]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/i915_request.c
ASoC: simple-card: Use snd_soc_of_parse_aux_devs()
[linux.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
32
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_context.h"
35 #include "gt/intel_ring.h"
36 #include "gt/intel_rps.h"
37
38 #include "i915_active.h"
39 #include "i915_drv.h"
40 #include "i915_globals.h"
41 #include "i915_trace.h"
42 #include "intel_pm.h"
43
44 struct execute_cb {
45         struct irq_work work;
46         struct i915_sw_fence *fence;
47         void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48         struct i915_request *signal;
49 };
50
51 static struct i915_global_request {
52         struct i915_global base;
53         struct kmem_cache *slab_requests;
54         struct kmem_cache *slab_execute_cbs;
55 } global;
56
57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
58 {
59         return dev_name(to_request(fence)->engine->i915->drm.dev);
60 }
61
62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
63 {
64         const struct i915_gem_context *ctx;
65
66         /*
67          * The timeline struct (as part of the ppgtt underneath a context)
68          * may be freed when the request is no longer in use by the GPU.
69          * We could extend the life of a context to beyond that of all
70          * fences, possibly keeping the hw resource around indefinitely,
71          * or we just give them a false name. Since
72          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73          * lie seems justifiable.
74          */
75         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76                 return "signaled";
77
78         ctx = i915_request_gem_context(to_request(fence));
79         if (!ctx)
80                 return "[" DRIVER_NAME "]";
81
82         return ctx->name;
83 }
84
85 static bool i915_fence_signaled(struct dma_fence *fence)
86 {
87         return i915_request_completed(to_request(fence));
88 }
89
90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
91 {
92         return i915_request_enable_breadcrumb(to_request(fence));
93 }
94
95 static signed long i915_fence_wait(struct dma_fence *fence,
96                                    bool interruptible,
97                                    signed long timeout)
98 {
99         return i915_request_wait(to_request(fence),
100                                  interruptible | I915_WAIT_PRIORITY,
101                                  timeout);
102 }
103
104 struct kmem_cache *i915_request_slab_cache(void)
105 {
106         return global.slab_requests;
107 }
108
109 static void i915_fence_release(struct dma_fence *fence)
110 {
111         struct i915_request *rq = to_request(fence);
112
113         /*
114          * The request is put onto a RCU freelist (i.e. the address
115          * is immediately reused), mark the fences as being freed now.
116          * Otherwise the debugobjects for the fences are only marked as
117          * freed when the slab cache itself is freed, and so we would get
118          * caught trying to reuse dead objects.
119          */
120         i915_sw_fence_fini(&rq->submit);
121         i915_sw_fence_fini(&rq->semaphore);
122
123         /*
124          * Keep one request on each engine for reserved use under mempressure
125          *
126          * We do not hold a reference to the engine here and so have to be
127          * very careful in what rq->engine we poke. The virtual engine is
128          * referenced via the rq->context and we released that ref during
129          * i915_request_retire(), ergo we must not dereference a virtual
130          * engine here. Not that we would want to, as the only consumer of
131          * the reserved engine->request_pool is the power management parking,
132          * which must-not-fail, and that is only run on the physical engines.
133          *
134          * Since the request must have been executed to be have completed,
135          * we know that it will have been processed by the HW and will
136          * not be unsubmitted again, so rq->engine and rq->execution_mask
137          * at this point is stable. rq->execution_mask will be a single
138          * bit if the last and _only_ engine it could execution on was a
139          * physical engine, if it's multiple bits then it started on and
140          * could still be on a virtual engine. Thus if the mask is not a
141          * power-of-two we assume that rq->engine may still be a virtual
142          * engine and so a dangling invalid pointer that we cannot dereference
143          *
144          * For example, consider the flow of a bonded request through a virtual
145          * engine. The request is created with a wide engine mask (all engines
146          * that we might execute on). On processing the bond, the request mask
147          * is reduced to one or more engines. If the request is subsequently
148          * bound to a single engine, it will then be constrained to only
149          * execute on that engine and never returned to the virtual engine
150          * after timeslicing away, see __unwind_incomplete_requests(). Thus we
151          * know that if the rq->execution_mask is a single bit, rq->engine
152          * can be a physical engine with the exact corresponding mask.
153          */
154         if (is_power_of_2(rq->execution_mask) &&
155             !cmpxchg(&rq->engine->request_pool, NULL, rq))
156                 return;
157
158         kmem_cache_free(global.slab_requests, rq);
159 }
160
161 const struct dma_fence_ops i915_fence_ops = {
162         .get_driver_name = i915_fence_get_driver_name,
163         .get_timeline_name = i915_fence_get_timeline_name,
164         .enable_signaling = i915_fence_enable_signaling,
165         .signaled = i915_fence_signaled,
166         .wait = i915_fence_wait,
167         .release = i915_fence_release,
168 };
169
170 static void irq_execute_cb(struct irq_work *wrk)
171 {
172         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
173
174         i915_sw_fence_complete(cb->fence);
175         kmem_cache_free(global.slab_execute_cbs, cb);
176 }
177
178 static void irq_execute_cb_hook(struct irq_work *wrk)
179 {
180         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
181
182         cb->hook(container_of(cb->fence, struct i915_request, submit),
183                  &cb->signal->fence);
184         i915_request_put(cb->signal);
185
186         irq_execute_cb(wrk);
187 }
188
189 static void __notify_execute_cb(struct i915_request *rq)
190 {
191         struct execute_cb *cb, *cn;
192
193         lockdep_assert_held(&rq->lock);
194
195         GEM_BUG_ON(!i915_request_is_active(rq));
196         if (llist_empty(&rq->execute_cb))
197                 return;
198
199         llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode)
200                 irq_work_queue(&cb->work);
201
202         /*
203          * XXX Rollback on __i915_request_unsubmit()
204          *
205          * In the future, perhaps when we have an active time-slicing scheduler,
206          * it will be interesting to unsubmit parallel execution and remove
207          * busywaits from the GPU until their master is restarted. This is
208          * quite hairy, we have to carefully rollback the fence and do a
209          * preempt-to-idle cycle on the target engine, all the while the
210          * master execute_cb may refire.
211          */
212         init_llist_head(&rq->execute_cb);
213 }
214
215 static inline void
216 remove_from_client(struct i915_request *request)
217 {
218         struct drm_i915_file_private *file_priv;
219
220         if (!READ_ONCE(request->file_priv))
221                 return;
222
223         rcu_read_lock();
224         file_priv = xchg(&request->file_priv, NULL);
225         if (file_priv) {
226                 spin_lock(&file_priv->mm.lock);
227                 list_del(&request->client_link);
228                 spin_unlock(&file_priv->mm.lock);
229         }
230         rcu_read_unlock();
231 }
232
233 static void free_capture_list(struct i915_request *request)
234 {
235         struct i915_capture_list *capture;
236
237         capture = fetch_and_zero(&request->capture_list);
238         while (capture) {
239                 struct i915_capture_list *next = capture->next;
240
241                 kfree(capture);
242                 capture = next;
243         }
244 }
245
246 static void __i915_request_fill(struct i915_request *rq, u8 val)
247 {
248         void *vaddr = rq->ring->vaddr;
249         u32 head;
250
251         head = rq->infix;
252         if (rq->postfix < head) {
253                 memset(vaddr + head, val, rq->ring->size - head);
254                 head = 0;
255         }
256         memset(vaddr + head, val, rq->postfix - head);
257 }
258
259 static void remove_from_engine(struct i915_request *rq)
260 {
261         struct intel_engine_cs *engine, *locked;
262
263         /*
264          * Virtual engines complicate acquiring the engine timeline lock,
265          * as their rq->engine pointer is not stable until under that
266          * engine lock. The simple ploy we use is to take the lock then
267          * check that the rq still belongs to the newly locked engine.
