]> Git Repo - linux.git/blob - drivers/base/regmap/regmap.c
ASoC: simple-card: Use snd_soc_of_parse_aux_devs()
[linux.git] / drivers / base / regmap / regmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <[email protected]>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38         return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46                                unsigned int mask, unsigned int val,
47                                bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50                                 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52                             unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54                                        unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56                                  unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58                                  unsigned int val);
59
60 bool regmap_reg_in_ranges(unsigned int reg,
61                           const struct regmap_range *ranges,
62                           unsigned int nranges)
63 {
64         const struct regmap_range *r;
65         int i;
66
67         for (i = 0, r = ranges; i < nranges; i++, r++)
68                 if (regmap_reg_in_range(reg, r))
69                         return true;
70         return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75                               const struct regmap_access_table *table)
76 {
77         /* Check "no ranges" first */
78         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79                 return false;
80
81         /* In case zero "yes ranges" are supplied, any reg is OK */
82         if (!table->n_yes_ranges)
83                 return true;
84
85         return regmap_reg_in_ranges(reg, table->yes_ranges,
86                                     table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92         if (map->max_register && reg > map->max_register)
93                 return false;
94
95         if (map->writeable_reg)
96                 return map->writeable_reg(map->dev, reg);
97
98         if (map->wr_table)
99                 return regmap_check_range_table(map, reg, map->wr_table);
100
101         return true;
102 }
103
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106         int ret;
107         unsigned int val;
108
109         if (map->cache_type == REGCACHE_NONE)
110                 return false;
111
112         if (!map->cache_ops)
113                 return false;
114
115         if (map->max_register && reg > map->max_register)
116                 return false;
117
118         map->lock(map->lock_arg);
119         ret = regcache_read(map, reg, &val);
120         map->unlock(map->lock_arg);
121         if (ret)
122                 return false;
123
124         return true;
125 }
126
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129         if (!map->reg_read)
130                 return false;
131
132         if (map->max_register && reg > map->max_register)
133                 return false;
134
135         if (map->format.format_write)
136                 return false;
137
138         if (map->readable_reg)
139                 return map->readable_reg(map->dev, reg);
140
141         if (map->rd_table)
142                 return regmap_check_range_table(map, reg, map->rd_table);
143
144         return true;
145 }
146
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149         if (!map->format.format_write && !regmap_readable(map, reg))
150                 return false;
151
152         if (map->volatile_reg)
153                 return map->volatile_reg(map->dev, reg);
154
155         if (map->volatile_table)
156                 return regmap_check_range_table(map, reg, map->volatile_table);
157
158         if (map->cache_ops)
159                 return false;
160         else
161                 return true;
162 }
163
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166         if (!regmap_readable(map, reg))
167                 return false;
168
169         if (map->precious_reg)
170                 return map->precious_reg(map->dev, reg);
171
172         if (map->precious_table)
173                 return regmap_check_range_table(map, reg, map->precious_table);
174
175         return false;
176 }
177
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180         if (map->writeable_noinc_reg)
181                 return map->writeable_noinc_reg(map->dev, reg);
182
183         if (map->wr_noinc_table)
184                 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186         return true;
187 }
188
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191         if (map->readable_noinc_reg)
192                 return map->readable_noinc_reg(map->dev, reg);
193
194         if (map->rd_noinc_table)
195                 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197         return true;
198 }
199
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201         size_t num)
202 {
203         unsigned int i;
204
205         for (i = 0; i < num; i++)
206                 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207                         return false;
208
209         return true;
210 }
211
212 static void regmap_format_2_6_write(struct regmap *map,
213                                      unsigned int reg, unsigned int val)
214 {
215         u8 *out = map->work_buf;
216
217         *out = (reg << 6) | val;
218 }
219
220 static void regmap_format_4_12_write(struct regmap *map,
221                                      unsigned int reg, unsigned int val)
222 {
223         __be16 *out = map->work_buf;
224         *out = cpu_to_be16((reg << 12) | val);
225 }
226
227 static void regmap_format_7_9_write(struct regmap *map,
228                                     unsigned int reg, unsigned int val)
229 {
230         __be16 *out = map->work_buf;
231         *out = cpu_to_be16((reg << 9) | val);
232 }
233
234 static void regmap_format_10_14_write(struct regmap *map,
235                                     unsigned int reg, unsigned int val)
236 {
237         u8 *out = map->work_buf;
238
239         out[2] = val;
240         out[1] = (val >> 8) | (reg << 6);
241         out[0] = reg >> 2;
242 }
243
244 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
245 {
246         u8 *b = buf;
247
248         b[0] = val << shift;
249 }
250
251 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
252 {
253         put_unaligned_be16(val << shift, buf);
254 }
255
256 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
257 {
258         put_unaligned_le16(val << shift, buf);
259 }
260
261 static void regmap_format_16_native(void *buf, unsigned int val,
262                                     unsigned int shift)
263 {
264         u16 v = val << shift;
265
266         memcpy(buf, &v, sizeof(v));
267 }
268
269 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
270 {
271         u8 *b = buf;
272
273         val <<= shift;
274
275         b[0] = val >> 16;
276         b[1] = val >> 8;
277         b[2] = val;
278 }
279
280 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
281 {
282         put_unaligned_be32(val << shift, buf);
283 }
284
285 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
286 {
287         put_unaligned_le32(val << shift, buf);
288 }
289
290 static void regmap_format_32_native(void *buf, unsigned int val,
291                                     unsigned int shift)
292 {
293         u32 v = val << shift;
294
295         memcpy(buf, &v, sizeof(v));
296 }
297
298 #ifdef CONFIG_64BIT
299 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
300 {
301         put_unaligned_be64((u64) val << shift, buf);
302 }
303
304 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
305 {
306         put_unaligned_le64((u64) val << shift, buf);
307 }
308
309 static void regmap_format_64_native(void *buf, unsigned int val,
310                                     unsigned int shift)
311 {
312         u64 v = (u64) val << shift;
313
314         memcpy(buf, &v, sizeof(v));
315 }
316 #endif
317
318 static void regmap_parse_inplace_noop(void *buf)
319 {
320 }
321
322 static unsigned int regmap_parse_8(const void *buf)
323 {
324         const u8 *b = buf;
325
326         return b[0];
327 }
328
329 static unsigned int regmap_parse_16_be(const void *buf)
330 {
331         return get_unaligned_be16(buf);
332 }
333
334 static unsigned int regmap_parse_16_le(const void *buf)
335 {
336         return get_unaligned_le16(buf);
337 }
338
339 static void regmap_parse_16_be_inplace(void *buf)
340 {
341         u16 v = get_unaligned_be16(buf);
342
343         memcpy(buf, &v, sizeof(v));
344 }
345
346 static void regmap_parse_16_le_inplace(void *buf)
347 {
348         u16 v = get_unaligned_le16(buf);
349
350         memcpy(buf, &v, sizeof(v));
351 }
352
353 static unsigned int regmap_parse_16_native(const void *buf)
354 {
355         u16 v;
356
357         memcpy(&v, buf, sizeof(v));
358         return v;
359 }
360
361 static unsigned int regmap_parse_24(const void *buf)
362 {
363         const u8 *b = buf;
364         unsigned int ret = b[2];
365         ret |= ((unsigned int)b[1]) << 8;
366         ret |= ((unsigned int)b[0]) << 16;
367
368         return ret;
369 }
370
371 static unsigned int regmap_parse_32_be(const void *buf)
372 {
373         return get_unaligned_be32(buf);
374 }
375
376 static unsigned int regmap_parse_32_le(const void *buf)
377 {
378         return get_unaligned_le32(buf);
379 }
380
381 static void regmap_parse_32_be_inplace(void *buf)
382 {
383         u32 v = get_unaligned_be32(buf);
384
385         memcpy(buf, &v, sizeof(v));
386 }
387
388 static void regmap_parse_32_le_inplace(void *buf)
389 {
390         u32 v = get_unaligned_le32(buf);
391
392         memcpy(buf, &v, sizeof(v));
393 }
394
395 static unsigned int regmap_parse_32_native(const void *buf)
396 {
397         u32 v;
398
399         memcpy(&v, buf, sizeof(v));
400         return v;
401 }
402
403 #ifdef CONFIG_64BIT
404 static unsigned int regmap_parse_64_be(const void *buf)
405 {
406         return get_unaligned_be64(buf);
407 }
408
409 static unsigned int regmap_parse_64_le(const void *buf)
410 {
411         return get_unaligned_le64(buf);
412 }
413
414 static void regmap_parse_64_be_inplace(void *buf)
415 {
416         u64 v =  get_unaligned_be64(buf);
417
418         memcpy(buf, &v, sizeof(v));
419 }
420
421 static void regmap_parse_64_le_inplace(void *buf)
422 {
423         u64 v = get_unaligned_le64(buf);
424
425         memcpy(buf, &v, sizeof(v));
426 }
427
428 static unsigned int regmap_parse_64_native(const void *buf)
429 {
430         u64 v;
431
432         memcpy(&v, buf, sizeof(v));
433         return v;
434 }
435 #endif
436
437 static void regmap_lock_hwlock(void *__map)
438 {
439         struct regmap *map = __map;
440
441         hwspin_lock_timeout(map->hwlock, UINT_MAX);
442 }
443
444 static void regmap_lock_hwlock_irq(void *__map)
445 {
446         struct regmap *map = __map;
447
448         hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
449 }
450
451 static void regmap_lock_hwlock_irqsave(void *__map)
452 {
453         struct regmap *map = __map;
454
455         hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
456                                     &map->spinlock_flags);
457 }
458
459 static void regmap_unlock_hwlock(void *__map)
460 {
461         struct regmap *map = __map;
462
463         hwspin_unlock(map->hwlock);
464 }
465
466 static void regmap_unlock_hwlock_irq(void *__map)
467 {
468         struct regmap *map = __map;
469
470         hwspin_unlock_irq(map->hwlock);
471 }
472
473 static void regmap_unlock_hwlock_irqrestore(void *__map)
474 {
475         struct regmap *map = __map;
476
477         hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
478 }
479
480 static void regmap_lock_unlock_none(void *__map)
481 {
482
483 }
484
485 static void regmap_lock_mutex(void *__map)
486 {
487         struct regmap *map = __map;
488         mutex_lock(&map->mutex);
489 }
490
491 static void regmap_unlock_mutex(void *__map)
492 {
493         struct regmap *map = __map;
494         mutex_unlock(&map->mutex);
495 }
496
497 static void regmap_lock_spinlock(void *__map)
498 __acquires(&map->spinlock)
499 {
500         struct regmap *map = __map;
501         unsigned long flags;
502
503         spin_lock_irqsave(&map->spinlock, flags);
504         map->spinlock_flags = flags;
505 }
506
507 static void regmap_unlock_spinlock(void *__map)
508 __releases(&map->spinlock)
509 {
510         struct regmap *map = __map;
511         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
512 }
513
514 static void dev_get_regmap_release(struct device *dev, void *res)
515 {
516         /*
517          * We don't actually have anything to do here; the goal here
518          * is not to manage the regmap but to provide a simple way to
519          * get the regmap back given a struct device.
