1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2012-2013 Solarflare Communications Inc.
7 #include "net_driver.h"
10 #include "ef10_regs.h"
13 #include "mcdi_pcol.h"
14 #include "mcdi_port.h"
15 #include "mcdi_port_common.h"
16 #include "mcdi_functions.h"
18 #include "mcdi_filters.h"
19 #include "workarounds.h"
21 #include "ef10_sriov.h"
23 #include <linux/jhash.h>
24 #include <linux/wait.h>
25 #include <linux/workqueue.h>
26 #include <net/udp_tunnel.h>
28 /* Hardware control for EF10 architecture including 'Huntington'. */
30 #define EFX_EF10_DRVGEN_EV 7
37 struct efx_ef10_vlan {
38 struct list_head list;
42 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading);
43 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels;
45 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
49 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS);
50 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
51 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
54 /* On all EF10s up to and including SFC9220 (Medford1), all PFs use BAR 0 for
55 * I/O space and BAR 2(&3) for memory. On SFC9250 (Medford2), there is no I/O
56 * bar; PFs use BAR 0/1 for memory.
58 static unsigned int efx_ef10_pf_mem_bar(struct efx_nic *efx)
60 switch (efx->pci_dev->device) {
61 case 0x0b03: /* SFC9250 PF */
68 /* All VFs use BAR 0/1 for memory */
69 static unsigned int efx_ef10_vf_mem_bar(struct efx_nic *efx)
74 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
78 bar = efx->type->mem_bar(efx);
79 return resource_size(&efx->pci_dev->resource[bar]);
82 static bool efx_ef10_is_vf(struct efx_nic *efx)
84 return efx->type->is_vf;
87 #ifdef CONFIG_SFC_SRIOV
88 static int efx_ef10_get_vf_index(struct efx_nic *efx)
90 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
91 struct efx_ef10_nic_data *nic_data = efx->nic_data;
95 rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
96 sizeof(outbuf), &outlen);
99 if (outlen < sizeof(outbuf))
102 nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
107 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
109 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V4_OUT_LEN);
110 struct efx_ef10_nic_data *nic_data = efx->nic_data;
114 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
116 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
117 outbuf, sizeof(outbuf), &outlen);
120 if (outlen < MC_CMD_GET_CAPABILITIES_OUT_LEN) {
121 netif_err(efx, drv, efx->net_dev,
122 "unable to read datapath firmware capabilities\n");
126 nic_data->datapath_caps =
127 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
129 if (outlen >= MC_CMD_GET_CAPABILITIES_V2_OUT_LEN) {
130 nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
131 GET_CAPABILITIES_V2_OUT_FLAGS2);
132 nic_data->piobuf_size = MCDI_WORD(outbuf,
133 GET_CAPABILITIES_V2_OUT_SIZE_PIO_BUFF);
135 nic_data->datapath_caps2 = 0;
136 nic_data->piobuf_size = ER_DZ_TX_PIOBUF_SIZE;
139 /* record the DPCPU firmware IDs to determine VEB vswitching support.
141 nic_data->rx_dpcpu_fw_id =
142 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
143 nic_data->tx_dpcpu_fw_id =
144 MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);
146 if (!(nic_data->datapath_caps &
147 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
148 netif_err(efx, probe, efx->net_dev,
149 "current firmware does not support an RX prefix\n");
153 if (outlen >= MC_CMD_GET_CAPABILITIES_V3_OUT_LEN) {
154 u8 vi_window_mode = MCDI_BYTE(outbuf,
155 GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
157 rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
161 /* keep default VI stride */
162 netif_dbg(efx, probe, efx->net_dev,
163 "firmware did not report VI window mode, assuming vi_stride = %u\n",
167 if (outlen >= MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
168 efx->num_mac_stats = MCDI_WORD(outbuf,
169 GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
170 netif_dbg(efx, probe, efx->net_dev,
171 "firmware reports num_mac_stats = %u\n",
174 /* leave num_mac_stats as the default value, MC_CMD_MAC_NSTATS */
175 netif_dbg(efx, probe, efx->net_dev,
176 "firmware did not report num_mac_stats, assuming %u\n",
183 static void efx_ef10_read_licensed_features(struct efx_nic *efx)
185 MCDI_DECLARE_BUF(inbuf, MC_CMD_LICENSING_V3_IN_LEN);
186 MCDI_DECLARE_BUF(outbuf, MC_CMD_LICENSING_V3_OUT_LEN);
187 struct efx_ef10_nic_data *nic_data = efx->nic_data;
191 MCDI_SET_DWORD(inbuf, LICENSING_V3_IN_OP,
192 MC_CMD_LICENSING_V3_IN_OP_REPORT_LICENSE);
193 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_LICENSING_V3, inbuf, sizeof(inbuf),
194 outbuf, sizeof(outbuf), &outlen);
195 if (rc || (outlen < MC_CMD_LICENSING_V3_OUT_LEN))
198 nic_data->licensed_features = MCDI_QWORD(outbuf,
199 LICENSING_V3_OUT_LICENSED_FEATURES);
202 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
204 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
207 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
208 outbuf, sizeof(outbuf), NULL);
211 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
212 return rc > 0 ? rc : -ERANGE;
215 static int efx_ef10_get_timer_workarounds(struct efx_nic *efx)
217 struct efx_ef10_nic_data *nic_data = efx->nic_data;
218 unsigned int implemented;
219 unsigned int enabled;
222 nic_data->workaround_35388 = false;
223 nic_data->workaround_61265 = false;
225 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
228 /* Firmware without GET_WORKAROUNDS - not a problem. */
230 } else if (rc == 0) {
231 /* Bug61265 workaround is always enabled if implemented. */
232 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG61265)
233 nic_data->workaround_61265 = true;
235 if (enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
236 nic_data->workaround_35388 = true;
237 } else if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG35388) {
238 /* Workaround is implemented but not enabled.
241 rc = efx_mcdi_set_workaround(efx,
242 MC_CMD_WORKAROUND_BUG35388,
245 nic_data->workaround_35388 = true;
246 /* If we failed to set the workaround just carry on. */
251 netif_dbg(efx, probe, efx->net_dev,
252 "workaround for bug 35388 is %sabled\n",
253 nic_data->workaround_35388 ? "en" : "dis");
254 netif_dbg(efx, probe, efx->net_dev,
255 "workaround for bug 61265 is %sabled\n",
256 nic_data->workaround_61265 ? "en" : "dis");
261 static void efx_ef10_process_timer_config(struct efx_nic *efx,
262 const efx_dword_t *data)
264 unsigned int max_count;
266 if (EFX_EF10_WORKAROUND_61265(efx)) {
267 efx->timer_quantum_ns = MCDI_DWORD(data,
268 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_STEP_NS);
269 efx->timer_max_ns = MCDI_DWORD(data,
270 GET_EVQ_TMR_PROPERTIES_OUT_MCDI_TMR_MAX_NS);
271 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
272 efx->timer_quantum_ns = MCDI_DWORD(data,
273 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_NS_PER_COUNT);
274 max_count = MCDI_DWORD(data,
275 GET_EVQ_TMR_PROPERTIES_OUT_BUG35388_TMR_MAX_COUNT);
276 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
278 efx->timer_quantum_ns = MCDI_DWORD(data,
279 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_NS_PER_COUNT);
280 max_count = MCDI_DWORD(data,
281 GET_EVQ_TMR_PROPERTIES_OUT_TMR_REG_MAX_COUNT);
282 efx->timer_max_ns = max_count * efx->timer_quantum_ns;
285 netif_dbg(efx, probe, efx->net_dev,
286 "got timer properties from MC: quantum %u ns; max %u ns\n",
287 efx->timer_quantum_ns, efx->timer_max_ns);
290 static int efx_ef10_get_timer_config(struct efx_nic *efx)
292 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN);
295 rc = efx_ef10_get_timer_workarounds(efx);
299 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES, NULL, 0,
300 outbuf, sizeof(outbuf), NULL);
303 efx_ef10_process_timer_config(efx, outbuf);
304 } else if (rc == -ENOSYS || rc == -EPERM) {
305 /* Not available - fall back to Huntington defaults. */
306 unsigned int quantum;
308 rc = efx_ef10_get_sysclk_freq(efx);
312 quantum = 1536000 / rc; /* 1536 cycles */
313 efx->timer_quantum_ns = quantum;
314 efx->timer_max_ns = efx->type->timer_period_max * quantum;
317 efx_mcdi_display_error(efx, MC_CMD_GET_EVQ_TMR_PROPERTIES,
318 MC_CMD_GET_EVQ_TMR_PROPERTIES_OUT_LEN,
325 static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
327 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
331 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
333 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
334 outbuf, sizeof(outbuf), &outlen);
337 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
340 ether_addr_copy(mac_address,
341 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
345 static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
347 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
348 MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
352 MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
353 EVB_PORT_ID_ASSIGNED);
354 rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
355 sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);
359 if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
362 num_addrs = MCDI_DWORD(outbuf,
363 VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);
365 WARN_ON(num_addrs != 1);
367 ether_addr_copy(mac_address,
368 MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));
373 static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
374 struct device_attribute *attr,
377 struct efx_nic *efx = dev_get_drvdata(dev);
379 return sprintf(buf, "%d\n",
380 ((efx->mcdi->fn_flags) &
381 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
385 static ssize_t efx_ef10_show_primary_flag(struct device *dev,
386 struct device_attribute *attr,
389 struct efx_nic *efx = dev_get_drvdata(dev);
391 return sprintf(buf, "%d\n",
392 ((efx->mcdi->fn_flags) &
393 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
397 static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
399 struct efx_ef10_nic_data *nic_data = efx->nic_data;
400 struct efx_ef10_vlan *vlan;
402 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
404 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
405 if (vlan->vid == vid)
412 static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
414 struct efx_ef10_nic_data *nic_data = efx->nic_data;
415 struct efx_ef10_vlan *vlan;
418 mutex_lock(&nic_data->vlan_lock);
420 vlan = efx_ef10_find_vlan(efx, vid);
422 /* We add VID 0 on init. 8021q adds it on module init
423 * for all interfaces with VLAN filtring feature.
427 netif_warn(efx, drv, efx->net_dev,
428 "VLAN %u already added\n", vid);
434 vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
440 list_add_tail(&vlan->list, &nic_data->vlan_list);
442 if (efx->filter_state) {
443 mutex_lock(&efx->mac_lock);
444 down_write(&efx->filter_sem);
445 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
446 up_write(&efx->filter_sem);
447 mutex_unlock(&efx->mac_lock);
449 goto fail_filter_add_vlan;
453 mutex_unlock(&nic_data->vlan_lock);
456 fail_filter_add_vlan:
457 list_del(&vlan->list);
461 mutex_unlock(&nic_data->vlan_lock);
465 static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
466 struct efx_ef10_vlan *vlan)
468 struct efx_ef10_nic_data *nic_data = efx->nic_data;
470 WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));
472 if (efx->filter_state) {
473 down_write(&efx->filter_sem);
474 efx_mcdi_filter_del_vlan(efx, vlan->vid);
475 up_write(&efx->filter_sem);
478 list_del(&vlan->list);
482 static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
484 struct efx_ef10_nic_data *nic_data = efx->nic_data;
485 struct efx_ef10_vlan *vlan;
488 /* 8021q removes VID 0 on module unload for all interfaces
489 * with VLAN filtering feature. We need to keep it to receive
495 mutex_lock(&nic_data->vlan_lock);
497 vlan = efx_ef10_find_vlan(efx, vid);
499 netif_err(efx, drv, efx->net_dev,
500 "VLAN %u to be deleted not found\n", vid);
503 efx_ef10_del_vlan_internal(efx, vlan);
506 mutex_unlock(&nic_data->vlan_lock);
511 static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
513 struct efx_ef10_nic_data *nic_data = efx->nic_data;
514 struct efx_ef10_vlan *vlan, *next_vlan;
516 mutex_lock(&nic_data->vlan_lock);
517 list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
518 efx_ef10_del_vlan_internal(efx, vlan);
519 mutex_unlock(&nic_data->vlan_lock);
522 static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
524 static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);
526 static int efx_ef10_probe(struct efx_nic *efx)
528 struct efx_ef10_nic_data *nic_data;
531 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
534 efx->nic_data = nic_data;
536 /* we assume later that we can copy from this buffer in dwords */
537 BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
539 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
540 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
544 /* Get the MC's warm boot count. In case it's rebooting right
545 * now, be prepared to retry.
549 rc = efx_ef10_get_warm_boot_count(efx);
556 nic_data->warm_boot_count = rc;
558 /* In case we're recovering from a crash (kexec), we want to
559 * cancel any outstanding request by the previous user of this
560 * function. We send a special message using the least
561 * significant bits of the 'high' (doorbell) register.
563 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
565 rc = efx_mcdi_init(efx);
569 mutex_init(&nic_data->udp_tunnels_lock);
570 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
571 nic_data->udp_tunnels[i].type =
572 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
574 /* Reset (most) configuration for this function */
575 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
579 /* Enable event logging */
580 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
584 rc = device_create_file(&efx->pci_dev->dev,
585 &dev_attr_link_control_flag);
589 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
593 rc = efx_get_pf_index(efx, &nic_data->pf_index);
597 rc = efx_ef10_init_datapath_caps(efx);
601 efx_ef10_read_licensed_features(efx);
603 /* We can have one VI for each vi_stride-byte region.
604 * However, until we use TX option descriptors we need two TX queues
607 efx->tx_queues_per_channel = 2;
608 efx->max_vis = efx_ef10_mem_map_size(efx) / efx->vi_stride;
610 netif_err(efx, drv, efx->net_dev, "error determining max VIs\n");
614 efx->max_channels = min_t(unsigned int, EFX_MAX_CHANNELS,
615 efx->max_vis / efx->tx_queues_per_channel);
616 efx->max_tx_channels = efx->max_channels;
617 if (WARN_ON(efx->max_channels == 0)) {
622 efx->rx_packet_len_offset =
623 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
625 if (nic_data->datapath_caps &
626 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_INCLUDE_FCS_LBN))
627 efx->net_dev->hw_features |= NETIF_F_RXFCS;
629 rc = efx_mcdi_port_get_number(efx);
634 rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
638 rc = efx_ef10_get_timer_config(efx);
642 rc = efx_mcdi_mon_probe(efx);
643 if (rc && rc != -EPERM)
646 efx_ptp_defer_probe_with_channel(efx);
648 #ifdef CONFIG_SFC_SRIOV
649 if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
650 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
651 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
653 efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
656 ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);
658 INIT_LIST_HEAD(&nic_data->vlan_list);
659 mutex_init(&nic_data->vlan_lock);
661 /* Add unspecified VID to support VLAN filtering being disabled */
662 rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
664 goto fail_add_vid_unspec;
666 /* If VLAN filtering is enabled, we need VID 0 to get untagged
667 * traffic. It is added automatically if 8021q module is loaded,
668 * but we can't rely on it since module may be not loaded.