268          */
269         locked = READ_ONCE(rq->engine);
270         spin_lock_irq(&locked->active.lock);
271         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
272                 spin_unlock(&locked->active.lock);
273                 spin_lock(&engine->active.lock);
274                 locked = engine;
275         }
276         list_del_init(&rq->sched.link);
277         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
278         clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
279         spin_unlock_irq(&locked->active.lock);
280 }
281
282 bool i915_request_retire(struct i915_request *rq)
283 {
284         if (!i915_request_completed(rq))
285                 return false;
286
287         RQ_TRACE(rq, "\n");
288
289         GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
290         trace_i915_request_retire(rq);
291
292         /*
293          * We know the GPU must have read the request to have
294          * sent us the seqno + interrupt, so use the position
295          * of tail of the request to update the last known position
296          * of the GPU head.
297          *
298          * Note this requires that we are always called in request
299          * completion order.
300          */
301         GEM_BUG_ON(!list_is_first(&rq->link,
302                                   &i915_request_timeline(rq)->requests));
303         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
304                 /* Poison before we release our space in the ring */
305                 __i915_request_fill(rq, POISON_FREE);
306         rq->ring->head = rq->postfix;
307
308         /*
309          * We only loosely track inflight requests across preemption,
310          * and so we may find ourselves attempting to retire a _completed_
311          * request that we have removed from the HW and put back on a run
312          * queue.
313          */
314         remove_from_engine(rq);
315
316         spin_lock_irq(&rq->lock);
317         i915_request_mark_complete(rq);
318         if (!i915_request_signaled(rq))
319                 dma_fence_signal_locked(&rq->fence);
320         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
321                 i915_request_cancel_breadcrumb(rq);
322         if (i915_request_has_waitboost(rq)) {
323                 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
324                 atomic_dec(&rq->engine->gt->rps.num_waiters);
325         }
326         if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
327                 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
328                 __notify_execute_cb(rq);
329         }
330         GEM_BUG_ON(!llist_empty(&rq->execute_cb));
331         spin_unlock_irq(&rq->lock);
332
333         remove_from_client(rq);
334         __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
335
336         intel_context_exit(rq->context);
337         intel_context_unpin(rq->context);
338
339         free_capture_list(rq);
340         i915_sched_node_fini(&rq->sched);
341         i915_request_put(rq);
342
343         return true;
344 }
345
346 void i915_request_retire_upto(struct i915_request *rq)
347 {
348         struct intel_timeline * const tl = i915_request_timeline(rq);
349         struct i915_request *tmp;
350
351         RQ_TRACE(rq, "\n");
352
353         GEM_BUG_ON(!i915_request_completed(rq));
354
355         do {
356                 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
357         } while (i915_request_retire(tmp) && tmp != rq);
358 }
359
360 static void __llist_add(struct llist_node *node, struct llist_head *head)
361 {
362         node->next = head->first;
363         head->first = node;
364 }
365
366 static struct i915_request * const *
367 __engine_active(struct intel_engine_cs *engine)
368 {
369         return READ_ONCE(engine->execlists.active);
370 }
371
372 static bool __request_in_flight(const struct i915_request *signal)
373 {
374         struct i915_request * const *port, *rq;
375         bool inflight = false;
376
377         if (!i915_request_is_ready(signal))
378                 return false;
379
380         /*
381          * Even if we have unwound the request, it may still be on
382          * the GPU (preempt-to-busy). If that request is inside an
383          * unpreemptible critical section, it will not be removed. Some
384          * GPU functions may even be stuck waiting for the paired request
385          * (__await_execution) to be submitted and cannot be preempted
386          * until the bond is executing.
387          *
388          * As we know that there are always preemption points between
389          * requests, we know that only the currently executing request
390          * may be still active even though we have cleared the flag.
391          * However, we can't rely on our tracking of ELSP[0] to known
392          * which request is currently active and so maybe stuck, as
393          * the tracking maybe an event behind. Instead assume that
394          * if the context is still inflight, then it is still active
395          * even if the active flag has been cleared.
396          */
397         if (!intel_context_inflight(signal->context))
398                 return false;
399
400         rcu_read_lock();
401         for (port = __engine_active(signal->engine); (rq = *port); port++) {
402                 if (rq->context == signal->context) {
403                         inflight = i915_seqno_passed(rq->fence.seqno,
404                                                      signal->fence.seqno);
405                         break;
406                 }
407         }
408         rcu_read_unlock();
409
410         return inflight;
411 }
412
413 static int
414 __await_execution(struct i915_request *rq,
415                   struct i915_request *signal,
416                   void (*hook)(struct i915_request *rq,
417                                struct dma_fence *signal),
418                   gfp_t gfp)
419 {
420         struct execute_cb *cb;
421
422         if (i915_request_is_active(signal)) {
423                 if (hook)
424                         hook(rq, &signal->fence);
425                 return 0;
426         }
427
428         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
429         if (!cb)
430                 return -ENOMEM;
431
432         cb->fence = &rq->submit;
433         i915_sw_fence_await(cb->fence);
434         init_irq_work(&cb->work, irq_execute_cb);
435
436         if (hook) {
437                 cb->hook = hook;
438                 cb->signal = i915_request_get(signal);
439                 cb->work.func = irq_execute_cb_hook;
440         }
441
442         spin_lock_irq(&signal->lock);
443         if (i915_request_is_active(signal) || __request_in_flight(signal)) {
444                 if (hook) {
445                         hook(rq, &signal->fence);
446                         i915_request_put(signal);
447                 }
448                 i915_sw_fence_complete(cb->fence);
449                 kmem_cache_free(global.slab_execute_cbs, cb);
450         } else {
451                 __llist_add(&cb->work.llnode, &signal->execute_cb);
452         }
453         spin_unlock_irq(&signal->lock);
454
455         return 0;
456 }
457
458 static bool fatal_error(int error)
459 {
460         switch (error) {
461         case 0: /* not an error! */
462         case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
463         case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
464                 return false;
465         default:
466                 return true;
467         }
468 }
469
470 void __i915_request_skip(struct i915_request *rq)
471 {
472         GEM_BUG_ON(!fatal_error(rq->fence.error));
473
474         if (rq->infix == rq->postfix)
475                 return;
476
477         /*
478          * As this request likely depends on state from the lost
479          * context, clear out all the user operations leaving the
480          * breadcrumb at the end (so we get the fence notifications).
481          */
482         __i915_request_fill(rq, 0);
483         rq->infix = rq->postfix;
484 }
485
486 void i915_request_set_error_once(struct i915_request *rq, int error)
487 {
488         int old;
489
490         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
491
492         if (i915_request_signaled(rq))
493                 return;
494
495         old = READ_ONCE(rq->fence.error);
496         do {
497                 if (fatal_error(old))
498                         return;
499         } while (!try_cmpxchg(&rq->fence.error, &old, error));
500 }
501
502 bool __i915_request_submit(struct i915_request *request)
503 {
504         struct intel_engine_cs *engine = request->engine;
505         bool result = false;
506
507         RQ_TRACE(request, "\n");
508
509         GEM_BUG_ON(!irqs_disabled());
510         lockdep_assert_held(&engine->active.lock);
511
512         /*
513          * With the advent of preempt-to-busy, we frequently encounter
514          * requests that we have unsubmitted from HW, but left running
515          * until the next ack and so have completed in the meantime. On
516          * resubmission of that completed request, we can skip
517          * updating the payload, and execlists can even skip submitting
518          * the request.
