues_count > 1)
2592 stmmac_mac_config_rx_queues_prio(priv);
2594 /* Set TX priorities */
2595 if (tx_queues_count > 1)
2596 stmmac_mac_config_tx_queues_prio(priv);
2598 /* Set RX routing */
2599 if (rx_queues_count > 1)
2600 stmmac_mac_config_rx_queues_routing(priv);
2602 /* Receive Side Scaling */
2603 if (rx_queues_count > 1)
2604 stmmac_mac_config_rss(priv);
2607 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2609 if (priv->dma_cap.asp) {
2610 netdev_info(priv->dev, "Enabling Safety Features\n");
2611 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2613 netdev_info(priv->dev, "No Safety Features support found\n");
2618 * stmmac_hw_setup - setup mac in a usable state.
2619 * @dev : pointer to the device structure.
2621 * this is the main function to setup the HW in a usable state because the
2622 * dma engine is reset, the core registers are configured (e.g. AXI,
2623 * Checksum features, timers). The DMA is ready to start receiving and
2626 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2629 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2631 struct stmmac_priv *priv = netdev_priv(dev);
2632 u32 rx_cnt = priv->plat->rx_queues_to_use;
2633 u32 tx_cnt = priv->plat->tx_queues_to_use;
2637 /* DMA initialization and SW reset */
2638 ret = stmmac_init_dma_engine(priv);
2640 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2645 /* Copy the MAC addr into the HW */
2646 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2648 /* PS and related bits will be programmed according to the speed */
2649 if (priv->hw->pcs) {
2650 int speed = priv->plat->mac_port_sel_speed;
2652 if ((speed == SPEED_10) || (speed == SPEED_100) ||
2653 (speed == SPEED_1000)) {
2654 priv->hw->ps = speed;
2656 dev_warn(priv->device, "invalid port speed\n");
2661 /* Initialize the MAC Core */
2662 stmmac_core_init(priv, priv->hw, dev);
2665 stmmac_mtl_configuration(priv);
2667 /* Initialize Safety Features */
2668 stmmac_safety_feat_configuration(priv);
2670 ret = stmmac_rx_ipc(priv, priv->hw);
2672 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2673 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2674 priv->hw->rx_csum = 0;
2677 /* Enable the MAC Rx/Tx */
2678 stmmac_mac_set(priv, priv->ioaddr, true);
2680 /* Set the HW DMA mode and the COE */
2681 stmmac_dma_operation_mode(priv);
2683 stmmac_mmc_setup(priv);
2686 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2688 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2690 ret = stmmac_init_ptp(priv);
2691 if (ret == -EOPNOTSUPP)
2692 netdev_warn(priv->dev, "PTP not supported by HW\n");
2694 netdev_warn(priv->dev, "PTP init failed\n");
2697 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2699 if (priv->use_riwt) {
2701 priv->rx_riwt = DEF_DMA_RIWT;
2703 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2707 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2709 /* set TX and RX rings length */
2710 stmmac_set_rings_length(priv);
2714 for (chan = 0; chan < tx_cnt; chan++)
2715 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2718 /* Enable Split Header */
2719 if (priv->sph && priv->hw->rx_csum) {
2720 for (chan = 0; chan < rx_cnt; chan++)
2721 stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2724 /* VLAN Tag Insertion */
2725 if (priv->dma_cap.vlins)
2726 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2729 for (chan = 0; chan < tx_cnt; chan++) {
2730 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2731 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2733 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2736 /* Start the ball rolling... */
2737 stmmac_start_all_dma(priv);
2742 static void stmmac_hw_teardown(struct net_device *dev)
2744 struct stmmac_priv *priv = netdev_priv(dev);
2746 clk_disable_unprepare(priv->plat->clk_ptp_ref);
2750 * stmmac_open - open entry point of the driver
2751 * @dev : pointer to the device structure.
2753 * This function is the open entry point of the driver.
2755 * 0 on success and an appropriate (-)ve integer as defined in errno.h
2758 static int stmmac_open(struct net_device *dev)
2760 struct stmmac_priv *priv = netdev_priv(dev);
2765 if (priv->hw->pcs != STMMAC_PCS_TBI &&
2766 priv->hw->pcs != STMMAC_PCS_RTBI &&
2767 priv->hw->xpcs == NULL) {
2768 ret = stmmac_init_phy(dev);
2770 netdev_err(priv->dev,
2771 "%s: Cannot attach to PHY (error: %d)\n",
2777 /* Extra statistics */
2778 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2779 priv->xstats.threshold = tc;
2781 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2785 if (bfsize < BUF_SIZE_16KiB)
2786 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2788 priv->dma_buf_sz = bfsize;
2791 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2793 /* Earlier check for TBS */
2794 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2795 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2796 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2798 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2799 if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan))
2800 tx_q->tbs &= ~STMMAC_TBS_AVAIL;
2803 ret = alloc_dma_desc_resources(priv);
2805 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2807 goto dma_desc_error;
2810 ret = init_dma_desc_rings(dev, GFP_KERNEL);
2812 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2817 ret = stmmac_hw_setup(dev, true);
2819 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2823 stmmac_init_coalesce(priv);
2825 phylink_start(priv->phylink);
2826 /* We may have called phylink_speed_down before */
2827 phylink_speed_up(priv->phylink);
2829 /* Request the IRQ lines */
2830 ret = request_irq(dev->irq, stmmac_interrupt,
2831 IRQF_SHARED, dev->name, dev);
2832 if (unlikely(ret < 0)) {
2833 netdev_err(priv->dev,
2834 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2835 __func__, dev->irq, ret);
2839 /* Request the Wake IRQ in case of another line is used for WoL */
2840 if (priv->wol_irq != dev->irq) {
2841 ret = request_irq(priv->wol_irq, stmmac_interrupt,
2842 IRQF_SHARED, dev->name, dev);
2843 if (unlikely(ret < 0)) {
2844 netdev_err(priv->dev,
2845 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2846 __func__, priv->wol_irq, ret);
2851 /* Request the IRQ lines */
2852 if (priv->lpi_irq > 0) {
2853 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2855 if (unlikely(ret < 0)) {
2856 netdev_err(priv->dev,
2857 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2858 __func__, priv->lpi_irq, ret);
2863 stmmac_enable_all_queues(priv);
2864 stmmac_start_all_queues(priv);
2869 if (priv->wol_irq != dev->irq)
2870 free_irq(priv->wol_irq, dev);
2872 free_irq(dev->irq, dev);
2874 phylink_stop(priv->phylink);
2876 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2877 del_timer_sync(&priv->tx_queue[chan].txtimer);
2879 stmmac_hw_teardown(dev);
2881 free_dma_desc_resources(priv);
2883 phylink_disconnect_phy(priv->phylink);
2888 * stmmac_release - close entry point of the driver
2889 * @dev : device pointer.
2891 * This is the stop entry point of the driver.
2893 static int stmmac_release(struct net_device *dev)
2895 struct stmmac_priv *priv = netdev_priv(dev);
2898 if (priv->eee_enabled)
2899 del_timer_sync(&priv->eee_ctrl_timer);
2901 if (device_may_wakeup(priv->device))
2902 phylink_speed_down(priv->phylink, false);
2903 /* Stop and disconnect the PHY */
2904 phylink_stop(priv->phylink);
2905 phylink_disconnect_phy(priv->phylink);
2907 stmmac_stop_all_queues(priv);
2909 stmmac_disable_all_queues(priv);
2911 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2912 del_timer_sync(&priv->tx_queue[chan].txtimer);
2914 /* Free the IRQ lines */
2915 free_irq(dev->irq, dev);
2916 if (priv->wol_irq != dev->irq)
2917 free_irq(priv->wol_irq, dev);
2918 if (priv->lpi_irq > 0)
2919 free_irq(priv->lpi_irq, dev);
2921 /* Stop TX/RX DMA and clear the descriptors */
2922 stmmac_stop_all_dma(priv);
2924 /* Release and free the Rx/Tx resources */
2925 free_dma_desc_resources(priv);
2927 /* Disable the MAC Rx/Tx */
2928 stmmac_mac_set(priv, priv->ioaddr, false);
2930 netif_carrier_off(dev);
2932 stmmac_release_ptp(priv);
2937 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2938 struct stmmac_tx_queue *tx_q)
2940 u16 tag = 0x0, inner_tag = 0x0;
2941 u32 inner_type = 0x0;
2944 if (!priv->dma_cap.vlins)
2946 if (!skb_vlan_tag_present(skb))
2948 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2949 inner_tag = skb_vlan_tag_get(skb);
2950 inner_type = STMMAC_VLAN_INSERT;
2953 tag = skb_vlan_tag_get(skb);
2955 if (tx_q->tbs & STMMAC_TBS_AVAIL)
2956 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
2958 p = &tx_q->dma_tx[tx_q->cur_tx];
2960 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2963 stmmac_set_tx_owner(priv, p);
2964 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2969 * stmmac_tso_allocator - close entry point of the driver
2970 * @priv: driver private structure
2971 * @des: buffer start address
2972 * @total_len: total length to fill in descriptors
2973 * @last_segmant: condition for the last descriptor
2974 * @queue: TX queue index
2976 * This function fills descriptor and request new descriptors according to
2977 * buffer length to fill
2979 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2980 int total_len, bool last_segment, u32 queue)
2982 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2983 struct dma_desc *desc;
2987 tmp_len = total_len;
2989 while (tmp_len > 0) {
2990 dma_addr_t curr_addr;
2992 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2993 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2995 if (tx_q->tbs & STMMAC_TBS_AVAIL)
2996 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
2998 desc = &tx_q->dma_tx[tx_q->cur_tx];
3000 curr_addr = des + (total_len - tmp_len);
3001 if (priv->dma_cap.addr64 <= 32)
3002 desc->des0 = cpu_to_le32(curr_addr);
3004 stmmac_set_desc_addr(priv, desc, curr_addr);
3006 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3007 TSO_MAX_BUFF_SIZE : tmp_len;
3009 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3011 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3014 tmp_len -= TSO_MAX_BUFF_SIZE;
3019 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3020 * @skb : the socket buffer
3021 * @dev : device pointer
3022 * Description: this is the transmit function that is called on TSO frames
3023 * (support available on GMAC4 and newer chips).
