1 /* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */
3 Written 1999-2000 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
13 Scyld Computing Corporation
14 410 Severn Ave., Suite 210
17 Support and updates available at
18 http://www.scyld.com/network/sundance.html
19 [link no longer provides useful info -jgarzik]
20 Archives of the mailing list are still available at
21 https://www.beowulf.org/pipermail/netdrivers/
25 #define DRV_NAME "sundance"
27 /* The user-configurable values.
28 These may be modified when a driver module is loaded.*/
29 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
30 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
31 Typical is a 64 element hash table based on the Ethernet CRC. */
32 static const int multicast_filter_limit = 32;
34 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
35 Setting to > 1518 effectively disables this feature.
36 This chip can receive into offset buffers, so the Alpha does not
38 static int rx_copybreak;
39 static int flowctrl=1;
41 /* media[] specifies the media type the NIC operates at.
42 autosense Autosensing active media.
43 10mbps_hd 10Mbps half duplex.
44 10mbps_fd 10Mbps full duplex.
45 100mbps_hd 100Mbps half duplex.
46 100mbps_fd 100Mbps full duplex.
47 0 Autosensing active media.
50 3 100Mbps half duplex.
51 4 100Mbps full duplex.
54 static char *media[MAX_UNITS];
57 /* Operational parameters that are set at compile time. */
59 /* Keep the ring sizes a power of two for compile efficiency.
60 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
61 Making the Tx ring too large decreases the effectiveness of channel
62 bonding and packet priority, and more than 128 requires modifying the
64 Large receive rings merely waste memory. */
65 #define TX_RING_SIZE 32
66 #define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */
67 #define RX_RING_SIZE 64
69 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc)
70 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc)
72 /* Operational parameters that usually are not changed. */
73 /* Time in jiffies before concluding the transmitter is hung. */
74 #define TX_TIMEOUT (4*HZ)
75 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
77 /* Include files, designed to support most kernel versions 2.0.0 and later. */
78 #include <linux/module.h>
79 #include <linux/kernel.h>
80 #include <linux/string.h>
81 #include <linux/timer.h>
82 #include <linux/errno.h>
83 #include <linux/ioport.h>
84 #include <linux/interrupt.h>
85 #include <linux/pci.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 #include <linux/init.h>
90 #include <linux/bitops.h>
91 #include <linux/uaccess.h>
92 #include <asm/processor.h> /* Processor type for cache alignment. */
94 #include <linux/delay.h>
95 #include <linux/spinlock.h>
96 #include <linux/dma-mapping.h>
97 #include <linux/crc32.h>
98 #include <linux/ethtool.h>
99 #include <linux/mii.h>
102 MODULE_DESCRIPTION("Sundance Alta Ethernet driver");
103 MODULE_LICENSE("GPL");
105 module_param(debug, int, 0);
106 module_param(rx_copybreak, int, 0);
107 module_param_array(media, charp, NULL, 0);
108 module_param(flowctrl, int, 0);
109 MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)");
110 MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames");
111 MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]");
116 I. Board Compatibility
118 This driver is designed for the Sundance Technologies "Alta" ST201 chip.
120 II. Board-specific settings
122 III. Driver operation
126 This driver uses two statically allocated fixed-size descriptor lists
127 formed into rings by a branch from the final descriptor to the beginning of
128 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
129 Some chips explicitly use only 2^N sized rings, while others use a
130 'next descriptor' pointer that the driver forms into rings.
132 IIIb/c. Transmit/Receive Structure
134 This driver uses a zero-copy receive and transmit scheme.
135 The driver allocates full frame size skbuffs for the Rx ring buffers at
136 open() time and passes the skb->data field to the chip as receive data
137 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
138 a fresh skbuff is allocated and the frame is copied to the new skbuff.
139 When the incoming frame is larger, the skbuff is passed directly up the
140 protocol stack. Buffers consumed this way are replaced by newly allocated
141 skbuffs in a later phase of receives.
143 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
144 using a full-sized skbuff for small frames vs. the copying costs of larger
145 frames. New boards are typically used in generously configured machines
146 and the underfilled buffers have negligible impact compared to the benefit of
147 a single allocation size, so the default value of zero results in never
148 copying packets. When copying is done, the cost is usually mitigated by using
149 a combined copy/checksum routine. Copying also preloads the cache, which is
150 most useful with small frames.
152 A subtle aspect of the operation is that the IP header at offset 14 in an
153 ethernet frame isn't longword aligned for further processing.
154 Unaligned buffers are permitted by the Sundance hardware, so
155 frames are received into the skbuff at an offset of "+2", 16-byte aligning
158 IIId. Synchronization
160 The driver runs as two independent, single-threaded flows of control. One
161 is the send-packet routine, which enforces single-threaded use by the
162 dev->tbusy flag. The other thread is the interrupt handler, which is single
163 threaded by the hardware and interrupt handling software.
165 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
166 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
167 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
168 the 'lp->tx_full' flag.
170 The interrupt handler has exclusive control over the Rx ring and records stats
171 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
172 empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
173 clears both the tx_full and tbusy flags.
179 The Sundance ST201 datasheet, preliminary version.
180 The Kendin KS8723 datasheet, preliminary version.
181 The ICplus IP100 datasheet, preliminary version.
182 http://www.scyld.com/expert/100mbps.html
183 http://www.scyld.com/expert/NWay.html
189 /* Work-around for Kendin chip bugs. */
190 #ifndef CONFIG_SUNDANCE_MMIO
194 static const struct pci_device_id sundance_pci_tbl[] = {
195 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 },
196 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 },
197 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 },
198 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 },
199 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 },
200 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 },
201 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 },
204 MODULE_DEVICE_TABLE(pci, sundance_pci_tbl);
213 static const struct pci_id_info pci_id_tbl[] = {
214 {"D-Link DFE-550TX FAST Ethernet Adapter"},
215 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"},
216 {"D-Link DFE-580TX 4 port Server Adapter"},
217 {"D-Link DFE-530TXS FAST Ethernet Adapter"},
218 {"D-Link DL10050-based FAST Ethernet Adapter"},
219 {"Sundance Technology Alta"},
220 {"IC Plus Corporation IP100A FAST Ethernet Adapter"},
221 { } /* terminate list. */
224 /* This driver was written to use PCI memory space, however x86-oriented
225 hardware often uses I/O space accesses. */
227 /* Offsets to the device registers.
228 Unlike software-only systems, device drivers interact with complex hardware.
229 It's not useful to define symbolic names for every register bit in the
230 device. The name can only partially document the semantics and make
231 the driver longer and more difficult to read.
232 In general, only the important configuration values or bits changed
233 multiple times should be defined symbolically.
