4 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38 #include "i915_pvinfo.h"
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
44 #define gvt_vdbg_mm(fmt, args...)
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
51 * validate a gm address and related range size,
52 * translate it to host gm address
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
57 return vgpu_gmadr_is_valid(vgpu, addr);
59 if (vgpu_gmadr_is_aperture(vgpu, addr) &&
60 vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
62 else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
63 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
66 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
71 /* translate a guest gmadr to host gmadr */
72 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
74 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
76 if (drm_WARN(&i915->drm, !vgpu_gmadr_is_valid(vgpu, g_addr),
77 "invalid guest gmadr %llx\n", g_addr))
80 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
81 *h_addr = vgpu_aperture_gmadr_base(vgpu)
82 + (g_addr - vgpu_aperture_offset(vgpu));
84 *h_addr = vgpu_hidden_gmadr_base(vgpu)
85 + (g_addr - vgpu_hidden_offset(vgpu));
89 /* translate a host gmadr to guest gmadr */
90 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
92 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
94 if (drm_WARN(&i915->drm, !gvt_gmadr_is_valid(vgpu->gvt, h_addr),
95 "invalid host gmadr %llx\n", h_addr))
98 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
99 *g_addr = vgpu_aperture_gmadr_base(vgpu)
100 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
102 *g_addr = vgpu_hidden_gmadr_base(vgpu)
103 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
107 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
108 unsigned long *h_index)
113 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
118 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
122 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
123 unsigned long *g_index)
128 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
133 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
137 #define gtt_type_is_entry(type) \
138 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
139 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
140 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
142 #define gtt_type_is_pt(type) \
143 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
145 #define gtt_type_is_pte_pt(type) \
146 (type == GTT_TYPE_PPGTT_PTE_PT)
148 #define gtt_type_is_root_pointer(type) \
149 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
151 #define gtt_init_entry(e, t, p, v) do { \
154 memcpy(&(e)->val64, &v, sizeof(v)); \
158 * Mappings between GTT_TYPE* enumerations.
159 * Following information can be found according to the given type:
160 * - type of next level page table
161 * - type of entry inside this level page table
162 * - type of entry with PSE set
164 * If the given type doesn't have such a kind of information,
165 * e.g. give a l4 root entry type, then request to get its PSE type,
166 * give a PTE page table type, then request to get its next level page
167 * table type, as we know l4 root entry doesn't have a PSE bit,
168 * and a PTE page table doesn't have a next level page table type,
169 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
173 struct gtt_type_table_entry {
180 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
182 .entry_type = e_type, \
183 .pt_type = cpt_type, \
184 .next_pt_type = npt_type, \
185 .pse_entry_type = pse_type, \
188 static struct gtt_type_table_entry gtt_type_table[] = {
189 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
190 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
192 GTT_TYPE_PPGTT_PML4_PT,
194 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
195 GTT_TYPE_PPGTT_PML4_ENTRY,
196 GTT_TYPE_PPGTT_PML4_PT,
197 GTT_TYPE_PPGTT_PDP_PT,
199 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
200 GTT_TYPE_PPGTT_PML4_ENTRY,
201 GTT_TYPE_PPGTT_PML4_PT,
202 GTT_TYPE_PPGTT_PDP_PT,
204 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
205 GTT_TYPE_PPGTT_PDP_ENTRY,
206 GTT_TYPE_PPGTT_PDP_PT,
207 GTT_TYPE_PPGTT_PDE_PT,
208 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
210 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
212 GTT_TYPE_PPGTT_PDE_PT,
213 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
214 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
215 GTT_TYPE_PPGTT_PDP_ENTRY,
216 GTT_TYPE_PPGTT_PDP_PT,
217 GTT_TYPE_PPGTT_PDE_PT,
218 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
220 GTT_TYPE_PPGTT_PDE_ENTRY,
221 GTT_TYPE_PPGTT_PDE_PT,
222 GTT_TYPE_PPGTT_PTE_PT,
223 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
224 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
225 GTT_TYPE_PPGTT_PDE_ENTRY,
226 GTT_TYPE_PPGTT_PDE_PT,
227 GTT_TYPE_PPGTT_PTE_PT,
228 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
229 /* We take IPS bit as 'PSE' for PTE level. */
230 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
231 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232 GTT_TYPE_PPGTT_PTE_PT,
234 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
236 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237 GTT_TYPE_PPGTT_PTE_PT,
239 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
240 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
241 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
242 GTT_TYPE_PPGTT_PTE_PT,
244 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
245 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
246 GTT_TYPE_PPGTT_PDE_ENTRY,
247 GTT_TYPE_PPGTT_PDE_PT,
249 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
250 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
251 GTT_TYPE_PPGTT_PDP_ENTRY,
252 GTT_TYPE_PPGTT_PDP_PT,
254 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
255 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
262 static inline int get_next_pt_type(int type)
264 return gtt_type_table[type].next_pt_type;
267 static inline int get_pt_type(int type)
269 return gtt_type_table[type].pt_type;
272 static inline int get_entry_type(int type)
274 return gtt_type_table[type].entry_type;
277 static inline int get_pse_type(int type)
279 return gtt_type_table[type].pse_entry_type;
282 static u64 read_pte64(struct i915_ggtt *ggtt, unsigned long index)
284 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
289 static void ggtt_invalidate(struct intel_gt *gt)
291 mmio_hw_access_pre(gt);
292 intel_uncore_write(gt->uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
293 mmio_hw_access_post(gt);
296 static void write_pte64(struct i915_ggtt *ggtt, unsigned long index, u64 pte)
298 void __iomem *addr = (gen8_pte_t __iomem *)ggtt->gsm + index;
303 static inline int gtt_get_entry64(void *pt,
304 struct intel_gvt_gtt_entry *e,
305 unsigned long index, bool hypervisor_access, unsigned long gpa,
306 struct intel_vgpu *vgpu)
308 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
311 if (WARN_ON(info->gtt_entry_size != 8))
314 if (hypervisor_access) {
315 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
316 (index << info->gtt_entry_size_shift),
321 e->val64 = read_pte64(vgpu->gvt->gt->ggtt, index);
323 e->val64 = *((u64 *)pt + index);
328 static inline int gtt_set_entry64(void *pt,
329 struct intel_gvt_gtt_entry *e,
330 unsigned long index, bool hypervisor_access, unsigned long gpa,
331 struct intel_vgpu *vgpu)
333 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
336 if (WARN_ON(info->gtt_entry_size != 8))
339 if (hypervisor_access) {
340 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
341 (index << info->gtt_entry_size_shift),
346 write_pte64(vgpu->gvt->gt->ggtt, index, e->val64);
348 *((u64 *)pt + index) = e->val64;
355 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
356 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
357 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
358 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
360 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
361 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
363 #define GTT_64K_PTE_STRIDE 16
365 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
369 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
370 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
371 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
372 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
373 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
374 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
376 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
380 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
382 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
383 e->val64 &= ~ADDR_1G_MASK;
384 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
385 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
386 e->val64 &= ~ADDR_2M_MASK;
387 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
388 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
389 e->val64 &= ~ADDR_64K_MASK;
390 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
392 e->val64 &= ~ADDR_4K_MASK;
393 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
396 e->val64 |= (pfn << PAGE_SHIFT);
399 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
401 return !!(e->val64 & _PAGE_PSE);
404 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
406 if (gen8_gtt_test_pse(e)) {
408 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
409 e->val64 &= ~_PAGE_PSE;
410 e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
412 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
413 e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
414 e->val64 &= ~_PAGE_PSE;
422 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
424 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
427 return !!(e->val64 & GEN8_PDE_IPS_64K);
430 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
432 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
435 e->val64 &= ~GEN8_PDE_IPS_64K;
438 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
441 * i915 writes PDP root pointer registers without present bit,
442 * it also works, so we need to treat root pointer entry
445 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
446 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
447 return (e->val64 != 0);
449 return (e->val64 & _PAGE_PRESENT);
452 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
454 e->val64 &= ~_PAGE_PRESENT;
457 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
459 e->val64 |= _PAGE_PRESENT;
462 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
464 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
467 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
469 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
472 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
474 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
478 * Per-platform GMA routines.