3024 * Diagram below show the ring programming in case of TSO frames:
3028 * | DES0 |---> buffer1 = L2/L3/L4 header
3029 * | DES1 |---> TCP Payload (can continue on next descr...)
3030 * | DES2 |---> buffer 1 and 2 len
3031 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3037 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
3039 * | DES2 | --> buffer 1 and 2 len
3043 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3045 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3047 struct dma_desc *desc, *first, *mss_desc = NULL;
3048 struct stmmac_priv *priv = netdev_priv(dev);
3049 int desc_size, tmp_pay_len = 0, first_tx;
3050 int nfrags = skb_shinfo(skb)->nr_frags;
3051 u32 queue = skb_get_queue_mapping(skb);
3052 unsigned int first_entry, tx_packets;
3053 struct stmmac_tx_queue *tx_q;
3054 bool has_vlan, set_ic;
3055 u8 proto_hdr_len, hdr;
3060 tx_q = &priv->tx_queue[queue];
3061 first_tx = tx_q->cur_tx;
3063 /* Compute header lengths */
3064 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3065 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3066 hdr = sizeof(struct udphdr);
3068 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3069 hdr = tcp_hdrlen(skb);
3072 /* Desc availability based on threshold should be enough safe */
3073 if (unlikely(stmmac_tx_avail(priv, queue) <
3074 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3075 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3076 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3078 /* This is a hard error, log it. */
3079 netdev_err(priv->dev,
3080 "%s: Tx Ring full when queue awake\n",
3083 return NETDEV_TX_BUSY;
3086 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3088 mss = skb_shinfo(skb)->gso_size;
3090 /* set new MSS value if needed */
3091 if (mss != tx_q->mss) {
3092 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3093 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3095 mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3097 stmmac_set_mss(priv, mss_desc, mss);
3099 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3100 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3103 if (netif_msg_tx_queued(priv)) {
3104 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3105 __func__, hdr, proto_hdr_len, pay_len, mss);
3106 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3110 /* Check if VLAN can be inserted by HW */
3111 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3113 first_entry = tx_q->cur_tx;
3114 WARN_ON(tx_q->tx_skbuff[first_entry]);
3116 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3117 desc = &tx_q->dma_entx[first_entry].basic;
3119 desc = &tx_q->dma_tx[first_entry];
3123 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3125 /* first descriptor: fill Headers on Buf1 */
3126 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3128 if (dma_mapping_error(priv->device, des))
3131 tx_q->tx_skbuff_dma[first_entry].buf = des;
3132 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3134 if (priv->dma_cap.addr64 <= 32) {
3135 first->des0 = cpu_to_le32(des);
3137 /* Fill start of payload in buff2 of first descriptor */
3139 first->des1 = cpu_to_le32(des + proto_hdr_len);
3141 /* If needed take extra descriptors to fill the remaining payload */
3142 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3144 stmmac_set_desc_addr(priv, first, des);
3145 tmp_pay_len = pay_len;
3146 des += proto_hdr_len;
3150 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3152 /* Prepare fragments */
3153 for (i = 0; i < nfrags; i++) {
3154 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3156 des = skb_frag_dma_map(priv->device, frag, 0,
3157 skb_frag_size(frag),
3159 if (dma_mapping_error(priv->device, des))
3162 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3163 (i == nfrags - 1), queue);
3165 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3166 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3167 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3170 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3172 /* Only the last descriptor gets to point to the skb. */
3173 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3175 /* Manage tx mitigation */
3176 tx_packets = (tx_q->cur_tx + 1) - first_tx;
3177 tx_q->tx_count_frames += tx_packets;
3179 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3181 else if (!priv->tx_coal_frames)
3183 else if (tx_packets > priv->tx_coal_frames)
3185 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3191 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3192 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3194 desc = &tx_q->dma_tx[tx_q->cur_tx];
3196 tx_q->tx_count_frames = 0;
3197 stmmac_set_tx_ic(priv, desc);
3198 priv->xstats.tx_set_ic_bit++;
3201 /* We've used all descriptors we need for this skb, however,
3202 * advance cur_tx so that it references a fresh descriptor.
3203 * ndo_start_xmit will fill this descriptor the next time it's
3204 * called and stmmac_tx_clean may clean up to this descriptor.
3206 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3208 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3209 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3211 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3214 dev->stats.tx_bytes += skb->len;
3215 priv->xstats.tx_tso_frames++;
3216 priv->xstats.tx_tso_nfrags += nfrags;
3218 if (priv->sarc_type)
3219 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3221 skb_tx_timestamp(skb);
3223 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3224 priv->hwts_tx_en)) {
3225 /* declare that device is doing timestamping */
3226 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3227 stmmac_enable_tx_timestamp(priv, first);
3230 /* Complete the first descriptor before granting the DMA */
3231 stmmac_prepare_tso_tx_desc(priv, first, 1,
3234 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3235 hdr / 4, (skb->len - proto_hdr_len));
3237 /* If context desc is used to change MSS */
3239 /* Make sure that first descriptor has been completely
3240 * written, including its own bit. This is because MSS is
3241 * actually before first descriptor, so we need to make
3242 * sure that MSS's own bit is the last thing written.
3245 stmmac_set_tx_owner(priv, mss_desc);
3248 /* The own bit must be the latest setting done when prepare the
3249 * descriptor and then barrier is needed to make sure that
3250 * all is coherent before granting the DMA engine.
3254 if (netif_msg_pktdata(priv)) {
3255 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3256 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3257 tx_q->cur_tx, first, nfrags);
3258 pr_info(">>> frame to be transmitted: ");
3259 print_pkt(skb->data, skb_headlen(skb));
3262 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3264 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3265 desc_size = sizeof(struct dma_edesc);
3267 desc_size = sizeof(struct dma_desc);
3269 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3270 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3271 stmmac_tx_timer_arm(priv, queue);
3273 return NETDEV_TX_OK;
3276 dev_err(priv->device, "Tx dma map failed\n");
3278 priv->dev->stats.tx_dropped++;
3279 return NETDEV_TX_OK;
3283 * stmmac_xmit - Tx entry point of the driver
3284 * @skb : the socket buffer
3285 * @dev : device pointer
3286 * Description : this is the tx entry point of the driver.
