]> Git Repo - linux.git/blob - drivers/base/regmap/regmap-irq.c
ASoC: simple-card: Use snd_soc_of_parse_aux_devs()
[linux.git] / drivers / base / regmap / regmap-irq.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <[email protected]>
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
17
18 #include "internal.h"
19
20 struct regmap_irq_chip_data {
21         struct mutex lock;
22         struct irq_chip irq_chip;
23
24         struct regmap *map;
25         const struct regmap_irq_chip *chip;
26
27         int irq_base;
28         struct irq_domain *domain;
29
30         int irq;
31         int wake_count;
32
33         void *status_reg_buf;
34         unsigned int *main_status_buf;
35         unsigned int *status_buf;
36         unsigned int *mask_buf;
37         unsigned int *mask_buf_def;
38         unsigned int *wake_buf;
39         unsigned int *type_buf;
40         unsigned int *type_buf_def;
41
42         unsigned int irq_reg_stride;
43         unsigned int type_reg_stride;
44
45         bool clear_status:1;
46 };
47
48 static inline const
49 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
50                                      int irq)
51 {
52         return &data->chip->irqs[irq];
53 }
54
55 static void regmap_irq_lock(struct irq_data *data)
56 {
57         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
58
59         mutex_lock(&d->lock);
60 }
61
62 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
63                                   unsigned int reg, unsigned int mask,
64                                   unsigned int val)
65 {
66         if (d->chip->mask_writeonly)
67                 return regmap_write_bits(d->map, reg, mask, val);
68         else
69                 return regmap_update_bits(d->map, reg, mask, val);
70 }
71
72 static void regmap_irq_sync_unlock(struct irq_data *data)
73 {
74         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75         struct regmap *map = d->map;
76         int i, ret;
77         u32 reg;
78         u32 unmask_offset;
79         u32 val;
80
81         if (d->chip->runtime_pm) {
82                 ret = pm_runtime_get_sync(map->dev);
83                 if (ret < 0)
84                         dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85                                 ret);
86         }
87
88         if (d->clear_status) {
89                 for (i = 0; i < d->chip->num_regs; i++) {
90                         reg = d->chip->status_base +
91                                 (i * map->reg_stride * d->irq_reg_stride);
92
93                         ret = regmap_read(map, reg, &val);
94                         if (ret)
95                                 dev_err(d->map->dev,
96                                         "Failed to clear the interrupt status bits\n");
97                 }
98
99                 d->clear_status = false;
100         }
101
102         /*
103          * If there's been a change in the mask write it back to the
104          * hardware.  We rely on the use of the regmap core cache to
105          * suppress pointless writes.
106          */
107         for (i = 0; i < d->chip->num_regs; i++) {
108                 if (!d->chip->mask_base)
109                         continue;
110
111                 reg = d->chip->mask_base +
112                         (i * map->reg_stride * d->irq_reg_stride);
113                 if (d->chip->mask_invert) {
114                         ret = regmap_irq_update_bits(d, reg,
115                                          d->mask_buf_def[i], ~d->mask_buf[i]);
116                 } else if (d->chip->unmask_base) {
117                         /* set mask with mask_base register */
118                         ret = regmap_irq_update_bits(d, reg,
119                                         d->mask_buf_def[i], ~d->mask_buf[i]);
120                         if (ret < 0)
121                                 dev_err(d->map->dev,
122                                         "Failed to sync unmasks in %x\n",
123                                         reg);
124                         unmask_offset = d->chip->unmask_base -
125                                                         d->chip->mask_base;
126                         /* clear mask with unmask_base register */
127                         ret = regmap_irq_update_bits(d,
128                                         reg + unmask_offset,
129                                         d->mask_buf_def[i],
130                                         d->mask_buf[i]);
131                 } else {
132                         ret = regmap_irq_update_bits(d, reg,
133                                          d->mask_buf_def[i], d->mask_buf[i]);
134                 }
135                 if (ret != 0)
