1 // SPDX-License-Identifier: GPL-2.0
3 * Common Block IO controller cgroup interface
5 * Based on ideas and code from CFQ, CFS and BFQ:
14 * For policy-specific per-blkcg data:
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42 * policy [un]register operations including cgroup file additions /
43 * removals. Putting cgroup file registration outside blkcg_pol_mutex
44 * allows grabbing it from cgroup callbacks.
46 static DEFINE_MUTEX(blkcg_pol_register_mutex);
47 static DEFINE_MUTEX(blkcg_pol_mutex);
49 struct blkcg blkcg_root;
50 EXPORT_SYMBOL_GPL(blkcg_root);
52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53 EXPORT_SYMBOL_GPL(blkcg_root_css);
55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
57 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */
59 bool blkcg_debug_stats = false;
61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
63 #define BLKG_DESTROY_BATCH_SIZE 64
66 * Lockless lists for tracking IO stats update
68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69 * There are multiple blkg's (one for each block device) attached to each
70 * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71 * but it doesn't know which blkg has the updated stats. If there are many
72 * block devices in a system, the cost of iterating all the blkg's to flush
73 * out the IO stats can be high. To reduce such overhead, a set of percpu
74 * lockless lists (lhead) per blkcg are used to track the set of recently
75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77 * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78 * References to blkg are gotten and then put back in the process to
79 * protect against blkg removal.
81 * Return: 0 if successful or -ENOMEM if allocation fails.
83 static int init_blkcg_llists(struct blkcg *blkcg)
87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
91 for_each_possible_cpu(cpu)
92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
97 * blkcg_css - find the current css
99 * Find the css associated with either the kthread or the current task.
100 * This may return a dying css, so it is up to the caller to use tryget logic
101 * to confirm it is alive and well.
103 static struct cgroup_subsys_state *blkcg_css(void)
105 struct cgroup_subsys_state *css;
107 css = kthread_blkcg();
110 return task_css(current, io_cgrp_id);
113 static bool blkcg_policy_enabled(struct request_queue *q,
114 const struct blkcg_policy *pol)
116 return pol && test_bit(pol->plid, q->blkcg_pols);
119 static void blkg_free_workfn(struct work_struct *work)
121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
123 struct request_queue *q = blkg->q;
127 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 * in order to make sure pd_free_fn() is called in order, the deletion
129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 * blkcg_deactivate_policy().
133 mutex_lock(&q->blkcg_mutex);
134 for (i = 0; i < BLKCG_MAX_POLS; i++)
136 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
138 blkg_put(blkg->parent);
139 spin_lock_irq(&q->queue_lock);
140 list_del_init(&blkg->q_node);
141 spin_unlock_irq(&q->queue_lock);
142 mutex_unlock(&q->blkcg_mutex);
145 free_percpu(blkg->iostat_cpu);
146 percpu_ref_exit(&blkg->refcnt);
151 * blkg_free - free a blkg
152 * @blkg: blkg to free
154 * Free @blkg which may be partially allocated.
156 static void blkg_free(struct blkcg_gq *blkg)
162 * Both ->pd_free_fn() and request queue's release handler may
163 * sleep, so free us by scheduling one work func
165 INIT_WORK(&blkg->free_work, blkg_free_workfn);
166 schedule_work(&blkg->free_work);
169 static void __blkg_release(struct rcu_head *rcu)
171 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172 struct blkcg *blkcg = blkg->blkcg;
175 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176 WARN_ON(!bio_list_empty(&blkg->async_bios));
179 * Flush all the non-empty percpu lockless lists before releasing
180 * us, given these stat belongs to us.
182 * blkg_stat_lock is for serializing blkg stat update
184 for_each_possible_cpu(cpu)
185 __blkcg_rstat_flush(blkcg, cpu);
187 /* release the blkcg and parent blkg refs this blkg has been holding */
188 css_put(&blkg->blkcg->css);
193 * A group is RCU protected, but having an rcu lock does not mean that one
194 * can access all the fields of blkg and assume these are valid. For
195 * example, don't try to follow throtl_data and request queue links.
197 * Having a reference to blkg under an rcu allows accesses to only values
198 * local to groups like group stats and group rate limits.
200 static void blkg_release(struct percpu_ref *ref)
202 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
204 call_rcu(&blkg->rcu_head, __blkg_release);
207 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208 static struct workqueue_struct *blkcg_punt_bio_wq;
210 static void blkg_async_bio_workfn(struct work_struct *work)
212 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
214 struct bio_list bios = BIO_EMPTY_LIST;
216 struct blk_plug plug;
217 bool need_plug = false;
219 /* as long as there are pending bios, @blkg can't go away */
220 spin_lock(&blkg->async_bio_lock);
221 bio_list_merge_init(&bios, &blkg->async_bios);
222 spin_unlock(&blkg->async_bio_lock);
224 /* start plug only when bio_list contains at least 2 bios */
225 if (bios.head && bios.head->bi_next) {
227 blk_start_plug(&plug);
229 while ((bio = bio_list_pop(&bios)))
232 blk_finish_plug(&plug);
236 * When a shared kthread issues a bio for a cgroup, doing so synchronously can
237 * lead to priority inversions as the kthread can be trapped waiting for that
238 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to
239 * a dedicated per-blkcg work item to avoid such priority inversions.
241 void blkcg_punt_bio_submit(struct bio *bio)
243 struct blkcg_gq *blkg = bio->bi_blkg;
246 spin_lock(&blkg->async_bio_lock);
247 bio_list_add(&blkg->async_bios, bio);
248 spin_unlock(&blkg->async_bio_lock);
249 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
251 /* never bounce for the root cgroup */
255 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
257 static int __init blkcg_punt_bio_init(void)
259 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
260 WQ_MEM_RECLAIM | WQ_FREEZABLE |
261 WQ_UNBOUND | WQ_SYSFS, 0);
262 if (!blkcg_punt_bio_wq)
266 subsys_initcall(blkcg_punt_bio_init);
267 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
270 * bio_blkcg_css - return the blkcg CSS associated with a bio
273 * This returns the CSS for the blkcg associated with a bio, or %NULL if not
274 * associated. Callers are expected to either handle %NULL or know association
275 * has been done prior to calling this.
277 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
279 if (!bio || !bio->bi_blkg)
281 return &bio->bi_blkg->blkcg->css;
283 EXPORT_SYMBOL_GPL(bio_blkcg_css);
286 * blkcg_parent - get the parent of a blkcg
287 * @blkcg: blkcg of interest
289 * Return the parent blkcg of @blkcg. Can be called anytime.