519          *
520          * We must remove the request from the caller's priority queue,
521          * and the caller must only call us when the request is in their
522          * priority queue, under the active.lock. This ensures that the
523          * request has *not* yet been retired and we can safely move
524          * the request into the engine->active.list where it will be
525          * dropped upon retiring. (Otherwise if resubmit a *retired*
526          * request, this would be a horrible use-after-free.)
527          */
528         if (i915_request_completed(request))
529                 goto xfer;
530
531         if (unlikely(intel_context_is_banned(request->context)))
532                 i915_request_set_error_once(request, -EIO);
533         if (unlikely(fatal_error(request->fence.error)))
534                 __i915_request_skip(request);
535
536         /*
537          * Are we using semaphores when the gpu is already saturated?
538          *
539          * Using semaphores incurs a cost in having the GPU poll a
540          * memory location, busywaiting for it to change. The continual
541          * memory reads can have a noticeable impact on the rest of the
542          * system with the extra bus traffic, stalling the cpu as it too
543          * tries to access memory across the bus (perf stat -e bus-cycles).
544          *
545          * If we installed a semaphore on this request and we only submit
546          * the request after the signaler completed, that indicates the
547          * system is overloaded and using semaphores at this time only
548          * increases the amount of work we are doing. If so, we disable
549          * further use of semaphores until we are idle again, whence we
550          * optimistically try again.
551          */
552         if (request->sched.semaphores &&
553             i915_sw_fence_signaled(&request->semaphore))
554                 engine->saturated |= request->sched.semaphores;
555
556         engine->emit_fini_breadcrumb(request,
557                                      request->ring->vaddr + request->postfix);
558
559         trace_i915_request_execute(request);
560         engine->serial++;
561         result = true;
562
563 xfer:
564         if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
565                 list_move_tail(&request->sched.link, &engine->active.requests);
566                 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
567         }
568
569         /* We may be recursing from the signal callback of another i915 fence */
570         if (!i915_request_signaled(request)) {
571                 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
572
573                 __notify_execute_cb(request);
574                 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
575                              &request->fence.flags) &&
576                     !i915_request_enable_breadcrumb(request))
577                         intel_engine_signal_breadcrumbs(engine);
578
579                 spin_unlock(&request->lock);
580                 GEM_BUG_ON(!llist_empty(&request->execute_cb));
581         }
582
583         return result;
584 }
585
586 void i915_request_submit(struct i915_request *request)
587 {
588         struct intel_engine_cs *engine = request->engine;
589         unsigned long flags;
590
591         /* Will be called from irq-context when using foreign fences. */
592         spin_lock_irqsave(&engine->active.lock, flags);
593
594         __i915_request_submit(request);
595
596         spin_unlock_irqrestore(&engine->active.lock, flags);
597 }
598
599 void __i915_request_unsubmit(struct i915_request *request)
600 {
601         struct intel_engine_cs *engine = request->engine;
602
603         RQ_TRACE(request, "\n");
604
605         GEM_BUG_ON(!irqs_disabled());
606         lockdep_assert_held(&engine->active.lock);
607
608         /*
609          * Only unwind in reverse order, required so that the per-context list
610          * is kept in seqno/ring order.
611          */
612
613         /* We may be recursing from the signal callback of another i915 fence */
614         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
615
616         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
617                 i915_request_cancel_breadcrumb(request);
618
619         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
620         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
621
622         spin_unlock(&request->lock);
623
624         /* We've already spun, don't charge on resubmitting. */
625         if (request->sched.semaphores && i915_request_started(request))
626                 request->sched.semaphores = 0;
627
628         /*
629          * We don't need to wake_up any waiters on request->execute, they
630          * will get woken by any other event or us re-adding this request
631          * to the engine timeline (__i915_request_submit()). The waiters
632          * should be quite adapt at finding that the request now has a new
633          * global_seqno to the one they went to sleep on.
634          */
635 }
636
637 void i915_request_unsubmit(struct i915_request *request)
638 {
639         struct intel_engine_cs *engine = request->engine;
640         unsigned long flags;
641
642         /* Will be called from irq-context when using foreign fences. */
643         spin_lock_irqsave(&engine->active.lock, flags);
644
645         __i915_request_unsubmit(request);
646
647         spin_unlock_irqrestore(&engine->active.lock, flags);
648 }
649
650 static int __i915_sw_fence_call
651 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
652 {
653         struct i915_request *request =
654                 container_of(fence, typeof(*request), submit);
655
656         switch (state) {
657         case FENCE_COMPLETE:
658                 trace_i915_request_submit(request);
659
660                 if (unlikely(fence->error))
661                         i915_request_set_error_once(request, fence->error);
662
663                 /*
664                  * We need to serialize use of the submit_request() callback
665                  * with its hotplugging performed during an emergency
666                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
667                  * critical section in order to force i915_gem_set_wedged() to
668                  * wait until the submit_request() is completed before
669                  * proceeding.
670                  */
671                 rcu_read_lock();
672                 request->engine->submit_request(request);
673                 rcu_read_unlock();
674                 break;
675
676         case FENCE_FREE:
677                 i915_request_put(request);
678                 break;
679         }
680
681         return NOTIFY_DONE;
682 }
683
684 static int __i915_sw_fence_call
685 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
686 {
687         struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
688
689         switch (state) {
690         case FENCE_COMPLETE:
691                 break;
692
693         case FENCE_FREE:
694                 i915_request_put(rq);
695                 break;
696         }
697
698         return NOTIFY_DONE;
699 }
700
701 static void retire_requests(struct intel_timeline *tl)
702 {
703         struct i915_request *rq, *rn;
704
705         list_for_each_entry_safe(rq, rn, &tl->requests, link)
706                 if (!i915_request_retire(rq))
707                         break;
708 }
709
710 static noinline struct i915_request *
711 request_alloc_slow(struct intel_timeline *tl,
712                    struct i915_request **rsvd,
713                    gfp_t gfp)
714 {
715         struct i915_request *rq;
716
717         /* If we cannot wait, dip into our reserves */
718         if (!gfpflags_allow_blocking(gfp)) {
719                 rq = xchg(rsvd, NULL);
720                 if (!rq) /* Use the normal failure path for one final WARN */
721                         goto out;
722
723                 return rq;
724         }
725
726         if (list_empty(&tl->requests))
727                 goto out;
728
729         /* Move our oldest request to the slab-cache (if not in use!) */
730         rq = list_first_entry(&tl->requests, typeof(*rq), link);
731         i915_request_retire(rq);
732
733         rq = kmem_cache_alloc(global.slab_requests,
734                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
735         if (rq)
736                 return rq;
737
738         /* Ratelimit ourselves to prevent oom from malicious clients */
739         rq = list_last_entry(&tl->requests, typeof(*rq), link);
740         cond_synchronize_rcu(rq->rcustate);
741
742         /* Retire our old requests in the hope that we free some */
743         retire_requests(tl);
744
745 out:
746         return kmem_cache_alloc(global.slab_requests, gfp);
747 }
748
749 static void __i915_request_ctor(void *arg)
750 {
751         struct i915_request *rq = arg;
752
753         spin_lock_init(&rq->lock);
754         i915_sched_node_init(&rq->sched);
755         i915_sw_fence_init(&rq->submit, submit_notify);
756         i915_sw_fence_init(&rq->semaphore, semaphore_notify);
757
758         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
759
760         rq->file_priv = NULL;
761         rq->capture_list = NULL;
762
763         init_llist_head(&rq->execute_cb);
764 }
765
766 struct i915_request *
767 __i915_request_create(struct intel_context *ce, gfp_t gfp)
768 {
769         struct intel_timeline *tl = ce->timeline;
770         struct i915_request *rq;
771         u32 seqno;
772         int ret;
773
774         might_sleep_if(gfpflags_allow_blocking(gfp));
775
776         /* Check that the caller provided an already pinned context */
777         __intel_context_pin(ce);
778
779         /*
780          * Beware: Dragons be flying overhead.