238 TxDMABurstThresh = 0x08,
239 TxDMAUrgentThresh = 0x09,
240 TxDMAPollPeriod = 0x0a,
245 RxDMABurstThresh = 0x14,
246 RxDMAUrgentThresh = 0x15,
247 RxDMAPollPeriod = 0x16,
267 MulticastFilter0 = 0x60,
268 MulticastFilter1 = 0x64,
275 StatsCarrierError = 0x74,
276 StatsLateColl = 0x75,
277 StatsMultiColl = 0x76,
281 StatsTxXSDefer = 0x7a,
287 /* Aliased and bogus values! */
291 #define ASIC_HI_WORD(x) ((x) + 2)
293 enum ASICCtrl_HiWord_bit {
294 GlobalReset = 0x0001,
299 NetworkReset = 0x0020,
304 /* Bits in the interrupt status/mask registers. */
305 enum intr_status_bits {
306 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008,
307 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020,
309 StatsMax=0x0080, LinkChange=0x0100,
310 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400,
313 /* Bits in the RxMode register. */
315 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08,
316 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01,
318 /* Bits in MACCtrl. */
319 enum mac_ctrl0_bits {
320 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40,
321 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200,
323 enum mac_ctrl1_bits {
324 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080,
325 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400,
326 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000,
329 /* Bits in WakeEvent register. */
330 enum wake_event_bits {
331 WakePktEnable = 0x01,
332 MagicPktEnable = 0x02,
333 LinkEventEnable = 0x04,
337 /* The Rx and Tx buffer descriptors. */
338 /* Note that using only 32 bit fields simplifies conversion to big-endian
343 struct desc_frag { __le32 addr, length; } frag[1];
346 /* Bits in netdev_desc.status */
347 enum desc_status_bits {
349 DescEndPacket=0x4000,
353 DescIntrOnDMADone=0x80000000,
354 DisableAlign = 0x00000001,
357 #define PRIV_ALIGN 15 /* Required alignment mask */
358 /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment
359 within the structure. */
361 struct netdev_private {
362 /* Descriptor rings first for alignment. */
363 struct netdev_desc *rx_ring;
364 struct netdev_desc *tx_ring;
365 struct sk_buff* rx_skbuff[RX_RING_SIZE];
366 struct sk_buff* tx_skbuff[TX_RING_SIZE];
367 dma_addr_t tx_ring_dma;
368 dma_addr_t rx_ring_dma;
369 struct timer_list timer; /* Media monitoring timer. */
370 /* ethtool extra stats */
372 u64 tx_multiple_collisions;
373 u64 tx_single_collisions;
374 u64 tx_late_collisions;
376 u64 tx_deferred_excessive;
383 /* Frequently used values: keep some adjacent for cache effect. */
387 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
388 unsigned int rx_buf_sz; /* Based on MTU+slack. */
389 struct netdev_desc *last_tx; /* Last Tx descriptor used. */
390 unsigned int cur_tx, dirty_tx;
391 /* These values are keep track of the transceiver/media in use. */
392 unsigned int flowctrl:1;
393 unsigned int default_port:4; /* Last dev->if_port value. */
394 unsigned int an_enable:1;
396 unsigned int wol_enabled:1; /* Wake on LAN enabled */
397 struct tasklet_struct rx_tasklet;
398 struct tasklet_struct tx_tasklet;
401 /* Multicast and receive mode. */
402 spinlock_t mcastlock; /* SMP lock multicast updates. */
404 /* MII transceiver section. */
405 struct mii_if_info mii_if;
406 int mii_preamble_required;
407 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */
408 struct pci_dev *pci_dev;
413 /* The station address location in the EEPROM. */
414 #define EEPROM_SA_OFFSET 0x10
415 #define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \
416 IntrDrvRqst | IntrTxDone | StatsMax | \
419 static int change_mtu(struct net_device *dev, int new_mtu);
420 static int eeprom_read(void __iomem *ioaddr, int location);
421 static int mdio_read(struct net_device *dev, int phy_id, int location);
422 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
423 static int mdio_wait_link(struct net_device *dev, int wait);
424 static int netdev_open(struct net_device *dev);
425 static void check_duplex(struct net_device *dev);
426 static void netdev_timer(struct timer_list *t);
427 static void tx_timeout(struct net_device *dev, unsigned int txqueue);
428 static void init_ring(struct net_device *dev);
429 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
430 static int reset_tx (struct net_device *dev);
431 static irqreturn_t intr_handler(int irq, void *dev_instance);
432 static void rx_poll(unsigned long data);
433 static void tx_poll(unsigned long data);
434 static void refill_rx (struct net_device *dev);
435 static void netdev_error(struct net_device *dev, int intr_status);
436 static void netdev_error(struct net_device *dev, int intr_status);
437 static void set_rx_mode(struct net_device *dev);
438 static int __set_mac_addr(struct net_device *dev);
439 static int sundance_set_mac_addr(struct net_device *dev, void *data);
440 static struct net_device_stats *get_stats(struct net_device *dev);
441 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
442 static int netdev_close(struct net_device *dev);
443 static const struct ethtool_ops ethtool_ops;
445 static void sundance_reset(struct net_device *dev, unsigned long reset_cmd)
447 struct netdev_private *np = netdev_priv(dev);
448 void __iomem *ioaddr = np->base + ASICCtrl;
451 /* ST201 documentation states ASICCtrl is a 32bit register */
452 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr);
453 /* ST201 documentation states reset can take up to 1 ms */
455 while (ioread32 (ioaddr) & (ResetBusy << 16)) {
456 if (--countdown == 0) {
457 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name);
464 #ifdef CONFIG_NET_POLL_CONTROLLER
465 static void sundance_poll_controller(struct net_device *dev)
467 struct netdev_private *np = netdev_priv(dev);
469 disable_irq(np->pci_dev->irq);
470 intr_handler(np->pci_dev->irq, dev);
471 enable_irq(np->pci_dev->irq);
475 static const struct net_device_ops netdev_ops = {