520          */
521 }
522
523 static bool _regmap_range_add(struct regmap *map,
524                               struct regmap_range_node *data)
525 {
526         struct rb_root *root = &map->range_tree;
527         struct rb_node **new = &(root->rb_node), *parent = NULL;
528
529         while (*new) {
530                 struct regmap_range_node *this =
531                         rb_entry(*new, struct regmap_range_node, node);
532
533                 parent = *new;
534                 if (data->range_max < this->range_min)
535                         new = &((*new)->rb_left);
536                 else if (data->range_min > this->range_max)
537                         new = &((*new)->rb_right);
538                 else
539                         return false;
540         }
541
542         rb_link_node(&data->node, parent, new);
543         rb_insert_color(&data->node, root);
544
545         return true;
546 }
547
548 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
549                                                       unsigned int reg)
550 {
551         struct rb_node *node = map->range_tree.rb_node;
552
553         while (node) {
554                 struct regmap_range_node *this =
555                         rb_entry(node, struct regmap_range_node, node);
556
557                 if (reg < this->range_min)
558                         node = node->rb_left;
559                 else if (reg > this->range_max)
560                         node = node->rb_right;
561                 else
562                         return this;
563         }
564
565         return NULL;
566 }
567
568 static void regmap_range_exit(struct regmap *map)
569 {
570         struct rb_node *next;
571         struct regmap_range_node *range_node;
572
573         next = rb_first(&map->range_tree);
574         while (next) {
575                 range_node = rb_entry(next, struct regmap_range_node, node);
576                 next = rb_next(&range_node->node);
577                 rb_erase(&range_node->node, &map->range_tree);
578                 kfree(range_node);
579         }
580
581         kfree(map->selector_work_buf);
582 }
583
584 int regmap_attach_dev(struct device *dev, struct regmap *map,
585                       const struct regmap_config *config)
586 {
587         struct regmap **m;
588
589         map->dev = dev;
590
591         regmap_debugfs_init(map, config->name);
592
593         /* Add a devres resource for dev_get_regmap() */
594         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
595         if (!m) {
596                 regmap_debugfs_exit(map);
597                 return -ENOMEM;
598         }
599         *m = map;
600         devres_add(dev, m);
601
602         return 0;
603 }
604 EXPORT_SYMBOL_GPL(regmap_attach_dev);
605
606 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
607                                         const struct regmap_config *config)
608 {
609         enum regmap_endian endian;
610
611         /* Retrieve the endianness specification from the regmap config */
612         endian = config->reg_format_endian;
613
614         /* If the regmap config specified a non-default value, use that */
615         if (endian != REGMAP_ENDIAN_DEFAULT)
616                 return endian;
617
618         /* Retrieve the endianness specification from the bus config */
619         if (bus && bus->reg_format_endian_default)
620                 endian = bus->reg_format_endian_default;
621
622         /* If the bus specified a non-default value, use that */
623         if (endian != REGMAP_ENDIAN_DEFAULT)
624                 return endian;
625
626         /* Use this if no other value was found */
627         return REGMAP_ENDIAN_BIG;
628 }
629
630 enum regmap_endian regmap_get_val_endian(struct device *dev,
631                                          const struct regmap_bus *bus,
632                                          const struct regmap_config *config)
633 {
634         struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
635         enum regmap_endian endian;
636
637         /* Retrieve the endianness specification from the regmap config */
638         endian = config->val_format_endian;
639
640         /* If the regmap config specified a non-default value, use that */
641         if (endian != REGMAP_ENDIAN_DEFAULT)
642                 return endian;
643
644         /* If the firmware node exist try to get endianness from it */
645         if (fwnode_property_read_bool(fwnode, "big-endian"))
646                 endian = REGMAP_ENDIAN_BIG;
647         else if (fwnode_property_read_bool(fwnode, "little-endian"))
648                 endian = REGMAP_ENDIAN_LITTLE;
649         else if (fwnode_property_read_bool(fwnode, "native-endian"))
650                 endian = REGMAP_ENDIAN_NATIVE;
651
652         /* If the endianness was specified in fwnode, use that */
653         if (endian != REGMAP_ENDIAN_DEFAULT)
654                 return endian;
655
656         /* Retrieve the endianness specification from the bus config */
657         if (bus && bus->val_format_endian_default)
658                 endian = bus->val_format_endian_default;
659
660         /* If the bus specified a non-default value, use that */
661         if (endian != REGMAP_ENDIAN_DEFAULT)
662                 return endian;
663
664         /* Use this if no other value was found */
665         return REGMAP_ENDIAN_BIG;
666 }
667 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
668
669 struct regmap *__regmap_init(struct device *dev,
670                              const struct regmap_bus *bus,
671                              void *bus_context,
672                              const struct regmap_config *config,
673                              struct lock_class_key *lock_key,
674                              const char *lock_name)
675 {
676         struct regmap *map;
677         int ret = -EINVAL;
678         enum regmap_endian reg_endian, val_endian;
679         int i, j;
680
681         if (!config)
682                 goto err;
683
684         map = kzalloc(sizeof(*map), GFP_KERNEL);
685         if (map == NULL) {
686                 ret = -ENOMEM;
687                 goto err;
688         }
689
690         if (config->name) {
691                 map->name = kstrdup_const(config->name, GFP_KERNEL);
692                 if (!map->name) {
693                         ret = -ENOMEM;
694                         goto err_map;
695                 }
696         }
697
698         if (config->disable_locking) {
699                 map->lock = map->unlock = regmap_lock_unlock_none;
700                 regmap_debugfs_disable(map);
701         } else if (config->lock && config->unlock) {
702                 map->lock = config->lock;
703                 map->unlock = config->unlock;
704                 map->lock_arg = config->lock_arg;
705         } else if (config->use_hwlock) {
706                 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
707                 if (!map->hwlock) {
708                         ret = -ENXIO;
709                         goto err_name;
710                 }
711
712                 switch (config->hwlock_mode) {
713                 case HWLOCK_IRQSTATE:
714                         map->lock = regmap_lock_hwlock_irqsave;
715                         map->unlock = regmap_unlock_hwlock_irqrestore;
716                         break;
717                 case HWLOCK_IRQ:
718                         map->lock = regmap_lock_hwlock_irq;
719                         map->unlock = regmap_unlock_hwlock_irq;
720                         break;
721                 default:
722                         map->lock = regmap_lock_hwlock;
723                         map->unlock = regmap_unlock_hwlock;
724                         break;
725                 }
726
727                 map->lock_arg = map;
728         } else {
729                 if ((bus && bus->fast_io) ||
730                     config->fast_io) {
731                         spin_lock_init(&map->spinlock);
732                         map->lock = regmap_lock_spinlock;
733                         map->unlock = regmap_unlock_spinlock;
734                         lockdep_set_class_and_name(&map->spinlock,
735                                                    lock_key, lock_name);
736                 } else {
737                         mutex_init(&map->mutex);
738                         map->lock = regmap_lock_mutex;
739                         map->unlock = regmap_unlock_mutex;
740                         lockdep_set_class_and_name(&map->mutex,
741                                                    lock_key, lock_name);
742                 }
743                 map->lock_arg = map;
744         }
745
746         /*
747          * When we write in fast-paths with regmap_bulk_write() don't allocate
748          * scratch buffers with sleeping allocations.
749          */
750         if ((bus && bus->fast_io) || config->fast_io)
751                 map->alloc_flags = GFP_ATOMIC;
752         else
753                 map->alloc_flags = GFP_KERNEL;
754
755         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
756         map->format.pad_bytes = config->pad_bits / 8;
757         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
758         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
759                         config->val_bits + config->pad_bits, 8);
760         map->reg_shift = config->pad_bits % 8;
761         if (config->reg_stride)
762                 map->reg_stride = config->reg_stride;
763         else
764                 map->reg_stride = 1;
765         if (is_power_of_2(map->reg_stride))
766                 map->reg_stride_order = ilog2(map->reg_stride);
767         else
768                 map->reg_stride_order = -1;
769         map->use_single_read = config->use_single_read || !bus || !bus->read;
770         map->use_single_write = config->use_single_write || !bus || !bus->write;
771         map->can_multi_write = config->can_multi_write && bus && bus->write;
772         if (bus) {
773                 map->max_raw_read = bus->max_raw_read;
774                 map->max_raw_write = bus->max_raw_write;
775         }
776         map->dev = dev;
777         map->bus = bus;
778         map->bus_context = bus_context;
779         map->max_register = config->max_register;
780         map->wr_table = config->wr_table;
781         map->rd_table = config->rd_table;
782         map->volatile_table = config->volatile_table;
783         map->precious_table = config->precious_table;
784         map->wr_noinc_table = config->wr_noinc_table;
785         map->rd_noinc_table = config->rd_noinc_table;
786         map->writeable_reg = config->writeable_reg;
787         map->readable_reg = config->readable_reg;
788         map->volatile_reg = config->volatile_reg;
789         map->precious_reg = config->precious_reg;
790         map->writeable_noinc_reg = config->writeable_noinc_reg;
791         map->readable_noinc_reg = config->readable_noinc_reg;
792         map->cache_type = config->cache_type;
793
794         spin_lock_init(&map->async_lock);
795         INIT_LIST_HEAD(&map->async_list);
796         INIT_LIST_HEAD(&map->async_free);
797         init_waitqueue_head(&map->async_waitq);
798
799         if (config->read_flag_mask ||
800             config->write_flag_mask ||
801             config->zero_flag_mask) {
802                 map->read_flag_mask = config->read_flag_mask;
803                 map->write_flag_mask = config->write_flag_mask;
804         } else if (bus) {
805                 map->read_flag_mask = bus->read_flag_mask;
806         }
807
808         if (!bus) {
809                 map->reg_read  = config->reg_read;
810                 map->reg_write = config->reg_write;
811
812                 map->defer_caching = false;
813                 goto skip_format_initialization;
814         } else if (!bus->read || !bus->write) {
815                 map->reg_read = _regmap_bus_reg_read;
816                 map->reg_write = _regmap_bus_reg_write;
817                 map->reg_update_bits = bus->reg_update_bits;
818
819                 map->defer_caching = false;
820                 goto skip_format_initialization;
821         } else {
822                 map->reg_read  = _regmap_bus_read;
823                 map->reg_update_bits = bus->reg_update_bits;
824         }
825
826         reg_endian = regmap_get_reg_endian(bus, config);
827         val_endian = regmap_get_val_endian(dev, bus, config);
828
829         switch (config->reg_bits + map->reg_shift) {
830         case 2:
831                 switch (config->val_bits) {
832                 case 6:
833                         map->format.format_write = regmap_format_2_6_write;
834                         break;
835                 default:
836                         goto err_hwlock;
837                 }
838                 break;
839
840         case 4:
841                 switch (config->val_bits) {
842                 case 12:
843                         map->format.format_write = regmap_format_4_12_write;
844                         break;
845                 default:
846                         goto err_hwlock;
847                 }
848                 break;
849
850         case 7:
851                 switch (config->val_bits) {
852                 case 9:
853                         map->format.format_write = regmap_format_7_9_write;
854                         break;
855                 default:
856                         goto err_hwlock;
857                 }
858                 break;
859
860         case 10:
861                 switch (config->val_bits) {
862                 case 14:
863                         map->format.format_write = regmap_format_10_14_write;
864                         break;
865                 default:
866                         goto err_hwlock;
867                 }
868                 break;
869
870         case 8:
871                 map->format.format_reg = regmap_format_8;
872                 break;
873
874         case 16:
875                 switch (reg_endian) {
876                 case REGMAP_ENDIAN_BIG:
877                         map->format.format_reg = regmap_format_16_be;
878                         break;
879                 case REGMAP_ENDIAN_LITTLE:
880                         map->format.format_reg = regmap_format_16_le;
881                         break;
882                 case REGMAP_ENDIAN_NATIVE:
883                         map->format.format_reg = regmap_format_16_native;
884                         break;
885                 default:
886                         goto err_hwlock;
887                 }
888                 break;
889
890         case 24:
891                 if (reg_endian != REGMAP_ENDIAN_BIG)
892                         goto err_hwlock;
893                 map->format.format_reg = regmap_format_24;
894                 break;
895
896         case 32:
897                 switch (reg_endian) {
898                 case REGMAP_ENDIAN_BIG:
899                         map->format.format_reg = regmap_format_32_be;
900                         break;
901                 case REGMAP_ENDIAN_LITTLE:
902                         map->format.format_reg = regmap_format_32_le;
903                         break;
904                 case REGMAP_ENDIAN_NATIVE:
905                         map->format.format_reg = regmap_format_32_native;
906                         break;
907                 default:
908                         goto err_hwlock;
909                 }
910                 break;
911
912 #ifdef CONFIG_64BIT
913         case 64:
914                 switch (reg_endian) {
915                 case REGMAP_ENDIAN_BIG:
916                         map->format.format_reg = regmap_format_64_be;
917                         break;
918                 case REGMAP_ENDIAN_LITTLE:
919                         map->format.format_reg = regmap_format_64_le;
920                         break;
921                 case REGMAP_ENDIAN_NATIVE:
922                         map->format.format_reg = regmap_format_64_native;
923                         break;
924                 default:
925                         goto err_hwlock;
926                 }
927                 break;
928 #endif
929
930         default:
931                 goto err_hwlock;
932         }
933
934         if (val_endian == REGMAP_ENDIAN_NATIVE)
935                 map->format.parse_inplace = regmap_parse_inplace_noop;
936
937         switch (config->val_bits) {
938         case 8:
939                 map->format.format_val = regmap_format_8;
940                 map->format.parse_val = regmap_parse_8;
941                 map->format.parse_inplace = regmap_parse_inplace_noop;
942                 break;
943         case 16:
944                 switch (val_endian) {
945                 case REGMAP_ENDIAN_BIG:
946                         map->format.format_val = regmap_format_16_be;
947                         map->format.parse_val = regmap_parse_16_be;
948                         map->format.parse_inplace = regmap_parse_16_be_inplace;
949                         break;
950                 case REGMAP_ENDIAN_LITTLE:
951                         map->format.format_val = regmap_format_16_le;
952                         map->format.parse_val = regmap_parse_16_le;
953                         map->format.parse_inplace = regmap_parse_16_le_inplace;
954                         break;
955                 case REGMAP_ENDIAN_NATIVE:
956                         map->format.format_val = regmap_format_16_native;
957                         map->format.parse_val = regmap_parse_16_native;
958                         break;
959                 default:
960                         goto err_hwlock;
961                 }
962                 break;
963         case 24:
964                 if (val_endian != REGMAP_ENDIAN_BIG)
965                         goto err_hwlock;
966                 map->format.format_val = regmap_format_24;
967                 map->format.parse_val = regmap_parse_24;
968                 break;
969         case 32:
970                 switch (val_endian) {
971                 case REGMAP_ENDIAN_BIG:
972                         map->format.format_val = regmap_format_32_be;
973                         map->format.parse_val = regmap_parse_32_be;
974                         map->format.parse_inplace = regmap_parse_32_be_inplace;
975                         break;
976                 case REGMAP_ENDIAN_LITTLE:
977                         map->format.format_val = regmap_format_32_le;
978                         map->format.parse_val = regmap_parse_32_le;
979                         map->format.parse_inplace = regmap_parse_32_le_inplace;
980                         break;
981                 case REGMAP_ENDIAN_NATIVE:
982                         map->format.format_val = regmap_format_32_native;
983                         map->format.parse_val = regmap_parse_32_native;
984                         break;
985                 default:
986                         goto err_hwlock;
987                 }
988                 break;
989 #ifdef CONFIG_64BIT
990         case 64:
991                 switch (val_endian) {
992                 case REGMAP_ENDIAN_BIG:
993                         map->format.format_val = regmap_format_64_be;
994                         map->format.parse_val = regmap_parse_64_be;
995                         map->format.parse_inplace = regmap_parse_64_be_inplace;
996                         break;
997                 case REGMAP_ENDIAN_LITTLE:
998                         map->format.format_val = regmap_format_64_le;
999                         map->format.parse_val = regmap_parse_64_le;
1000                         map->format.parse_inplace = regmap_parse_64_le_inplace;
1001                         break;
1002                 case REGMAP_ENDIAN_NATIVE:
1003                         map->format.format_val = regmap_format_64_native;
1004                         map->format.parse_val = regmap_parse_64_native;
1005                         break;
1006                 default:
1007                         goto err_hwlock;
1008                 }
1009                 break;
1010 #endif
1011         }
1012
1013         if (map->format.format_write) {
1014                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1015                     (val_endian != REGMAP_ENDIAN_BIG))
1016                         goto err_hwlock;
1017                 map->use_single_write = true;
1018         }
1019
1020         if (!map->format.format_write &&
1021             !(map->format.format_reg && map->format.format_val))
1022                 goto err_hwlock;
1023
1024         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1025         if (map->work_buf == NULL) {
1026                 ret = -ENOMEM;
1027                 goto err_hwlock;
1028         }
1029
1030         if (map->format.format_write) {
1031                 map->defer_caching = false;
1032                 map->reg_write = _regmap_bus_formatted_write;
1033         } else if (map->format.format_val) {
1034                 map->defer_caching = true;
1035                 map->reg_write = _regmap_bus_raw_write;
1036         }
1037
1038 skip_format_initialization:
1039
1040         map->range_tree = RB_ROOT;
1041         for (i = 0; i < config->num_ranges; i++) {
1042                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1043                 struct regmap_range_node *new;
1044
1045                 /* Sanity check */
1046                 if (range_cfg->range_max < range_cfg->range_min) {
1047                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1048                                 range_cfg->range_max, range_cfg->range_min);
1049                         goto err_range;
1050                 }
1051
1052                 if (range_cfg->range_max > map->max_register) {
1053                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1054                                 range_cfg->range_max, map->max_register);
1055                         goto err_range;
1056                 }
1057
1058                 if (range_cfg->selector_reg > map->max_register) {
1059                         dev_err(map->dev,
1060                                 "Invalid range %d: selector out of map\n", i);
1061                         goto err_range;
1062                 }
1063
1064                 if (range_cfg->window_len == 0) {
1065                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
1066                                 i);
1067                         goto err_range;
1068                 }
1069
1070                 /* Make sure, that this register range has no selector
1071                    or data window within its boundary */
1072                 for (j = 0; j < config->num_ranges; j++) {
1073                         unsigned sel_reg = config->ranges[j].selector_reg;
1074                         unsigned win_min = config->ranges[j].window_start;
1075                         unsigned win_max = win_min +
1076                                            config->ranges[j].window_len - 1;
1077
1078                         /* Allow data window inside its own virtual range */
1079                         if (j == i)
1080                                 continue;
1081
1082                         if (range_cfg->range_min <= sel_reg &&
1083                             sel_reg <= range_cfg->range_max) {
1084                                 dev_err(map->dev,
1085                                         "Range %d: selector for %d in window\n",
1086                                         i, j);
1087                                 goto err_range;
1088                         }
1089
1090                         if (!(win_max < range_cfg->range_min ||
1091                               win_min > range_cfg->range_max)) {
1092                                 dev_err(map->dev,
1093                                         "Range %d: window for %d in window\n",
1094                                         i, j);
1095                                 goto err_range;
1096                         }
1097                 }
1098
1099                 new = kzalloc(sizeof(*new), GFP_KERNEL);
1100                 if (new == NULL) {
1101                         ret = -ENOMEM;
1102                         goto err_range;
1103                 }
1104
1105                 new->map = map;
1106                 new->name = range_cfg->name;
1107                 new->range_min = range_cfg->range_min;
1108                 new->range_max = range_cfg->range_max;
1109                 new->selector_reg = range_cfg->selector_reg;
1110                 new->selector_mask = range_cfg->selector_mask;
1111                 new->selector_shift = range_cfg->selector_shift;
1112                 new->window_start = range_cfg->window_start;
1113                 new->window_len = range_cfg->window_len;
1114
1115                 if (!_regmap_range_add(map, new)) {
1116                         dev_err(map->dev, "Failed to add range %d\n", i);
1117                         kfree(new);
1118                         goto err_range;
1119                 }
1120
1121                 if (map->selector_work_buf == NULL) {
1122                         map->selector_work_buf =
1123                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1124                         if (map->selector_work_buf == NULL) {
1125                                 ret = -ENOMEM;
1126                                 goto err_range;
1127                         }
1128                 }
1129         }
1130
1131         ret = regcache_init(map, config);
1132         if (ret != 0)
1133                 goto err_range;
1134
1135         if (dev) {
1136                 ret = regmap_attach_dev(dev, map, config);
1137                 if (ret != 0)
1138                         goto err_regcache;
1139         } else {
1140                 regmap_debugfs_init(map, config->name);
1141         }
1142
1143         return map;
1144
1145 err_regcache:
1146         regcache_exit(map);
1147 err_range:
1148         regmap_range_exit(map);
1149         kfree(map->work_buf);
1150 err_hwlock:
1151         if (map->hwlock)
1152                 hwspin_lock_free(map->hwlock);
1153 err_name:
1154         kfree_const(map->name);
1155 err_map:
1156         kfree(map);
1157 err:
1158         return ERR_PTR(ret);
1159 }
1160 EXPORT_SYMBOL_GPL(__regmap_init);
1161
1162 static void devm_regmap_release(struct device *dev, void *res)
1163 {
1164         regmap_exit(*(struct regmap **)res);
1165 }
1166
1167 struct regmap *__devm_regmap_init(struct device *dev,
1168                                   const struct regmap_bus *bus,
1169                                   void *bus_context,
1170                                   const struct regmap_config *config,
1171                                   struct lock_class_key *lock_key,
1172                                   const char *lock_name)
1173 {
1174         struct regmap **ptr, *regmap;
1175
1176         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1177         if (!ptr)
1178                 return ERR_PTR(-ENOMEM);
1179
1180         regmap = __regmap_init(dev, bus, bus_context, config,
1181                                lock_key, lock_name);
1182         if (!IS_ERR(regmap)) {
1183                 *ptr = regmap;
1184                 devres_add(dev, ptr);
1185         } else {
1186                 devres_free(ptr);
1187         }
1188
1189         return regmap;
1190 }
1191 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1192
1193 static void regmap_field_init(struct regmap_field *rm_field,
1194         struct regmap *regmap, struct reg_field reg_field)
1195 {
1196         rm_field->regmap = regmap;
1197         rm_field->reg = reg_field.reg;
1198         rm_field->shift = reg_field.lsb;
1199         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1200         rm_field->id_size = reg_field.id_size;
1201         rm_field->id_offset = reg_field.id_offset;
1202 }
1203
1204 /**
1205  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1206  *
1207  * @dev: Device that will be interacted with
1208  * @regmap: regmap bank in which this register field is located.
1209  * @reg_field: Register field with in the bank.
1210  *
1211  * The return value will be an ERR_PTR() on error or a valid pointer
1212  * to a struct regmap_field. The regmap_field will be automatically freed
1213  * by the device management code.
1214  */
1215 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1216                 struct regmap *regmap, struct reg_field reg_field)
1217 {
1218         struct regmap_field *rm_field = devm_kzalloc(dev,
1219                                         sizeof(*rm_field), GFP_KERNEL);
1220         if (!rm_field)
1221                 return ERR_PTR(-ENOMEM);
1222
1223         regmap_field_init(rm_field, regmap, reg_field);
1224
1225         return rm_field;
1226
1227 }
1228 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1229
1230 /**
1231  * devm_regmap_field_free() - Free a register field allocated using
1232  *                            devm_regmap_field_alloc.