480 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
482 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
484 trace_gma_index(__func__, gma, x);
488 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
489 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
491 unsigned long x = (exp); \
492 trace_gma_index(__func__, gma, x); \
496 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
497 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
502 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
503 .get_entry = gtt_get_entry64,
504 .set_entry = gtt_set_entry64,
505 .clear_present = gtt_entry_clear_present,
506 .set_present = gtt_entry_set_present,
507 .test_present = gen8_gtt_test_present,
508 .test_pse = gen8_gtt_test_pse,
509 .clear_pse = gen8_gtt_clear_pse,
510 .clear_ips = gen8_gtt_clear_ips,
511 .test_ips = gen8_gtt_test_ips,
512 .clear_64k_splited = gen8_gtt_clear_64k_splited,
513 .set_64k_splited = gen8_gtt_set_64k_splited,
514 .test_64k_splited = gen8_gtt_test_64k_splited,
515 .get_pfn = gen8_gtt_get_pfn,
516 .set_pfn = gen8_gtt_set_pfn,
519 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
520 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
521 .gma_to_pte_index = gen8_gma_to_pte_index,
522 .gma_to_pde_index = gen8_gma_to_pde_index,
523 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
524 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
525 .gma_to_pml4_index = gen8_gma_to_pml4_index,
528 /* Update entry type per pse and ips bit. */
529 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
530 struct intel_gvt_gtt_entry *entry, bool ips)
532 switch (entry->type) {
533 case GTT_TYPE_PPGTT_PDE_ENTRY:
534 case GTT_TYPE_PPGTT_PDP_ENTRY:
535 if (pte_ops->test_pse(entry))
536 entry->type = get_pse_type(entry->type);
538 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
540 entry->type = get_pse_type(entry->type);
543 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
546 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
552 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
553 struct intel_gvt_gtt_entry *entry, unsigned long index,
556 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
558 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
560 entry->type = mm->ppgtt_mm.root_entry_type;
561 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
562 mm->ppgtt_mm.shadow_pdps,
563 entry, index, false, 0, mm->vgpu);
564 update_entry_type_for_real(pte_ops, entry, false);
567 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
568 struct intel_gvt_gtt_entry *entry, unsigned long index)
570 _ppgtt_get_root_entry(mm, entry, index, true);
573 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
574 struct intel_gvt_gtt_entry *entry, unsigned long index)
576 _ppgtt_get_root_entry(mm, entry, index, false);
579 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
580 struct intel_gvt_gtt_entry *entry, unsigned long index,
583 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
585 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
586 mm->ppgtt_mm.shadow_pdps,
587 entry, index, false, 0, mm->vgpu);
590 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
591 struct intel_gvt_gtt_entry *entry, unsigned long index)
593 _ppgtt_set_root_entry(mm, entry, index, true);
596 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
597 struct intel_gvt_gtt_entry *entry, unsigned long index)
599 _ppgtt_set_root_entry(mm, entry, index, false);
602 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
603 struct intel_gvt_gtt_entry *entry, unsigned long index)
605 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
607 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
609 entry->type = GTT_TYPE_GGTT_PTE;
610 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
614 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
615 struct intel_gvt_gtt_entry *entry, unsigned long index)
617 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
619 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
621 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
625 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
626 struct intel_gvt_gtt_entry *entry, unsigned long index)
628 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
632 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
635 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
636 struct intel_gvt_gtt_entry *entry, unsigned long index)
638 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
640 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
642 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
646 * PPGTT shadow page table helpers.
648 static inline int ppgtt_spt_get_entry(
649 struct intel_vgpu_ppgtt_spt *spt,
650 void *page_table, int type,
651 struct intel_gvt_gtt_entry *e, unsigned long index,
654 struct intel_gvt *gvt = spt->vgpu->gvt;
655 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
658 e->type = get_entry_type(type);
660 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
663 ret = ops->get_entry(page_table, e, index, guest,
664 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
669 update_entry_type_for_real(ops, e, guest ?
