1 // SPDX-License-Identifier: GPL-2.0
3 // Register map access API
5 // Copyright 2011 Wolfson Microelectronics plc
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
22 #define CREATE_TRACE_POINTS
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
36 static inline bool regmap_should_log(struct regmap *map)
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
51 static int _regmap_bus_read(void *context, unsigned int reg,
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
64 const struct regmap_range *r;
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
92 if (map->max_register && reg > map->max_register)
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
99 return regmap_check_range_table(map, reg, map->wr_table);
104 bool regmap_cached(struct regmap *map, unsigned int reg)
109 if (map->cache_type == REGCACHE_NONE)
115 if (map->max_register && reg > map->max_register)
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
127 bool regmap_readable(struct regmap *map, unsigned int reg)
132 if (map->max_register && reg > map->max_register)
135 if (map->format.format_write)
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
142 return regmap_check_range_table(map, reg, map->rd_table);
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
149 if (!map->format.format_write && !regmap_readable(map, reg))
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
164 bool regmap_precious(struct regmap *map, unsigned int reg)
166 if (!regmap_readable(map, reg))
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
212 static void regmap_format_2_6_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
215 u8 *out = map->work_buf;
217 *out = (reg << 6) | val;
220 static void regmap_format_4_12_write(struct regmap *map,
221 unsigned int reg, unsigned int val)
223 __be16 *out = map->work_buf;
224 *out = cpu_to_be16((reg << 12) | val);
227 static void regmap_format_7_9_write(struct regmap *map,
228 unsigned int reg, unsigned int val)
230 __be16 *out = map->work_buf;
231 *out = cpu_to_be16((reg << 9) | val);
234 static void regmap_format_10_14_write(struct regmap *map,
235 unsigned int reg, unsigned int val)
237 u8 *out = map->work_buf;
240 out[1] = (val >> 8) | (reg << 6);
244 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
251 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
253 put_unaligned_be16(val << shift, buf);
256 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
258 put_unaligned_le16(val << shift, buf);
261 static void regmap_format_16_native(void *buf, unsigned int val,
264 u16 v = val << shift;
266 memcpy(buf, &v, sizeof(v));
269 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
280 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
282 put_unaligned_be32(val << shift, buf);
285 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
287 put_unaligned_le32(val << shift, buf);
290 static void regmap_format_32_native(void *buf, unsigned int val,
293 u32 v = val << shift;
295 memcpy(buf, &v, sizeof(v));
299 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
301 put_unaligned_be64((u64) val << shift, buf);
304 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
306 put_unaligned_le64((u64) val << shift, buf);
309 static void regmap_format_64_native(void *buf, unsigned int val,
312 u64 v = (u64) val << shift;
314 memcpy(buf, &v, sizeof(v));
318 static void regmap_parse_inplace_noop(void *buf)
322 static unsigned int regmap_parse_8(const void *buf)
329 static unsigned int regmap_parse_16_be(const void *buf)
331 return get_unaligned_be16(buf);
334 static unsigned int regmap_parse_16_le(const void *buf)
336 return get_unaligned_le16(buf);
339 static void regmap_parse_16_be_inplace(void *buf)
341 u16 v = get_unaligned_be16(buf);
343 memcpy(buf, &v, sizeof(v));
346 static void regmap_parse_16_le_inplace(void *buf)
348 u16 v = get_unaligned_le16(buf);
350 memcpy(buf, &v, sizeof(v));
353 static unsigned int regmap_parse_16_native(const void *buf)
357 memcpy(&v, buf, sizeof(v));
361 static unsigned int regmap_parse_24(const void *buf)
364 unsigned int ret = b[2];
365 ret |= ((unsigned int)b[1]) << 8;
366 ret |= ((unsigned int)b[0]) << 16;
371 static unsigned int regmap_parse_32_be(const void *buf)
373 return get_unaligned_be32(buf);
376 static unsigned int regmap_parse_32_le(const void *buf)
378 return get_unaligned_le32(buf);
381 static void regmap_parse_32_be_inplace(void *buf)
383 u32 v = get_unaligned_be32(buf);
385 memcpy(buf, &v, sizeof(v));
388 static void regmap_parse_32_le_inplace(void *buf)
390 u32 v = get_unaligned_le32(buf);
392 memcpy(buf, &v, sizeof(v));
395 static unsigned int regmap_parse_32_native(const void *buf)
399 memcpy(&v, buf, sizeof(v));
404 static unsigned int regmap_parse_64_be(const void *buf)
406 return get_unaligned_be64(buf);
409 static unsigned int regmap_parse_64_le(const void *buf)
411 return get_unaligned_le64(buf);
414 static void regmap_parse_64_be_inplace(void *buf)
416 u64 v = get_unaligned_be64(buf);
418 memcpy(buf, &v, sizeof(v));
421 static void regmap_parse_64_le_inplace(void *buf)
423 u64 v = get_unaligned_le64(buf);
425 memcpy(buf, &v, sizeof(v));
428 static unsigned int regmap_parse_64_native(const void *buf)
432 memcpy(&v, buf, sizeof(v));
437 static void regmap_lock_hwlock(void *__map)
439 struct regmap *map = __map;
441 hwspin_lock_timeout(map->hwlock, UINT_MAX);
444 static void regmap_lock_hwlock_irq(void *__map)
446 struct regmap *map = __map;
448 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
451 static void regmap_lock_hwlock_irqsave(void *__map)
453 struct regmap *map = __map;
455 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
456 &map->spinlock_flags);
459 static void regmap_unlock_hwlock(void *__map)
461 struct regmap *map = __map;
463 hwspin_unlock(map->hwlock);
466 static void regmap_unlock_hwlock_irq(void *__map)
468 struct regmap *map = __map;
470 hwspin_unlock_irq(map->hwlock);
473 static void regmap_unlock_hwlock_irqrestore(void *__map)
475 struct regmap *map = __map;
477 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
480 static void regmap_lock_unlock_none(void *__map)
485 static void regmap_lock_mutex(void *__map)
487 struct regmap *map = __map;
488 mutex_lock(&map->mutex);
491 static void regmap_unlock_mutex(void *__map)
493 struct regmap *map = __map;
494 mutex_unlock(&map->mutex);
497 static void regmap_lock_spinlock(void *__map)
498 __acquires(&map->spinlock)
500 struct regmap *map = __map;
503 spin_lock_irqsave(&map->spinlock, flags);
504 map->spinlock_flags = flags;
507 static void regmap_unlock_spinlock(void *__map)
508 __releases(&map->spinlock)
510 struct regmap *map = __map;
511 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
514 static void dev_get_regmap_release(struct device *dev, void *res)
517 * We don't actually have anything to do here; the goal here
518 * is not to manage the regmap but to provide a simple way to
519 * get the regmap back given a struct device.