670 rc = efx_ef10_add_vlan(efx, 0);
674 if (nic_data->datapath_caps &
675 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) &&
676 efx->mcdi->fn_flags &
677 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED))
678 efx->net_dev->udp_tunnel_nic_info = &efx_ef10_udp_tunnels;
683 efx_ef10_cleanup_vlans(efx);
685 mutex_destroy(&nic_data->vlan_lock);
687 efx_mcdi_mon_remove(efx);
689 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
691 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
693 efx_mcdi_detach(efx);
695 mutex_lock(&nic_data->udp_tunnels_lock);
696 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
697 (void)efx_ef10_set_udp_tnl_ports(efx, true);
698 mutex_unlock(&nic_data->udp_tunnels_lock);
699 mutex_destroy(&nic_data->udp_tunnels_lock);
703 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
706 efx->nic_data = NULL;
712 static void efx_ef10_free_piobufs(struct efx_nic *efx)
714 struct efx_ef10_nic_data *nic_data = efx->nic_data;
715 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
719 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
721 for (i = 0; i < nic_data->n_piobufs; i++) {
722 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
723 nic_data->piobuf_handle[i]);
724 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
729 nic_data->n_piobufs = 0;
732 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
734 struct efx_ef10_nic_data *nic_data = efx->nic_data;
735 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
740 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
742 for (i = 0; i < n; i++) {
743 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
744 outbuf, sizeof(outbuf), &outlen);
746 /* Don't display the MC error if we didn't have space
749 if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
750 efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
751 0, outbuf, outlen, rc);
754 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
758 nic_data->piobuf_handle[i] =
759 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
760 netif_dbg(efx, probe, efx->net_dev,
761 "allocated PIO buffer %u handle %x\n", i,
762 nic_data->piobuf_handle[i]);
765 nic_data->n_piobufs = i;
767 efx_ef10_free_piobufs(efx);
771 static int efx_ef10_link_piobufs(struct efx_nic *efx)
773 struct efx_ef10_nic_data *nic_data = efx->nic_data;
774 MCDI_DECLARE_BUF(inbuf, MC_CMD_LINK_PIOBUF_IN_LEN);
775 struct efx_channel *channel;
776 struct efx_tx_queue *tx_queue;
777 unsigned int offset, index;
780 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
781 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
783 /* Link a buffer to each VI in the write-combining mapping */
784 for (index = 0; index < nic_data->n_piobufs; ++index) {
785 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
786 nic_data->piobuf_handle[index]);
787 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
788 nic_data->pio_write_vi_base + index);
789 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
790 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
793 netif_err(efx, drv, efx->net_dev,
794 "failed to link VI %u to PIO buffer %u (%d)\n",
795 nic_data->pio_write_vi_base + index, index,
799 netif_dbg(efx, probe, efx->net_dev,
800 "linked VI %u to PIO buffer %u\n",
801 nic_data->pio_write_vi_base + index, index);
804 /* Link a buffer to each TX queue */
805 efx_for_each_channel(channel, efx) {
806 /* Extra channels, even those with TXQs (PTP), do not require
809 if (!channel->type->want_pio ||
810 channel->channel >= efx->xdp_channel_offset)
813 efx_for_each_channel_tx_queue(tx_queue, channel) {
814 /* We assign the PIO buffers to queues in
815 * reverse order to allow for the following
818 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
819 tx_queue->channel->channel - 1) *
821 index = offset / nic_data->piobuf_size;
822 offset = offset % nic_data->piobuf_size;
824 /* When the host page size is 4K, the first
825 * host page in the WC mapping may be within
826 * the same VI page as the last TX queue. We
827 * can only link one buffer to each VI.
829 if (tx_queue->queue == nic_data->pio_write_vi_base) {
833 MCDI_SET_DWORD(inbuf,
834 LINK_PIOBUF_IN_PIOBUF_HANDLE,
835 nic_data->piobuf_handle[index]);
836 MCDI_SET_DWORD(inbuf,
837 LINK_PIOBUF_IN_TXQ_INSTANCE,
839 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
840 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
845 /* This is non-fatal; the TX path just
846 * won't use PIO for this queue
848 netif_err(efx, drv, efx->net_dev,
849 "failed to link VI %u to PIO buffer %u (%d)\n",
850 tx_queue->queue, index, rc);
851 tx_queue->piobuf = NULL;
854 nic_data->pio_write_base +
855 index * efx->vi_stride + offset;
856 tx_queue->piobuf_offset = offset;
857 netif_dbg(efx, probe, efx->net_dev,
858 "linked VI %u to PIO buffer %u offset %x addr %p\n",
859 tx_queue->queue, index,
860 tx_queue->piobuf_offset,
869 /* inbuf was defined for MC_CMD_LINK_PIOBUF. We can use the same
870 * buffer for MC_CMD_UNLINK_PIOBUF because it's shorter.
872 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_IN_LEN < MC_CMD_UNLINK_PIOBUF_IN_LEN);
874 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
875 nic_data->pio_write_vi_base + index);
876 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
877 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
883 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
885 struct efx_channel *channel;
886 struct efx_tx_queue *tx_queue;
888 /* All our existing PIO buffers went away */
889 efx_for_each_channel(channel, efx)
890 efx_for_each_channel_tx_queue(tx_queue, channel)
891 tx_queue->piobuf = NULL;
894 #else /* !EFX_USE_PIO */
896 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
898 return n == 0 ? 0 : -ENOBUFS;
901 static int efx_ef10_link_piobufs(struct efx_nic *efx)
906 static void efx_ef10_free_piobufs(struct efx_nic *efx)
910 static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
914 #endif /* EFX_USE_PIO */
916 static void efx_ef10_remove(struct efx_nic *efx)
918 struct efx_ef10_nic_data *nic_data = efx->nic_data;
921 #ifdef CONFIG_SFC_SRIOV
922 struct efx_ef10_nic_data *nic_data_pf;
923 struct pci_dev *pci_dev_pf;
924 struct efx_nic *efx_pf;
927 if (efx->pci_dev->is_virtfn) {
928 pci_dev_pf = efx->pci_dev->physfn;
930 efx_pf = pci_get_drvdata(pci_dev_pf);
931 nic_data_pf = efx_pf->nic_data;
932 vf = nic_data_pf->vf + nic_data->vf_index;
935 netif_info(efx, drv, efx->net_dev,
936 "Could not get the PF id from VF\n");
940 efx_ef10_cleanup_vlans(efx);
941 mutex_destroy(&nic_data->vlan_lock);
945 efx_mcdi_mon_remove(efx);
947 efx_mcdi_rx_free_indir_table(efx);
949 if (nic_data->wc_membase)
950 iounmap(nic_data->wc_membase);
952 rc = efx_mcdi_free_vis(efx);
955 if (!nic_data->must_restore_piobufs)
956 efx_ef10_free_piobufs(efx);
958 device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
959 device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
961 efx_mcdi_detach(efx);
963 memset(nic_data->udp_tunnels, 0, sizeof(nic_data->udp_tunnels));
964 mutex_lock(&nic_data->udp_tunnels_lock);
965 (void)efx_ef10_set_udp_tnl_ports(efx, true);
966 mutex_unlock(&nic_data->udp_tunnels_lock);
968 mutex_destroy(&nic_data->udp_tunnels_lock);
971 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
975 static int efx_ef10_probe_pf(struct efx_nic *efx)
977 return efx_ef10_probe(efx);
980 int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
981 u32 *port_flags, u32 *vadaptor_flags,
982 unsigned int *vlan_tags)
984 struct efx_ef10_nic_data *nic_data = efx->nic_data;
985 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
986 MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
990 if (nic_data->datapath_caps &
991 (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
992 MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
995 rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
996 outbuf, sizeof(outbuf), &outlen);
1000 if (outlen < sizeof(outbuf)) {
1007 *port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
1010 MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
1014 VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);
1019 int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
1021 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);
1023 MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
1024 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
1028 int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
1030 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);
1032 MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
1033 return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
1037 int efx_ef10_vport_add_mac(struct efx_nic *efx,
1038 unsigned int port_id, u8 *mac)
1040 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);
1042 MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
1043 ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);
1045 return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
1046 sizeof(inbuf), NULL, 0, NULL);
1049 int efx_ef10_vport_del_mac(struct efx_nic *efx,
1050 unsigned int port_id, u8 *mac)
1052 MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);
1054 MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
1055 ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);
1057 return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
1058 sizeof(inbuf), NULL, 0, NULL);
1061 #ifdef CONFIG_SFC_SRIOV
1062 static int efx_ef10_probe_vf(struct efx_nic *efx)
1065 struct pci_dev *pci_dev_pf;
1067 /* If the parent PF has no VF data structure, it doesn't know about this
1068 * VF so fail probe. The VF needs to be re-created. This can happen
1069 * if the PF driver is unloaded while the VF is assigned to a guest.
1071 pci_dev_pf = efx->pci_dev->physfn;
1073 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
1074 struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;
1076 if (!nic_data_pf->vf) {
1077 netif_info(efx, drv, efx->net_dev,
1078 "The VF cannot link to its parent PF; "
1079 "please destroy and re-create the VF\n");
1084 rc = efx_ef10_probe(efx);
1088 rc = efx_ef10_get_vf_index(efx);
1092 if (efx->pci_dev->is_virtfn) {
1093 if (efx->pci_dev->physfn) {
1094 struct efx_nic *efx_pf =
1095 pci_get_drvdata(efx->pci_dev->physfn);
1096 struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
1097 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1099 nic_data_p->vf[nic_data->vf_index].efx = efx;
1100 nic_data_p->vf[nic_data->vf_index].pci_dev =
1103 netif_info(efx, drv, efx->net_dev,
1104 "Could not get the PF id from VF\n");
1110 efx_ef10_remove(efx);
1114 static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
1120 static int efx_ef10_alloc_vis(struct efx_nic *efx,
1121 unsigned int min_vis, unsigned int max_vis)
1123 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1125 return efx_mcdi_alloc_vis(efx, min_vis, max_vis, &nic_data->vi_base,
1126 &nic_data->n_allocated_vis);
1129 /* Note that the failure path of this function does not free
1130 * resources, as this will be done by efx_ef10_remove().
1132 static int efx_ef10_dimension_resources(struct efx_nic *efx)
1134 unsigned int min_vis = max_t(unsigned int, efx->tx_queues_per_channel,
1135 efx_separate_tx_channels ? 2 : 1);
1136 unsigned int channel_vis, pio_write_vi_base, max_vis;
1137 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1138 unsigned int uc_mem_map_size, wc_mem_map_size;
1139 void __iomem *membase;
1142 channel_vis = max(efx->n_channels,
1143 ((efx->n_tx_channels + efx->n_extra_tx_channels) *
1144 efx->tx_queues_per_channel) +
1145 efx->n_xdp_channels * efx->xdp_tx_per_channel);
1146 if (efx->max_vis && efx->max_vis < channel_vis) {
1147 netif_dbg(efx, drv, efx->net_dev,
1148 "Reducing channel VIs from %u to %u\n",
1149 channel_vis, efx->max_vis);
1150 channel_vis = efx->max_vis;
1154 /* Try to allocate PIO buffers if wanted and if the full
1155 * number of PIO buffers would be sufficient to allocate one
1156 * copy-buffer per TX channel. Failure is non-fatal, as there
1157 * are only a small number of PIO buffers shared between all
1158 * functions of the controller.
1160 if (efx_piobuf_size != 0 &&
1161 nic_data->piobuf_size / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
1162 efx->n_tx_channels) {
1163 unsigned int n_piobufs =
1164 DIV_ROUND_UP(efx->n_tx_channels,
1165 nic_data->piobuf_size / efx_piobuf_size);
1167 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
1169 netif_dbg(efx, probe, efx->net_dev,
1170 "out of PIO buffers; cannot allocate more\n");
1171 else if (rc == -EPERM)
1172 netif_dbg(efx, probe, efx->net_dev,
1173 "not permitted to allocate PIO buffers\n");
1175 netif_err(efx, probe, efx->net_dev,
1176 "failed to allocate PIO buffers (%d)\n", rc);
1178 netif_dbg(efx, probe, efx->net_dev,
1179 "allocated %u PIO buffers\n", n_piobufs);
1182 nic_data->n_piobufs = 0;
1185 /* PIO buffers should be mapped with write-combining enabled,
1186 * and we want to make single UC and WC mappings rather than
1187 * several of each (in fact that's the only option if host
1188 * page size is >4K). So we may allocate some extra VIs just
1189 * for writing PIO buffers through.
1191 * The UC mapping contains (channel_vis - 1) complete VIs and the
1192 * first 4K of the next VI. Then the WC mapping begins with
1193 * the remainder of this last VI.
1195 uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * efx->vi_stride +
1197 if (nic_data->n_piobufs) {
1198 /* pio_write_vi_base rounds down to give the number of complete
1199 * VIs inside the UC mapping.
1201 pio_write_vi_base = uc_mem_map_size / efx->vi_stride;
1202 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
1203 nic_data->n_piobufs) *
1206 max_vis = pio_write_vi_base + nic_data->n_piobufs;
1208 pio_write_vi_base = 0;
1209 wc_mem_map_size = 0;
1210 max_vis = channel_vis;
1213 /* In case the last attached driver failed to free VIs, do it now */
1214 rc = efx_mcdi_free_vis(efx);
1218 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
1222 if (nic_data->n_allocated_vis < channel_vis) {
1223 netif_info(efx, drv, efx->net_dev,
1224 "Could not allocate enough VIs to satisfy RSS"
1225 " requirements. Performance may not be optimal.\n");
1226 /* We didn't get the VIs to populate our channels.
1227 * We could keep what we got but then we'd have more
1228 * interrupts than we need.