670 spt->guest_page.pde_ips : false);
672 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
673 type, e->type, index, e->val64);
677 static inline int ppgtt_spt_set_entry(
678 struct intel_vgpu_ppgtt_spt *spt,
679 void *page_table, int type,
680 struct intel_gvt_gtt_entry *e, unsigned long index,
683 struct intel_gvt *gvt = spt->vgpu->gvt;
684 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
686 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
689 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
690 type, e->type, index, e->val64);
692 return ops->set_entry(page_table, e, index, guest,
693 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
697 #define ppgtt_get_guest_entry(spt, e, index) \
698 ppgtt_spt_get_entry(spt, NULL, \
699 spt->guest_page.type, e, index, true)
701 #define ppgtt_set_guest_entry(spt, e, index) \
702 ppgtt_spt_set_entry(spt, NULL, \
703 spt->guest_page.type, e, index, true)
705 #define ppgtt_get_shadow_entry(spt, e, index) \
706 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
707 spt->shadow_page.type, e, index, false)
709 #define ppgtt_set_shadow_entry(spt, e, index) \
710 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
711 spt->shadow_page.type, e, index, false)
713 static void *alloc_spt(gfp_t gfp_mask)
715 struct intel_vgpu_ppgtt_spt *spt;
717 spt = kzalloc(sizeof(*spt), gfp_mask);
721 spt->shadow_page.page = alloc_page(gfp_mask);
722 if (!spt->shadow_page.page) {
729 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
731 __free_page(spt->shadow_page.page);
735 static int detach_oos_page(struct intel_vgpu *vgpu,
736 struct intel_vgpu_oos_page *oos_page);
738 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
740 struct device *kdev = &spt->vgpu->gvt->gt->i915->drm.pdev->dev;
742 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
744 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
745 PCI_DMA_BIDIRECTIONAL);
747 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
749 if (spt->guest_page.gfn) {
750 if (spt->guest_page.oos_page)
751 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
753 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
756 list_del_init(&spt->post_shadow_list);
760 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
762 struct intel_vgpu_ppgtt_spt *spt, *spn;
763 struct radix_tree_iter iter;
768 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
769 spt = radix_tree_deref_slot(slot);
770 list_move(&spt->post_shadow_list, &all_spt);
774 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
778 static int ppgtt_handle_guest_write_page_table_bytes(
779 struct intel_vgpu_ppgtt_spt *spt,
780 u64 pa, void *p_data, int bytes);
782 static int ppgtt_write_protection_handler(
783 struct intel_vgpu_page_track *page_track,
784 u64 gpa, void *data, int bytes)
786 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
790 if (bytes != 4 && bytes != 8)
793 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
799 /* Find a spt by guest gfn. */
800 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
801 struct intel_vgpu *vgpu, unsigned long gfn)
803 struct intel_vgpu_page_track *track;
805 track = intel_vgpu_find_page_track(vgpu, gfn);
806 if (track && track->handler == ppgtt_write_protection_handler)
807 return track->priv_data;
812 /* Find the spt by shadow page mfn. */
813 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
814 struct intel_vgpu *vgpu, unsigned long mfn)
816 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
819 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
821 /* Allocate shadow page table without guest page. */
822 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
823 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
825 struct device *kdev = &vgpu->gvt->gt->i915->drm.pdev->dev;
826 struct intel_vgpu_ppgtt_spt *spt = NULL;
831 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
833 if (reclaim_one_ppgtt_mm(vgpu->gvt))
836 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
837 return ERR_PTR(-ENOMEM);
841 atomic_set(&spt->refcount, 1);
842 INIT_LIST_HEAD(&spt->post_shadow_list);
847 spt->shadow_page.type = type;
848 daddr = dma_map_page(kdev, spt->shadow_page.page,
849 0, 4096, PCI_DMA_BIDIRECTIONAL);
850 if (dma_mapping_error(kdev, daddr)) {
851 gvt_vgpu_err("fail to map dma addr\n");
855 spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
856 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
858 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
865 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
871 /* Allocate shadow page table associated with specific gfn. */
872 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
873 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
874 unsigned long gfn, bool guest_pde_ips)
876 struct intel_vgpu_ppgtt_spt *spt;
879 spt = ppgtt_alloc_spt(vgpu, type);
886 ret = intel_vgpu_register_page_track(vgpu, gfn,
887 ppgtt_write_protection_handler, spt);
893 spt->guest_page.type = type;
894 spt->guest_page.gfn = gfn;
895 spt->guest_page.pde_ips = guest_pde_ips;
897 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
902 #define pt_entry_size_shift(spt) \
903 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
905 #define pt_entries(spt) \
906 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
908 #define for_each_present_guest_entry(spt, e, i) \
909 for (i = 0; i < pt_entries(spt); \
910 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
911 if (!ppgtt_get_guest_entry(spt, e, i) && \
912 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
914 #define for_each_present_shadow_entry(spt, e, i) \
915 for (i = 0; i < pt_entries(spt); \
916 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
917 if (!ppgtt_get_shadow_entry(spt, e, i) && \
918 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
920 #define for_each_shadow_entry(spt, e, i) \
921 for (i = 0; i < pt_entries(spt); \
922 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
923 if (!ppgtt_get_shadow_entry(spt, e, i))
925 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
927 int v = atomic_read(&spt->refcount);
929 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
930 atomic_inc(&spt->refcount);
933 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
935 int v = atomic_read(&spt->refcount);
937 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
938 return atomic_dec_return(&spt->refcount);
941 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
943 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
944 struct intel_gvt_gtt_entry *e)
946 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
947 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
948 struct intel_vgpu_ppgtt_spt *s;
949 enum intel_gvt_gtt_type cur_pt_type;
951 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
953 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
954 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
955 cur_pt_type = get_next_pt_type(e->type);
957 if (!gtt_type_is_pt(cur_pt_type) ||
958 !gtt_type_is_pt(cur_pt_type + 1)) {
959 drm_WARN(&i915->drm, 1,
960 "Invalid page table type, cur_pt_type is: %d\n",
967 if (ops->get_pfn(e) ==
968 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
971 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
973 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
977 return ppgtt_invalidate_spt(s);
980 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
981 struct intel_gvt_gtt_entry *entry)
983 struct intel_vgpu *vgpu = spt->vgpu;
984 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
988 pfn = ops->get_pfn(entry);
989 type = spt->shadow_page.type;
991 /* Uninitialized spte or unshadowed spte. */
992 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
995 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
998 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
1000 struct intel_vgpu *vgpu = spt->vgpu;
1001 struct intel_gvt_gtt_entry e;
1002 unsigned long index;
1005 trace_spt_change(spt->vgpu->id, "die", spt,
1006 spt->guest_page.gfn, spt->shadow_page.type);
1008 if (ppgtt_put_spt(spt) > 0)
1011 for_each_present_shadow_entry(spt, &e, index) {
1013 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1014 gvt_vdbg_mm("invalidate 4K entry\n");
1015 ppgtt_invalidate_pte(spt, &e);
1017 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1018 /* We don't setup 64K shadow entry so far. */
1019 WARN(1, "suspicious 64K gtt entry\n");
1021 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1022 gvt_vdbg_mm("invalidate 2M entry\n");
1024 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1025 WARN(1, "GVT doesn't support 1GB page\n");
1027 case GTT_TYPE_PPGTT_PML4_ENTRY:
1028 case GTT_TYPE_PPGTT_PDP_ENTRY:
1029 case GTT_TYPE_PPGTT_PDE_ENTRY:
1030 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1031 ret = ppgtt_invalidate_spt_by_shadow_entry(
1041 trace_spt_change(spt->vgpu->id, "release", spt,
1042 spt->guest_page.gfn, spt->shadow_page.type);
1043 ppgtt_free_spt(spt);
1046 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1047 spt, e.val64, e.type);
1051 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1053 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1055 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1056 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1057 GAMW_ECO_ENABLE_64K_IPS_FIELD;
1059 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1060 } else if (INTEL_GEN(dev_priv) >= 11) {
1061 /* 64K paging only controlled by IPS bit in PTE now. */
1067 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1069 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1070 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1072 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1073 struct intel_vgpu_ppgtt_spt *spt = NULL;
1077 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1079 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1080 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1082 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1086 if (ips != spt->guest_page.pde_ips) {
1087 spt->guest_page.pde_ips = ips;
1089 gvt_dbg_mm("reshadow PDE since ips changed\n");
1090 clear_page(spt->shadow_page.vaddr);
1091 ret = ppgtt_populate_spt(spt);
1098 int type = get_next_pt_type(we->type);
1100 if (!gtt_type_is_pt(type)) {
1105 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1111 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1115 ret = ppgtt_populate_spt(spt);
1119 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1120 spt->shadow_page.type);
1125 ppgtt_free_spt(spt);
1128 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1129 spt, we->val64, we->type);
1130 return ERR_PTR(ret);
1133 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1134 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1136 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1138 se->type = ge->type;
1139 se->val64 = ge->val64;
1141 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1142 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1145 ops->set_pfn(se, s->shadow_page.mfn);
1149 * Check if can do 2M page
1150 * @vgpu: target vgpu
1151 * @entry: target pfn's gtt entry
1153 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1154 * negtive if found err.