523 static bool _regmap_range_add(struct regmap *map,
524 struct regmap_range_node *data)
526 struct rb_root *root = &map->range_tree;
527 struct rb_node **new = &(root->rb_node), *parent = NULL;
530 struct regmap_range_node *this =
531 rb_entry(*new, struct regmap_range_node, node);
534 if (data->range_max < this->range_min)
535 new = &((*new)->rb_left);
536 else if (data->range_min > this->range_max)
537 new = &((*new)->rb_right);
542 rb_link_node(&data->node, parent, new);
543 rb_insert_color(&data->node, root);
548 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
551 struct rb_node *node = map->range_tree.rb_node;
554 struct regmap_range_node *this =
555 rb_entry(node, struct regmap_range_node, node);
557 if (reg < this->range_min)
558 node = node->rb_left;
559 else if (reg > this->range_max)
560 node = node->rb_right;
568 static void regmap_range_exit(struct regmap *map)
570 struct rb_node *next;
571 struct regmap_range_node *range_node;
573 next = rb_first(&map->range_tree);
575 range_node = rb_entry(next, struct regmap_range_node, node);
576 next = rb_next(&range_node->node);
577 rb_erase(&range_node->node, &map->range_tree);
581 kfree(map->selector_work_buf);
584 int regmap_attach_dev(struct device *dev, struct regmap *map,
585 const struct regmap_config *config)
591 regmap_debugfs_init(map, config->name);
593 /* Add a devres resource for dev_get_regmap() */
594 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
596 regmap_debugfs_exit(map);
604 EXPORT_SYMBOL_GPL(regmap_attach_dev);
606 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
607 const struct regmap_config *config)
609 enum regmap_endian endian;
611 /* Retrieve the endianness specification from the regmap config */
612 endian = config->reg_format_endian;
614 /* If the regmap config specified a non-default value, use that */
615 if (endian != REGMAP_ENDIAN_DEFAULT)
618 /* Retrieve the endianness specification from the bus config */
619 if (bus && bus->reg_format_endian_default)
620 endian = bus->reg_format_endian_default;
622 /* If the bus specified a non-default value, use that */
623 if (endian != REGMAP_ENDIAN_DEFAULT)
626 /* Use this if no other value was found */
627 return REGMAP_ENDIAN_BIG;
630 enum regmap_endian regmap_get_val_endian(struct device *dev,
631 const struct regmap_bus *bus,
632 const struct regmap_config *config)
634 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
635 enum regmap_endian endian;
637 /* Retrieve the endianness specification from the regmap config */
638 endian = config->val_format_endian;
640 /* If the regmap config specified a non-default value, use that */
641 if (endian != REGMAP_ENDIAN_DEFAULT)
644 /* If the firmware node exist try to get endianness from it */
645 if (fwnode_property_read_bool(fwnode, "big-endian"))
646 endian = REGMAP_ENDIAN_BIG;
647 else if (fwnode_property_read_bool(fwnode, "little-endian"))
648 endian = REGMAP_ENDIAN_LITTLE;
649 else if (fwnode_property_read_bool(fwnode, "native-endian"))
650 endian = REGMAP_ENDIAN_NATIVE;
652 /* If the endianness was specified in fwnode, use that */
653 if (endian != REGMAP_ENDIAN_DEFAULT)
656 /* Retrieve the endianness specification from the bus config */
657 if (bus && bus->val_format_endian_default)
658 endian = bus->val_format_endian_default;
660 /* If the bus specified a non-default value, use that */
661 if (endian != REGMAP_ENDIAN_DEFAULT)
664 /* Use this if no other value was found */
665 return REGMAP_ENDIAN_BIG;
667 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
669 struct regmap *__regmap_init(struct device *dev,
670 const struct regmap_bus *bus,
672 const struct regmap_config *config,
673 struct lock_class_key *lock_key,
674 const char *lock_name)
678 enum regmap_endian reg_endian, val_endian;
684 map = kzalloc(sizeof(*map), GFP_KERNEL);
691 map->name = kstrdup_const(config->name, GFP_KERNEL);
698 if (config->disable_locking) {
699 map->lock = map->unlock = regmap_lock_unlock_none;
700 regmap_debugfs_disable(map);
701 } else if (config->lock && config->unlock) {
702 map->lock = config->lock;
703 map->unlock = config->unlock;
704 map->lock_arg = config->lock_arg;
705 } else if (config->use_hwlock) {
706 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
712 switch (config->hwlock_mode) {
713 case HWLOCK_IRQSTATE:
714 map->lock = regmap_lock_hwlock_irqsave;
715 map->unlock = regmap_unlock_hwlock_irqrestore;
718 map->lock = regmap_lock_hwlock_irq;
719 map->unlock = regmap_unlock_hwlock_irq;
722 map->lock = regmap_lock_hwlock;
723 map->unlock = regmap_unlock_hwlock;
729 if ((bus && bus->fast_io) ||
731 spin_lock_init(&map->spinlock);
732 map->lock = regmap_lock_spinlock;
733 map->unlock = regmap_unlock_spinlock;
734 lockdep_set_class_and_name(&map->spinlock,
735 lock_key, lock_name);
737 mutex_init(&map->mutex);
738 map->lock = regmap_lock_mutex;
739 map->unlock = regmap_unlock_mutex;
740 lockdep_set_class_and_name(&map->mutex,
741 lock_key, lock_name);
747 * When we write in fast-paths with regmap_bulk_write() don't allocate
748 * scratch buffers with sleeping allocations.
750 if ((bus && bus->fast_io) || config->fast_io)
751 map->alloc_flags = GFP_ATOMIC;
753 map->alloc_flags = GFP_KERNEL;
755 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
756 map->format.pad_bytes = config->pad_bits / 8;
757 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
758 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
759 config->val_bits + config->pad_bits, 8);
760 map->reg_shift = config->pad_bits % 8;
761 if (config->reg_stride)
762 map->reg_stride = config->reg_stride;
765 if (is_power_of_2(map->reg_stride))
766 map->reg_stride_order = ilog2(map->reg_stride);
768 map->reg_stride_order = -1;
769 map->use_single_read = config->use_single_read || !bus || !bus->read;
770 map->use_single_write = config->use_single_write || !bus || !bus->write;
771 map->can_multi_write = config->can_multi_write && bus && bus->write;
773 map->max_raw_read = bus->max_raw_read;
774 map->max_raw_write = bus->max_raw_write;
778 map->bus_context = bus_context;
779 map->max_register = config->max_register;
780 map->wr_table = config->wr_table;
781 map->rd_table = config->rd_table;
782 map->volatile_table = config->volatile_table;
783 map->precious_table = config->precious_table;
784 map->wr_noinc_table = config->wr_noinc_table;
785 map->rd_noinc_table = config->rd_noinc_table;
786 map->writeable_reg = config->writeable_reg;
787 map->readable_reg = config->readable_reg;
788 map->volatile_reg = config->volatile_reg;
789 map->precious_reg = config->precious_reg;
790 map->writeable_noinc_reg = config->writeable_noinc_reg;
791 map->readable_noinc_reg = config->readable_noinc_reg;
792 map->cache_type = config->cache_type;
794 spin_lock_init(&map->async_lock);
795 INIT_LIST_HEAD(&map->async_list);
796 INIT_LIST_HEAD(&map->async_free);
797 init_waitqueue_head(&map->async_waitq);
799 if (config->read_flag_mask ||
800 config->write_flag_mask ||
801 config->zero_flag_mask) {
802 map->read_flag_mask = config->read_flag_mask;
803 map->write_flag_mask = config->write_flag_mask;
805 map->read_flag_mask = bus->read_flag_mask;
809 map->reg_read = config->reg_read;
810 map->reg_write = config->reg_write;
812 map->defer_caching = false;
813 goto skip_format_initialization;
814 } else if (!bus->read || !bus->write) {
815 map->reg_read = _regmap_bus_reg_read;
816 map->reg_write = _regmap_bus_reg_write;
817 map->reg_update_bits = bus->reg_update_bits;
819 map->defer_caching = false;
820 goto skip_format_initialization;
822 map->reg_read = _regmap_bus_read;
823 map->reg_update_bits = bus->reg_update_bits;
826 reg_endian = regmap_get_reg_endian(bus, config);
827 val_endian = regmap_get_val_endian(dev, bus, config);
829 switch (config->reg_bits + map->reg_shift) {