3287 * It programs the chain or the ring and supports oversized frames
3290 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3292 unsigned int first_entry, tx_packets, enh_desc;
3293 struct stmmac_priv *priv = netdev_priv(dev);
3294 unsigned int nopaged_len = skb_headlen(skb);
3295 int i, csum_insertion = 0, is_jumbo = 0;
3296 u32 queue = skb_get_queue_mapping(skb);
3297 int nfrags = skb_shinfo(skb)->nr_frags;
3298 int gso = skb_shinfo(skb)->gso_type;
3299 struct dma_edesc *tbs_desc = NULL;
3300 int entry, desc_size, first_tx;
3301 struct dma_desc *desc, *first;
3302 struct stmmac_tx_queue *tx_q;
3303 bool has_vlan, set_ic;
3306 tx_q = &priv->tx_queue[queue];
3307 first_tx = tx_q->cur_tx;
3309 if (priv->tx_path_in_lpi_mode)
3310 stmmac_disable_eee_mode(priv);
3312 /* Manage oversized TCP frames for GMAC4 device */
3313 if (skb_is_gso(skb) && priv->tso) {
3314 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3315 return stmmac_tso_xmit(skb, dev);
3316 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3317 return stmmac_tso_xmit(skb, dev);
3320 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3321 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3322 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3324 /* This is a hard error, log it. */
3325 netdev_err(priv->dev,
3326 "%s: Tx Ring full when queue awake\n",
3329 return NETDEV_TX_BUSY;
3332 /* Check if VLAN can be inserted by HW */
3333 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3335 entry = tx_q->cur_tx;
3336 first_entry = entry;
3337 WARN_ON(tx_q->tx_skbuff[first_entry]);
3339 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3341 if (likely(priv->extend_desc))
3342 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3343 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3344 desc = &tx_q->dma_entx[entry].basic;
3346 desc = tx_q->dma_tx + entry;
3351 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3353 enh_desc = priv->plat->enh_desc;
3354 /* To program the descriptors according to the size of the frame */
3356 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3358 if (unlikely(is_jumbo)) {
3359 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3360 if (unlikely(entry < 0) && (entry != -EINVAL))
3364 for (i = 0; i < nfrags; i++) {
3365 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3366 int len = skb_frag_size(frag);
3367 bool last_segment = (i == (nfrags - 1));
3369 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3370 WARN_ON(tx_q->tx_skbuff[entry]);
3372 if (likely(priv->extend_desc))
3373 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3374 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3375 desc = &tx_q->dma_entx[entry].basic;
3377 desc = tx_q->dma_tx + entry;
3379 des = skb_frag_dma_map(priv->device, frag, 0, len,
3381 if (dma_mapping_error(priv->device, des))
3382 goto dma_map_err; /* should reuse desc w/o issues */
3384 tx_q->tx_skbuff_dma[entry].buf = des;
3386 stmmac_set_desc_addr(priv, desc, des);
3388 tx_q->tx_skbuff_dma[entry].map_as_page = true;
3389 tx_q->tx_skbuff_dma[entry].len = len;
3390 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3392 /* Prepare the descriptor and set the own bit too */
3393 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3394 priv->mode, 1, last_segment, skb->len);
3397 /* Only the last descriptor gets to point to the skb. */
3398 tx_q->tx_skbuff[entry] = skb;
3400 /* According to the coalesce parameter the IC bit for the latest
3401 * segment is reset and the timer re-started to clean the tx status.
3402 * This approach takes care about the fragments: desc is the first
3403 * element in case of no SG.
3405 tx_packets = (entry + 1) - first_tx;
3406 tx_q->tx_count_frames += tx_packets;
3408 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3410 else if (!priv->tx_coal_frames)
3412 else if (tx_packets > priv->tx_coal_frames)
3414 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3420 if (likely(priv->extend_desc))
3421 desc = &tx_q->dma_etx[entry].basic;
3422 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3423 desc = &tx_q->dma_entx[entry].basic;
3425 desc = &tx_q->dma_tx[entry];
3427 tx_q->tx_count_frames = 0;
3428 stmmac_set_tx_ic(priv, desc);
3429 priv->xstats.tx_set_ic_bit++;
3432 /* We've used all descriptors we need for this skb, however,
3433 * advance cur_tx so that it references a fresh descriptor.
3434 * ndo_start_xmit will fill this descriptor the next time it's
3435 * called and stmmac_tx_clean may clean up to this descriptor.
3437 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3438 tx_q->cur_tx = entry;
3440 if (netif_msg_pktdata(priv)) {
3441 netdev_dbg(priv->dev,
3442 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3443 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3444 entry, first, nfrags);
3446 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3447 print_pkt(skb->data, skb->len);
3450 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3451 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3453 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3456 dev->stats.tx_bytes += skb->len;
3458 if (priv->sarc_type)
3459 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3461 skb_tx_timestamp(skb);
3463 /* Ready to fill the first descriptor and set the OWN bit w/o any
3464 * problems because all the descriptors are actually ready to be
3465 * passed to the DMA engine.
3467 if (likely(!is_jumbo)) {
3468 bool last_segment = (nfrags == 0);
3470 des = dma_map_single(priv->device, skb->data,
3471 nopaged_len, DMA_TO_DEVICE);
3472 if (dma_mapping_error(priv->device, des))
3475 tx_q->tx_skbuff_dma[first_entry].buf = des;
3477 stmmac_set_desc_addr(priv, first, des);
3479 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3480 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3482 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3483 priv->hwts_tx_en)) {
3484 /* declare that device is doing timestamping */
3485 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3486 stmmac_enable_tx_timestamp(priv, first);
3489 /* Prepare the first descriptor setting the OWN bit too */
3490 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3491 csum_insertion, priv->mode, 0, last_segment,
3495 if (tx_q->tbs & STMMAC_TBS_EN) {
3496 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3498 tbs_desc = &tx_q->dma_entx[first_entry];
3499 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3502 stmmac_set_tx_owner(priv, first);
3504 /* The own bit must be the latest setting done when prepare the
3505 * descriptor and then barrier is needed to make sure that
3506 * all is coherent before granting the DMA engine.
3510 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3512 stmmac_enable_dma_transmission(priv, priv->ioaddr);
3514 if (likely(priv->extend_desc))
3515 desc_size = sizeof(struct dma_extended_desc);
3516 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3517 desc_size = sizeof(struct dma_edesc);
3519 desc_size = sizeof(struct dma_desc);
3521 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3522 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3523 stmmac_tx_timer_arm(priv, queue);
3525 return NETDEV_TX_OK;
3528 netdev_err(priv->dev, "Tx DMA map failed\n");
3530 priv->dev->stats.tx_dropped++;
3531 return NETDEV_TX_OK;
3534 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3536 struct vlan_ethhdr *veth;
3540 veth = (struct vlan_ethhdr *)skb->data;
3541 vlan_proto = veth->h_vlan_proto;
3543 if ((vlan_proto == htons(ETH_P_8021Q) &&
3544 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3545 (vlan_proto == htons(ETH_P_8021AD) &&
3546 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3547 /* pop the vlan tag */
3548 vlanid = ntohs(veth->h_vlan_TCI);
3549 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3550 skb_pull(skb, VLAN_HLEN);
3551 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3556 * stmmac_rx_refill - refill used skb preallocated buffers
3557 * @priv: driver private structure
3558 * @queue: RX queue index
3559 * Description : this is to reallocate the skb for the reception process
3560 * that is based on zero-copy.
3562 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3564 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3565 int len, dirty = stmmac_rx_dirty(priv, queue);
3566 unsigned int entry = rx_q->dirty_rx;
3568 len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3570 while (dirty-- > 0) {
3571 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3575 if (priv->extend_desc)
3576 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3578 p = rx_q->dma_rx + entry;
3581 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3586 if (priv->sph && !buf->sec_page) {
3587 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3591 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3593 dma_sync_single_for_device(priv->device, buf->sec_addr,
3594 len, DMA_FROM_DEVICE);
3597 buf->addr = page_pool_get_dma_addr(buf->page);
3599 /* Sync whole allocation to device. This will invalidate old
3602 dma_sync_single_for_device(priv->device, buf->addr, len,
3605 stmmac_set_desc_addr(priv, p, buf->addr);
3606 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3607 stmmac_refill_desc3(priv, rx_q, p);
3609 rx_q->rx_count_frames++;
3610 rx_q->rx_count_frames += priv->rx_coal_frames;
3611 if (rx_q->rx_count_frames > priv->rx_coal_frames)
3612 rx_q->rx_count_frames = 0;
3614 use_rx_wd = !priv->rx_coal_frames;
3615 use_rx_wd |= rx_q->rx_count_frames > 0;
3616 if (!priv->use_riwt)
3620 stmmac_set_rx_owner(priv, p, use_rx_wd);
3622 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3624 rx_q->dirty_rx = entry;
3625 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3626 (rx_q->dirty_rx * sizeof(struct dma_desc));
3627 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3630 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3632 int status, unsigned int len)
3634 int ret, coe = priv->hw->rx_csum;
3635 unsigned int plen = 0, hlen = 0;
3637 /* Not first descriptor, buffer is always zero */
3638 if (priv->sph && len)
3641 /* First descriptor, get split header length */
3642 ret = stmmac_get_rx_header_len(priv, p, &hlen);
3643 if (priv->sph && hlen) {
3644 priv->xstats.rx_split_hdr_pkt_n++;
3648 /* First descriptor, not last descriptor and not split header */
3649 if (status & rx_not_ls)
3650 return priv->dma_buf_sz;
3652 plen = stmmac_get_rx_frame_len(priv, p, coe);
3654 /* First descriptor and last descriptor and not split header */
3655 return min_t(unsigned int, priv->dma_buf_sz, plen);
3658 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3660 int status, unsigned int len)
3662 int coe = priv->hw->rx_csum;
3663 unsigned int plen = 0;
3665 /* Not split header, buffer is not available */
3669 /* Not last descriptor */
3670 if (status & rx_not_ls)
3671 return priv->dma_buf_sz;
3673 plen = stmmac_get_rx_frame_len(priv, p, coe);
3675 /* Last descriptor */
3680 * stmmac_rx - manage the receive process
3681 * @priv: driver private structure
3682 * @limit: napi bugget
3683 * @queue: RX queue index.