1233  *
1234  * @dev: Device that will be interacted with
1235  * @field: regmap field which should be freed.
1236  *
1237  * Free register field allocated using devm_regmap_field_alloc(). Usually
1238  * drivers need not call this function, as the memory allocated via devm
1239  * will be freed as per device-driver life-cyle.
1240  */
1241 void devm_regmap_field_free(struct device *dev,
1242         struct regmap_field *field)
1243 {
1244         devm_kfree(dev, field);
1245 }
1246 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1247
1248 /**
1249  * regmap_field_alloc() - Allocate and initialise a register field.
1250  *
1251  * @regmap: regmap bank in which this register field is located.
1252  * @reg_field: Register field with in the bank.
1253  *
1254  * The return value will be an ERR_PTR() on error or a valid pointer
1255  * to a struct regmap_field. The regmap_field should be freed by the
1256  * user once its finished working with it using regmap_field_free().
1257  */
1258 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1259                 struct reg_field reg_field)
1260 {
1261         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1262
1263         if (!rm_field)
1264                 return ERR_PTR(-ENOMEM);
1265
1266         regmap_field_init(rm_field, regmap, reg_field);
1267
1268         return rm_field;
1269 }
1270 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1271
1272 /**
1273  * regmap_field_free() - Free register field allocated using
1274  *                       regmap_field_alloc.
1275  *
1276  * @field: regmap field which should be freed.
1277  */
1278 void regmap_field_free(struct regmap_field *field)
1279 {
1280         kfree(field);
1281 }
1282 EXPORT_SYMBOL_GPL(regmap_field_free);
1283
1284 /**
1285  * regmap_reinit_cache() - Reinitialise the current register cache
1286  *
1287  * @map: Register map to operate on.
1288  * @config: New configuration.  Only the cache data will be used.
1289  *
1290  * Discard any existing register cache for the map and initialize a
1291  * new cache.  This can be used to restore the cache to defaults or to
1292  * update the cache configuration to reflect runtime discovery of the
1293  * hardware.
1294  *
1295  * No explicit locking is done here, the user needs to ensure that
1296  * this function will not race with other calls to regmap.
1297  */
1298 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1299 {
1300         regcache_exit(map);
1301         regmap_debugfs_exit(map);
1302
1303         map->max_register = config->max_register;
1304         map->writeable_reg = config->writeable_reg;
1305         map->readable_reg = config->readable_reg;
1306         map->volatile_reg = config->volatile_reg;
1307         map->precious_reg = config->precious_reg;
1308         map->writeable_noinc_reg = config->writeable_noinc_reg;
1309         map->readable_noinc_reg = config->readable_noinc_reg;
1310         map->cache_type = config->cache_type;
1311
1312         regmap_debugfs_init(map, config->name);
1313
1314         map->cache_bypass = false;
1315         map->cache_only = false;
1316
1317         return regcache_init(map, config);
1318 }
1319 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1320
1321 /**
1322  * regmap_exit() - Free a previously allocated register map
1323  *
1324  * @map: Register map to operate on.
1325  */
1326 void regmap_exit(struct regmap *map)
1327 {
1328         struct regmap_async *async;
1329
1330         regcache_exit(map);
1331         regmap_debugfs_exit(map);
1332         regmap_range_exit(map);
1333         if (map->bus && map->bus->free_context)
1334                 map->bus->free_context(map->bus_context);
1335         kfree(map->work_buf);
1336         while (!list_empty(&map->async_free)) {
1337                 async = list_first_entry_or_null(&map->async_free,
1338                                                  struct regmap_async,
1339                                                  list);
1340                 list_del(&async->list);
1341                 kfree(async->work_buf);
1342                 kfree(async);
1343         }
1344         if (map->hwlock)
1345                 hwspin_lock_free(map->hwlock);
1346         kfree_const(map->name);
1347         kfree(map->patch);
1348         kfree(map);
1349 }
1350 EXPORT_SYMBOL_GPL(regmap_exit);
1351
1352 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1353 {
1354         struct regmap **r = res;
1355         if (!r || !*r) {
1356                 WARN_ON(!r || !*r);
1357                 return 0;
1358         }
1359
1360         /* If the user didn't specify a name match any */
1361         if (data)
1362                 return !strcmp((*r)->name, data);
1363         else
1364                 return 1;
1365 }
1366
1367 /**
1368  * dev_get_regmap() - Obtain the regmap (if any) for a device
1369  *
1370  * @dev: Device to retrieve the map for
1371  * @name: Optional name for the register map, usually NULL.
1372  *
1373  * Returns the regmap for the device if one is present, or NULL.  If
1374  * name is specified then it must match the name specified when
1375  * registering the device, if it is NULL then the first regmap found
1376  * will be used.  Devices with multiple register maps are very rare,
1377  * generic code should normally not need to specify a name.
1378  */
1379 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1380 {
1381         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1382                                         dev_get_regmap_match, (void *)name);
1383
1384         if (!r)
1385                 return NULL;
1386         return *r;
1387 }
1388 EXPORT_SYMBOL_GPL(dev_get_regmap);
1389
1390 /**
1391  * regmap_get_device() - Obtain the device from a regmap
1392  *
1393  * @map: Register map to operate on.
1394  *
1395  * Returns the underlying device that the regmap has been created for.
1396  */
1397 struct device *regmap_get_device(struct regmap *map)
1398 {
1399         return map->dev;
1400 }
1401 EXPORT_SYMBOL_GPL(regmap_get_device);
1402
1403 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1404                                struct regmap_range_node *range,
1405                                unsigned int val_num)
1406 {
1407         void *orig_work_buf;
1408         unsigned int win_offset;
1409         unsigned int win_page;
1410         bool page_chg;
1411         int ret;
1412
1413         win_offset = (*reg - range->range_min) % range->window_len;
1414         win_page = (*reg - range->range_min) / range->window_len;
1415
1416         if (val_num > 1) {
1417                 /* Bulk write shouldn't cross range boundary */
1418                 if (*reg + val_num - 1 > range->range_max)
1419                         return -EINVAL;
1420
1421                 /* ... or single page boundary */
1422                 if (val_num > range->window_len - win_offset)
1423                         return -EINVAL;
1424         }
1425
1426         /* It is possible to have selector register inside data window.
1427            In that case, selector register is located on every page and
1428            it needs no page switching, when accessed alone. */
1429         if (val_num > 1 ||
1430             range->window_start + win_offset != range->selector_reg) {
1431                 /* Use separate work_buf during page switching */
1432                 orig_work_buf = map->work_buf;
1433                 map->work_buf = map->selector_work_buf;
1434
1435                 ret = _regmap_update_bits(map, range->selector_reg,
1436                                           range->selector_mask,
1437                                           win_page << range->selector_shift,
1438                                           &page_chg, false);
1439
1440                 map->work_buf = orig_work_buf;
1441
1442                 if (ret != 0)
1443                         return ret;
1444         }
1445
1446         *reg = range->window_start + win_offset;
1447
1448         return 0;
1449 }
1450
1451 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1452                                           unsigned long mask)
1453 {
1454         u8 *buf;
1455         int i;
1456
1457         if (!mask || !map->work_buf)
1458                 return;
1459
1460         buf = map->work_buf;
1461
1462         for (i = 0; i < max_bytes; i++)
1463                 buf[i] |= (mask >> (8 * i)) & 0xff;
1464 }
1465
1466 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1467                                   const void *val, size_t val_len)
1468 {
1469         struct regmap_range_node *range;
1470         unsigned long flags;
1471         void *work_val = map->work_buf + map->format.reg_bytes +
1472                 map->format.pad_bytes;
1473         void *buf;
1474         int ret = -ENOTSUPP;
1475         size_t len;
1476         int i;
1477
1478         WARN_ON(!map->bus);
1479
1480         /* Check for unwritable or noinc registers in range
1481          * before we start
1482          */
1483         if (!regmap_writeable_noinc(map, reg)) {
1484                 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1485                         unsigned int element =
1486                                 reg + regmap_get_offset(map, i);
1487                         if (!regmap_writeable(map, element) ||
1488                                 regmap_writeable_noinc(map, element))
1489                                 return -EINVAL;
1490                 }
1491         }
1492
1493         if (!map->cache_bypass && map->format.parse_val) {
1494                 unsigned int ival;
1495                 int val_bytes = map->format.val_bytes;
1496                 for (i = 0; i < val_len / val_bytes; i++) {
1497                         ival = map->format.parse_val(val + (i * val_bytes));
1498                         ret = regcache_write(map,
1499                                              reg + regmap_get_offset(map, i),
1500                                              ival);
1501                         if (ret) {
1502                                 dev_err(map->dev,
1503                                         "Error in caching of register: %x ret: %d\n",
1504                                         reg + i, ret);
1505                                 return ret;
1506                         }
1507                 }
1508                 if (map->cache_only) {
1509                         map->cache_dirty = true;
1510                         return 0;
1511                 }
1512         }
1513
1514         range = _regmap_range_lookup(map, reg);
1515         if (range) {
1516                 int val_num = val_len / map->format.val_bytes;
1517                 int win_offset = (reg - range->range_min) % range->window_len;
1518                 int win_residue = range->window_len - win_offset;
1519
1520                 /* If the write goes beyond the end of the window split it */
1521                 while (val_num > win_residue) {
1522                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1523                                 win_residue, val_len / map->format.val_bytes);
1524                         ret = _regmap_raw_write_impl(map, reg, val,
1525                                                      win_residue *
1526                                                      map->format.val_bytes);
1527                         if (ret != 0)
1528                                 return ret;
1529
1530                         reg += win_residue;
1531                         val_num -= win_residue;
1532                         val += win_residue * map->format.val_bytes;
1533                         val_len -= win_residue * map->format.val_bytes;
1534
1535                         win_offset = (reg - range->range_min) %
1536                                 range->window_len;
1537                         win_residue = range->window_len - win_offset;
1538                 }
1539
1540                 ret = _regmap_select_page(map, &reg, range, val_num);
1541                 if (ret != 0)
1542                         return ret;
1543         }
1544
1545         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1546         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1547                                       map->write_flag_mask);
1548
1549         /*
1550          * Essentially all I/O mechanisms will be faster with a single
1551          * buffer to write.  Since register syncs often generate raw
1552          * writes of single registers optimise that case.