291 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
293 return css_to_blkcg(blkcg->css.parent);
297 * blkg_alloc - allocate a blkg
298 * @blkcg: block cgroup the new blkg is associated with
299 * @disk: gendisk the new blkg is associated with
300 * @gfp_mask: allocation mask to use
302 * Allocate a new blkg associating @blkcg and @disk.
304 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
307 struct blkcg_gq *blkg;
310 /* alloc and init base part */
311 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
314 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
316 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
317 if (!blkg->iostat_cpu)
318 goto out_exit_refcnt;
319 if (!blk_get_queue(disk->queue))
320 goto out_free_iostat;
322 blkg->q = disk->queue;
323 INIT_LIST_HEAD(&blkg->q_node);
325 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
326 spin_lock_init(&blkg->async_bio_lock);
327 bio_list_init(&blkg->async_bios);
328 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
331 u64_stats_init(&blkg->iostat.sync);
332 for_each_possible_cpu(cpu) {
333 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
334 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
337 for (i = 0; i < BLKCG_MAX_POLS; i++) {
338 struct blkcg_policy *pol = blkcg_policy[i];
339 struct blkg_policy_data *pd;
341 if (!blkcg_policy_enabled(disk->queue, pol))
344 /* alloc per-policy data and attach it to blkg */
345 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
359 blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
360 blk_put_queue(disk->queue);
362 free_percpu(blkg->iostat_cpu);
364 percpu_ref_exit(&blkg->refcnt);
371 * If @new_blkg is %NULL, this function tries to allocate a new one as
372 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return.
374 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
375 struct blkcg_gq *new_blkg)
377 struct blkcg_gq *blkg;
380 lockdep_assert_held(&disk->queue->queue_lock);
382 /* request_queue is dying, do not create/recreate a blkg */
383 if (blk_queue_dying(disk->queue)) {
388 /* blkg holds a reference to blkcg */
389 if (!css_tryget_online(&blkcg->css)) {
396 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
397 if (unlikely(!new_blkg)) {
405 if (blkcg_parent(blkcg)) {
406 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
407 if (WARN_ON_ONCE(!blkg->parent)) {
411 blkg_get(blkg->parent);
414 /* invoke per-policy init */
415 for (i = 0; i < BLKCG_MAX_POLS; i++) {
416 struct blkcg_policy *pol = blkcg_policy[i];
418 if (blkg->pd[i] && pol->pd_init_fn)
419 pol->pd_init_fn(blkg->pd[i]);
423 spin_lock(&blkcg->lock);
424 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
426 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
427 list_add(&blkg->q_node, &disk->queue->blkg_list);
429 for (i = 0; i < BLKCG_MAX_POLS; i++) {
430 struct blkcg_policy *pol = blkcg_policy[i];
433 if (pol->pd_online_fn)
434 pol->pd_online_fn(blkg->pd[i]);
435 blkg->pd[i]->online = true;
440 spin_unlock(&blkcg->lock);
445 /* @blkg failed fully initialized, use the usual release path */
450 css_put(&blkcg->css);
458 * blkg_lookup_create - lookup blkg, try to create one if not there
459 * @blkcg: blkcg of interest
460 * @disk: gendisk of interest
462 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to
463 * create one. blkg creation is performed recursively from blkcg_root such
464 * that all non-root blkg's have access to the parent blkg. This function
465 * should be called under RCU read lock and takes @disk->queue->queue_lock.
467 * Returns the blkg or the closest blkg if blkg_create() fails as it walks
470 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
471 struct gendisk *disk)
473 struct request_queue *q = disk->queue;
474 struct blkcg_gq *blkg;
477 WARN_ON_ONCE(!rcu_read_lock_held());
479 blkg = blkg_lookup(blkcg, q);
483 spin_lock_irqsave(&q->queue_lock, flags);
484 blkg = blkg_lookup(blkcg, q);
486 if (blkcg != &blkcg_root &&
487 blkg != rcu_dereference(blkcg->blkg_hint))
488 rcu_assign_pointer(blkcg->blkg_hint, blkg);
493 * Create blkgs walking down from blkcg_root to @blkcg, so that all
494 * non-root blkgs have access to their parents. Returns the closest
495 * blkg to the intended blkg should blkg_create() fail.
498 struct blkcg *pos = blkcg;
499 struct blkcg *parent = blkcg_parent(blkcg);
500 struct blkcg_gq *ret_blkg = q->root_blkg;
503 blkg = blkg_lookup(parent, q);
505 /* remember closest blkg */
510 parent = blkcg_parent(parent);
513 blkg = blkg_create(pos, disk, NULL);
523 spin_unlock_irqrestore(&q->queue_lock, flags);
527 static void blkg_destroy(struct blkcg_gq *blkg)
529 struct blkcg *blkcg = blkg->blkcg;
532 lockdep_assert_held(&blkg->q->queue_lock);
533 lockdep_assert_held(&blkcg->lock);
536 * blkg stays on the queue list until blkg_free_workfn(), see details in
537 * blkg_free_workfn(), hence this function can be called from
538 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
539 * blkg_free_workfn().
541 if (hlist_unhashed(&blkg->blkcg_node))
544 for (i = 0; i < BLKCG_MAX_POLS; i++) {
545 struct blkcg_policy *pol = blkcg_policy[i];
547 if (blkg->pd[i] && blkg->pd[i]->online) {
548 blkg->pd[i]->online = false;
549 if (pol->pd_offline_fn)
550 pol->pd_offline_fn(blkg->pd[i]);
554 blkg->online = false;
556 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
557 hlist_del_init_rcu(&blkg->blkcg_node);
560 * Both setting lookup hint to and clearing it from @blkg are done
561 * under queue_lock. If it's not pointing to @blkg now, it never
562 * will. Hint assignment itself can race safely.
564 if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
565 rcu_assign_pointer(blkcg->blkg_hint, NULL);
568 * Put the reference taken at the time of creation so that when all
569 * queues are gone, group can be destroyed.