1229 * Instead calculate new max_channels and restart
1231 efx->max_channels = nic_data->n_allocated_vis;
1232 efx->max_tx_channels =
1233 nic_data->n_allocated_vis / efx->tx_queues_per_channel;
1235 efx_mcdi_free_vis(efx);
1239 /* If we didn't get enough VIs to map all the PIO buffers, free the
1242 if (nic_data->n_piobufs &&
1243 nic_data->n_allocated_vis <
1244 pio_write_vi_base + nic_data->n_piobufs) {
1245 netif_dbg(efx, probe, efx->net_dev,
1246 "%u VIs are not sufficient to map %u PIO buffers\n",
1247 nic_data->n_allocated_vis, nic_data->n_piobufs);
1248 efx_ef10_free_piobufs(efx);
1251 /* Shrink the original UC mapping of the memory BAR */
1252 membase = ioremap(efx->membase_phys, uc_mem_map_size);
1254 netif_err(efx, probe, efx->net_dev,
1255 "could not shrink memory BAR to %x\n",
1259 iounmap(efx->membase);
1260 efx->membase = membase;
1262 /* Set up the WC mapping if needed */
1263 if (wc_mem_map_size) {
1264 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
1267 if (!nic_data->wc_membase) {
1268 netif_err(efx, probe, efx->net_dev,
1269 "could not allocate WC mapping of size %x\n",
1273 nic_data->pio_write_vi_base = pio_write_vi_base;
1274 nic_data->pio_write_base =
1275 nic_data->wc_membase +
1276 (pio_write_vi_base * efx->vi_stride + ER_DZ_TX_PIOBUF -
1279 rc = efx_ef10_link_piobufs(efx);
1281 efx_ef10_free_piobufs(efx);
1284 netif_dbg(efx, probe, efx->net_dev,
1285 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
1286 &efx->membase_phys, efx->membase, uc_mem_map_size,
1287 nic_data->wc_membase, wc_mem_map_size);
1292 static void efx_ef10_fini_nic(struct efx_nic *efx)
1294 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1296 kfree(nic_data->mc_stats);
1297 nic_data->mc_stats = NULL;
1300 static int efx_ef10_init_nic(struct efx_nic *efx)
1302 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1305 if (nic_data->must_check_datapath_caps) {
1306 rc = efx_ef10_init_datapath_caps(efx);
1309 nic_data->must_check_datapath_caps = false;
1312 if (efx->must_realloc_vis) {
1313 /* We cannot let the number of VIs change now */
1314 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
1315 nic_data->n_allocated_vis);
1318 efx->must_realloc_vis = false;
1321 nic_data->mc_stats = kmalloc(efx->num_mac_stats * sizeof(__le64),
1323 if (!nic_data->mc_stats)
1326 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
1327 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
1329 rc = efx_ef10_link_piobufs(efx);
1331 efx_ef10_free_piobufs(efx);
1334 /* Log an error on failure, but this is non-fatal.
1335 * Permission errors are less important - we've presumably
1336 * had the PIO buffer licence removed.
1339 netif_dbg(efx, drv, efx->net_dev,
1340 "not permitted to restore PIO buffers\n");
1342 netif_err(efx, drv, efx->net_dev,
1343 "failed to restore PIO buffers (%d)\n", rc);
1344 nic_data->must_restore_piobufs = false;
1347 /* don't fail init if RSS setup doesn't work */
1348 rc = efx->type->rx_push_rss_config(efx, false,
1349 efx->rss_context.rx_indir_table, NULL);
1354 static void efx_ef10_table_reset_mc_allocations(struct efx_nic *efx)
1356 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1357 #ifdef CONFIG_SFC_SRIOV
1361 /* All our allocations have been reset */
1362 efx->must_realloc_vis = true;
1363 efx_mcdi_filter_table_reset_mc_allocations(efx);
1364 nic_data->must_restore_piobufs = true;
1365 efx_ef10_forget_old_piobufs(efx);
1366 efx->rss_context.context_id = EFX_MCDI_RSS_CONTEXT_INVALID;
1368 /* Driver-created vswitches and vports must be re-created */
1369 nic_data->must_probe_vswitching = true;
1370 efx->vport_id = EVB_PORT_ID_ASSIGNED;
1371 #ifdef CONFIG_SFC_SRIOV
1373 for (i = 0; i < efx->vf_count; i++)
1374 nic_data->vf[i].vport_id = 0;
1378 static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
1380 if (reason == RESET_TYPE_MC_FAILURE)
1381 return RESET_TYPE_DATAPATH;
1383 return efx_mcdi_map_reset_reason(reason);
1386 static int efx_ef10_map_reset_flags(u32 *flags)
1389 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
1390 ETH_RESET_SHARED_SHIFT),
1391 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
1392 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
1393 ETH_RESET_PHY | ETH_RESET_MGMT) <<
1394 ETH_RESET_SHARED_SHIFT)
1397 /* We assume for now that our PCI function is permitted to
1401 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
1402 *flags &= ~EF10_RESET_MC;
1403 return RESET_TYPE_WORLD;
1406 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
1407 *flags &= ~EF10_RESET_PORT;
1408 return RESET_TYPE_ALL;
1411 /* no invisible reset implemented */
1416 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
1418 int rc = efx_mcdi_reset(efx, reset_type);
1420 /* Unprivileged functions return -EPERM, but need to return success
1421 * here so that the datapath is brought back up.
1423 if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
1426 /* If it was a port reset, trigger reallocation of MC resources.
1427 * Note that on an MC reset nothing needs to be done now because we'll
1428 * detect the MC reset later and handle it then.
1429 * For an FLR, we never get an MC reset event, but the MC has reset all
1430 * resources assigned to us, so we have to trigger reallocation now.
1432 if ((reset_type == RESET_TYPE_ALL ||
1433 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1434 efx_ef10_table_reset_mc_allocations(efx);
1438 #define EF10_DMA_STAT(ext_name, mcdi_name) \
1439 [EF10_STAT_ ## ext_name] = \
1440 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1441 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
1442 [EF10_STAT_ ## int_name] = \
1443 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
1444 #define EF10_OTHER_STAT(ext_name) \
1445 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1447 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1448 EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
1449 EF10_DMA_STAT(port_tx_packets, TX_PKTS),
1450 EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
1451 EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
1452 EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
1453 EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
1454 EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
1455 EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
1456 EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
1457 EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
1458 EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
1459 EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
1460 EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
1461 EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
1462 EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
1463 EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
1464 EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
1465 EF10_OTHER_STAT(port_rx_good_bytes),
1466 EF10_OTHER_STAT(port_rx_bad_bytes),
1467 EF10_DMA_STAT(port_rx_packets, RX_PKTS),
1468 EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
1469 EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
1470 EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
1471 EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
1472 EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
1473 EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
1474 EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
1475 EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
1476 EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
1477 EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
1478 EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
1479 EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
1480 EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
1481 EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
1482 EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
1483 EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
1484 EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
1485 EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
1486 EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
1487 EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
1488 EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1489 EFX_GENERIC_SW_STAT(rx_nodesc_trunc),
1490 EFX_GENERIC_SW_STAT(rx_noskb_drops),
1491 EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
1492 EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
1493 EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
1494 EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
1495 EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
1496 EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
1497 EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
1498 EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
1499 EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
1500 EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
1501 EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
1502 EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1503 EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
1504 EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
1505 EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
1506 EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
1507 EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
1508 EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
1509 EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
1510 EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
1511 EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
1512 EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
1513 EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
1514 EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
1515 EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
1516 EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
1517 EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
1518 EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
1519 EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
1520 EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1521 EF10_DMA_STAT(fec_uncorrected_errors, FEC_UNCORRECTED_ERRORS),
1522 EF10_DMA_STAT(fec_corrected_errors, FEC_CORRECTED_ERRORS),
1523 EF10_DMA_STAT(fec_corrected_symbols_lane0, FEC_CORRECTED_SYMBOLS_LANE0),
1524 EF10_DMA_STAT(fec_corrected_symbols_lane1, FEC_CORRECTED_SYMBOLS_LANE1),
1525 EF10_DMA_STAT(fec_corrected_symbols_lane2, FEC_CORRECTED_SYMBOLS_LANE2),
1526 EF10_DMA_STAT(fec_corrected_symbols_lane3, FEC_CORRECTED_SYMBOLS_LANE3),
1527 EF10_DMA_STAT(ctpio_vi_busy_fallback, CTPIO_VI_BUSY_FALLBACK),
1528 EF10_DMA_STAT(ctpio_long_write_success, CTPIO_LONG_WRITE_SUCCESS),
1529 EF10_DMA_STAT(ctpio_missing_dbell_fail, CTPIO_MISSING_DBELL_FAIL),
1530 EF10_DMA_STAT(ctpio_overflow_fail, CTPIO_OVERFLOW_FAIL),
1531 EF10_DMA_STAT(ctpio_underflow_fail, CTPIO_UNDERFLOW_FAIL),
1532 EF10_DMA_STAT(ctpio_timeout_fail, CTPIO_TIMEOUT_FAIL),
1533 EF10_DMA_STAT(ctpio_noncontig_wr_fail, CTPIO_NONCONTIG_WR_FAIL),
1534 EF10_DMA_STAT(ctpio_frm_clobber_fail, CTPIO_FRM_CLOBBER_FAIL),
1535 EF10_DMA_STAT(ctpio_invalid_wr_fail, CTPIO_INVALID_WR_FAIL),
1536 EF10_DMA_STAT(ctpio_vi_clobber_fallback, CTPIO_VI_CLOBBER_FALLBACK),
1537 EF10_DMA_STAT(ctpio_unqualified_fallback, CTPIO_UNQUALIFIED_FALLBACK),
1538 EF10_DMA_STAT(ctpio_runt_fallback, CTPIO_RUNT_FALLBACK),
1539 EF10_DMA_STAT(ctpio_success, CTPIO_SUCCESS),
1540 EF10_DMA_STAT(ctpio_fallback, CTPIO_FALLBACK),
1541 EF10_DMA_STAT(ctpio_poison, CTPIO_POISON),
1542 EF10_DMA_STAT(ctpio_erase, CTPIO_ERASE),
1545 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) | \
1546 (1ULL << EF10_STAT_port_tx_packets) | \
1547 (1ULL << EF10_STAT_port_tx_pause) | \
1548 (1ULL << EF10_STAT_port_tx_unicast) | \
1549 (1ULL << EF10_STAT_port_tx_multicast) | \
1550 (1ULL << EF10_STAT_port_tx_broadcast) | \
1551 (1ULL << EF10_STAT_port_rx_bytes) | \
1553 EF10_STAT_port_rx_bytes_minus_good_bytes) | \
1554 (1ULL << EF10_STAT_port_rx_good_bytes) | \
1555 (1ULL << EF10_STAT_port_rx_bad_bytes) | \
1556 (1ULL << EF10_STAT_port_rx_packets) | \
1557 (1ULL << EF10_STAT_port_rx_good) | \
1558 (1ULL << EF10_STAT_port_rx_bad) | \
1559 (1ULL << EF10_STAT_port_rx_pause) | \
1560 (1ULL << EF10_STAT_port_rx_control) | \
1561 (1ULL << EF10_STAT_port_rx_unicast) | \
1562 (1ULL << EF10_STAT_port_rx_multicast) | \
1563 (1ULL << EF10_STAT_port_rx_broadcast) | \
1564 (1ULL << EF10_STAT_port_rx_lt64) | \
1565 (1ULL << EF10_STAT_port_rx_64) | \
1566 (1ULL << EF10_STAT_port_rx_65_to_127) | \
1567 (1ULL << EF10_STAT_port_rx_128_to_255) | \
1568 (1ULL << EF10_STAT_port_rx_256_to_511) | \
1569 (1ULL << EF10_STAT_port_rx_512_to_1023) |\
1570 (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
1571 (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
1572 (1ULL << EF10_STAT_port_rx_gtjumbo) | \
1573 (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
1574 (1ULL << EF10_STAT_port_rx_overflow) | \
1575 (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1576 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
1577 (1ULL << GENERIC_STAT_rx_noskb_drops))
1579 /* On 7000 series NICs, these statistics are only provided by the 10G MAC.
1580 * For a 10G/40G switchable port we do not expose these because they might
1581 * not include all the packets they should.
1582 * On 8000 series NICs these statistics are always provided.
1584 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) | \
1585 (1ULL << EF10_STAT_port_tx_lt64) | \
1586 (1ULL << EF10_STAT_port_tx_64) | \
1587 (1ULL << EF10_STAT_port_tx_65_to_127) |\
1588 (1ULL << EF10_STAT_port_tx_128_to_255) |\
1589 (1ULL << EF10_STAT_port_tx_256_to_511) |\
1590 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
1591 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
1592 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1594 /* These statistics are only provided by the 40G MAC. For a 10G/40G
1595 * switchable port we do expose these because the errors will otherwise
1598 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
1599 (1ULL << EF10_STAT_port_rx_length_error))
1601 /* These statistics are only provided if the firmware supports the
1602 * capability PM_AND_RXDP_COUNTERS.
1604 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
1605 (1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) | \
1606 (1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) | \
1607 (1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) | \
1608 (1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) | \
1609 (1ULL << EF10_STAT_port_rx_pm_trunc_qbb) | \
1610 (1ULL << EF10_STAT_port_rx_pm_discard_qbb) | \
1611 (1ULL << EF10_STAT_port_rx_pm_discard_mapping) | \
1612 (1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) | \
1613 (1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) | \
1614 (1ULL << EF10_STAT_port_rx_dp_streaming_packets) | \
1615 (1ULL << EF10_STAT_port_rx_dp_hlb_fetch) | \
1616 (1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1618 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V2,
1619 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V2 in
1620 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1621 * These bits are in the second u64 of the raw mask.
1623 #define EF10_FEC_STAT_MASK ( \
1624 (1ULL << (EF10_STAT_fec_uncorrected_errors - 64)) | \
1625 (1ULL << (EF10_STAT_fec_corrected_errors - 64)) | \
1626 (1ULL << (EF10_STAT_fec_corrected_symbols_lane0 - 64)) | \
1627 (1ULL << (EF10_STAT_fec_corrected_symbols_lane1 - 64)) | \
1628 (1ULL << (EF10_STAT_fec_corrected_symbols_lane2 - 64)) | \
1629 (1ULL << (EF10_STAT_fec_corrected_symbols_lane3 - 64)))
1631 /* These statistics are only provided if the NIC supports MC_CMD_MAC_STATS_V3,
1632 * indicated by returning a value >= MC_CMD_MAC_NSTATS_V3 in
1633 * MC_CMD_GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS.
1634 * These bits are in the second u64 of the raw mask.