476 .ndo_open = netdev_open,
477 .ndo_stop = netdev_close,
478 .ndo_start_xmit = start_tx,
479 .ndo_get_stats = get_stats,
480 .ndo_set_rx_mode = set_rx_mode,
481 .ndo_do_ioctl = netdev_ioctl,
482 .ndo_tx_timeout = tx_timeout,
483 .ndo_change_mtu = change_mtu,
484 .ndo_set_mac_address = sundance_set_mac_addr,
485 .ndo_validate_addr = eth_validate_addr,
486 #ifdef CONFIG_NET_POLL_CONTROLLER
487 .ndo_poll_controller = sundance_poll_controller,
491 static int sundance_probe1(struct pci_dev *pdev,
492 const struct pci_device_id *ent)
494 struct net_device *dev;
495 struct netdev_private *np;
497 int chip_idx = ent->driver_data;
500 void __iomem *ioaddr;
509 int phy, phy_end, phy_idx = 0;
511 if (pci_enable_device(pdev))
513 pci_set_master(pdev);
517 dev = alloc_etherdev(sizeof(*np));
520 SET_NETDEV_DEV(dev, &pdev->dev);
522 if (pci_request_regions(pdev, DRV_NAME))
525 ioaddr = pci_iomap(pdev, bar, netdev_io_size);
529 for (i = 0; i < 3; i++)
530 ((__le16 *)dev->dev_addr)[i] =
531 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET));
533 np = netdev_priv(dev);
536 np->chip_id = chip_idx;
537 np->msg_enable = (1 << debug) - 1;
538 spin_lock_init(&np->lock);
539 spin_lock_init(&np->statlock);
540 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev);
541 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev);
543 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE,
544 &ring_dma, GFP_KERNEL);
546 goto err_out_cleardev;
547 np->tx_ring = (struct netdev_desc *)ring_space;
548 np->tx_ring_dma = ring_dma;
550 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE,
551 &ring_dma, GFP_KERNEL);
553 goto err_out_unmap_tx;
554 np->rx_ring = (struct netdev_desc *)ring_space;
555 np->rx_ring_dma = ring_dma;
557 np->mii_if.dev = dev;
558 np->mii_if.mdio_read = mdio_read;
559 np->mii_if.mdio_write = mdio_write;
560 np->mii_if.phy_id_mask = 0x1f;
561 np->mii_if.reg_num_mask = 0x1f;
563 /* The chip-specific entries in the device structure. */
564 dev->netdev_ops = &netdev_ops;
565 dev->ethtool_ops = ðtool_ops;
566 dev->watchdog_timeo = TX_TIMEOUT;
568 /* MTU range: 68 - 8191 */
569 dev->min_mtu = ETH_MIN_MTU;
572 pci_set_drvdata(pdev, dev);
574 i = register_netdev(dev);
576 goto err_out_unmap_rx;
578 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
579 dev->name, pci_id_tbl[chip_idx].name, ioaddr,
582 np->phys[0] = 1; /* Default setting */
583 np->mii_preamble_required++;
586 * It seems some phys doesn't deal well with address 0 being accessed
589 if (sundance_pci_tbl[np->chip_id].device == 0x0200) {
594 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */
596 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) {
597 int phyx = phy & 0x1f;
598 int mii_status = mdio_read(dev, phyx, MII_BMSR);
599 if (mii_status != 0xffff && mii_status != 0x0000) {
600 np->phys[phy_idx++] = phyx;
601 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE);
602 if ((mii_status & 0x0040) == 0)
603 np->mii_preamble_required++;
604 printk(KERN_INFO "%s: MII PHY found at address %d, status "
605 "0x%4.4x advertising %4.4x.\n",
606 dev->name, phyx, mii_status, np->mii_if.advertising);
609 np->mii_preamble_required--;
612 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n",
613 dev->name, ioread32(ioaddr + ASICCtrl));
614 goto err_out_unregister;
617 np->mii_if.phy_id = np->phys[0];
619 /* Parse override configuration */
621 if (card_idx < MAX_UNITS) {
622 if (media[card_idx] != NULL) {
624 if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
625 strcmp (media[card_idx], "4") == 0) {
627 np->mii_if.full_duplex = 1;
628 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
629 strcmp (media[card_idx], "3") == 0) {
631 np->mii_if.full_duplex = 0;
632 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
633 strcmp (media[card_idx], "2") == 0) {
635 np->mii_if.full_duplex = 1;
636 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
637 strcmp (media[card_idx], "1") == 0) {
639 np->mii_if.full_duplex = 0;
649 if (ioread32 (ioaddr + ASICCtrl) & 0x80) {
650 /* Default 100Mbps Full */
653 np->mii_if.full_duplex = 1;
658 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET);
660 /* If flow control enabled, we need to advertise it.*/
662 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400);
663 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
664 /* Force media type */
665 if (!np->an_enable) {
667 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0;
668 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0;
669 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl);
670 printk (KERN_INFO "Override speed=%d, %s duplex\n",
671 np->speed, np->mii_if.full_duplex ? "Full" : "Half");
675 /* Perhaps move the reset here? */
676 /* Reset the chip to erase previous misconfiguration. */
677 if (netif_msg_hw(np))
678 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl));
679 sundance_reset(dev, 0x00ff << 16);
680 if (netif_msg_hw(np))
681 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl));
687 unregister_netdev(dev);
689 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
690 np->rx_ring, np->rx_ring_dma);
692 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
693 np->tx_ring, np->tx_ring_dma);
695 pci_iounmap(pdev, ioaddr);
697 pci_release_regions(pdev);
703 static int change_mtu(struct net_device *dev, int new_mtu)
705 if (netif_running(dev))
711 #define eeprom_delay(ee_addr) ioread32(ee_addr)
712 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */
713 static int eeprom_read(void __iomem *ioaddr, int location)
715 int boguscnt = 10000; /* Typical 1900 ticks. */
716 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl);
718 eeprom_delay(ioaddr + EECtrl);
719 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) {
720 return ioread16(ioaddr + EEData);
722 } while (--boguscnt > 0);
726 /* MII transceiver control section.
