]> Git Repo - linux.git/blob - drivers/gpu/drm/tegra/dc.c
Merge branch 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[linux.git] / drivers / gpu / drm / tegra / dc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Avionic Design GmbH
4  * Copyright (C) 2012 NVIDIA CORPORATION.  All rights reserved.
5  */
6
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/reset.h>
15
16 #include <soc/tegra/pmc.h>
17
18 #include <drm/drm_atomic.h>
19 #include <drm/drm_atomic_helper.h>
20 #include <drm/drm_debugfs.h>
21 #include <drm/drm_fourcc.h>
22 #include <drm/drm_plane_helper.h>
23 #include <drm/drm_vblank.h>
24
25 #include "dc.h"
26 #include "drm.h"
27 #include "gem.h"
28 #include "hub.h"
29 #include "plane.h"
30
31 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
32                                             struct drm_crtc_state *state);
33
34 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
35 {
36         stats->frames = 0;
37         stats->vblank = 0;
38         stats->underflow = 0;
39         stats->overflow = 0;
40 }
41
42 /* Reads the active copy of a register. */
43 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
44 {
45         u32 value;
46
47         tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
48         value = tegra_dc_readl(dc, offset);
49         tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
50
51         return value;
52 }
53
54 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
55                                               unsigned int offset)
56 {
57         if (offset >= 0x500 && offset <= 0x638) {
58                 offset = 0x000 + (offset - 0x500);
59                 return plane->offset + offset;
60         }
61
62         if (offset >= 0x700 && offset <= 0x719) {
63                 offset = 0x180 + (offset - 0x700);
64                 return plane->offset + offset;
65         }
66
67         if (offset >= 0x800 && offset <= 0x839) {
68                 offset = 0x1c0 + (offset - 0x800);
69                 return plane->offset + offset;
70         }
71
72         dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
73
74         return plane->offset + offset;
75 }
76
77 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
78                                     unsigned int offset)
79 {
80         return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
81 }
82
83 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
84                                       unsigned int offset)
85 {
86         tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
87 }
88
89 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
90 {
91         struct device_node *np = dc->dev->of_node;
92         struct of_phandle_iterator it;
93         int err;
94
95         of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
96                 if (it.node == dev->of_node)
97                         return true;
98
99         return false;
100 }
101
102 /*
103  * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
104  * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
105  * Latching happens mmediately if the display controller is in STOP mode or
106  * on the next frame boundary otherwise.
107  *
108  * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
109  * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
110  * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
111  * into the ACTIVE copy, either immediately if the display controller is in
112  * STOP mode, or at the next frame boundary otherwise.
113  */
114 void tegra_dc_commit(struct tegra_dc *dc)
115 {
116         tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
117         tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
118 }
119
120 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
121                                   unsigned int bpp)
122 {
123         fixed20_12 outf = dfixed_init(out);
124         fixed20_12 inf = dfixed_init(in);
125         u32 dda_inc;
126         int max;
127
128         if (v)
129                 max = 15;
130         else {
131                 switch (bpp) {
132                 case 2:
133                         max = 8;
134                         break;
135
136                 default:
137                         WARN_ON_ONCE(1);
138                         /* fallthrough */
139                 case 4:
140                         max = 4;
141                         break;
142                 }
143         }
144
145         outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
146         inf.full -= dfixed_const(1);
147
148         dda_inc = dfixed_div(inf, outf);
149         dda_inc = min_t(u32, dda_inc, dfixed_const(max));
150
151         return dda_inc;
152 }
153
154 static inline u32 compute_initial_dda(unsigned int in)
155 {
156         fixed20_12 inf = dfixed_init(in);
157         return dfixed_frac(inf);
158 }
159
160 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
161 {
162         u32 background[3] = {
163                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
164                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
165                 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
166         };
167         u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
168                          BLEND_COLOR_KEY_NONE;
169         u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
170         struct tegra_plane_state *state;
171         u32 blending[2];
172         unsigned int i;
173
174         /* disable blending for non-overlapping case */
175         tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
176         tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
177
178         state = to_tegra_plane_state(plane->base.state);
179
180         if (state->opaque) {
181                 /*
182                  * Since custom fix-weight blending isn't utilized and weight
183                  * of top window is set to max, we can enforce dependent
184                  * blending which in this case results in transparent bottom
185                  * window if top window is opaque and if top window enables
186                  * alpha blending, then bottom window is getting alpha value
187                  * of 1 minus the sum of alpha components of the overlapping
188                  * plane.
189                  */
190                 background[0] |= BLEND_CONTROL_DEPENDENT;
191                 background[1] |= BLEND_CONTROL_DEPENDENT;
192
193                 /*
194                  * The region where three windows overlap is the intersection
195                  * of the two regions where two windows overlap. It contributes
196                  * to the area if all of the windows on top of it have an alpha
197                  * component.
198                  */
199                 switch (state->base.normalized_zpos) {
200                 case 0:
201                         if (state->blending[0].alpha &&
202                             state->blending[1].alpha)
203                                 background[2] |= BLEND_CONTROL_DEPENDENT;
204                         break;
205
206                 case 1:
207                         background[2] |= BLEND_CONTROL_DEPENDENT;
208                         break;
209                 }
210         } else {
211                 /*
212                  * Enable alpha blending if pixel format has an alpha
213                  * component.
214                  */
215                 foreground |= BLEND_CONTROL_ALPHA;
216
217                 /*
218                  * If any of the windows on top of this window is opaque, it
219                  * will completely conceal this window within that area. If
220                  * top window has an alpha component, it is blended over the
221                  * bottom window.
222                  */
223                 for (i = 0; i < 2; i++) {
224                         if (state->blending[i].alpha &&
225                             state->blending[i].top)
226                                 background[i] |= BLEND_CONTROL_DEPENDENT;
227                 }
228
229                 switch (state->base.normalized_zpos) {
230                 case 0:
231                         if (state->blending[0].alpha &&
232                             state->blending[1].alpha)
233                                 background[2] |= BLEND_CONTROL_DEPENDENT;
234                         break;
235
236                 case 1:
237                         /*
238                          * When both middle and topmost windows have an alpha,
239                          * these windows a mixed together and then the result
240                          * is blended over the bottom window.
241                          */
242                         if (state->blending[0].alpha &&
243                             state->blending[0].top)
244                                 background[2] |= BLEND_CONTROL_ALPHA;
245
246                         if (state->blending[1].alpha &&
247                             state->blending[1].top)
248                                 background[2] |= BLEND_CONTROL_ALPHA;
249                         break;
250                 }
251         }
252
253         switch (state->base.normalized_zpos) {
254         case 0:
255                 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
256                 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
257                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
258                 break;
259
260         case 1:
261                 /*
262                  * If window B / C is topmost, then X / Y registers are
263                  * matching the order of blending[...] state indices,
264                  * otherwise a swap is required.
265                  */
266                 if (!state->blending[0].top && state->blending[1].top) {
267                         blending[0] = foreground;
268                         blending[1] = background[1];
269                 } else {
270                         blending[0] = background[0];
271                         blending[1] = foreground;
272                 }
273
274                 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
275                 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
276                 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
277                 break;
278
279         case 2:
280                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
281                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
282                 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
283                 break;
284         }
285 }
286
287 static void tegra_plane_setup_blending(struct tegra_plane *plane,
288                                        const struct tegra_dc_window *window)
289 {
290         u32 value;
291
292         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
293                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
294                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
295         tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
296
297         value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
298                 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
299                 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
300         tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
301
302         value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
303         tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
304 }
305
306 static bool
307 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
308                                      const struct tegra_dc_window *window)
309 {
310         struct tegra_dc *dc = plane->dc;
311
312         if (window->src.w == window->dst.w)
313                 return false;
314
315         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
316                 return false;
317
318         return true;
319 }
320
321 static bool
322 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
323                                    const struct tegra_dc_window *window)
324 {
325         struct tegra_dc *dc = plane->dc;
326
327         if (window->src.h == window->dst.h)
328                 return false;
329
330         if (plane->index == 0 && dc->soc->has_win_a_without_filters)
331                 return false;
332
333         if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
334                 return false;
335
336         return true;
337 }
338
339 static void tegra_dc_setup_window(struct tegra_plane *plane,
340                                   const struct tegra_dc_window *window)
341 {
342         unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
343         struct tegra_dc *dc = plane->dc;
344         bool yuv, planar;
345         u32 value;
346
347         /*
348          * For YUV planar modes, the number of bytes per pixel takes into
349          * account only the luma component and therefore is 1.
350          */
351         yuv = tegra_plane_format_is_yuv(window->format, &planar);
352         if (!yuv)
353                 bpp = window->bits_per_pixel / 8;
354         else
355                 bpp = planar ? 1 : 2;
356
357         tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
358         tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
359
360         value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
361         tegra_plane_writel(plane, value, DC_WIN_POSITION);
362
363         value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
364         tegra_plane_writel(plane, value, DC_WIN_SIZE);
365
366         h_offset = window->src.x * bpp;
367         v_offset = window->src.y;
368         h_size = window->src.w * bpp;
369         v_size = window->src.h;
370
371         value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
372         tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
373
374         /*
375          * For DDA computations the number of bytes per pixel for YUV planar
376          * modes needs to take into account all Y, U and V components.