136                         dev_err(d->map->dev, "Failed to sync masks in %x\n",
137                                 reg);
138
139                 reg = d->chip->wake_base +
140                         (i * map->reg_stride * d->irq_reg_stride);
141                 if (d->wake_buf) {
142                         if (d->chip->wake_invert)
143                                 ret = regmap_irq_update_bits(d, reg,
144                                                          d->mask_buf_def[i],
145                                                          ~d->wake_buf[i]);
146                         else
147                                 ret = regmap_irq_update_bits(d, reg,
148                                                          d->mask_buf_def[i],
149                                                          d->wake_buf[i]);
150                         if (ret != 0)
151                                 dev_err(d->map->dev,
152                                         "Failed to sync wakes in %x: %d\n",
153                                         reg, ret);
154                 }
155
156                 if (!d->chip->init_ack_masked)
157                         continue;
158                 /*
159                  * Ack all the masked interrupts unconditionally,
160                  * OR if there is masked interrupt which hasn't been Acked,
161                  * it'll be ignored in irq handler, then may introduce irq storm
162                  */
163                 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164                         reg = d->chip->ack_base +
165                                 (i * map->reg_stride * d->irq_reg_stride);
166                         /* some chips ack by write 0 */
167                         if (d->chip->ack_invert)
168                                 ret = regmap_write(map, reg, ~d->mask_buf[i]);
169                         else
170                                 ret = regmap_write(map, reg, d->mask_buf[i]);
171                         if (ret != 0)
172                                 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
173                                         reg, ret);
174                 }
175         }
176
177         /* Don't update the type bits if we're using mask bits for irq type. */
178         if (!d->chip->type_in_mask) {
179                 for (i = 0; i < d->chip->num_type_reg; i++) {
180                         if (!d->type_buf_def[i])
181                                 continue;
182                         reg = d->chip->type_base +
183                                 (i * map->reg_stride * d->type_reg_stride);
184                         if (d->chip->type_invert)
185                                 ret = regmap_irq_update_bits(d, reg,
186                                         d->type_buf_def[i], ~d->type_buf[i]);
187                         else
188                                 ret = regmap_irq_update_bits(d, reg,
189                                         d->type_buf_def[i], d->type_buf[i]);
190                         if (ret != 0)
191                                 dev_err(d->map->dev, "Failed to sync type in %x\n",
192                                         reg);
193                 }
194         }
195
196         if (d->chip->runtime_pm)
197                 pm_runtime_put(map->dev);
198
199         /* If we've changed our wakeup count propagate it to the parent */
200         if (d->wake_count < 0)
201                 for (i = d->wake_count; i < 0; i++)
202                         irq_set_irq_wake(d->irq, 0);
203         else if (d->wake_count > 0)
204                 for (i = 0; i < d->wake_count; i++)
205                         irq_set_irq_wake(d->irq, 1);
206
207         d->wake_count = 0;
208
209         mutex_unlock(&d->lock);
210 }
211
212 static void regmap_irq_enable(struct irq_data *data)
213 {
214         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215         struct regmap *map = d->map;
216         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217         unsigned int mask, type;
218
219         type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
220
221         /*
222          * The type_in_mask flag means that the underlying hardware uses
223          * separate mask bits for rising and falling edge interrupts, but
224          * we want to make them into a single virtual interrupt with
225          * configurable edge.
226          *
227          * If the interrupt we're enabling defines the falling or rising
228          * masks then instead of using the regular mask bits for this
229          * interrupt, use the value previously written to the type buffer
230          * at the corresponding offset in regmap_irq_set_type().