1636 #define EF10_CTPIO_STAT_MASK ( \
1637 (1ULL << (EF10_STAT_ctpio_vi_busy_fallback - 64)) | \
1638 (1ULL << (EF10_STAT_ctpio_long_write_success - 64)) | \
1639 (1ULL << (EF10_STAT_ctpio_missing_dbell_fail - 64)) | \
1640 (1ULL << (EF10_STAT_ctpio_overflow_fail - 64)) | \
1641 (1ULL << (EF10_STAT_ctpio_underflow_fail - 64)) | \
1642 (1ULL << (EF10_STAT_ctpio_timeout_fail - 64)) | \
1643 (1ULL << (EF10_STAT_ctpio_noncontig_wr_fail - 64)) | \
1644 (1ULL << (EF10_STAT_ctpio_frm_clobber_fail - 64)) | \
1645 (1ULL << (EF10_STAT_ctpio_invalid_wr_fail - 64)) | \
1646 (1ULL << (EF10_STAT_ctpio_vi_clobber_fallback - 64)) | \
1647 (1ULL << (EF10_STAT_ctpio_unqualified_fallback - 64)) | \
1648 (1ULL << (EF10_STAT_ctpio_runt_fallback - 64)) | \
1649 (1ULL << (EF10_STAT_ctpio_success - 64)) | \
1650 (1ULL << (EF10_STAT_ctpio_fallback - 64)) | \
1651 (1ULL << (EF10_STAT_ctpio_poison - 64)) | \
1652 (1ULL << (EF10_STAT_ctpio_erase - 64)))
1654 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1656 u64 raw_mask = HUNT_COMMON_STAT_MASK;
1657 u32 port_caps = efx_mcdi_phy_get_caps(efx);
1658 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1660 if (!(efx->mcdi->fn_flags &
1661 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
1664 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN)) {
1665 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1666 /* 8000 series have everything even at 40G */
1667 if (nic_data->datapath_caps2 &
1668 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_MAC_STATS_40G_TX_SIZE_BINS_LBN))
1669 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1671 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1674 if (nic_data->datapath_caps &
1675 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
1676 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
1681 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
1683 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1686 raw_mask[0] = efx_ef10_raw_stat_mask(efx);
1688 /* Only show vadaptor stats when EVB capability is present */
1689 if (nic_data->datapath_caps &
1690 (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
1691 raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
1692 raw_mask[1] = (1ULL << (EF10_STAT_V1_COUNT - 64)) - 1;
1696 /* Only show FEC stats when NIC supports MC_CMD_MAC_STATS_V2 */
1697 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V2)
1698 raw_mask[1] |= EF10_FEC_STAT_MASK;
1700 /* CTPIO stats appear in V3. Only show them on devices that actually
1701 * support CTPIO. Although this driver doesn't use CTPIO others might,
1702 * and we may be reporting the stats for the underlying port.
1704 if (efx->num_mac_stats >= MC_CMD_MAC_NSTATS_V3 &&
1705 (nic_data->datapath_caps2 &
1706 (1 << MC_CMD_GET_CAPABILITIES_V4_OUT_CTPIO_LBN)))
1707 raw_mask[1] |= EF10_CTPIO_STAT_MASK;
1709 #if BITS_PER_LONG == 64
1710 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 2);
1711 mask[0] = raw_mask[0];
1712 mask[1] = raw_mask[1];
1714 BUILD_BUG_ON(BITS_TO_LONGS(EF10_STAT_COUNT) != 3);
1715 mask[0] = raw_mask[0] & 0xffffffff;
1716 mask[1] = raw_mask[0] >> 32;
1717 mask[2] = raw_mask[1] & 0xffffffff;
1721 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
1723 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1725 efx_ef10_get_stat_mask(efx, mask);
1726 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1730 static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
1731 struct rtnl_link_stats64 *core_stats)
1733 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1734 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1735 u64 *stats = nic_data->stats;
1736 size_t stats_count = 0, index;
1738 efx_ef10_get_stat_mask(efx, mask);
1741 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
1742 if (efx_ef10_stat_desc[index].name) {
1743 *full_stats++ = stats[index];
1752 if (nic_data->datapath_caps &
1753 1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
1754 /* Use vadaptor stats. */
1755 core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
1756 stats[EF10_STAT_rx_multicast] +
1757 stats[EF10_STAT_rx_broadcast];
1758 core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
1759 stats[EF10_STAT_tx_multicast] +
1760 stats[EF10_STAT_tx_broadcast];
1761 core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
1762 stats[EF10_STAT_rx_multicast_bytes] +
1763 stats[EF10_STAT_rx_broadcast_bytes];
1764 core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
1765 stats[EF10_STAT_tx_multicast_bytes] +
1766 stats[EF10_STAT_tx_broadcast_bytes];
1767 core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1768 stats[GENERIC_STAT_rx_noskb_drops];
1769 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1770 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1771 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1772 core_stats->rx_errors = core_stats->rx_crc_errors;
1773 core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1775 /* Use port stats. */
1776 core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
1777 core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
1778 core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
1779 core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
1780 core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
1781 stats[GENERIC_STAT_rx_nodesc_trunc] +
1782 stats[GENERIC_STAT_rx_noskb_drops];
1783 core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
1784 core_stats->rx_length_errors =
1785 stats[EF10_STAT_port_rx_gtjumbo] +
1786 stats[EF10_STAT_port_rx_length_error];
1787 core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
1788 core_stats->rx_frame_errors =
1789 stats[EF10_STAT_port_rx_align_error];
1790 core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
1791 core_stats->rx_errors = (core_stats->rx_length_errors +
1792 core_stats->rx_crc_errors +
1793 core_stats->rx_frame_errors);
1799 static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
1800 struct rtnl_link_stats64 *core_stats)
1802 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1803 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1804 u64 *stats = nic_data->stats;
1806 efx_ef10_get_stat_mask(efx, mask);
1808 efx_nic_copy_stats(efx, nic_data->mc_stats);
1809 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1810 mask, stats, nic_data->mc_stats, false);
1812 /* Update derived statistics */
1813 efx_nic_fix_nodesc_drop_stat(efx,
1814 &stats[EF10_STAT_port_rx_nodesc_drops]);
1815 /* MC Firmware reads RX_BYTES and RX_GOOD_BYTES from the MAC.
1816 * It then calculates RX_BAD_BYTES and DMAs it to us with RX_BYTES.
1817 * We report these as port_rx_ stats. We are not given RX_GOOD_BYTES.
1818 * Here we calculate port_rx_good_bytes.
1820 stats[EF10_STAT_port_rx_good_bytes] =
1821 stats[EF10_STAT_port_rx_bytes] -
1822 stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
1824 /* The asynchronous reads used to calculate RX_BAD_BYTES in
1825 * MC Firmware are done such that we should not see an increase in
1826 * RX_BAD_BYTES when a good packet has arrived. Unfortunately this
1827 * does mean that the stat can decrease at times. Here we do not
1828 * update the stat unless it has increased or has gone to zero
1829 * (In the case of the NIC rebooting).
1830 * Please see Bug 33781 for a discussion of why things work this way.
1832 efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
1833 stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1834 efx_update_sw_stats(efx, stats);
1836 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1839 static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
1840 __must_hold(&efx->stats_lock)
1842 MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
1843 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1844 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1845 __le64 generation_start, generation_end;
1846 u64 *stats = nic_data->stats;
1847 u32 dma_len = efx->num_mac_stats * sizeof(u64);
1848 struct efx_buffer stats_buf;
1852 spin_unlock_bh(&efx->stats_lock);
1854 if (in_interrupt()) {
1855 /* If in atomic context, cannot update stats. Just update the
1856 * software stats and return so the caller can continue.
1858 spin_lock_bh(&efx->stats_lock);
1859 efx_update_sw_stats(efx, stats);
1863 efx_ef10_get_stat_mask(efx, mask);
1865 rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1867 spin_lock_bh(&efx->stats_lock);
1871 dma_stats = stats_buf.addr;
1872 dma_stats[efx->num_mac_stats - 1] = EFX_MC_STATS_GENERATION_INVALID;
1874 MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
1875 MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1876 MAC_STATS_IN_DMA, 1);
1877 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
1878 MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1880 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
1882 spin_lock_bh(&efx->stats_lock);
1884 /* Expect ENOENT if DMA queues have not been set up */
1885 if (rc != -ENOENT || atomic_read(&efx->active_queues))
1886 efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
1887 sizeof(inbuf), NULL, 0, rc);
1891 generation_end = dma_stats[efx->num_mac_stats - 1];
1892 if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
1897 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1898 stats, stats_buf.addr, false);
1900 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
1901 if (generation_end != generation_start) {
1906 efx_update_sw_stats(efx, stats);
1908 efx_nic_free_buffer(efx, &stats_buf);
1912 static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
1913 struct rtnl_link_stats64 *core_stats)
1915 if (efx_ef10_try_update_nic_stats_vf(efx))
1918 return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1921 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1923 struct efx_nic *efx = channel->efx;
1924 unsigned int mode, usecs;
1925 efx_dword_t timer_cmd;
1927 if (channel->irq_moderation_us) {
1929 usecs = channel->irq_moderation_us;
1935 if (EFX_EF10_WORKAROUND_61265(efx)) {
1936 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_EVQ_TMR_IN_LEN);
1937 unsigned int ns = usecs * 1000;
1939 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_INSTANCE,
1941 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_LOAD_REQ_NS, ns);
1942 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_RELOAD_REQ_NS, ns);
1943 MCDI_SET_DWORD(inbuf, SET_EVQ_TMR_IN_TMR_MODE, mode);
1945 efx_mcdi_rpc_async(efx, MC_CMD_SET_EVQ_TMR,
1946 inbuf, sizeof(inbuf), 0, NULL, 0);
1947 } else if (EFX_EF10_WORKAROUND_35388(efx)) {
1948 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1950 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1951 EFE_DD_EVQ_IND_TIMER_FLAGS,
1952 ERF_DD_EVQ_IND_TIMER_MODE, mode,
1953 ERF_DD_EVQ_IND_TIMER_VAL, ticks);
1954 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1957 unsigned int ticks = efx_usecs_to_ticks(efx, usecs);
1959 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1960 ERF_DZ_TC_TIMER_VAL, ticks,
1961 ERF_FZ_TC_TMR_REL_VAL, ticks);
1962 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1967 static void efx_ef10_get_wol_vf(struct efx_nic *efx,
1968 struct ethtool_wolinfo *wol) {}
1970 static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
1975 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1979 memset(&wol->sopass, 0, sizeof(wol->sopass));
1982 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1989 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1990 const efx_dword_t *hdr, size_t hdr_len,
1991 const efx_dword_t *sdu, size_t sdu_len)
1993 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1994 u8 *pdu = nic_data->mcdi_buf.addr;
1996 memcpy(pdu, hdr, hdr_len);
1997 memcpy(pdu + hdr_len, sdu, sdu_len);
2000 /* The hardware provides 'low' and 'high' (doorbell) registers
2001 * for passing the 64-bit address of an MCDI request to
2002 * firmware. However the dwords are swapped by firmware. The
2003 * least significant bits of the doorbell are then 0 for all
2004 * MCDI requests due to alignment.
2006 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
2008 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
2012 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
2014 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2015 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
2018 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
2022 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
2023 size_t offset, size_t outlen)
2025 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2026 const u8 *pdu = nic_data->mcdi_buf.addr;
2028 memcpy(outbuf, pdu + offset, outlen);
2031 static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
2033 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2035 /* All our allocations have been reset */
2036 efx_ef10_table_reset_mc_allocations(efx);
2038 /* The datapath firmware might have been changed */
2039 nic_data->must_check_datapath_caps = true;
2041 /* MAC statistics have been cleared on the NIC; clear the local
2042 * statistic that we update with efx_update_diff_stat().
2044 nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
2047 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
2049 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2052 rc = efx_ef10_get_warm_boot_count(efx);
2054 /* The firmware is presumably in the process of
2055 * rebooting. However, we are supposed to report each
2056 * reboot just once, so we must only do that once we
2057 * can read and store the updated warm boot count.
2062 if (rc == nic_data->warm_boot_count)
2065 nic_data->warm_boot_count = rc;
2066 efx_ef10_mcdi_reboot_detected(efx);
2071 /* Handle an MSI interrupt
2073 * Handle an MSI hardware interrupt. This routine schedules event
2074 * queue processing. No interrupt acknowledgement cycle is necessary.
2075 * Also, we never need to check that the interrupt is for us, since
2076 * MSI interrupts cannot be shared.
2078 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
2080 struct efx_msi_context *context = dev_id;
2081 struct efx_nic *efx = context->efx;
2083 netif_vdbg(efx, intr, efx->net_dev,
2084 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
2086 if (likely(READ_ONCE(efx->irq_soft_enabled))) {
2087 /* Note test interrupts */
2088 if (context->index == efx->irq_level)
2089 efx->last_irq_cpu = raw_smp_processor_id();
2091 /* Schedule processing of the channel */
2092 efx_schedule_channel_irq(efx->channel[context->index]);
2098 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
2100 struct efx_nic *efx = dev_id;
2101 bool soft_enabled = READ_ONCE(efx->irq_soft_enabled);
2102 struct efx_channel *channel;
2106 /* Read the ISR which also ACKs the interrupts */
2107 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR);
2108 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
2113 if (likely(soft_enabled)) {
2114 /* Note test interrupts */
2115 if (queues & (1U << efx->irq_level))
2116 efx->last_irq_cpu = raw_smp_processor_id();
2118 efx_for_each_channel(channel, efx) {
2120 efx_schedule_channel_irq(channel);
2125 netif_vdbg(efx, intr, efx->net_dev,
2126 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
2127 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
2132 static int efx_ef10_irq_test_generate(struct efx_nic *efx)
2134 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
2136 if (efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG41750, true,
2140 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
2142 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
2143 return efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
2144 inbuf, sizeof(inbuf), NULL, 0, NULL);
2147 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
2149 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
2150 (tx_queue->ptr_mask + 1) *
2151 sizeof(efx_qword_t),
2155 /* This writes to the TX_DESC_WPTR and also pushes data */
2156 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
2157 const efx_qword_t *txd)
2159 unsigned int write_ptr;
2162 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2163 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
2164 reg.qword[0] = *txd;
2165 efx_writeo_page(tx_queue->efx, ®,
2166 ER_DZ_TX_DESC_UPD, tx_queue->queue);
2169 /* Add Firmware-Assisted TSO v2 option descriptors to a queue.
