]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/gt/intel_gtt.c
ASoC: simple-card: Use snd_soc_of_parse_aux_devs()
[linux.git] / drivers / gpu / drm / i915 / gt / intel_gtt.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7
8 #include <linux/fault-inject.h>
9
10 #include "i915_trace.h"
11 #include "intel_gt.h"
12 #include "intel_gtt.h"
13
14 void stash_init(struct pagestash *stash)
15 {
16         pagevec_init(&stash->pvec);
17         spin_lock_init(&stash->lock);
18 }
19
20 static struct page *stash_pop_page(struct pagestash *stash)
21 {
22         struct page *page = NULL;
23
24         spin_lock(&stash->lock);
25         if (likely(stash->pvec.nr))
26                 page = stash->pvec.pages[--stash->pvec.nr];
27         spin_unlock(&stash->lock);
28
29         return page;
30 }
31
32 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
33 {
34         unsigned int nr;
35
36         spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
37
38         nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
39         memcpy(stash->pvec.pages + stash->pvec.nr,
40                pvec->pages + pvec->nr - nr,
41                sizeof(pvec->pages[0]) * nr);
42         stash->pvec.nr += nr;
43
44         spin_unlock(&stash->lock);
45
46         pvec->nr -= nr;
47 }
48
49 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
50 {
51         struct pagevec stack;
52         struct page *page;
53
54         if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
55                 i915_gem_shrink_all(vm->i915);
56
57         page = stash_pop_page(&vm->free_pages);
58         if (page)
59                 return page;
60
61         if (!vm->pt_kmap_wc)
62                 return alloc_page(gfp);
63
64         /* Look in our global stash of WC pages... */
65         page = stash_pop_page(&vm->i915->mm.wc_stash);
66         if (page)
67                 return page;
68
69         /*
70          * Otherwise batch allocate pages to amortize cost of set_pages_wc.
71          *
72          * We have to be careful as page allocation may trigger the shrinker
73          * (via direct reclaim) which will fill up the WC stash underneath us.
74          * So we add our WB pages into a temporary pvec on the stack and merge
75          * them into the WC stash after all the allocations are complete.
76          */
77         pagevec_init(&stack);
78         do {
79                 struct page *page;
80
81                 page = alloc_page(gfp);
82                 if (unlikely(!page))
83                         break;
84
85                 stack.pages[stack.nr++] = page;
86         } while (pagevec_space(&stack));
87
88         if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
89                 page = stack.pages[--stack.nr];
90
91                 /* Merge spare WC pages to the global stash */
92                 if (stack.nr)
93                         stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
94
95                 /* Push any surplus WC pages onto the local VM stash */
96                 if (stack.nr)
97                         stash_push_pagevec(&vm->free_pages, &stack);
98         }
99
100         /* Return unwanted leftovers */
101         if (unlikely(stack.nr)) {
102                 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
103                 __pagevec_release(&stack);
104         }
105
106         return page;
107 }
108
109 static void vm_free_pages_release(struct i915_address_space *vm,
110                                   bool immediate)
111 {
112         struct pagevec *pvec = &vm->free_pages.pvec;
113         struct pagevec stack;
114
115         lockdep_assert_held(&vm->free_pages.lock);
116         GEM_BUG_ON(!pagevec_count(pvec));
117
118         if (vm->pt_kmap_wc) {
119                 /*
120                  * When we use WC, first fill up the global stash and then
121                  * only if full immediately free the overflow.
122                  */
123                 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
124
125                 /*
126                  * As we have made some room in the VM's free_pages,
127                  * we can wait for it to fill again. Unless we are
128                  * inside i915_address_space_fini() and must
129                  * immediately release the pages!
130                  */
131                 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
132                         return;
133
134                 /*
135                  * We have to drop the lock to allow ourselves to sleep,
136                  * so take a copy of the pvec and clear the stash for
137                  * others to use it as we sleep.
138                  */
139                 stack = *pvec;
140                 pagevec_reinit(pvec);
141                 spin_unlock(&vm->free_pages.lock);
142
143                 pvec = &stack;
144                 set_pages_array_wb(pvec->pages, pvec->nr);
145
146                 spin_lock(&vm->free_pages.lock);
147         }
148
149         __pagevec_release(pvec);
150 }
151
152 static void vm_free_page(struct i915_address_space *vm, struct page *page)
153 {
154         /*
155          * On !llc, we need to change the pages back to WB. We only do so
156          * in bulk, so we rarely need to change the page attributes here,
157          * but doing so requires a stop_machine() from deep inside arch/x86/mm.
158          * To make detection of the possible sleep more likely, use an
159          * unconditional might_sleep() for everybody.