571 percpu_ref_kill(&blkg->refcnt);
574 static void blkg_destroy_all(struct gendisk *disk)
576 struct request_queue *q = disk->queue;
577 struct blkcg_gq *blkg;
578 int count = BLKG_DESTROY_BATCH_SIZE;
582 spin_lock_irq(&q->queue_lock);
583 list_for_each_entry(blkg, &q->blkg_list, q_node) {
584 struct blkcg *blkcg = blkg->blkcg;
586 if (hlist_unhashed(&blkg->blkcg_node))
589 spin_lock(&blkcg->lock);
591 spin_unlock(&blkcg->lock);
594 * in order to avoid holding the spin lock for too long, release
595 * it when a batch of blkgs are destroyed.
598 count = BLKG_DESTROY_BATCH_SIZE;
599 spin_unlock_irq(&q->queue_lock);
606 * Mark policy deactivated since policy offline has been done, and
607 * the free is scheduled, so future blkcg_deactivate_policy() can
610 for (i = 0; i < BLKCG_MAX_POLS; i++) {
611 struct blkcg_policy *pol = blkcg_policy[i];
614 __clear_bit(pol->plid, q->blkcg_pols);
618 spin_unlock_irq(&q->queue_lock);
621 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
622 struct cftype *cftype, u64 val)
624 struct blkcg *blkcg = css_to_blkcg(css);
625 struct blkcg_gq *blkg;
628 mutex_lock(&blkcg_pol_mutex);
629 spin_lock_irq(&blkcg->lock);
632 * Note that stat reset is racy - it doesn't synchronize against
633 * stat updates. This is a debug feature which shouldn't exist
634 * anyway. If you get hit by a race, retry.
636 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
637 for_each_possible_cpu(cpu) {
638 struct blkg_iostat_set *bis =
639 per_cpu_ptr(blkg->iostat_cpu, cpu);
640 memset(bis, 0, sizeof(*bis));
642 /* Re-initialize the cleared blkg_iostat_set */
643 u64_stats_init(&bis->sync);
646 memset(&blkg->iostat, 0, sizeof(blkg->iostat));
647 u64_stats_init(&blkg->iostat.sync);
649 for (i = 0; i < BLKCG_MAX_POLS; i++) {
650 struct blkcg_policy *pol = blkcg_policy[i];
652 if (blkg->pd[i] && pol->pd_reset_stats_fn)
653 pol->pd_reset_stats_fn(blkg->pd[i]);
657 spin_unlock_irq(&blkcg->lock);
658 mutex_unlock(&blkcg_pol_mutex);
662 const char *blkg_dev_name(struct blkcg_gq *blkg)
666 return bdi_dev_name(blkg->q->disk->bdi);
670 * blkcg_print_blkgs - helper for printing per-blkg data
671 * @sf: seq_file to print to
672 * @blkcg: blkcg of interest
673 * @prfill: fill function to print out a blkg
674 * @pol: policy in question
675 * @data: data to be passed to @prfill
676 * @show_total: to print out sum of prfill return values or not
678 * This function invokes @prfill on each blkg of @blkcg if pd for the
679 * policy specified by @pol exists. @prfill is invoked with @sf, the
680 * policy data and @data and the matching queue lock held. If @show_total
681 * is %true, the sum of the return values from @prfill is printed with
682 * "Total" label at the end.
684 * This is to be used to construct print functions for
685 * cftype->read_seq_string method.
687 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
688 u64 (*prfill)(struct seq_file *,
689 struct blkg_policy_data *, int),
690 const struct blkcg_policy *pol, int data,
693 struct blkcg_gq *blkg;
697 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
698 spin_lock_irq(&blkg->q->queue_lock);
699 if (blkcg_policy_enabled(blkg->q, pol))
700 total += prfill(sf, blkg->pd[pol->plid], data);
701 spin_unlock_irq(&blkg->q->queue_lock);
706 seq_printf(sf, "Total %llu\n", (unsigned long long)total);
708 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
711 * __blkg_prfill_u64 - prfill helper for a single u64 value
712 * @sf: seq_file to print to
713 * @pd: policy private data of interest
716 * Print @v to @sf for the device associated with @pd.
718 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
720 const char *dname = blkg_dev_name(pd->blkg);
725 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
728 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
731 * blkg_conf_init - initialize a blkg_conf_ctx
732 * @ctx: blkg_conf_ctx to initialize
733 * @input: input string
735 * Initialize @ctx which can be used to parse blkg config input string @input.
736 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
737 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
739 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
741 *ctx = (struct blkg_conf_ctx){ .input = input };
743 EXPORT_SYMBOL_GPL(blkg_conf_init);
746 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
747 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
749 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
750 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
751 * set to point past the device node prefix.
753 * This function may be called multiple times on @ctx and the extra calls become
754 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
755 * explicitly if bdev access is needed without resolving the blkcg / policy part
756 * of @ctx->input. Returns -errno on error.
758 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
760 char *input = ctx->input;
761 unsigned int major, minor;
762 struct block_device *bdev;
768 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
772 if (!isspace(*input))
774 input = skip_spaces(input);
776 bdev = blkdev_get_no_open(MKDEV(major, minor));
779 if (bdev_is_partition(bdev)) {
780 blkdev_put_no_open(bdev);
784 mutex_lock(&bdev->bd_queue->rq_qos_mutex);
785 if (!disk_live(bdev->bd_disk)) {
786 blkdev_put_no_open(bdev);
787 mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
797 * blkg_conf_prep - parse and prepare for per-blkg config update
798 * @blkcg: target block cgroup
799 * @pol: target policy
800 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
802 * Parse per-blkg config update from @ctx->input and initialize @ctx
803 * accordingly. On success, @ctx->body points to the part of @ctx->input
804 * following MAJ:MIN, @ctx->bdev points to the target block device and
805 * @ctx->blkg to the blkg being configured.
807 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
808 * function returns with queue lock held and must be followed by
811 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
812 struct blkg_conf_ctx *ctx)
813 __acquires(&bdev->bd_queue->queue_lock)
815 struct gendisk *disk;
816 struct request_queue *q;
817 struct blkcg_gq *blkg;
820 ret = blkg_conf_open_bdev(ctx);
824 disk = ctx->bdev->bd_disk;
828 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
829 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
831 ret = blk_queue_enter(q, 0);
835 spin_lock_irq(&q->queue_lock);
837 if (!blkcg_policy_enabled(q, pol)) {
842 blkg = blkg_lookup(blkcg, q);
847 * Create blkgs walking down from blkcg_root to @blkcg, so that all
848 * non-root blkgs have access to their parents.