231          */
232         if (d->chip->type_in_mask && type)
233                 mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
234         else
235                 mask = irq_data->mask;
236
237         if (d->chip->clear_on_unmask)
238                 d->clear_status = true;
239
240         d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
241 }
242
243 static void regmap_irq_disable(struct irq_data *data)
244 {
245         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246         struct regmap *map = d->map;
247         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
248
249         d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
250 }
251
252 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
253 {
254         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255         struct regmap *map = d->map;
256         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257         int reg;
258         const struct regmap_irq_type *t = &irq_data->type;
259
260         if ((t->types_supported & type) != type)
261                 return 0;
262
263         reg = t->type_reg_offset / map->reg_stride;
264
265         if (t->type_reg_mask)
266                 d->type_buf[reg] &= ~t->type_reg_mask;
267         else
268                 d->type_buf[reg] &= ~(t->type_falling_val |
269                                       t->type_rising_val |
270                                       t->type_level_low_val |
271                                       t->type_level_high_val);
272         switch (type) {
273         case IRQ_TYPE_EDGE_FALLING:
274                 d->type_buf[reg] |= t->type_falling_val;
275                 break;
276
277         case IRQ_TYPE_EDGE_RISING:
278                 d->type_buf[reg] |= t->type_rising_val;
279                 break;
280
281         case IRQ_TYPE_EDGE_BOTH:
282                 d->type_buf[reg] |= (t->type_falling_val |
283                                         t->type_rising_val);
284                 break;
285
286         case IRQ_TYPE_LEVEL_HIGH:
287                 d->type_buf[reg] |= t->type_level_high_val;
288                 break;
289
290         case IRQ_TYPE_LEVEL_LOW:
291                 d->type_buf[reg] |= t->type_level_low_val;
292                 break;
293         default:
294                 return -EINVAL;
295         }
296         return 0;
297 }
298
299 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
300 {
301         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
302         struct regmap *map = d->map;
303         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
304
305         if (on) {
306                 if (d->wake_buf)
307                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
308                                 &= ~irq_data->mask;
309                 d->wake_count++;
310         } else {
311                 if (d->wake_buf)
312                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
313                                 |= irq_data->mask;
314                 d->wake_count--;
315         }
316
317         return 0;
318 }
319
320 static const struct irq_chip regmap_irq_chip = {
321         .irq_bus_lock           = regmap_irq_lock,
322         .irq_bus_sync_unlock    = regmap_irq_sync_unlock,
323         .irq_disable            = regmap_irq_disable,
324         .irq_enable             = regmap_irq_enable,
325         .irq_set_type           = regmap_irq_set_type,
326         .irq_set_wake           = regmap_irq_set_wake,
327 };
328
329 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
330                                            unsigned int b)
331 {
332         const struct regmap_irq_chip *chip = data->chip;
333         struct regmap *map = data->map;
334         struct regmap_irq_sub_irq_map *subreg;
335         int i, ret = 0;
336
337         if (!chip->sub_reg_offsets) {
338                 /* Assume linear mapping */
339                 ret = regmap_read(map, chip->status_base +
340                                   (b * map->reg_stride * data->irq_reg_stride),
341                                    &data->status_buf[b]);
342         } else {
343                 subreg = &chip->sub_reg_offsets[b];
344                 for (i = 0; i < subreg->num_regs; i++) {
345                         unsigned int offset = subreg->offset[i];
346
347                         ret = regmap_read(map, chip->status_base + offset,
348                                           &data->status_buf[offset]);
349                         if (ret)
350                                 break;
351                 }
352         }
353         return ret;
354 }
355
356 static irqreturn_t regmap_irq_thread(int irq, void *d)
357 {
358         struct regmap_irq_chip_data *data = d;
359         const struct regmap_irq_chip *chip = data->chip;
360         struct regmap *map = data->map;
361         int ret, i;
362         bool handled = false;
363         u32 reg;
364
365         if (chip->handle_pre_irq)
366                 chip->handle_pre_irq(chip->irq_drv_data);
367
368         if (chip->runtime_pm) {
369                 ret = pm_runtime_get_sync(map->dev);
370                 if (ret < 0) {
371                         dev_err(map->dev, "IRQ thread failed to resume: %d\n",
372                                 ret);
373                         goto exit;
374                 }
375         }
376
377         /*
378          * Read only registers with active IRQs if the chip has 'main status
379          * register'. Else read in the statuses, using a single bulk read if
380          * possible in order to reduce the I/O overheads.