160          */
161         might_sleep();
162         spin_lock(&vm->free_pages.lock);
163         while (!pagevec_space(&vm->free_pages.pvec))
164                 vm_free_pages_release(vm, false);
165         GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
166         pagevec_add(&vm->free_pages.pvec, page);
167         spin_unlock(&vm->free_pages.lock);
168 }
169
170 void __i915_vm_close(struct i915_address_space *vm)
171 {
172         struct i915_vma *vma, *vn;
173
174         if (!atomic_dec_and_mutex_lock(&vm->open, &vm->mutex))
175                 return;
176
177         list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
178                 struct drm_i915_gem_object *obj = vma->obj;
179
180                 /* Keep the obj (and hence the vma) alive as _we_ destroy it */
181                 if (!kref_get_unless_zero(&obj->base.refcount))
182                         continue;
183
184                 atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
185                 WARN_ON(__i915_vma_unbind(vma));
186                 __i915_vma_put(vma);
187
188                 i915_gem_object_put(obj);
189         }
190         GEM_BUG_ON(!list_empty(&vm->bound_list));
191
192         mutex_unlock(&vm->mutex);
193 }
194
195 void i915_address_space_fini(struct i915_address_space *vm)
196 {
197         spin_lock(&vm->free_pages.lock);
198         if (pagevec_count(&vm->free_pages.pvec))
199                 vm_free_pages_release(vm, true);
200         GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
201         spin_unlock(&vm->free_pages.lock);
202
203         drm_mm_takedown(&vm->mm);
204
205         mutex_destroy(&vm->mutex);
206 }
207
208 static void __i915_vm_release(struct work_struct *work)
209 {
210         struct i915_address_space *vm =
211                 container_of(work, struct i915_address_space, rcu.work);
212
213         vm->cleanup(vm);
214         i915_address_space_fini(vm);
215
216         kfree(vm);
217 }
218
219 void i915_vm_release(struct kref *kref)
220 {
221         struct i915_address_space *vm =
222                 container_of(kref, struct i915_address_space, ref);
223
224         GEM_BUG_ON(i915_is_ggtt(vm));
225         trace_i915_ppgtt_release(vm);
226
227         queue_rcu_work(vm->i915->wq, &vm->rcu);
228 }
229
230 void i915_address_space_init(struct i915_address_space *vm, int subclass)
231 {
232         kref_init(&vm->ref);
233         INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
234         atomic_set(&vm->open, 1);
235
236         /*
237          * The vm->mutex must be reclaim safe (for use in the shrinker).
238          * Do a dummy acquire now under fs_reclaim so that any allocation
239          * attempt holding the lock is immediately reported by lockdep.
240          */
241         mutex_init(&vm->mutex);
242         lockdep_set_subclass(&vm->mutex, subclass);
243         i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
244
245         GEM_BUG_ON(!vm->total);
246         drm_mm_init(&vm->mm, 0, vm->total);
247         vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
248
249         stash_init(&vm->free_pages);
250
251         INIT_LIST_HEAD(&vm->bound_list);
252 }
253
254 void clear_pages(struct i915_vma *vma)
255 {
256         GEM_BUG_ON(!vma->pages);
257
258         if (vma->pages != vma->obj->mm.pages) {
259                 sg_free_table(vma->pages);
260                 kfree(vma->pages);
261         }
262         vma->pages = NULL;
263
264         memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
265 }
266
267 static int __setup_page_dma(struct i915_address_space *vm,
268                             struct i915_page_dma *p,
269                             gfp_t gfp)
270 {
271         p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
272         if (unlikely(!p->page))
273                 return -ENOMEM;
274
275         p->daddr = dma_map_page_attrs(vm->dma,
276                                       p->page, 0, PAGE_SIZE,
277                                       PCI_DMA_BIDIRECTIONAL,
278                                       DMA_ATTR_SKIP_CPU_SYNC |
279                                       DMA_ATTR_NO_WARN);
280         if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
281                 vm_free_page(vm, p->page);
282                 return -ENOMEM;
283         }
284
285         return 0;
286 }
287
288 int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
289 {
290         return __setup_page_dma(vm, p, __GFP_HIGHMEM);
291 }
292
293 void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
294 {
295         dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
296         vm_free_page(vm, p->page);
297 }
298
299 void
300 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
301 {
302         kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
303 }
304
305 static void poison_scratch_page(struct page *page, unsigned long size)
306 {
307         if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
308                 return;
309
310         GEM_BUG_ON(!IS_ALIGNED(size, PAGE_SIZE));
311
312         do {
313                 void *vaddr;
314
315                 vaddr = kmap(page);
316                 memset(vaddr, POISON_FREE, PAGE_SIZE);
317                 kunmap(page);
318
319                 page = pfn_to_page(page_to_pfn(page) + 1);
320                 size -= PAGE_SIZE;
321         } while (size);
322 }
323
324 int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
325 {
326         unsigned long size;
327
328         /*
329          * In order to utilize 64K pages for an object with a size < 2M, we will
330          * need to support a 64K scratch page, given that every 16th entry for a
331          * page-table operating in 64K mode must point to a properly aligned 64K
332          * region, including any PTEs which happen to point to scratch.