3684 * Description : this the function called by the napi poll method.
3685 * It gets all the frames inside the ring.
3687 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3689 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3690 struct stmmac_channel *ch = &priv->channel[queue];
3691 unsigned int count = 0, error = 0, len = 0;
3692 int status = 0, coe = priv->hw->rx_csum;
3693 unsigned int next_entry = rx_q->cur_rx;
3694 struct sk_buff *skb = NULL;
3696 if (netif_msg_rx_status(priv)) {
3699 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3700 if (priv->extend_desc)
3701 rx_head = (void *)rx_q->dma_erx;
3703 rx_head = (void *)rx_q->dma_rx;
3705 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3707 while (count < limit) {
3708 unsigned int buf1_len = 0, buf2_len = 0;
3709 enum pkt_hash_types hash_type;
3710 struct stmmac_rx_buffer *buf;
3711 struct dma_desc *np, *p;
3715 if (!count && rx_q->state_saved) {
3716 skb = rx_q->state.skb;
3717 error = rx_q->state.error;
3718 len = rx_q->state.len;
3720 rx_q->state_saved = false;
3733 buf = &rx_q->buf_pool[entry];
3735 if (priv->extend_desc)
3736 p = (struct dma_desc *)(rx_q->dma_erx + entry);
3738 p = rx_q->dma_rx + entry;
3740 /* read the status of the incoming frame */
3741 status = stmmac_rx_status(priv, &priv->dev->stats,
3743 /* check if managed by the DMA otherwise go ahead */
3744 if (unlikely(status & dma_own))
3747 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3748 next_entry = rx_q->cur_rx;
3750 if (priv->extend_desc)
3751 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3753 np = rx_q->dma_rx + next_entry;
3757 if (priv->extend_desc)
3758 stmmac_rx_extended_status(priv, &priv->dev->stats,
3759 &priv->xstats, rx_q->dma_erx + entry);
3760 if (unlikely(status == discard_frame)) {
3761 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3764 if (!priv->hwts_rx_en)
3765 priv->dev->stats.rx_errors++;
3768 if (unlikely(error && (status & rx_not_ls)))
3770 if (unlikely(error)) {
3777 /* Buffer is good. Go on. */
3779 prefetch(page_address(buf->page));
3781 prefetch(page_address(buf->sec_page));
3783 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3785 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3788 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3789 * Type frames (LLC/LLC-SNAP)
3791 * llc_snap is never checked in GMAC >= 4, so this ACS
3792 * feature is always disabled and packets need to be
3793 * stripped manually.
3795 if (likely(!(status & rx_not_ls)) &&
3796 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3797 unlikely(status != llc_snap))) {
3799 buf2_len -= ETH_FCS_LEN;
3801 buf1_len -= ETH_FCS_LEN;
3807 skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3809 priv->dev->stats.rx_dropped++;
3814 dma_sync_single_for_cpu(priv->device, buf->addr,
3815 buf1_len, DMA_FROM_DEVICE);
3816 skb_copy_to_linear_data(skb, page_address(buf->page),
3818 skb_put(skb, buf1_len);
3820 /* Data payload copied into SKB, page ready for recycle */
3821 page_pool_recycle_direct(rx_q->page_pool, buf->page);
3823 } else if (buf1_len) {
3824 dma_sync_single_for_cpu(priv->device, buf->addr,
3825 buf1_len, DMA_FROM_DEVICE);
3826 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3827 buf->page, 0, buf1_len,
3830 /* Data payload appended into SKB */
3831 page_pool_release_page(rx_q->page_pool, buf->page);
3836 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3837 buf2_len, DMA_FROM_DEVICE);
3838 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3839 buf->sec_page, 0, buf2_len,
3842 /* Data payload appended into SKB */
3843 page_pool_release_page(rx_q->page_pool, buf->sec_page);
3844 buf->sec_page = NULL;
3848 if (likely(status & rx_not_ls))
3853 /* Got entire packet into SKB. Finish it. */
3855 stmmac_get_rx_hwtstamp(priv, p, np, skb);
3856 stmmac_rx_vlan(priv->dev, skb);
3857 skb->protocol = eth_type_trans(skb, priv->dev);
3860 skb_checksum_none_assert(skb);
3862 skb->ip_summed = CHECKSUM_UNNECESSARY;
3864 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3865 skb_set_hash(skb, hash, hash_type);
3867 skb_record_rx_queue(skb, queue);
3868 napi_gro_receive(&ch->rx_napi, skb);
3871 priv->dev->stats.rx_packets++;
3872 priv->dev->stats.rx_bytes += len;
3876 if (status & rx_not_ls || skb) {
3877 rx_q->state_saved = true;
3878 rx_q->state.skb = skb;
3879 rx_q->state.error = error;
3880 rx_q->state.len = len;
3883 stmmac_rx_refill(priv, queue);
3885 priv->xstats.rx_pkt_n += count;
3890 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3892 struct stmmac_channel *ch =
3893 container_of(napi, struct stmmac_channel, rx_napi);
3894 struct stmmac_priv *priv = ch->priv_data;
3895 u32 chan = ch->index;
3898 priv->xstats.napi_poll++;
3900 work_done = stmmac_rx(priv, budget, chan);
3901 if (work_done < budget && napi_complete_done(napi, work_done)) {
3902 unsigned long flags;
3904 spin_lock_irqsave(&ch->lock, flags);
3905 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
3906 spin_unlock_irqrestore(&ch->lock, flags);
3912 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3914 struct stmmac_channel *ch =
3915 container_of(napi, struct stmmac_channel, tx_napi);
3916 struct stmmac_priv *priv = ch->priv_data;
3917 u32 chan = ch->index;
3920 priv->xstats.napi_poll++;
3922 work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3923 work_done = min(work_done, budget);
3925 if (work_done < budget && napi_complete_done(napi, work_done)) {
3926 unsigned long flags;
3928 spin_lock_irqsave(&ch->lock, flags);
3929 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
3930 spin_unlock_irqrestore(&ch->lock, flags);
3938 * @dev : Pointer to net device structure
3939 * Description: this function is called when a packet transmission fails to
3940 * complete within a reasonable time. The driver will mark the error in the
3941 * netdev structure and arrange for the device to be reset to a sane state
3942 * in order to transmit a new packet.
3944 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
3946 struct stmmac_priv *priv = netdev_priv(dev);
3948 stmmac_global_err(priv);
3952 * stmmac_set_rx_mode - entry point for multicast addressing
3953 * @dev : pointer to the device structure
3955 * This function is a driver entry point which gets called by the kernel
3956 * whenever multicast addresses must be enabled/disabled.
3960 static void stmmac_set_rx_mode(struct net_device *dev)
3962 struct stmmac_priv *priv = netdev_priv(dev);
3964 stmmac_set_filter(priv, priv->hw, dev);
3968 * stmmac_change_mtu - entry point to change MTU size for the device.
3969 * @dev : device pointer.
3970 * @new_mtu : the new MTU size for the device.
3971 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
3972 * to drive packet transmission. Ethernet has an MTU of 1500 octets
3973 * (ETH_DATA_LEN). This value can be changed with ifconfig.
3975 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3978 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3980 struct stmmac_priv *priv = netdev_priv(dev);
3981 int txfifosz = priv->plat->tx_fifo_size;
3984 txfifosz = priv->dma_cap.tx_fifo_size;
3986 txfifosz /= priv->plat->tx_queues_to_use;
3988 if (netif_running(dev)) {
3989 netdev_err(priv->dev, "must be stopped to change its MTU\n");
3993 new_mtu = STMMAC_ALIGN(new_mtu);
3995 /* If condition true, FIFO is too small or MTU too large */
3996 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
4001 netdev_update_features(dev);
4006 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4007 netdev_features_t features)
4009 struct stmmac_priv *priv = netdev_priv(dev);
4011 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4012 features &= ~NETIF_F_RXCSUM;
4014 if (!priv->plat->tx_coe)
4015 features &= ~NETIF_F_CSUM_MASK;
4017 /* Some GMAC devices have a bugged Jumbo frame support that
4018 * needs to have the Tx COE disabled for oversized frames
4019 * (due to limited buffer sizes). In this case we disable
4020 * the TX csum insertion in the TDES and not use SF.