381          */
382
383         if (chip->num_main_regs) {
384                 unsigned int max_main_bits;
385                 unsigned long size;
386
387                 size = chip->num_regs * sizeof(unsigned int);
388
389                 max_main_bits = (chip->num_main_status_bits) ?
390                                  chip->num_main_status_bits : chip->num_regs;
391                 /* Clear the status buf as we don't read all status regs */
392                 memset(data->status_buf, 0, size);
393
394                 /* We could support bulk read for main status registers
395                  * but I don't expect to see devices with really many main
396                  * status registers so let's only support single reads for the
397                  * sake of simplicity. and add bulk reads only if needed
398                  */
399                 for (i = 0; i < chip->num_main_regs; i++) {
400                         ret = regmap_read(map, chip->main_status +
401                                   (i * map->reg_stride
402                                    * data->irq_reg_stride),
403                                   &data->main_status_buf[i]);
404                         if (ret) {
405                                 dev_err(map->dev,
406                                         "Failed to read IRQ status %d\n",
407                                         ret);
408                                 goto exit;
409                         }
410                 }
411
412                 /* Read sub registers with active IRQs */
413                 for (i = 0; i < chip->num_main_regs; i++) {
414                         unsigned int b;
415                         const unsigned long mreg = data->main_status_buf[i];
416
417                         for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
418                                 if (i * map->format.val_bytes * 8 + b >
419                                     max_main_bits)
420                                         break;
421                                 ret = read_sub_irq_data(data, b);
422
423                                 if (ret != 0) {
424                                         dev_err(map->dev,
425                                                 "Failed to read IRQ status %d\n",
426                                                 ret);
427                                         goto exit;
428                                 }
429                         }
430
431                 }
432         } else if (!map->use_single_read && map->reg_stride == 1 &&
433                    data->irq_reg_stride == 1) {
434
435                 u8 *buf8 = data->status_reg_buf;
436                 u16 *buf16 = data->status_reg_buf;
437                 u32 *buf32 = data->status_reg_buf;
438
439                 BUG_ON(!data->status_reg_buf);
440
441                 ret = regmap_bulk_read(map, chip->status_base,
442                                        data->status_reg_buf,
443                                        chip->num_regs);
444                 if (ret != 0) {
445                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
446                                 ret);
447                         goto exit;
448                 }
449
450                 for (i = 0; i < data->chip->num_regs; i++) {
451                         switch (map->format.val_bytes) {
452                         case 1:
453                                 data->status_buf[i] = buf8[i];
454                                 break;
455                         case 2:
456                                 data->status_buf[i] = buf16[i];
457                                 break;
458                         case 4:
459                                 data->status_buf[i] = buf32[i];
460                                 break;
461                         default:
462                                 BUG();
463                                 goto exit;
464                         }
465                 }
466
467         } else {
468                 for (i = 0; i < data->chip->num_regs; i++) {
469                         ret = regmap_read(map, chip->status_base +
470                                           (i * map->reg_stride
471                                            * data->irq_reg_stride),
472                                           &data->status_buf[i]);
473
474                         if (ret != 0) {
475                                 dev_err(map->dev,
476                                         "Failed to read IRQ status: %d\n",
477                                         ret);
478                                 goto exit;
479                         }
480                 }
481         }
482
483         /*
484          * Ignore masked IRQs and ack if we need to; we ack early so
485          * there is no race between handling and acknowleding the
486          * interrupt.  We assume that typically few of the interrupts
487          * will fire simultaneously so don't worry about overhead from
488          * doing a write per register.