2171 static int efx_ef10_tx_tso_desc(struct efx_tx_queue *tx_queue,
2172 struct sk_buff *skb,
2175 struct efx_tx_buffer *buffer;
2183 EFX_WARN_ON_ONCE_PARANOID(tx_queue->tso_version != 2);
2185 mss = skb_shinfo(skb)->gso_size;
2187 if (unlikely(mss < 4)) {
2188 WARN_ONCE(1, "MSS of %u is too small for TSO v2\n", mss);
2193 if (ip->version == 4) {
2194 /* Modify IPv4 header if needed. */
2197 ipv4_id = ntohs(ip->id);
2199 /* Modify IPv6 header if needed. */
2200 struct ipv6hdr *ipv6 = ipv6_hdr(skb);
2202 ipv6->payload_len = 0;
2207 seqnum = ntohl(tcp->seq);
2209 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2211 buffer->flags = EFX_TX_BUF_OPTION;
2213 buffer->unmap_len = 0;
2214 EFX_POPULATE_QWORD_5(buffer->option,
2215 ESF_DZ_TX_DESC_IS_OPT, 1,
2216 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2217 ESF_DZ_TX_TSO_OPTION_TYPE,
2218 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A,
2219 ESF_DZ_TX_TSO_IP_ID, ipv4_id,
2220 ESF_DZ_TX_TSO_TCP_SEQNO, seqnum
2222 ++tx_queue->insert_count;
2224 buffer = efx_tx_queue_get_insert_buffer(tx_queue);
2226 buffer->flags = EFX_TX_BUF_OPTION;
2228 buffer->unmap_len = 0;
2229 EFX_POPULATE_QWORD_4(buffer->option,
2230 ESF_DZ_TX_DESC_IS_OPT, 1,
2231 ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO,
2232 ESF_DZ_TX_TSO_OPTION_TYPE,
2233 ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B,
2234 ESF_DZ_TX_TSO_TCP_MSS, mss
2236 ++tx_queue->insert_count;
2241 static u32 efx_ef10_tso_versions(struct efx_nic *efx)
2243 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2244 u32 tso_versions = 0;
2246 if (nic_data->datapath_caps &
2247 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))
2248 tso_versions |= BIT(1);
2249 if (nic_data->datapath_caps2 &
2250 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN))
2251 tso_versions |= BIT(2);
2252 return tso_versions;
2255 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
2257 bool csum_offload = tx_queue->label & EFX_TXQ_TYPE_OFFLOAD;
2258 struct efx_channel *channel = tx_queue->channel;
2259 struct efx_nic *efx = tx_queue->efx;
2260 struct efx_ef10_nic_data *nic_data;
2261 bool tso_v2 = false;
2265 nic_data = efx->nic_data;
2267 /* Only attempt to enable TX timestamping if we have the license for it,
2268 * otherwise TXQ init will fail
2270 if (!(nic_data->licensed_features &
2271 (1 << LICENSED_V3_FEATURES_TX_TIMESTAMPS_LBN))) {
2272 tx_queue->timestamping = false;
2273 /* Disable sync events on this channel. */
2274 if (efx->type->ptp_set_ts_sync_events)
2275 efx->type->ptp_set_ts_sync_events(efx, false, false);
2278 /* TSOv2 is a limited resource that can only be configured on a limited
2279 * number of queues. TSO without checksum offload is not really a thing,
2280 * so we only enable it for those queues.
2281 * TSOv2 cannot be used with Hardware timestamping, and is never needed
2284 if (csum_offload && (nic_data->datapath_caps2 &
2285 (1 << MC_CMD_GET_CAPABILITIES_V2_OUT_TX_TSO_V2_LBN)) &&
2286 !tx_queue->timestamping && !tx_queue->xdp_tx) {
2288 netif_dbg(efx, hw, efx->net_dev, "Using TSOv2 for channel %u\n",
2292 rc = efx_mcdi_tx_init(tx_queue, tso_v2);
2296 /* A previous user of this TX queue might have set us up the
2297 * bomb by writing a descriptor to the TX push collector but
2298 * not the doorbell. (Each collector belongs to a port, not a
2299 * queue or function, so cannot easily be reset.) We must
2300 * attempt to push a no-op descriptor in its place.
2302 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
2303 tx_queue->insert_count = 1;
2304 txd = efx_tx_desc(tx_queue, 0);
2305 EFX_POPULATE_QWORD_5(*txd,
2306 ESF_DZ_TX_DESC_IS_OPT, true,
2307 ESF_DZ_TX_OPTION_TYPE,
2308 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
2309 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
2310 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload,
2311 ESF_DZ_TX_TIMESTAMP, tx_queue->timestamping);
2312 tx_queue->write_count = 1;
2315 tx_queue->handle_tso = efx_ef10_tx_tso_desc;
2316 tx_queue->tso_version = 2;
2317 } else if (nic_data->datapath_caps &
2318 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
2319 tx_queue->tso_version = 1;
2323 efx_ef10_push_tx_desc(tx_queue, txd);
2328 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
2332 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
2333 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
2335 unsigned int write_ptr;
2338 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2339 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
2340 efx_writed_page(tx_queue->efx, ®,
2341 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
2344 #define EFX_EF10_MAX_TX_DESCRIPTOR_LEN 0x3fff
2346 static unsigned int efx_ef10_tx_limit_len(struct efx_tx_queue *tx_queue,
2347 dma_addr_t dma_addr, unsigned int len)
2349 if (len > EFX_EF10_MAX_TX_DESCRIPTOR_LEN) {
2350 /* If we need to break across multiple descriptors we should
2351 * stop at a page boundary. This assumes the length limit is
2352 * greater than the page size.
2354 dma_addr_t end = dma_addr + EFX_EF10_MAX_TX_DESCRIPTOR_LEN;
2356 BUILD_BUG_ON(EFX_EF10_MAX_TX_DESCRIPTOR_LEN < EFX_PAGE_SIZE);
2357 len = (end & (~(EFX_PAGE_SIZE - 1))) - dma_addr;
2363 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
2365 unsigned int old_write_count = tx_queue->write_count;
2366 struct efx_tx_buffer *buffer;
2367 unsigned int write_ptr;
2370 tx_queue->xmit_more_available = false;
2371 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
2375 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
2376 buffer = &tx_queue->buffer[write_ptr];
2377 txd = efx_tx_desc(tx_queue, write_ptr);
2378 ++tx_queue->write_count;
2380 /* Create TX descriptor ring entry */
2381 if (buffer->flags & EFX_TX_BUF_OPTION) {
2382 *txd = buffer->option;
2383 if (EFX_QWORD_FIELD(*txd, ESF_DZ_TX_OPTION_TYPE) == 1)
2384 /* PIO descriptor */
2385 tx_queue->packet_write_count = tx_queue->write_count;
2387 tx_queue->packet_write_count = tx_queue->write_count;
2388 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
2389 EFX_POPULATE_QWORD_3(
2392 buffer->flags & EFX_TX_BUF_CONT,
2393 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
2394 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
2396 } while (tx_queue->write_count != tx_queue->insert_count);
2398 wmb(); /* Ensure descriptors are written before they are fetched */
2400 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
2401 txd = efx_tx_desc(tx_queue,
2402 old_write_count & tx_queue->ptr_mask);
2403 efx_ef10_push_tx_desc(tx_queue, txd);
2406 efx_ef10_notify_tx_desc(tx_queue);
2410 static int efx_ef10_probe_multicast_chaining(struct efx_nic *efx)
2412 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2413 unsigned int enabled, implemented;
2414 bool want_workaround_26807;
2417 rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2418 if (rc == -ENOSYS) {
2419 /* GET_WORKAROUNDS was implemented before this workaround,
2420 * thus it must be unavailable in this firmware.
2422 nic_data->workaround_26807 = false;
2427 want_workaround_26807 =
2428 implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807;
2429 nic_data->workaround_26807 =
2430 !!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);
2432 if (want_workaround_26807 && !nic_data->workaround_26807) {
2435 rc = efx_mcdi_set_workaround(efx,
2436 MC_CMD_WORKAROUND_BUG26807,
2440 1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
2441 netif_info(efx, drv, efx->net_dev,
2442 "other functions on NIC have been reset\n");
2444 /* With MCFW v4.6.x and earlier, the
2445 * boot count will have incremented,
2446 * so re-read the warm_boot_count
2447 * value now to ensure this function
2448 * doesn't think it has changed next
2451 rc = efx_ef10_get_warm_boot_count(efx);
2453 nic_data->warm_boot_count = rc;
2457 nic_data->workaround_26807 = true;
2458 } else if (rc == -EPERM) {
2465 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
2467 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2468 int rc = efx_ef10_probe_multicast_chaining(efx);
2469 struct efx_mcdi_filter_vlan *vlan;
2473 rc = efx_mcdi_filter_table_probe(efx, nic_data->workaround_26807);
2478 list_for_each_entry(vlan, &nic_data->vlan_list, list) {
2479 rc = efx_mcdi_filter_add_vlan(efx, vlan->vid);
2486 efx_mcdi_filter_table_remove(efx);
2490 /* This creates an entry in the RX descriptor queue */
2492 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
2494 struct efx_rx_buffer *rx_buf;
2497 rxd = efx_rx_desc(rx_queue, index);
2498 rx_buf = efx_rx_buffer(rx_queue, index);
2499 EFX_POPULATE_QWORD_2(*rxd,
2500 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
2501 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
2504 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
2506 struct efx_nic *efx = rx_queue->efx;
2507 unsigned int write_count;
2510 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
2511 write_count = rx_queue->added_count & ~7;
2512 if (rx_queue->notified_count == write_count)
2516 efx_ef10_build_rx_desc(
2518 rx_queue->notified_count & rx_queue->ptr_mask);
2519 while (++rx_queue->notified_count != write_count);
2522 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
2523 write_count & rx_queue->ptr_mask);
2524 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD,
2525 efx_rx_queue_index(rx_queue));
2528 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
2530 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
2532 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
2533 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2536 EFX_POPULATE_QWORD_2(event,
2537 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2538 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
2540 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2542 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2543 * already swapped the data to little-endian order.
2545 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2546 sizeof(efx_qword_t));
2548 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
2549 inbuf, sizeof(inbuf), 0,
2550 efx_ef10_rx_defer_refill_complete, 0);
2554 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
2555 int rc, efx_dword_t *outbuf,
2556 size_t outlen_actual)
2561 static int efx_ef10_ev_init(struct efx_channel *channel)
2563 struct efx_nic *efx = channel->efx;
2564 struct efx_ef10_nic_data *nic_data;
2565 bool use_v2, cut_thru;
2567 nic_data = efx->nic_data;
2568 use_v2 = nic_data->datapath_caps2 &
2569 1 << MC_CMD_GET_CAPABILITIES_V2_OUT_INIT_EVQ_V2_LBN;
2570 cut_thru = !(nic_data->datapath_caps &
2571 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
2572 return efx_mcdi_ev_init(channel, cut_thru, use_v2);
2575 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
2576 unsigned int rx_queue_label)
2578 struct efx_nic *efx = rx_queue->efx;
2580 netif_info(efx, hw, efx->net_dev,
2581 "rx event arrived on queue %d labeled as queue %u\n",
2582 efx_rx_queue_index(rx_queue), rx_queue_label);
2584 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2588 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
2589 unsigned int actual, unsigned int expected)
2591 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
2592 struct efx_nic *efx = rx_queue->efx;
2594 netif_info(efx, hw, efx->net_dev,
2595 "dropped %d events (index=%d expected=%d)\n",
2596 dropped, actual, expected);
2598 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
2601 /* partially received RX was aborted. clean up. */
2602 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
2604 unsigned int rx_desc_ptr;
2606 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
2607 "scattered RX aborted (dropping %u buffers)\n",
2608 rx_queue->scatter_n);
2610 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
2612 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
2613 0, EFX_RX_PKT_DISCARD);
2615 rx_queue->removed_count += rx_queue->scatter_n;
2616 rx_queue->scatter_n = 0;
2617 rx_queue->scatter_len = 0;
2618 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
2621 static u16 efx_ef10_handle_rx_event_errors(struct efx_channel *channel,
2622 unsigned int n_packets,
2623 unsigned int rx_encap_hdr,
2624 unsigned int rx_l3_class,
2625 unsigned int rx_l4_class,
2626 const efx_qword_t *event)
2628 struct efx_nic *efx = channel->efx;
2629 bool handled = false;
2631 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)) {
2632 if (!(efx->net_dev->features & NETIF_F_RXALL)) {
2633 if (!efx->loopback_selftest)
2634 channel->n_rx_eth_crc_err += n_packets;
2635 return EFX_RX_PKT_DISCARD;
2639 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR)) {
2640 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2641 rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2642 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2643 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2644 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2645 netdev_WARN(efx->net_dev,
2646 "invalid class for RX_IPCKSUM_ERR: event="
2648 EFX_QWORD_VAL(*event));
2649 if (!efx->loopback_selftest)
2651 &channel->n_rx_outer_ip_hdr_chksum_err :
2652 &channel->n_rx_ip_hdr_chksum_err) += n_packets;
2655 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_TCPUDP_CKSUM_ERR)) {
2656 if (unlikely(rx_encap_hdr != ESE_EZ_ENCAP_HDR_VXLAN &&
2657 ((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2658 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2659 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2660 rx_l4_class != ESE_FZ_L4_CLASS_UDP))))
2661 netdev_WARN(efx->net_dev,
2662 "invalid class for RX_TCPUDP_CKSUM_ERR: event="
2664 EFX_QWORD_VAL(*event));
2665 if (!efx->loopback_selftest)
2667 &channel->n_rx_outer_tcp_udp_chksum_err :
2668 &channel->n_rx_tcp_udp_chksum_err) += n_packets;
2671 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_IP_INNER_CHKSUM_ERR)) {
2672 if (unlikely(!rx_encap_hdr))
2673 netdev_WARN(efx->net_dev,
2674 "invalid encapsulation type for RX_IP_INNER_CHKSUM_ERR: event="
2676 EFX_QWORD_VAL(*event));
2677 else if (unlikely(rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2678 rx_l3_class != ESE_DZ_L3_CLASS_IP4_FRAG &&
2679 rx_l3_class != ESE_DZ_L3_CLASS_IP6 &&
2680 rx_l3_class != ESE_DZ_L3_CLASS_IP6_FRAG))
2681 netdev_WARN(efx->net_dev,
2682 "invalid class for RX_IP_INNER_CHKSUM_ERR: event="
2684 EFX_QWORD_VAL(*event));
2685 if (!efx->loopback_selftest)
2686 channel->n_rx_inner_ip_hdr_chksum_err += n_packets;
2689 if (EFX_QWORD_FIELD(*event, ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR)) {
2690 if (unlikely(!rx_encap_hdr))
2691 netdev_WARN(efx->net_dev,
2692 "invalid encapsulation type for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2694 EFX_QWORD_VAL(*event));
2695 else if (unlikely((rx_l3_class != ESE_DZ_L3_CLASS_IP4 &&
2696 rx_l3_class != ESE_DZ_L3_CLASS_IP6) ||
2697 (rx_l4_class != ESE_FZ_L4_CLASS_TCP &&
2698 rx_l4_class != ESE_FZ_L4_CLASS_UDP)))
2699 netdev_WARN(efx->net_dev,
2700 "invalid class for RX_TCP_UDP_INNER_CHKSUM_ERR: event="
2702 EFX_QWORD_VAL(*event));
2703 if (!efx->loopback_selftest)
2704 channel->n_rx_inner_tcp_udp_chksum_err += n_packets;
2708 WARN_ON(!handled); /* No error bits were recognised */
2712 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
2713 const efx_qword_t *event)
2715 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label;
2716 unsigned int rx_l3_class, rx_l4_class, rx_encap_hdr;
2717 unsigned int n_descs, n_packets, i;
2718 struct efx_nic *efx = channel->efx;
2719 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2720 struct efx_rx_queue *rx_queue;
2725 if (unlikely(READ_ONCE(efx->reset_pending)))
2728 /* Basic packet information */
2729 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
2730 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
2731 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
2732 rx_l3_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L3_CLASS);
2733 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_FZ_RX_L4_CLASS);
2734 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
2736 nic_data->datapath_caps &
2737 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN) ?