1156 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1157 struct intel_gvt_gtt_entry *entry)
1159 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1162 if (!HAS_PAGE_SIZES(vgpu->gvt->gt->i915, I915_GTT_PAGE_SIZE_2M))
1165 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1166 if (pfn == INTEL_GVT_INVALID_ADDR)
1169 return PageTransHuge(pfn_to_page(pfn));
1172 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1173 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1174 struct intel_gvt_gtt_entry *se)
1176 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1177 struct intel_vgpu_ppgtt_spt *sub_spt;
1178 struct intel_gvt_gtt_entry sub_se;
1179 unsigned long start_gfn;
1180 dma_addr_t dma_addr;
1181 unsigned long sub_index;
1184 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1186 start_gfn = ops->get_pfn(se);
1188 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1189 if (IS_ERR(sub_spt))
1190 return PTR_ERR(sub_spt);
1192 for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1193 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1194 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1196 ppgtt_invalidate_spt(spt);
1199 sub_se.val64 = se->val64;
1201 /* Copy the PAT field from PDE. */
1202 sub_se.val64 &= ~_PAGE_PAT;
1203 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1205 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1206 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1209 /* Clear dirty field. */
1210 se->val64 &= ~_PAGE_DIRTY;
1214 ops->set_pfn(se, sub_spt->shadow_page.mfn);
1215 ppgtt_set_shadow_entry(spt, se, index);
1219 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1220 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1221 struct intel_gvt_gtt_entry *se)
1223 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1224 struct intel_gvt_gtt_entry entry = *se;
1225 unsigned long start_gfn;
1226 dma_addr_t dma_addr;
1229 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1231 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1233 start_gfn = ops->get_pfn(se);
1235 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1236 ops->set_64k_splited(&entry);
1238 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1239 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1240 start_gfn + i, PAGE_SIZE, &dma_addr);
1244 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1245 ppgtt_set_shadow_entry(spt, &entry, index + i);
1250 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1251 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1252 struct intel_gvt_gtt_entry *ge)
1254 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1255 struct intel_gvt_gtt_entry se = *ge;
1256 unsigned long gfn, page_size = PAGE_SIZE;
1257 dma_addr_t dma_addr;
1260 if (!pte_ops->test_present(ge))
1263 gfn = pte_ops->get_pfn(ge);
1266 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1267 gvt_vdbg_mm("shadow 4K gtt entry\n");
1269 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1270 gvt_vdbg_mm("shadow 64K gtt entry\n");
1272 * The layout of 64K page is special, the page size is
1273 * controlled by uper PDE. To be simple, we always split
1274 * 64K page to smaller 4K pages in shadow PT.
1276 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1277 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1278 gvt_vdbg_mm("shadow 2M gtt entry\n");
1279 ret = is_2MB_gtt_possible(vgpu, ge);
1281 return split_2MB_gtt_entry(vgpu, spt, index, &se);
1284 page_size = I915_GTT_PAGE_SIZE_2M;
1286 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1287 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1294 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1299 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1300 ppgtt_set_shadow_entry(spt, &se, index);
1304 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1306 struct intel_vgpu *vgpu = spt->vgpu;
1307 struct intel_gvt *gvt = vgpu->gvt;
1308 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1309 struct intel_vgpu_ppgtt_spt *s;
1310 struct intel_gvt_gtt_entry se, ge;
1311 unsigned long gfn, i;
1314 trace_spt_change(spt->vgpu->id, "born", spt,
1315 spt->guest_page.gfn, spt->shadow_page.type);
1317 for_each_present_guest_entry(spt, &ge, i) {
1318 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1319 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1324 ppgtt_get_shadow_entry(spt, &se, i);
1325 ppgtt_generate_shadow_entry(&se, s, &ge);
1326 ppgtt_set_shadow_entry(spt, &se, i);
1328 gfn = ops->get_pfn(&ge);
1329 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1330 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1331 ppgtt_set_shadow_entry(spt, &se, i);
1335 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1342 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1343 spt, ge.val64, ge.type);
1347 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1348 struct intel_gvt_gtt_entry *se, unsigned long index)
1350 struct intel_vgpu *vgpu = spt->vgpu;
1351 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1354 trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1355 spt->shadow_page.type, se->val64, index);
1357 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1358 se->type, index, se->val64);
1360 if (!ops->test_present(se))
1363 if (ops->get_pfn(se) ==
1364 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1367 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1368 struct intel_vgpu_ppgtt_spt *s =
1369 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1371 gvt_vgpu_err("fail to find guest page\n");
1375 ret = ppgtt_invalidate_spt(s);
1379 /* We don't setup 64K shadow entry so far. */
1380 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1381 "suspicious 64K entry\n");
1382 ppgtt_invalidate_pte(spt, se);
1387 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1388 spt, se->val64, se->type);
1392 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1393 struct intel_gvt_gtt_entry *we, unsigned long index)
1395 struct intel_vgpu *vgpu = spt->vgpu;
1396 struct intel_gvt_gtt_entry m;
1397 struct intel_vgpu_ppgtt_spt *s;
1400 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1403 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1404 we->type, index, we->val64);
1406 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1407 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1412 ppgtt_get_shadow_entry(spt, &m, index);
1413 ppgtt_generate_shadow_entry(&m, s, we);
1414 ppgtt_set_shadow_entry(spt, &m, index);
1416 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1422 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1423 spt, we->val64, we->type);
1427 static int sync_oos_page(struct intel_vgpu *vgpu,
1428 struct intel_vgpu_oos_page *oos_page)
1430 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1431 struct intel_gvt *gvt = vgpu->gvt;
1432 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1433 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1434 struct intel_gvt_gtt_entry old, new;
1438 trace_oos_change(vgpu->id, "sync", oos_page->id,
1439 spt, spt->guest_page.type);
1441 old.type = new.type = get_entry_type(spt->guest_page.type);
1442 old.val64 = new.val64 = 0;
1444 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1445 info->gtt_entry_size_shift); index++) {
1446 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1447 ops->get_entry(NULL, &new, index, true,
1448 spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1450 if (old.val64 == new.val64
1451 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1454 trace_oos_sync(vgpu->id, oos_page->id,
1455 spt, spt->guest_page.type,
1458 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1462 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1465 spt->guest_page.write_cnt = 0;
1466 list_del_init(&spt->post_shadow_list);
1470 static int detach_oos_page(struct intel_vgpu *vgpu,
1471 struct intel_vgpu_oos_page *oos_page)
1473 struct intel_gvt *gvt = vgpu->gvt;
1474 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1476 trace_oos_change(vgpu->id, "detach", oos_page->id,
1477 spt, spt->guest_page.type);
1479 spt->guest_page.write_cnt = 0;
1480 spt->guest_page.oos_page = NULL;
1481 oos_page->spt = NULL;
1483 list_del_init(&oos_page->vm_list);
1484 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1489 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1490 struct intel_vgpu_ppgtt_spt *spt)
1492 struct intel_gvt *gvt = spt->vgpu->gvt;
1495 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1496 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1497 oos_page->mem, I915_GTT_PAGE_SIZE);
1501 oos_page->spt = spt;
1502 spt->guest_page.oos_page = oos_page;
1504 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1506 trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1507 spt, spt->guest_page.type);
1511 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1513 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1516 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1520 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1521 spt, spt->guest_page.type);
1523 list_del_init(&oos_page->vm_list);
1524 return sync_oos_page(spt->vgpu, oos_page);
1527 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1529 struct intel_gvt *gvt = spt->vgpu->gvt;
1530 struct intel_gvt_gtt *gtt = &gvt->gtt;
1531 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1534 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1536 if (list_empty(>t->oos_page_free_list_head)) {
1537 oos_page = container_of(gtt->oos_page_use_list_head.next,
1538 struct intel_vgpu_oos_page, list);
1539 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1542 ret = detach_oos_page(spt->vgpu, oos_page);
1546 oos_page = container_of(gtt->oos_page_free_list_head.next,
1547 struct intel_vgpu_oos_page, list);
1548 return attach_oos_page(oos_page, spt);
1551 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1553 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1555 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1558 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1559 spt, spt->guest_page.type);
1561 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1562 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1566 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1569 * This function is called before submitting a guest workload to host,
1570 * to sync all the out-of-synced shadow for vGPU
1573 * Zero on success, negative error code if failed.