489          */
490         for (i = 0; i < data->chip->num_regs; i++) {
491                 data->status_buf[i] &= ~data->mask_buf[i];
492
493                 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
494                         reg = chip->ack_base +
495                                 (i * map->reg_stride * data->irq_reg_stride);
496                         ret = regmap_write(map, reg, data->status_buf[i]);
497                         if (ret != 0)
498                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
499                                         reg, ret);
500                 }
501         }
502
503         for (i = 0; i < chip->num_irqs; i++) {
504                 if (data->status_buf[chip->irqs[i].reg_offset /
505                                      map->reg_stride] & chip->irqs[i].mask) {
506                         handle_nested_irq(irq_find_mapping(data->domain, i));
507                         handled = true;
508                 }
509         }
510
511 exit:
512         if (chip->runtime_pm)
513                 pm_runtime_put(map->dev);
514
515         if (chip->handle_post_irq)
516                 chip->handle_post_irq(chip->irq_drv_data);
517
518         if (handled)
519                 return IRQ_HANDLED;
520         else
521                 return IRQ_NONE;
522 }
523
524 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
525                           irq_hw_number_t hw)
526 {
527         struct regmap_irq_chip_data *data = h->host_data;
528
529         irq_set_chip_data(virq, data);
530         irq_set_chip(virq, &data->irq_chip);
531         irq_set_nested_thread(virq, 1);
532         irq_set_parent(virq, data->irq);
533         irq_set_noprobe(virq);
534
535         return 0;
536 }
537
538 static const struct irq_domain_ops regmap_domain_ops = {
539         .map    = regmap_irq_map,
540         .xlate  = irq_domain_xlate_onetwocell,
541 };
542
543 /**
544  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
545  *
546  * @fwnode: The firmware node where the IRQ domain should be added to.
547  * @map: The regmap for the device.
548  * @irq: The IRQ the device uses to signal interrupts.
549  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
550  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
551  * @chip: Configuration for the interrupt controller.
552  * @data: Runtime data structure for the controller, allocated on success.
553  *
554  * Returns 0 on success or an errno on failure.
555  *
556  * In order for this to be efficient the chip really should use a
557  * register cache.  The chip driver is responsible for restoring the
558  * register values used by the IRQ controller over suspend and resume.
559  */
560 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
561                                struct regmap *map, int irq,
562                                int irq_flags, int irq_base,
563                                const struct regmap_irq_chip *chip,
564                                struct regmap_irq_chip_data **data)
565 {
566         struct regmap_irq_chip_data *d;
567         int i;
568         int ret = -ENOMEM;
569         int num_type_reg;
570         u32 reg;
571         u32 unmask_offset;
572
573         if (chip->num_regs <= 0)
574                 return -EINVAL;
575
576         if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
577                 return -EINVAL;
578
579         for (i = 0; i < chip->num_irqs; i++) {
580                 if (chip->irqs[i].reg_offset % map->reg_stride)
581                         return -EINVAL;
582                 if (chip->irqs[i].reg_offset / map->reg_stride >=
583                     chip->num_regs)
584                         return -EINVAL;
585         }
586
587         if (irq_base) {
588                 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
589                 if (irq_base < 0) {
590                         dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
591                                  irq_base);
592                         return irq_base;
593                 }
594         }
595
596         d = kzalloc(sizeof(*d), GFP_KERNEL);
597         if (!d)
598                 return -ENOMEM;
599
600         if (chip->num_main_regs) {
601                 d->main_status_buf = kcalloc(chip->num_main_regs,
602                                              sizeof(unsigned int),
603                                              GFP_KERNEL);
604
605                 if (!d->main_status_buf)
606                         goto err_alloc;
607         }
608
609         d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
610                                 GFP_KERNEL);
611         if (!d->status_buf)
612                 goto err_alloc;
613
614         d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
615                               GFP_KERNEL);
616         if (!d->mask_buf)
617                 goto err_alloc;
618
619         d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
620                                   GFP_KERNEL);
621         if (!d->mask_buf_def)
622                 goto err_alloc;
623
624         if (chip->wake_base) {
625                 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
626                                       GFP_KERNEL);
627                 if (!d->wake_buf)
628                         goto err_alloc;
629         }
630
631         num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
632         if (num_type_reg) {