333          *
334          * This is only relevant for the 48b PPGTT where we support
335          * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
336          * scratch (read-only) between all vm, we create one 64k scratch page
337          * for all.
338          */
339         size = I915_GTT_PAGE_SIZE_4K;
340         if (i915_vm_is_4lvl(vm) &&
341             HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
342                 size = I915_GTT_PAGE_SIZE_64K;
343                 gfp |= __GFP_NOWARN;
344         }
345         gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
346
347         do {
348                 unsigned int order = get_order(size);
349                 struct page *page;
350                 dma_addr_t addr;
351
352                 page = alloc_pages(gfp, order);
353                 if (unlikely(!page))
354                         goto skip;
355
356                 /*
357                  * Use a non-zero scratch page for debugging.
358                  *
359                  * We want a value that should be reasonably obvious
360                  * to spot in the error state, while also causing a GPU hang
361                  * if executed. We prefer using a clear page in production, so
362                  * should it ever be accidentally used, the effect should be
363                  * fairly benign.
364                  */
365                 poison_scratch_page(page, size);
366
367                 addr = dma_map_page_attrs(vm->dma,
368                                           page, 0, size,
369                                           PCI_DMA_BIDIRECTIONAL,
370                                           DMA_ATTR_SKIP_CPU_SYNC |
371                                           DMA_ATTR_NO_WARN);
372                 if (unlikely(dma_mapping_error(vm->dma, addr)))
373                         goto free_page;
374
375                 if (unlikely(!IS_ALIGNED(addr, size)))
376                         goto unmap_page;
377
378                 vm->scratch[0].base.page = page;
379                 vm->scratch[0].base.daddr = addr;
380                 vm->scratch_order = order;
381                 return 0;
382
383 unmap_page:
384                 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
385 free_page:
386                 __free_pages(page, order);
387 skip:
388                 if (size == I915_GTT_PAGE_SIZE_4K)
389                         return -ENOMEM;
390
391                 size = I915_GTT_PAGE_SIZE_4K;
392                 gfp &= ~__GFP_NOWARN;
393         } while (1);
394 }
395
396 void cleanup_scratch_page(struct i915_address_space *vm)
397 {
398         struct i915_page_dma *p = px_base(&vm->scratch[0]);
399         unsigned int order = vm->scratch_order;
400
401         dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
402                        PCI_DMA_BIDIRECTIONAL);
403         __free_pages(p->page, order);
404 }
405
406 void free_scratch(struct i915_address_space *vm)
407 {
408         int i;
409
410         if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
411                 return;
412
413         for (i = 1; i <= vm->top; i++) {
414                 if (!px_dma(&vm->scratch[i]))
415                         break;
416                 cleanup_page_dma(vm, px_base(&vm->scratch[i]));
417         }
418
419         cleanup_scratch_page(vm);
420 }
421
422 void gtt_write_workarounds(struct intel_gt *gt)
423 {
424         struct drm_i915_private *i915 = gt->i915;
425         struct intel_uncore *uncore = gt->uncore;
426
427         /*
428          * This function is for gtt related workarounds. This function is
429          * called on driver load and after a GPU reset, so you can place
430          * workarounds here even if they get overwritten by GPU reset.
431          */
432         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
433         if (IS_BROADWELL(i915))
434                 intel_uncore_write(uncore,
435                                    GEN8_L3_LRA_1_GPGPU,
436                                    GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
437         else if (IS_CHERRYVIEW(i915))
438                 intel_uncore_write(uncore,
439                                    GEN8_L3_LRA_1_GPGPU,
440                                    GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
441         else if (IS_GEN9_LP(i915))
442                 intel_uncore_write(uncore,
443                                    GEN8_L3_LRA_1_GPGPU,
444                                    GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
445         else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
446                 intel_uncore_write(uncore,
447                                    GEN8_L3_LRA_1_GPGPU,
448                                    GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
449
450         /*
451          * To support 64K PTEs we need to first enable the use of the
452          * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
453          * mmio, otherwise the page-walker will simply ignore the IPS bit. This
454          * shouldn't be needed after GEN10.
455          *
456          * 64K pages were first introduced from BDW+, although technically they
457          * only *work* from gen9+. For pre-BDW we instead have the option for
458          * 32K pages, but we don't currently have any support for it in our
459          * driver.