377          */
378         if (yuv && planar)
379                 bpp = 2;
380
381         h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
382         v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
383
384         value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
385         tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
386
387         h_dda = compute_initial_dda(window->src.x);
388         v_dda = compute_initial_dda(window->src.y);
389
390         tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
391         tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
392
393         tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
394         tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
395
396         tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
397
398         if (yuv && planar) {
399                 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
400                 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
401                 value = window->stride[1] << 16 | window->stride[0];
402                 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
403         } else {
404                 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
405         }
406
407         if (window->bottom_up)
408                 v_offset += window->src.h - 1;
409
410         tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
411         tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
412
413         if (dc->soc->supports_block_linear) {
414                 unsigned long height = window->tiling.value;
415
416                 switch (window->tiling.mode) {
417                 case TEGRA_BO_TILING_MODE_PITCH:
418                         value = DC_WINBUF_SURFACE_KIND_PITCH;
419                         break;
420
421                 case TEGRA_BO_TILING_MODE_TILED:
422                         value = DC_WINBUF_SURFACE_KIND_TILED;
423                         break;
424
425                 case TEGRA_BO_TILING_MODE_BLOCK:
426                         value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
427                                 DC_WINBUF_SURFACE_KIND_BLOCK;
428                         break;
429                 }
430
431                 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
432         } else {
433                 switch (window->tiling.mode) {
434                 case TEGRA_BO_TILING_MODE_PITCH:
435                         value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
436                                 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
437                         break;
438
439                 case TEGRA_BO_TILING_MODE_TILED:
440                         value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
441                                 DC_WIN_BUFFER_ADDR_MODE_TILE;
442                         break;
443
444                 case TEGRA_BO_TILING_MODE_BLOCK:
445                         /*
446                          * No need to handle this here because ->atomic_check
447                          * will already have filtered it out.
448                          */
449                         break;
450                 }
451
452                 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
453         }
454
455         value = WIN_ENABLE;
456
457         if (yuv) {
458                 /* setup default colorspace conversion coefficients */
459                 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
460                 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
461                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
462                 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
463                 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
464                 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
465                 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
466                 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
467
468                 value |= CSC_ENABLE;
469         } else if (window->bits_per_pixel < 24) {
470                 value |= COLOR_EXPAND;
471         }
472
473         if (window->bottom_up)
474                 value |= V_DIRECTION;
475
476         if (tegra_plane_use_horizontal_filtering(plane, window)) {
477                 /*
478                  * Enable horizontal 6-tap filter and set filtering
479                  * coefficients to the default values defined in TRM.
480                  */
481                 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
482                 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
483                 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
484                 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
485                 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
486                 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
487                 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
488                 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
489                 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
490                 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
491                 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
492                 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
493                 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
494                 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
495                 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
496                 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
497
498                 value |= H_FILTER;
499         }
500
501         if (tegra_plane_use_vertical_filtering(plane, window)) {
502                 unsigned int i, k;
503
504                 /*
505                  * Enable vertical 2-tap filter and set filtering
506                  * coefficients to the default values defined in TRM.
507                  */
508                 for (i = 0, k = 128; i < 16; i++, k -= 8)
509                         tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
510
511                 value |= V_FILTER;
512         }
513
514         tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
515
516         if (dc->soc->has_legacy_blending)
517                 tegra_plane_setup_blending_legacy(plane);
518         else
519                 tegra_plane_setup_blending(plane, window);
520 }
521
522 static const u32 tegra20_primary_formats[] = {
523         DRM_FORMAT_ARGB4444,
524         DRM_FORMAT_ARGB1555,
525         DRM_FORMAT_RGB565,
526         DRM_FORMAT_RGBA5551,
527         DRM_FORMAT_ABGR8888,
528         DRM_FORMAT_ARGB8888,
529         /* non-native formats */
530         DRM_FORMAT_XRGB1555,
531         DRM_FORMAT_RGBX5551,
532         DRM_FORMAT_XBGR8888,
533         DRM_FORMAT_XRGB8888,
534 };
535
536 static const u64 tegra20_modifiers[] = {
537         DRM_FORMAT_MOD_LINEAR,
538         DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
539         DRM_FORMAT_MOD_INVALID
540 };
541
542 static const u32 tegra114_primary_formats[] = {
543         DRM_FORMAT_ARGB4444,
544         DRM_FORMAT_ARGB1555,
545         DRM_FORMAT_RGB565,
546         DRM_FORMAT_RGBA5551,
547         DRM_FORMAT_ABGR8888,
548         DRM_FORMAT_ARGB8888,
549         /* new on Tegra114 */
550         DRM_FORMAT_ABGR4444,
551         DRM_FORMAT_ABGR1555,
552         DRM_FORMAT_BGRA5551,
553         DRM_FORMAT_XRGB1555,
554         DRM_FORMAT_RGBX5551,
555         DRM_FORMAT_XBGR1555,
556         DRM_FORMAT_BGRX5551,
557         DRM_FORMAT_BGR565,
558         DRM_FORMAT_BGRA8888,
559         DRM_FORMAT_RGBA8888,
560         DRM_FORMAT_XRGB8888,
561         DRM_FORMAT_XBGR8888,
562 };
563
564 static const u32 tegra124_primary_formats[] = {
565         DRM_FORMAT_ARGB4444,
566         DRM_FORMAT_ARGB1555,
567         DRM_FORMAT_RGB565,
568         DRM_FORMAT_RGBA5551,
569         DRM_FORMAT_ABGR8888,
570         DRM_FORMAT_ARGB8888,
571         /* new on Tegra114 */
572         DRM_FORMAT_ABGR4444,
573         DRM_FORMAT_ABGR1555,
574         DRM_FORMAT_BGRA5551,
575         DRM_FORMAT_XRGB1555,
576         DRM_FORMAT_RGBX5551,
577         DRM_FORMAT_XBGR1555,
578         DRM_FORMAT_BGRX5551,
579         DRM_FORMAT_BGR565,
580         DRM_FORMAT_BGRA8888,
581         DRM_FORMAT_RGBA8888,
582         DRM_FORMAT_XRGB8888,
583         DRM_FORMAT_XBGR8888,
584         /* new on Tegra124 */
585         DRM_FORMAT_RGBX8888,
586         DRM_FORMAT_BGRX8888,
587 };
588
589 static const u64 tegra124_modifiers[] = {
590         DRM_FORMAT_MOD_LINEAR,
591         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
592         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
593         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
594         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
595         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
596         DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
597         DRM_FORMAT_MOD_INVALID
598 };
599
600 static int tegra_plane_atomic_check(struct drm_plane *plane,
601                                     struct drm_plane_state *state)
602 {
603         struct tegra_plane_state *plane_state = to_tegra_plane_state(state);
604         unsigned int rotation = DRM_MODE_ROTATE_0 | DRM_MODE_REFLECT_Y;
605         struct tegra_bo_tiling *tiling = &plane_state->tiling;
606         struct tegra_plane *tegra = to_tegra_plane(plane);
607         struct tegra_dc *dc = to_tegra_dc(state->crtc);
608         int err;
609
610         /* no need for further checks if the plane is being disabled */
611         if (!state->crtc)
612                 return 0;
613
614         err = tegra_plane_format(state->fb->format->format,
615                                  &plane_state->format,
616                                  &plane_state->swap);
617         if (err < 0)
618                 return err;
619
620         /*
621          * Tegra20 and Tegra30 are special cases here because they support
622          * only variants of specific formats with an alpha component, but not
623          * the corresponding opaque formats. However, the opaque formats can
624          * be emulated by disabling alpha blending for the plane.
625          */
626         if (dc->soc->has_legacy_blending) {
627                 err = tegra_plane_setup_legacy_state(tegra, plane_state);
628                 if (err < 0)
629                         return err;
630         }
631
632         err = tegra_fb_get_tiling(state->fb, tiling);
633         if (err < 0)
634                 return err;
635
636         if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
637             !dc->soc->supports_block_linear) {
638                 DRM_ERROR("hardware doesn't support block linear mode\n");
639                 return -EINVAL;
640         }
641
642         rotation = drm_rotation_simplify(state->rotation, rotation);
643
644         if (rotation & DRM_MODE_REFLECT_Y)
645                 plane_state->bottom_up = true;
646         else
647                 plane_state->bottom_up = false;
648
649         /*
650          * Tegra doesn't support different strides for U and V planes so we
651          * error out if the user tries to display a framebuffer with such a
652          * configuration.