633                 d->type_buf_def = kcalloc(num_type_reg,
634                                           sizeof(unsigned int), GFP_KERNEL);
635                 if (!d->type_buf_def)
636                         goto err_alloc;
637
638                 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
639                                       GFP_KERNEL);
640                 if (!d->type_buf)
641                         goto err_alloc;
642         }
643
644         d->irq_chip = regmap_irq_chip;
645         d->irq_chip.name = chip->name;
646         d->irq = irq;
647         d->map = map;
648         d->chip = chip;
649         d->irq_base = irq_base;
650
651         if (chip->irq_reg_stride)
652                 d->irq_reg_stride = chip->irq_reg_stride;
653         else
654                 d->irq_reg_stride = 1;
655
656         if (chip->type_reg_stride)
657                 d->type_reg_stride = chip->type_reg_stride;
658         else
659                 d->type_reg_stride = 1;
660
661         if (!map->use_single_read && map->reg_stride == 1 &&
662             d->irq_reg_stride == 1) {
663                 d->status_reg_buf = kmalloc_array(chip->num_regs,
664                                                   map->format.val_bytes,
665                                                   GFP_KERNEL);
666                 if (!d->status_reg_buf)
667                         goto err_alloc;
668         }
669
670         mutex_init(&d->lock);
671
672         for (i = 0; i < chip->num_irqs; i++)
673                 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
674                         |= chip->irqs[i].mask;
675
676         /* Mask all the interrupts by default */
677         for (i = 0; i < chip->num_regs; i++) {
678                 d->mask_buf[i] = d->mask_buf_def[i];
679                 if (!chip->mask_base)
680                         continue;
681
682                 reg = chip->mask_base +
683                         (i * map->reg_stride * d->irq_reg_stride);
684                 if (chip->mask_invert)
685                         ret = regmap_irq_update_bits(d, reg,
686                                          d->mask_buf[i], ~d->mask_buf[i]);
687                 else if (d->chip->unmask_base) {
688                         unmask_offset = d->chip->unmask_base -
689                                         d->chip->mask_base;
690                         ret = regmap_irq_update_bits(d,
691                                         reg + unmask_offset,
692                                         d->mask_buf[i],
693                                         d->mask_buf[i]);
694                 } else
695                         ret = regmap_irq_update_bits(d, reg,
696                                          d->mask_buf[i], d->mask_buf[i]);
697                 if (ret != 0) {
698                         dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
699                                 reg, ret);
700                         goto err_alloc;
701                 }
702
703                 if (!chip->init_ack_masked)
704                         continue;
705
706                 /* Ack masked but set interrupts */
707                 reg = chip->status_base +
708                         (i * map->reg_stride * d->irq_reg_stride);
709                 ret = regmap_read(map, reg, &d->status_buf[i]);
710                 if (ret != 0) {
711                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
712                                 ret);
713                         goto err_alloc;
714                 }
715
716                 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
717                         reg = chip->ack_base +
718                                 (i * map->reg_stride * d->irq_reg_stride);
719                         if (chip->ack_invert)
720                                 ret = regmap_write(map, reg,
721                                         ~(d->status_buf[i] & d->mask_buf[i]));
722                         else
723                                 ret = regmap_write(map, reg,
724                                         d->status_buf[i] & d->mask_buf[i]);
725                         if (ret != 0) {
726                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
727                                         reg, ret);
728                                 goto err_alloc;
729                         }
730                 }
731         }
732
733         /* Wake is disabled by default */
734         if (d->wake_buf) {
735                 for (i = 0; i < chip->num_regs; i++) {
736                         d->wake_buf[i] = d->mask_buf_def[i];
737                         reg = chip->wake_base +
738                                 (i * map->reg_stride * d->irq_reg_stride);
739
740                         if (chip->wake_invert)
741                                 ret = regmap_irq_update_bits(d, reg,
742                                                          d->mask_buf_def[i],
743                                                          0);
744                         else
745                                 ret = regmap_irq_update_bits(d, reg,
746                                                          d->mask_buf_def[i],
747                                                          d->wake_buf[i]);
748                         if (ret != 0) {
749                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
750                                         reg, ret);
751                                 goto err_alloc;