831 switch (config->val_bits) {
833 map->format.format_write = regmap_format_2_6_write;
841 switch (config->val_bits) {
843 map->format.format_write = regmap_format_4_12_write;
851 switch (config->val_bits) {
853 map->format.format_write = regmap_format_7_9_write;
861 switch (config->val_bits) {
863 map->format.format_write = regmap_format_10_14_write;
871 map->format.format_reg = regmap_format_8;
875 switch (reg_endian) {
876 case REGMAP_ENDIAN_BIG:
877 map->format.format_reg = regmap_format_16_be;
879 case REGMAP_ENDIAN_LITTLE:
880 map->format.format_reg = regmap_format_16_le;
882 case REGMAP_ENDIAN_NATIVE:
883 map->format.format_reg = regmap_format_16_native;
891 if (reg_endian != REGMAP_ENDIAN_BIG)
893 map->format.format_reg = regmap_format_24;
897 switch (reg_endian) {
898 case REGMAP_ENDIAN_BIG:
899 map->format.format_reg = regmap_format_32_be;
901 case REGMAP_ENDIAN_LITTLE:
902 map->format.format_reg = regmap_format_32_le;
904 case REGMAP_ENDIAN_NATIVE:
905 map->format.format_reg = regmap_format_32_native;
914 switch (reg_endian) {
915 case REGMAP_ENDIAN_BIG:
916 map->format.format_reg = regmap_format_64_be;
918 case REGMAP_ENDIAN_LITTLE:
919 map->format.format_reg = regmap_format_64_le;
921 case REGMAP_ENDIAN_NATIVE:
922 map->format.format_reg = regmap_format_64_native;
934 if (val_endian == REGMAP_ENDIAN_NATIVE)
935 map->format.parse_inplace = regmap_parse_inplace_noop;
937 switch (config->val_bits) {
939 map->format.format_val = regmap_format_8;
940 map->format.parse_val = regmap_parse_8;
941 map->format.parse_inplace = regmap_parse_inplace_noop;
944 switch (val_endian) {
945 case REGMAP_ENDIAN_BIG:
946 map->format.format_val = regmap_format_16_be;
947 map->format.parse_val = regmap_parse_16_be;
948 map->format.parse_inplace = regmap_parse_16_be_inplace;
950 case REGMAP_ENDIAN_LITTLE:
951 map->format.format_val = regmap_format_16_le;
952 map->format.parse_val = regmap_parse_16_le;
953 map->format.parse_inplace = regmap_parse_16_le_inplace;
955 case REGMAP_ENDIAN_NATIVE:
956 map->format.format_val = regmap_format_16_native;
957 map->format.parse_val = regmap_parse_16_native;
964 if (val_endian != REGMAP_ENDIAN_BIG)
966 map->format.format_val = regmap_format_24;
967 map->format.parse_val = regmap_parse_24;
970 switch (val_endian) {
971 case REGMAP_ENDIAN_BIG:
972 map->format.format_val = regmap_format_32_be;
973 map->format.parse_val = regmap_parse_32_be;
974 map->format.parse_inplace = regmap_parse_32_be_inplace;
976 case REGMAP_ENDIAN_LITTLE:
977 map->format.format_val = regmap_format_32_le;
978 map->format.parse_val = regmap_parse_32_le;
979 map->format.parse_inplace = regmap_parse_32_le_inplace;
981 case REGMAP_ENDIAN_NATIVE:
982 map->format.format_val = regmap_format_32_native;
983 map->format.parse_val = regmap_parse_32_native;
991 switch (val_endian) {
992 case REGMAP_ENDIAN_BIG:
993 map->format.format_val = regmap_format_64_be;
994 map->format.parse_val = regmap_parse_64_be;
995 map->format.parse_inplace = regmap_parse_64_be_inplace;
997 case REGMAP_ENDIAN_LITTLE:
998 map->format.format_val = regmap_format_64_le;
999 map->format.parse_val = regmap_parse_64_le;
1000 map->format.parse_inplace = regmap_parse_64_le_inplace;
1002 case REGMAP_ENDIAN_NATIVE:
1003 map->format.format_val = regmap_format_64_native;
1004 map->format.parse_val = regmap_parse_64_native;
1013 if (map->format.format_write) {
1014 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1015 (val_endian != REGMAP_ENDIAN_BIG))
1017 map->use_single_write = true;
1020 if (!map->format.format_write &&
1021 !(map->format.format_reg && map->format.format_val))
1024 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1025 if (map->work_buf == NULL) {
1030 if (map->format.format_write) {
1031 map->defer_caching = false;
1032 map->reg_write = _regmap_bus_formatted_write;
1033 } else if (map->format.format_val) {
1034 map->defer_caching = true;
1035 map->reg_write = _regmap_bus_raw_write;
1038 skip_format_initialization:
1040 map->range_tree = RB_ROOT;
1041 for (i = 0; i < config->num_ranges; i++) {
1042 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1043 struct regmap_range_node *new;
1046 if (range_cfg->range_max < range_cfg->range_min) {
1047 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1048 range_cfg->range_max, range_cfg->range_min);
1052 if (range_cfg->range_max > map->max_register) {
1053 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1054 range_cfg->range_max, map->max_register);
1058 if (range_cfg->selector_reg > map->max_register) {
1060 "Invalid range %d: selector out of map\n", i);
1064 if (range_cfg->window_len == 0) {
1065 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1070 /* Make sure, that this register range has no selector
1071 or data window within its boundary */
1072 for (j = 0; j < config->num_ranges; j++) {
1073 unsigned sel_reg = config->ranges[j].selector_reg;
1074 unsigned win_min = config->ranges[j].window_start;
1075 unsigned win_max = win_min +
1076 config->ranges[j].window_len - 1;
1078 /* Allow data window inside its own virtual range */
1082 if (range_cfg->range_min <= sel_reg &&
1083 sel_reg <= range_cfg->range_max) {
1085 "Range %d: selector for %d in window\n",
1090 if (!(win_max < range_cfg->range_min ||
1091 win_min > range_cfg->range_max)) {
1093 "Range %d: window for %d in window\n",
1099 new = kzalloc(sizeof(*new), GFP_KERNEL);
1106 new->name = range_cfg->name;
1107 new->range_min = range_cfg->range_min;
1108 new->range_max = range_cfg->range_max;
1109 new->selector_reg = range_cfg->selector_reg;
1110 new->selector_mask = range_cfg->selector_mask;
1111 new->selector_shift = range_cfg->selector_shift;
1112 new->window_start = range_cfg->window_start;
1113 new->window_len = range_cfg->window_len;
1115 if (!_regmap_range_add(map, new)) {
1116 dev_err(map->dev, "Failed to add range %d\n", i);
1121 if (map->selector_work_buf == NULL) {
1122 map->selector_work_buf =
1123 kzalloc(map->format.buf_size, GFP_KERNEL);
1124 if (map->selector_work_buf == NULL) {
1131 ret = regcache_init(map, config);
1136 ret = regmap_attach_dev(dev, map, config);
1140 regmap_debugfs_init(map, config->name);
1148 regmap_range_exit(map);
1149 kfree(map->work_buf);
1152 hwspin_lock_free(map->hwlock);
1154 kfree_const(map->name);
1158 return ERR_PTR(ret);
1160 EXPORT_SYMBOL_GPL(__regmap_init);
1162 static void devm_regmap_release(struct device *dev, void *res)
1164 regmap_exit(*(struct regmap **)res);
1167 struct regmap *__devm_regmap_init(struct device *dev,
1168 const struct regmap_bus *bus,
1170 const struct regmap_config *config,
1171 struct lock_class_key *lock_key,
1172 const char *lock_name)
1174 struct regmap **ptr, *regmap;
1176 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1178 return ERR_PTR(-ENOMEM);
1180 regmap = __regmap_init(dev, bus, bus_context, config,
1181 lock_key, lock_name);
1182 if (!IS_ERR(regmap)) {
1184 devres_add(dev, ptr);
1191 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1193 static void regmap_field_init(struct regmap_field *rm_field,
1194 struct regmap *regmap, struct reg_field reg_field)
1196 rm_field->regmap = regmap;
1197 rm_field->reg = reg_field.reg;
1198 rm_field->shift = reg_field.lsb;
1199 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1200 rm_field->id_size = reg_field.id_size;
1201 rm_field->id_offset = reg_field.id_offset;
1205 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1207 * @dev: Device that will be interacted with
1208 * @regmap: regmap bank in which this register field is located.
1209 * @reg_field: Register field with in the bank.
1211 * The return value will be an ERR_PTR() on error or a valid pointer
1212 * to a struct regmap_field. The regmap_field will be automatically freed
1213 * by the device management code.