851 struct blkcg *pos = blkcg;
852 struct blkcg *parent;
853 struct blkcg_gq *new_blkg;
855 parent = blkcg_parent(blkcg);
856 while (parent && !blkg_lookup(parent, q)) {
858 parent = blkcg_parent(parent);
861 /* Drop locks to do new blkg allocation with GFP_KERNEL. */
862 spin_unlock_irq(&q->queue_lock);
864 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
865 if (unlikely(!new_blkg)) {
867 goto fail_exit_queue;
870 if (radix_tree_preload(GFP_KERNEL)) {
873 goto fail_exit_queue;
876 spin_lock_irq(&q->queue_lock);
878 if (!blkcg_policy_enabled(q, pol)) {
884 blkg = blkg_lookup(pos, q);
888 blkg = blkg_create(pos, disk, new_blkg);
895 radix_tree_preload_end();
906 radix_tree_preload_end();
908 spin_unlock_irq(&q->queue_lock);
913 * If queue was bypassing, we should retry. Do so after a
914 * short msleep(). It isn't strictly necessary but queue
915 * can be bypassing for some time and it's always nice to
916 * avoid busy looping.
920 ret = restart_syscall();
924 EXPORT_SYMBOL_GPL(blkg_conf_prep);
927 * blkg_conf_exit - clean up per-blkg config update
928 * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
930 * Clean up after per-blkg config update. This function must be called on all
931 * blkg_conf_ctx's initialized with blkg_conf_init().
933 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
934 __releases(&ctx->bdev->bd_queue->queue_lock)
935 __releases(&ctx->bdev->bd_queue->rq_qos_mutex)
938 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
943 mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
944 blkdev_put_no_open(ctx->bdev);
949 EXPORT_SYMBOL_GPL(blkg_conf_exit);
951 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
955 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
956 dst->bytes[i] = src->bytes[i];
957 dst->ios[i] = src->ios[i];
961 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
965 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
966 dst->bytes[i] += src->bytes[i];
967 dst->ios[i] += src->ios[i];
971 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
975 for (i = 0; i < BLKG_IOSTAT_NR; i++) {
976 dst->bytes[i] -= src->bytes[i];
977 dst->ios[i] -= src->ios[i];
981 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
982 struct blkg_iostat *last)
984 struct blkg_iostat delta;
987 /* propagate percpu delta to global */
988 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
989 blkg_iostat_set(&delta, cur);
990 blkg_iostat_sub(&delta, last);
991 blkg_iostat_add(&blkg->iostat.cur, &delta);
992 blkg_iostat_add(last, &delta);
993 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
996 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
998 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
999 struct llist_node *lnode;
1000 struct blkg_iostat_set *bisc, *next_bisc;
1001 unsigned long flags;
1005 lnode = llist_del_all(lhead);
1010 * For covering concurrent parent blkg update from blkg_release().
1012 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1013 * this lock won't cause contention most of time.
1015 raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1018 * Iterate only the iostat_cpu's queued in the lockless list.
1020 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1021 struct blkcg_gq *blkg = bisc->blkg;
1022 struct blkcg_gq *parent = blkg->parent;
1023 struct blkg_iostat cur;
1026 WRITE_ONCE(bisc->lqueued, false);
1028 /* fetch the current per-cpu values */
1030 seq = u64_stats_fetch_begin(&bisc->sync);
1031 blkg_iostat_set(&cur, &bisc->cur);
1032 } while (u64_stats_fetch_retry(&bisc->sync, seq));
1034 blkcg_iostat_update(blkg, &cur, &bisc->last);
1036 /* propagate global delta to parent (unless that's root) */
1037 if (parent && parent->parent)
1038 blkcg_iostat_update(parent, &blkg->iostat.cur,
1039 &blkg->iostat.last);
1041 raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1046 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1048 /* Root-level stats are sourced from system-wide IO stats */
1049 if (cgroup_parent(css->cgroup))
1050 __blkcg_rstat_flush(css_to_blkcg(css), cpu);
1054 * We source root cgroup stats from the system-wide stats to avoid
1055 * tracking the same information twice and incurring overhead when no
1056 * cgroups are defined. For that reason, cgroup_rstat_flush in
1057 * blkcg_print_stat does not actually fill out the iostat in the root
1058 * cgroup's blkcg_gq.
1060 * However, we would like to re-use the printing code between the root and
1061 * non-root cgroups to the extent possible. For that reason, we simulate
1062 * flushing the root cgroup's stats by explicitly filling in the iostat
1063 * with disk level statistics.
1065 static void blkcg_fill_root_iostats(void)
1067 struct class_dev_iter iter;
1070 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1071 while ((dev = class_dev_iter_next(&iter))) {
1072 struct block_device *bdev = dev_to_bdev(dev);
1073 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1074 struct blkg_iostat tmp;
1076 unsigned long flags;
1078 memset(&tmp, 0, sizeof(tmp));
1079 for_each_possible_cpu(cpu) {
1080 struct disk_stats *cpu_dkstats;
1082 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1083 tmp.ios[BLKG_IOSTAT_READ] +=
1084 cpu_dkstats->ios[STAT_READ];
1085 tmp.ios[BLKG_IOSTAT_WRITE] +=
1086 cpu_dkstats->ios[STAT_WRITE];
1087 tmp.ios[BLKG_IOSTAT_DISCARD] +=
1088 cpu_dkstats->ios[STAT_DISCARD];
1089 // convert sectors to bytes
1090 tmp.bytes[BLKG_IOSTAT_READ] +=
1091 cpu_dkstats->sectors[STAT_READ] << 9;
1092 tmp.bytes[BLKG_IOSTAT_WRITE] +=
1093 cpu_dkstats->sectors[STAT_WRITE] << 9;
1094 tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1095 cpu_dkstats->sectors[STAT_DISCARD] << 9;
1098 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1099 blkg_iostat_set(&blkg->iostat.cur, &tmp);
1100 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1104 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1106 struct blkg_iostat_set *bis = &blkg->iostat;
1107 u64 rbytes, wbytes, rios, wios, dbytes, dios;
1115 dname = blkg_dev_name(blkg);
1119 seq_printf(s, "%s ", dname);
1122 seq = u64_stats_fetch_begin(&bis->sync);
1124 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1125 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1126 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1127 rios = bis->cur.ios[BLKG_IOSTAT_READ];
1128 wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1129 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1130 } while (u64_stats_fetch_retry(&bis->sync, seq));
1132 if (rbytes || wbytes || rios || wios) {
1133 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1134 rbytes, wbytes, rios, wios,
1138 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1139 seq_printf(s, " use_delay=%d delay_nsec=%llu",
1140 atomic_read(&blkg->use_delay),
1141 atomic64_read(&blkg->delay_nsec));
1144 for (i = 0; i < BLKCG_MAX_POLS; i++) {
1145 struct blkcg_policy *pol = blkcg_policy[i];
1147 if (!blkg->pd[i] || !pol->pd_stat_fn)
1150 pol->pd_stat_fn(blkg->pd[i], s);
1156 static int blkcg_print_stat(struct seq_file *sf, void *v)
1158 struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1159 struct blkcg_gq *blkg;
1161 if (!seq_css(sf)->parent)
1162 blkcg_fill_root_iostats();
1164 cgroup_rstat_flush(blkcg->css.cgroup);
1167 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1168 spin_lock_irq(&blkg->q->queue_lock);
1169 blkcg_print_one_stat(blkg, sf);
1170 spin_unlock_irq(&blkg->q->queue_lock);
1176 static struct cftype blkcg_files[] = {
1179 .seq_show = blkcg_print_stat,
1184 static struct cftype blkcg_legacy_files[] = {
1186 .name = "reset_stats",
1187 .write_u64 = blkcg_reset_stats,
1192 #ifdef CONFIG_CGROUP_WRITEBACK
1193 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1195 return &css_to_blkcg(css)->cgwb_list;
1200 * blkcg destruction is a three-stage process.