653          */
654         if (state->fb->format->num_planes > 2) {
655                 if (state->fb->pitches[2] != state->fb->pitches[1]) {
656                         DRM_ERROR("unsupported UV-plane configuration\n");
657                         return -EINVAL;
658                 }
659         }
660
661         err = tegra_plane_state_add(tegra, state);
662         if (err < 0)
663                 return err;
664
665         return 0;
666 }
667
668 static void tegra_plane_atomic_disable(struct drm_plane *plane,
669                                        struct drm_plane_state *old_state)
670 {
671         struct tegra_plane *p = to_tegra_plane(plane);
672         u32 value;
673
674         /* rien ne va plus */
675         if (!old_state || !old_state->crtc)
676                 return;
677
678         value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
679         value &= ~WIN_ENABLE;
680         tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
681 }
682
683 static void tegra_plane_atomic_update(struct drm_plane *plane,
684                                       struct drm_plane_state *old_state)
685 {
686         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
687         struct drm_framebuffer *fb = plane->state->fb;
688         struct tegra_plane *p = to_tegra_plane(plane);
689         struct tegra_dc_window window;
690         unsigned int i;
691
692         /* rien ne va plus */
693         if (!plane->state->crtc || !plane->state->fb)
694                 return;
695
696         if (!plane->state->visible)
697                 return tegra_plane_atomic_disable(plane, old_state);
698
699         memset(&window, 0, sizeof(window));
700         window.src.x = plane->state->src.x1 >> 16;
701         window.src.y = plane->state->src.y1 >> 16;
702         window.src.w = drm_rect_width(&plane->state->src) >> 16;
703         window.src.h = drm_rect_height(&plane->state->src) >> 16;
704         window.dst.x = plane->state->dst.x1;
705         window.dst.y = plane->state->dst.y1;
706         window.dst.w = drm_rect_width(&plane->state->dst);
707         window.dst.h = drm_rect_height(&plane->state->dst);
708         window.bits_per_pixel = fb->format->cpp[0] * 8;
709         window.bottom_up = tegra_fb_is_bottom_up(fb) || state->bottom_up;
710
711         /* copy from state */
712         window.zpos = plane->state->normalized_zpos;
713         window.tiling = state->tiling;
714         window.format = state->format;
715         window.swap = state->swap;
716
717         for (i = 0; i < fb->format->num_planes; i++) {
718                 window.base[i] = state->iova[i] + fb->offsets[i];
719
720                 /*
721                  * Tegra uses a shared stride for UV planes. Framebuffers are
722                  * already checked for this in the tegra_plane_atomic_check()
723                  * function, so it's safe to ignore the V-plane pitch here.
724                  */
725                 if (i < 2)
726                         window.stride[i] = fb->pitches[i];
727         }
728
729         tegra_dc_setup_window(p, &window);
730 }
731
732 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
733         .prepare_fb = tegra_plane_prepare_fb,
734         .cleanup_fb = tegra_plane_cleanup_fb,
735         .atomic_check = tegra_plane_atomic_check,
736         .atomic_disable = tegra_plane_atomic_disable,
737         .atomic_update = tegra_plane_atomic_update,
738 };
739
740 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
741 {
742         /*
743          * Ideally this would use drm_crtc_mask(), but that would require the
744          * CRTC to already be in the mode_config's list of CRTCs. However, it
745          * will only be added to that list in the drm_crtc_init_with_planes()
746          * (in tegra_dc_init()), which in turn requires registration of these
747          * planes. So we have ourselves a nice little chicken and egg problem
748          * here.
749          *
750          * We work around this by manually creating the mask from the number
751          * of CRTCs that have been registered, and should therefore always be
752          * the same as drm_crtc_index() after registration.
753          */
754         return 1 << drm->mode_config.num_crtc;
755 }
756
757 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
758                                                     struct tegra_dc *dc)
759 {
760         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
761         enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
762         struct tegra_plane *plane;
763         unsigned int num_formats;
764         const u64 *modifiers;
765         const u32 *formats;
766         int err;
767
768         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
769         if (!plane)
770                 return ERR_PTR(-ENOMEM);
771
772         /* Always use window A as primary window */
773         plane->offset = 0xa00;
774         plane->index = 0;
775         plane->dc = dc;
776
777         num_formats = dc->soc->num_primary_formats;
778         formats = dc->soc->primary_formats;
779         modifiers = dc->soc->modifiers;
780
781         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
782                                        &tegra_plane_funcs, formats,
783                                        num_formats, modifiers, type, NULL);
784         if (err < 0) {
785                 kfree(plane);
786                 return ERR_PTR(err);
787         }
788
789         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
790         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
791
792         err = drm_plane_create_rotation_property(&plane->base,
793                                                  DRM_MODE_ROTATE_0,
794                                                  DRM_MODE_ROTATE_0 |
795                                                  DRM_MODE_REFLECT_Y);
796         if (err < 0)
797                 dev_err(dc->dev, "failed to create rotation property: %d\n",
798                         err);
799
800         return &plane->base;
801 }
802
803 static const u32 tegra_cursor_plane_formats[] = {
804         DRM_FORMAT_RGBA8888,
805 };
806
807 static int tegra_cursor_atomic_check(struct drm_plane *plane,
808                                      struct drm_plane_state *state)
809 {
810         struct tegra_plane *tegra = to_tegra_plane(plane);
811         int err;
812
813         /* no need for further checks if the plane is being disabled */
814         if (!state->crtc)
815                 return 0;
816
817         /* scaling not supported for cursor */
818         if ((state->src_w >> 16 != state->crtc_w) ||
819             (state->src_h >> 16 != state->crtc_h))
820                 return -EINVAL;
821
822         /* only square cursors supported */
823         if (state->src_w != state->src_h)
824                 return -EINVAL;
825
826         if (state->crtc_w != 32 && state->crtc_w != 64 &&
827             state->crtc_w != 128 && state->crtc_w != 256)
828                 return -EINVAL;
829
830         err = tegra_plane_state_add(tegra, state);
831         if (err < 0)
832                 return err;
833
834         return 0;
835 }
836
837 static void tegra_cursor_atomic_update(struct drm_plane *plane,
838                                        struct drm_plane_state *old_state)
839 {
840         struct tegra_plane_state *state = to_tegra_plane_state(plane->state);
841         struct tegra_dc *dc = to_tegra_dc(plane->state->crtc);
842         u32 value = CURSOR_CLIP_DISPLAY;
843
844         /* rien ne va plus */
845         if (!plane->state->crtc || !plane->state->fb)
846                 return;
847
848         switch (plane->state->crtc_w) {
849         case 32:
850                 value |= CURSOR_SIZE_32x32;
851                 break;
852
853         case 64:
854                 value |= CURSOR_SIZE_64x64;
855                 break;
856
857         case 128:
858                 value |= CURSOR_SIZE_128x128;
859                 break;
860
861         case 256:
862                 value |= CURSOR_SIZE_256x256;
863                 break;
864
865         default:
866                 WARN(1, "cursor size %ux%u not supported\n",
867                      plane->state->crtc_w, plane->state->crtc_h);
868                 return;
869         }
870
871         value |= (state->iova[0] >> 10) & 0x3fffff;
872         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
873
874 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
875         value = (state->iova[0] >> 32) & 0x3;
876         tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
877 #endif
878
879         /* enable cursor and set blend mode */
880         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
881         value |= CURSOR_ENABLE;
882         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
883
884         value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
885         value &= ~CURSOR_DST_BLEND_MASK;
886         value &= ~CURSOR_SRC_BLEND_MASK;
887         value |= CURSOR_MODE_NORMAL;
888         value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
889         value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
890         value |= CURSOR_ALPHA;
891         tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
892
893         /* position the cursor */
894         value = (plane->state->crtc_y & 0x3fff) << 16 |
895                 (plane->state->crtc_x & 0x3fff);
896         tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
897 }
898
899 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
900                                         struct drm_plane_state *old_state)
901 {
902         struct tegra_dc *dc;
903         u32 value;
904
905         /* rien ne va plus */
906         if (!old_state || !old_state->crtc)
907                 return;
908
909         dc = to_tegra_dc(old_state->crtc);
910
911         value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
912         value &= ~CURSOR_ENABLE;
913         tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
914 }
915
916 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
917         .prepare_fb = tegra_plane_prepare_fb,
918         .cleanup_fb = tegra_plane_cleanup_fb,
919         .atomic_check = tegra_cursor_atomic_check,
920         .atomic_update = tegra_cursor_atomic_update,
921         .atomic_disable = tegra_cursor_atomic_disable,
922 };
923
924 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
925                                                       struct tegra_dc *dc)
926 {
927         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
928         struct tegra_plane *plane;
929         unsigned int num_formats;
930         const u32 *formats;
931         int err;
932
933         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
934         if (!plane)
935                 return ERR_PTR(-ENOMEM);
936
937         /*
938          * This index is kind of fake. The cursor isn't a regular plane, but
939          * its update and activation request bits in DC_CMD_STATE_CONTROL do
940          * use the same programming. Setting this fake index here allows the
941          * code in tegra_add_plane_state() to do the right thing without the
942          * need to special-casing the cursor plane.