1575 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1577 struct list_head *pos, *n;
1578 struct intel_vgpu_oos_page *oos_page;
1581 if (!enable_out_of_sync)
1584 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1585 oos_page = container_of(pos,
1586 struct intel_vgpu_oos_page, vm_list);
1587 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1595 * The heart of PPGTT shadow page table.
1597 static int ppgtt_handle_guest_write_page_table(
1598 struct intel_vgpu_ppgtt_spt *spt,
1599 struct intel_gvt_gtt_entry *we, unsigned long index)
1601 struct intel_vgpu *vgpu = spt->vgpu;
1602 int type = spt->shadow_page.type;
1603 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1604 struct intel_gvt_gtt_entry old_se;
1608 new_present = ops->test_present(we);
1611 * Adding the new entry first and then removing the old one, that can
1612 * guarantee the ppgtt table is validated during the window between
1613 * adding and removal.
1615 ppgtt_get_shadow_entry(spt, &old_se, index);
1618 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1623 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1628 /* For 64KB splited entries, we need clear them all. */
1629 if (ops->test_64k_splited(&old_se) &&
1630 !(index % GTT_64K_PTE_STRIDE)) {
1631 gvt_vdbg_mm("remove splited 64K shadow entries\n");
1632 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1633 ops->clear_64k_splited(&old_se);
1634 ops->set_pfn(&old_se,
1635 vgpu->gtt.scratch_pt[type].page_mfn);
1636 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1638 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1639 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1640 ops->clear_pse(&old_se);
1641 ops->set_pfn(&old_se,
1642 vgpu->gtt.scratch_pt[type].page_mfn);
1643 ppgtt_set_shadow_entry(spt, &old_se, index);
1645 ops->set_pfn(&old_se,
1646 vgpu->gtt.scratch_pt[type].page_mfn);
1647 ppgtt_set_shadow_entry(spt, &old_se, index);
1653 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1654 spt, we->val64, we->type);
1660 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1662 return enable_out_of_sync
1663 && gtt_type_is_pte_pt(spt->guest_page.type)
1664 && spt->guest_page.write_cnt >= 2;
1667 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1668 unsigned long index)
1670 set_bit(index, spt->post_shadow_bitmap);
1671 if (!list_empty(&spt->post_shadow_list))
1674 list_add_tail(&spt->post_shadow_list,
1675 &spt->vgpu->gtt.post_shadow_list_head);
1679 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1682 * This function is called before submitting a guest workload to host,
1683 * to flush all the post shadows for a vGPU.
1686 * Zero on success, negative error code if failed.
1688 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1690 struct list_head *pos, *n;
1691 struct intel_vgpu_ppgtt_spt *spt;
1692 struct intel_gvt_gtt_entry ge;
1693 unsigned long index;
1696 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1697 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1700 for_each_set_bit(index, spt->post_shadow_bitmap,
1701 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1702 ppgtt_get_guest_entry(spt, &ge, index);
1704 ret = ppgtt_handle_guest_write_page_table(spt,
1708 clear_bit(index, spt->post_shadow_bitmap);
1710 list_del_init(&spt->post_shadow_list);
1715 static int ppgtt_handle_guest_write_page_table_bytes(
1716 struct intel_vgpu_ppgtt_spt *spt,
1717 u64 pa, void *p_data, int bytes)
1719 struct intel_vgpu *vgpu = spt->vgpu;
1720 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1721 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1722 struct intel_gvt_gtt_entry we, se;
1723 unsigned long index;
1726 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1728 ppgtt_get_guest_entry(spt, &we, index);
1731 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1732 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1735 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1736 (index % GTT_64K_PTE_STRIDE)) {
1737 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1742 if (bytes == info->gtt_entry_size) {
1743 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1747 if (!test_bit(index, spt->post_shadow_bitmap)) {
1748 int type = spt->shadow_page.type;
1750 ppgtt_get_shadow_entry(spt, &se, index);
1751 ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1754 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1755 ppgtt_set_shadow_entry(spt, &se, index);
1757 ppgtt_set_post_shadow(spt, index);
1760 if (!enable_out_of_sync)
1763 spt->guest_page.write_cnt++;
1765 if (spt->guest_page.oos_page)
1766 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1769 if (can_do_out_of_sync(spt)) {
1770 if (!spt->guest_page.oos_page)
1771 ppgtt_allocate_oos_page(spt);
1773 ret = ppgtt_set_guest_page_oos(spt);
1780 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1782 struct intel_vgpu *vgpu = mm->vgpu;
1783 struct intel_gvt *gvt = vgpu->gvt;
1784 struct intel_gvt_gtt *gtt = &gvt->gtt;
1785 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1786 struct intel_gvt_gtt_entry se;
1789 if (!mm->ppgtt_mm.shadowed)
1792 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1793 ppgtt_get_shadow_root_entry(mm, &se, index);
1795 if (!ops->test_present(&se))
1798 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1800 ppgtt_set_shadow_root_entry(mm, &se, index);
1802 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1803 NULL, se.type, se.val64, index);
1806 mm->ppgtt_mm.shadowed = false;
1810 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1812 struct intel_vgpu *vgpu = mm->vgpu;
1813 struct intel_gvt *gvt = vgpu->gvt;
1814 struct intel_gvt_gtt *gtt = &gvt->gtt;
1815 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1816 struct intel_vgpu_ppgtt_spt *spt;
1817 struct intel_gvt_gtt_entry ge, se;
1820 if (mm->ppgtt_mm.shadowed)
1823 mm->ppgtt_mm.shadowed = true;
1825 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1826 ppgtt_get_guest_root_entry(mm, &ge, index);
1828 if (!ops->test_present(&ge))
1831 trace_spt_guest_change(vgpu->id, __func__, NULL,
1832 ge.type, ge.val64, index);
1834 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1836 gvt_vgpu_err("fail to populate guest root pointer\n");
1840 ppgtt_generate_shadow_entry(&se, spt, &ge);
1841 ppgtt_set_shadow_root_entry(mm, &se, index);
1843 trace_spt_guest_change(vgpu->id, "populate root pointer",
1844 NULL, se.type, se.val64, index);
1849 invalidate_ppgtt_mm(mm);
1853 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1855 struct intel_vgpu_mm *mm;
1857 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1862 kref_init(&mm->ref);
1863 atomic_set(&mm->pincount, 0);
1868 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1874 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1876 * @root_entry_type: ppgtt root entry type
1877 * @pdps: guest pdps.