1215 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1216 struct regmap *regmap, struct reg_field reg_field)
1218 struct regmap_field *rm_field = devm_kzalloc(dev,
1219 sizeof(*rm_field), GFP_KERNEL);
1221 return ERR_PTR(-ENOMEM);
1223 regmap_field_init(rm_field, regmap, reg_field);
1228 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1231 * devm_regmap_field_free() - Free a register field allocated using
1232 * devm_regmap_field_alloc.
1234 * @dev: Device that will be interacted with
1235 * @field: regmap field which should be freed.
1237 * Free register field allocated using devm_regmap_field_alloc(). Usually
1238 * drivers need not call this function, as the memory allocated via devm
1239 * will be freed as per device-driver life-cyle.
1241 void devm_regmap_field_free(struct device *dev,
1242 struct regmap_field *field)
1244 devm_kfree(dev, field);
1246 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1249 * regmap_field_alloc() - Allocate and initialise a register field.
1251 * @regmap: regmap bank in which this register field is located.
1252 * @reg_field: Register field with in the bank.
1254 * The return value will be an ERR_PTR() on error or a valid pointer
1255 * to a struct regmap_field. The regmap_field should be freed by the
1256 * user once its finished working with it using regmap_field_free().
1258 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1259 struct reg_field reg_field)
1261 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1264 return ERR_PTR(-ENOMEM);
1266 regmap_field_init(rm_field, regmap, reg_field);
1270 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1273 * regmap_field_free() - Free register field allocated using
1274 * regmap_field_alloc.
1276 * @field: regmap field which should be freed.
1278 void regmap_field_free(struct regmap_field *field)
1282 EXPORT_SYMBOL_GPL(regmap_field_free);
1285 * regmap_reinit_cache() - Reinitialise the current register cache
1287 * @map: Register map to operate on.
1288 * @config: New configuration. Only the cache data will be used.
1290 * Discard any existing register cache for the map and initialize a
1291 * new cache. This can be used to restore the cache to defaults or to
1292 * update the cache configuration to reflect runtime discovery of the
1295 * No explicit locking is done here, the user needs to ensure that
1296 * this function will not race with other calls to regmap.
1298 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1301 regmap_debugfs_exit(map);
1303 map->max_register = config->max_register;
1304 map->writeable_reg = config->writeable_reg;
1305 map->readable_reg = config->readable_reg;
1306 map->volatile_reg = config->volatile_reg;
1307 map->precious_reg = config->precious_reg;
1308 map->writeable_noinc_reg = config->writeable_noinc_reg;
1309 map->readable_noinc_reg = config->readable_noinc_reg;
1310 map->cache_type = config->cache_type;
1312 regmap_debugfs_init(map, config->name);
1314 map->cache_bypass = false;
1315 map->cache_only = false;
1317 return regcache_init(map, config);
1319 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1322 * regmap_exit() - Free a previously allocated register map
1324 * @map: Register map to operate on.
1326 void regmap_exit(struct regmap *map)
1328 struct regmap_async *async;
1331 regmap_debugfs_exit(map);
1332 regmap_range_exit(map);
1333 if (map->bus && map->bus->free_context)
1334 map->bus->free_context(map->bus_context);
1335 kfree(map->work_buf);
1336 while (!list_empty(&map->async_free)) {
1337 async = list_first_entry_or_null(&map->async_free,
1338 struct regmap_async,
1340 list_del(&async->list);
1341 kfree(async->work_buf);
1345 hwspin_lock_free(map->hwlock);
1346 kfree_const(map->name);
1350 EXPORT_SYMBOL_GPL(regmap_exit);
1352 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1354 struct regmap **r = res;
1360 /* If the user didn't specify a name match any */
1362 return !strcmp((*r)->name, data);
1368 * dev_get_regmap() - Obtain the regmap (if any) for a device
1370 * @dev: Device to retrieve the map for
1371 * @name: Optional name for the register map, usually NULL.
1373 * Returns the regmap for the device if one is present, or NULL. If
1374 * name is specified then it must match the name specified when
1375 * registering the device, if it is NULL then the first regmap found
1376 * will be used. Devices with multiple register maps are very rare,
1377 * generic code should normally not need to specify a name.
1379 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1381 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1382 dev_get_regmap_match, (void *)name);
1388 EXPORT_SYMBOL_GPL(dev_get_regmap);
1391 * regmap_get_device() - Obtain the device from a regmap
1393 * @map: Register map to operate on.
1395 * Returns the underlying device that the regmap has been created for.
1397 struct device *regmap_get_device(struct regmap *map)
1401 EXPORT_SYMBOL_GPL(regmap_get_device);
1403 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1404 struct regmap_range_node *range,
1405 unsigned int val_num)
1407 void *orig_work_buf;
1408 unsigned int win_offset;
1409 unsigned int win_page;
1413 win_offset = (*reg - range->range_min) % range->window_len;
1414 win_page = (*reg - range->range_min) / range->window_len;
1417 /* Bulk write shouldn't cross range boundary */
1418 if (*reg + val_num - 1 > range->range_max)
1421 /* ... or single page boundary */
1422 if (val_num > range->window_len - win_offset)
1426 /* It is possible to have selector register inside data window.
1427 In that case, selector register is located on every page and
1428 it needs no page switching, when accessed alone. */
1430 range->window_start + win_offset != range->selector_reg) {
1431 /* Use separate work_buf during page switching */
1432 orig_work_buf = map->work_buf;
1433 map->work_buf = map->selector_work_buf;
1435 ret = _regmap_update_bits(map, range->selector_reg,
1436 range->selector_mask,
1437 win_page << range->selector_shift,
1440 map->work_buf = orig_work_buf;
1446 *reg = range->window_start + win_offset;
1451 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1457 if (!mask || !map->work_buf)
1460 buf = map->work_buf;
1462 for (i = 0; i < max_bytes; i++)
1463 buf[i] |= (mask >> (8 * i)) & 0xff;
1466 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1467 const void *val, size_t val_len)
1469 struct regmap_range_node *range;
1470 unsigned long flags;
1471 void *work_val = map->work_buf + map->format.reg_bytes +
1472 map->format.pad_bytes;
1474 int ret = -ENOTSUPP;
1480 /* Check for unwritable or noinc registers in range
1483 if (!regmap_writeable_noinc(map, reg)) {
1484 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1485 unsigned int element =
1486 reg + regmap_get_offset(map, i);
1487 if (!regmap_writeable(map, element) ||
1488 regmap_writeable_noinc(map, element))
1493 if (!map->cache_bypass && map->format.parse_val) {
1495 int val_bytes = map->format.val_bytes;
1496 for (i = 0; i < val_len / val_bytes; i++) {
1497 ival = map->format.parse_val(val + (i * val_bytes));
1498 ret = regcache_write(map,
1499 reg + regmap_get_offset(map, i),
1503 "Error in caching of register: %x ret: %d\n",
1508 if (map->cache_only) {
1509 map->cache_dirty = true;
1514 range = _regmap_range_lookup(map, reg);
1516 int val_num = val_len / map->format.val_bytes;
1517 int win_offset = (reg - range->range_min) % range->window_len;
1518 int win_residue = range->window_len - win_offset;
1520 /* If the write goes beyond the end of the window split it */
1521 while (val_num > win_residue) {
1522 dev_dbg(map->dev, "Writing window %d/%zu\n",
1523 win_residue, val_len / map->format.val_bytes);
1524 ret = _regmap_raw_write_impl(map, reg, val,
1526 map->format.val_bytes);
1531 val_num -= win_residue;
1532 val += win_residue * map->format.val_bytes;
1533 val_len -= win_residue * map->format.val_bytes;
1535 win_offset = (reg - range->range_min) %
1537 win_residue = range->window_len - win_offset;
1540 ret = _regmap_select_page(map, ®, range, val_num);
1545 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1546 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1547 map->write_flag_mask);
1550 * Essentially all I/O mechanisms will be faster with a single
1551 * buffer to write. Since register syncs often generate raw
1552 * writes of single registers optimise that case.