4022 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4023 features &= ~NETIF_F_CSUM_MASK;
4025 /* Disable tso if asked by ethtool */
4026 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4027 if (features & NETIF_F_TSO)
4036 static int stmmac_set_features(struct net_device *netdev,
4037 netdev_features_t features)
4039 struct stmmac_priv *priv = netdev_priv(netdev);
4043 /* Keep the COE Type in case of csum is supporting */
4044 if (features & NETIF_F_RXCSUM)
4045 priv->hw->rx_csum = priv->plat->rx_coe;
4047 priv->hw->rx_csum = 0;
4048 /* No check needed because rx_coe has been set before and it will be
4049 * fixed in case of issue.
4051 stmmac_rx_ipc(priv, priv->hw);
4053 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4054 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4055 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4061 * stmmac_interrupt - main ISR
4062 * @irq: interrupt number.
4063 * @dev_id: to pass the net device pointer (must be valid).
4064 * Description: this is the main driver interrupt service routine.
4066 * o DMA service routine (to manage incoming frame reception and transmission
4068 * o Core interrupts to manage: remote wake-up, management counter, LPI
4071 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4073 struct net_device *dev = (struct net_device *)dev_id;
4074 struct stmmac_priv *priv = netdev_priv(dev);
4075 u32 rx_cnt = priv->plat->rx_queues_to_use;
4076 u32 tx_cnt = priv->plat->tx_queues_to_use;
4081 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4082 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4085 pm_wakeup_event(priv->device, 0);
4087 /* Check if adapter is up */
4088 if (test_bit(STMMAC_DOWN, &priv->state))
4090 /* Check if a fatal error happened */
4091 if (stmmac_safety_feat_interrupt(priv))
4094 /* To handle GMAC own interrupts */
4095 if ((priv->plat->has_gmac) || xmac) {
4096 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4099 if (unlikely(status)) {
4100 /* For LPI we need to save the tx status */
4101 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4102 priv->tx_path_in_lpi_mode = true;
4103 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4104 priv->tx_path_in_lpi_mode = false;
4107 for (queue = 0; queue < queues_count; queue++) {
4108 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4110 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
4112 if (mtl_status != -EINVAL)
4113 status |= mtl_status;
4115 if (status & CORE_IRQ_MTL_RX_OVERFLOW)
4116 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
4121 /* PCS link status */
4122 if (priv->hw->pcs) {
4123 if (priv->xstats.pcs_link)
4124 netif_carrier_on(dev);
4126 netif_carrier_off(dev);
4130 /* To handle DMA interrupts */
4131 stmmac_dma_interrupt(priv);
4136 #ifdef CONFIG_NET_POLL_CONTROLLER
4137 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4138 * to allow network I/O with interrupts disabled.
4140 static void stmmac_poll_controller(struct net_device *dev)
4142 disable_irq(dev->irq);
4143 stmmac_interrupt(dev->irq, dev);
4144 enable_irq(dev->irq);
4149 * stmmac_ioctl - Entry point for the Ioctl
4150 * @dev: Device pointer.
4151 * @rq: An IOCTL specefic structure, that can contain a pointer to
4152 * a proprietary structure used to pass information to the driver.
4153 * @cmd: IOCTL command
4155 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4157 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4159 struct stmmac_priv *priv = netdev_priv (dev);
4160 int ret = -EOPNOTSUPP;
4162 if (!netif_running(dev))
4169 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4172 ret = stmmac_hwtstamp_set(dev, rq);
4175 ret = stmmac_hwtstamp_get(dev, rq);
4184 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4187 struct stmmac_priv *priv = cb_priv;
4188 int ret = -EOPNOTSUPP;
4190 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4193 stmmac_disable_all_queues(priv);
4196 case TC_SETUP_CLSU32:
4197 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4199 case TC_SETUP_CLSFLOWER:
4200 ret = stmmac_tc_setup_cls(priv, priv, type_data);
4206 stmmac_enable_all_queues(priv);
4210 static LIST_HEAD(stmmac_block_cb_list);
4212 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4215 struct stmmac_priv *priv = netdev_priv(ndev);
4218 case TC_SETUP_BLOCK:
4219 return flow_block_cb_setup_simple(type_data,
4220 &stmmac_block_cb_list,
4221 stmmac_setup_tc_block_cb,
4223 case TC_SETUP_QDISC_CBS:
4224 return stmmac_tc_setup_cbs(priv, priv, type_data);
4225 case TC_SETUP_QDISC_TAPRIO:
4226 return stmmac_tc_setup_taprio(priv, priv, type_data);
4227 case TC_SETUP_QDISC_ETF:
4228 return stmmac_tc_setup_etf(priv, priv, type_data);
4234 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4235 struct net_device *sb_dev)
4237 int gso = skb_shinfo(skb)->gso_type;
4239 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4241 * There is no way to determine the number of TSO/USO
4242 * capable Queues. Let's use always the Queue 0
4243 * because if TSO/USO is supported then at least this
4244 * one will be capable.
4249 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4252 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4254 struct stmmac_priv *priv = netdev_priv(ndev);
4257 ret = eth_mac_addr(ndev, addr);
4261 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4266 #ifdef CONFIG_DEBUG_FS
4267 static struct dentry *stmmac_fs_dir;
4269 static void sysfs_display_ring(void *head, int size, int extend_desc,
4270 struct seq_file *seq)
4273 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4274 struct dma_desc *p = (struct dma_desc *)head;
4276 for (i = 0; i < size; i++) {
4278 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4279 i, (unsigned int)virt_to_phys(ep),
4280 le32_to_cpu(ep->basic.des0),
4281 le32_to_cpu(ep->basic.des1),
4282 le32_to_cpu(ep->basic.des2),
4283 le32_to_cpu(ep->basic.des3));
4286 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4287 i, (unsigned int)virt_to_phys(p),
4288 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4289 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4292 seq_printf(seq, "\n");
4296 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4298 struct net_device *dev = seq->private;
4299 struct stmmac_priv *priv = netdev_priv(dev);
4300 u32 rx_count = priv->plat->rx_queues_to_use;
4301 u32 tx_count = priv->plat->tx_queues_to_use;
4304 if ((dev->flags & IFF_UP) == 0)
4307 for (queue = 0; queue < rx_count; queue++) {
4308 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4310 seq_printf(seq, "RX Queue %d:\n", queue);
4312 if (priv->extend_desc) {
4313 seq_printf(seq, "Extended descriptor ring:\n");
4314 sysfs_display_ring((void *)rx_q->dma_erx,
4315 DMA_RX_SIZE, 1, seq);
4317 seq_printf(seq, "Descriptor ring:\n");
4318 sysfs_display_ring((void *)rx_q->dma_rx,
4319 DMA_RX_SIZE, 0, seq);
4323 for (queue = 0; queue < tx_count; queue++) {
4324 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4326 seq_printf(seq, "TX Queue %d:\n", queue);
4328 if (priv->extend_desc) {
4329 seq_printf(seq, "Extended descriptor ring:\n");
4330 sysfs_display_ring((void *)tx_q->dma_etx,
4331 DMA_TX_SIZE, 1, seq);
4332 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4333 seq_printf(seq, "Descriptor ring:\n");
4334 sysfs_display_ring((void *)tx_q->dma_tx,
4335 DMA_TX_SIZE, 0, seq);
4341 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4343 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4345 struct net_device *dev = seq->private;
4346 struct stmmac_priv *priv = netdev_priv(dev);
4348 if (!priv->hw_cap_support) {
4349 seq_printf(seq, "DMA HW features not supported\n");
4353 seq_printf(seq, "==============================\n");
4354 seq_printf(seq, "\tDMA HW features\n");
4355 seq_printf(seq, "==============================\n");
4357 seq_printf(seq, "\t10/100 Mbps: %s\n",
4358 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4359 seq_printf(seq, "\t1000 Mbps: %s\n",
4360 (priv->dma_cap.mbps_1000) ? "Y" : "N");
4361 seq_printf(seq, "\tHalf duplex: %s\n",
4362 (priv->dma_cap.half_duplex) ? "Y" : "N");
4363 seq_printf(seq, "\tHash Filter: %s\n",
4364 (priv->dma_cap.hash_filter) ? "Y" : "N");
4365 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4366 (priv->dma_cap.multi_addr) ? "Y" : "N");
4367 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4368 (priv->dma_cap.pcs) ? "Y" : "N");
4369 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4370 (priv->dma_cap.sma_mdio) ? "Y" : "N");