1879 * This function is used to create a ppgtt mm object for a vGPU.
1882 * Zero on success, negative error code in pointer if failed.
1884 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1885 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1887 struct intel_gvt *gvt = vgpu->gvt;
1888 struct intel_vgpu_mm *mm;
1891 mm = vgpu_alloc_mm(vgpu);
1893 return ERR_PTR(-ENOMEM);
1895 mm->type = INTEL_GVT_MM_PPGTT;
1897 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1898 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1899 mm->ppgtt_mm.root_entry_type = root_entry_type;
1901 INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1902 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1903 INIT_LIST_HEAD(&mm->ppgtt_mm.link);
1905 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1906 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1908 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1909 sizeof(mm->ppgtt_mm.guest_pdps));
1911 ret = shadow_ppgtt_mm(mm);
1913 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1915 return ERR_PTR(ret);
1918 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1920 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1921 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1922 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1927 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1929 struct intel_vgpu_mm *mm;
1930 unsigned long nr_entries;
1932 mm = vgpu_alloc_mm(vgpu);
1934 return ERR_PTR(-ENOMEM);
1936 mm->type = INTEL_GVT_MM_GGTT;
1938 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1939 mm->ggtt_mm.virtual_ggtt =
1940 vzalloc(array_size(nr_entries,
1941 vgpu->gvt->device_info.gtt_entry_size));
1942 if (!mm->ggtt_mm.virtual_ggtt) {
1944 return ERR_PTR(-ENOMEM);
1951 * _intel_vgpu_mm_release - destroy a mm object
1952 * @mm_ref: a kref object
1954 * This function is used to destroy a mm object for vGPU
1957 void _intel_vgpu_mm_release(struct kref *mm_ref)
1959 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1961 if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1962 gvt_err("vgpu mm pin count bug detected\n");
1964 if (mm->type == INTEL_GVT_MM_PPGTT) {
1965 list_del(&mm->ppgtt_mm.list);
1967 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1968 list_del(&mm->ppgtt_mm.lru_list);
1969 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1971 invalidate_ppgtt_mm(mm);
1973 vfree(mm->ggtt_mm.virtual_ggtt);
1980 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1981 * @mm: a vGPU mm object
1983 * This function is called when user doesn't want to use a vGPU mm object
1985 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1987 atomic_dec_if_positive(&mm->pincount);
1991 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1992 * @mm: target vgpu mm
1994 * This function is called when user wants to use a vGPU mm object. If this
1995 * mm object hasn't been shadowed yet, the shadow will be populated at this
1999 * Zero on success, negative error code if failed.
2001 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2005 atomic_inc(&mm->pincount);
2007 if (mm->type == INTEL_GVT_MM_PPGTT) {
2008 ret = shadow_ppgtt_mm(mm);
2012 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2013 list_move_tail(&mm->ppgtt_mm.lru_list,
2014 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2015 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2021 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2023 struct intel_vgpu_mm *mm;
2024 struct list_head *pos, *n;
2026 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2028 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2029 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2031 if (atomic_read(&mm->pincount))
2034 list_del_init(&mm->ppgtt_mm.lru_list);
2035 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2036 invalidate_ppgtt_mm(mm);
2039 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2044 * GMA translation APIs.
2046 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2047 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2049 struct intel_vgpu *vgpu = mm->vgpu;
2050 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2051 struct intel_vgpu_ppgtt_spt *s;
2053 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2058 ppgtt_get_shadow_entry(s, e, index);
2060 ppgtt_get_guest_entry(s, e, index);
2065 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2066 * @mm: mm object. could be a PPGTT or GGTT mm object
2067 * @gma: graphics memory address in this mm object
2069 * This function is used to translate a graphics memory address in specific
2070 * graphics memory space to guest physical address.
2073 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2075 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2077 struct intel_vgpu *vgpu = mm->vgpu;
2078 struct intel_gvt *gvt = vgpu->gvt;
2079 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2080 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2081 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2082 unsigned long gma_index[4];
2083 struct intel_gvt_gtt_entry e;
2087 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2088 mm->type != INTEL_GVT_MM_PPGTT);
2090 if (mm->type == INTEL_GVT_MM_GGTT) {
2091 if (!vgpu_gmadr_is_valid(vgpu, gma))
2094 ggtt_get_guest_entry(mm, &e,
2095 gma_ops->gma_to_ggtt_pte_index(gma));
2097 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2098 + (gma & ~I915_GTT_PAGE_MASK);
2100 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2102 switch (mm->ppgtt_mm.root_entry_type) {
2103 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2104 ppgtt_get_shadow_root_entry(mm, &e, 0);
2106 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2107 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2108 gma_index[2] = gma_ops->gma_to_pde_index(gma);
2109 gma_index[3] = gma_ops->gma_to_pte_index(gma);
2112 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2113 ppgtt_get_shadow_root_entry(mm, &e,
2114 gma_ops->gma_to_l3_pdp_index(gma));
2116 gma_index[0] = gma_ops->gma_to_pde_index(gma);
2117 gma_index[1] = gma_ops->gma_to_pte_index(gma);
2124 /* walk the shadow page table and get gpa from guest entry */
2125 for (i = 0; i < levels; i++) {
2126 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2131 if (!pte_ops->test_present(&e)) {
2132 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2137 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2138 (gma & ~I915_GTT_PAGE_MASK);
2139 trace_gma_translate(vgpu->id, "ppgtt", 0,
2140 mm->ppgtt_mm.root_entry_type, gma, gpa);
2145 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2146 return INTEL_GVT_INVALID_ADDR;
2149 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2150 unsigned int off, void *p_data, unsigned int bytes)
2152 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2153 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2154 unsigned long index = off >> info->gtt_entry_size_shift;
2156 struct intel_gvt_gtt_entry e;
2158 if (bytes != 4 && bytes != 8)
2161 gma = index << I915_GTT_PAGE_SHIFT;
2162 if (!intel_gvt_ggtt_validate_range(vgpu,
2163 gma, 1 << I915_GTT_PAGE_SHIFT)) {
2164 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2165 memset(p_data, 0, bytes);
2169 ggtt_get_guest_entry(ggtt_mm, &e, index);
2170 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2176 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2178 * @off: register offset
2179 * @p_data: data will be returned to guest
2180 * @bytes: data length
2182 * This function is used to emulate the GTT MMIO register read
2185 * Zero on success, error code if failed.