1202 * 1. Destruction starts. The blkcg_css_offline() callback is invoked
1203 * which offlines writeback. Here we tie the next stage of blkg destruction
1204 * to the completion of writeback associated with the blkcg. This lets us
1205 * avoid punting potentially large amounts of outstanding writeback to root
1206 * while maintaining any ongoing policies. The next stage is triggered when
1207 * the nr_cgwbs count goes to zero.
1209 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1210 * and handles the destruction of blkgs. Here the css reference held by
1211 * the blkg is put back eventually allowing blkcg_css_free() to be called.
1212 * This work may occur in cgwb_release_workfn() on the cgwb_release
1213 * workqueue. Any submitted ios that fail to get the blkg ref will be
1214 * punted to the root_blkg.
1216 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1217 * This finally frees the blkcg.
1221 * blkcg_destroy_blkgs - responsible for shooting down blkgs
1222 * @blkcg: blkcg of interest
1224 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock
1225 * is nested inside q lock, this function performs reverse double lock dancing.
1226 * Destroying the blkgs releases the reference held on the blkcg's css allowing
1227 * blkcg_css_free to eventually be called.
1229 * This is the blkcg counterpart of ioc_release_fn().
1231 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1235 spin_lock_irq(&blkcg->lock);
1237 while (!hlist_empty(&blkcg->blkg_list)) {
1238 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1239 struct blkcg_gq, blkcg_node);
1240 struct request_queue *q = blkg->q;
1242 if (need_resched() || !spin_trylock(&q->queue_lock)) {
1244 * Given that the system can accumulate a huge number
1245 * of blkgs in pathological cases, check to see if we
1246 * need to rescheduling to avoid softlockup.
1248 spin_unlock_irq(&blkcg->lock);
1250 spin_lock_irq(&blkcg->lock);
1255 spin_unlock(&q->queue_lock);
1258 spin_unlock_irq(&blkcg->lock);
1262 * blkcg_pin_online - pin online state
1263 * @blkcg_css: blkcg of interest
1265 * While pinned, a blkcg is kept online. This is primarily used to
1266 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1267 * while an associated cgwb is still active.
1269 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1271 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1275 * blkcg_unpin_online - unpin online state
1276 * @blkcg_css: blkcg of interest
1278 * This is primarily used to impedance-match blkg and cgwb lifetimes so
1279 * that blkg doesn't go offline while an associated cgwb is still active.
1280 * When this count goes to zero, all active cgwbs have finished so the
1281 * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1283 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1285 struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1288 if (!refcount_dec_and_test(&blkcg->online_pin))
1290 blkcg_destroy_blkgs(blkcg);
1291 blkcg = blkcg_parent(blkcg);
1296 * blkcg_css_offline - cgroup css_offline callback
1297 * @css: css of interest
1299 * This function is called when @css is about to go away. Here the cgwbs are
1300 * offlined first and only once writeback associated with the blkcg has
1301 * finished do we start step 2 (see above).
1303 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1305 /* this prevents anyone from attaching or migrating to this blkcg */
1306 wb_blkcg_offline(css);
1308 /* put the base online pin allowing step 2 to be triggered */
1309 blkcg_unpin_online(css);
1312 static void blkcg_css_free(struct cgroup_subsys_state *css)
1314 struct blkcg *blkcg = css_to_blkcg(css);
1317 mutex_lock(&blkcg_pol_mutex);
1319 list_del(&blkcg->all_blkcgs_node);
1321 for (i = 0; i < BLKCG_MAX_POLS; i++)
1323 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1325 mutex_unlock(&blkcg_pol_mutex);
1327 free_percpu(blkcg->lhead);
1331 static struct cgroup_subsys_state *
1332 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1334 struct blkcg *blkcg;
1337 mutex_lock(&blkcg_pol_mutex);
1340 blkcg = &blkcg_root;
1342 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1347 if (init_blkcg_llists(blkcg))
1350 for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1351 struct blkcg_policy *pol = blkcg_policy[i];
1352 struct blkcg_policy_data *cpd;
1355 * If the policy hasn't been attached yet, wait for it
1356 * to be attached before doing anything else. Otherwise,
1357 * check if the policy requires any specific per-cgroup
1358 * data: if it does, allocate and initialize it.
1360 if (!pol || !pol->cpd_alloc_fn)
1363 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1367 blkcg->cpd[i] = cpd;
1372 spin_lock_init(&blkcg->lock);
1373 refcount_set(&blkcg->online_pin, 1);
1374 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1375 INIT_HLIST_HEAD(&blkcg->blkg_list);
1376 #ifdef CONFIG_CGROUP_WRITEBACK
1377 INIT_LIST_HEAD(&blkcg->cgwb_list);
1379 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1381 mutex_unlock(&blkcg_pol_mutex);
1385 for (i--; i >= 0; i--)
1387 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1388 free_percpu(blkcg->lhead);
1390 if (blkcg != &blkcg_root)
1393 mutex_unlock(&blkcg_pol_mutex);
1394 return ERR_PTR(-ENOMEM);
1397 static int blkcg_css_online(struct cgroup_subsys_state *css)
1399 struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1402 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1403 * don't go offline while cgwbs are still active on them. Pin the
1404 * parent so that offline always happens towards the root.