1553          */
1554         if (val != work_val && val_len == map->format.val_bytes) {
1555                 memcpy(work_val, val, map->format.val_bytes);
1556                 val = work_val;
1557         }
1558
1559         if (map->async && map->bus->async_write) {
1560                 struct regmap_async *async;
1561
1562                 trace_regmap_async_write_start(map, reg, val_len);
1563
1564                 spin_lock_irqsave(&map->async_lock, flags);
1565                 async = list_first_entry_or_null(&map->async_free,
1566                                                  struct regmap_async,
1567                                                  list);
1568                 if (async)
1569                         list_del(&async->list);
1570                 spin_unlock_irqrestore(&map->async_lock, flags);
1571
1572                 if (!async) {
1573                         async = map->bus->async_alloc();
1574                         if (!async)
1575                                 return -ENOMEM;
1576
1577                         async->work_buf = kzalloc(map->format.buf_size,
1578                                                   GFP_KERNEL | GFP_DMA);
1579                         if (!async->work_buf) {
1580                                 kfree(async);
1581                                 return -ENOMEM;
1582                         }
1583                 }
1584
1585                 async->map = map;
1586
1587                 /* If the caller supplied the value we can use it safely. */
1588                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1589                        map->format.reg_bytes + map->format.val_bytes);
1590
1591                 spin_lock_irqsave(&map->async_lock, flags);
1592                 list_add_tail(&async->list, &map->async_list);
1593                 spin_unlock_irqrestore(&map->async_lock, flags);
1594
1595                 if (val != work_val)
1596                         ret = map->bus->async_write(map->bus_context,
1597                                                     async->work_buf,
1598                                                     map->format.reg_bytes +
1599                                                     map->format.pad_bytes,
1600                                                     val, val_len, async);
1601                 else
1602                         ret = map->bus->async_write(map->bus_context,
1603                                                     async->work_buf,
1604                                                     map->format.reg_bytes +
1605                                                     map->format.pad_bytes +
1606                                                     val_len, NULL, 0, async);
1607
1608                 if (ret != 0) {
1609                         dev_err(map->dev, "Failed to schedule write: %d\n",
1610                                 ret);
1611
1612                         spin_lock_irqsave(&map->async_lock, flags);
1613                         list_move(&async->list, &map->async_free);
1614                         spin_unlock_irqrestore(&map->async_lock, flags);
1615                 }
1616
1617                 return ret;
1618         }
1619
1620         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1621
1622         /* If we're doing a single register write we can probably just
1623          * send the work_buf directly, otherwise try to do a gather
1624          * write.
1625          */
1626         if (val == work_val)
1627                 ret = map->bus->write(map->bus_context, map->work_buf,
1628                                       map->format.reg_bytes +
1629                                       map->format.pad_bytes +
1630                                       val_len);
1631         else if (map->bus->gather_write)
1632                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1633                                              map->format.reg_bytes +
1634                                              map->format.pad_bytes,
1635                                              val, val_len);
1636         else
1637                 ret = -ENOTSUPP;
1638
1639         /* If that didn't work fall back on linearising by hand. */
1640         if (ret == -ENOTSUPP) {
1641                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1642                 buf = kzalloc(len, GFP_KERNEL);
1643                 if (!buf)
1644                         return -ENOMEM;
1645
1646                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1647                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1648                        val, val_len);
1649                 ret = map->bus->write(map->bus_context, buf, len);
1650
1651                 kfree(buf);
1652         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1653                 /* regcache_drop_region() takes lock that we already have,
1654                  * thus call map->cache_ops->drop() directly
1655                  */
1656                 if (map->cache_ops && map->cache_ops->drop)
1657                         map->cache_ops->drop(map, reg, reg + 1);
1658         }
1659
1660         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1661
1662         return ret;
1663 }
1664
1665 /**
1666  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1667  *
1668  * @map: Map to check.
1669  */
1670 bool regmap_can_raw_write(struct regmap *map)
1671 {
1672         return map->bus && map->bus->write && map->format.format_val &&
1673                 map->format.format_reg;
1674 }
1675 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1676
1677 /**
1678  * regmap_get_raw_read_max - Get the maximum size we can read
1679  *
1680  * @map: Map to check.
1681  */
1682 size_t regmap_get_raw_read_max(struct regmap *map)
1683 {
1684         return map->max_raw_read;
1685 }
1686 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1687
1688 /**
1689  * regmap_get_raw_write_max - Get the maximum size we can read
1690  *
1691  * @map: Map to check.
1692  */
1693 size_t regmap_get_raw_write_max(struct regmap *map)
1694 {
1695         return map->max_raw_write;
1696 }
1697 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1698
1699 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1700                                        unsigned int val)
1701 {
1702         int ret;
1703         struct regmap_range_node *range;
1704         struct regmap *map = context;
1705
1706         WARN_ON(!map->bus || !map->format.format_write);
1707
1708         range = _regmap_range_lookup(map, reg);
1709         if (range) {
1710                 ret = _regmap_select_page(map, &reg, range, 1);
1711                 if (ret != 0)
1712                         return ret;
1713         }
1714
1715         map->format.format_write(map, reg, val);
1716
1717         trace_regmap_hw_write_start(map, reg, 1);
1718
1719         ret = map->bus->write(map->bus_context, map->work_buf,
1720                               map->format.buf_size);
1721
1722         trace_regmap_hw_write_done(map, reg, 1);
1723
1724         return ret;
1725 }
1726
1727 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1728                                  unsigned int val)
1729 {
1730         struct regmap *map = context;
1731
1732         return map->bus->reg_write(map->bus_context, reg, val);
1733 }
1734
1735 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1736                                  unsigned int val)
1737 {
1738         struct regmap *map = context;
1739
1740         WARN_ON(!map->bus || !map->format.format_val);
1741
1742         map->format.format_val(map->work_buf + map->format.reg_bytes
1743                                + map->format.pad_bytes, val, 0);
1744         return _regmap_raw_write_impl(map, reg,
1745                                       map->work_buf +
1746                                       map->format.reg_bytes +
1747                                       map->format.pad_bytes,
1748                                       map->format.val_bytes);
1749 }
1750
1751 static inline void *_regmap_map_get_context(struct regmap *map)
1752 {
1753         return (map->bus) ? map : map->bus_context;
1754 }
1755
1756 int _regmap_write(struct regmap *map, unsigned int reg,
1757                   unsigned int val)
1758 {
1759         int ret;
1760         void *context = _regmap_map_get_context(map);
1761
1762         if (!regmap_writeable(map, reg))
1763                 return -EIO;
1764
1765         if (!map->cache_bypass && !map->defer_caching) {
1766                 ret = regcache_write(map, reg, val);
1767                 if (ret != 0)
1768                         return ret;
1769                 if (map->cache_only) {
1770                         map->cache_dirty = true;
1771                         return 0;
1772                 }
1773         }
1774
1775         if (regmap_should_log(map))
1776                 dev_info(map->dev, "%x <= %x\n", reg, val);
1777
1778         trace_regmap_reg_write(map, reg, val);
1779
1780         return map->reg_write(context, reg, val);
1781 }
1782
1783 /**
1784  * regmap_write() - Write a value to a single register
1785  *
1786  * @map: Register map to write to
1787  * @reg: Register to write to
1788  * @val: Value to be written
1789  *
1790  * A value of zero will be returned on success, a negative errno will
1791  * be returned in error cases.
1792  */
1793 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1794 {
1795         int ret;
1796
1797         if (!IS_ALIGNED(reg, map->reg_stride))
1798                 return -EINVAL;
1799
1800         map->lock(map->lock_arg);
1801
1802         ret = _regmap_write(map, reg, val);
1803
1804         map->unlock(map->lock_arg);
1805
1806         return ret;
1807 }
1808 EXPORT_SYMBOL_GPL(regmap_write);
1809
1810 /**
1811  * regmap_write_async() - Write a value to a single register asynchronously
1812  *
1813  * @map: Register map to write to
1814  * @reg: Register to write to
1815  * @val: Value to be written
1816  *
1817  * A value of zero will be returned on success, a negative errno will
1818  * be returned in error cases.
1819  */
1820 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1821 {
1822         int ret;
1823
1824         if (!IS_ALIGNED(reg, map->reg_stride))
1825                 return -EINVAL;
1826
1827         map->lock(map->lock_arg);
1828
1829         map->async = true;
1830
1831         ret = _regmap_write(map, reg, val);
1832
1833         map->async = false;
1834
1835         map->unlock(map->lock_arg);
1836
1837         return ret;
1838 }
1839 EXPORT_SYMBOL_GPL(regmap_write_async);
1840
1841 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1842                       const void *val, size_t val_len)
1843 {
1844         size_t val_bytes = map->format.val_bytes;
1845         size_t val_count = val_len / val_bytes;
1846         size_t chunk_count, chunk_bytes;
1847         size_t chunk_regs = val_count;
1848         int ret, i;
1849
1850         if (!val_count)
1851                 return -EINVAL;
1852
1853         if (map->use_single_write)
1854                 chunk_regs = 1;
1855         else if (map->max_raw_write && val_len > map->max_raw_write)
1856                 chunk_regs = map->max_raw_write / val_bytes;
1857
1858         chunk_count = val_count / chunk_regs;
1859         chunk_bytes = chunk_regs * val_bytes;
1860
1861         /* Write as many bytes as possible with chunk_size */
1862         for (i = 0; i < chunk_count; i++) {
1863                 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1864                 if (ret)
1865                         return ret;
1866
1867                 reg += regmap_get_offset(map, chunk_regs);
1868                 val += chunk_bytes;
1869                 val_len -= chunk_bytes;
1870         }
1871
1872         /* Write remaining bytes */
1873         if (val_len)
1874                 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1875
1876         return ret;
1877 }
1878
1879 /**
1880  * regmap_raw_write() - Write raw values to one or more registers
1881  *
1882  * @map: Register map to write to
1883  * @reg: Initial register to write to
1884  * @val: Block of data to be written, laid out for direct transmission to the
1885  *       device
1886  * @val_len: Length of data pointed to by val.
1887  *
1888  * This function is intended to be used for things like firmware
1889  * download where a large block of data needs to be transferred to the
1890  * device.  No formatting will be done on the data provided.
1891  *
1892  * A value of zero will be returned on success, a negative errno will
1893  * be returned in error cases.
1894  */
1895 int regmap_raw_write(struct regmap *map, unsigned int reg,
1896                      const void *val, size_t val_len)
1897 {
1898         int ret;
1899
1900         if (!regmap_can_raw_write(map))
1901                 return -EINVAL;
1902         if (val_len % map->format.val_bytes)
1903                 return -EINVAL;
1904
1905         map->lock(map->lock_arg);
1906
1907         ret = _regmap_raw_write(map, reg, val, val_len);
1908
1909         map->unlock(map->lock_arg);
1910
1911         return ret;
1912 }
1913 EXPORT_SYMBOL_GPL(regmap_raw_write);
1914
1915 /**
1916  * regmap_noinc_write(): Write data from a register without incrementing the
1917  *                      register number
1918  *
1919  * @map: Register map to write to
1920  * @reg: Register to write to
1921  * @val: Pointer to data buffer
1922  * @val_len: Length of output buffer in bytes.
1923  *
1924  * The regmap API usually assumes that bulk bus write operations will write a
1925  * range of registers. Some devices have certain registers for which a write
1926  * operation can write to an internal FIFO.
1927  *
1928  * The target register must be volatile but registers after it can be
1929  * completely unrelated cacheable registers.
1930  *
1931  * This will attempt multiple writes as required to write val_len bytes.
1932  *
1933  * A value of zero will be returned on success, a negative errno will be
1934  * returned in error cases.
1935  */
1936 int regmap_noinc_write(struct regmap *map, unsigned int reg,
1937                       const void *val, size_t val_len)
1938 {
1939         size_t write_len;
1940         int ret;
1941
1942         if (!map->bus)
1943                 return -EINVAL;
1944         if (!map->bus->write)
1945                 return -ENOTSUPP;
1946         if (val_len % map->format.val_bytes)
1947                 return -EINVAL;
1948         if (!IS_ALIGNED(reg, map->reg_stride))
1949                 return -EINVAL;
1950         if (val_len == 0)
1951                 return -EINVAL;
1952
1953         map->lock(map->lock_arg);
1954
1955         if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1956                 ret = -EINVAL;
1957                 goto out_unlock;
1958         }
1959
1960         while (val_len) {
1961                 if (map->max_raw_write && map->max_raw_write < val_len)
1962                         write_len = map->max_raw_write;
1963                 else
1964                         write_len = val_len;
1965                 ret = _regmap_raw_write(map, reg, val, write_len);
1966                 if (ret)
1967                         goto out_unlock;
1968                 val = ((u8 *)val) + write_len;
1969                 val_len -= write_len;
1970         }
1971
1972 out_unlock:
1973         map->unlock(map->lock_arg);
1974         return ret;
1975 }
1976 EXPORT_SYMBOL_GPL(regmap_noinc_write);
1977
1978 /**
1979  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1980  *                                   register field.