4371 seq_printf(seq, "\tPMT Remote wake up: %s\n",
4372 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4373 seq_printf(seq, "\tPMT Magic Frame: %s\n",
4374 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4375 seq_printf(seq, "\tRMON module: %s\n",
4376 (priv->dma_cap.rmon) ? "Y" : "N");
4377 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4378 (priv->dma_cap.time_stamp) ? "Y" : "N");
4379 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4380 (priv->dma_cap.atime_stamp) ? "Y" : "N");
4381 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4382 (priv->dma_cap.eee) ? "Y" : "N");
4383 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4384 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4385 (priv->dma_cap.tx_coe) ? "Y" : "N");
4386 if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4387 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4388 (priv->dma_cap.rx_coe) ? "Y" : "N");
4390 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4391 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4392 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4393 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4395 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4396 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4397 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4398 priv->dma_cap.number_rx_channel);
4399 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4400 priv->dma_cap.number_tx_channel);
4401 seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4402 priv->dma_cap.number_rx_queues);
4403 seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4404 priv->dma_cap.number_tx_queues);
4405 seq_printf(seq, "\tEnhanced descriptors: %s\n",
4406 (priv->dma_cap.enh_desc) ? "Y" : "N");
4407 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4408 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4409 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4410 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4411 seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4412 priv->dma_cap.pps_out_num);
4413 seq_printf(seq, "\tSafety Features: %s\n",
4414 priv->dma_cap.asp ? "Y" : "N");
4415 seq_printf(seq, "\tFlexible RX Parser: %s\n",
4416 priv->dma_cap.frpsel ? "Y" : "N");
4417 seq_printf(seq, "\tEnhanced Addressing: %d\n",
4418 priv->dma_cap.addr64);
4419 seq_printf(seq, "\tReceive Side Scaling: %s\n",
4420 priv->dma_cap.rssen ? "Y" : "N");
4421 seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4422 priv->dma_cap.vlhash ? "Y" : "N");
4423 seq_printf(seq, "\tSplit Header: %s\n",
4424 priv->dma_cap.sphen ? "Y" : "N");
4425 seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4426 priv->dma_cap.vlins ? "Y" : "N");
4427 seq_printf(seq, "\tDouble VLAN: %s\n",
4428 priv->dma_cap.dvlan ? "Y" : "N");
4429 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4430 priv->dma_cap.l3l4fnum);
4431 seq_printf(seq, "\tARP Offloading: %s\n",
4432 priv->dma_cap.arpoffsel ? "Y" : "N");
4433 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4434 priv->dma_cap.estsel ? "Y" : "N");
4435 seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4436 priv->dma_cap.fpesel ? "Y" : "N");
4437 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4438 priv->dma_cap.tbssel ? "Y" : "N");
4441 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4443 /* Use network device events to rename debugfs file entries.
4445 static int stmmac_device_event(struct notifier_block *unused,
4446 unsigned long event, void *ptr)
4448 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4449 struct stmmac_priv *priv = netdev_priv(dev);
4451 if (dev->netdev_ops != &stmmac_netdev_ops)
4455 case NETDEV_CHANGENAME:
4456 if (priv->dbgfs_dir)
4457 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4467 static struct notifier_block stmmac_notifier = {
4468 .notifier_call = stmmac_device_event,
4471 static void stmmac_init_fs(struct net_device *dev)
4473 struct stmmac_priv *priv = netdev_priv(dev);
4477 /* Create per netdev entries */
4478 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4480 /* Entry to report DMA RX/TX rings */
4481 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4482 &stmmac_rings_status_fops);
4484 /* Entry to report the DMA HW features */
4485 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4486 &stmmac_dma_cap_fops);
4491 static void stmmac_exit_fs(struct net_device *dev)
4493 struct stmmac_priv *priv = netdev_priv(dev);
4495 debugfs_remove_recursive(priv->dbgfs_dir);
4497 #endif /* CONFIG_DEBUG_FS */
4499 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4501 unsigned char *data = (unsigned char *)&vid_le;
4502 unsigned char data_byte = 0;
4507 bits = get_bitmask_order(VLAN_VID_MASK);
4508 for (i = 0; i < bits; i++) {
4510 data_byte = data[i / 8];
4512 temp = ((crc & 1) ^ data_byte) & 1;
4523 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4530 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4531 __le16 vid_le = cpu_to_le16(vid);
4532 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4537 if (!priv->dma_cap.vlhash) {
4538 if (count > 2) /* VID = 0 always passes filter */
4541 pmatch = cpu_to_le16(vid);
4545 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4548 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4550 struct stmmac_priv *priv = netdev_priv(ndev);
4551 bool is_double = false;
4554 if (be16_to_cpu(proto) == ETH_P_8021AD)
4557 set_bit(vid, priv->active_vlans);
4558 ret = stmmac_vlan_update(priv, is_double);
4560 clear_bit(vid, priv->active_vlans);
4564 if (priv->hw->num_vlan) {
4565 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4573 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4575 struct stmmac_priv *priv = netdev_priv(ndev);
4576 bool is_double = false;
4579 if (be16_to_cpu(proto) == ETH_P_8021AD)
4582 clear_bit(vid, priv->active_vlans);
4584 if (priv->hw->num_vlan) {
4585 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4590 return stmmac_vlan_update(priv, is_double);
4593 static const struct net_device_ops stmmac_netdev_ops = {
4594 .ndo_open = stmmac_open,
4595 .ndo_start_xmit = stmmac_xmit,
4596 .ndo_stop = stmmac_release,
4597 .ndo_change_mtu = stmmac_change_mtu,
4598 .ndo_fix_features = stmmac_fix_features,
4599 .ndo_set_features = stmmac_set_features,
4600 .ndo_set_rx_mode = stmmac_set_rx_mode,
4601 .ndo_tx_timeout = stmmac_tx_timeout,
4602 .ndo_do_ioctl = stmmac_ioctl,
4603 .ndo_setup_tc = stmmac_setup_tc,
4604 .ndo_select_queue = stmmac_select_queue,
4605 #ifdef CONFIG_NET_POLL_CONTROLLER
4606 .ndo_poll_controller = stmmac_poll_controller,
4608 .ndo_set_mac_address = stmmac_set_mac_address,
4609 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4610 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4613 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4615 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4617 if (test_bit(STMMAC_DOWN, &priv->state))
4620 netdev_err(priv->dev, "Reset adapter.\n");
4623 netif_trans_update(priv->dev);
4624 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4625 usleep_range(1000, 2000);
4627 set_bit(STMMAC_DOWN, &priv->state);
4628 dev_close(priv->dev);
4629 dev_open(priv->dev, NULL);
4630 clear_bit(STMMAC_DOWN, &priv->state);
4631 clear_bit(STMMAC_RESETING, &priv->state);
4635 static void stmmac_service_task(struct work_struct *work)
4637 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4640 stmmac_reset_subtask(priv);
4641 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4645 * stmmac_hw_init - Init the MAC device
4646 * @priv: driver private structure
4647 * Description: this function is to configure the MAC device according to
4648 * some platform parameters or the HW capability register. It prepares the
4649 * driver to use either ring or chain modes and to setup either enhanced or
4650 * normal descriptors.
4652 static int stmmac_hw_init(struct stmmac_priv *priv)
4656 /* dwmac-sun8i only work in chain mode */
4657 if (priv->plat->has_sun8i)
4659 priv->chain_mode = chain_mode;
4661 /* Initialize HW Interface */
4662 ret = stmmac_hwif_init(priv);
4666 /* Get the HW capability (new GMAC newer than 3.50a) */
4667 priv->hw_cap_support = stmmac_get_hw_features(priv);
4668 if (priv->hw_cap_support) {
4669 dev_info(priv->device, "DMA HW capability register supported\n");
4671 /* We can override some gmac/dma configuration fields: e.g.
4672 * enh_desc, tx_coe (e.g. that are passed through the
4673 * platform) with the values from the HW capability
4674 * register (if supported).