1407 blkcg_pin_online(&parent->css);
1411 void blkg_init_queue(struct request_queue *q)
1413 INIT_LIST_HEAD(&q->blkg_list);
1414 mutex_init(&q->blkcg_mutex);
1417 int blkcg_init_disk(struct gendisk *disk)
1419 struct request_queue *q = disk->queue;
1420 struct blkcg_gq *new_blkg, *blkg;
1424 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1428 preloaded = !radix_tree_preload(GFP_KERNEL);
1430 /* Make sure the root blkg exists. */
1431 /* spin_lock_irq can serve as RCU read-side critical section. */
1432 spin_lock_irq(&q->queue_lock);
1433 blkg = blkg_create(&blkcg_root, disk, new_blkg);
1436 q->root_blkg = blkg;
1437 spin_unlock_irq(&q->queue_lock);
1440 radix_tree_preload_end();
1442 ret = blk_ioprio_init(disk);
1444 goto err_destroy_all;
1449 blkg_destroy_all(disk);
1452 spin_unlock_irq(&q->queue_lock);
1454 radix_tree_preload_end();
1455 return PTR_ERR(blkg);
1458 void blkcg_exit_disk(struct gendisk *disk)
1460 blkg_destroy_all(disk);
1461 blk_throtl_exit(disk);
1464 static void blkcg_exit(struct task_struct *tsk)
1466 if (tsk->throttle_disk)
1467 put_disk(tsk->throttle_disk);
1468 tsk->throttle_disk = NULL;
1471 struct cgroup_subsys io_cgrp_subsys = {
1472 .css_alloc = blkcg_css_alloc,
1473 .css_online = blkcg_css_online,
1474 .css_offline = blkcg_css_offline,
1475 .css_free = blkcg_css_free,
1476 .css_rstat_flush = blkcg_rstat_flush,
1477 .dfl_cftypes = blkcg_files,
1478 .legacy_cftypes = blkcg_legacy_files,
1479 .legacy_name = "blkio",
1483 * This ensures that, if available, memcg is automatically enabled
1484 * together on the default hierarchy so that the owner cgroup can
1485 * be retrieved from writeback pages.
1487 .depends_on = 1 << memory_cgrp_id,
1490 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1493 * blkcg_activate_policy - activate a blkcg policy on a gendisk
1494 * @disk: gendisk of interest
1495 * @pol: blkcg policy to activate
1497 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through
1498 * bypass mode to populate its blkgs with policy_data for @pol.
1500 * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1501 * from IO path. Update of each blkg is protected by both queue and blkcg
1502 * locks so that holding either lock and testing blkcg_policy_enabled() is
1503 * always enough for dereferencing policy data.
1505 * The caller is responsible for synchronizing [de]activations and policy
1506 * [un]registerations. Returns 0 on success, -errno on failure.
1508 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1510 struct request_queue *q = disk->queue;
1511 struct blkg_policy_data *pd_prealloc = NULL;
1512 struct blkcg_gq *blkg, *pinned_blkg = NULL;
1515 if (blkcg_policy_enabled(q, pol))
1519 blk_mq_freeze_queue(q);
1521 spin_lock_irq(&q->queue_lock);
1523 /* blkg_list is pushed at the head, reverse walk to initialize parents first */
1524 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1525 struct blkg_policy_data *pd;
1527 if (blkg->pd[pol->plid])
1530 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1531 if (blkg == pinned_blkg) {
1535 pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1536 GFP_NOWAIT | __GFP_NOWARN);
1541 * GFP_NOWAIT failed. Free the existing one and
1542 * prealloc for @blkg w/ GFP_KERNEL.
1545 blkg_put(pinned_blkg);
1549 spin_unlock_irq(&q->queue_lock);
1552 pol->pd_free_fn(pd_prealloc);
1553 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1561 spin_lock(&blkg->blkcg->lock);
1564 pd->plid = pol->plid;
1565 blkg->pd[pol->plid] = pd;
1567 if (pol->pd_init_fn)
1568 pol->pd_init_fn(pd);
1570 if (pol->pd_online_fn)
1571 pol->pd_online_fn(pd);
1574 spin_unlock(&blkg->blkcg->lock);
1577 __set_bit(pol->plid, q->blkcg_pols);
1580 spin_unlock_irq(&q->queue_lock);
1583 blk_mq_unfreeze_queue(q);
1585 blkg_put(pinned_blkg);
1587 pol->pd_free_fn(pd_prealloc);
1591 /* alloc failed, take down everything */
1592 spin_lock_irq(&q->queue_lock);
1593 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1594 struct blkcg *blkcg = blkg->blkcg;
1595 struct blkg_policy_data *pd;
1597 spin_lock(&blkcg->lock);
1598 pd = blkg->pd[pol->plid];
1600 if (pd->online && pol->pd_offline_fn)
1601 pol->pd_offline_fn(pd);
1603 pol->pd_free_fn(pd);
1604 blkg->pd[pol->plid] = NULL;
1606 spin_unlock(&blkcg->lock);
1608 spin_unlock_irq(&q->queue_lock);
1612 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1615 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1616 * @disk: gendisk of interest
1617 * @pol: blkcg policy to deactivate
1619 * Deactivate @pol on @disk. Follows the same synchronization rules as
1620 * blkcg_activate_policy().
1622 void blkcg_deactivate_policy(struct gendisk *disk,
1623 const struct blkcg_policy *pol)
1625 struct request_queue *q = disk->queue;
1626 struct blkcg_gq *blkg;
1628 if (!blkcg_policy_enabled(q, pol))
1632 blk_mq_freeze_queue(q);
1634 mutex_lock(&q->blkcg_mutex);
1635 spin_lock_irq(&q->queue_lock);
1637 __clear_bit(pol->plid, q->blkcg_pols);
1639 list_for_each_entry(blkg, &q->blkg_list, q_node) {
1640 struct blkcg *blkcg = blkg->blkcg;
1642 spin_lock(&blkcg->lock);
1643 if (blkg->pd[pol->plid]) {
1644 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1645 pol->pd_offline_fn(blkg->pd[pol->plid]);
1646 pol->pd_free_fn(blkg->pd[pol->plid]);
1647 blkg->pd[pol->plid] = NULL;
1649 spin_unlock(&blkcg->lock);
1652 spin_unlock_irq(&q->queue_lock);
1653 mutex_unlock(&q->blkcg_mutex);
1656 blk_mq_unfreeze_queue(q);
1658 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1660 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1662 struct blkcg *blkcg;
1664 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1665 if (blkcg->cpd[pol->plid]) {
1666 pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1667 blkcg->cpd[pol->plid] = NULL;
1673 * blkcg_policy_register - register a blkcg policy
1674 * @pol: blkcg policy to register
1676 * Register @pol with blkcg core. Might sleep and @pol may be modified on
1677 * successful registration. Returns 0 on success and -errno on failure.