943          */
944         plane->index = 6;
945         plane->dc = dc;
946
947         num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
948         formats = tegra_cursor_plane_formats;
949
950         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
951                                        &tegra_plane_funcs, formats,
952                                        num_formats, NULL,
953                                        DRM_PLANE_TYPE_CURSOR, NULL);
954         if (err < 0) {
955                 kfree(plane);
956                 return ERR_PTR(err);
957         }
958
959         drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
960
961         return &plane->base;
962 }
963
964 static const u32 tegra20_overlay_formats[] = {
965         DRM_FORMAT_ARGB4444,
966         DRM_FORMAT_ARGB1555,
967         DRM_FORMAT_RGB565,
968         DRM_FORMAT_RGBA5551,
969         DRM_FORMAT_ABGR8888,
970         DRM_FORMAT_ARGB8888,
971         /* non-native formats */
972         DRM_FORMAT_XRGB1555,
973         DRM_FORMAT_RGBX5551,
974         DRM_FORMAT_XBGR8888,
975         DRM_FORMAT_XRGB8888,
976         /* planar formats */
977         DRM_FORMAT_UYVY,
978         DRM_FORMAT_YUYV,
979         DRM_FORMAT_YUV420,
980         DRM_FORMAT_YUV422,
981 };
982
983 static const u32 tegra114_overlay_formats[] = {
984         DRM_FORMAT_ARGB4444,
985         DRM_FORMAT_ARGB1555,
986         DRM_FORMAT_RGB565,
987         DRM_FORMAT_RGBA5551,
988         DRM_FORMAT_ABGR8888,
989         DRM_FORMAT_ARGB8888,
990         /* new on Tegra114 */
991         DRM_FORMAT_ABGR4444,
992         DRM_FORMAT_ABGR1555,
993         DRM_FORMAT_BGRA5551,
994         DRM_FORMAT_XRGB1555,
995         DRM_FORMAT_RGBX5551,
996         DRM_FORMAT_XBGR1555,
997         DRM_FORMAT_BGRX5551,
998         DRM_FORMAT_BGR565,
999         DRM_FORMAT_BGRA8888,
1000         DRM_FORMAT_RGBA8888,
1001         DRM_FORMAT_XRGB8888,
1002         DRM_FORMAT_XBGR8888,
1003         /* planar formats */
1004         DRM_FORMAT_UYVY,
1005         DRM_FORMAT_YUYV,
1006         DRM_FORMAT_YUV420,
1007         DRM_FORMAT_YUV422,
1008 };
1009
1010 static const u32 tegra124_overlay_formats[] = {
1011         DRM_FORMAT_ARGB4444,
1012         DRM_FORMAT_ARGB1555,
1013         DRM_FORMAT_RGB565,
1014         DRM_FORMAT_RGBA5551,
1015         DRM_FORMAT_ABGR8888,
1016         DRM_FORMAT_ARGB8888,
1017         /* new on Tegra114 */
1018         DRM_FORMAT_ABGR4444,
1019         DRM_FORMAT_ABGR1555,
1020         DRM_FORMAT_BGRA5551,
1021         DRM_FORMAT_XRGB1555,
1022         DRM_FORMAT_RGBX5551,
1023         DRM_FORMAT_XBGR1555,
1024         DRM_FORMAT_BGRX5551,
1025         DRM_FORMAT_BGR565,
1026         DRM_FORMAT_BGRA8888,
1027         DRM_FORMAT_RGBA8888,
1028         DRM_FORMAT_XRGB8888,
1029         DRM_FORMAT_XBGR8888,
1030         /* new on Tegra124 */
1031         DRM_FORMAT_RGBX8888,
1032         DRM_FORMAT_BGRX8888,
1033         /* planar formats */
1034         DRM_FORMAT_UYVY,
1035         DRM_FORMAT_YUYV,
1036         DRM_FORMAT_YUV420,
1037         DRM_FORMAT_YUV422,
1038 };
1039
1040 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1041                                                        struct tegra_dc *dc,
1042                                                        unsigned int index,
1043                                                        bool cursor)
1044 {
1045         unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1046         struct tegra_plane *plane;
1047         unsigned int num_formats;
1048         enum drm_plane_type type;
1049         const u32 *formats;
1050         int err;
1051
1052         plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1053         if (!plane)
1054                 return ERR_PTR(-ENOMEM);
1055
1056         plane->offset = 0xa00 + 0x200 * index;
1057         plane->index = index;
1058         plane->dc = dc;
1059
1060         num_formats = dc->soc->num_overlay_formats;
1061         formats = dc->soc->overlay_formats;
1062
1063         if (!cursor)
1064                 type = DRM_PLANE_TYPE_OVERLAY;
1065         else
1066                 type = DRM_PLANE_TYPE_CURSOR;
1067
1068         err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1069                                        &tegra_plane_funcs, formats,
1070                                        num_formats, NULL, type, NULL);
1071         if (err < 0) {
1072                 kfree(plane);
1073                 return ERR_PTR(err);
1074         }
1075
1076         drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1077         drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1078
1079         err = drm_plane_create_rotation_property(&plane->base,
1080                                                  DRM_MODE_ROTATE_0,
1081                                                  DRM_MODE_ROTATE_0 |
1082                                                  DRM_MODE_REFLECT_Y);
1083         if (err < 0)
1084                 dev_err(dc->dev, "failed to create rotation property: %d\n",
1085                         err);
1086
1087         return &plane->base;
1088 }
1089
1090 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1091                                                     struct tegra_dc *dc)
1092 {
1093         struct drm_plane *plane, *primary = NULL;
1094         unsigned int i, j;
1095
1096         for (i = 0; i < dc->soc->num_wgrps; i++) {
1097                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1098
1099                 if (wgrp->dc == dc->pipe) {
1100                         for (j = 0; j < wgrp->num_windows; j++) {
1101                                 unsigned int index = wgrp->windows[j];
1102
1103                                 plane = tegra_shared_plane_create(drm, dc,
1104                                                                   wgrp->index,
1105                                                                   index);
1106                                 if (IS_ERR(plane))
1107                                         return plane;
1108
1109                                 /*
1110                                  * Choose the first shared plane owned by this
1111                                  * head as the primary plane.
1112                                  */
1113                                 if (!primary) {
1114                                         plane->type = DRM_PLANE_TYPE_PRIMARY;
1115                                         primary = plane;
1116                                 }
1117                         }
1118                 }
1119         }
1120
1121         return primary;
1122 }
1123
1124 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1125                                              struct tegra_dc *dc)
1126 {
1127         struct drm_plane *planes[2], *primary;
1128         unsigned int planes_num;
1129         unsigned int i;
1130         int err;
1131
1132         primary = tegra_primary_plane_create(drm, dc);
1133         if (IS_ERR(primary))
1134                 return primary;
1135
1136         if (dc->soc->supports_cursor)
1137                 planes_num = 2;
1138         else
1139                 planes_num = 1;
1140
1141         for (i = 0; i < planes_num; i++) {
1142                 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1143                                                           false);
1144                 if (IS_ERR(planes[i])) {
1145                         err = PTR_ERR(planes[i]);
1146
1147                         while (i--)
1148                                 tegra_plane_funcs.destroy(planes[i]);
1149
1150                         tegra_plane_funcs.destroy(primary);
1151                         return ERR_PTR(err);
1152                 }
1153         }
1154
1155         return primary;
1156 }
1157
1158 static void tegra_dc_destroy(struct drm_crtc *crtc)
1159 {
1160         drm_crtc_cleanup(crtc);
1161 }
1162
1163 static void tegra_crtc_reset(struct drm_crtc *crtc)
1164 {
1165         struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1166
1167         if (crtc->state)
1168                 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1169
1170         __drm_atomic_helper_crtc_reset(crtc, &state->base);
1171         drm_crtc_vblank_reset(crtc);
1172 }
1173
1174 static struct drm_crtc_state *
1175 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1176 {
1177         struct tegra_dc_state *state = to_dc_state(crtc->state);
1178         struct tegra_dc_state *copy;
1179
1180         copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1181         if (!copy)
1182                 return NULL;
1183
1184         __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1185         copy->clk = state->clk;
1186         copy->pclk = state->pclk;
1187         copy->div = state->div;
1188         copy->planes = state->planes;
1189
1190         return &copy->base;
1191 }
1192
1193 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1194                                             struct drm_crtc_state *state)
1195 {
1196         __drm_atomic_helper_crtc_destroy_state(state);
1197         kfree(state);
1198 }
1199
1200 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1201
1202 static const struct debugfs_reg32 tegra_dc_regs[] = {
1203         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1204         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1205         DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1206         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1207         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1208         DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1209         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1210         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1211         DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1212         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1213         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1214         DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1215         DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1216         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1217         DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1218         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1219         DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1220         DEBUGFS_REG32(DC_CMD_INT_STATUS),
1221         DEBUGFS_REG32(DC_CMD_INT_MASK),
1222         DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1223         DEBUGFS_REG32(DC_CMD_INT_TYPE),
1224         DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1225         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1226         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1227         DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1228         DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1229         DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1230         DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1231         DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1232         DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1233         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1234         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1235         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1236         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1237         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1238         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1239         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1240         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1241         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1242         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1243         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1244         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1245         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1246         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1247         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1248         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1249         DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1250         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1251         DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1252         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1253         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1254         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1255         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1256         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1257         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1258         DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1259         DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1260         DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1261         DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1262         DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1263         DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1264         DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1265         DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1266         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1267         DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1268         DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1269         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1270         DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1271         DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1272         DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1273         DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1274         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1275         DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1276         DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1277         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1278         DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1279         DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1280         DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1281         DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1282         DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1283         DEBUGFS_REG32(DC_DISP_ACTIVE),
1284         DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1285         DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1286         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1287         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1288         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1289         DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1290         DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1291         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1292         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1293         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1294         DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1295         DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1296         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1297         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1298         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1299         DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1300         DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1301         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1302         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1303         DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1304         DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1305         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1306         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1307         DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1308         DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1309         DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1310         DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1311         DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1312         DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1313         DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1314         DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1315         DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1316         DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1317         DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1318         DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1319         DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1320         DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1321         DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1322         DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1323         DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1324         DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1325         DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1326         DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1327         DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1328         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1329         DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1330         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1331         DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1332         DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1333         DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1334         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1335         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1336         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1337         DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1338         DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1339         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1340         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1341         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1342         DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1343         DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1344         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1345         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1346         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1347         DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1348         DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1349         DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1350         DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1351         DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1352         DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1353         DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1354         DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1355         DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1356         DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1357         DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1358         DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1359         DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1360         DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1361         DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1362         DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1363         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1364         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1365         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1366         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1367         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1368         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1369         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1370         DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1371         DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1372         DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1373         DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1374         DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1375         DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1376         DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1377         DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1378         DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1379         DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1380         DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1381         DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1382         DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1383         DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1384         DEBUGFS_REG32(DC_WIN_POSITION),
1385         DEBUGFS_REG32(DC_WIN_SIZE),
1386         DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1387         DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1388         DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1389         DEBUGFS_REG32(DC_WIN_DDA_INC),
1390         DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1391         DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1392         DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1393         DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1394         DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1395         DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1396         DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1397         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1398         DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1399         DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1400         DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1401         DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1402         DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1403         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1404         DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1405         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1406         DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1407         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1408         DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1409         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1410         DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1411         DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1412         DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1413         DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1414         DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1415 };
1416
1417 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1418 {
1419         struct drm_info_node *node = s->private;
1420         struct tegra_dc *dc = node->info_ent->data;
1421         unsigned int i;
1422         int err = 0;
1423
1424         drm_modeset_lock(&dc->base.mutex, NULL);
1425
1426         if (!dc->base.state->active) {
1427                 err = -EBUSY;
1428                 goto unlock;
1429         }
1430
1431         for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1432                 unsigned int offset = tegra_dc_regs[i].offset;
1433
1434                 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1435                            offset, tegra_dc_readl(dc, offset));
1436         }
1437
1438 unlock:
1439         drm_modeset_unlock(&dc->base.mutex);
1440         return err;
1441 }
1442
1443 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1444 {
1445         struct drm_info_node *node = s->private;
1446         struct tegra_dc *dc = node->info_ent->data;
1447         int err = 0;
1448         u32 value;
1449
1450         drm_modeset_lock(&dc->base.mutex, NULL);
1451
1452         if (!dc->base.state->active) {
1453                 err = -EBUSY;
1454                 goto unlock;
1455         }
1456
1457         value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1458         tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1459         tegra_dc_commit(dc);
1460
1461         drm_crtc_wait_one_vblank(&dc->base);
1462         drm_crtc_wait_one_vblank(&dc->base);
1463
1464         value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1465         seq_printf(s, "%08x\n", value);
1466
1467         tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1468
1469 unlock:
1470         drm_modeset_unlock(&dc->base.mutex);
1471         return err;
1472 }
1473
1474 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1475 {
1476         struct drm_info_node *node = s->private;
1477         struct tegra_dc *dc = node->info_ent->data;
1478
1479         seq_printf(s, "frames: %lu\n", dc->stats.frames);
1480         seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1481         seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1482         seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1483
1484         return 0;
1485 }
1486
1487 static struct drm_info_list debugfs_files[] = {
1488         { "regs", tegra_dc_show_regs, 0, NULL },
1489         { "crc", tegra_dc_show_crc, 0, NULL },
1490         { "stats", tegra_dc_show_stats, 0, NULL },
1491 };
1492
1493 static int tegra_dc_late_register(struct drm_crtc *crtc)
1494 {
1495         unsigned int i, count = ARRAY_SIZE(debugfs_files);
1496         struct drm_minor *minor = crtc->dev->primary;
1497         struct dentry *root;
1498         struct tegra_dc *dc = to_tegra_dc(crtc);
1499
1500 #ifdef CONFIG_DEBUG_FS
1501         root = crtc->debugfs_entry;
1502 #else
1503         root = NULL;
1504 #endif
1505
1506         dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1507                                     GFP_KERNEL);
1508         if (!dc->debugfs_files)
1509                 return -ENOMEM;
1510
1511         for (i = 0; i < count; i++)
1512                 dc->debugfs_files[i].data = dc;
1513
1514         drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1515
1516         return 0;
1517 }
1518
1519 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1520 {
1521         unsigned int count = ARRAY_SIZE(debugfs_files);
1522         struct drm_minor *minor = crtc->dev->primary;
1523         struct tegra_dc *dc = to_tegra_dc(crtc);
1524
1525         drm_debugfs_remove_files(dc->debugfs_files, count, minor);
1526         kfree(dc->debugfs_files);
1527         dc->debugfs_files = NULL;
1528 }
1529
1530 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1531 {
1532         struct tegra_dc *dc = to_tegra_dc(crtc);
1533
1534         /* XXX vblank syncpoints don't work with nvdisplay yet */
1535         if (dc->syncpt && !dc->soc->has_nvdisplay)
1536                 return host1x_syncpt_read(dc->syncpt);
1537
1538         /* fallback to software emulated VBLANK counter */
1539         return (u32)drm_crtc_vblank_count(&dc->base);
1540 }
1541
1542 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1543 {
1544         struct tegra_dc *dc = to_tegra_dc(crtc);
1545         u32 value;
1546
1547         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1548         value |= VBLANK_INT;
1549         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1550
1551         return 0;
1552 }
1553
1554 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1555 {
1556         struct tegra_dc *dc = to_tegra_dc(crtc);
1557         u32 value;
1558
1559         value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1560         value &= ~VBLANK_INT;
1561         tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1562 }
1563
1564 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1565         .page_flip = drm_atomic_helper_page_flip,
1566         .set_config = drm_atomic_helper_set_config,
1567         .destroy = tegra_dc_destroy,
1568         .reset = tegra_crtc_reset,
1569         .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1570         .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1571         .late_register = tegra_dc_late_register,
1572         .early_unregister = tegra_dc_early_unregister,
1573         .get_vblank_counter = tegra_dc_get_vblank_counter,
1574         .enable_vblank = tegra_dc_enable_vblank,
1575         .disable_vblank = tegra_dc_disable_vblank,
1576 };
1577
1578 static int tegra_dc_set_timings(struct tegra_dc *dc,
1579                                 struct drm_display_mode *mode)
1580 {
1581         unsigned int h_ref_to_sync = 1;
1582         unsigned int v_ref_to_sync = 1;
1583         unsigned long value;
1584
1585         if (!dc->soc->has_nvdisplay) {
1586                 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1587
1588                 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1589                 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1590         }
1591
1592         value = ((mode->vsync_end - mode->vsync_start) << 16) |
1593                 ((mode->hsync_end - mode->hsync_start) <<  0);
1594         tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1595
1596         value = ((mode->vtotal - mode->vsync_end) << 16) |
1597                 ((mode->htotal - mode->hsync_end) <<  0);
1598         tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1599
1600         value = ((mode->vsync_start - mode->vdisplay) << 16) |
1601                 ((mode->hsync_start - mode->hdisplay) <<  0);
1602         tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1603
1604         value = (mode->vdisplay << 16) | mode->hdisplay;
1605         tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1606
1607         return 0;
1608 }
1609
1610 /**
1611  * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1612  *     state
1613  * @dc: display controller
1614  * @crtc_state: CRTC atomic state
1615  * @clk: parent clock for display controller
1616  * @pclk: pixel clock
1617  * @div: shift clock divider
1618  *
1619  * Returns:
1620  * 0 on success or a negative error-code on failure.
1621  */
1622 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1623                                struct drm_crtc_state *crtc_state,
1624                                struct clk *clk, unsigned long pclk,
1625                                unsigned int div)
1626 {
1627         struct tegra_dc_state *state = to_dc_state(crtc_state);
1628
1629         if (!clk_has_parent(dc->clk, clk))
1630                 return -EINVAL;
1631
1632         state->clk = clk;
1633         state->pclk = pclk;
1634         state->div = div;
1635
1636         return 0;
1637 }
1638
1639 static void tegra_dc_commit_state(struct tegra_dc *dc,
1640                                   struct tegra_dc_state *state)
1641 {
1642         u32 value;
1643         int err;
1644
1645         err = clk_set_parent(dc->clk, state->clk);
1646         if (err < 0)
1647                 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1648
1649         /*
1650          * Outputs may not want to change the parent clock rate. This is only
1651          * relevant to Tegra20 where only a single display PLL is available.
1652          * Since that PLL would typically be used for HDMI, an internal LVDS
1653          * panel would need to be driven by some other clock such as PLL_P
1654          * which is shared with other peripherals. Changing the clock rate
1655          * should therefore be avoided.
1656          */
1657         if (state->pclk > 0) {
1658                 err = clk_set_rate(state->clk, state->pclk);
1659                 if (err < 0)
1660                         dev_err(dc->dev,
1661                                 "failed to set clock rate to %lu Hz\n",
1662                                 state->pclk);
1663         }
1664
1665         DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1666                       state->div);
1667         DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1668
1669         if (!dc->soc->has_nvdisplay) {
1670                 value = SHIFT_CLK_DIVIDER(state->div) | PIXEL_CLK_DIVIDER_PCD1;
1671                 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
1672         }
1673
1674         err = clk_set_rate(dc->clk, state->pclk);
1675         if (err < 0)
1676                 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1677                         dc->clk, state->pclk, err);
1678 }
1679
1680 static void tegra_dc_stop(struct tegra_dc *dc)
1681 {
1682         u32 value;
1683
1684         /* stop the display controller */
1685         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1686         value &= ~DISP_CTRL_MODE_MASK;
1687         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1688
1689         tegra_dc_commit(dc);
1690 }
1691
1692 static bool tegra_dc_idle(struct tegra_dc *dc)
1693 {
1694         u32 value;
1695
1696         value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1697
1698         return (value & DISP_CTRL_MODE_MASK) == 0;
1699 }
1700
1701 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1702 {
1703         timeout = jiffies + msecs_to_jiffies(timeout);
1704
1705         while (time_before(jiffies, timeout)) {
1706                 if (tegra_dc_idle(dc))
1707                         return 0;
1708
1709                 usleep_range(1000, 2000);
1710         }
1711
1712         dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1713         return -ETIMEDOUT;
1714 }
1715
1716 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
1717                                       struct drm_crtc_state *old_state)
1718 {
1719         struct tegra_dc *dc = to_tegra_dc(crtc);
1720         u32 value;
1721         int err;
1722
1723         if (!tegra_dc_idle(dc)) {
1724                 tegra_dc_stop(dc);
1725
1726                 /*
1727                  * Ignore the return value, there isn't anything useful to do
1728                  * in case this fails.