781          *
782          * We use RCU to look up requests in flight. The lookups may
783          * race with the request being allocated from the slab freelist.
784          * That is the request we are writing to here, may be in the process
785          * of being read by __i915_active_request_get_rcu(). As such,
786          * we have to be very careful when overwriting the contents. During
787          * the RCU lookup, we change chase the request->engine pointer,
788          * read the request->global_seqno and increment the reference count.
789          *
790          * The reference count is incremented atomically. If it is zero,
791          * the lookup knows the request is unallocated and complete. Otherwise,
792          * it is either still in use, or has been reallocated and reset
793          * with dma_fence_init(). This increment is safe for release as we
794          * check that the request we have a reference to and matches the active
795          * request.
796          *
797          * Before we increment the refcount, we chase the request->engine
798          * pointer. We must not call kmem_cache_zalloc() or else we set
799          * that pointer to NULL and cause a crash during the lookup. If
800          * we see the request is completed (based on the value of the
801          * old engine and seqno), the lookup is complete and reports NULL.
802          * If we decide the request is not completed (new engine or seqno),
803          * then we grab a reference and double check that it is still the
804          * active request - which it won't be and restart the lookup.
805          *
806          * Do not use kmem_cache_zalloc() here!
807          */
808         rq = kmem_cache_alloc(global.slab_requests,
809                               gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
810         if (unlikely(!rq)) {
811                 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
812                 if (!rq) {
813                         ret = -ENOMEM;
814                         goto err_unreserve;
815                 }
816         }
817
818         rq->context = ce;
819         rq->engine = ce->engine;
820         rq->ring = ce->ring;
821         rq->execution_mask = ce->engine->mask;
822
823         kref_init(&rq->fence.refcount);
824         rq->fence.flags = 0;
825         rq->fence.error = 0;
826         INIT_LIST_HEAD(&rq->fence.cb_list);
827
828         ret = intel_timeline_get_seqno(tl, rq, &seqno);
829         if (ret)
830                 goto err_free;
831
832         rq->fence.context = tl->fence_context;
833         rq->fence.seqno = seqno;
834
835         RCU_INIT_POINTER(rq->timeline, tl);
836         RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
837         rq->hwsp_seqno = tl->hwsp_seqno;
838         GEM_BUG_ON(i915_request_completed(rq));
839
840         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
841
842         /* We bump the ref for the fence chain */
843         i915_sw_fence_reinit(&i915_request_get(rq)->submit);
844         i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
845
846         i915_sched_node_reinit(&rq->sched);
847
848         /* No zalloc, everything must be cleared after use */
849         rq->batch = NULL;
850         GEM_BUG_ON(rq->file_priv);
851         GEM_BUG_ON(rq->capture_list);
852         GEM_BUG_ON(!llist_empty(&rq->execute_cb));
853
854         /*
855          * Reserve space in the ring buffer for all the commands required to
856          * eventually emit this request. This is to guarantee that the
857          * i915_request_add() call can't fail. Note that the reserve may need
858          * to be redone if the request is not actually submitted straight
859          * away, e.g. because a GPU scheduler has deferred it.
860          *
861          * Note that due to how we add reserved_space to intel_ring_begin()
862          * we need to double our request to ensure that if we need to wrap
863          * around inside i915_request_add() there is sufficient space at
864          * the beginning of the ring as well.
865          */
866         rq->reserved_space =
867                 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
868
869         /*
870          * Record the position of the start of the request so that
871          * should we detect the updated seqno part-way through the
872          * GPU processing the request, we never over-estimate the
873          * position of the head.
874          */
875         rq->head = rq->ring->emit;
876
877         ret = rq->engine->request_alloc(rq);
878         if (ret)
879                 goto err_unwind;
880
881         rq->infix = rq->ring->emit; /* end of header; start of user payload */
882
883         intel_context_mark_active(ce);
884         list_add_tail_rcu(&rq->link, &tl->requests);
885
886         return rq;
887
888 err_unwind:
889         ce->ring->emit = rq->head;
890
891         /* Make sure we didn't add ourselves to external state before freeing */
892         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
893         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
894
895 err_free:
896         kmem_cache_free(global.slab_requests, rq);
897 err_unreserve:
898         intel_context_unpin(ce);
899         return ERR_PTR(ret);
900 }
901
902 struct i915_request *
903 i915_request_create(struct intel_context *ce)
904 {
905         struct i915_request *rq;
906         struct intel_timeline *tl;
907
908         tl = intel_context_timeline_lock(ce);
909         if (IS_ERR(tl))
910                 return ERR_CAST(tl);
911
912         /* Move our oldest request to the slab-cache (if not in use!) */
913         rq = list_first_entry(&tl->requests, typeof(*rq), link);
914         if (!list_is_last(&rq->link, &tl->requests))
915                 i915_request_retire(rq);
916
917         intel_context_enter(ce);
918         rq = __i915_request_create(ce, GFP_KERNEL);
919         intel_context_exit(ce); /* active reference transferred to request */
920         if (IS_ERR(rq))
921                 goto err_unlock;
922
923         /* Check that we do not interrupt ourselves with a new request */
924         rq->cookie = lockdep_pin_lock(&tl->mutex);
925
926         return rq;
927
928 err_unlock:
929         intel_context_timeline_unlock(tl);
930         return rq;
931 }
932
933 static int
934 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
935 {
936         struct dma_fence *fence;
937         int err;
938
939         if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
940                 return 0;
941
942         if (i915_request_started(signal))
943                 return 0;
944
945         fence = NULL;
946         rcu_read_lock();
947         spin_lock_irq(&signal->lock);
948         do {
949                 struct list_head *pos = READ_ONCE(signal->link.prev);
950                 struct i915_request *prev;
951
952                 /* Confirm signal has not been retired, the link is valid */
953                 if (unlikely(i915_request_started(signal)))
954                         break;
955
956                 /* Is signal the earliest request on its timeline? */
957                 if (pos == &rcu_dereference(signal->timeline)->requests)
958                         break;
959
960                 /*
961                  * Peek at the request before us in the timeline. That
962                  * request will only be valid before it is retired, so
963                  * after acquiring a reference to it, confirm that it is
964                  * still part of the signaler's timeline.