1554 if (val != work_val && val_len == map->format.val_bytes) {
1555 memcpy(work_val, val, map->format.val_bytes);
1559 if (map->async && map->bus->async_write) {
1560 struct regmap_async *async;
1562 trace_regmap_async_write_start(map, reg, val_len);
1564 spin_lock_irqsave(&map->async_lock, flags);
1565 async = list_first_entry_or_null(&map->async_free,
1566 struct regmap_async,
1569 list_del(&async->list);
1570 spin_unlock_irqrestore(&map->async_lock, flags);
1573 async = map->bus->async_alloc();
1577 async->work_buf = kzalloc(map->format.buf_size,
1578 GFP_KERNEL | GFP_DMA);
1579 if (!async->work_buf) {
1587 /* If the caller supplied the value we can use it safely. */
1588 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1589 map->format.reg_bytes + map->format.val_bytes);
1591 spin_lock_irqsave(&map->async_lock, flags);
1592 list_add_tail(&async->list, &map->async_list);
1593 spin_unlock_irqrestore(&map->async_lock, flags);
1595 if (val != work_val)
1596 ret = map->bus->async_write(map->bus_context,
1598 map->format.reg_bytes +
1599 map->format.pad_bytes,
1600 val, val_len, async);
1602 ret = map->bus->async_write(map->bus_context,
1604 map->format.reg_bytes +
1605 map->format.pad_bytes +
1606 val_len, NULL, 0, async);
1609 dev_err(map->dev, "Failed to schedule write: %d\n",
1612 spin_lock_irqsave(&map->async_lock, flags);
1613 list_move(&async->list, &map->async_free);
1614 spin_unlock_irqrestore(&map->async_lock, flags);
1620 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1622 /* If we're doing a single register write we can probably just
1623 * send the work_buf directly, otherwise try to do a gather
1626 if (val == work_val)
1627 ret = map->bus->write(map->bus_context, map->work_buf,
1628 map->format.reg_bytes +
1629 map->format.pad_bytes +
1631 else if (map->bus->gather_write)
1632 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1633 map->format.reg_bytes +
1634 map->format.pad_bytes,
1639 /* If that didn't work fall back on linearising by hand. */
1640 if (ret == -ENOTSUPP) {
1641 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1642 buf = kzalloc(len, GFP_KERNEL);
1646 memcpy(buf, map->work_buf, map->format.reg_bytes);
1647 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1649 ret = map->bus->write(map->bus_context, buf, len);
1652 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1653 /* regcache_drop_region() takes lock that we already have,
1654 * thus call map->cache_ops->drop() directly
1656 if (map->cache_ops && map->cache_ops->drop)
1657 map->cache_ops->drop(map, reg, reg + 1);
1660 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1666 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1668 * @map: Map to check.
1670 bool regmap_can_raw_write(struct regmap *map)
1672 return map->bus && map->bus->write && map->format.format_val &&
1673 map->format.format_reg;
1675 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1678 * regmap_get_raw_read_max - Get the maximum size we can read
1680 * @map: Map to check.
1682 size_t regmap_get_raw_read_max(struct regmap *map)
1684 return map->max_raw_read;
1686 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1689 * regmap_get_raw_write_max - Get the maximum size we can read
1691 * @map: Map to check.
1693 size_t regmap_get_raw_write_max(struct regmap *map)
1695 return map->max_raw_write;
1697 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1699 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1703 struct regmap_range_node *range;
1704 struct regmap *map = context;
1706 WARN_ON(!map->bus || !map->format.format_write);
1708 range = _regmap_range_lookup(map, reg);
1710 ret = _regmap_select_page(map, ®, range, 1);
1715 map->format.format_write(map, reg, val);
1717 trace_regmap_hw_write_start(map, reg, 1);
1719 ret = map->bus->write(map->bus_context, map->work_buf,
1720 map->format.buf_size);
1722 trace_regmap_hw_write_done(map, reg, 1);
1727 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1730 struct regmap *map = context;
1732 return map->bus->reg_write(map->bus_context, reg, val);
1735 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1738 struct regmap *map = context;
1740 WARN_ON(!map->bus || !map->format.format_val);
1742 map->format.format_val(map->work_buf + map->format.reg_bytes
1743 + map->format.pad_bytes, val, 0);
1744 return _regmap_raw_write_impl(map, reg,
1746 map->format.reg_bytes +
1747 map->format.pad_bytes,
1748 map->format.val_bytes);
1751 static inline void *_regmap_map_get_context(struct regmap *map)
1753 return (map->bus) ? map : map->bus_context;
1756 int _regmap_write(struct regmap *map, unsigned int reg,
1760 void *context = _regmap_map_get_context(map);
1762 if (!regmap_writeable(map, reg))
1765 if (!map->cache_bypass && !map->defer_caching) {
1766 ret = regcache_write(map, reg, val);
1769 if (map->cache_only) {
1770 map->cache_dirty = true;
1775 if (regmap_should_log(map))
1776 dev_info(map->dev, "%x <= %x\n", reg, val);
1778 trace_regmap_reg_write(map, reg, val);
1780 return map->reg_write(context, reg, val);
1784 * regmap_write() - Write a value to a single register
1786 * @map: Register map to write to
1787 * @reg: Register to write to
1788 * @val: Value to be written
1790 * A value of zero will be returned on success, a negative errno will
1791 * be returned in error cases.
1793 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1797 if (!IS_ALIGNED(reg, map->reg_stride))
1800 map->lock(map->lock_arg);
1802 ret = _regmap_write(map, reg, val);
1804 map->unlock(map->lock_arg);
1808 EXPORT_SYMBOL_GPL(regmap_write);
1811 * regmap_write_async() - Write a value to a single register asynchronously
1813 * @map: Register map to write to
1814 * @reg: Register to write to
1815 * @val: Value to be written
1817 * A value of zero will be returned on success, a negative errno will
1818 * be returned in error cases.
1820 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1824 if (!IS_ALIGNED(reg, map->reg_stride))
1827 map->lock(map->lock_arg);
1831 ret = _regmap_write(map, reg, val);
1835 map->unlock(map->lock_arg);
1839 EXPORT_SYMBOL_GPL(regmap_write_async);
1841 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1842 const void *val, size_t val_len)
1844 size_t val_bytes = map->format.val_bytes;
1845 size_t val_count = val_len / val_bytes;
1846 size_t chunk_count, chunk_bytes;
1847 size_t chunk_regs = val_count;
1853 if (map->use_single_write)
1855 else if (map->max_raw_write && val_len > map->max_raw_write)
1856 chunk_regs = map->max_raw_write / val_bytes;
1858 chunk_count = val_count / chunk_regs;
1859 chunk_bytes = chunk_regs * val_bytes;
1861 /* Write as many bytes as possible with chunk_size */
1862 for (i = 0; i < chunk_count; i++) {
1863 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1867 reg += regmap_get_offset(map, chunk_regs);
1869 val_len -= chunk_bytes;
1872 /* Write remaining bytes */
1874 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1880 * regmap_raw_write() - Write raw values to one or more registers
1882 * @map: Register map to write to
1883 * @reg: Initial register to write to
1884 * @val: Block of data to be written, laid out for direct transmission to the
1886 * @val_len: Length of data pointed to by val.
1888 * This function is intended to be used for things like firmware
1889 * download where a large block of data needs to be transferred to the
1890 * device. No formatting will be done on the data provided.
1892 * A value of zero will be returned on success, a negative errno will
1893 * be returned in error cases.
1895 int regmap_raw_write(struct regmap *map, unsigned int reg,
1896 const void *val, size_t val_len)
1900 if (!regmap_can_raw_write(map))
1902 if (val_len % map->format.val_bytes)
1905 map->lock(map->lock_arg);
1907 ret = _regmap_raw_write(map, reg, val, val_len);
1909 map->unlock(map->lock_arg);
1913 EXPORT_SYMBOL_GPL(regmap_raw_write);
1916 * regmap_noinc_write(): Write data from a register without incrementing the
1919 * @map: Register map to write to
1920 * @reg: Register to write to
1921 * @val: Pointer to data buffer
1922 * @val_len: Length of output buffer in bytes.