1981  *
1982  * @field: Register field to write to
1983  * @mask: Bitmask to change
1984  * @val: Value to be written
1985  * @change: Boolean indicating if a write was done
1986  * @async: Boolean indicating asynchronously
1987  * @force: Boolean indicating use force update
1988  *
1989  * Perform a read/modify/write cycle on the register field with change,
1990  * async, force option.
1991  *
1992  * A value of zero will be returned on success, a negative errno will
1993  * be returned in error cases.
1994  */
1995 int regmap_field_update_bits_base(struct regmap_field *field,
1996                                   unsigned int mask, unsigned int val,
1997                                   bool *change, bool async, bool force)
1998 {
1999         mask = (mask << field->shift) & field->mask;
2000
2001         return regmap_update_bits_base(field->regmap, field->reg,
2002                                        mask, val << field->shift,
2003                                        change, async, force);
2004 }
2005 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2006
2007 /**
2008  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2009  *                                    register field with port ID
2010  *
2011  * @field: Register field to write to
2012  * @id: port ID
2013  * @mask: Bitmask to change
2014  * @val: Value to be written
2015  * @change: Boolean indicating if a write was done
2016  * @async: Boolean indicating asynchronously
2017  * @force: Boolean indicating use force update
2018  *
2019  * A value of zero will be returned on success, a negative errno will
2020  * be returned in error cases.
2021  */
2022 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2023                                    unsigned int mask, unsigned int val,
2024                                    bool *change, bool async, bool force)
2025 {
2026         if (id >= field->id_size)
2027                 return -EINVAL;
2028
2029         mask = (mask << field->shift) & field->mask;
2030
2031         return regmap_update_bits_base(field->regmap,
2032                                        field->reg + (field->id_offset * id),
2033                                        mask, val << field->shift,
2034                                        change, async, force);
2035 }
2036 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2037
2038 /**
2039  * regmap_bulk_write() - Write multiple registers to the device
2040  *
2041  * @map: Register map to write to
2042  * @reg: First register to be write from
2043  * @val: Block of data to be written, in native register size for device
2044  * @val_count: Number of registers to write
2045  *
2046  * This function is intended to be used for writing a large block of
2047  * data to the device either in single transfer or multiple transfer.
2048  *
2049  * A value of zero will be returned on success, a negative errno will
2050  * be returned in error cases.
2051  */
2052 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2053                      size_t val_count)
2054 {
2055         int ret = 0, i;
2056         size_t val_bytes = map->format.val_bytes;
2057
2058         if (!IS_ALIGNED(reg, map->reg_stride))
2059                 return -EINVAL;
2060
2061         /*
2062          * Some devices don't support bulk write, for them we have a series of
2063          * single write operations.
2064          */
2065         if (!map->bus || !map->format.parse_inplace) {
2066                 map->lock(map->lock_arg);
2067                 for (i = 0; i < val_count; i++) {
2068                         unsigned int ival;
2069
2070                         switch (val_bytes) {
2071                         case 1:
2072                                 ival = *(u8 *)(val + (i * val_bytes));
2073                                 break;
2074                         case 2:
2075                                 ival = *(u16 *)(val + (i * val_bytes));
2076                                 break;
2077                         case 4:
2078                                 ival = *(u32 *)(val + (i * val_bytes));
2079                                 break;
2080 #ifdef CONFIG_64BIT
2081                         case 8:
2082                                 ival = *(u64 *)(val + (i * val_bytes));
2083                                 break;
2084 #endif
2085                         default:
2086                                 ret = -EINVAL;
2087                                 goto out;
2088                         }
2089
2090                         ret = _regmap_write(map,
2091                                             reg + regmap_get_offset(map, i),
2092                                             ival);
2093                         if (ret != 0)
2094                                 goto out;
2095                 }
2096 out:
2097                 map->unlock(map->lock_arg);
2098         } else {
2099                 void *wval;
2100
2101                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2102                 if (!wval)
2103                         return -ENOMEM;
2104
2105                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2106                         map->format.parse_inplace(wval + i);
2107
2108                 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2109
2110                 kfree(wval);
2111         }
2112         return ret;
2113 }
2114 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2115
2116 /*
2117  * _regmap_raw_multi_reg_write()
2118  *
2119  * the (register,newvalue) pairs in regs have not been formatted, but
2120  * they are all in the same page and have been changed to being page
2121  * relative. The page register has been written if that was necessary.
2122  */
2123 static int _regmap_raw_multi_reg_write(struct regmap *map,
2124                                        const struct reg_sequence *regs,
2125                                        size_t num_regs)
2126 {
2127         int ret;
2128         void *buf;
2129         int i;
2130         u8 *u8;
2131         size_t val_bytes = map->format.val_bytes;
2132         size_t reg_bytes = map->format.reg_bytes;
2133         size_t pad_bytes = map->format.pad_bytes;
2134         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2135         size_t len = pair_size * num_regs;
2136
2137         if (!len)
2138                 return -EINVAL;
2139
2140         buf = kzalloc(len, GFP_KERNEL);
2141         if (!buf)
2142                 return -ENOMEM;
2143
2144         /* We have to linearise by hand. */
2145
2146         u8 = buf;
2147
2148         for (i = 0; i < num_regs; i++) {
2149                 unsigned int reg = regs[i].reg;
2150                 unsigned int val = regs[i].def;
2151                 trace_regmap_hw_write_start(map, reg, 1);
2152                 map->format.format_reg(u8, reg, map->reg_shift);
2153                 u8 += reg_bytes + pad_bytes;
2154                 map->format.format_val(u8, val, 0);
2155                 u8 += val_bytes;
2156         }
2157         u8 = buf;
2158         *u8 |= map->write_flag_mask;
2159
2160         ret = map->bus->write(map->bus_context, buf, len);
2161
2162         kfree(buf);
2163
2164         for (i = 0; i < num_regs; i++) {
2165                 int reg = regs[i].reg;
2166                 trace_regmap_hw_write_done(map, reg, 1);
2167         }
2168         return ret;
2169 }
2170
2171 static unsigned int _regmap_register_page(struct regmap *map,
2172                                           unsigned int reg,
2173                                           struct regmap_range_node *range)
2174 {
2175         unsigned int win_page = (reg - range->range_min) / range->window_len;
2176
2177         return win_page;
2178 }
2179
2180 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2181                                                struct reg_sequence *regs,
2182                                                size_t num_regs)
2183 {
2184         int ret;
2185         int i, n;
2186         struct reg_sequence *base;
2187         unsigned int this_page = 0;
2188         unsigned int page_change = 0;
2189         /*
2190          * the set of registers are not neccessarily in order, but
2191          * since the order of write must be preserved this algorithm
2192          * chops the set each time the page changes. This also applies
2193          * if there is a delay required at any point in the sequence.
2194          */
2195         base = regs;
2196         for (i = 0, n = 0; i < num_regs; i++, n++) {
2197                 unsigned int reg = regs[i].reg;
2198                 struct regmap_range_node *range;
2199
2200                 range = _regmap_range_lookup(map, reg);
2201                 if (range) {
2202                         unsigned int win_page = _regmap_register_page(map, reg,
2203                                                                       range);
2204
2205                         if (i == 0)
2206                                 this_page = win_page;
2207                         if (win_page != this_page) {
2208                                 this_page = win_page;
2209                                 page_change = 1;
2210                         }
2211                 }
2212
2213                 /* If we have both a page change and a delay make sure to
2214                  * write the regs and apply the delay before we change the
2215                  * page.
2216                  */
2217
2218                 if (page_change || regs[i].delay_us) {
2219
2220                                 /* For situations where the first write requires
2221                                  * a delay we need to make sure we don't call
2222                                  * raw_multi_reg_write with n=0
2223                                  * This can't occur with page breaks as we
2224                                  * never write on the first iteration
2225                                  */
2226                                 if (regs[i].delay_us && i == 0)
2227                                         n = 1;
2228
2229                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2230                                 if (ret != 0)
2231                                         return ret;
2232
2233                                 if (regs[i].delay_us)
2234                                         udelay(regs[i].delay_us);
2235
2236                                 base += n;
2237                                 n = 0;
2238
2239                                 if (page_change) {
2240                                         ret = _regmap_select_page(map,
2241                                                                   &base[n].reg,
2242                                                                   range, 1);
2243                                         if (ret != 0)
2244                                                 return ret;
2245
2246                                         page_change = 0;
2247                                 }
2248
2249                 }
2250
2251         }
2252         if (n > 0)
2253                 return _regmap_raw_multi_reg_write(map, base, n);
2254         return 0;
2255 }
2256
2257 static int _regmap_multi_reg_write(struct regmap *map,
2258                                    const struct reg_sequence *regs,
2259                                    size_t num_regs)
2260 {
2261         int i;
2262         int ret;
2263
2264         if (!map->can_multi_write) {
2265                 for (i = 0; i < num_regs; i++) {
2266                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2267                         if (ret != 0)
2268                                 return ret;
2269
2270                         if (regs[i].delay_us)
2271                                 udelay(regs[i].delay_us);
2272                 }
2273                 return 0;
2274         }
2275
2276         if (!map->format.parse_inplace)
2277                 return -EINVAL;
2278
2279         if (map->writeable_reg)
2280                 for (i = 0; i < num_regs; i++) {
2281                         int reg = regs[i].reg;
2282                         if (!map->writeable_reg(map->dev, reg))
2283                                 return -EINVAL;
2284                         if (!IS_ALIGNED(reg, map->reg_stride))
2285                                 return -EINVAL;
2286                 }
2287
2288         if (!map->cache_bypass) {
2289                 for (i = 0; i < num_regs; i++) {
2290                         unsigned int val = regs[i].def;
2291                         unsigned int reg = regs[i].reg;
2292                         ret = regcache_write(map, reg, val);
2293                         if (ret) {
2294                                 dev_err(map->dev,
2295                                 "Error in caching of register: %x ret: %d\n",
2296                                                                 reg, ret);
2297                                 return ret;
2298                         }
2299                 }
2300                 if (map->cache_only) {
2301                         map->cache_dirty = true;
2302                         return 0;
2303                 }
2304         }
2305
2306         WARN_ON(!map->bus);
2307
2308         for (i = 0; i < num_regs; i++) {
2309                 unsigned int reg = regs[i].reg;
2310                 struct regmap_range_node *range;
2311
2312                 /* Coalesce all the writes between a page break or a delay
2313                  * in a sequence
2314                  */
2315                 range = _regmap_range_lookup(map, reg);
2316                 if (range || regs[i].delay_us) {
2317                         size_t len = sizeof(struct reg_sequence)*num_regs;
2318                         struct reg_sequence *base = kmemdup(regs, len,
2319                                                            GFP_KERNEL);
2320                         if (!base)
2321                                 return -ENOMEM;
2322                         ret = _regmap_range_multi_paged_reg_write(map, base,
2323                                                                   num_regs);
2324                         kfree(base);
2325
2326                         return ret;
2327                 }
2328         }
2329         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2330 }
2331
2332 /**
2333  * regmap_multi_reg_write() - Write multiple registers to the device
2334  *
2335  * @map: Register map to write to
2336  * @regs: Array of structures containing register,value to be written
2337  * @num_regs: Number of registers to write
2338  *
2339  * Write multiple registers to the device where the set of register, value
2340  * pairs are supplied in any order, possibly not all in a single range.