2187 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2188 void *p_data, unsigned int bytes)
2190 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2193 if (bytes != 4 && bytes != 8)
2196 off -= info->gtt_start_offset;
2197 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2201 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2202 struct intel_gvt_gtt_entry *entry)
2204 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2207 pfn = pte_ops->get_pfn(entry);
2208 if (pfn != vgpu->gvt->gtt.scratch_mfn)
2209 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2213 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2214 void *p_data, unsigned int bytes)
2216 struct intel_gvt *gvt = vgpu->gvt;
2217 const struct intel_gvt_device_info *info = &gvt->device_info;
2218 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2219 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2220 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2221 unsigned long gma, gfn;
2222 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2223 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2224 dma_addr_t dma_addr;
2226 struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2227 bool partial_update = false;
2229 if (bytes != 4 && bytes != 8)
2232 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2234 /* the VM may configure the whole GM space when ballooning is used */
2235 if (!vgpu_gmadr_is_valid(vgpu, gma))
2238 e.type = GTT_TYPE_GGTT_PTE;
2239 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2242 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2243 * write, save the first 4 bytes in a list and update virtual
2244 * PTE. Only update shadow PTE when the second 4 bytes comes.
2246 if (bytes < info->gtt_entry_size) {
2249 list_for_each_entry_safe(pos, n,
2250 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2251 if (g_gtt_index == pos->offset >>
2252 info->gtt_entry_size_shift) {
2253 if (off != pos->offset) {
2254 /* the second partial part*/
2255 int last_off = pos->offset &
2256 (info->gtt_entry_size - 1);
2258 memcpy((void *)&e.val64 + last_off,
2259 (void *)&pos->data + last_off,
2262 list_del(&pos->list);
2268 /* update of the first partial part */
2269 pos->data = e.val64;
2270 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2276 /* the first partial part */
2277 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2280 partial_pte->offset = off;
2281 partial_pte->data = e.val64;
2282 list_add_tail(&partial_pte->list,
2283 &ggtt_mm->ggtt_mm.partial_pte_list);
2284 partial_update = true;
2288 if (!partial_update && (ops->test_present(&e))) {
2289 gfn = ops->get_pfn(&e);
2293 /* one PTE update may be issued in multiple writes and the
2294 * first write may not construct a valid gfn
2296 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2297 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2301 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2302 PAGE_SIZE, &dma_addr);
2304 gvt_vgpu_err("fail to populate guest ggtt entry\n");
2305 /* guest driver may read/write the entry when partial
2306 * update the entry in this situation p2m will fail
2307 * settting the shadow entry to point to a scratch page
2309 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2311 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2313 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2314 ops->clear_present(&m);
2318 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2320 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2321 ggtt_invalidate_pte(vgpu, &e);
2323 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2324 ggtt_invalidate(gvt->gt);
2329 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2331 * @off: register offset
2332 * @p_data: data from guest write
2333 * @bytes: data length
2335 * This function is used to emulate the GTT MMIO register write
2338 * Zero on success, error code if failed.
2340 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2341 unsigned int off, void *p_data, unsigned int bytes)
2343 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2345 struct intel_vgpu_submission *s = &vgpu->submission;
2346 struct intel_engine_cs *engine;
2349 if (bytes != 4 && bytes != 8)
2352 off -= info->gtt_start_offset;
2353 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2355 /* if ggtt of last submitted context is written,
2356 * that context is probably got unpinned.
2357 * Set last shadowed ctx to invalid.
2359 for_each_engine(engine, vgpu->gvt->gt, i) {
2360 if (!s->last_ctx[i].valid)
2363 if (s->last_ctx[i].lrca == (off >> info->gtt_entry_size_shift))
2364 s->last_ctx[i].valid = false;
2369 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2370 enum intel_gvt_gtt_type type)
2372 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
2373 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2374 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2375 int page_entry_num = I915_GTT_PAGE_SIZE >>
2376 vgpu->gvt->device_info.gtt_entry_size_shift;
2379 struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2382 if (drm_WARN_ON(&i915->drm,
2383 type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2386 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2388 gvt_vgpu_err("fail to allocate scratch page\n");
2392 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2393 4096, PCI_DMA_BIDIRECTIONAL);
2394 if (dma_mapping_error(dev, daddr)) {
2395 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2396 __free_page(virt_to_page(scratch_pt));
2399 gtt->scratch_pt[type].page_mfn =
2400 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2401 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2402 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2403 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2405 /* Build the tree by full filled the scratch pt with the entries which
2406 * point to the next level scratch pt or scratch page. The
2407 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2409 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2410 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2411 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2413 if (type > GTT_TYPE_PPGTT_PTE_PT) {
2414 struct intel_gvt_gtt_entry se;
2416 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2417 se.type = get_entry_type(type - 1);
2418 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2420 /* The entry parameters like present/writeable/cache type
2421 * set to the same as i915's scratch page tree.
2423 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2424 if (type == GTT_TYPE_PPGTT_PDE_PT)
2425 se.val64 |= PPAT_CACHED;
2427 for (i = 0; i < page_entry_num; i++)
2428 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2434 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2437 struct device *dev = &vgpu->gvt->gt->i915->drm.pdev->dev;
2440 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2441 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2442 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2443 I915_GTT_PAGE_SHIFT);
2444 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2445 __free_page(vgpu->gtt.scratch_pt[i].page);
2446 vgpu->gtt.scratch_pt[i].page = NULL;
2447 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2454 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2458 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2459 ret = alloc_scratch_pages(vgpu, i);
2467 release_scratch_page_tree(vgpu);
2472 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2475 * This function is used to initialize per-vGPU graphics memory virtualization
2479 * Zero on success, error code if failed.