1924 * The regmap API usually assumes that bulk bus write operations will write a
1925 * range of registers. Some devices have certain registers for which a write
1926 * operation can write to an internal FIFO.
1928 * The target register must be volatile but registers after it can be
1929 * completely unrelated cacheable registers.
1931 * This will attempt multiple writes as required to write val_len bytes.
1933 * A value of zero will be returned on success, a negative errno will be
1934 * returned in error cases.
1936 int regmap_noinc_write(struct regmap *map, unsigned int reg,
1937 const void *val, size_t val_len)
1944 if (!map->bus->write)
1946 if (val_len % map->format.val_bytes)
1948 if (!IS_ALIGNED(reg, map->reg_stride))
1953 map->lock(map->lock_arg);
1955 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1961 if (map->max_raw_write && map->max_raw_write < val_len)
1962 write_len = map->max_raw_write;
1964 write_len = val_len;
1965 ret = _regmap_raw_write(map, reg, val, write_len);
1968 val = ((u8 *)val) + write_len;
1969 val_len -= write_len;
1973 map->unlock(map->lock_arg);
1976 EXPORT_SYMBOL_GPL(regmap_noinc_write);
1979 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1982 * @field: Register field to write to
1983 * @mask: Bitmask to change
1984 * @val: Value to be written
1985 * @change: Boolean indicating if a write was done
1986 * @async: Boolean indicating asynchronously
1987 * @force: Boolean indicating use force update
1989 * Perform a read/modify/write cycle on the register field with change,
1990 * async, force option.
1992 * A value of zero will be returned on success, a negative errno will
1993 * be returned in error cases.
1995 int regmap_field_update_bits_base(struct regmap_field *field,
1996 unsigned int mask, unsigned int val,
1997 bool *change, bool async, bool force)
1999 mask = (mask << field->shift) & field->mask;
2001 return regmap_update_bits_base(field->regmap, field->reg,
2002 mask, val << field->shift,
2003 change, async, force);
2005 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2008 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2009 * register field with port ID
2011 * @field: Register field to write to
2013 * @mask: Bitmask to change
2014 * @val: Value to be written
2015 * @change: Boolean indicating if a write was done
2016 * @async: Boolean indicating asynchronously
2017 * @force: Boolean indicating use force update
2019 * A value of zero will be returned on success, a negative errno will
2020 * be returned in error cases.
2022 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2023 unsigned int mask, unsigned int val,
2024 bool *change, bool async, bool force)
2026 if (id >= field->id_size)
2029 mask = (mask << field->shift) & field->mask;
2031 return regmap_update_bits_base(field->regmap,
2032 field->reg + (field->id_offset * id),
2033 mask, val << field->shift,
2034 change, async, force);
2036 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2039 * regmap_bulk_write() - Write multiple registers to the device
2041 * @map: Register map to write to
2042 * @reg: First register to be write from
2043 * @val: Block of data to be written, in native register size for device
2044 * @val_count: Number of registers to write
2046 * This function is intended to be used for writing a large block of
2047 * data to the device either in single transfer or multiple transfer.
2049 * A value of zero will be returned on success, a negative errno will
2050 * be returned in error cases.
2052 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2056 size_t val_bytes = map->format.val_bytes;
2058 if (!IS_ALIGNED(reg, map->reg_stride))
2062 * Some devices don't support bulk write, for them we have a series of
2063 * single write operations.
2065 if (!map->bus || !map->format.parse_inplace) {
2066 map->lock(map->lock_arg);
2067 for (i = 0; i < val_count; i++) {
2070 switch (val_bytes) {
2072 ival = *(u8 *)(val + (i * val_bytes));
2075 ival = *(u16 *)(val + (i * val_bytes));
2078 ival = *(u32 *)(val + (i * val_bytes));
2082 ival = *(u64 *)(val + (i * val_bytes));
2090 ret = _regmap_write(map,
2091 reg + regmap_get_offset(map, i),
2097 map->unlock(map->lock_arg);
2101 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2105 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2106 map->format.parse_inplace(wval + i);
2108 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2114 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2117 * _regmap_raw_multi_reg_write()
2119 * the (register,newvalue) pairs in regs have not been formatted, but
2120 * they are all in the same page and have been changed to being page
2121 * relative. The page register has been written if that was necessary.
2123 static int _regmap_raw_multi_reg_write(struct regmap *map,
2124 const struct reg_sequence *regs,
2131 size_t val_bytes = map->format.val_bytes;
2132 size_t reg_bytes = map->format.reg_bytes;
2133 size_t pad_bytes = map->format.pad_bytes;
2134 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2135 size_t len = pair_size * num_regs;
2140 buf = kzalloc(len, GFP_KERNEL);
2144 /* We have to linearise by hand. */
2148 for (i = 0; i < num_regs; i++) {
2149 unsigned int reg = regs[i].reg;
2150 unsigned int val = regs[i].def;
2151 trace_regmap_hw_write_start(map, reg, 1);
2152 map->format.format_reg(u8, reg, map->reg_shift);
2153 u8 += reg_bytes + pad_bytes;
2154 map->format.format_val(u8, val, 0);
2158 *u8 |= map->write_flag_mask;
2160 ret = map->bus->write(map->bus_context, buf, len);
2164 for (i = 0; i < num_regs; i++) {
2165 int reg = regs[i].reg;
2166 trace_regmap_hw_write_done(map, reg, 1);
2171 static unsigned int _regmap_register_page(struct regmap *map,
2173 struct regmap_range_node *range)
2175 unsigned int win_page = (reg - range->range_min) / range->window_len;
2180 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2181 struct reg_sequence *regs,
2186 struct reg_sequence *base;
2187 unsigned int this_page = 0;
2188 unsigned int page_change = 0;
2190 * the set of registers are not neccessarily in order, but
2191 * since the order of write must be preserved this algorithm
2192 * chops the set each time the page changes. This also applies
2193 * if there is a delay required at any point in the sequence.
2196 for (i = 0, n = 0; i < num_regs; i++, n++) {
2197 unsigned int reg = regs[i].reg;
2198 struct regmap_range_node *range;
2200 range = _regmap_range_lookup(map, reg);
2202 unsigned int win_page = _regmap_register_page(map, reg,
2206 this_page = win_page;
2207 if (win_page != this_page) {
2208 this_page = win_page;
2213 /* If we have both a page change and a delay make sure to
2214 * write the regs and apply the delay before we change the
2218 if (page_change || regs[i].delay_us) {
2220 /* For situations where the first write requires
2221 * a delay we need to make sure we don't call
2222 * raw_multi_reg_write with n=0
2223 * This can't occur with page breaks as we
2224 * never write on the first iteration
2226 if (regs[i].delay_us && i == 0)
2229 ret = _regmap_raw_multi_reg_write(map, base, n);
2233 if (regs[i].delay_us)
2234 udelay(regs[i].delay_us);
2240 ret = _regmap_select_page(map,
2253 return _regmap_raw_multi_reg_write(map, base, n);
2257 static int _regmap_multi_reg_write(struct regmap *map,
2258 const struct reg_sequence *regs,
2264 if (!map->can_multi_write) {
2265 for (i = 0; i < num_regs; i++) {
2266 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2270 if (regs[i].delay_us)
2271 udelay(regs[i].delay_us);
2276 if (!map->format.parse_inplace)
2279 if (map->writeable_reg)
2280 for (i = 0; i < num_regs; i++) {
2281 int reg = regs[i].reg;
2282 if (!map->writeable_reg(map->dev, reg))
2284 if (!IS_ALIGNED(reg, map->reg_stride))
2288 if (!map->cache_bypass) {
2289 for (i = 0; i < num_regs; i++) {
2290 unsigned int val = regs[i].def;
2291 unsigned int reg = regs[i].reg;
2292 ret = regcache_write(map, reg, val);
2295 "Error in caching of register: %x ret: %d\n",
2300 if (map->cache_only) {
2301 map->cache_dirty = true;
2308 for (i = 0; i < num_regs; i++) {
2309 unsigned int reg = regs[i].reg;
2310 struct regmap_range_node *range;
2312 /* Coalesce all the writes between a page break or a delay
2315 range = _regmap_range_lookup(map, reg);
2316 if (range || regs[i].delay_us) {
2317 size_t len = sizeof(struct reg_sequence)*num_regs;
2318 struct reg_sequence *base = kmemdup(regs, len,
2322 ret = _regmap_range_multi_paged_reg_write(map, base,
2329 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2333 * regmap_multi_reg_write() - Write multiple registers to the device
2335 * @map: Register map to write to
2336 * @regs: Array of structures containing register,value to be written
2337 * @num_regs: Number of registers to write
2339 * Write multiple registers to the device where the set of register, value
2340 * pairs are supplied in any order, possibly not all in a single range.