752                         }
753                 }
754         }
755
756         if (chip->num_type_reg && !chip->type_in_mask) {
757                 for (i = 0; i < chip->num_type_reg; ++i) {
758                         reg = chip->type_base +
759                                 (i * map->reg_stride * d->type_reg_stride);
760
761                         ret = regmap_read(map, reg, &d->type_buf_def[i]);
762
763                         if (d->chip->type_invert)
764                                 d->type_buf_def[i] = ~d->type_buf_def[i];
765
766                         if (ret) {
767                                 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
768                                         reg, ret);
769                                 goto err_alloc;
770                         }
771                 }
772         }
773
774         if (irq_base)
775                 d->domain = irq_domain_add_legacy(to_of_node(fwnode),
776                                                   chip->num_irqs, irq_base,
777                                                   0, &regmap_domain_ops, d);
778         else
779                 d->domain = irq_domain_add_linear(to_of_node(fwnode),
780                                                   chip->num_irqs,
781                                                   &regmap_domain_ops, d);
782         if (!d->domain) {
783                 dev_err(map->dev, "Failed to create IRQ domain\n");
784                 ret = -ENOMEM;
785                 goto err_alloc;
786         }
787
788         ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
789                                    irq_flags | IRQF_ONESHOT,
790                                    chip->name, d);
791         if (ret != 0) {
792                 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
793                         irq, chip->name, ret);
794                 goto err_domain;
795         }
796
797         *data = d;
798
799         return 0;
800
801 err_domain:
802         /* Should really dispose of the domain but... */
803 err_alloc:
804         kfree(d->type_buf);
805         kfree(d->type_buf_def);
806         kfree(d->wake_buf);
807         kfree(d->mask_buf_def);
808         kfree(d->mask_buf);
809         kfree(d->status_buf);
810         kfree(d->status_reg_buf);
811         kfree(d);
812         return ret;
813 }
814 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
815
816 /**
817  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
818  *
819  * @map: The regmap for the device.
820  * @irq: The IRQ the device uses to signal interrupts.
821  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
822  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
823  * @chip: Configuration for the interrupt controller.
824  * @data: Runtime data structure for the controller, allocated on success.
825  *
826  * Returns 0 on success or an errno on failure.
827  *
828  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
829  * node of the regmap is used.
830  */
831 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
832                         int irq_base, const struct regmap_irq_chip *chip,
833                         struct regmap_irq_chip_data **data)
834 {
835         return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
836                                           irq_flags, irq_base, chip, data);
837 }
838 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
839
840 /**
841  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
842  *
843  * @irq: Primary IRQ for the device
844  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
845  *
846  * This function also disposes of all mapped IRQs on the chip.
847  */
848 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
849 {
850         unsigned int virq;
851         int hwirq;
852
853         if (!d)
854                 return;
855
856         free_irq(irq, d);
857
858         /* Dispose all virtual irq from irq domain before removing it */
859         for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
860                 /* Ignore hwirq if holes in the IRQ list */
861                 if (!d->chip->irqs[hwirq].mask)
862                         continue;
863
864                 /*
865                  * Find the virtual irq of hwirq on chip and if it is
866                  * there then dispose it
867                  */
868                 virq = irq_find_mapping(d->domain, hwirq);
869                 if (virq)
870                         irq_dispose_mapping(virq);
871         }
872
873         irq_domain_remove(d->domain);
874         kfree(d->type_buf);
875         kfree(d->type_buf_def);
876         kfree(d->wake_buf);
877         kfree(d->mask_buf_def);
878         kfree(d->mask_buf);
879         kfree(d->status_reg_buf);
880         kfree(d->status_buf);
881         kfree(d);
882 }
883 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
884
885 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
886 {
887         struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
888
889         regmap_del_irq_chip(d->irq, d);
890 }
891
892 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
893
894 {
895         struct regmap_irq_chip_data **r = res;
896
897         if (!r || !*r) {
898                 WARN_ON(!r || !*r);
899                 return 0;
900         }
901         return *r == data;
902 }
903
904 /**
905  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
906  *
907  * @dev: The device pointer on which irq_chip belongs to.