2481 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2483 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2485 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL);
2487 INIT_LIST_HEAD(>t->ppgtt_mm_list_head);
2488 INIT_LIST_HEAD(>t->oos_page_list_head);
2489 INIT_LIST_HEAD(>t->post_shadow_list_head);
2491 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2492 if (IS_ERR(gtt->ggtt_mm)) {
2493 gvt_vgpu_err("fail to create mm for ggtt.\n");
2494 return PTR_ERR(gtt->ggtt_mm);
2497 intel_vgpu_reset_ggtt(vgpu, false);
2499 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list);
2501 return create_scratch_page_tree(vgpu);
2504 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2506 struct list_head *pos, *n;
2507 struct intel_vgpu_mm *mm;
2509 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2510 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2511 intel_vgpu_destroy_mm(mm);
2514 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2515 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2517 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2518 gvt_err("Why we still has spt not freed?\n");
2519 ppgtt_free_all_spt(vgpu);
2523 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2525 struct intel_gvt_partial_pte *pos, *next;
2527 list_for_each_entry_safe(pos, next,
2528 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2530 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2531 pos->offset, pos->data);
2534 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2535 vgpu->gtt.ggtt_mm = NULL;
2539 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2542 * This function is used to clean up per-vGPU graphics memory virtualization
2546 * Zero on success, error code if failed.
2548 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2550 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2551 intel_vgpu_destroy_ggtt_mm(vgpu);
2552 release_scratch_page_tree(vgpu);
2555 static void clean_spt_oos(struct intel_gvt *gvt)
2557 struct intel_gvt_gtt *gtt = &gvt->gtt;
2558 struct list_head *pos, *n;
2559 struct intel_vgpu_oos_page *oos_page;
2561 WARN(!list_empty(>t->oos_page_use_list_head),
2562 "someone is still using oos page\n");
2564 list_for_each_safe(pos, n, >t->oos_page_free_list_head) {
2565 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2566 list_del(&oos_page->list);
2567 free_page((unsigned long)oos_page->mem);
2572 static int setup_spt_oos(struct intel_gvt *gvt)
2574 struct intel_gvt_gtt *gtt = &gvt->gtt;
2575 struct intel_vgpu_oos_page *oos_page;
2579 INIT_LIST_HEAD(>t->oos_page_free_list_head);
2580 INIT_LIST_HEAD(>t->oos_page_use_list_head);
2582 for (i = 0; i < preallocated_oos_pages; i++) {
2583 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2588 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2589 if (!oos_page->mem) {
2595 INIT_LIST_HEAD(&oos_page->list);
2596 INIT_LIST_HEAD(&oos_page->vm_list);
2598 list_add_tail(&oos_page->list, >t->oos_page_free_list_head);
2601 gvt_dbg_mm("%d oos pages preallocated\n", i);
2610 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2612 * @pdps: pdp root array
2614 * This function is used to find a PPGTT mm object from mm object pool
2617 * pointer to mm object on success, NULL if failed.
2619 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2622 struct intel_vgpu_mm *mm;
2623 struct list_head *pos;
2625 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2626 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2628 switch (mm->ppgtt_mm.root_entry_type) {
2629 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2630 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2633 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2634 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2635 sizeof(mm->ppgtt_mm.guest_pdps)))
2646 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2648 * @root_entry_type: ppgtt root entry type
2651 * This function is used to find or create a PPGTT mm object from a guest.
2654 * Zero on success, negative error code if failed.
2656 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2657 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2659 struct intel_vgpu_mm *mm;
2661 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2663 intel_vgpu_mm_get(mm);
2665 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2667 gvt_vgpu_err("fail to create mm\n");
2673 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2677 * This function is used to find a PPGTT mm object from a guest and destroy it.
2680 * Zero on success, negative error code if failed.
2682 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2684 struct intel_vgpu_mm *mm;
2686 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2688 gvt_vgpu_err("fail to find ppgtt instance.\n");
2691 intel_vgpu_mm_put(mm);
2696 * intel_gvt_init_gtt - initialize mm components of a GVT device
2699 * This function is called at the initialization stage, to initialize
2700 * the mm components of a GVT device.
2703 * zero on success, negative error code if failed.
2705 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2709 struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2712 gvt_dbg_core("init gtt\n");
2714 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2715 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2717 page = (void *)get_zeroed_page(GFP_KERNEL);
2719 gvt_err("fail to allocate scratch ggtt page\n");
2723 daddr = dma_map_page(dev, virt_to_page(page), 0,
2724 4096, PCI_DMA_BIDIRECTIONAL);
2725 if (dma_mapping_error(dev, daddr)) {
2726 gvt_err("fail to dmamap scratch ggtt page\n");
2727 __free_page(virt_to_page(page));
2731 gvt->gtt.scratch_page = virt_to_page(page);
2732 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2734 if (enable_out_of_sync) {
2735 ret = setup_spt_oos(gvt);
2737 gvt_err("fail to initialize SPT oos\n");
2738 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2739 __free_page(gvt->gtt.scratch_page);
2743 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2744 mutex_init(&gvt->gtt.ppgtt_mm_lock);
2749 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2752 * This function is called at the driver unloading stage, to clean up the
2753 * the mm components of a GVT device.
2756 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2758 struct device *dev = &gvt->gt->i915->drm.pdev->dev;
2759 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2760 I915_GTT_PAGE_SHIFT);
2762 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2764 __free_page(gvt->gtt.scratch_page);
2766 if (enable_out_of_sync)
2771 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2774 * This function is called when invalidate all PPGTT instances of a vGPU.
2777 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2779 struct list_head *pos, *n;
2780 struct intel_vgpu_mm *mm;
2782 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2783 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2784 if (mm->type == INTEL_GVT_MM_PPGTT) {
2785 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2786 list_del_init(&mm->ppgtt_mm.lru_list);
2787 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2788 if (mm->ppgtt_mm.shadowed)
2789 invalidate_ppgtt_mm(mm);
2795 * intel_vgpu_reset_ggtt - reset the GGTT entry
2797 * @invalidate_old: invalidate old entries
2799 * This function is called at the vGPU create stage
2800 * to reset all the GGTT entries.
2803 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2805 struct intel_gvt *gvt = vgpu->gvt;
2806 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2807 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2808 struct intel_gvt_gtt_entry old_entry;
2812 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2813 pte_ops->set_present(&entry);
2815 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2816 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2817 while (num_entries--) {
2818 if (invalidate_old) {
2819 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2820 ggtt_invalidate_pte(vgpu, &old_entry);
2822 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2825 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2826 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2827 while (num_entries--) {
2828 if (invalidate_old) {
2829 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2830 ggtt_invalidate_pte(vgpu, &old_entry);
2832 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2835 ggtt_invalidate(gvt->gt);
2839 * intel_vgpu_reset_gtt - reset the all GTT related status
2842 * This function is called from vfio core to reset reset all
2843 * GTT related status, including GGTT, PPGTT, scratch page.
2846 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2848 /* Shadow pages are only created when there is no page
2849 * table tracking data, so remove page tracking data after
2850 * removing the shadow pages.
2852 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2853 intel_vgpu_reset_ggtt(vgpu, true);