727 Read and write the MII registers using software-generated serial
728 MDIO protocol. See the MII specifications or DP83840A data sheet
731 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
732 met by back-to-back 33Mhz PCI cycles. */
733 #define mdio_delay() ioread8(mdio_addr)
736 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004,
738 #define MDIO_EnbIn (0)
739 #define MDIO_WRITE0 (MDIO_EnbOutput)
740 #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput)
742 /* Generate the preamble required for initial synchronization and
743 a few older transceivers. */
744 static void mdio_sync(void __iomem *mdio_addr)
748 /* Establish sync by sending at least 32 logic ones. */
749 while (--bits >= 0) {
750 iowrite8(MDIO_WRITE1, mdio_addr);
752 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
757 static int mdio_read(struct net_device *dev, int phy_id, int location)
759 struct netdev_private *np = netdev_priv(dev);
760 void __iomem *mdio_addr = np->base + MIICtrl;
761 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
764 if (np->mii_preamble_required)
765 mdio_sync(mdio_addr);
767 /* Shift the read command bits out. */
768 for (i = 15; i >= 0; i--) {
769 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
771 iowrite8(dataval, mdio_addr);
773 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
776 /* Read the two transition, 16 data, and wire-idle bits. */
777 for (i = 19; i > 0; i--) {
778 iowrite8(MDIO_EnbIn, mdio_addr);
780 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0);
781 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
784 return (retval>>1) & 0xffff;
787 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
789 struct netdev_private *np = netdev_priv(dev);
790 void __iomem *mdio_addr = np->base + MIICtrl;
791 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
794 if (np->mii_preamble_required)
795 mdio_sync(mdio_addr);
797 /* Shift the command bits out. */
798 for (i = 31; i >= 0; i--) {
799 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
801 iowrite8(dataval, mdio_addr);
803 iowrite8(dataval | MDIO_ShiftClk, mdio_addr);
806 /* Clear out extra bits. */
807 for (i = 2; i > 0; i--) {
808 iowrite8(MDIO_EnbIn, mdio_addr);
810 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
815 static int mdio_wait_link(struct net_device *dev, int wait)
819 struct netdev_private *np;
821 np = netdev_priv(dev);
822 phy_id = np->phys[0];
825 bmsr = mdio_read(dev, phy_id, MII_BMSR);
829 } while (--wait > 0);
833 static int netdev_open(struct net_device *dev)
835 struct netdev_private *np = netdev_priv(dev);
836 void __iomem *ioaddr = np->base;
837 const int irq = np->pci_dev->irq;
841 sundance_reset(dev, 0x00ff << 16);
843 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
847 if (netif_msg_ifup(np))
848 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq);
852 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr);
853 /* The Tx list pointer is written as packets are queued. */
855 /* Initialize other registers. */
857 #if IS_ENABLED(CONFIG_VLAN_8021Q)
858 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize);
860 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize);
863 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl);
865 /* Configure the PCI bus bursts and FIFO thresholds. */
867 if (dev->if_port == 0)
868 dev->if_port = np->default_port;
870 spin_lock_init(&np->mcastlock);
873 iowrite16(0, ioaddr + IntrEnable);
874 iowrite16(0, ioaddr + DownCounter);
875 /* Set the chip to poll every N*320nsec. */
876 iowrite8(100, ioaddr + RxDMAPollPeriod);
877 iowrite8(127, ioaddr + TxDMAPollPeriod);
878 /* Fix DFE-580TX packet drop issue */
879 if (np->pci_dev->revision >= 0x14)
880 iowrite8(0x01, ioaddr + DebugCtrl1);
881 netif_start_queue(dev);
883 spin_lock_irqsave(&np->lock, flags);
885 spin_unlock_irqrestore(&np->lock, flags);
887 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
890 iowrite8(ioread8(ioaddr + WakeEvent) | 0x00, ioaddr + WakeEvent);
893 if (netif_msg_ifup(np))
894 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x "
895 "MAC Control %x, %4.4x %4.4x.\n",
896 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus),
897 ioread32(ioaddr + MACCtrl0),
898 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0));
900 /* Set the timer to check for link beat. */
901 timer_setup(&np->timer, netdev_timer, 0);
902 np->timer.expires = jiffies + 3*HZ;
903 add_timer(&np->timer);
905 /* Enable interrupts by setting the interrupt mask. */
906 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
911 static void check_duplex(struct net_device *dev)
913 struct netdev_private *np = netdev_priv(dev);
914 void __iomem *ioaddr = np->base;
915 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
916 int negotiated = mii_lpa & np->mii_if.advertising;
920 if (!np->an_enable || mii_lpa == 0xffff) {
921 if (np->mii_if.full_duplex)
922 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex,
927 /* Autonegotiation */
928 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
929 if (np->mii_if.full_duplex != duplex) {
930 np->mii_if.full_duplex = duplex;
931 if (netif_msg_link(np))
932 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d "
933 "negotiated capability %4.4x.\n", dev->name,
934 duplex ? "full" : "half", np->phys[0], negotiated);
935 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0);
939 static void netdev_timer(struct timer_list *t)
941 struct netdev_private *np = from_timer(np, t, timer);
942 struct net_device *dev = np->mii_if.dev;
943 void __iomem *ioaddr = np->base;
944 int next_tick = 10*HZ;
946 if (netif_msg_timer(np)) {
947 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, "
949 dev->name, ioread16(ioaddr + IntrEnable),
950 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
953 np->timer.expires = jiffies + next_tick;
954 add_timer(&np->timer);
957 static void tx_timeout(struct net_device *dev, unsigned int txqueue)
959 struct netdev_private *np = netdev_priv(dev);
960 void __iomem *ioaddr = np->base;
963 netif_stop_queue(dev);
964 tasklet_disable(&np->tx_tasklet);
965 iowrite16(0, ioaddr + IntrEnable);
966 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x "
968 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus),
969 ioread8(ioaddr + TxFrameId));
973 for (i=0; i<TX_RING_SIZE; i++) {
974 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i,
975 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)),
976 le32_to_cpu(np->tx_ring[i].next_desc),
977 le32_to_cpu(np->tx_ring[i].status),
978 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff,
979 le32_to_cpu(np->tx_ring[i].frag[0].addr),
980 le32_to_cpu(np->tx_ring[i].frag[0].length));
982 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n",
983 ioread32(np->base + TxListPtr),
984 netif_queue_stopped(dev));
985 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n",