965                  */
966                 prev = list_entry(pos, typeof(*prev), link);
967                 if (!i915_request_get_rcu(prev))
968                         break;
969
970                 /* After the strong barrier, confirm prev is still attached */
971                 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
972                         i915_request_put(prev);
973                         break;
974                 }
975
976                 fence = &prev->fence;
977         } while (0);
978         spin_unlock_irq(&signal->lock);
979         rcu_read_unlock();
980         if (!fence)
981                 return 0;
982
983         err = 0;
984         if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
985                 err = i915_sw_fence_await_dma_fence(&rq->submit,
986                                                     fence, 0,
987                                                     I915_FENCE_GFP);
988         dma_fence_put(fence);
989
990         return err;
991 }
992
993 static intel_engine_mask_t
994 already_busywaiting(struct i915_request *rq)
995 {
996         /*
997          * Polling a semaphore causes bus traffic, delaying other users of
998          * both the GPU and CPU. We want to limit the impact on others,
999          * while taking advantage of early submission to reduce GPU
1000          * latency. Therefore we restrict ourselves to not using more
1001          * than one semaphore from each source, and not using a semaphore
1002          * if we have detected the engine is saturated (i.e. would not be
1003          * submitted early and cause bus traffic reading an already passed
1004          * semaphore).
1005          *
1006          * See the are-we-too-late? check in __i915_request_submit().
1007          */
1008         return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1009 }
1010
1011 static int
1012 __emit_semaphore_wait(struct i915_request *to,
1013                       struct i915_request *from,
1014                       u32 seqno)
1015 {
1016         const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1017         u32 hwsp_offset;
1018         int len, err;
1019         u32 *cs;
1020
1021         GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1022         GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1023
1024         /* We need to pin the signaler's HWSP until we are finished reading. */
1025         err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1026         if (err)
1027                 return err;
1028
1029         len = 4;
1030         if (has_token)
1031                 len += 2;
1032
1033         cs = intel_ring_begin(to, len);
1034         if (IS_ERR(cs))
1035                 return PTR_ERR(cs);
1036
1037         /*
1038          * Using greater-than-or-equal here means we have to worry
1039          * about seqno wraparound. To side step that issue, we swap
1040          * the timeline HWSP upon wrapping, so that everyone listening
1041          * for the old (pre-wrap) values do not see the much smaller
1042          * (post-wrap) values than they were expecting (and so wait
1043          * forever).
1044          */
1045         *cs++ = (MI_SEMAPHORE_WAIT |
1046                  MI_SEMAPHORE_GLOBAL_GTT |
1047                  MI_SEMAPHORE_POLL |
1048                  MI_SEMAPHORE_SAD_GTE_SDD) +
1049                 has_token;
1050         *cs++ = seqno;
1051         *cs++ = hwsp_offset;
1052         *cs++ = 0;
1053         if (has_token) {
1054                 *cs++ = 0;
1055                 *cs++ = MI_NOOP;
1056         }
1057
1058         intel_ring_advance(to, cs);
1059         return 0;
1060 }
1061
1062 static int
1063 emit_semaphore_wait(struct i915_request *to,
1064                     struct i915_request *from,
1065                     gfp_t gfp)
1066 {
1067         const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1068         struct i915_sw_fence *wait = &to->submit;
1069
1070         if (!intel_context_use_semaphores(to->context))
1071                 goto await_fence;
1072
1073         if (i915_request_has_initial_breadcrumb(to))
1074                 goto await_fence;
1075
1076         if (!rcu_access_pointer(from->hwsp_cacheline))
1077                 goto await_fence;
1078
1079         /*
1080          * If this or its dependents are waiting on an external fence
1081          * that may fail catastrophically, then we want to avoid using
1082          * sempahores as they bypass the fence signaling metadata, and we
1083          * lose the fence->error propagation.
1084          */
1085         if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1086                 goto await_fence;
1087
1088         /* Just emit the first semaphore we see as request space is limited. */
1089         if (already_busywaiting(to) & mask)
1090                 goto await_fence;
1091
1092         if (i915_request_await_start(to, from) < 0)
1093                 goto await_fence;
1094
1095         /* Only submit our spinner after the signaler is running! */
1096         if (__await_execution(to, from, NULL, gfp))
1097                 goto await_fence;
1098
1099         if (__emit_semaphore_wait(to, from, from->fence.seqno))
1100                 goto await_fence;
1101
1102         to->sched.semaphores |= mask;
1103         wait = &to->semaphore;
1104
1105 await_fence:
1106         return i915_sw_fence_await_dma_fence(wait,
1107                                              &from->fence, 0,
1108                                              I915_FENCE_GFP);
1109 }
1110
1111 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1112                                           struct dma_fence *fence)
1113 {
1114         return __intel_timeline_sync_is_later(tl,
1115                                               fence->context,
1116                                               fence->seqno - 1);
1117 }
1118
1119 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1120                                          const struct dma_fence *fence)
1121 {
1122         return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1123 }
1124
1125 static int
1126 __i915_request_await_execution(struct i915_request *to,
1127                                struct i915_request *from,
1128                                void (*hook)(struct i915_request *rq,
1129                                             struct dma_fence *signal))
1130 {
1131         int err;
1132
1133         GEM_BUG_ON(intel_context_is_barrier(from->context));
1134
1135         /* Submit both requests at the same time */
1136         err = __await_execution(to, from, hook, I915_FENCE_GFP);
1137         if (err)
1138                 return err;
1139
1140         /* Squash repeated depenendices to the same timelines */
1141         if (intel_timeline_sync_has_start(i915_request_timeline(to),
1142                                           &from->fence))
1143                 return 0;
1144
1145         /*
1146          * Wait until the start of this request.
1147          *
1148          * The execution cb fires when we submit the request to HW. But in
1149          * many cases this may be long before the request itself is ready to
1150          * run (consider that we submit 2 requests for the same context, where
1151          * the request of interest is behind an indefinite spinner). So we hook
1152          * up to both to reduce our queues and keep the execution lag minimised
1153          * in the worst case, though we hope that the await_start is elided.
1154          */
1155         err = i915_request_await_start(to, from);
1156         if (err < 0)
1157                 return err;
1158
1159         /*
1160          * Ensure both start together [after all semaphores in signal]
1161          *
1162          * Now that we are queued to the HW at roughly the same time (thanks
1163          * to the execute cb) and are ready to run at roughly the same time
1164          * (thanks to the await start), our signaler may still be indefinitely
1165          * delayed by waiting on a semaphore from a remote engine. If our
1166          * signaler depends on a semaphore, so indirectly do we, and we do not
1167          * want to start our payload until our signaler also starts theirs.
1168          * So we wait.
1169          *
1170          * However, there is also a second condition for which we need to wait
1171          * for the precise start of the signaler. Consider that the signaler
1172          * was submitted in a chain of requests following another context
1173          * (with just an ordinary intra-engine fence dependency between the
1174          * two). In this case the signaler is queued to HW, but not for
1175          * immediate execution, and so we must wait until it reaches the
1176          * active slot.
1177          */
1178         if (intel_engine_has_semaphores(to->engine) &&
1179             !i915_request_has_initial_breadcrumb(to)) {
1180                 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1181                 if (err < 0)
1182                         return err;
1183         }
1184
1185         /* Couple the dependency tree for PI on this exposed to->fence */
1186         if (to->engine->schedule) {
1187                 err = i915_sched_node_add_dependency(&to->sched,
1188                                                      &from->sched,
1189                                                      I915_DEPENDENCY_WEAK);
1190                 if (err < 0)
1191                         return err;
1192         }
1193
1194         return intel_timeline_sync_set_start(i915_request_timeline(to),
1195                                              &from->fence);
1196 }
1197
1198 static void mark_external(struct i915_request *rq)
1199 {
1200         /*
1201          * The downside of using semaphores is that we lose metadata passing
1202          * along the signaling chain. This is particularly nasty when we
1203          * need to pass along a fatal error such as EFAULT or EDEADLK. For
1204          * fatal errors we want to scrub the request before it is executed,
1205          * which means that we cannot preload the request onto HW and have
1206          * it wait upon a semaphore.