2341  *
2342  * The 'normal' block write mode will send ultimately send data on the
2343  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2344  * addressed. However, this alternative block multi write mode will send
2345  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2346  * must of course support the mode.
2347  *
2348  * A value of zero will be returned on success, a negative errno will be
2349  * returned in error cases.
2350  */
2351 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2352                            int num_regs)
2353 {
2354         int ret;
2355
2356         map->lock(map->lock_arg);
2357
2358         ret = _regmap_multi_reg_write(map, regs, num_regs);
2359
2360         map->unlock(map->lock_arg);
2361
2362         return ret;
2363 }
2364 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2365
2366 /**
2367  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2368  *                                     device but not the cache
2369  *
2370  * @map: Register map to write to
2371  * @regs: Array of structures containing register,value to be written
2372  * @num_regs: Number of registers to write
2373  *
2374  * Write multiple registers to the device but not the cache where the set
2375  * of register are supplied in any order.
2376  *
2377  * This function is intended to be used for writing a large block of data
2378  * atomically to the device in single transfer for those I2C client devices
2379  * that implement this alternative block write mode.
2380  *
2381  * A value of zero will be returned on success, a negative errno will
2382  * be returned in error cases.
2383  */
2384 int regmap_multi_reg_write_bypassed(struct regmap *map,
2385                                     const struct reg_sequence *regs,
2386                                     int num_regs)
2387 {
2388         int ret;
2389         bool bypass;
2390
2391         map->lock(map->lock_arg);
2392
2393         bypass = map->cache_bypass;
2394         map->cache_bypass = true;
2395
2396         ret = _regmap_multi_reg_write(map, regs, num_regs);
2397
2398         map->cache_bypass = bypass;
2399
2400         map->unlock(map->lock_arg);
2401
2402         return ret;
2403 }
2404 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2405
2406 /**
2407  * regmap_raw_write_async() - Write raw values to one or more registers
2408  *                            asynchronously
2409  *
2410  * @map: Register map to write to
2411  * @reg: Initial register to write to
2412  * @val: Block of data to be written, laid out for direct transmission to the
2413  *       device.  Must be valid until regmap_async_complete() is called.
2414  * @val_len: Length of data pointed to by val.
2415  *
2416  * This function is intended to be used for things like firmware
2417  * download where a large block of data needs to be transferred to the
2418  * device.  No formatting will be done on the data provided.
2419  *
2420  * If supported by the underlying bus the write will be scheduled
2421  * asynchronously, helping maximise I/O speed on higher speed buses
2422  * like SPI.  regmap_async_complete() can be called to ensure that all
2423  * asynchrnous writes have been completed.
2424  *
2425  * A value of zero will be returned on success, a negative errno will
2426  * be returned in error cases.
2427  */
2428 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2429                            const void *val, size_t val_len)
2430 {
2431         int ret;
2432
2433         if (val_len % map->format.val_bytes)
2434                 return -EINVAL;
2435         if (!IS_ALIGNED(reg, map->reg_stride))
2436                 return -EINVAL;
2437
2438         map->lock(map->lock_arg);
2439
2440         map->async = true;
2441
2442         ret = _regmap_raw_write(map, reg, val, val_len);
2443
2444         map->async = false;
2445
2446         map->unlock(map->lock_arg);
2447
2448         return ret;
2449 }
2450 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2451
2452 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2453                             unsigned int val_len)
2454 {
2455         struct regmap_range_node *range;
2456         int ret;
2457
2458         WARN_ON(!map->bus);
2459
2460         if (!map->bus || !map->bus->read)
2461                 return -EINVAL;
2462
2463         range = _regmap_range_lookup(map, reg);
2464         if (range) {
2465                 ret = _regmap_select_page(map, &reg, range,
2466                                           val_len / map->format.val_bytes);
2467                 if (ret != 0)
2468                         return ret;
2469         }
2470
2471         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2472         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2473                                       map->read_flag_mask);
2474         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2475
2476         ret = map->bus->read(map->bus_context, map->work_buf,
2477                              map->format.reg_bytes + map->format.pad_bytes,
2478                              val, val_len);
2479
2480         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2481
2482         return ret;
2483 }
2484
2485 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2486                                 unsigned int *val)
2487 {
2488         struct regmap *map = context;
2489
2490         return map->bus->reg_read(map->bus_context, reg, val);
2491 }
2492
2493 static int _regmap_bus_read(void *context, unsigned int reg,
2494                             unsigned int *val)
2495 {
2496         int ret;
2497         struct regmap *map = context;
2498         void *work_val = map->work_buf + map->format.reg_bytes +
2499                 map->format.pad_bytes;
2500
2501         if (!map->format.parse_val)
2502                 return -EINVAL;
2503
2504         ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2505         if (ret == 0)
2506                 *val = map->format.parse_val(work_val);
2507
2508         return ret;
2509 }
2510
2511 static int _regmap_read(struct regmap *map, unsigned int reg,
2512                         unsigned int *val)
2513 {
2514         int ret;
2515         void *context = _regmap_map_get_context(map);
2516
2517         if (!map->cache_bypass) {
2518                 ret = regcache_read(map, reg, val);
2519                 if (ret == 0)
2520                         return 0;
2521         }
2522
2523         if (map->cache_only)
2524                 return -EBUSY;
2525
2526         if (!regmap_readable(map, reg))
2527                 return -EIO;
2528
2529         ret = map->reg_read(context, reg, val);
2530         if (ret == 0) {
2531                 if (regmap_should_log(map))
2532                         dev_info(map->dev, "%x => %x\n", reg, *val);
2533
2534                 trace_regmap_reg_read(map, reg, *val);
2535
2536                 if (!map->cache_bypass)
2537                         regcache_write(map, reg, *val);
2538         }
2539
2540         return ret;
2541 }
2542
2543 /**
2544  * regmap_read() - Read a value from a single register
2545  *
2546  * @map: Register map to read from
2547  * @reg: Register to be read from
2548  * @val: Pointer to store read value
2549  *
2550  * A value of zero will be returned on success, a negative errno will
2551  * be returned in error cases.
2552  */
2553 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2554 {
2555         int ret;
2556
2557         if (!IS_ALIGNED(reg, map->reg_stride))
2558                 return -EINVAL;
2559
2560         map->lock(map->lock_arg);
2561
2562         ret = _regmap_read(map, reg, val);
2563
2564         map->unlock(map->lock_arg);
2565
2566         return ret;
2567 }
2568 EXPORT_SYMBOL_GPL(regmap_read);
2569
2570 /**
2571  * regmap_raw_read() - Read raw data from the device
2572  *
2573  * @map: Register map to read from
2574  * @reg: First register to be read from
2575  * @val: Pointer to store read value
2576  * @val_len: Size of data to read
2577  *
2578  * A value of zero will be returned on success, a negative errno will
2579  * be returned in error cases.
2580  */
2581 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2582                     size_t val_len)
2583 {
2584         size_t val_bytes = map->format.val_bytes;
2585         size_t val_count = val_len / val_bytes;
2586         unsigned int v;
2587         int ret, i;
2588
2589         if (!map->bus)
2590                 return -EINVAL;
2591         if (val_len % map->format.val_bytes)
2592                 return -EINVAL;
2593         if (!IS_ALIGNED(reg, map->reg_stride))
2594                 return -EINVAL;
2595         if (val_count == 0)
2596                 return -EINVAL;
2597
2598         map->lock(map->lock_arg);
2599
2600         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2601             map->cache_type == REGCACHE_NONE) {
2602                 size_t chunk_count, chunk_bytes;
2603                 size_t chunk_regs = val_count;
2604
2605                 if (!map->bus->read) {
2606                         ret = -ENOTSUPP;
2607                         goto out;
2608                 }
2609
2610                 if (map->use_single_read)
2611                         chunk_regs = 1;
2612                 else if (map->max_raw_read && val_len > map->max_raw_read)
2613                         chunk_regs = map->max_raw_read / val_bytes;
2614
2615                 chunk_count = val_count / chunk_regs;
2616                 chunk_bytes = chunk_regs * val_bytes;
2617
2618                 /* Read bytes that fit into whole chunks */
2619                 for (i = 0; i < chunk_count; i++) {
2620                         ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2621                         if (ret != 0)
2622                                 goto out;
2623
2624                         reg += regmap_get_offset(map, chunk_regs);
2625                         val += chunk_bytes;
2626                         val_len -= chunk_bytes;
2627                 }
2628
2629                 /* Read remaining bytes */
2630                 if (val_len) {
2631                         ret = _regmap_raw_read(map, reg, val, val_len);
2632                         if (ret != 0)
2633                                 goto out;
2634                 }
2635         } else {
2636                 /* Otherwise go word by word for the cache; should be low
2637                  * cost as we expect to hit the cache.
2638                  */
2639                 for (i = 0; i < val_count; i++) {
2640                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2641                                            &v);
2642                         if (ret != 0)
2643                                 goto out;
2644
2645                         map->format.format_val(val + (i * val_bytes), v, 0);
2646                 }
2647         }
2648
2649  out:
2650         map->unlock(map->lock_arg);
2651
2652         return ret;
2653 }
2654 EXPORT_SYMBOL_GPL(regmap_raw_read);
2655
2656 /**
2657  * regmap_noinc_read(): Read data from a register without incrementing the
2658  *                      register number
2659  *
2660  * @map: Register map to read from
2661  * @reg: Register to read from
2662  * @val: Pointer to data buffer
2663  * @val_len: Length of output buffer in bytes.
2664  *
2665  * The regmap API usually assumes that bulk bus read operations will read a
2666  * range of registers. Some devices have certain registers for which a read
2667  * operation read will read from an internal FIFO.
2668  *
2669  * The target register must be volatile but registers after it can be
2670  * completely unrelated cacheable registers.
2671  *
2672  * This will attempt multiple reads as required to read val_len bytes.
2673  *
2674  * A value of zero will be returned on success, a negative errno will be
2675  * returned in error cases.
2676  */
2677 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2678                       void *val, size_t val_len)
2679 {
2680         size_t read_len;
2681         int ret;
2682
2683         if (!map->bus)
2684                 return -EINVAL;
2685         if (!map->bus->read)
2686                 return -ENOTSUPP;
2687         if (val_len % map->format.val_bytes)
2688                 return -EINVAL;
2689         if (!IS_ALIGNED(reg, map->reg_stride))
2690                 return -EINVAL;
2691         if (val_len == 0)
2692                 return -EINVAL;
2693
2694         map->lock(map->lock_arg);
2695
2696         if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2697                 ret = -EINVAL;
2698                 goto out_unlock;
2699         }
2700
2701         while (val_len) {
2702                 if (map->max_raw_read && map->max_raw_read < val_len)
2703                         read_len = map->max_raw_read;
2704                 else
2705                         read_len = val_len;
2706                 ret = _regmap_raw_read(map, reg, val, read_len);
2707                 if (ret)
2708                         goto out_unlock;
2709                 val = ((u8 *)val) + read_len;
2710                 val_len -= read_len;
2711         }
2712
2713 out_unlock:
2714         map->unlock(map->lock_arg);
2715         return ret;
2716 }
2717 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2718
2719 /**
2720  * regmap_field_read(): Read a value to a single register field
2721  *
2722  * @field: Register field to read from
2723  * @val: Pointer to store read value
2724  *
2725  * A value of zero will be returned on success, a negative errno will
2726  * be returned in error cases.