2342 * The 'normal' block write mode will send ultimately send data on the
2343 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2344 * addressed. However, this alternative block multi write mode will send
2345 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2346 * must of course support the mode.
2348 * A value of zero will be returned on success, a negative errno will be
2349 * returned in error cases.
2351 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2356 map->lock(map->lock_arg);
2358 ret = _regmap_multi_reg_write(map, regs, num_regs);
2360 map->unlock(map->lock_arg);
2364 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2367 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2368 * device but not the cache
2370 * @map: Register map to write to
2371 * @regs: Array of structures containing register,value to be written
2372 * @num_regs: Number of registers to write
2374 * Write multiple registers to the device but not the cache where the set
2375 * of register are supplied in any order.
2377 * This function is intended to be used for writing a large block of data
2378 * atomically to the device in single transfer for those I2C client devices
2379 * that implement this alternative block write mode.
2381 * A value of zero will be returned on success, a negative errno will
2382 * be returned in error cases.
2384 int regmap_multi_reg_write_bypassed(struct regmap *map,
2385 const struct reg_sequence *regs,
2391 map->lock(map->lock_arg);
2393 bypass = map->cache_bypass;
2394 map->cache_bypass = true;
2396 ret = _regmap_multi_reg_write(map, regs, num_regs);
2398 map->cache_bypass = bypass;
2400 map->unlock(map->lock_arg);
2404 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2407 * regmap_raw_write_async() - Write raw values to one or more registers
2410 * @map: Register map to write to
2411 * @reg: Initial register to write to
2412 * @val: Block of data to be written, laid out for direct transmission to the
2413 * device. Must be valid until regmap_async_complete() is called.
2414 * @val_len: Length of data pointed to by val.
2416 * This function is intended to be used for things like firmware
2417 * download where a large block of data needs to be transferred to the
2418 * device. No formatting will be done on the data provided.
2420 * If supported by the underlying bus the write will be scheduled
2421 * asynchronously, helping maximise I/O speed on higher speed buses
2422 * like SPI. regmap_async_complete() can be called to ensure that all
2423 * asynchrnous writes have been completed.
2425 * A value of zero will be returned on success, a negative errno will
2426 * be returned in error cases.
2428 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2429 const void *val, size_t val_len)
2433 if (val_len % map->format.val_bytes)
2435 if (!IS_ALIGNED(reg, map->reg_stride))
2438 map->lock(map->lock_arg);
2442 ret = _regmap_raw_write(map, reg, val, val_len);
2446 map->unlock(map->lock_arg);
2450 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2452 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2453 unsigned int val_len)
2455 struct regmap_range_node *range;
2460 if (!map->bus || !map->bus->read)
2463 range = _regmap_range_lookup(map, reg);
2465 ret = _regmap_select_page(map, ®, range,
2466 val_len / map->format.val_bytes);
2471 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2472 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2473 map->read_flag_mask);
2474 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2476 ret = map->bus->read(map->bus_context, map->work_buf,
2477 map->format.reg_bytes + map->format.pad_bytes,
2480 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2485 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2488 struct regmap *map = context;
2490 return map->bus->reg_read(map->bus_context, reg, val);
2493 static int _regmap_bus_read(void *context, unsigned int reg,
2497 struct regmap *map = context;
2498 void *work_val = map->work_buf + map->format.reg_bytes +
2499 map->format.pad_bytes;
2501 if (!map->format.parse_val)
2504 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2506 *val = map->format.parse_val(work_val);
2511 static int _regmap_read(struct regmap *map, unsigned int reg,
2515 void *context = _regmap_map_get_context(map);
2517 if (!map->cache_bypass) {
2518 ret = regcache_read(map, reg, val);
2523 if (map->cache_only)
2526 if (!regmap_readable(map, reg))
2529 ret = map->reg_read(context, reg, val);
2531 if (regmap_should_log(map))
2532 dev_info(map->dev, "%x => %x\n", reg, *val);
2534 trace_regmap_reg_read(map, reg, *val);
2536 if (!map->cache_bypass)
2537 regcache_write(map, reg, *val);
2544 * regmap_read() - Read a value from a single register
2546 * @map: Register map to read from
2547 * @reg: Register to be read from
2548 * @val: Pointer to store read value
2550 * A value of zero will be returned on success, a negative errno will
2551 * be returned in error cases.
2553 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2557 if (!IS_ALIGNED(reg, map->reg_stride))
2560 map->lock(map->lock_arg);
2562 ret = _regmap_read(map, reg, val);
2564 map->unlock(map->lock_arg);
2568 EXPORT_SYMBOL_GPL(regmap_read);
2571 * regmap_raw_read() - Read raw data from the device
2573 * @map: Register map to read from
2574 * @reg: First register to be read from
2575 * @val: Pointer to store read value
2576 * @val_len: Size of data to read
2578 * A value of zero will be returned on success, a negative errno will
2579 * be returned in error cases.
2581 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2584 size_t val_bytes = map->format.val_bytes;
2585 size_t val_count = val_len / val_bytes;
2591 if (val_len % map->format.val_bytes)
2593 if (!IS_ALIGNED(reg, map->reg_stride))
2598 map->lock(map->lock_arg);
2600 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2601 map->cache_type == REGCACHE_NONE) {
2602 size_t chunk_count, chunk_bytes;
2603 size_t chunk_regs = val_count;
2605 if (!map->bus->read) {
2610 if (map->use_single_read)
2612 else if (map->max_raw_read && val_len > map->max_raw_read)
2613 chunk_regs = map->max_raw_read / val_bytes;
2615 chunk_count = val_count / chunk_regs;
2616 chunk_bytes = chunk_regs * val_bytes;
2618 /* Read bytes that fit into whole chunks */
2619 for (i = 0; i < chunk_count; i++) {
2620 ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2624 reg += regmap_get_offset(map, chunk_regs);
2626 val_len -= chunk_bytes;
2629 /* Read remaining bytes */
2631 ret = _regmap_raw_read(map, reg, val, val_len);
2636 /* Otherwise go word by word for the cache; should be low
2637 * cost as we expect to hit the cache.
2639 for (i = 0; i < val_count; i++) {
2640 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2645 map->format.format_val(val + (i * val_bytes), v, 0);
2650 map->unlock(map->lock_arg);
2654 EXPORT_SYMBOL_GPL(regmap_raw_read);
2657 * regmap_noinc_read(): Read data from a register without incrementing the
2660 * @map: Register map to read from
2661 * @reg: Register to read from
2662 * @val: Pointer to data buffer
2663 * @val_len: Length of output buffer in bytes.
2665 * The regmap API usually assumes that bulk bus read operations will read a
2666 * range of registers. Some devices have certain registers for which a read
2667 * operation read will read from an internal FIFO.
2669 * The target register must be volatile but registers after it can be
2670 * completely unrelated cacheable registers.
2672 * This will attempt multiple reads as required to read val_len bytes.
2674 * A value of zero will be returned on success, a negative errno will be
2675 * returned in error cases.