1679 int blkcg_policy_register(struct blkcg_policy *pol)
1681 struct blkcg *blkcg;
1684 mutex_lock(&blkcg_pol_register_mutex);
1685 mutex_lock(&blkcg_pol_mutex);
1687 /* find an empty slot */
1689 for (i = 0; i < BLKCG_MAX_POLS; i++)
1690 if (!blkcg_policy[i])
1692 if (i >= BLKCG_MAX_POLS) {
1693 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1697 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1698 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1699 (!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1704 blkcg_policy[pol->plid] = pol;
1706 /* allocate and install cpd's */
1707 if (pol->cpd_alloc_fn) {
1708 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1709 struct blkcg_policy_data *cpd;
1711 cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1715 blkcg->cpd[pol->plid] = cpd;
1717 cpd->plid = pol->plid;
1721 mutex_unlock(&blkcg_pol_mutex);
1723 /* everything is in place, add intf files for the new policy */
1724 if (pol->dfl_cftypes)
1725 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1727 if (pol->legacy_cftypes)
1728 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1729 pol->legacy_cftypes));
1730 mutex_unlock(&blkcg_pol_register_mutex);
1734 if (pol->cpd_free_fn)
1735 blkcg_free_all_cpd(pol);
1737 blkcg_policy[pol->plid] = NULL;
1739 mutex_unlock(&blkcg_pol_mutex);
1740 mutex_unlock(&blkcg_pol_register_mutex);
1743 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1746 * blkcg_policy_unregister - unregister a blkcg policy
1747 * @pol: blkcg policy to unregister
1749 * Undo blkcg_policy_register(@pol). Might sleep.
1751 void blkcg_policy_unregister(struct blkcg_policy *pol)
1753 mutex_lock(&blkcg_pol_register_mutex);
1755 if (WARN_ON(blkcg_policy[pol->plid] != pol))
1758 /* kill the intf files first */
1759 if (pol->dfl_cftypes)
1760 cgroup_rm_cftypes(pol->dfl_cftypes);
1761 if (pol->legacy_cftypes)
1762 cgroup_rm_cftypes(pol->legacy_cftypes);
1764 /* remove cpds and unregister */
1765 mutex_lock(&blkcg_pol_mutex);
1767 if (pol->cpd_free_fn)
1768 blkcg_free_all_cpd(pol);
1770 blkcg_policy[pol->plid] = NULL;
1772 mutex_unlock(&blkcg_pol_mutex);
1774 mutex_unlock(&blkcg_pol_register_mutex);
1776 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1779 * Scale the accumulated delay based on how long it has been since we updated
1780 * the delay. We only call this when we are adding delay, in case it's been a
1781 * while since we added delay, and when we are checking to see if we need to
1782 * delay a task, to account for any delays that may have occurred.
1784 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1786 u64 old = atomic64_read(&blkg->delay_start);
1788 /* negative use_delay means no scaling, see blkcg_set_delay() */
1789 if (atomic_read(&blkg->use_delay) < 0)
1793 * We only want to scale down every second. The idea here is that we
1794 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1795 * time window. We only want to throttle tasks for recent delay that
1796 * has occurred, in 1 second time windows since that's the maximum
1797 * things can be throttled. We save the current delay window in
1798 * blkg->last_delay so we know what amount is still left to be charged
1799 * to the blkg from this point onward. blkg->last_use keeps track of
1800 * the use_delay counter. The idea is if we're unthrottling the blkg we
1801 * are ok with whatever is happening now, and we can take away more of
1802 * the accumulated delay as we've already throttled enough that
1803 * everybody is happy with their IO latencies.
1805 if (time_before64(old + NSEC_PER_SEC, now) &&
1806 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1807 u64 cur = atomic64_read(&blkg->delay_nsec);
1808 u64 sub = min_t(u64, blkg->last_delay, now - old);
1809 int cur_use = atomic_read(&blkg->use_delay);
1812 * We've been unthrottled, subtract a larger chunk of our
1813 * accumulated delay.
1815 if (cur_use < blkg->last_use)
1816 sub = max_t(u64, sub, blkg->last_delay >> 1);
1819 * This shouldn't happen, but handle it anyway. Our delay_nsec
1820 * should only ever be growing except here where we subtract out
1821 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1822 * rather not end up with negative numbers.
1824 if (unlikely(cur < sub)) {
1825 atomic64_set(&blkg->delay_nsec, 0);
1826 blkg->last_delay = 0;
1828 atomic64_sub(sub, &blkg->delay_nsec);
1829 blkg->last_delay = cur - sub;
1831 blkg->last_use = cur_use;
1836 * This is called when we want to actually walk up the hierarchy and check to
1837 * see if we need to throttle, and then actually throttle if there is some
1838 * accumulated delay. This should only be called upon return to user space so
1839 * we're not holding some lock that would induce a priority inversion.
1841 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1843 unsigned long pflags;
1845 u64 now = blk_time_get_ns();
1850 while (blkg->parent) {
1851 int use_delay = atomic_read(&blkg->use_delay);
1856 blkcg_scale_delay(blkg, now);
1857 this_delay = atomic64_read(&blkg->delay_nsec);
1858 if (this_delay > delay_nsec) {
1859 delay_nsec = this_delay;
1860 clamp = use_delay > 0;
1863 blkg = blkg->parent;
1870 * Let's not sleep for all eternity if we've amassed a huge delay.
1871 * Swapping or metadata IO can accumulate 10's of seconds worth of
1872 * delay, and we want userspace to be able to do _something_ so cap the
1873 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1874 * tasks will be delayed for 0.25 second for every syscall. If
1875 * blkcg_set_delay() was used as indicated by negative use_delay, the
1876 * caller is responsible for regulating the range.