2738 EFX_QWORD_FIELD(*event, ESF_EZ_RX_ENCAP_HDR) :
2739 ESE_EZ_ENCAP_HDR_NONE;
2741 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
2742 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
2744 EFX_QWORD_VAL(*event));
2746 rx_queue = efx_channel_get_rx_queue(channel);
2748 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
2749 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
2751 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
2752 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2754 if (n_descs != rx_queue->scatter_n + 1) {
2755 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2757 /* detect rx abort */
2758 if (unlikely(n_descs == rx_queue->scatter_n)) {
2759 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
2760 netdev_WARN(efx->net_dev,
2761 "invalid RX abort: scatter_n=%u event="
2763 rx_queue->scatter_n,
2764 EFX_QWORD_VAL(*event));
2765 efx_ef10_handle_rx_abort(rx_queue);
2769 /* Check that RX completion merging is valid, i.e.
2770 * the current firmware supports it and this is a
2771 * non-scattered packet.
2773 if (!(nic_data->datapath_caps &
2774 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
2775 rx_queue->scatter_n != 0 || rx_cont) {
2776 efx_ef10_handle_rx_bad_lbits(
2777 rx_queue, next_ptr_lbits,
2778 (rx_queue->removed_count +
2779 rx_queue->scatter_n + 1) &
2780 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
2784 /* Merged completion for multiple non-scattered packets */
2785 rx_queue->scatter_n = 1;
2786 rx_queue->scatter_len = 0;
2787 n_packets = n_descs;
2788 ++channel->n_rx_merge_events;
2789 channel->n_rx_merge_packets += n_packets;
2790 flags |= EFX_RX_PKT_PREFIX_LEN;
2792 ++rx_queue->scatter_n;
2793 rx_queue->scatter_len += rx_bytes;
2799 EFX_POPULATE_QWORD_5(errors, ESF_DZ_RX_ECRC_ERR, 1,
2800 ESF_DZ_RX_IPCKSUM_ERR, 1,
2801 ESF_DZ_RX_TCPUDP_CKSUM_ERR, 1,
2802 ESF_EZ_RX_IP_INNER_CHKSUM_ERR, 1,
2803 ESF_EZ_RX_TCP_UDP_INNER_CHKSUM_ERR, 1);
2804 EFX_AND_QWORD(errors, *event, errors);
2805 if (unlikely(!EFX_QWORD_IS_ZERO(errors))) {
2806 flags |= efx_ef10_handle_rx_event_errors(channel, n_packets,
2808 rx_l3_class, rx_l4_class,
2811 bool tcpudp = rx_l4_class == ESE_FZ_L4_CLASS_TCP ||
2812 rx_l4_class == ESE_FZ_L4_CLASS_UDP;
2814 switch (rx_encap_hdr) {
2815 case ESE_EZ_ENCAP_HDR_VXLAN: /* VxLAN or GENEVE */
2816 flags |= EFX_RX_PKT_CSUMMED; /* outer UDP csum */
2818 flags |= EFX_RX_PKT_CSUM_LEVEL; /* inner L4 */
2820 case ESE_EZ_ENCAP_HDR_GRE:
2821 case ESE_EZ_ENCAP_HDR_NONE:
2823 flags |= EFX_RX_PKT_CSUMMED;
2826 netdev_WARN(efx->net_dev,
2827 "unknown encapsulation type: event="
2829 EFX_QWORD_VAL(*event));
2833 if (rx_l4_class == ESE_FZ_L4_CLASS_TCP)
2834 flags |= EFX_RX_PKT_TCP;
2836 channel->irq_mod_score += 2 * n_packets;
2838 /* Handle received packet(s) */
2839 for (i = 0; i < n_packets; i++) {
2840 efx_rx_packet(rx_queue,
2841 rx_queue->removed_count & rx_queue->ptr_mask,
2842 rx_queue->scatter_n, rx_queue->scatter_len,
2844 rx_queue->removed_count += rx_queue->scatter_n;
2847 rx_queue->scatter_n = 0;
2848 rx_queue->scatter_len = 0;
2853 static u32 efx_ef10_extract_event_ts(efx_qword_t *event)
2857 tstamp = EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_HI);
2859 tstamp |= EFX_QWORD_FIELD(*event, TX_TIMESTAMP_EVENT_TSTAMP_DATA_LO);
2865 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
2867 struct efx_nic *efx = channel->efx;
2868 struct efx_tx_queue *tx_queue;
2869 unsigned int tx_ev_desc_ptr;
2870 unsigned int tx_ev_q_label;
2871 unsigned int tx_ev_type;
2874 if (unlikely(READ_ONCE(efx->reset_pending)))
2877 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
2880 /* Get the transmit queue */
2881 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
2882 tx_queue = efx_channel_get_tx_queue(channel,
2883 tx_ev_q_label % EFX_TXQ_TYPES);
2885 if (!tx_queue->timestamping) {
2886 /* Transmit completion */
2887 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
2888 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
2892 /* Transmit timestamps are only available for 8XXX series. They result
2893 * in up to three events per packet. These occur in order, and are:
2894 * - the normal completion event (may be omitted)
2895 * - the low part of the timestamp
2896 * - the high part of the timestamp
2898 * It's possible for multiple completion events to appear before the
2899 * corresponding timestamps. So we can for example get:
2907 * In addition it's also possible for the adjacent completions to be
2908 * merged, so we may not see COMP N above. As such, the completion
2909 * events are not very useful here.
2911 * Each part of the timestamp is itself split across two 16 bit
2912 * fields in the event.
2914 tx_ev_type = EFX_QWORD_FIELD(*event, ESF_EZ_TX_SOFT1);
2916 switch (tx_ev_type) {
2917 case TX_TIMESTAMP_EVENT_TX_EV_COMPLETION:
2918 /* Ignore this event - see above. */
2921 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_LO:
2922 ts_part = efx_ef10_extract_event_ts(event);
2923 tx_queue->completed_timestamp_minor = ts_part;
2926 case TX_TIMESTAMP_EVENT_TX_EV_TSTAMP_HI:
2927 ts_part = efx_ef10_extract_event_ts(event);
2928 tx_queue->completed_timestamp_major = ts_part;
2930 efx_xmit_done_single(tx_queue);
2934 netif_err(efx, hw, efx->net_dev,
2935 "channel %d unknown tx event type %d (data "
2936 EFX_QWORD_FMT ")\n",
2937 channel->channel, tx_ev_type,
2938 EFX_QWORD_VAL(*event));
2944 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
2946 struct efx_nic *efx = channel->efx;
2949 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
2952 case ESE_DZ_DRV_TIMER_EV:
2953 case ESE_DZ_DRV_WAKE_UP_EV:
2955 case ESE_DZ_DRV_START_UP_EV:
2956 /* event queue init complete. ok. */
2959 netif_err(efx, hw, efx->net_dev,
2960 "channel %d unknown driver event type %d"
2961 " (data " EFX_QWORD_FMT ")\n",
2962 channel->channel, subcode,
2963 EFX_QWORD_VAL(*event));
2968 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
2971 struct efx_nic *efx = channel->efx;
2974 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
2978 channel->event_test_cpu = raw_smp_processor_id();
2980 case EFX_EF10_REFILL:
2981 /* The queue must be empty, so we won't receive any rx
2982 * events, so efx_process_channel() won't refill the
2983 * queue. Refill it here
2985 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2988 netif_err(efx, hw, efx->net_dev,
2989 "channel %d unknown driver event type %u"
2990 " (data " EFX_QWORD_FMT ")\n",
2991 channel->channel, (unsigned) subcode,
2992 EFX_QWORD_VAL(*event));
2996 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
2998 struct efx_nic *efx = channel->efx;
2999 efx_qword_t event, *p_event;
3000 unsigned int read_ptr;
3007 read_ptr = channel->eventq_read_ptr;
3010 p_event = efx_event(channel, read_ptr);
3013 if (!efx_event_present(&event))
3016 EFX_SET_QWORD(*p_event);
3020 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
3022 netif_vdbg(efx, drv, efx->net_dev,
3023 "processing event on %d " EFX_QWORD_FMT "\n",
3024 channel->channel, EFX_QWORD_VAL(event));
3027 case ESE_DZ_EV_CODE_MCDI_EV:
3028 efx_mcdi_process_event(channel, &event);
3030 case ESE_DZ_EV_CODE_RX_EV:
3031 spent += efx_ef10_handle_rx_event(channel, &event);
3032 if (spent >= quota) {
3033 /* XXX can we split a merged event to
3034 * avoid going over-quota?
3040 case ESE_DZ_EV_CODE_TX_EV:
3041 efx_ef10_handle_tx_event(channel, &event);
3043 case ESE_DZ_EV_CODE_DRIVER_EV:
3044 efx_ef10_handle_driver_event(channel, &event);
3045 if (++spent == quota)
3048 case EFX_EF10_DRVGEN_EV:
3049 efx_ef10_handle_driver_generated_event(channel, &event);
3052 netif_err(efx, hw, efx->net_dev,
3053 "channel %d unknown event type %d"
3054 " (data " EFX_QWORD_FMT ")\n",
3055 channel->channel, ev_code,
3056 EFX_QWORD_VAL(event));
3061 channel->eventq_read_ptr = read_ptr;
3065 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
3067 struct efx_nic *efx = channel->efx;
3070 if (EFX_EF10_WORKAROUND_35388(efx)) {
3071 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
3072 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
3073 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
3074 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
3076 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3077 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
3078 ERF_DD_EVQ_IND_RPTR,
3079 (channel->eventq_read_ptr &
3080 channel->eventq_mask) >>
3081 ERF_DD_EVQ_IND_RPTR_WIDTH);
3082 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3084 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
3085 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
3086 ERF_DD_EVQ_IND_RPTR,
3087 channel->eventq_read_ptr &
3088 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
3089 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
3092 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
3093 channel->eventq_read_ptr &
3094 channel->eventq_mask);
3095 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
3099 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
3101 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
3102 struct efx_nic *efx = channel->efx;
3106 EFX_POPULATE_QWORD_2(event,
3107 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
3108 ESF_DZ_EV_DATA, EFX_EF10_TEST);
3110 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
3112 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
3113 * already swapped the data to little-endian order.
3115 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
3116 sizeof(efx_qword_t));
3118 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
3127 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
3130 static void efx_ef10_prepare_flr(struct efx_nic *efx)
3132 atomic_set(&efx->active_queues, 0);
3135 static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
3137 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3138 u8 mac_old[ETH_ALEN];
3141 /* Only reconfigure a PF-created vport */
3142 if (is_zero_ether_addr(nic_data->vport_mac))
3145 efx_device_detach_sync(efx);
3146 efx_net_stop(efx->net_dev);
3147 down_write(&efx->filter_sem);
3148 efx_mcdi_filter_table_remove(efx);
3149 up_write(&efx->filter_sem);
3151 rc = efx_ef10_vadaptor_free(efx, efx->vport_id);
3153 goto restore_filters;
3155 ether_addr_copy(mac_old, nic_data->vport_mac);
3156 rc = efx_ef10_vport_del_mac(efx, efx->vport_id,
3157 nic_data->vport_mac);
3159 goto restore_vadaptor;
3161 rc = efx_ef10_vport_add_mac(efx, efx->vport_id,
3162 efx->net_dev->dev_addr);
3164 ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
3166 rc2 = efx_ef10_vport_add_mac(efx, efx->vport_id, mac_old);
3168 /* Failed to add original MAC, so clear vport_mac */
3169 eth_zero_addr(nic_data->vport_mac);
3175 rc2 = efx_ef10_vadaptor_alloc(efx, efx->vport_id);
3179 down_write(&efx->filter_sem);
3180 rc2 = efx_ef10_filter_table_probe(efx);
3181 up_write(&efx->filter_sem);
3185 rc2 = efx_net_open(efx->net_dev);
3189 efx_device_attach_if_not_resetting(efx);
3194 netif_err(efx, drv, efx->net_dev,
3195 "Failed to restore when changing MAC address - scheduling reset\n");
3196 efx_schedule_reset(efx, RESET_TYPE_DATAPATH);
3198 return rc ? rc : rc2;
3201 static int efx_ef10_set_mac_address(struct efx_nic *efx)
3203 MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
3204 bool was_enabled = efx->port_enabled;
3207 efx_device_detach_sync(efx);
3208 efx_net_stop(efx->net_dev);
3210 mutex_lock(&efx->mac_lock);
3211 down_write(&efx->filter_sem);
3212 efx_mcdi_filter_table_remove(efx);
3214 ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
3215 efx->net_dev->dev_addr);
3216 MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
3218 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
3219 sizeof(inbuf), NULL, 0, NULL);
3221 efx_ef10_filter_table_probe(efx);
3222 up_write(&efx->filter_sem);
3223 mutex_unlock(&efx->mac_lock);
3226 efx_net_open(efx->net_dev);
3227 efx_device_attach_if_not_resetting(efx);
3229 #ifdef CONFIG_SFC_SRIOV
3230 if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
3231 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3232 struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
3235 struct efx_nic *efx_pf;
3237 /* Switch to PF and change MAC address on vport */
3238 efx_pf = pci_get_drvdata(pci_dev_pf);
3240 rc = efx_ef10_sriov_set_vf_mac(efx_pf,
3242 efx->net_dev->dev_addr);
3244 struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
3245 struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
3248 /* MAC address successfully changed by VF (with MAC
3249 * spoofing) so update the parent PF if possible.