908  * @fwnode: The firmware node where the IRQ domain should be added to.
909  * @map: The regmap for the device.
910  * @irq: The IRQ the device uses to signal interrupts
911  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
912  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
913  * @chip: Configuration for the interrupt controller.
914  * @data: Runtime data structure for the controller, allocated on success
915  *
916  * Returns 0 on success or an errno on failure.
917  *
918  * The &regmap_irq_chip_data will be automatically released when the device is
919  * unbound.
920  */
921 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
922                                     struct fwnode_handle *fwnode,
923                                     struct regmap *map, int irq,
924                                     int irq_flags, int irq_base,
925                                     const struct regmap_irq_chip *chip,
926                                     struct regmap_irq_chip_data **data)
927 {
928         struct regmap_irq_chip_data **ptr, *d;
929         int ret;
930
931         ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
932                            GFP_KERNEL);
933         if (!ptr)
934                 return -ENOMEM;
935
936         ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
937                                          chip, &d);
938         if (ret < 0) {
939                 devres_free(ptr);
940                 return ret;
941         }
942
943         *ptr = d;
944         devres_add(dev, ptr);
945         *data = d;
946         return 0;
947 }
948 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
949
950 /**
951  * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
952  *
953  * @dev: The device pointer on which irq_chip belongs to.
954  * @map: The regmap for the device.
955  * @irq: The IRQ the device uses to signal interrupts
956  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
957  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
958  * @chip: Configuration for the interrupt controller.
959  * @data: Runtime data structure for the controller, allocated on success
960  *
961  * Returns 0 on success or an errno on failure.
962  *
963  * The &regmap_irq_chip_data will be automatically released when the device is
964  * unbound.
965  */
966 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
967                              int irq_flags, int irq_base,
968                              const struct regmap_irq_chip *chip,
969                              struct regmap_irq_chip_data **data)
970 {
971         return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
972                                                irq, irq_flags, irq_base, chip,
973                                                data);
974 }
975 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
976
977 /**
978  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
979  *
980  * @dev: Device for which which resource was allocated.
981  * @irq: Primary IRQ for the device.
982  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
983  *
984  * A resource managed version of regmap_del_irq_chip().
985  */
986 void devm_regmap_del_irq_chip(struct device *dev, int irq,
987                               struct regmap_irq_chip_data *data)
988 {
989         int rc;
990
991         WARN_ON(irq != data->irq);
992         rc = devres_release(dev, devm_regmap_irq_chip_release,
993                             devm_regmap_irq_chip_match, data);
994
995         if (rc != 0)
996                 WARN_ON(rc);
997 }
998 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
999
1000 /**
1001  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1002  *
1003  * @data: regmap irq controller to operate on.
1004  *
1005  * Useful for drivers to request their own IRQs.
1006  */
1007 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1008 {
1009         WARN_ON(!data->irq_base);
1010         return data->irq_base;
1011 }
1012 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1013
1014 /**
1015  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1016  *
1017  * @data: regmap irq controller to operate on.
1018  * @irq: index of the interrupt requested in the chip IRQs.
1019  *
1020  * Useful for drivers to request their own IRQs.
1021  */
1022 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1023 {
1024         /* Handle holes in the IRQ list */
1025         if (!data->chip->irqs[irq].mask)
1026                 return -EINVAL;
1027
1028         return irq_create_mapping(data->domain, irq);
1029 }
1030 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1031
1032 /**
1033  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1034  *
1035  * @data: regmap_irq controller to operate on.
1036  *
1037  * Useful for drivers to request their own IRQs and for integration
1038  * with subsystems.  For ease of integration NULL is accepted as a
1039  * domain, allowing devices to just call this even if no domain is
1040  * allocated.
1041  */
1042 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1043 {
1044         if (data)
1045                 return data->domain;
1046         else
1047                 return NULL;
1048 }
1049 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
This page took 0.097097 seconds and 4 git commands to generate.