1879 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1882 psi_memstall_enter(&pflags);
1884 exp = ktime_add_ns(now, delay_nsec);
1885 tok = io_schedule_prepare();
1887 __set_current_state(TASK_KILLABLE);
1888 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1890 } while (!fatal_signal_pending(current));
1891 io_schedule_finish(tok);
1894 psi_memstall_leave(&pflags);
1898 * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1900 * This is only called if we've been marked with set_notify_resume(). Obviously
1901 * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1902 * check to see if current->throttle_disk is set and if not this doesn't do
1903 * anything. This should only ever be called by the resume code, it's not meant
1904 * to be called by people willy-nilly as it will actually do the work to
1905 * throttle the task if it is setup for throttling.
1907 void blkcg_maybe_throttle_current(void)
1909 struct gendisk *disk = current->throttle_disk;
1910 struct blkcg *blkcg;
1911 struct blkcg_gq *blkg;
1912 bool use_memdelay = current->use_memdelay;
1917 current->throttle_disk = NULL;
1918 current->use_memdelay = false;
1921 blkcg = css_to_blkcg(blkcg_css());
1924 blkg = blkg_lookup(blkcg, disk->queue);
1927 if (!blkg_tryget(blkg))
1931 blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1940 * blkcg_schedule_throttle - this task needs to check for throttling
1941 * @disk: disk to throttle
1942 * @use_memdelay: do we charge this to memory delay for PSI
1944 * This is called by the IO controller when we know there's delay accumulated
1945 * for the blkg for this task. We do not pass the blkg because there are places
1946 * we call this that may not have that information, the swapping code for
1947 * instance will only have a block_device at that point. This set's the
1948 * notify_resume for the task to check and see if it requires throttling before
1949 * returning to user space.
1951 * We will only schedule once per syscall. You can call this over and over
1952 * again and it will only do the check once upon return to user space, and only
1953 * throttle once. If the task needs to be throttled again it'll need to be
1954 * re-set at the next time we see the task.
1956 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1958 if (unlikely(current->flags & PF_KTHREAD))
1961 if (current->throttle_disk != disk) {
1962 if (test_bit(GD_DEAD, &disk->state))
1964 get_device(disk_to_dev(disk));
1966 if (current->throttle_disk)
1967 put_disk(current->throttle_disk);
1968 current->throttle_disk = disk;
1972 current->use_memdelay = use_memdelay;
1973 set_notify_resume(current);
1977 * blkcg_add_delay - add delay to this blkg
1978 * @blkg: blkg of interest
1979 * @now: the current time in nanoseconds
1980 * @delta: how many nanoseconds of delay to add
1982 * Charge @delta to the blkg's current delay accumulation. This is used to
1983 * throttle tasks if an IO controller thinks we need more throttling.
1985 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1987 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1989 blkcg_scale_delay(blkg, now);
1990 atomic64_add(delta, &blkg->delay_nsec);
1994 * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1998 * As the failure mode here is to walk up the blkg tree, this ensure that the
1999 * blkg->parent pointers are always valid. This returns the blkg that it ended
2000 * up taking a reference on or %NULL if no reference was taken.
2002 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2003 struct cgroup_subsys_state *css)
2005 struct blkcg_gq *blkg, *ret_blkg = NULL;
2008 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2010 if (blkg_tryget(blkg)) {
2014 blkg = blkg->parent;
2022 * bio_associate_blkg_from_css - associate a bio with a specified css
2026 * Associate @bio with the blkg found by combining the css's blkg and the
2027 * request_queue of the @bio. An association failure is handled by walking up
2028 * the blkg tree. Therefore, the blkg associated can be anything between @blkg
2029 * and q->root_blkg. This situation only happens when a cgroup is dying and
2030 * then the remaining bios will spill to the closest alive blkg.
2032 * A reference will be taken on the blkg and will be released when @bio is
2035 void bio_associate_blkg_from_css(struct bio *bio,
2036 struct cgroup_subsys_state *css)
2039 blkg_put(bio->bi_blkg);
2041 if (css && css->parent) {
2042 bio->bi_blkg = blkg_tryget_closest(bio, css);
2044 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2045 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2048 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2051 * bio_associate_blkg - associate a bio with a blkg
2054 * Associate @bio with the blkg found from the bio's css and request_queue.
2055 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2056 * already associated, the css is reused and association redone as the
2057 * request_queue may have changed.
2059 void bio_associate_blkg(struct bio *bio)
2061 struct cgroup_subsys_state *css;
2063 if (blk_op_is_passthrough(bio->bi_opf))
2069 css = bio_blkcg_css(bio);
2073 bio_associate_blkg_from_css(bio, css);
2077 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2080 * bio_clone_blkg_association - clone blkg association from src to dst bio
2081 * @dst: destination bio
2084 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2087 bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2089 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2091 static int blk_cgroup_io_type(struct bio *bio)
2093 if (op_is_discard(bio->bi_opf))
2094 return BLKG_IOSTAT_DISCARD;
2095 if (op_is_write(bio->bi_opf))
2096 return BLKG_IOSTAT_WRITE;
2097 return BLKG_IOSTAT_READ;
2100 void blk_cgroup_bio_start(struct bio *bio)
2102 struct blkcg *blkcg = bio->bi_blkg->blkcg;
2103 int rwd = blk_cgroup_io_type(bio), cpu;
2104 struct blkg_iostat_set *bis;
2105 unsigned long flags;
2107 if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2110 /* Root-level stats are sourced from system-wide IO stats */
2111 if (!cgroup_parent(blkcg->css.cgroup))
2115 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2116 flags = u64_stats_update_begin_irqsave(&bis->sync);
2119 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2120 * bio and we would have already accounted for the size of the bio.
2122 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2123 bio_set_flag(bio, BIO_CGROUP_ACCT);
2124 bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2126 bis->cur.ios[rwd]++;
2129 * If the iostat_cpu isn't in a lockless list, put it into the
2130 * list to indicate that a stat update is pending.
2132 if (!READ_ONCE(bis->lqueued)) {
2133 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2135 llist_add(&bis->lnode, lhead);
2136 WRITE_ONCE(bis->lqueued, true);
2139 u64_stats_update_end_irqrestore(&bis->sync, flags);
2140 cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2144 bool blk_cgroup_congested(void)
2146 struct cgroup_subsys_state *css;
2150 for (css = blkcg_css(); css; css = css->parent) {
2151 if (atomic_read(&css->cgroup->congestion_count)) {
2160 module_param(blkcg_debug_stats, bool, 0644);
2161 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");