4676 priv->plat->enh_desc = priv->dma_cap.enh_desc;
4677 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4678 priv->hw->pmt = priv->plat->pmt;
4679 if (priv->dma_cap.hash_tb_sz) {
4680 priv->hw->multicast_filter_bins =
4681 (BIT(priv->dma_cap.hash_tb_sz) << 5);
4682 priv->hw->mcast_bits_log2 =
4683 ilog2(priv->hw->multicast_filter_bins);
4686 /* TXCOE doesn't work in thresh DMA mode */
4687 if (priv->plat->force_thresh_dma_mode)
4688 priv->plat->tx_coe = 0;
4690 priv->plat->tx_coe = priv->dma_cap.tx_coe;
4692 /* In case of GMAC4 rx_coe is from HW cap register. */
4693 priv->plat->rx_coe = priv->dma_cap.rx_coe;
4695 if (priv->dma_cap.rx_coe_type2)
4696 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4697 else if (priv->dma_cap.rx_coe_type1)
4698 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4701 dev_info(priv->device, "No HW DMA feature register supported\n");
4704 if (priv->plat->rx_coe) {
4705 priv->hw->rx_csum = priv->plat->rx_coe;
4706 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4707 if (priv->synopsys_id < DWMAC_CORE_4_00)
4708 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4710 if (priv->plat->tx_coe)
4711 dev_info(priv->device, "TX Checksum insertion supported\n");
4713 if (priv->plat->pmt) {
4714 dev_info(priv->device, "Wake-Up On Lan supported\n");
4715 device_set_wakeup_capable(priv->device, 1);
4718 if (priv->dma_cap.tsoen)
4719 dev_info(priv->device, "TSO supported\n");
4721 /* Run HW quirks, if any */
4722 if (priv->hwif_quirks) {
4723 ret = priv->hwif_quirks(priv);
4728 /* Rx Watchdog is available in the COREs newer than the 3.40.
4729 * In some case, for example on bugged HW this feature
4730 * has to be disable and this can be done by passing the
4731 * riwt_off field from the platform.
4733 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4734 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4736 dev_info(priv->device,
4737 "Enable RX Mitigation via HW Watchdog Timer\n");
4745 * @device: device pointer
4746 * @plat_dat: platform data pointer
4747 * @res: stmmac resource pointer
4748 * Description: this is the main probe function used to
4749 * call the alloc_etherdev, allocate the priv structure.
4751 * returns 0 on success, otherwise errno.
4753 int stmmac_dvr_probe(struct device *device,
4754 struct plat_stmmacenet_data *plat_dat,
4755 struct stmmac_resources *res)
4757 struct net_device *ndev = NULL;
4758 struct stmmac_priv *priv;
4759 u32 queue, rxq, maxq;
4762 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4763 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4767 SET_NETDEV_DEV(ndev, device);
4769 priv = netdev_priv(ndev);
4770 priv->device = device;
4773 stmmac_set_ethtool_ops(ndev);
4774 priv->pause = pause;
4775 priv->plat = plat_dat;
4776 priv->ioaddr = res->addr;
4777 priv->dev->base_addr = (unsigned long)res->addr;
4779 priv->dev->irq = res->irq;
4780 priv->wol_irq = res->wol_irq;
4781 priv->lpi_irq = res->lpi_irq;
4783 if (!IS_ERR_OR_NULL(res->mac))
4784 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4786 dev_set_drvdata(device, priv->dev);
4788 /* Verify driver arguments */
4789 stmmac_verify_args();
4791 /* Allocate workqueue */
4792 priv->wq = create_singlethread_workqueue("stmmac_wq");
4794 dev_err(priv->device, "failed to create workqueue\n");
4798 INIT_WORK(&priv->service_task, stmmac_service_task);
4800 /* Override with kernel parameters if supplied XXX CRS XXX
4801 * this needs to have multiple instances
4803 if ((phyaddr >= 0) && (phyaddr <= 31))
4804 priv->plat->phy_addr = phyaddr;
4806 if (priv->plat->stmmac_rst) {
4807 ret = reset_control_assert(priv->plat->stmmac_rst);
4808 reset_control_deassert(priv->plat->stmmac_rst);
4809 /* Some reset controllers have only reset callback instead of
4810 * assert + deassert callbacks pair.
4812 if (ret == -ENOTSUPP)
4813 reset_control_reset(priv->plat->stmmac_rst);
4816 /* Init MAC and get the capabilities */
4817 ret = stmmac_hw_init(priv);
4821 stmmac_check_ether_addr(priv);
4823 /* Configure real RX and TX queues */
4824 netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4825 netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4827 ndev->netdev_ops = &stmmac_netdev_ops;
4829 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4832 ret = stmmac_tc_init(priv, priv);
4834 ndev->hw_features |= NETIF_F_HW_TC;
4837 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4838 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4839 if (priv->plat->has_gmac4)
4840 ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4842 dev_info(priv->device, "TSO feature enabled\n");
4845 if (priv->dma_cap.sphen) {
4846 ndev->hw_features |= NETIF_F_GRO;
4848 dev_info(priv->device, "SPH feature enabled\n");
4851 if (priv->dma_cap.addr64) {
4852 ret = dma_set_mask_and_coherent(device,
4853 DMA_BIT_MASK(priv->dma_cap.addr64));
4855 dev_info(priv->device, "Using %d bits DMA width\n",
4856 priv->dma_cap.addr64);
4859 * If more than 32 bits can be addressed, make sure to
4860 * enable enhanced addressing mode.
4862 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4863 priv->plat->dma_cfg->eame = true;
4865 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4867 dev_err(priv->device, "Failed to set DMA Mask\n");
4871 priv->dma_cap.addr64 = 32;
4875 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4876 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4877 #ifdef STMMAC_VLAN_TAG_USED
4878 /* Both mac100 and gmac support receive VLAN tag detection */
4879 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4880 if (priv->dma_cap.vlhash) {
4881 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4882 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4884 if (priv->dma_cap.vlins) {
4885 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4886 if (priv->dma_cap.dvlan)
4887 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4890 priv->msg_enable = netif_msg_init(debug, default_msg_level);
4892 /* Initialize RSS */
4893 rxq = priv->plat->rx_queues_to_use;
4894 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4895 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4896 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4898 if (priv->dma_cap.rssen && priv->plat->rss_en)
4899 ndev->features |= NETIF_F_RXHASH;
4901 /* MTU range: 46 - hw-specific max */
4902 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4903 if (priv->plat->has_xgmac)
4904 ndev->max_mtu = XGMAC_JUMBO_LEN;
4905 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4906 ndev->max_mtu = JUMBO_LEN;
4908 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4909 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4910 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4912 if ((priv->plat->maxmtu < ndev->max_mtu) &&
4913 (priv->plat->maxmtu >= ndev->min_mtu))
4914 ndev->max_mtu = priv->plat->maxmtu;
4915 else if (priv->plat->maxmtu < ndev->min_mtu)
4916 dev_warn(priv->device,
4917 "%s: warning: maxmtu having invalid value (%d)\n",
4918 __func__, priv->plat->maxmtu);
4921 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
4923 /* Setup channels NAPI */
4924 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4926 for (queue = 0; queue < maxq; queue++) {
4927 struct stmmac_channel *ch = &priv->channel[queue];
4929 spin_lock_init(&ch->lock);
4930 ch->priv_data = priv;
4933 if (queue < priv->plat->rx_queues_to_use) {
4934 netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4937 if (queue < priv->plat->tx_queues_to_use) {
4938 netif_tx_napi_add(ndev, &ch->tx_napi,
4939 stmmac_napi_poll_tx,
4944 mutex_init(&priv->lock);
4946 /* If a specific clk_csr value is passed from the platform
4947 * this means that the CSR Clock Range selection cannot be
4948 * changed at run-time and it is fixed. Viceversa the driver'll try to
4949 * set the MDC clock dynamically according to the csr actual
4952 if (priv->plat->clk_csr >= 0)
4953 priv->clk_csr = priv->plat->clk_csr;
4955 stmmac_clk_csr_set(priv);
4957 stmmac_check_pcs_mode(priv);
4959 if (priv->hw->pcs != STMMAC_PCS_TBI &&
4960 priv->hw->pcs != STMMAC_PCS_RTBI) {
4961 /* MDIO bus Registration */
4962 ret = stmmac_mdio_register(ndev);
4964 dev_err(priv->device,
4965 "%s: MDIO bus (id: %d) registration failed",
4966 __func__, priv->plat->bus_id);
4967 goto error_mdio_register;
4971 ret = stmmac_phy_setup(priv);
4973 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4974 goto error_phy_setup;
4977 ret = register_netdev(ndev);
4979 dev_err(priv->device, "%s: ERROR %i registering the device\n",
4981 goto error_netdev_register;
4984 if (priv->plat->serdes_powerup) {
4985 ret = priv->plat->serdes_powerup(ndev,
4986 priv->plat->bsp_priv);
4989 goto error_serdes_powerup;
4992 #ifdef CONFIG_DEBUG_FS
4993 stmmac_init_fs(ndev);
4998 error_serdes_powerup:
4999 unregister_netdev(ndev);
5000 error_netdev_register:
5001 phylink_destroy(priv->phylink);
5003 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5004 priv->hw->pcs != STMMAC_PCS_RTBI)
5005 stmmac_mdio_unregister(ndev);
5006 error_mdio_register:
5007 for (queue = 0; queue < maxq; queue++) {
5008 struct stmmac_channel *ch = &priv->channel[queue];
5010 if (queue < priv->plat->rx_queues_to_use)
5011 netif_napi_del(&ch->rx_napi);
5012 if (queue < priv->plat->tx_queues_to_use)
5013 netif_napi_del(&ch->tx_napi);
5016 destroy_workqueue(priv->wq);
5020 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5024 * @dev: device pointer
5025 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5026 * changes the link status, releases the DMA descriptor rings.