2727  */
2728 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2729 {
2730         int ret;
2731         unsigned int reg_val;
2732         ret = regmap_read(field->regmap, field->reg, &reg_val);
2733         if (ret != 0)
2734                 return ret;
2735
2736         reg_val &= field->mask;
2737         reg_val >>= field->shift;
2738         *val = reg_val;
2739
2740         return ret;
2741 }
2742 EXPORT_SYMBOL_GPL(regmap_field_read);
2743
2744 /**
2745  * regmap_fields_read() - Read a value to a single register field with port ID
2746  *
2747  * @field: Register field to read from
2748  * @id: port ID
2749  * @val: Pointer to store read value
2750  *
2751  * A value of zero will be returned on success, a negative errno will
2752  * be returned in error cases.
2753  */
2754 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2755                        unsigned int *val)
2756 {
2757         int ret;
2758         unsigned int reg_val;
2759
2760         if (id >= field->id_size)
2761                 return -EINVAL;
2762
2763         ret = regmap_read(field->regmap,
2764                           field->reg + (field->id_offset * id),
2765                           &reg_val);
2766         if (ret != 0)
2767                 return ret;
2768
2769         reg_val &= field->mask;
2770         reg_val >>= field->shift;
2771         *val = reg_val;
2772
2773         return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(regmap_fields_read);
2776
2777 /**
2778  * regmap_bulk_read() - Read multiple registers from the device
2779  *
2780  * @map: Register map to read from
2781  * @reg: First register to be read from
2782  * @val: Pointer to store read value, in native register size for device
2783  * @val_count: Number of registers to read
2784  *
2785  * A value of zero will be returned on success, a negative errno will
2786  * be returned in error cases.
2787  */
2788 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2789                      size_t val_count)
2790 {
2791         int ret, i;
2792         size_t val_bytes = map->format.val_bytes;
2793         bool vol = regmap_volatile_range(map, reg, val_count);
2794
2795         if (!IS_ALIGNED(reg, map->reg_stride))
2796                 return -EINVAL;
2797         if (val_count == 0)
2798                 return -EINVAL;
2799
2800         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2801                 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2802                 if (ret != 0)
2803                         return ret;
2804
2805                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2806                         map->format.parse_inplace(val + i);
2807         } else {
2808 #ifdef CONFIG_64BIT
2809                 u64 *u64 = val;
2810 #endif
2811                 u32 *u32 = val;
2812                 u16 *u16 = val;
2813                 u8 *u8 = val;
2814
2815                 map->lock(map->lock_arg);
2816
2817                 for (i = 0; i < val_count; i++) {
2818                         unsigned int ival;
2819
2820                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2821                                            &ival);
2822                         if (ret != 0)
2823                                 goto out;
2824
2825                         switch (map->format.val_bytes) {
2826 #ifdef CONFIG_64BIT
2827                         case 8:
2828                                 u64[i] = ival;
2829                                 break;
2830 #endif
2831                         case 4:
2832                                 u32[i] = ival;
2833                                 break;
2834                         case 2:
2835                                 u16[i] = ival;
2836                                 break;
2837                         case 1:
2838                                 u8[i] = ival;
2839                                 break;
2840                         default:
2841                                 ret = -EINVAL;
2842                                 goto out;
2843                         }
2844                 }
2845
2846 out:
2847                 map->unlock(map->lock_arg);
2848         }
2849
2850         return ret;
2851 }
2852 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2853
2854 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2855                                unsigned int mask, unsigned int val,
2856                                bool *change, bool force_write)
2857 {
2858         int ret;
2859         unsigned int tmp, orig;
2860
2861         if (change)
2862                 *change = false;
2863
2864         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2865                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2866                 if (ret == 0 && change)
2867                         *change = true;
2868         } else {
2869                 ret = _regmap_read(map, reg, &orig);
2870                 if (ret != 0)
2871                         return ret;
2872
2873                 tmp = orig & ~mask;
2874                 tmp |= val & mask;
2875
2876                 if (force_write || (tmp != orig)) {
2877                         ret = _regmap_write(map, reg, tmp);
2878                         if (ret == 0 && change)
2879                                 *change = true;
2880                 }
2881         }
2882
2883         return ret;
2884 }
2885
2886 /**
2887  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2888  *
2889  * @map: Register map to update
2890  * @reg: Register to update
2891  * @mask: Bitmask to change
2892  * @val: New value for bitmask
2893  * @change: Boolean indicating if a write was done
2894  * @async: Boolean indicating asynchronously
2895  * @force: Boolean indicating use force update
2896  *
2897  * Perform a read/modify/write cycle on a register map with change, async, force
2898  * options.
2899  *
2900  * If async is true:
2901  *
2902  * With most buses the read must be done synchronously so this is most useful
2903  * for devices with a cache which do not need to interact with the hardware to
2904  * determine the current register value.
2905  *
2906  * Returns zero for success, a negative number on error.
2907  */
2908 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2909                             unsigned int mask, unsigned int val,
2910                             bool *change, bool async, bool force)
2911 {
2912         int ret;
2913
2914         map->lock(map->lock_arg);
2915
2916         map->async = async;
2917
2918         ret = _regmap_update_bits(map, reg, mask, val, change, force);
2919
2920         map->async = false;
2921
2922         map->unlock(map->lock_arg);
2923
2924         return ret;
2925 }
2926 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2927
2928 /**
2929  * regmap_test_bits() - Check if all specified bits are set in a register.
2930  *
2931  * @map: Register map to operate on
2932  * @reg: Register to read from
2933  * @bits: Bits to test
2934  *
2935  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
2936  * bits are set and a negative error number if the underlying regmap_read()
2937  * fails.
2938  */
2939 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
2940 {
2941         unsigned int val, ret;
2942
2943         ret = regmap_read(map, reg, &val);
2944         if (ret)
2945                 return ret;
2946
2947         return (val & bits) == bits;
2948 }
2949 EXPORT_SYMBOL_GPL(regmap_test_bits);
2950
2951 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2952 {
2953         struct regmap *map = async->map;
2954         bool wake;
2955
2956         trace_regmap_async_io_complete(map);
2957
2958         spin_lock(&map->async_lock);
2959         list_move(&async->list, &map->async_free);
2960         wake = list_empty(&map->async_list);
2961
2962         if (ret != 0)
2963                 map->async_ret = ret;
2964
2965         spin_unlock(&map->async_lock);
2966
2967         if (wake)
2968                 wake_up(&map->async_waitq);
2969 }
2970 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2971
2972 static int regmap_async_is_done(struct regmap *map)
2973 {
2974         unsigned long flags;
2975         int ret;
2976
2977         spin_lock_irqsave(&map->async_lock, flags);
2978         ret = list_empty(&map->async_list);
2979         spin_unlock_irqrestore(&map->async_lock, flags);
2980
2981         return ret;
2982 }
2983
2984 /**
2985  * regmap_async_complete - Ensure all asynchronous I/O has completed.
2986  *
2987  * @map: Map to operate on.
2988  *
2989  * Blocks until any pending asynchronous I/O has completed.  Returns
2990  * an error code for any failed I/O operations.
2991  */
2992 int regmap_async_complete(struct regmap *map)
2993 {
2994         unsigned long flags;
2995         int ret;
2996
2997         /* Nothing to do with no async support */
2998         if (!map->bus || !map->bus->async_write)
2999                 return 0;
3000
3001         trace_regmap_async_complete_start(map);
3002
3003         wait_event(map->async_waitq, regmap_async_is_done(map));
3004
3005         spin_lock_irqsave(&map->async_lock, flags);
3006         ret = map->async_ret;
3007         map->async_ret = 0;
3008         spin_unlock_irqrestore(&map->async_lock, flags);
3009
3010         trace_regmap_async_complete_done(map);
3011
3012         return ret;
3013 }
3014 EXPORT_SYMBOL_GPL(regmap_async_complete);
3015
3016 /**
3017  * regmap_register_patch - Register and apply register updates to be applied
3018  *                         on device initialistion
3019  *
3020  * @map: Register map to apply updates to.
3021  * @regs: Values to update.
3022  * @num_regs: Number of entries in regs.
3023  *
3024  * Register a set of register updates to be applied to the device
3025  * whenever the device registers are synchronised with the cache and
3026  * apply them immediately.  Typically this is used to apply
3027  * corrections to be applied to the device defaults on startup, such
3028  * as the updates some vendors provide to undocumented registers.
3029  *
3030  * The caller must ensure that this function cannot be called
3031  * concurrently with either itself or regcache_sync().
3032  */
3033 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3034                           int num_regs)
3035 {
3036         struct reg_sequence *p;
3037         int ret;
3038         bool bypass;
3039
3040         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3041             num_regs))
3042                 return 0;
3043
3044         p = krealloc(map->patch,
3045                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3046                      GFP_KERNEL);
3047         if (p) {
3048                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3049                 map->patch = p;
3050                 map->patch_regs += num_regs;
3051         } else {
3052                 return -ENOMEM;
3053         }
3054
3055         map->lock(map->lock_arg);
3056
3057         bypass = map->cache_bypass;
3058
3059         map->cache_bypass = true;
3060         map->async = true;
3061
3062         ret = _regmap_multi_reg_write(map, regs, num_regs);
3063
3064         map->async = false;
3065         map->cache_bypass = bypass;
3066
3067         map->unlock(map->lock_arg);
3068
3069         regmap_async_complete(map);
3070
3071         return ret;
3072 }
3073 EXPORT_SYMBOL_GPL(regmap_register_patch);
3074
3075 /**
3076  * regmap_get_val_bytes() - Report the size of a register value
3077  *
3078  * @map: Register map to operate on.
3079  *
3080  * Report the size of a register value, mainly intended to for use by
3081  * generic infrastructure built on top of regmap.
3082  */
3083 int regmap_get_val_bytes(struct regmap *map)
3084 {
3085         if (map->format.format_write)
3086                 return -EINVAL;
3087
3088         return map->format.val_bytes;
3089 }
3090 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3091
3092 /**
3093  * regmap_get_max_register() - Report the max register value
3094  *
3095  * @map: Register map to operate on.
3096  *
3097  * Report the max register value, mainly intended to for use by
3098  * generic infrastructure built on top of regmap.
3099  */
3100 int regmap_get_max_register(struct regmap *map)
3101 {
3102         return map->max_register ? map->max_register : -EINVAL;
3103 }
3104 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3105
3106 /**
3107  * regmap_get_reg_stride() - Report the register address stride
3108  *
3109  * @map: Register map to operate on.
3110  *
3111  * Report the register address stride, mainly intended to for use by
3112  * generic infrastructure built on top of regmap.
3113  */
3114 int regmap_get_reg_stride(struct regmap *map)
3115 {
3116         return map->reg_stride;
3117 }
3118 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3119
3120 int regmap_parse_val(struct regmap *map, const void *buf,
3121                         unsigned int *val)
3122 {
3123         if (!map->format.parse_val)
3124                 return -EINVAL;
3125
3126         *val = map->format.parse_val(buf);
3127
3128         return 0;
3129 }
3130 EXPORT_SYMBOL_GPL(regmap_parse_val);
3131
3132 static int __init regmap_initcall(void)
3133 {
3134         regmap_debugfs_initcall();
3135
3136         return 0;
3137 }
3138 postcore_initcall(regmap_initcall);
This page took 0.21568 seconds and 4 git commands to generate.