2677 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2678 void *val, size_t val_len)
2685 if (!map->bus->read)
2687 if (val_len % map->format.val_bytes)
2689 if (!IS_ALIGNED(reg, map->reg_stride))
2694 map->lock(map->lock_arg);
2696 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2702 if (map->max_raw_read && map->max_raw_read < val_len)
2703 read_len = map->max_raw_read;
2706 ret = _regmap_raw_read(map, reg, val, read_len);
2709 val = ((u8 *)val) + read_len;
2710 val_len -= read_len;
2714 map->unlock(map->lock_arg);
2717 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2720 * regmap_field_read(): Read a value to a single register field
2722 * @field: Register field to read from
2723 * @val: Pointer to store read value
2725 * A value of zero will be returned on success, a negative errno will
2726 * be returned in error cases.
2728 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2731 unsigned int reg_val;
2732 ret = regmap_read(field->regmap, field->reg, ®_val);
2736 reg_val &= field->mask;
2737 reg_val >>= field->shift;
2742 EXPORT_SYMBOL_GPL(regmap_field_read);
2745 * regmap_fields_read() - Read a value to a single register field with port ID
2747 * @field: Register field to read from
2749 * @val: Pointer to store read value
2751 * A value of zero will be returned on success, a negative errno will
2752 * be returned in error cases.
2754 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2758 unsigned int reg_val;
2760 if (id >= field->id_size)
2763 ret = regmap_read(field->regmap,
2764 field->reg + (field->id_offset * id),
2769 reg_val &= field->mask;
2770 reg_val >>= field->shift;
2775 EXPORT_SYMBOL_GPL(regmap_fields_read);
2778 * regmap_bulk_read() - Read multiple registers from the device
2780 * @map: Register map to read from
2781 * @reg: First register to be read from
2782 * @val: Pointer to store read value, in native register size for device
2783 * @val_count: Number of registers to read
2785 * A value of zero will be returned on success, a negative errno will
2786 * be returned in error cases.
2788 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2792 size_t val_bytes = map->format.val_bytes;
2793 bool vol = regmap_volatile_range(map, reg, val_count);
2795 if (!IS_ALIGNED(reg, map->reg_stride))
2800 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2801 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2805 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2806 map->format.parse_inplace(val + i);
2815 map->lock(map->lock_arg);
2817 for (i = 0; i < val_count; i++) {
2820 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2825 switch (map->format.val_bytes) {
2847 map->unlock(map->lock_arg);
2852 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2854 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2855 unsigned int mask, unsigned int val,
2856 bool *change, bool force_write)
2859 unsigned int tmp, orig;
2864 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2865 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2866 if (ret == 0 && change)
2869 ret = _regmap_read(map, reg, &orig);
2876 if (force_write || (tmp != orig)) {
2877 ret = _regmap_write(map, reg, tmp);
2878 if (ret == 0 && change)
2887 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2889 * @map: Register map to update
2890 * @reg: Register to update
2891 * @mask: Bitmask to change
2892 * @val: New value for bitmask
2893 * @change: Boolean indicating if a write was done
2894 * @async: Boolean indicating asynchronously
2895 * @force: Boolean indicating use force update
2897 * Perform a read/modify/write cycle on a register map with change, async, force
2902 * With most buses the read must be done synchronously so this is most useful
2903 * for devices with a cache which do not need to interact with the hardware to
2904 * determine the current register value.
2906 * Returns zero for success, a negative number on error.
2908 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2909 unsigned int mask, unsigned int val,
2910 bool *change, bool async, bool force)
2914 map->lock(map->lock_arg);
2918 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2922 map->unlock(map->lock_arg);
2926 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2929 * regmap_test_bits() - Check if all specified bits are set in a register.
2931 * @map: Register map to operate on
2932 * @reg: Register to read from
2933 * @bits: Bits to test
2935 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
2936 * bits are set and a negative error number if the underlying regmap_read()
2939 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
2941 unsigned int val, ret;
2943 ret = regmap_read(map, reg, &val);
2947 return (val & bits) == bits;
2949 EXPORT_SYMBOL_GPL(regmap_test_bits);
2951 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2953 struct regmap *map = async->map;
2956 trace_regmap_async_io_complete(map);
2958 spin_lock(&map->async_lock);
2959 list_move(&async->list, &map->async_free);
2960 wake = list_empty(&map->async_list);
2963 map->async_ret = ret;
2965 spin_unlock(&map->async_lock);
2968 wake_up(&map->async_waitq);
2970 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2972 static int regmap_async_is_done(struct regmap *map)
2974 unsigned long flags;
2977 spin_lock_irqsave(&map->async_lock, flags);
2978 ret = list_empty(&map->async_list);
2979 spin_unlock_irqrestore(&map->async_lock, flags);
2985 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2987 * @map: Map to operate on.
2989 * Blocks until any pending asynchronous I/O has completed. Returns
2990 * an error code for any failed I/O operations.
2992 int regmap_async_complete(struct regmap *map)
2994 unsigned long flags;
2997 /* Nothing to do with no async support */
2998 if (!map->bus || !map->bus->async_write)
3001 trace_regmap_async_complete_start(map);
3003 wait_event(map->async_waitq, regmap_async_is_done(map));
3005 spin_lock_irqsave(&map->async_lock, flags);
3006 ret = map->async_ret;
3008 spin_unlock_irqrestore(&map->async_lock, flags);
3010 trace_regmap_async_complete_done(map);
3014 EXPORT_SYMBOL_GPL(regmap_async_complete);
3017 * regmap_register_patch - Register and apply register updates to be applied
3018 * on device initialistion
3020 * @map: Register map to apply updates to.
3021 * @regs: Values to update.
3022 * @num_regs: Number of entries in regs.
3024 * Register a set of register updates to be applied to the device
3025 * whenever the device registers are synchronised with the cache and
3026 * apply them immediately. Typically this is used to apply
3027 * corrections to be applied to the device defaults on startup, such
3028 * as the updates some vendors provide to undocumented registers.
3030 * The caller must ensure that this function cannot be called
3031 * concurrently with either itself or regcache_sync().
3033 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3036 struct reg_sequence *p;
3040 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3044 p = krealloc(map->patch,
3045 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3048 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3050 map->patch_regs += num_regs;
3055 map->lock(map->lock_arg);
3057 bypass = map->cache_bypass;
3059 map->cache_bypass = true;
3062 ret = _regmap_multi_reg_write(map, regs, num_regs);
3065 map->cache_bypass = bypass;
3067 map->unlock(map->lock_arg);
3069 regmap_async_complete(map);
3073 EXPORT_SYMBOL_GPL(regmap_register_patch);
3076 * regmap_get_val_bytes() - Report the size of a register value
3078 * @map: Register map to operate on.
3080 * Report the size of a register value, mainly intended to for use by
3081 * generic infrastructure built on top of regmap.
3083 int regmap_get_val_bytes(struct regmap *map)
3085 if (map->format.format_write)
3088 return map->format.val_bytes;
3090 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3093 * regmap_get_max_register() - Report the max register value
3095 * @map: Register map to operate on.
3097 * Report the max register value, mainly intended to for use by
3098 * generic infrastructure built on top of regmap.
3100 int regmap_get_max_register(struct regmap *map)
3102 return map->max_register ? map->max_register : -EINVAL;
3104 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3107 * regmap_get_reg_stride() - Report the register address stride
3109 * @map: Register map to operate on.
3111 * Report the register address stride, mainly intended to for use by
3112 * generic infrastructure built on top of regmap.
3114 int regmap_get_reg_stride(struct regmap *map)
3116 return map->reg_stride;
3118 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3120 int regmap_parse_val(struct regmap *map, const void *buf,
3123 if (!map->format.parse_val)
3126 *val = map->format.parse_val(buf);
3130 EXPORT_SYMBOL_GPL(regmap_parse_val);
3132 static int __init regmap_initcall(void)
3134 regmap_debugfs_initcall();
3138 postcore_initcall(regmap_initcall);