5028 int stmmac_dvr_remove(struct device *dev)
5030 struct net_device *ndev = dev_get_drvdata(dev);
5031 struct stmmac_priv *priv = netdev_priv(ndev);
5033 netdev_info(priv->dev, "%s: removing driver", __func__);
5035 stmmac_stop_all_dma(priv);
5037 if (priv->plat->serdes_powerdown)
5038 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5040 stmmac_mac_set(priv, priv->ioaddr, false);
5041 netif_carrier_off(ndev);
5042 unregister_netdev(ndev);
5043 #ifdef CONFIG_DEBUG_FS
5044 stmmac_exit_fs(ndev);
5046 phylink_destroy(priv->phylink);
5047 if (priv->plat->stmmac_rst)
5048 reset_control_assert(priv->plat->stmmac_rst);
5049 clk_disable_unprepare(priv->plat->pclk);
5050 clk_disable_unprepare(priv->plat->stmmac_clk);
5051 if (priv->hw->pcs != STMMAC_PCS_TBI &&
5052 priv->hw->pcs != STMMAC_PCS_RTBI)
5053 stmmac_mdio_unregister(ndev);
5054 destroy_workqueue(priv->wq);
5055 mutex_destroy(&priv->lock);
5059 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5062 * stmmac_suspend - suspend callback
5063 * @dev: device pointer
5064 * Description: this is the function to suspend the device and it is called
5065 * by the platform driver to stop the network queue, release the resources,
5066 * program the PMT register (for WoL), clean and release driver resources.
5068 int stmmac_suspend(struct device *dev)
5070 struct net_device *ndev = dev_get_drvdata(dev);
5071 struct stmmac_priv *priv = netdev_priv(ndev);
5074 if (!ndev || !netif_running(ndev))
5077 phylink_mac_change(priv->phylink, false);
5079 mutex_lock(&priv->lock);
5081 netif_device_detach(ndev);
5082 stmmac_stop_all_queues(priv);
5084 stmmac_disable_all_queues(priv);
5086 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5087 del_timer_sync(&priv->tx_queue[chan].txtimer);
5089 /* Stop TX/RX DMA */
5090 stmmac_stop_all_dma(priv);
5092 if (priv->plat->serdes_powerdown)
5093 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5095 /* Enable Power down mode by programming the PMT regs */
5096 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5097 stmmac_pmt(priv, priv->hw, priv->wolopts);
5100 mutex_unlock(&priv->lock);
5102 if (device_may_wakeup(priv->device))
5103 phylink_speed_down(priv->phylink, false);
5104 phylink_stop(priv->phylink);
5106 mutex_lock(&priv->lock);
5108 stmmac_mac_set(priv, priv->ioaddr, false);
5109 pinctrl_pm_select_sleep_state(priv->device);
5110 /* Disable clock in case of PWM is off */
5111 if (priv->plat->clk_ptp_ref)
5112 clk_disable_unprepare(priv->plat->clk_ptp_ref);
5113 clk_disable_unprepare(priv->plat->pclk);
5114 clk_disable_unprepare(priv->plat->stmmac_clk);
5116 mutex_unlock(&priv->lock);
5118 priv->speed = SPEED_UNKNOWN;
5121 EXPORT_SYMBOL_GPL(stmmac_suspend);
5124 * stmmac_reset_queues_param - reset queue parameters
5125 * @dev: device pointer
5127 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5129 u32 rx_cnt = priv->plat->rx_queues_to_use;
5130 u32 tx_cnt = priv->plat->tx_queues_to_use;
5133 for (queue = 0; queue < rx_cnt; queue++) {
5134 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5140 for (queue = 0; queue < tx_cnt; queue++) {
5141 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5150 * stmmac_resume - resume callback
5151 * @dev: device pointer
5152 * Description: when resume this function is invoked to setup the DMA and CORE
5153 * in a usable state.
5155 int stmmac_resume(struct device *dev)
5157 struct net_device *ndev = dev_get_drvdata(dev);
5158 struct stmmac_priv *priv = netdev_priv(ndev);
5161 if (!netif_running(ndev))
5164 /* Power Down bit, into the PM register, is cleared
5165 * automatically as soon as a magic packet or a Wake-up frame
5166 * is received. Anyway, it's better to manually clear
5167 * this bit because it can generate problems while resuming
5168 * from another devices (e.g. serial console).
5170 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5171 mutex_lock(&priv->lock);
5172 stmmac_pmt(priv, priv->hw, 0);
5173 mutex_unlock(&priv->lock);
5176 pinctrl_pm_select_default_state(priv->device);
5177 /* enable the clk previously disabled */
5178 clk_prepare_enable(priv->plat->stmmac_clk);
5179 clk_prepare_enable(priv->plat->pclk);
5180 if (priv->plat->clk_ptp_ref)
5181 clk_prepare_enable(priv->plat->clk_ptp_ref);
5182 /* reset the phy so that it's ready */
5184 stmmac_mdio_reset(priv->mii);
5187 if (priv->plat->serdes_powerup) {
5188 ret = priv->plat->serdes_powerup(ndev,
5189 priv->plat->bsp_priv);
5195 mutex_lock(&priv->lock);
5197 stmmac_reset_queues_param(priv);
5199 stmmac_clear_descriptors(priv);
5201 stmmac_hw_setup(ndev, false);
5202 stmmac_init_coalesce(priv);
5203 stmmac_set_rx_mode(ndev);
5205 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5207 stmmac_enable_all_queues(priv);
5209 stmmac_start_all_queues(priv);
5211 mutex_unlock(&priv->lock);
5213 if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5215 phylink_start(priv->phylink);
5216 /* We may have called phylink_speed_down before */
5217 phylink_speed_up(priv->phylink);
5221 phylink_mac_change(priv->phylink, true);
5223 netif_device_attach(ndev);
5227 EXPORT_SYMBOL_GPL(stmmac_resume);
5230 static int __init stmmac_cmdline_opt(char *str)
5236 while ((opt = strsep(&str, ",")) != NULL) {
5237 if (!strncmp(opt, "debug:", 6)) {
5238 if (kstrtoint(opt + 6, 0, &debug))
5240 } else if (!strncmp(opt, "phyaddr:", 8)) {
5241 if (kstrtoint(opt + 8, 0, &phyaddr))
5243 } else if (!strncmp(opt, "buf_sz:", 7)) {
5244 if (kstrtoint(opt + 7, 0, &buf_sz))
5246 } else if (!strncmp(opt, "tc:", 3)) {
5247 if (kstrtoint(opt + 3, 0, &tc))
5249 } else if (!strncmp(opt, "watchdog:", 9)) {
5250 if (kstrtoint(opt + 9, 0, &watchdog))
5252 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
5253 if (kstrtoint(opt + 10, 0, &flow_ctrl))
5255 } else if (!strncmp(opt, "pause:", 6)) {
5256 if (kstrtoint(opt + 6, 0, &pause))
5258 } else if (!strncmp(opt, "eee_timer:", 10)) {
5259 if (kstrtoint(opt + 10, 0, &eee_timer))
5261 } else if (!strncmp(opt, "chain_mode:", 11)) {
5262 if (kstrtoint(opt + 11, 0, &chain_mode))
5269 pr_err("%s: ERROR broken module parameter conversion", __func__);
5273 __setup("stmmaceth=", stmmac_cmdline_opt);
5276 static int __init stmmac_init(void)
5278 #ifdef CONFIG_DEBUG_FS
5279 /* Create debugfs main directory if it doesn't exist yet */
5281 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5282 register_netdevice_notifier(&stmmac_notifier);
5288 static void __exit stmmac_exit(void)
5290 #ifdef CONFIG_DEBUG_FS
5291 unregister_netdevice_notifier(&stmmac_notifier);
5292 debugfs_remove_recursive(stmmac_fs_dir);
5296 module_init(stmmac_init)
5297 module_exit(stmmac_exit)
5299 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5301 MODULE_LICENSE("GPL");