986 np->cur_tx, np->cur_tx % TX_RING_SIZE,
987 np->dirty_tx, np->dirty_tx % TX_RING_SIZE);
988 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx);
989 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task);
991 spin_lock_irqsave(&np->lock, flag);
993 /* Stop and restart the chip's Tx processes . */
995 spin_unlock_irqrestore(&np->lock, flag);
999 netif_trans_update(dev); /* prevent tx timeout */
1000 dev->stats.tx_errors++;
1001 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1002 netif_wake_queue(dev);
1004 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1005 tasklet_enable(&np->tx_tasklet);
1009 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1010 static void init_ring(struct net_device *dev)
1012 struct netdev_private *np = netdev_priv(dev);
1015 np->cur_rx = np->cur_tx = 0;
1016 np->dirty_rx = np->dirty_tx = 0;
1019 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16);
1021 /* Initialize all Rx descriptors. */
1022 for (i = 0; i < RX_RING_SIZE; i++) {
1023 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma +
1024 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring));
1025 np->rx_ring[i].status = 0;
1026 np->rx_ring[i].frag[0].length = 0;
1027 np->rx_skbuff[i] = NULL;
1030 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1031 for (i = 0; i < RX_RING_SIZE; i++) {
1032 struct sk_buff *skb =
1033 netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1034 np->rx_skbuff[i] = skb;
1037 skb_reserve(skb, 2); /* 16 byte align the IP header. */
1038 np->rx_ring[i].frag[0].addr = cpu_to_le32(
1039 dma_map_single(&np->pci_dev->dev, skb->data,
1040 np->rx_buf_sz, DMA_FROM_DEVICE));
1041 if (dma_mapping_error(&np->pci_dev->dev,
1042 np->rx_ring[i].frag[0].addr)) {
1044 np->rx_skbuff[i] = NULL;
1047 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag);
1049 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1051 for (i = 0; i < TX_RING_SIZE; i++) {
1052 np->tx_skbuff[i] = NULL;
1053 np->tx_ring[i].status = 0;
1057 static void tx_poll (unsigned long data)
1059 struct net_device *dev = (struct net_device *)data;
1060 struct netdev_private *np = netdev_priv(dev);
1061 unsigned head = np->cur_task % TX_RING_SIZE;
1062 struct netdev_desc *txdesc =
1063 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE];
1065 /* Chain the next pointer */
1066 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) {
1067 int entry = np->cur_task % TX_RING_SIZE;
1068 txdesc = &np->tx_ring[entry];
1070 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma +
1071 entry*sizeof(struct netdev_desc));
1073 np->last_tx = txdesc;
1075 /* Indicate the latest descriptor of tx ring */
1076 txdesc->status |= cpu_to_le32(DescIntrOnTx);
1078 if (ioread32 (np->base + TxListPtr) == 0)
1079 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc),
1080 np->base + TxListPtr);
1084 start_tx (struct sk_buff *skb, struct net_device *dev)
1086 struct netdev_private *np = netdev_priv(dev);
1087 struct netdev_desc *txdesc;
1090 /* Calculate the next Tx descriptor entry. */
1091 entry = np->cur_tx % TX_RING_SIZE;
1092 np->tx_skbuff[entry] = skb;
1093 txdesc = &np->tx_ring[entry];
1095 txdesc->next_desc = 0;
1096 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign);
1097 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev,
1098 skb->data, skb->len, DMA_TO_DEVICE));
1099 if (dma_mapping_error(&np->pci_dev->dev,
1100 txdesc->frag[0].addr))
1102 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag);
1104 /* Increment cur_tx before tasklet_schedule() */
1107 /* Schedule a tx_poll() task */
1108 tasklet_schedule(&np->tx_tasklet);
1110 /* On some architectures: explicitly flush cache lines here. */
1111 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 &&
1112 !netif_queue_stopped(dev)) {
1115 netif_stop_queue (dev);
1117 if (netif_msg_tx_queued(np)) {
1119 "%s: Transmit frame #%d queued in slot %d.\n",
1120 dev->name, np->cur_tx, entry);
1122 return NETDEV_TX_OK;
1125 dev_kfree_skb_any(skb);
1126 np->tx_skbuff[entry] = NULL;
1127 dev->stats.tx_dropped++;
1128 return NETDEV_TX_OK;
1131 /* Reset hardware tx and free all of tx buffers */
1133 reset_tx (struct net_device *dev)
1135 struct netdev_private *np = netdev_priv(dev);
1136 void __iomem *ioaddr = np->base;
1137 struct sk_buff *skb;
1140 /* Reset tx logic, TxListPtr will be cleaned */
1141 iowrite16 (TxDisable, ioaddr + MACCtrl1);
1142 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16);
1144 /* free all tx skbuff */
1145 for (i = 0; i < TX_RING_SIZE; i++) {
1146 np->tx_ring[i].next_desc = 0;
1148 skb = np->tx_skbuff[i];
1150 dma_unmap_single(&np->pci_dev->dev,
1151 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1152 skb->len, DMA_TO_DEVICE);
1153 dev_kfree_skb_any(skb);
1154 np->tx_skbuff[i] = NULL;
1155 dev->stats.tx_dropped++;
1158 np->cur_tx = np->dirty_tx = 0;
1162 iowrite8(127, ioaddr + TxDMAPollPeriod);
1164 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1);
1168 /* The interrupt handler cleans up after the Tx thread,
1169 and schedule a Rx thread work */
1170 static irqreturn_t intr_handler(int irq, void *dev_instance)
1172 struct net_device *dev = (struct net_device *)dev_instance;
1173 struct netdev_private *np = netdev_priv(dev);
1174 void __iomem *ioaddr = np->base;
1182 int intr_status = ioread16(ioaddr + IntrStatus);
1183 iowrite16(intr_status, ioaddr + IntrStatus);
1185 if (netif_msg_intr(np))
1186 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n",
1187 dev->name, intr_status);
1189 if (!(intr_status & DEFAULT_INTR))
1194 if (intr_status & (IntrRxDMADone)) {
1195 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone),
1196 ioaddr + IntrEnable);
1198 np->budget = RX_BUDGET;
1199 tasklet_schedule(&np->rx_tasklet);
1201 if (intr_status & (IntrTxDone | IntrDrvRqst)) {
1202 tx_status = ioread16 (ioaddr + TxStatus);
1203 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) {
1204 if (netif_msg_tx_done(np))
1206 ("%s: Transmit status is %2.2x.\n",
1207 dev->name, tx_status);
1208 if (tx_status & 0x1e) {
1209 if (netif_msg_tx_err(np))
1210 printk("%s: Transmit error status %4.4x.\n",
1211 dev->name, tx_status);
1212 dev->stats.tx_errors++;
1213 if (tx_status & 0x10)
1214 dev->stats.tx_fifo_errors++;
1215 if (tx_status & 0x08)
1216 dev->stats.collisions++;
1217 if (tx_status & 0x04)
1218 dev->stats.tx_fifo_errors++;
1219 if (tx_status & 0x02)
1220 dev->stats.tx_window_errors++;
1223 ** This reset has been verified on
1226 if (tx_status & 0x10) { /* TxUnderrun */
1227 /* Restart Tx FIFO and transmitter */
1228 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16);
1229 /* No need to reset the Tx pointer here */
1231 /* Restart the Tx. Need to make sure tx enabled */
1234 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1);
1235 if (ioread16(ioaddr + MACCtrl1) & TxEnabled)
1240 /* Yup, this is a documentation bug. It cost me *hours*. */