1207          */
1208         rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1209 }
1210
1211 static int
1212 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1213 {
1214         mark_external(rq);
1215         return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1216                                              i915_fence_context_timeout(rq->engine->i915,
1217                                                                         fence->context),
1218                                              I915_FENCE_GFP);
1219 }
1220
1221 static int
1222 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1223 {
1224         struct dma_fence *iter;
1225         int err = 0;
1226
1227         if (!to_dma_fence_chain(fence))
1228                 return __i915_request_await_external(rq, fence);
1229
1230         dma_fence_chain_for_each(iter, fence) {
1231                 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1232
1233                 if (!dma_fence_is_i915(chain->fence)) {
1234                         err = __i915_request_await_external(rq, iter);
1235                         break;
1236                 }
1237
1238                 err = i915_request_await_dma_fence(rq, chain->fence);
1239                 if (err < 0)
1240                         break;
1241         }
1242
1243         dma_fence_put(iter);
1244         return err;
1245 }
1246
1247 int
1248 i915_request_await_execution(struct i915_request *rq,
1249                              struct dma_fence *fence,
1250                              void (*hook)(struct i915_request *rq,
1251                                           struct dma_fence *signal))
1252 {
1253         struct dma_fence **child = &fence;
1254         unsigned int nchild = 1;
1255         int ret;
1256
1257         if (dma_fence_is_array(fence)) {
1258                 struct dma_fence_array *array = to_dma_fence_array(fence);
1259
1260                 /* XXX Error for signal-on-any fence arrays */
1261
1262                 child = array->fences;
1263                 nchild = array->num_fences;
1264                 GEM_BUG_ON(!nchild);
1265         }
1266
1267         do {
1268                 fence = *child++;
1269                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1270                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
1271                         continue;
1272                 }
1273
1274                 if (fence->context == rq->fence.context)
1275                         continue;
1276
1277                 /*
1278                  * We don't squash repeated fence dependencies here as we
1279                  * want to run our callback in all cases.
1280                  */
1281
1282                 if (dma_fence_is_i915(fence))
1283                         ret = __i915_request_await_execution(rq,
1284                                                              to_request(fence),
1285                                                              hook);
1286                 else
1287                         ret = i915_request_await_external(rq, fence);
1288                 if (ret < 0)
1289                         return ret;
1290         } while (--nchild);
1291
1292         return 0;
1293 }
1294
1295 static int
1296 await_request_submit(struct i915_request *to, struct i915_request *from)
1297 {
1298         /*
1299          * If we are waiting on a virtual engine, then it may be
1300          * constrained to execute on a single engine *prior* to submission.
1301          * When it is submitted, it will be first submitted to the virtual
1302          * engine and then passed to the physical engine. We cannot allow
1303          * the waiter to be submitted immediately to the physical engine
1304          * as it may then bypass the virtual request.
1305          */
1306         if (to->engine == READ_ONCE(from->engine))
1307                 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1308                                                         &from->submit,
1309                                                         I915_FENCE_GFP);
1310         else
1311                 return __i915_request_await_execution(to, from, NULL);
1312 }
1313
1314 static int
1315 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1316 {
1317         int ret;
1318
1319         GEM_BUG_ON(to == from);
1320         GEM_BUG_ON(to->timeline == from->timeline);
1321
1322         if (i915_request_completed(from)) {
1323                 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1324                 return 0;
1325         }
1326
1327         if (to->engine->schedule) {
1328                 ret = i915_sched_node_add_dependency(&to->sched,
1329                                                      &from->sched,
1330                                                      I915_DEPENDENCY_EXTERNAL);
1331                 if (ret < 0)
1332                         return ret;
1333         }
1334
1335         if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1336                 ret = await_request_submit(to, from);
1337         else
1338                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1339         if (ret < 0)
1340                 return ret;
1341
1342         return 0;
1343 }
1344
1345 int
1346 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1347 {
1348         struct dma_fence **child = &fence;
1349         unsigned int nchild = 1;
1350         int ret;
1351
1352         /*
1353          * Note that if the fence-array was created in signal-on-any mode,
1354          * we should *not* decompose it into its individual fences. However,
1355          * we don't currently store which mode the fence-array is operating
1356          * in. Fortunately, the only user of signal-on-any is private to
1357          * amdgpu and we should not see any incoming fence-array from
1358          * sync-file being in signal-on-any mode.
1359          */
1360         if (dma_fence_is_array(fence)) {
1361                 struct dma_fence_array *array = to_dma_fence_array(fence);
1362
1363                 child = array->fences;
1364                 nchild = array->num_fences;
1365                 GEM_BUG_ON(!nchild);
1366         }
1367
1368         do {
1369                 fence = *child++;
1370                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1371                         i915_sw_fence_set_error_once(&rq->submit, fence->error);
1372                         continue;
1373                 }
1374
1375                 /*
1376                  * Requests on the same timeline are explicitly ordered, along
1377                  * with their dependencies, by i915_request_add() which ensures
1378                  * that requests are submitted in-order through each ring.
1379                  */
1380                 if (fence->context == rq->fence.context)
1381                         continue;
1382
1383                 /* Squash repeated waits to the same timelines */
1384                 if (fence->context &&
1385                     intel_timeline_sync_is_later(i915_request_timeline(rq),
1386                                                  fence))
1387                         continue;
1388
1389                 if (dma_fence_is_i915(fence))
1390                         ret = i915_request_await_request(rq, to_request(fence));
1391                 else
1392                         ret = i915_request_await_external(rq, fence);
1393                 if (ret < 0)
1394                         return ret;
1395
1396                 /* Record the latest fence used against each timeline */
1397                 if (fence->context)
1398                         intel_timeline_sync_set(i915_request_timeline(rq),
1399                                                 fence);
1400         } while (--nchild);
1401
1402         return 0;
1403 }
1404
1405 /**
1406  * i915_request_await_object - set this request to (async) wait upon a bo
1407  * @to: request we are wishing to use
1408  * @obj: object which may be in use on another ring.
1409  * @write: whether the wait is on behalf of a writer
1410  *
1411  * This code is meant to abstract object synchronization with the GPU.
1412  * Conceptually we serialise writes between engines inside the GPU.
1413  * We only allow one engine to write into a buffer at any time, but
1414  * multiple readers. To ensure each has a coherent view of memory, we must:
1415  *
1416  * - If there is an outstanding write request to the object, the new
1417  *   request must wait for it to complete (either CPU or in hw, requests
1418  *   on the same ring will be naturally ordered).
1419  *
1420  * - If we are a write request (pending_write_domain is set), the new
1421  *   request must wait for outstanding read requests to complete.
1422  *
1423  * Returns 0 if successful, else propagates up the lower layer error.