1729                  */
1730                 tegra_dc_wait_idle(dc, 100);
1731         }
1732
1733         /*
1734          * This should really be part of the RGB encoder driver, but clearing
1735          * these bits has the side-effect of stopping the display controller.
1736          * When that happens no VBLANK interrupts will be raised. At the same
1737          * time the encoder is disabled before the display controller, so the
1738          * above code is always going to timeout waiting for the controller
1739          * to go idle.
1740          *
1741          * Given the close coupling between the RGB encoder and the display
1742          * controller doing it here is still kind of okay. None of the other
1743          * encoder drivers require these bits to be cleared.
1744          *
1745          * XXX: Perhaps given that the display controller is switched off at
1746          * this point anyway maybe clearing these bits isn't even useful for
1747          * the RGB encoder?
1748          */
1749         if (dc->rgb) {
1750                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1751                 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1752                            PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
1753                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1754         }
1755
1756         tegra_dc_stats_reset(&dc->stats);
1757         drm_crtc_vblank_off(crtc);
1758
1759         spin_lock_irq(&crtc->dev->event_lock);
1760
1761         if (crtc->state->event) {
1762                 drm_crtc_send_vblank_event(crtc, crtc->state->event);
1763                 crtc->state->event = NULL;
1764         }
1765
1766         spin_unlock_irq(&crtc->dev->event_lock);
1767
1768         err = host1x_client_suspend(&dc->client);
1769         if (err < 0)
1770                 dev_err(dc->dev, "failed to suspend: %d\n", err);
1771 }
1772
1773 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
1774                                      struct drm_crtc_state *old_state)
1775 {
1776         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
1777         struct tegra_dc_state *state = to_dc_state(crtc->state);
1778         struct tegra_dc *dc = to_tegra_dc(crtc);
1779         u32 value;
1780         int err;
1781
1782         err = host1x_client_resume(&dc->client);
1783         if (err < 0) {
1784                 dev_err(dc->dev, "failed to resume: %d\n", err);
1785                 return;
1786         }
1787
1788         /* initialize display controller */
1789         if (dc->syncpt) {
1790                 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
1791
1792                 if (dc->soc->has_nvdisplay)
1793                         enable = 1 << 31;
1794                 else
1795                         enable = 1 << 8;
1796
1797                 value = SYNCPT_CNTRL_NO_STALL;
1798                 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
1799
1800                 value = enable | syncpt;
1801                 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
1802         }
1803
1804         if (dc->soc->has_nvdisplay) {
1805                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1806                         DSC_OBUF_UF_INT;
1807                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1808
1809                 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
1810                         DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
1811                         HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
1812                         REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
1813                         VBLANK_INT | FRAME_END_INT;
1814                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1815
1816                 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
1817                         FRAME_END_INT;
1818                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1819
1820                 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
1821                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1822
1823                 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
1824         } else {
1825                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1826                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1827                 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
1828
1829                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1830                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1831                 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
1832
1833                 /* initialize timer */
1834                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
1835                         WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
1836                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
1837
1838                 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
1839                         WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
1840                 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
1841
1842                 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1843                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1844                 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
1845
1846                 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
1847                         WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
1848                 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1849         }
1850
1851         if (dc->soc->supports_background_color)
1852                 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
1853         else
1854                 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
1855
1856         /* apply PLL and pixel clock changes */
1857         tegra_dc_commit_state(dc, state);
1858
1859         /* program display mode */
1860         tegra_dc_set_timings(dc, mode);
1861
1862         /* interlacing isn't supported yet, so disable it */
1863         if (dc->soc->supports_interlacing) {
1864                 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
1865                 value &= ~INTERLACE_ENABLE;
1866                 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
1867         }
1868
1869         value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1870         value &= ~DISP_CTRL_MODE_MASK;
1871         value |= DISP_CTRL_MODE_C_DISPLAY;
1872         tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1873
1874         if (!dc->soc->has_nvdisplay) {
1875                 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
1876                 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
1877                          PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
1878                 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
1879         }
1880
1881         /* enable underflow reporting and display red for missing pixels */
1882         if (dc->soc->has_nvdisplay) {
1883                 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
1884                 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
1885         }
1886
1887         tegra_dc_commit(dc);
1888
1889         drm_crtc_vblank_on(crtc);
1890 }
1891
1892 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
1893                                     struct drm_crtc_state *old_crtc_state)
1894 {
1895         unsigned long flags;
1896
1897         if (crtc->state->event) {
1898                 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1899
1900                 if (drm_crtc_vblank_get(crtc) != 0)
1901                         drm_crtc_send_vblank_event(crtc, crtc->state->event);
1902                 else
1903                         drm_crtc_arm_vblank_event(crtc, crtc->state->event);
1904
1905                 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1906
1907                 crtc->state->event = NULL;
1908         }
1909 }
1910
1911 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
1912                                     struct drm_crtc_state *old_crtc_state)
1913 {
1914         struct tegra_dc_state *state = to_dc_state(crtc->state);
1915         struct tegra_dc *dc = to_tegra_dc(crtc);
1916         u32 value;
1917
1918         value = state->planes << 8 | GENERAL_UPDATE;
1919         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1920         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1921
1922         value = state->planes | GENERAL_ACT_REQ;
1923         tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1924         value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1925 }
1926
1927 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
1928         .atomic_begin = tegra_crtc_atomic_begin,
1929         .atomic_flush = tegra_crtc_atomic_flush,
1930         .atomic_enable = tegra_crtc_atomic_enable,
1931         .atomic_disable = tegra_crtc_atomic_disable,
1932 };
1933
1934 static irqreturn_t tegra_dc_irq(int irq, void *data)
1935 {
1936         struct tegra_dc *dc = data;
1937         unsigned long status;
1938
1939         status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
1940         tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
1941
1942         if (status & FRAME_END_INT) {
1943                 /*
1944                 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
1945                 */
1946                 dc->stats.frames++;
1947         }
1948
1949         if (status & VBLANK_INT) {
1950                 /*
1951                 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
1952                 */
1953                 drm_crtc_handle_vblank(&dc->base);
1954                 dc->stats.vblank++;
1955         }
1956
1957         if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
1958                 /*
1959                 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
1960                 */
1961                 dc->stats.underflow++;
1962         }
1963
1964         if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
1965                 /*
1966                 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
1967                 */
1968                 dc->stats.overflow++;
1969         }
1970
1971         if (status & HEAD_UF_INT) {
1972                 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
1973                 dc->stats.underflow++;
1974         }
1975
1976         return IRQ_HANDLED;
1977 }
1978
1979 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
1980 {
1981         unsigned int i;
1982
1983         if (!dc->soc->wgrps)
1984                 return true;
1985
1986         for (i = 0; i < dc->soc->num_wgrps; i++) {
1987                 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1988
1989                 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
1990                         return true;
1991         }
1992
1993         return false;
1994 }
1995
1996 static int tegra_dc_init(struct host1x_client *client)
1997 {
1998         struct drm_device *drm = dev_get_drvdata(client->host);
1999         unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2000         struct tegra_dc *dc = host1x_client_to_dc(client);
2001         struct tegra_drm *tegra = drm->dev_private;
2002         struct drm_plane *primary = NULL;
2003         struct drm_plane *cursor = NULL;
2004         int err;
2005
2006         /*
2007          * XXX do not register DCs with no window groups because we cannot
2008          * assign a primary plane to them, which in turn will cause KMS to
2009          * crash.
2010          */
2011         if (!tegra_dc_has_window_groups(dc))
2012                 return 0;
2013
2014         /*
2015          * Set the display hub as the host1x client parent for the display
2016          * controller. This is needed for the runtime reference counting that
2017          * ensures the display hub is always powered when any of the display
2018          * controllers are.