1241 iowrite16 (0, ioaddr + TxStatus);
1243 iowrite32(5000, ioaddr + DownCounter);
1246 tx_status = ioread16 (ioaddr + TxStatus);
1248 hw_frame_id = (tx_status >> 8) & 0xff;
1250 hw_frame_id = ioread8(ioaddr + TxFrameId);
1253 if (np->pci_dev->revision >= 0x14) {
1254 spin_lock(&np->lock);
1255 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1256 int entry = np->dirty_tx % TX_RING_SIZE;
1257 struct sk_buff *skb;
1259 sw_frame_id = (le32_to_cpu(
1260 np->tx_ring[entry].status) >> 2) & 0xff;
1261 if (sw_frame_id == hw_frame_id &&
1262 !(le32_to_cpu(np->tx_ring[entry].status)
1265 if (sw_frame_id == (hw_frame_id + 1) %
1268 skb = np->tx_skbuff[entry];
1269 /* Free the original skb. */
1270 dma_unmap_single(&np->pci_dev->dev,
1271 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1272 skb->len, DMA_TO_DEVICE);
1273 dev_consume_skb_irq(np->tx_skbuff[entry]);
1274 np->tx_skbuff[entry] = NULL;
1275 np->tx_ring[entry].frag[0].addr = 0;
1276 np->tx_ring[entry].frag[0].length = 0;
1278 spin_unlock(&np->lock);
1280 spin_lock(&np->lock);
1281 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1282 int entry = np->dirty_tx % TX_RING_SIZE;
1283 struct sk_buff *skb;
1284 if (!(le32_to_cpu(np->tx_ring[entry].status)
1287 skb = np->tx_skbuff[entry];
1288 /* Free the original skb. */
1289 dma_unmap_single(&np->pci_dev->dev,
1290 le32_to_cpu(np->tx_ring[entry].frag[0].addr),
1291 skb->len, DMA_TO_DEVICE);
1292 dev_consume_skb_irq(np->tx_skbuff[entry]);
1293 np->tx_skbuff[entry] = NULL;
1294 np->tx_ring[entry].frag[0].addr = 0;
1295 np->tx_ring[entry].frag[0].length = 0;
1297 spin_unlock(&np->lock);
1300 if (netif_queue_stopped(dev) &&
1301 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
1302 /* The ring is no longer full, clear busy flag. */
1303 netif_wake_queue (dev);
1305 /* Abnormal error summary/uncommon events handlers. */
1306 if (intr_status & (IntrPCIErr | LinkChange | StatsMax))
1307 netdev_error(dev, intr_status);
1309 if (netif_msg_intr(np))
1310 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1311 dev->name, ioread16(ioaddr + IntrStatus));
1312 return IRQ_RETVAL(handled);
1315 static void rx_poll(unsigned long data)
1317 struct net_device *dev = (struct net_device *)data;
1318 struct netdev_private *np = netdev_priv(dev);
1319 int entry = np->cur_rx % RX_RING_SIZE;
1320 int boguscnt = np->budget;
1321 void __iomem *ioaddr = np->base;
1324 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1326 struct netdev_desc *desc = &(np->rx_ring[entry]);
1327 u32 frame_status = le32_to_cpu(desc->status);
1330 if (--boguscnt < 0) {
1333 if (!(frame_status & DescOwn))
1335 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */
1336 if (netif_msg_rx_status(np))
1337 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n",
1339 if (frame_status & 0x001f4000) {
1340 /* There was a error. */
1341 if (netif_msg_rx_err(np))
1342 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
1344 dev->stats.rx_errors++;
1345 if (frame_status & 0x00100000)
1346 dev->stats.rx_length_errors++;
1347 if (frame_status & 0x00010000)
1348 dev->stats.rx_fifo_errors++;
1349 if (frame_status & 0x00060000)
1350 dev->stats.rx_frame_errors++;
1351 if (frame_status & 0x00080000)
1352 dev->stats.rx_crc_errors++;
1353 if (frame_status & 0x00100000) {
1354 printk(KERN_WARNING "%s: Oversized Ethernet frame,"
1356 dev->name, frame_status);
1359 struct sk_buff *skb;
1360 #ifndef final_version
1361 if (netif_msg_rx_status(np))
1362 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d"
1363 ", bogus_cnt %d.\n",
1366 /* Check if the packet is long enough to accept without copying
1367 to a minimally-sized skbuff. */
1368 if (pkt_len < rx_copybreak &&
1369 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1370 skb_reserve(skb, 2); /* 16 byte align the IP header */
1371 dma_sync_single_for_cpu(&np->pci_dev->dev,
1372 le32_to_cpu(desc->frag[0].addr),
1373 np->rx_buf_sz, DMA_FROM_DEVICE);
1374 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1375 dma_sync_single_for_device(&np->pci_dev->dev,
1376 le32_to_cpu(desc->frag[0].addr),
1377 np->rx_buf_sz, DMA_FROM_DEVICE);
1378 skb_put(skb, pkt_len);
1380 dma_unmap_single(&np->pci_dev->dev,
1381 le32_to_cpu(desc->frag[0].addr),
1382 np->rx_buf_sz, DMA_FROM_DEVICE);
1383 skb_put(skb = np->rx_skbuff[entry], pkt_len);
1384 np->rx_skbuff[entry] = NULL;
1386 skb->protocol = eth_type_trans(skb, dev);
1387 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */
1390 entry = (entry + 1) % RX_RING_SIZE;
1395 np->budget -= received;
1396 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable);
1404 np->budget -= received;
1405 if (np->budget <= 0)
1406 np->budget = RX_BUDGET;
1407 tasklet_schedule(&np->rx_tasklet);
1410 static void refill_rx (struct net_device *dev)
1412 struct netdev_private *np = netdev_priv(dev);
1416 /* Refill the Rx ring buffers. */
1417 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0;
1418 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) {
1419 struct sk_buff *skb;
1420 entry = np->dirty_rx % RX_RING_SIZE;
1421 if (np->rx_skbuff[entry] == NULL) {
1422 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2);
1423 np->rx_skbuff[entry] = skb;
1425 break; /* Better luck next round. */
1426 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1427 np->rx_ring[entry].frag[0].addr = cpu_to_le32(
1428 dma_map_single(&np->pci_dev->dev, skb->data,
1429 np->rx_buf_sz, DMA_FROM_DEVICE));
1430 if (dma_mapping_error(&np->pci_dev->dev,
1431 np->rx_ring[entry].frag[0].addr)) {
1432 dev_kfree_skb_irq(skb);
1433 np->rx_skbuff[entry] = NULL;
1437 /* Perhaps we need not reset this field. */
1438 np->rx_ring[entry].frag[0].length =
1439 cpu_to_le32(np->rx_buf_sz | LastFrag);
1440 np->rx_ring[entry].status = 0;
1444 static void netdev_error(struct net_device *dev, int intr_status)
1446 struct netdev_private *np = netdev_priv(dev);
1447 void __iomem *ioaddr = np->base;
1448 u16 mii_ctl, mii_advertise, mii_lpa;
1451 if (intr_status & LinkChange) {
1452 if (mdio_wait_link(dev, 10) == 0) {
1453 printk(KERN_INFO "%s: Link up\n", dev->name);
1454 if (np->an_enable) {
1455 mii_advertise = mdio_read(dev, np->phys[0],
1457 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA);
1458 mii_advertise &= mii_lpa;
1459 printk(KERN_INFO "%s: Link changed: ",
1461 if (mii_advertise & ADVERTISE_100FULL) {
1463 printk("100Mbps, full duplex\n");
1464 } else if (mii_advertise & ADVERTISE_100HALF) {
1466 printk("100Mbps, half duplex\n");
1467 } else if (mii_advertise & ADVERTISE_10FULL) {
1469 printk("10Mbps, full duplex\n");
1470 } else if (mii_advertise & ADVERTISE_10HALF) {
1472 printk("10Mbps, half duplex\n");
1477 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR);
1478 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10;
1480 printk(KERN_INFO "%s: Link changed: %dMbps ,",
1482 printk("%s duplex.\n",
1483 (mii_ctl & BMCR_FULLDPLX) ?