1424  */
1425 int
1426 i915_request_await_object(struct i915_request *to,
1427                           struct drm_i915_gem_object *obj,
1428                           bool write)
1429 {
1430         struct dma_fence *excl;
1431         int ret = 0;
1432
1433         if (write) {
1434                 struct dma_fence **shared;
1435                 unsigned int count, i;
1436
1437                 ret = dma_resv_get_fences_rcu(obj->base.resv,
1438                                                         &excl, &count, &shared);
1439                 if (ret)
1440                         return ret;
1441
1442                 for (i = 0; i < count; i++) {
1443                         ret = i915_request_await_dma_fence(to, shared[i]);
1444                         if (ret)
1445                                 break;
1446
1447                         dma_fence_put(shared[i]);
1448                 }
1449
1450                 for (; i < count; i++)
1451                         dma_fence_put(shared[i]);
1452                 kfree(shared);
1453         } else {
1454                 excl = dma_resv_get_excl_rcu(obj->base.resv);
1455         }
1456
1457         if (excl) {
1458                 if (ret == 0)
1459                         ret = i915_request_await_dma_fence(to, excl);
1460
1461                 dma_fence_put(excl);
1462         }
1463
1464         return ret;
1465 }
1466
1467 static struct i915_request *
1468 __i915_request_add_to_timeline(struct i915_request *rq)
1469 {
1470         struct intel_timeline *timeline = i915_request_timeline(rq);
1471         struct i915_request *prev;
1472
1473         /*
1474          * Dependency tracking and request ordering along the timeline
1475          * is special cased so that we can eliminate redundant ordering
1476          * operations while building the request (we know that the timeline
1477          * itself is ordered, and here we guarantee it).
1478          *
1479          * As we know we will need to emit tracking along the timeline,
1480          * we embed the hooks into our request struct -- at the cost of
1481          * having to have specialised no-allocation interfaces (which will
1482          * be beneficial elsewhere).
1483          *
1484          * A second benefit to open-coding i915_request_await_request is
1485          * that we can apply a slight variant of the rules specialised
1486          * for timelines that jump between engines (such as virtual engines).
1487          * If we consider the case of virtual engine, we must emit a dma-fence
1488          * to prevent scheduling of the second request until the first is
1489          * complete (to maximise our greedy late load balancing) and this
1490          * precludes optimising to use semaphores serialisation of a single
1491          * timeline across engines.
1492          */
1493         prev = to_request(__i915_active_fence_set(&timeline->last_request,
1494                                                   &rq->fence));
1495         if (prev && !i915_request_completed(prev)) {
1496                 /*
1497                  * The requests are supposed to be kept in order. However,
1498                  * we need to be wary in case the timeline->last_request
1499                  * is used as a barrier for external modification to this
1500                  * context.
1501                  */
1502                 GEM_BUG_ON(prev->context == rq->context &&
1503                            i915_seqno_passed(prev->fence.seqno,
1504                                              rq->fence.seqno));
1505
1506                 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1507                         i915_sw_fence_await_sw_fence(&rq->submit,
1508                                                      &prev->submit,
1509                                                      &rq->submitq);
1510                 else
1511                         __i915_sw_fence_await_dma_fence(&rq->submit,
1512                                                         &prev->fence,
1513                                                         &rq->dmaq);
1514                 if (rq->engine->schedule)
1515                         __i915_sched_node_add_dependency(&rq->sched,
1516                                                          &prev->sched,
1517                                                          &rq->dep,
1518                                                          0);
1519         }
1520
1521         /*
1522          * Make sure that no request gazumped us - if it was allocated after
1523          * our i915_request_alloc() and called __i915_request_add() before
1524          * us, the timeline will hold its seqno which is later than ours.
1525          */
1526         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1527
1528         return prev;
1529 }
1530
1531 /*
1532  * NB: This function is not allowed to fail. Doing so would mean the the
1533  * request is not being tracked for completion but the work itself is
1534  * going to happen on the hardware. This would be a Bad Thing(tm).
1535  */
1536 struct i915_request *__i915_request_commit(struct i915_request *rq)
1537 {
1538         struct intel_engine_cs *engine = rq->engine;
1539         struct intel_ring *ring = rq->ring;
1540         u32 *cs;
1541
1542         RQ_TRACE(rq, "\n");
1543
1544         /*
1545          * To ensure that this call will not fail, space for its emissions
1546          * should already have been reserved in the ring buffer. Let the ring
1547          * know that it is time to use that space up.
1548          */
1549         GEM_BUG_ON(rq->reserved_space > ring->space);
1550         rq->reserved_space = 0;
1551         rq->emitted_jiffies = jiffies;
1552
1553         /*
1554          * Record the position of the start of the breadcrumb so that
1555          * should we detect the updated seqno part-way through the
1556          * GPU processing the request, we never over-estimate the
1557          * position of the ring's HEAD.
1558          */
1559         cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1560         GEM_BUG_ON(IS_ERR(cs));
1561         rq->postfix = intel_ring_offset(rq, cs);
1562
1563         return __i915_request_add_to_timeline(rq);
1564 }
1565
1566 void __i915_request_queue(struct i915_request *rq,
1567                           const struct i915_sched_attr *attr)
1568 {
1569         /*
1570          * Let the backend know a new request has arrived that may need
1571          * to adjust the existing execution schedule due to a high priority
1572          * request - i.e. we may want to preempt the current request in order
1573          * to run a high priority dependency chain *before* we can execute this
1574          * request.
1575          *
1576          * This is called before the request is ready to run so that we can
1577          * decide whether to preempt the entire chain so that it is ready to
1578          * run at the earliest possible convenience.
1579          */
1580         if (attr && rq->engine->schedule)
1581                 rq->engine->schedule(rq, attr);
1582         i915_sw_fence_commit(&rq->semaphore);
1583         i915_sw_fence_commit(&rq->submit);
1584 }
1585
1586 void i915_request_add(struct i915_request *rq)
1587 {
1588         struct intel_timeline * const tl = i915_request_timeline(rq);
1589         struct i915_sched_attr attr = {};
1590         struct i915_gem_context *ctx;
1591
1592         lockdep_assert_held(&tl->mutex);
1593         lockdep_unpin_lock(&tl->mutex, rq->cookie);
1594
1595         trace_i915_request_add(rq);
1596         __i915_request_commit(rq);
1597
1598         /* XXX placeholder for selftests */
1599         rcu_read_lock();
1600         ctx = rcu_dereference(rq->context->gem_context);
1601         if (ctx)
1602                 attr = ctx->sched;
1603         rcu_read_unlock();
1604
1605         __i915_request_queue(rq, &attr);
1606
1607         mutex_unlock(&tl->mutex);
1608 }
1609
1610 static unsigned long local_clock_ns(unsigned int *cpu)
1611 {
1612         unsigned long t;
1613
1614         /*
1615          * Cheaply and approximately convert from nanoseconds to microseconds.
1616          * The result and subsequent calculations are also defined in the same
1617          * approximate microseconds units. The principal source of timing
1618          * error here is from the simple truncation.
1619          *
1620          * Note that local_clock() is only defined wrt to the current CPU;
1621          * the comparisons are no longer valid if we switch CPUs. Instead of
1622          * blocking preemption for the entire busywait, we can detect the CPU
1623          * switch and use that as indicator of system load and a reason to
1624          * stop busywaiting, see busywait_stop().
1625          */
1626         *cpu = get_cpu();
1627         t = local_clock();
1628         put_cpu();
1629
1630         return t;
1631 }
1632
1633 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1634 {
1635         unsigned int this_cpu;
1636
1637         if (time_after(local_clock_ns(&this_cpu), timeout))
1638                 return true;
1639
1640         return this_cpu != cpu;
1641 }
1642
1643 static bool __i915_spin_request(const struct i915_request * const rq, int state)
1644 {
1645         unsigned long timeout_ns;
1646         unsigned int cpu;
1647
1648         /*
1649          * Only wait for the request if we know it is likely to complete.
1650          *
1651          * We don't track the timestamps around requests, nor the average
1652          * request length, so we do not have a good indicator that this
1653          * request will complete within the timeout. What we do know is the
1654          * order in which requests are executed by the context and so we can
1655          * tell if the request has been started. If the request is not even
1656          * running yet, it is a fair assumption that it will not complete
1657          * within our relatively short timeout.