2019          */
2020         if (dc->soc->has_nvdisplay)
2021                 client->parent = &tegra->hub->client;
2022
2023         dc->syncpt = host1x_syncpt_request(client, flags);
2024         if (!dc->syncpt)
2025                 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2026
2027         err = host1x_client_iommu_attach(client);
2028         if (err < 0 && err != -ENODEV) {
2029                 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2030                 return err;
2031         }
2032
2033         if (dc->soc->wgrps)
2034                 primary = tegra_dc_add_shared_planes(drm, dc);
2035         else
2036                 primary = tegra_dc_add_planes(drm, dc);
2037
2038         if (IS_ERR(primary)) {
2039                 err = PTR_ERR(primary);
2040                 goto cleanup;
2041         }
2042
2043         if (dc->soc->supports_cursor) {
2044                 cursor = tegra_dc_cursor_plane_create(drm, dc);
2045                 if (IS_ERR(cursor)) {
2046                         err = PTR_ERR(cursor);
2047                         goto cleanup;
2048                 }
2049         } else {
2050                 /* dedicate one overlay to mouse cursor */
2051                 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2052                 if (IS_ERR(cursor)) {
2053                         err = PTR_ERR(cursor);
2054                         goto cleanup;
2055                 }
2056         }
2057
2058         err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2059                                         &tegra_crtc_funcs, NULL);
2060         if (err < 0)
2061                 goto cleanup;
2062
2063         drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2064
2065         /*
2066          * Keep track of the minimum pitch alignment across all display
2067          * controllers.
2068          */
2069         if (dc->soc->pitch_align > tegra->pitch_align)
2070                 tegra->pitch_align = dc->soc->pitch_align;
2071
2072         err = tegra_dc_rgb_init(drm, dc);
2073         if (err < 0 && err != -ENODEV) {
2074                 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2075                 goto cleanup;
2076         }
2077
2078         err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2079                                dev_name(dc->dev), dc);
2080         if (err < 0) {
2081                 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2082                         err);
2083                 goto cleanup;
2084         }
2085
2086         /*
2087          * Inherit the DMA parameters (such as maximum segment size) from the
2088          * parent host1x device.
2089          */
2090         client->dev->dma_parms = client->host->dma_parms;
2091
2092         return 0;
2093
2094 cleanup:
2095         if (!IS_ERR_OR_NULL(cursor))
2096                 drm_plane_cleanup(cursor);
2097
2098         if (!IS_ERR(primary))
2099                 drm_plane_cleanup(primary);
2100
2101         host1x_client_iommu_detach(client);
2102         host1x_syncpt_free(dc->syncpt);
2103
2104         return err;
2105 }
2106
2107 static int tegra_dc_exit(struct host1x_client *client)
2108 {
2109         struct tegra_dc *dc = host1x_client_to_dc(client);
2110         int err;
2111
2112         if (!tegra_dc_has_window_groups(dc))
2113                 return 0;
2114
2115         /* avoid a dangling pointer just in case this disappears */
2116         client->dev->dma_parms = NULL;
2117
2118         devm_free_irq(dc->dev, dc->irq, dc);
2119
2120         err = tegra_dc_rgb_exit(dc);
2121         if (err) {
2122                 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2123                 return err;
2124         }
2125
2126         host1x_client_iommu_detach(client);
2127         host1x_syncpt_free(dc->syncpt);
2128
2129         return 0;
2130 }
2131
2132 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2133 {
2134         struct tegra_dc *dc = host1x_client_to_dc(client);
2135         struct device *dev = client->dev;
2136         int err;
2137
2138         err = reset_control_assert(dc->rst);
2139         if (err < 0) {
2140                 dev_err(dev, "failed to assert reset: %d\n", err);
2141                 return err;
2142         }
2143
2144         if (dc->soc->has_powergate)
2145                 tegra_powergate_power_off(dc->powergate);
2146
2147         clk_disable_unprepare(dc->clk);
2148         pm_runtime_put_sync(dev);
2149
2150         return 0;
2151 }
2152
2153 static int tegra_dc_runtime_resume(struct host1x_client *client)
2154 {
2155         struct tegra_dc *dc = host1x_client_to_dc(client);
2156         struct device *dev = client->dev;
2157         int err;
2158
2159         err = pm_runtime_get_sync(dev);
2160         if (err < 0) {
2161                 dev_err(dev, "failed to get runtime PM: %d\n", err);
2162                 return err;
2163         }
2164
2165         if (dc->soc->has_powergate) {
2166                 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2167                                                         dc->rst);
2168                 if (err < 0) {
2169                         dev_err(dev, "failed to power partition: %d\n", err);
2170                         goto put_rpm;
2171                 }
2172         } else {
2173                 err = clk_prepare_enable(dc->clk);
2174                 if (err < 0) {
2175                         dev_err(dev, "failed to enable clock: %d\n", err);
2176                         goto put_rpm;
2177                 }
2178
2179                 err = reset_control_deassert(dc->rst);
2180                 if (err < 0) {
2181                         dev_err(dev, "failed to deassert reset: %d\n", err);
2182                         goto disable_clk;
2183                 }
2184         }
2185
2186         return 0;
2187
2188 disable_clk:
2189         clk_disable_unprepare(dc->clk);
2190 put_rpm:
2191         pm_runtime_put_sync(dev);
2192         return err;
2193 }
2194
2195 static const struct host1x_client_ops dc_client_ops = {
2196         .init = tegra_dc_init,
2197         .exit = tegra_dc_exit,
2198         .suspend = tegra_dc_runtime_suspend,
2199         .resume = tegra_dc_runtime_resume,
2200 };
2201
2202 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2203         .supports_background_color = false,
2204         .supports_interlacing = false,
2205         .supports_cursor = false,
2206         .supports_block_linear = false,
2207         .has_legacy_blending = true,
2208         .pitch_align = 8,
2209         .has_powergate = false,
2210         .coupled_pm = true,
2211         .has_nvdisplay = false,
2212         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2213         .primary_formats = tegra20_primary_formats,
2214         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2215         .overlay_formats = tegra20_overlay_formats,
2216         .modifiers = tegra20_modifiers,
2217         .has_win_a_without_filters = true,
2218         .has_win_c_without_vert_filter = true,
2219 };
2220
2221 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2222         .supports_background_color = false,
2223         .supports_interlacing = false,
2224         .supports_cursor = false,
2225         .supports_block_linear = false,
2226         .has_legacy_blending = true,
2227         .pitch_align = 8,
2228         .has_powergate = false,
2229         .coupled_pm = false,
2230         .has_nvdisplay = false,
2231         .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2232         .primary_formats = tegra20_primary_formats,
2233         .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2234         .overlay_formats = tegra20_overlay_formats,
2235         .modifiers = tegra20_modifiers,
2236         .has_win_a_without_filters = false,
2237         .has_win_c_without_vert_filter = false,
2238 };
2239
2240 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2241         .supports_background_color = false,
2242         .supports_interlacing = false,
2243         .supports_cursor = false,
2244         .supports_block_linear = false,
2245         .has_legacy_blending = true,
2246         .pitch_align = 64,
2247         .has_powergate = true,
2248         .coupled_pm = false,
2249         .has_nvdisplay = false,
2250         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2251         .primary_formats = tegra114_primary_formats,
2252         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2253         .overlay_formats = tegra114_overlay_formats,
2254         .modifiers = tegra20_modifiers,
2255         .has_win_a_without_filters = false,
2256         .has_win_c_without_vert_filter = false,
2257 };
2258
2259 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2260         .supports_background_color = true,
2261         .supports_interlacing = true,
2262         .supports_cursor = true,
2263         .supports_block_linear = true,
2264         .has_legacy_blending = false,
2265         .pitch_align = 64,
2266         .has_powergate = true,
2267         .coupled_pm = false,
2268         .has_nvdisplay = false,
2269         .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2270         .primary_formats = tegra124_primary_formats,
2271         .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2272         .overlay_formats = tegra124_overlay_formats,
2273         .modifiers = tegra124_modifiers,
2274         .has_win_a_without_filters = false,
2275         .has_win_c_without_vert_filter = false,
2276 };
2277
2278 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2279         .supports_background_color = true,
2280         .supports_interlacing = true,
2281         .supports_cursor = true,
2282         .supports_block_linear = true,
2283         .has_legacy_blending = false,
2284         .pitch_align = 64,
2285         .has_powergate = true,
2286         .coupled_pm = false,
2287         .has_nvdisplay = false,
2288         .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2289         .primary_formats = tegra114_primary_formats,
2290         .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2291         .overlay_formats = tegra114_overlay_formats,
2292         .modifiers = tegra124_modifiers,
2293         .has_win_a_without_filters = false,
2294         .has_win_c_without_vert_filter = false,
2295 };
2296
2297 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2298         {
2299                 .index = 0,
2300                 .dc = 0,
2301                 .windows = (const unsigned int[]) { 0 },
2302                 .num_windows = 1,
2303         }, {
2304                 .index = 1,
2305                 .dc = 1,
2306                 .windows = (const unsigned int[]) { 1 },
2307                 .num_windows = 1,
2308         }, {
2309                 .index = 2,
2310                 .dc = 1,
2311                 .windows = (const unsigned int[]) { 2 },
2312                 .num_windows = 1,
2313         }, {
2314                 .index = 3,
2315                 .dc = 2,