1487 if (np->flowctrl && np->mii_if.full_duplex) {
1488 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200,
1489 ioaddr + MulticastFilter1+2);
1490 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl,
1493 netif_carrier_on(dev);
1495 printk(KERN_INFO "%s: Link down\n", dev->name);
1496 netif_carrier_off(dev);
1499 if (intr_status & StatsMax) {
1502 if (intr_status & IntrPCIErr) {
1503 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1504 dev->name, intr_status);
1505 /* We must do a global reset of DMA to continue. */
1509 static struct net_device_stats *get_stats(struct net_device *dev)
1511 struct netdev_private *np = netdev_priv(dev);
1512 void __iomem *ioaddr = np->base;
1513 unsigned long flags;
1514 u8 late_coll, single_coll, mult_coll;
1516 spin_lock_irqsave(&np->statlock, flags);
1517 /* The chip only need report frame silently dropped. */
1518 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed);
1519 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK);
1520 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK);
1521 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError);
1523 mult_coll = ioread8(ioaddr + StatsMultiColl);
1524 np->xstats.tx_multiple_collisions += mult_coll;
1525 single_coll = ioread8(ioaddr + StatsOneColl);
1526 np->xstats.tx_single_collisions += single_coll;
1527 late_coll = ioread8(ioaddr + StatsLateColl);
1528 np->xstats.tx_late_collisions += late_coll;
1529 dev->stats.collisions += mult_coll
1533 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer);
1534 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer);
1535 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort);
1536 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx);
1537 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx);
1538 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx);
1539 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx);
1541 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow);
1542 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16;
1543 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow);
1544 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16;
1546 spin_unlock_irqrestore(&np->statlock, flags);
1551 static void set_rx_mode(struct net_device *dev)
1553 struct netdev_private *np = netdev_priv(dev);
1554 void __iomem *ioaddr = np->base;
1555 u16 mc_filter[4]; /* Multicast hash filter */
1559 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1560 memset(mc_filter, 0xff, sizeof(mc_filter));
1561 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys;
1562 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1563 (dev->flags & IFF_ALLMULTI)) {
1564 /* Too many to match, or accept all multicasts. */
1565 memset(mc_filter, 0xff, sizeof(mc_filter));
1566 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1567 } else if (!netdev_mc_empty(dev)) {
1568 struct netdev_hw_addr *ha;
1572 memset (mc_filter, 0, sizeof (mc_filter));
1573 netdev_for_each_mc_addr(ha, dev) {
1574 crc = ether_crc_le(ETH_ALEN, ha->addr);
1575 for (index=0, bit=0; bit < 6; bit++, crc <<= 1)
1576 if (crc & 0x80000000) index |= 1 << bit;
1577 mc_filter[index/16] |= (1 << (index % 16));
1579 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys;
1581 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1584 if (np->mii_if.full_duplex && np->flowctrl)
1585 mc_filter[3] |= 0x0200;
1587 for (i = 0; i < 4; i++)
1588 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2);
1589 iowrite8(rx_mode, ioaddr + RxMode);
1592 static int __set_mac_addr(struct net_device *dev)
1594 struct netdev_private *np = netdev_priv(dev);
1597 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8));
1598 iowrite16(addr16, np->base + StationAddr);
1599 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8));
1600 iowrite16(addr16, np->base + StationAddr+2);
1601 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8));
1602 iowrite16(addr16, np->base + StationAddr+4);
1606 /* Invoked with rtnl_lock held */
1607 static int sundance_set_mac_addr(struct net_device *dev, void *data)
1609 const struct sockaddr *addr = data;
1611 if (!is_valid_ether_addr(addr->sa_data))
1612 return -EADDRNOTAVAIL;
1613 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
1614 __set_mac_addr(dev);
1619 static const struct {
1620 const char name[ETH_GSTRING_LEN];
1621 } sundance_stats[] = {
1622 { "tx_multiple_collisions" },
1623 { "tx_single_collisions" },
1624 { "tx_late_collisions" },
1626 { "tx_deferred_excessive" },
1634 static int check_if_running(struct net_device *dev)
1636 if (!netif_running(dev))
1641 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1643 struct netdev_private *np = netdev_priv(dev);
1644 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1645 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1648 static int get_link_ksettings(struct net_device *dev,
1649 struct ethtool_link_ksettings *cmd)
1651 struct netdev_private *np = netdev_priv(dev);
1652 spin_lock_irq(&np->lock);
1653 mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1654 spin_unlock_irq(&np->lock);
1658 static int set_link_ksettings(struct net_device *dev,
1659 const struct ethtool_link_ksettings *cmd)
1661 struct netdev_private *np = netdev_priv(dev);
1663 spin_lock_irq(&np->lock);
1664 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1665 spin_unlock_irq(&np->lock);
1669 static int nway_reset(struct net_device *dev)
1671 struct netdev_private *np = netdev_priv(dev);
1672 return mii_nway_restart(&np->mii_if);
1675 static u32 get_link(struct net_device *dev)
1677 struct netdev_private *np = netdev_priv(dev);
1678 return mii_link_ok(&np->mii_if);
1681 static u32 get_msglevel(struct net_device *dev)
1683 struct netdev_private *np = netdev_priv(dev);
1684 return np->msg_enable;
1687 static void set_msglevel(struct net_device *dev, u32 val)
1689 struct netdev_private *np = netdev_priv(dev);
1690 np->msg_enable = val;
1693 static void get_strings(struct net_device *dev, u32 stringset,
1696 if (stringset == ETH_SS_STATS)
1697 memcpy(data, sundance_stats, sizeof(sundance_stats));
1700 static int get_sset_count(struct net_device *dev, int sset)
1704 return ARRAY_SIZE(sundance_stats);
1710 static void get_ethtool_stats(struct net_device *dev,
1711 struct ethtool_stats *stats, u64 *data)
1713 struct netdev_private *np = netdev_priv(dev);
1717 data[i++] = np->xstats.tx_multiple_collisions;
1718 data[i++] = np->xstats.tx_single_collisions;
1719 data[i++] = np->xstats.tx_late_collisions;
1720 data[i++] = np->xstats.tx_deferred;