460          */
461         if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
462             INTEL_GEN(i915) <= 10)
463                 intel_uncore_rmw(uncore,
464                                  GEN8_GAMW_ECO_DEV_RW_IA,
465                                  0,
466                                  GAMW_ECO_ENABLE_64K_IPS_FIELD);
467
468         if (IS_GEN_RANGE(i915, 8, 11)) {
469                 bool can_use_gtt_cache = true;
470
471                 /*
472                  * According to the BSpec if we use 2M/1G pages then we also
473                  * need to disable the GTT cache. At least on BDW we can see
474                  * visual corruption when using 2M pages, and not disabling the
475                  * GTT cache.
476                  */
477                 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
478                         can_use_gtt_cache = false;
479
480                 /* WaGttCachingOffByDefault */
481                 intel_uncore_write(uncore,
482                                    HSW_GTT_CACHE_EN,
483                                    can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
484                 drm_WARN_ON_ONCE(&i915->drm, can_use_gtt_cache &&
485                                  intel_uncore_read(uncore,
486                                                    HSW_GTT_CACHE_EN) == 0);
487         }
488 }
489
490 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
491 {
492         /* TGL doesn't support LLC or AGE settings */
493         intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
494         intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
495         intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
496         intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
497         intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
498         intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
499         intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
500         intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
501 }
502
503 static void cnl_setup_private_ppat(struct intel_uncore *uncore)
504 {
505         intel_uncore_write(uncore,
506                            GEN10_PAT_INDEX(0),
507                            GEN8_PPAT_WB | GEN8_PPAT_LLC);
508         intel_uncore_write(uncore,
509                            GEN10_PAT_INDEX(1),
510                            GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
511         intel_uncore_write(uncore,
512                            GEN10_PAT_INDEX(2),
513                            GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
514         intel_uncore_write(uncore,
515                            GEN10_PAT_INDEX(3),
516                            GEN8_PPAT_UC);
517         intel_uncore_write(uncore,
518                            GEN10_PAT_INDEX(4),
519                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
520         intel_uncore_write(uncore,
521                            GEN10_PAT_INDEX(5),
522                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
523         intel_uncore_write(uncore,
524                            GEN10_PAT_INDEX(6),
525                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
526         intel_uncore_write(uncore,
527                            GEN10_PAT_INDEX(7),
528                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
529 }
530
531 /*
532  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
533  * bits. When using advanced contexts each context stores its own PAT, but
534  * writing this data shouldn't be harmful even in those cases.
535  */
536 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
537 {
538         u64 pat;
539
540         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |      /* for normal objects, no eLLC */
541               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |  /* for something pointing to ptes? */
542               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |  /* for scanout with eLLC */
543               GEN8_PPAT(3, GEN8_PPAT_UC) |                      /* Uncached objects, mostly for scanout */
544               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
545               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
546               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
547               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
548
549         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
550         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
551 }
552
553 static void chv_setup_private_ppat(struct intel_uncore *uncore)
554 {
555         u64 pat;
556
557         /*
558          * Map WB on BDW to snooped on CHV.
559          *
560          * Only the snoop bit has meaning for CHV, the rest is
561          * ignored.
562          *
563          * The hardware will never snoop for certain types of accesses:
564          * - CPU GTT (GMADR->GGTT->no snoop->memory)
565          * - PPGTT page tables
566          * - some other special cycles
567          *
568          * As with BDW, we also need to consider the following for GT accesses:
569          * "For GGTT, there is NO pat_sel[2:0] from the entry,
570          * so RTL will always use the value corresponding to
571          * pat_sel = 000".
572          * Which means we must set the snoop bit in PAT entry 0
573          * in order to keep the global status page working.
574          */
575
576         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
577               GEN8_PPAT(1, 0) |
578               GEN8_PPAT(2, 0) |
579               GEN8_PPAT(3, 0) |
580               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
581               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
582               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
583               GEN8_PPAT(7, CHV_PPAT_SNOOP);
584
585         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
586         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
587 }
588
589 void setup_private_pat(struct intel_uncore *uncore)
590 {
591         struct drm_i915_private *i915 = uncore->i915;
592
593         GEM_BUG_ON(INTEL_GEN(i915) < 8);
594
595         if (INTEL_GEN(i915) >= 12)
596                 tgl_setup_private_ppat(uncore);
597         else if (INTEL_GEN(i915) >= 10)
598                 cnl_setup_private_ppat(uncore);
599         else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
600                 chv_setup_private_ppat(uncore);
601         else
602                 bdw_setup_private_ppat(uncore);
603 }
604
605 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
606 #include "selftests/mock_gtt.c"
607 #endif
This page took 0.089662 seconds and 4 git commands to generate.