2316                 .windows = (const unsigned int[]) { 3 },
2317                 .num_windows = 1,
2318         }, {
2319                 .index = 4,
2320                 .dc = 2,
2321                 .windows = (const unsigned int[]) { 4 },
2322                 .num_windows = 1,
2323         }, {
2324                 .index = 5,
2325                 .dc = 2,
2326                 .windows = (const unsigned int[]) { 5 },
2327                 .num_windows = 1,
2328         },
2329 };
2330
2331 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2332         .supports_background_color = true,
2333         .supports_interlacing = true,
2334         .supports_cursor = true,
2335         .supports_block_linear = true,
2336         .has_legacy_blending = false,
2337         .pitch_align = 64,
2338         .has_powergate = false,
2339         .coupled_pm = false,
2340         .has_nvdisplay = true,
2341         .wgrps = tegra186_dc_wgrps,
2342         .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2343 };
2344
2345 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
2346         {
2347                 .index = 0,
2348                 .dc = 0,
2349                 .windows = (const unsigned int[]) { 0 },
2350                 .num_windows = 1,
2351         }, {
2352                 .index = 1,
2353                 .dc = 1,
2354                 .windows = (const unsigned int[]) { 1 },
2355                 .num_windows = 1,
2356         }, {
2357                 .index = 2,
2358                 .dc = 1,
2359                 .windows = (const unsigned int[]) { 2 },
2360                 .num_windows = 1,
2361         }, {
2362                 .index = 3,
2363                 .dc = 2,
2364                 .windows = (const unsigned int[]) { 3 },
2365                 .num_windows = 1,
2366         }, {
2367                 .index = 4,
2368                 .dc = 2,
2369                 .windows = (const unsigned int[]) { 4 },
2370                 .num_windows = 1,
2371         }, {
2372                 .index = 5,
2373                 .dc = 2,
2374                 .windows = (const unsigned int[]) { 5 },
2375                 .num_windows = 1,
2376         },
2377 };
2378
2379 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
2380         .supports_background_color = true,
2381         .supports_interlacing = true,
2382         .supports_cursor = true,
2383         .supports_block_linear = true,
2384         .has_legacy_blending = false,
2385         .pitch_align = 64,
2386         .has_powergate = false,
2387         .coupled_pm = false,
2388         .has_nvdisplay = true,
2389         .wgrps = tegra194_dc_wgrps,
2390         .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
2391 };
2392
2393 static const struct of_device_id tegra_dc_of_match[] = {
2394         {
2395                 .compatible = "nvidia,tegra194-dc",
2396                 .data = &tegra194_dc_soc_info,
2397         }, {
2398                 .compatible = "nvidia,tegra186-dc",
2399                 .data = &tegra186_dc_soc_info,
2400         }, {
2401                 .compatible = "nvidia,tegra210-dc",
2402                 .data = &tegra210_dc_soc_info,
2403         }, {
2404                 .compatible = "nvidia,tegra124-dc",
2405                 .data = &tegra124_dc_soc_info,
2406         }, {
2407                 .compatible = "nvidia,tegra114-dc",
2408                 .data = &tegra114_dc_soc_info,
2409         }, {
2410                 .compatible = "nvidia,tegra30-dc",
2411                 .data = &tegra30_dc_soc_info,
2412         }, {
2413                 .compatible = "nvidia,tegra20-dc",
2414                 .data = &tegra20_dc_soc_info,
2415         }, {
2416                 /* sentinel */
2417         }
2418 };
2419 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
2420
2421 static int tegra_dc_parse_dt(struct tegra_dc *dc)
2422 {
2423         struct device_node *np;
2424         u32 value = 0;
2425         int err;
2426
2427         err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
2428         if (err < 0) {
2429                 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
2430
2431                 /*
2432                  * If the nvidia,head property isn't present, try to find the
2433                  * correct head number by looking up the position of this
2434                  * display controller's node within the device tree. Assuming
2435                  * that the nodes are ordered properly in the DTS file and
2436                  * that the translation into a flattened device tree blob
2437                  * preserves that ordering this will actually yield the right
2438                  * head number.
2439                  *
2440                  * If those assumptions don't hold, this will still work for
2441                  * cases where only a single display controller is used.
2442                  */
2443                 for_each_matching_node(np, tegra_dc_of_match) {
2444                         if (np == dc->dev->of_node) {
2445                                 of_node_put(np);
2446                                 break;
2447                         }
2448
2449                         value++;
2450                 }
2451         }
2452
2453         dc->pipe = value;
2454
2455         return 0;
2456 }
2457
2458 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
2459 {
2460         struct tegra_dc *dc = dev_get_drvdata(dev);
2461         unsigned int pipe = (unsigned long)(void *)data;
2462
2463         return dc->pipe == pipe;
2464 }
2465
2466 static int tegra_dc_couple(struct tegra_dc *dc)
2467 {
2468         /*
2469          * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
2470          * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
2471          * POWER_CONTROL registers during CRTC enabling.
2472          */
2473         if (dc->soc->coupled_pm && dc->pipe == 1) {
2474                 u32 flags = DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_CONSUMER;
2475                 struct device_link *link;
2476                 struct device *partner;
2477
2478                 partner = driver_find_device(dc->dev->driver, NULL, NULL,
2479                                              tegra_dc_match_by_pipe);
2480                 if (!partner)
2481                         return -EPROBE_DEFER;
2482
2483                 link = device_link_add(dc->dev, partner, flags);
2484                 if (!link) {
2485                         dev_err(dc->dev, "failed to link controllers\n");
2486                         return -EINVAL;
2487                 }
2488
2489                 dev_dbg(dc->dev, "coupled to %s\n", dev_name(partner));
2490         }
2491
2492         return 0;
2493 }
2494
2495 static int tegra_dc_probe(struct platform_device *pdev)
2496 {
2497         struct tegra_dc *dc;
2498         int err;
2499
2500         dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
2501         if (!dc)
2502                 return -ENOMEM;
2503
2504         dc->soc = of_device_get_match_data(&pdev->dev);
2505
2506         INIT_LIST_HEAD(&dc->list);
2507         dc->dev = &pdev->dev;
2508
2509         err = tegra_dc_parse_dt(dc);
2510         if (err < 0)
2511                 return err;
2512
2513         err = tegra_dc_couple(dc);
2514         if (err < 0)
2515                 return err;
2516
2517         dc->clk = devm_clk_get(&pdev->dev, NULL);
2518         if (IS_ERR(dc->clk)) {
2519                 dev_err(&pdev->dev, "failed to get clock\n");
2520                 return PTR_ERR(dc->clk);
2521         }
2522
2523         dc->rst = devm_reset_control_get(&pdev->dev, "dc");
2524         if (IS_ERR(dc->rst)) {
2525                 dev_err(&pdev->dev, "failed to get reset\n");
2526                 return PTR_ERR(dc->rst);
2527         }
2528
2529         /* assert reset and disable clock */
2530         err = clk_prepare_enable(dc->clk);
2531         if (err < 0)
2532                 return err;
2533
2534         usleep_range(2000, 4000);
2535
2536         err = reset_control_assert(dc->rst);
2537         if (err < 0)
2538                 return err;
2539
2540         usleep_range(2000, 4000);
2541
2542         clk_disable_unprepare(dc->clk);
2543
2544         if (dc->soc->has_powergate) {
2545                 if (dc->pipe == 0)
2546                         dc->powergate = TEGRA_POWERGATE_DIS;
2547                 else
2548                         dc->powergate = TEGRA_POWERGATE_DISB;
2549
2550                 tegra_powergate_power_off(dc->powergate);
2551         }
2552
2553         dc->regs = devm_platform_ioremap_resource(pdev, 0);
2554         if (IS_ERR(dc->regs))
2555                 return PTR_ERR(dc->regs);
2556
2557         dc->irq = platform_get_irq(pdev, 0);
2558         if (dc->irq < 0) {
2559                 dev_err(&pdev->dev, "failed to get IRQ\n");
2560                 return -ENXIO;
2561         }
2562
2563         err = tegra_dc_rgb_probe(dc);
2564         if (err < 0 && err != -ENODEV) {
2565                 const char *level = KERN_ERR;
2566
2567                 if (err == -EPROBE_DEFER)
2568                         level = KERN_DEBUG;
2569
2570                 dev_printk(level, dc->dev, "failed to probe RGB output: %d\n",
2571                            err);
2572                 return err;
2573         }
2574
2575         platform_set_drvdata(pdev, dc);
2576         pm_runtime_enable(&pdev->dev);
2577
2578         INIT_LIST_HEAD(&dc->client.list);
2579         dc->client.ops = &dc_client_ops;
2580         dc->client.dev = &pdev->dev;
2581
2582         err = host1x_client_register(&dc->client);
2583         if (err < 0) {
2584                 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
2585                         err);
2586                 goto disable_pm;
2587         }
2588
2589         return 0;
2590
2591 disable_pm:
2592         pm_runtime_disable(&pdev->dev);
2593         tegra_dc_rgb_remove(dc);
2594
2595         return err;
2596 }
2597
2598 static int tegra_dc_remove(struct platform_device *pdev)
2599 {
2600         struct tegra_dc *dc = platform_get_drvdata(pdev);
2601         int err;
2602
2603         err = host1x_client_unregister(&dc->client);
2604         if (err < 0) {
2605                 dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
2606                         err);
2607                 return err;
2608         }
2609
2610         err = tegra_dc_rgb_remove(dc);
2611         if (err < 0) {
2612                 dev_err(&pdev->dev, "failed to remove RGB output: %d\n", err);
2613                 return err;
2614         }
2615
2616         pm_runtime_disable(&pdev->dev);
2617
2618         return 0;
2619 }
2620
2621 struct platform_driver tegra_dc_driver = {
2622         .driver = {
2623                 .name = "tegra-dc",
2624                 .of_match_table = tegra_dc_of_match,
2625         },
2626         .probe = tegra_dc_probe,
2627         .remove = tegra_dc_remove,
2628 };
This page took 0.18928 seconds and 4 git commands to generate.