3251 for (i = 0; i < efx_pf->vf_count; ++i) {
3252 struct ef10_vf *vf = nic_data->vf + i;
3254 if (vf->efx == efx) {
3255 ether_addr_copy(vf->mac,
3256 efx->net_dev->dev_addr);
3264 netif_err(efx, drv, efx->net_dev,
3265 "Cannot change MAC address; use sfboot to enable"
3266 " mac-spoofing on this interface\n");
3267 } else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
3268 /* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
3269 * fall-back to the method of changing the MAC address on the
3270 * vport. This only applies to PFs because such versions of
3271 * MCFW do not support VFs.
3273 rc = efx_ef10_vport_set_mac_address(efx);
3275 efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
3276 sizeof(inbuf), NULL, 0, rc);
3282 static int efx_ef10_mac_reconfigure(struct efx_nic *efx, bool mtu_only)
3284 WARN_ON(!mutex_is_locked(&efx->mac_lock));
3286 efx_mcdi_filter_sync_rx_mode(efx);
3288 if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
3289 return efx_mcdi_set_mtu(efx);
3290 return efx_mcdi_set_mac(efx);
3293 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3295 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3297 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3298 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3302 /* MC BISTs follow a different poll mechanism to phy BISTs.
3303 * The BIST is done in the poll handler on the MC, and the MCDI command
3304 * will block until the BIST is done.
3306 static int efx_ef10_poll_bist(struct efx_nic *efx)
3309 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3313 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3314 outbuf, sizeof(outbuf), &outlen);
3318 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3321 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3323 case MC_CMD_POLL_BIST_PASSED:
3324 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3326 case MC_CMD_POLL_BIST_TIMEOUT:
3327 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3329 case MC_CMD_POLL_BIST_FAILED:
3330 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3333 netif_err(efx, hw, efx->net_dev,
3334 "BIST returned unknown result %u", result);
3339 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3343 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3345 rc = efx_ef10_start_bist(efx, bist_type);
3349 return efx_ef10_poll_bist(efx);
3353 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3357 efx_reset_down(efx, RESET_TYPE_WORLD);
3359 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3360 NULL, 0, NULL, 0, NULL);
3364 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3365 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3367 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3372 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3373 return rc ? rc : rc2;
3376 #ifdef CONFIG_SFC_MTD
3378 struct efx_ef10_nvram_type_info {
3379 u16 type, type_mask;
3384 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3385 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
3386 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
3387 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
3388 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
3389 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
3390 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
3391 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
3392 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
3393 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
3394 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
3395 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
3396 { NVRAM_PARTITION_TYPE_MUM_FIRMWARE, 0, 0, "sfc_mumfw" },
3397 { NVRAM_PARTITION_TYPE_EXPANSION_UEFI, 0, 0, "sfc_uefi" },
3398 { NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS, 0, 0, "sfc_dynamic_cfg_dflt" },
3399 { NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS, 0, 0, "sfc_exp_rom_cfg_dflt" },
3400 { NVRAM_PARTITION_TYPE_STATUS, 0, 0, "sfc_status" },
3401 { NVRAM_PARTITION_TYPE_BUNDLE, 0, 0, "sfc_bundle" },
3402 { NVRAM_PARTITION_TYPE_BUNDLE_METADATA, 0, 0, "sfc_bundle_metadata" },
3404 #define EF10_NVRAM_PARTITION_COUNT ARRAY_SIZE(efx_ef10_nvram_types)
3406 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3407 struct efx_mcdi_mtd_partition *part,
3409 unsigned long *found)
3411 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3412 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3413 const struct efx_ef10_nvram_type_info *info;
3414 size_t size, erase_size, outlen;
3419 for (type_idx = 0; ; type_idx++) {
3420 if (type_idx == EF10_NVRAM_PARTITION_COUNT)
3422 info = efx_ef10_nvram_types + type_idx;
3423 if ((type & ~info->type_mask) == info->type)
3426 if (info->port != efx_port_num(efx))
3429 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3433 (type != NVRAM_PARTITION_TYPE_DYNCONFIG_DEFAULTS &&
3434 type != NVRAM_PARTITION_TYPE_ROMCONFIG_DEFAULTS))
3435 /* Hide protected partitions that don't provide defaults. */
3439 /* Protected partitions are read only. */
3442 /* If we've already exposed a partition of this type, hide this
3443 * duplicate. All operations on MTDs are keyed by the type anyway,
3444 * so we can't act on the duplicate.
3446 if (__test_and_set_bit(type_idx, found))
3449 part->nvram_type = type;
3451 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3452 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3453 outbuf, sizeof(outbuf), &outlen);
3456 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3458 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3459 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3460 part->fw_subtype = MCDI_DWORD(outbuf,
3461 NVRAM_METADATA_OUT_SUBTYPE);
3463 part->common.dev_type_name = "EF10 NVRAM manager";
3464 part->common.type_name = info->name;
3466 part->common.mtd.type = MTD_NORFLASH;
3467 part->common.mtd.flags = MTD_CAP_NORFLASH;
3468 part->common.mtd.size = size;
3469 part->common.mtd.erasesize = erase_size;
3470 /* sfc_status is read-only */
3472 part->common.mtd.flags |= MTD_NO_ERASE;
3477 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3479 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3480 DECLARE_BITMAP(found, EF10_NVRAM_PARTITION_COUNT) = { 0 };
3481 struct efx_mcdi_mtd_partition *parts;
3482 size_t outlen, n_parts_total, i, n_parts;
3488 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3489 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3490 outbuf, sizeof(outbuf), &outlen);
3493 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3496 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3498 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3501 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3506 for (i = 0; i < n_parts_total; i++) {
3507 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3509 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type,
3511 if (rc == -EEXIST || rc == -ENODEV)
3518 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3525 #endif /* CONFIG_SFC_MTD */
3527 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3529 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3532 static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
3535 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3538 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3541 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3542 channel->sync_events_state == SYNC_EVENTS_VALID ||
3543 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3545 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3547 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3548 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3549 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3552 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3553 inbuf, sizeof(inbuf), NULL, 0, NULL);
3556 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3557 SYNC_EVENTS_DISABLED;
3562 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3565 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3568 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3569 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3571 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3572 channel->sync_events_state = SYNC_EVENTS_DISABLED;
3575 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3576 SYNC_EVENTS_DISABLED;
3578 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3579 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3580 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3581 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3582 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3585 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3586 inbuf, sizeof(inbuf), NULL, 0, NULL);
3591 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3594 int (*set)(struct efx_channel *channel, bool temp);
3595 struct efx_channel *channel;
3598 efx_ef10_rx_enable_timestamping :
3599 efx_ef10_rx_disable_timestamping;
3601 channel = efx_ptp_channel(efx);
3603 int rc = set(channel, temp);
3604 if (en && rc != 0) {
3605 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3613 static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
3614 struct hwtstamp_config *init)
3619 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3620 struct hwtstamp_config *init)
3624 switch (init->rx_filter) {
3625 case HWTSTAMP_FILTER_NONE:
3626 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3627 /* if TX timestamping is still requested then leave PTP on */
3628 return efx_ptp_change_mode(efx,
3629 init->tx_type != HWTSTAMP_TX_OFF, 0);
3630 case HWTSTAMP_FILTER_ALL:
3631 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3632 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3633 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3634 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3635 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3636 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3637 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3638 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3639 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3640 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3641 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3642 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3643 case HWTSTAMP_FILTER_NTP_ALL:
3644 init->rx_filter = HWTSTAMP_FILTER_ALL;
3645 rc = efx_ptp_change_mode(efx, true, 0);
3647 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3649 efx_ptp_change_mode(efx, false, 0);
3656 static int efx_ef10_get_phys_port_id(struct efx_nic *efx,
3657 struct netdev_phys_item_id *ppid)
3659 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3661 if (!is_valid_ether_addr(nic_data->port_id))
3664 ppid->id_len = ETH_ALEN;
3665 memcpy(ppid->id, nic_data->port_id, ppid->id_len);
3670 static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3672 if (proto != htons(ETH_P_8021Q))
3675 return efx_ef10_add_vlan(efx, vid);
3678 static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
3680 if (proto != htons(ETH_P_8021Q))
3683 return efx_ef10_del_vlan(efx, vid);
3686 /* We rely on the MCDI wiping out our TX rings if it made any changes to the
3687 * ports table, ensuring that any TSO descriptors that were made on a now-
3688 * removed tunnel port will be blown away and won't break things when we try
3689 * to transmit them using the new ports table.
3691 static int efx_ef10_set_udp_tnl_ports(struct efx_nic *efx, bool unloading)
3693 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3694 MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LENMAX);
3695 MCDI_DECLARE_BUF(outbuf, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_LEN);
3696 bool will_reset = false;
3697 size_t num_entries = 0;
3698 size_t inlen, outlen;
3701 efx_dword_t flags_and_num_entries;
3703 WARN_ON(!mutex_is_locked(&nic_data->udp_tunnels_lock));
3705 nic_data->udp_tunnels_dirty = false;
3707 if (!(nic_data->datapath_caps &
3708 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN))) {
3709 efx_device_attach_if_not_resetting(efx);
3713 BUILD_BUG_ON(ARRAY_SIZE(nic_data->udp_tunnels) >
3714 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES_MAXNUM);
3716 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i) {
3717 if (nic_data->udp_tunnels[i].type !=
3718 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID) {
3721 EFX_POPULATE_DWORD_2(entry,
3722 TUNNEL_ENCAP_UDP_PORT_ENTRY_UDP_PORT,
3723 ntohs(nic_data->udp_tunnels[i].port),
3724 TUNNEL_ENCAP_UDP_PORT_ENTRY_PROTOCOL,
3725 nic_data->udp_tunnels[i].type);
3726 *_MCDI_ARRAY_DWORD(inbuf,
3727 SET_TUNNEL_ENCAP_UDP_PORTS_IN_ENTRIES,
3728 num_entries++) = entry;
3732 BUILD_BUG_ON((MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_OFST -
3733 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS_OFST) * 8 !=
3735 BUILD_BUG_ON(MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_NUM_ENTRIES_LEN * 8 !=
3737 EFX_POPULATE_DWORD_2(flags_and_num_entries,
3738 MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_UNLOADING,
3740 EFX_WORD_1, num_entries);
3741 *_MCDI_DWORD(inbuf, SET_TUNNEL_ENCAP_UDP_PORTS_IN_FLAGS) =
3742 flags_and_num_entries;
3744 inlen = MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_IN_LEN(num_entries);
3746 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS,
3747 inbuf, inlen, outbuf, sizeof(outbuf), &outlen);
3749 /* Most likely the MC rebooted due to another function also
3750 * setting its tunnel port list. Mark the tunnel port list as
3751 * dirty, so it will be pushed upon coming up from the reboot.
3753 nic_data->udp_tunnels_dirty = true;
3758 /* expected not available on unprivileged functions */
3760 netif_warn(efx, drv, efx->net_dev,
3761 "Unable to set UDP tunnel ports; rc=%d.\n", rc);
3762 } else if (MCDI_DWORD(outbuf, SET_TUNNEL_ENCAP_UDP_PORTS_OUT_FLAGS) &
3763 (1 << MC_CMD_SET_TUNNEL_ENCAP_UDP_PORTS_OUT_RESETTING_LBN)) {
3764 netif_info(efx, drv, efx->net_dev,
3765 "Rebooting MC due to UDP tunnel port list change\n");
3768 /* Delay for the MC reset to complete. This will make
3769 * unloading other functions a bit smoother. This is a
3770 * race, but the other unload will work whichever way
3771 * it goes, this just avoids an unnecessary error
3776 if (!will_reset && !unloading) {
3777 /* The caller will have detached, relying on the MC reset to
3778 * trigger a re-attach. Since there won't be an MC reset, we
3779 * have to do the attach ourselves.
3781 efx_device_attach_if_not_resetting(efx);
3787 static int efx_ef10_udp_tnl_push_ports(struct efx_nic *efx)
3789 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3792 mutex_lock(&nic_data->udp_tunnels_lock);
3793 if (nic_data->udp_tunnels_dirty) {
3794 /* Make sure all TX are stopped while we modify the table, else
3795 * we might race against an efx_features_check().
3797 efx_device_detach_sync(efx);
3798 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3800 mutex_unlock(&nic_data->udp_tunnels_lock);
3804 static int efx_ef10_udp_tnl_set_port(struct net_device *dev,
3805 unsigned int table, unsigned int entry,
3806 struct udp_tunnel_info *ti)
3808 struct efx_nic *efx = netdev_priv(dev);
3809 struct efx_ef10_nic_data *nic_data;
3810 int efx_tunnel_type, rc;
3812 if (ti->type == UDP_TUNNEL_TYPE_VXLAN)
3813 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN;
3815 efx_tunnel_type = TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE;
3817 nic_data = efx->nic_data;
3818 if (!(nic_data->datapath_caps &
3819 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3822 mutex_lock(&nic_data->udp_tunnels_lock);
3823 /* Make sure all TX are stopped while we add to the table, else we
3824 * might race against an efx_features_check().
3826 efx_device_detach_sync(efx);
3827 nic_data->udp_tunnels[entry].type = efx_tunnel_type;
3828 nic_data->udp_tunnels[entry].port = ti->port;
3829 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3830 mutex_unlock(&nic_data->udp_tunnels_lock);
3835 /* Called under the TX lock with the TX queue running, hence no-one can be
3836 * in the middle of updating the UDP tunnels table. However, they could
3837 * have tried and failed the MCDI, in which case they'll have set the dirty
3838 * flag before dropping their locks.
3840 static bool efx_ef10_udp_tnl_has_port(struct efx_nic *efx, __be16 port)
3842 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3845 if (!(nic_data->datapath_caps &
3846 (1 << MC_CMD_GET_CAPABILITIES_OUT_VXLAN_NVGRE_LBN)))
3849 if (nic_data->udp_tunnels_dirty)
3850 /* SW table may not match HW state, so just assume we can't
3851 * use any UDP tunnel offloads.
3855 for (i = 0; i < ARRAY_SIZE(nic_data->udp_tunnels); ++i)
3856 if (nic_data->udp_tunnels[i].type !=
3857 TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID &&
3858 nic_data->udp_tunnels[i].port == port)
3864 static int efx_ef10_udp_tnl_unset_port(struct net_device *dev,
3865 unsigned int table, unsigned int entry,
3866 struct udp_tunnel_info *ti)
3868 struct efx_nic *efx = netdev_priv(dev);
3869 struct efx_ef10_nic_data *nic_data;
3872 nic_data = efx->nic_data;
3874 mutex_lock(&nic_data->udp_tunnels_lock);
3875 /* Make sure all TX are stopped while we remove from the table, else we
3876 * might race against an efx_features_check().