1658          */
1659         if (!i915_request_is_running(rq))
1660                 return false;
1661
1662         /*
1663          * When waiting for high frequency requests, e.g. during synchronous
1664          * rendering split between the CPU and GPU, the finite amount of time
1665          * required to set up the irq and wait upon it limits the response
1666          * rate. By busywaiting on the request completion for a short while we
1667          * can service the high frequency waits as quick as possible. However,
1668          * if it is a slow request, we want to sleep as quickly as possible.
1669          * The tradeoff between waiting and sleeping is roughly the time it
1670          * takes to sleep on a request, on the order of a microsecond.
1671          */
1672
1673         timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1674         timeout_ns += local_clock_ns(&cpu);
1675         do {
1676                 if (i915_request_completed(rq))
1677                         return true;
1678
1679                 if (signal_pending_state(state, current))
1680                         break;
1681
1682                 if (busywait_stop(timeout_ns, cpu))
1683                         break;
1684
1685                 cpu_relax();
1686         } while (!need_resched());
1687
1688         return false;
1689 }
1690
1691 struct request_wait {
1692         struct dma_fence_cb cb;
1693         struct task_struct *tsk;
1694 };
1695
1696 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1697 {
1698         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1699
1700         wake_up_process(wait->tsk);
1701 }
1702
1703 /**
1704  * i915_request_wait - wait until execution of request has finished
1705  * @rq: the request to wait upon
1706  * @flags: how to wait
1707  * @timeout: how long to wait in jiffies
1708  *
1709  * i915_request_wait() waits for the request to be completed, for a
1710  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1711  * unbounded wait).
1712  *
1713  * Returns the remaining time (in jiffies) if the request completed, which may
1714  * be zero or -ETIME if the request is unfinished after the timeout expires.
1715  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1716  * pending before the request completes.
1717  */
1718 long i915_request_wait(struct i915_request *rq,
1719                        unsigned int flags,
1720                        long timeout)
1721 {
1722         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1723                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1724         struct request_wait wait;
1725
1726         might_sleep();
1727         GEM_BUG_ON(timeout < 0);
1728
1729         if (dma_fence_is_signaled(&rq->fence))
1730                 return timeout;
1731
1732         if (!timeout)
1733                 return -ETIME;
1734
1735         trace_i915_request_wait_begin(rq, flags);
1736
1737         /*
1738          * We must never wait on the GPU while holding a lock as we
1739          * may need to perform a GPU reset. So while we don't need to
1740          * serialise wait/reset with an explicit lock, we do want
1741          * lockdep to detect potential dependency cycles.
1742          */
1743         mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1744
1745         /*
1746          * Optimistic spin before touching IRQs.
1747          *
1748          * We may use a rather large value here to offset the penalty of
1749          * switching away from the active task. Frequently, the client will
1750          * wait upon an old swapbuffer to throttle itself to remain within a
1751          * frame of the gpu. If the client is running in lockstep with the gpu,
1752          * then it should not be waiting long at all, and a sleep now will incur
1753          * extra scheduler latency in producing the next frame. To try to
1754          * avoid adding the cost of enabling/disabling the interrupt to the
1755          * short wait, we first spin to see if the request would have completed
1756          * in the time taken to setup the interrupt.
1757          *
1758          * We need upto 5us to enable the irq, and upto 20us to hide the
1759          * scheduler latency of a context switch, ignoring the secondary
1760          * impacts from a context switch such as cache eviction.
1761          *
1762          * The scheme used for low-latency IO is called "hybrid interrupt
1763          * polling". The suggestion there is to sleep until just before you
1764          * expect to be woken by the device interrupt and then poll for its
1765          * completion. That requires having a good predictor for the request
1766          * duration, which we currently lack.
1767          */
1768         if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1769             __i915_spin_request(rq, state)) {
1770                 dma_fence_signal(&rq->fence);
1771                 goto out;
1772         }
1773
1774         /*
1775          * This client is about to stall waiting for the GPU. In many cases
1776          * this is undesirable and limits the throughput of the system, as
1777          * many clients cannot continue processing user input/output whilst
1778          * blocked. RPS autotuning may take tens of milliseconds to respond
1779          * to the GPU load and thus incurs additional latency for the client.
1780          * We can circumvent that by promoting the GPU frequency to maximum
1781          * before we sleep. This makes the GPU throttle up much more quickly
1782          * (good for benchmarks and user experience, e.g. window animations),
1783          * but at a cost of spending more power processing the workload
1784          * (bad for battery).
1785          */
1786         if (flags & I915_WAIT_PRIORITY) {
1787                 if (!i915_request_started(rq) &&
1788                     INTEL_GEN(rq->engine->i915) >= 6)
1789                         intel_rps_boost(rq);
1790         }
1791
1792         wait.tsk = current;
1793         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1794                 goto out;
1795
1796         for (;;) {
1797                 set_current_state(state);
1798
1799                 if (i915_request_completed(rq)) {
1800                         dma_fence_signal(&rq->fence);
1801                         break;
1802                 }
1803
1804                 intel_engine_flush_submission(rq->engine);
1805
1806                 if (signal_pending_state(state, current)) {
1807                         timeout = -ERESTARTSYS;
1808                         break;
1809                 }
1810
1811                 if (!timeout) {
1812                         timeout = -ETIME;
1813                         break;
1814                 }
1815
1816                 timeout = io_schedule_timeout(timeout);
1817         }
1818         __set_current_state(TASK_RUNNING);
1819
1820         dma_fence_remove_callback(&rq->fence, &wait.cb);
1821
1822 out:
1823         mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1824         trace_i915_request_wait_end(rq);
1825         return timeout;
1826 }
1827
1828 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1829 #include "selftests/mock_request.c"
1830 #include "selftests/i915_request.c"
1831 #endif
1832
1833 static void i915_global_request_shrink(void)
1834 {
1835         kmem_cache_shrink(global.slab_execute_cbs);
1836         kmem_cache_shrink(global.slab_requests);
1837 }
1838
1839 static void i915_global_request_exit(void)
1840 {
1841         kmem_cache_destroy(global.slab_execute_cbs);
1842         kmem_cache_destroy(global.slab_requests);
1843 }
1844
1845 static struct i915_global_request global = { {
1846         .shrink = i915_global_request_shrink,
1847         .exit = i915_global_request_exit,
1848 } };
1849
1850 int __init i915_global_request_init(void)
1851 {
1852         global.slab_requests =
1853                 kmem_cache_create("i915_request",
1854                                   sizeof(struct i915_request),
1855                                   __alignof__(struct i915_request),
1856                                   SLAB_HWCACHE_ALIGN |
1857                                   SLAB_RECLAIM_ACCOUNT |
1858                                   SLAB_TYPESAFE_BY_RCU,
1859                                   __i915_request_ctor);
1860         if (!global.slab_requests)
1861                 return -ENOMEM;
1862
1863         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1864                                              SLAB_HWCACHE_ALIGN |
1865                                              SLAB_RECLAIM_ACCOUNT |
1866                                              SLAB_TYPESAFE_BY_RCU);
1867         if (!global.slab_execute_cbs)
1868                 goto err_requests;
1869
1870         i915_global_register(&global.base);
1871         return 0;
1872
1873 err_requests:
1874         kmem_cache_destroy(global.slab_requests);
1875         return -ENOMEM;
1876 }
This page took 0.148551 seconds and 4 git commands to generate.