1721 data[i++] = np->xstats.tx_deferred_excessive;
1722 data[i++] = np->xstats.tx_aborted;
1723 data[i++] = np->xstats.tx_bcasts;
1724 data[i++] = np->xstats.rx_bcasts;
1725 data[i++] = np->xstats.tx_mcasts;
1726 data[i++] = np->xstats.rx_mcasts;
1731 static void sundance_get_wol(struct net_device *dev,
1732 struct ethtool_wolinfo *wol)
1734 struct netdev_private *np = netdev_priv(dev);
1735 void __iomem *ioaddr = np->base;
1740 wol->supported = (WAKE_PHY | WAKE_MAGIC);
1741 if (!np->wol_enabled)
1744 wol_bits = ioread8(ioaddr + WakeEvent);
1745 if (wol_bits & MagicPktEnable)
1746 wol->wolopts |= WAKE_MAGIC;
1747 if (wol_bits & LinkEventEnable)
1748 wol->wolopts |= WAKE_PHY;
1751 static int sundance_set_wol(struct net_device *dev,
1752 struct ethtool_wolinfo *wol)
1754 struct netdev_private *np = netdev_priv(dev);
1755 void __iomem *ioaddr = np->base;
1758 if (!device_can_wakeup(&np->pci_dev->dev))
1761 np->wol_enabled = !!(wol->wolopts);
1762 wol_bits = ioread8(ioaddr + WakeEvent);
1763 wol_bits &= ~(WakePktEnable | MagicPktEnable |
1764 LinkEventEnable | WolEnable);
1766 if (np->wol_enabled) {
1767 if (wol->wolopts & WAKE_MAGIC)
1768 wol_bits |= (MagicPktEnable | WolEnable);
1769 if (wol->wolopts & WAKE_PHY)
1770 wol_bits |= (LinkEventEnable | WolEnable);
1772 iowrite8(wol_bits, ioaddr + WakeEvent);
1774 device_set_wakeup_enable(&np->pci_dev->dev, np->wol_enabled);
1779 #define sundance_get_wol NULL
1780 #define sundance_set_wol NULL
1781 #endif /* CONFIG_PM */
1783 static const struct ethtool_ops ethtool_ops = {
1784 .begin = check_if_running,
1785 .get_drvinfo = get_drvinfo,
1786 .nway_reset = nway_reset,
1787 .get_link = get_link,
1788 .get_wol = sundance_get_wol,
1789 .set_wol = sundance_set_wol,
1790 .get_msglevel = get_msglevel,
1791 .set_msglevel = set_msglevel,
1792 .get_strings = get_strings,
1793 .get_sset_count = get_sset_count,
1794 .get_ethtool_stats = get_ethtool_stats,
1795 .get_link_ksettings = get_link_ksettings,
1796 .set_link_ksettings = set_link_ksettings,
1799 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1801 struct netdev_private *np = netdev_priv(dev);
1804 if (!netif_running(dev))
1807 spin_lock_irq(&np->lock);
1808 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL);
1809 spin_unlock_irq(&np->lock);
1814 static int netdev_close(struct net_device *dev)
1816 struct netdev_private *np = netdev_priv(dev);
1817 void __iomem *ioaddr = np->base;
1818 struct sk_buff *skb;
1821 /* Wait and kill tasklet */
1822 tasklet_kill(&np->rx_tasklet);
1823 tasklet_kill(&np->tx_tasklet);
1829 netif_stop_queue(dev);
1831 if (netif_msg_ifdown(np)) {
1832 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x "
1833 "Rx %4.4x Int %2.2x.\n",
1834 dev->name, ioread8(ioaddr + TxStatus),
1835 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus));
1836 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1837 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
1840 /* Disable interrupts by clearing the interrupt mask. */
1841 iowrite16(0x0000, ioaddr + IntrEnable);
1843 /* Disable Rx and Tx DMA for safely release resource */
1844 iowrite32(0x500, ioaddr + DMACtrl);
1846 /* Stop the chip's Tx and Rx processes. */
1847 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1);
1849 for (i = 2000; i > 0; i--) {
1850 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0)
1855 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset,
1856 ioaddr + ASIC_HI_WORD(ASICCtrl));
1858 for (i = 2000; i > 0; i--) {
1859 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0)
1865 if (netif_msg_hw(np)) {
1866 printk(KERN_DEBUG " Tx ring at %8.8x:\n",
1867 (int)(np->tx_ring_dma));
1868 for (i = 0; i < TX_RING_SIZE; i++)
1869 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n",
1870 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr,
1871 np->tx_ring[i].frag[0].length);
1872 printk(KERN_DEBUG " Rx ring %8.8x:\n",
1873 (int)(np->rx_ring_dma));
1874 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) {
1875 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n",
1876 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr,
1877 np->rx_ring[i].frag[0].length);
1880 #endif /* __i386__ debugging only */
1882 free_irq(np->pci_dev->irq, dev);
1884 del_timer_sync(&np->timer);
1886 /* Free all the skbuffs in the Rx queue. */
1887 for (i = 0; i < RX_RING_SIZE; i++) {
1888 np->rx_ring[i].status = 0;
1889 skb = np->rx_skbuff[i];
1891 dma_unmap_single(&np->pci_dev->dev,
1892 le32_to_cpu(np->rx_ring[i].frag[0].addr),
1893 np->rx_buf_sz, DMA_FROM_DEVICE);
1895 np->rx_skbuff[i] = NULL;
1897 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */
1899 for (i = 0; i < TX_RING_SIZE; i++) {
1900 np->tx_ring[i].next_desc = 0;
1901 skb = np->tx_skbuff[i];
1903 dma_unmap_single(&np->pci_dev->dev,
1904 le32_to_cpu(np->tx_ring[i].frag[0].addr),
1905 skb->len, DMA_TO_DEVICE);
1907 np->tx_skbuff[i] = NULL;
1914 static void sundance_remove1(struct pci_dev *pdev)
1916 struct net_device *dev = pci_get_drvdata(pdev);
1919 struct netdev_private *np = netdev_priv(dev);
1920 unregister_netdev(dev);
1921 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE,
1922 np->rx_ring, np->rx_ring_dma);
1923 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE,
1924 np->tx_ring, np->tx_ring_dma);
1925 pci_iounmap(pdev, np->base);
1926 pci_release_regions(pdev);
1931 static int __maybe_unused sundance_suspend(struct device *dev_d)
1933 struct net_device *dev = dev_get_drvdata(dev_d);
1934 struct netdev_private *np = netdev_priv(dev);
1935 void __iomem *ioaddr = np->base;
1937 if (!netif_running(dev))
1941 netif_device_detach(dev);
1943 if (np->wol_enabled) {
1944 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode);
1945 iowrite16(RxEnable, ioaddr + MACCtrl1);
1948 device_set_wakeup_enable(dev_d, np->wol_enabled);
1953 static int __maybe_unused sundance_resume(struct device *dev_d)
1955 struct net_device *dev = dev_get_drvdata(dev_d);
1958 if (!netif_running(dev))
1961 err = netdev_open(dev);
1963 printk(KERN_ERR "%s: Can't resume interface!\n",
1968 netif_device_attach(dev);
1974 static SIMPLE_DEV_PM_OPS(sundance_pm_ops, sundance_suspend, sundance_resume);
1976 static struct pci_driver sundance_driver = {
1978 .id_table = sundance_pci_tbl,
1979 .probe = sundance_probe1,
1980 .remove = sundance_remove1,
1981 .driver.pm = &sundance_pm_ops,
1984 static int __init sundance_init(void)
1986 return pci_register_driver(&sundance_driver);
1989 static void __exit sundance_exit(void)
1991 pci_unregister_driver(&sundance_driver);
1994 module_init(sundance_init);
1995 module_exit(sundance_exit);