3878 efx_device_detach_sync(efx);
3879 nic_data->udp_tunnels[entry].type = TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID;
3880 nic_data->udp_tunnels[entry].port = 0;
3881 rc = efx_ef10_set_udp_tnl_ports(efx, false);
3882 mutex_unlock(&nic_data->udp_tunnels_lock);
3887 static const struct udp_tunnel_nic_info efx_ef10_udp_tunnels = {
3888 .set_port = efx_ef10_udp_tnl_set_port,
3889 .unset_port = efx_ef10_udp_tnl_unset_port,
3890 .flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP,
3894 .tunnel_types = UDP_TUNNEL_TYPE_VXLAN |
3895 UDP_TUNNEL_TYPE_GENEVE,
3900 /* EF10 may have multiple datapath firmware variants within a
3901 * single version. Report which variants are running.
3903 static size_t efx_ef10_print_additional_fwver(struct efx_nic *efx, char *buf,
3906 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3908 return scnprintf(buf, len, " rx%x tx%x",
3909 nic_data->rx_dpcpu_fw_id,
3910 nic_data->tx_dpcpu_fw_id);
3913 static unsigned int ef10_check_caps(const struct efx_nic *efx,
3917 const struct efx_ef10_nic_data *nic_data = efx->nic_data;
3920 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS1_OFST):
3921 return nic_data->datapath_caps & BIT_ULL(flag);
3922 case(MC_CMD_GET_CAPABILITIES_V4_OUT_FLAGS2_OFST):
3923 return nic_data->datapath_caps2 & BIT_ULL(flag);
3929 #define EF10_OFFLOAD_FEATURES \
3930 (NETIF_F_IP_CSUM | \
3931 NETIF_F_HW_VLAN_CTAG_FILTER | \
3932 NETIF_F_IPV6_CSUM | \
3936 const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
3938 .mem_bar = efx_ef10_vf_mem_bar,
3939 .mem_map_size = efx_ef10_mem_map_size,
3940 .probe = efx_ef10_probe_vf,
3941 .remove = efx_ef10_remove,
3942 .dimension_resources = efx_ef10_dimension_resources,
3943 .init = efx_ef10_init_nic,
3944 .fini = efx_ef10_fini_nic,
3945 .map_reset_reason = efx_ef10_map_reset_reason,
3946 .map_reset_flags = efx_ef10_map_reset_flags,
3947 .reset = efx_ef10_reset,
3948 .probe_port = efx_mcdi_port_probe,
3949 .remove_port = efx_mcdi_port_remove,
3950 .fini_dmaq = efx_fini_dmaq,
3951 .prepare_flr = efx_ef10_prepare_flr,
3952 .finish_flr = efx_port_dummy_op_void,
3953 .describe_stats = efx_ef10_describe_stats,
3954 .update_stats = efx_ef10_update_stats_vf,
3955 .start_stats = efx_port_dummy_op_void,
3956 .pull_stats = efx_port_dummy_op_void,
3957 .stop_stats = efx_port_dummy_op_void,
3958 .set_id_led = efx_mcdi_set_id_led,
3959 .push_irq_moderation = efx_ef10_push_irq_moderation,
3960 .reconfigure_mac = efx_ef10_mac_reconfigure,
3961 .check_mac_fault = efx_mcdi_mac_check_fault,
3962 .reconfigure_port = efx_mcdi_port_reconfigure,
3963 .get_wol = efx_ef10_get_wol_vf,
3964 .set_wol = efx_ef10_set_wol_vf,
3965 .resume_wol = efx_port_dummy_op_void,
3966 .mcdi_request = efx_ef10_mcdi_request,
3967 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
3968 .mcdi_read_response = efx_ef10_mcdi_read_response,
3969 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3970 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
3971 .irq_enable_master = efx_port_dummy_op_void,
3972 .irq_test_generate = efx_ef10_irq_test_generate,
3973 .irq_disable_non_ev = efx_port_dummy_op_void,
3974 .irq_handle_msi = efx_ef10_msi_interrupt,
3975 .irq_handle_legacy = efx_ef10_legacy_interrupt,
3976 .tx_probe = efx_ef10_tx_probe,
3977 .tx_init = efx_ef10_tx_init,
3978 .tx_remove = efx_mcdi_tx_remove,
3979 .tx_write = efx_ef10_tx_write,
3980 .tx_limit_len = efx_ef10_tx_limit_len,
3981 .tx_enqueue = __efx_enqueue_skb,
3982 .rx_push_rss_config = efx_mcdi_vf_rx_push_rss_config,
3983 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
3984 .rx_probe = efx_mcdi_rx_probe,
3985 .rx_init = efx_mcdi_rx_init,
3986 .rx_remove = efx_mcdi_rx_remove,
3987 .rx_write = efx_ef10_rx_write,
3988 .rx_defer_refill = efx_ef10_rx_defer_refill,
3989 .rx_packet = __efx_rx_packet,
3990 .ev_probe = efx_mcdi_ev_probe,
3991 .ev_init = efx_ef10_ev_init,
3992 .ev_fini = efx_mcdi_ev_fini,
3993 .ev_remove = efx_mcdi_ev_remove,
3994 .ev_process = efx_ef10_ev_process,
3995 .ev_read_ack = efx_ef10_ev_read_ack,
3996 .ev_test_generate = efx_ef10_ev_test_generate,
3997 .filter_table_probe = efx_ef10_filter_table_probe,
3998 .filter_table_restore = efx_mcdi_filter_table_restore,
3999 .filter_table_remove = efx_mcdi_filter_table_remove,
4000 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4001 .filter_insert = efx_mcdi_filter_insert,
4002 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4003 .filter_get_safe = efx_mcdi_filter_get_safe,
4004 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4005 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4006 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4007 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4008 #ifdef CONFIG_RFS_ACCEL
4009 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4011 #ifdef CONFIG_SFC_MTD
4012 .mtd_probe = efx_port_dummy_op_int,
4014 .ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
4015 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
4016 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4017 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4018 #ifdef CONFIG_SFC_SRIOV
4019 .vswitching_probe = efx_ef10_vswitching_probe_vf,
4020 .vswitching_restore = efx_ef10_vswitching_restore_vf,
4021 .vswitching_remove = efx_ef10_vswitching_remove_vf,
4023 .get_mac_address = efx_ef10_get_mac_address_vf,
4024 .set_mac_address = efx_ef10_set_mac_address,
4026 .get_phys_port_id = efx_ef10_get_phys_port_id,
4027 .revision = EFX_REV_HUNT_A0,
4028 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4029 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4030 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4031 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4032 .can_rx_scatter = true,
4033 .always_rx_scatter = true,
4034 .min_interrupt_mode = EFX_INT_MODE_MSIX,
4035 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4036 .offload_features = EF10_OFFLOAD_FEATURES,
4038 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4039 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4040 1 << HWTSTAMP_FILTER_ALL,
4041 .rx_hash_key_size = 40,
4042 .check_caps = ef10_check_caps,
4043 .print_additional_fwver = efx_ef10_print_additional_fwver,
4044 .sensor_event = efx_mcdi_sensor_event,
4047 const struct efx_nic_type efx_hunt_a0_nic_type = {
4049 .mem_bar = efx_ef10_pf_mem_bar,
4050 .mem_map_size = efx_ef10_mem_map_size,
4051 .probe = efx_ef10_probe_pf,
4052 .remove = efx_ef10_remove,
4053 .dimension_resources = efx_ef10_dimension_resources,
4054 .init = efx_ef10_init_nic,
4055 .fini = efx_ef10_fini_nic,
4056 .map_reset_reason = efx_ef10_map_reset_reason,
4057 .map_reset_flags = efx_ef10_map_reset_flags,
4058 .reset = efx_ef10_reset,
4059 .probe_port = efx_mcdi_port_probe,
4060 .remove_port = efx_mcdi_port_remove,
4061 .fini_dmaq = efx_fini_dmaq,
4062 .prepare_flr = efx_ef10_prepare_flr,
4063 .finish_flr = efx_port_dummy_op_void,
4064 .describe_stats = efx_ef10_describe_stats,
4065 .update_stats = efx_ef10_update_stats_pf,
4066 .start_stats = efx_mcdi_mac_start_stats,
4067 .pull_stats = efx_mcdi_mac_pull_stats,
4068 .stop_stats = efx_mcdi_mac_stop_stats,
4069 .set_id_led = efx_mcdi_set_id_led,
4070 .push_irq_moderation = efx_ef10_push_irq_moderation,
4071 .reconfigure_mac = efx_ef10_mac_reconfigure,
4072 .check_mac_fault = efx_mcdi_mac_check_fault,
4073 .reconfigure_port = efx_mcdi_port_reconfigure,
4074 .get_wol = efx_ef10_get_wol,
4075 .set_wol = efx_ef10_set_wol,
4076 .resume_wol = efx_port_dummy_op_void,
4077 .test_chip = efx_ef10_test_chip,
4078 .test_nvram = efx_mcdi_nvram_test_all,
4079 .mcdi_request = efx_ef10_mcdi_request,
4080 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
4081 .mcdi_read_response = efx_ef10_mcdi_read_response,
4082 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
4083 .mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
4084 .irq_enable_master = efx_port_dummy_op_void,
4085 .irq_test_generate = efx_ef10_irq_test_generate,
4086 .irq_disable_non_ev = efx_port_dummy_op_void,
4087 .irq_handle_msi = efx_ef10_msi_interrupt,
4088 .irq_handle_legacy = efx_ef10_legacy_interrupt,
4089 .tx_probe = efx_ef10_tx_probe,
4090 .tx_init = efx_ef10_tx_init,
4091 .tx_remove = efx_mcdi_tx_remove,
4092 .tx_write = efx_ef10_tx_write,
4093 .tx_limit_len = efx_ef10_tx_limit_len,
4094 .tx_enqueue = __efx_enqueue_skb,
4095 .rx_push_rss_config = efx_mcdi_pf_rx_push_rss_config,
4096 .rx_pull_rss_config = efx_mcdi_rx_pull_rss_config,
4097 .rx_push_rss_context_config = efx_mcdi_rx_push_rss_context_config,
4098 .rx_pull_rss_context_config = efx_mcdi_rx_pull_rss_context_config,
4099 .rx_restore_rss_contexts = efx_mcdi_rx_restore_rss_contexts,
4100 .rx_probe = efx_mcdi_rx_probe,
4101 .rx_init = efx_mcdi_rx_init,
4102 .rx_remove = efx_mcdi_rx_remove,
4103 .rx_write = efx_ef10_rx_write,
4104 .rx_defer_refill = efx_ef10_rx_defer_refill,
4105 .rx_packet = __efx_rx_packet,
4106 .ev_probe = efx_mcdi_ev_probe,
4107 .ev_init = efx_ef10_ev_init,
4108 .ev_fini = efx_mcdi_ev_fini,
4109 .ev_remove = efx_mcdi_ev_remove,
4110 .ev_process = efx_ef10_ev_process,
4111 .ev_read_ack = efx_ef10_ev_read_ack,
4112 .ev_test_generate = efx_ef10_ev_test_generate,
4113 .filter_table_probe = efx_ef10_filter_table_probe,
4114 .filter_table_restore = efx_mcdi_filter_table_restore,
4115 .filter_table_remove = efx_mcdi_filter_table_remove,
4116 .filter_update_rx_scatter = efx_mcdi_update_rx_scatter,
4117 .filter_insert = efx_mcdi_filter_insert,
4118 .filter_remove_safe = efx_mcdi_filter_remove_safe,
4119 .filter_get_safe = efx_mcdi_filter_get_safe,
4120 .filter_clear_rx = efx_mcdi_filter_clear_rx,
4121 .filter_count_rx_used = efx_mcdi_filter_count_rx_used,
4122 .filter_get_rx_id_limit = efx_mcdi_filter_get_rx_id_limit,
4123 .filter_get_rx_ids = efx_mcdi_filter_get_rx_ids,
4124 #ifdef CONFIG_RFS_ACCEL
4125 .filter_rfs_expire_one = efx_mcdi_filter_rfs_expire_one,
4127 #ifdef CONFIG_SFC_MTD
4128 .mtd_probe = efx_ef10_mtd_probe,
4129 .mtd_rename = efx_mcdi_mtd_rename,
4130 .mtd_read = efx_mcdi_mtd_read,
4131 .mtd_erase = efx_mcdi_mtd_erase,
4132 .mtd_write = efx_mcdi_mtd_write,
4133 .mtd_sync = efx_mcdi_mtd_sync,
4135 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
4136 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
4137 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
4138 .vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
4139 .vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
4140 .udp_tnl_push_ports = efx_ef10_udp_tnl_push_ports,
4141 .udp_tnl_has_port = efx_ef10_udp_tnl_has_port,
4142 #ifdef CONFIG_SFC_SRIOV
4143 .sriov_configure = efx_ef10_sriov_configure,
4144 .sriov_init = efx_ef10_sriov_init,
4145 .sriov_fini = efx_ef10_sriov_fini,
4146 .sriov_wanted = efx_ef10_sriov_wanted,
4147 .sriov_reset = efx_ef10_sriov_reset,
4148 .sriov_flr = efx_ef10_sriov_flr,
4149 .sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
4150 .sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
4151 .sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
4152 .sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
4153 .sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
4154 .vswitching_probe = efx_ef10_vswitching_probe_pf,
4155 .vswitching_restore = efx_ef10_vswitching_restore_pf,
4156 .vswitching_remove = efx_ef10_vswitching_remove_pf,
4158 .get_mac_address = efx_ef10_get_mac_address_pf,
4159 .set_mac_address = efx_ef10_set_mac_address,
4160 .tso_versions = efx_ef10_tso_versions,
4162 .get_phys_port_id = efx_ef10_get_phys_port_id,
4163 .revision = EFX_REV_HUNT_A0,
4164 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
4165 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
4166 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
4167 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
4168 .can_rx_scatter = true,
4169 .always_rx_scatter = true,
4170 .option_descriptors = true,
4171 .min_interrupt_mode = EFX_INT_MODE_LEGACY,
4172 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
4173 .offload_features = EF10_OFFLOAD_FEATURES,
4175 .max_rx_ip_filters = EFX_MCDI_FILTER_TBL_ROWS,
4176 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
4177 1 << HWTSTAMP_FILTER_ALL,
4178 .rx_hash_key_size = 40,
4179 .check_caps = ef10_check_caps,
4180 .print_additional_fwver = efx_ef10_print_additional_fwver,
4181 .sensor_event = efx_mcdi_sensor_event,